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Phenomenologial Dynamics of C70

Abstract
We construct the most general effective Hamiltonian for the C70 solid and study the long-wavelength
dynamics of the system near the high-temperature orientational ordering phase transition. We derive neutron
scattering cross sections, NMR line shifts, and T1 from our theory and suggest some experiments to further
constrain our Hamiltonian.
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Phenamenolagical dynamics ef Cyo

R. Sachidanandam, T. C. Lubensky, and A. B. Harris
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 1910$

(Received 29 September 1994)

We construct the most general effective Hamiltonian for the C7o solid and study the long-
wavelength dynamics of the system near the high-temperature orientational ordering phase tran-
sition. We derive neutron scattering cross sections, NMR line shifts, and Tz from our theory and
suggest some experiments to further constrain our Hamiltonian.

I. INTRODUCTION

The fullerene molecules C are an intriguing family.
The most celebrated member of this family is C60, which
forms a replica on a microscopic scale of a soccer ball.
Not long after the discovery of this molecule, its crystal
structure in the solid state was investigated. At temper-
atures well above room temperature, solid C6o consists of
orientationally disordered molecules whose centers form
a fcc lattice, but at a temperature of about 250 K it
undergoes a transition to a long-range orientationally
ordered structure with four orientationally inequivalent
molecules per simple cubic unit cell and identified as be-
longing to space group Pa3. This phase transition
is discontinuous ' in agreement with the predictions of
Landau theory or mean-field theory ' based on vari-
ous intermolecular potentials. The energies of the orien-
tational elementary excitations (librons) in the orienta-
tionally ordered phase, determined via inelastic neutron
scat tering, agree qualitatively with calculations
based on recent models ' for the intermolecular orien-
tational interactions. The evolution of the orientational
elementary excitations as the temperature passes through
the phase transition has been the object of some experi-
mental work, but due to the complicated nature of the
order parameter, ' no detailed study of the dynamics
has been made.

The next most widely studied fullerene is C7o. For
some purposes the C7o molecule may be modeled as an
ellipsoid of revolution. At high temperatures, solid C70
shows no long-range orientational order of its molecules,
and its crystal structure is the same as that of orien-
tationally disordered Coo. As the temperature is low-
ered through a critical value, T&, there is a phase tran-
sition to a phase with long-range orientational order
of the molecules. In this new phase (which we will re-
fer to as the intermediate phase), the long axes of all
the molecules align, on average, along one of the fcc lat-
tice's threefold axes [the four (l, l, l) directionsj, but the
molecules continue to spin about their long axes. The de-
velopment of long-range orientational order breaks cubic
symmetry and, as a result, 21' the crystal distorts irito
a rhombohedral lattice. ' Experimental studies show
that this phase transition is discontinuous with a latent
heat comparable to that of C60. ' Molecular dynam-

ics calculations have reproduced the discontinuous na-
ture of this transition, and a later Landau analysis con-
firmed that this behavior does not depend on the details
of the orientational potential used. (For a mean-field
analysis based on microscopic potentials see Callebaut
and Michel. ) Although the difficulty in sample prepa-
ration has so far prevented measurements of the libron
spectrum of single crystals, recent inelastic neutron scat-
tering experiments on powder samples indicate some of
the main features of the dynamics at temperatures near
T) e

At a temperature T&, somewhat below T&, the
molecules appear to stop spinning. ' Because of the
fivefold symmetry of the molecule, the resulting more
completely ordered phase can no longer have rhombohe-
dral symmetry. It is believed that the crystal structure is
monoclinic, but the space group for this phase has not
been determined. Molecular dynamics does predict a
second transition, but probably because the orientational
potential is not well enough known, the crystal structure
predicted is incompatible with x-ray data for T ( T&.
The orientational order parameter, which describes the
ordered. phase below T&, was discussed elsewhere. Since
the experimental information about this phase is rather
vague at present, we will not consider it any further
here. Information concerning the two orientational or-
dering transitions is summarized in Fig. 1.

Until now the orientational dynamics of the fullerenes
has received little theoretical attention. Some in-
formation can be obtained from molecular dynamics
simulations, but such numerical studies have some lim-
itations. For instance, they have difhculty in probing
the dynamical response in the long-wavelength limit. In
addition, such studies do not readily indicate which re-
sults are a consequence of symmetry and which are model
dependent. On the other hand, in principle, molec-
ular dynamics simulations do properly include the ef-
fects of fluctuations. However, qualitatively correct re-
sults which elucidate the role of symmetry can be ob-
tained using a phenomenological theory. Accordingly,
in this paper. we develop a phenomenological treatment
of the orientational dynamics of solid C7o at tempera-
tures near the high-temperature phase transition. For
this purpose we construct an effective Hamiltonian to
treat long-wavelength fluctuations. As mentioned above,
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FIG. 1. A schematic representation of the phase diagram
of solid C7Q We indicate the orientational ordering of the
molecules and the crystal symmetry for difFerent temperature
ranges.

we recently presented a mean-Geld Landau expansion for
the static free energy which demonstrates, on the basis
of symmetry only, that the higher-temperature transition
is discontinuous. This static free energy represents the
zero-wave-vector and zero-frequency limit of the efFec-
tive Hamiltonian we require to treat the dynamics. Our
treatment of the dynamics explains various experimental
results and provides guidance for future studies.

Briefly, this paper is organized as follows. In Sec. II
we construct a free energy for the system and review
its static equilibrium properties. In Sec. III we obtain
the equations of motion from a Hamiltonian based on the
static free energy. Section IV deals with the consequences
for neutron scattering experiments from our theory. In
Sec. V we discuss the consequences of our theory for
NMR studies. In the Gnal section we summarize our
conclusions and suggest some experimental tests for our
theory.

II. STATICS

We now discuss briefly a mean-field theory for the
static description of the phase transition based on pre-
vious work. We describe the C70 molecule and define
an order parameter for the intermediate ordered phase.
Using this order parameter we find quantities that are
invariant under the symmetry operations of the high-
temperature cubic phase and use them to construct a free
energy for the system. We discuss the consequences of
this free energy for the static equilibrium properties and
set the stage for extension of this to describe dynamics
in this system.

A. Molecule and the order parameter

C70 is a cigar-shaped molecule with D5h symmetry,
as shown in Fig. 2. The fivefold axis of the molecule is its

FIG. 2. The G70 molecule with its fivefold rotation axis
along the z axis, the horizontal mirror in an x-y plane, and a
vertical mirror in a y-z plane.

long axis. It has a horizontal mirror plane perpendicular
to the long axis and Gve other mirror planes containing
this axis. If the molecule spins about its long axis, then
electively it has D h symmetry.

In the solid, at high temperatures (T ) T& —300 K)
the molecules are centered at the sites of a fcc lattice
(space group Em3m) and there is no long-range orien-
tational order. As the temperature is reduced below
T), a phase transtion occurs. The molecules continue
to spin about their long axes, which align parallel to
each other along one of the threefold axes (111direction)
of the fcc lattice. This orientational ordering transition
breaks the cubic symmetry and leaves a single threefold
axis along the average direction of the long axes of the
molecules (space group R3). There is an accompanying
distortion ' of the lattice from fcc to a rhombohedral.

The Grst step in developing a theory for a phase transi-
tion is the definition of an order parameter that is zero in
the disordered phase and nonzero in the ordered phase.
In C70 inversion should leave the order parameter invari-
ant since the molecule itself has inversion symmetry in
this phase. Thus an appropriate order parameter, for the
transition to the intermediate phase in C70, is identical
to the one defined for nematic liquid crystals. I et v(1)
be the unit vector along the long axis of the molecule, at
site 1. Thus,

v(1) = ( sin g(1) cos P(1), sin 0(1) sin $(1), cos 0(1)),

(2.1)

vrhere 0(1) and P(1) are the spherical angles specifying the
orientation of the long axis of the molecule at site 1. The
simplest order parameter characterizing the orientational
order in the intermediate phase is then

(2.2)
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where v, refers to the ith component of v and ( ) in-
dicates an ensemble average. In general, higher-order
tensors, equivalent to (Y&™(0,P)) with I ) 2, or higher-
order symmetry-adapted functions ' ' are necessary
for a complete description of the orientational probability
distribution. However, the theory we develop here is that
which would result when these higher-order functions
have been integrated out to give an efFective theory in
terms of only the Q;~'s. This theory has the correct sym-
metry and correctly describes all the low-energy modes.
However, since it is a phenomenological model, the con-
stants appearing in the free energy can only be evaluated
from a detailed micoscopic calculation. In the absence of
such a calculation we will estimate these constants by
relating them to experimentally accessible quantities.

We restrict attention to the hydrodynamic (i.e. , small
k, w) limit for the purpose of studying the mean-field
properties. Since we are interested primarily in long-
wavelength excitations, we find it convenient to deal with
an ord. er parameter

define five symmetric and traceless 3 x 3 matrices I, .

such that

(2.8)

From Eq. (2.7) and Eq. (2.8) it follows that

(2 9)

) I, Ipi ——"—
l

&'~~~~ + ~'~~~ )
(2.1o)

B. Landau free energy

The last relation uses the fact that the trace with re-
spect to the pairs (i, j) and (k, l) must be zero. Explicit
constructions of these matrices are given later.

Q,, (r, t) = —) Q,, (l, t)8(r —1), (2.3)

defined at points r in space rather than Q;~ (1) defined at
sites 1. Here n is the number of molecules per unit vol-
ume. Q;~. (r, t) is a dimensionless, traceless, and symmet-
ric tensor. It is always possible to find a local coordinate
system in which it is diagonal and is of the form

1 ( —S+g
Q= — 0

3 ( 0

o o )—S —g 0
0 2S)

(2.4)

where S is the uniaxial and g is the biaxial order pa-
rameter which is usually chosen so that ~il~ & ~S~. In
the intermediate equilibrium state there is uniaxial order
with g = 0, and we may write

(Q,, (r, t)) = S(r, t)
~

n, (r)n, (r) — b,i I, —
)

(2.5)

where n, the Frank director, is a unit vector specifying
the direction of the principal axis (or the average direc-
tion of ordering) and

We are ultimately interested in obtaining a phe-
nomenological theory for the dynamical fluctuations of
the C7o order parameter. To do this we construct, from
the order parameter, a Landau-Ginzburg-Wilson free en-

ergy functional Fg. Eg consists of quantities made up
of combinations of the order parameter components that
are invariant under the symmetry operations of the cubic
lattice (the high-temperature disordered phase). Obvi-
ously, all the rotationally invariant quantities can belong
to Eg. Thus we can decompose it as

(2.11)

where Ep is the isotropic, i.e., rotationally invariant, part
and F~ is the anisotropic part, which is invariant only
under the symmetry elements of the fcc lattice. Fp is
identical to the free energy for nematic liquid crystals
and is given by

(,
F, = n d'x -~(q') —f

D
+—(v,q,, ) (v,q„)+ —(&;Q,') (&,Q,'),

S = —(3(v n) —1).2

2
(2.6)

v q'=) q,', (2.7)

where Tr is the trace operation, then it is possible to

In the intermediate phase of C7q, the equilibrium state is
spatially uniform and n points along one of the threefold
axes of the fcc lattice. Let the three axes of the cubic
lattice be A, Y, and Z. Thus, in the cubic coordinates,
nxz ——n&z —nz& ———and the diagonal comPonents of Q;z
in this basis are zero.

Since the Q;~ is traceless it has only five independent
components, say, Qi, Qz, Qs, Q4, and Qs. If they are
defined so that

(2.12)

where r = a(T —To) changes sign at temperature To and
Tr denotes a trace over the tensor indices. The coeK-
cients a, A, D, f, e, and C are functions of temperature
whose temperature dependence may be neglected when
discussing phenomena at temperatures near To. We use
the summation convention whereby a sum over repeated
indices is assumed. We have included invariant terms
only up to fourth order in the order parameter since we
hope to apply this theory only close to the transition
where we assume the order parameter is small. We retain
terms only to second order in the gradient operator be-
cause we are interested only in the long-wavelength limit
where the details of the lattice are not important. Since
the lattice constant is a = 14.39 A. , our theory is valid
only for wave vectors k such that ak « ]. or k « 0.5 A.
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I jkl = )
A=X, Y,Z

(2.13)

Then

d'~(1;,.iq„q.~
—T q')

2
(2.14a)

d z(qxx + Qvv + qzz TrQ ) (2.14b)
2

XY + YZ+ ZX

At high temperatures Fl favors S = 0. At suKciently
low temperatures it favors nonzero S at wave vector
k = 0, but does not prefer any particular direction for
n. Thus we would see Goldstone modes (broken symme-
try modes) associated with fluctuations in the director of
n (as in nematic liquid crystals). The existence of the
third-order term implies that the transition is first order
in nature; the order parameter undergoes a discontinu-
ous jump in value at the transition. In the future we use
C = 0, to simplify the resulting equations of motion. As
more data become available, one might refine the the-
ory by allowing t to be nonzero, including additional
second. -order anisotropic gradient terms reHection cubic
symmetry, and allowing the coefficients in Eq. (2.12) and
in Eq. (2.14), below, to have a temperature dependence.
However, our aim here is to obtain a qualitatively correct
theory which is as simple as possible.

The lowest-order contribution to F~ is of order Q2.
It can be written in various ways. Let ex, e, and e be
unit vectors along the L, Y, and Z cubic crystal axes,
respectively. We define

If Q;~ is uniaxial, then F~ can be expressed in terms of
S and n as

1F„= nS—' d'x
i
nx —— +

~

n~ ——
~x

(, 1)' 2+
I nz ——

I3) (2.i5)

This shows clearly that for A & 0, nx ——nY ——nz ——
3

defines the lowest-energy directions, which are the four
(111) directions. Similarly, the (100) directions are the
highest-energy directions. Of course, for A & 0, the role
of these two extremal directions are interchanged.

C. Representations of Q

We have already shown that it is possible to define
3 x 3 matrices I so that Q;~ = P I; Q The e. xact
form of the matrices I is determined by convenience and
the coordinate system in use.

We pick a coordinate system such that the z axis is
along the equilibrium direction of n in the ordered phase.
We call this the rhombohedral system since the z axis is
along the threefold axis of the rhombohedral lattice. The
rhombohedral coordinate axes are given in terms of the
cubic axes by e = —(1, 1, —2), e" = (—1, 1,0), and
e' = ~(1,1, 1). A natural choice for the five matrices

I; in the isotropic . case (A = 0) is

f —1 O 0)
I1 p 1 0

v6~0 0 2

(0 o 1)
I = 0 0 0

~~ (1 o o)

o 0)
I = 0 —1 0

o o o)
(0 o 0)

I =
I 001

v2 (010)

(0 1 0)I3, ] 0 p
~2&0 oo)

(2.16)

(2.i7)

Then

Q = Q- Q = n= (Q* —Q ) (2.18)
3

I

and the choice of I's given above does not simplify it. A
natural choice of variables in this case, which diagonalizes
E~) is

F~ = ——(9Q'..+ [~2(q..—Q„) + 2Q..]'
+4(~2Q y

—Q„,)'j, (2.20)

In the ordered state, the mean value of Qi, the uniaxial
order parameter, is nonzero while the remaining variables
have a mean value of zero. Also Q2 is the biaxial order
parameter, Q4 and Qs measure rotations of n away from
the preferred direction, and Qs measures the direction of
biaxial order. Unfortunately, in the rhombohedral sys-
tem E~ is very complicated, as can be calculated using
Eq. (2.14),

(v2Q-, —Q .),
(~2qw + q-. )

(v 2(q —Qy„) + 2Q, ),

The corresponding I's are

(2.218)

(2.21b)

(2.21c)

(2.21cl)

(2.21e)
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I + I, I'=
3

z2+ z4
3

(2.22)

I' + I', I = I'.
3

(2.23)

Now Q, Qb, Q„and Qg measure a combination of rotation of n and development of biaxial order With this choice
we have

E+ A
2

d x (Q, +Q +Q,), (2.24)

e e e

EI = d'x n — + — —— V'

a=a a=a a=af(, 1, ,1 ( 1--,
I Q. + Q.'+ Q' I+ f ~2

I
Q.Q.Qb+ Q.Q.Q. — Q.Q.Q. I

) ( 2 )

+-, (Q.Q.'+ Q.Q.'+ Q.'Q~ —2Q'. Q. + V 2Q.'Q. —Q.'Q ), (2.25)

where in the gradient term we have performed a partial
integration.

D. Thermodynamics

2
Qo(T.) =

3,
2f

Tc —— + T
9ae

(2.29)

(2.30)

T* = To+ A/a. (2.26)

If we let Qp be the equilibrium value of Q„ then its value
is determined by the equation of state

= 0 = Qp(r —A —fQp + eQp). (2.27)

At the first-order transition, defined to occur when T =
T, the &ee energies of the ordered and disordered phases
are both zero so that

I

—(r —A) — fQo(T-) + —e—Qo(T.) I Qo(T-) = o
(1

2 3 4 )

The free energy Eg ——E~ + EI can be used to deter-
mine the order parameter as a function of temperature,
the latent heat of the transition, the order parameter sus-
ceptibility, and metastability temperature. 3 Here we will
be content with a mean-field analysis that ignores Buc-
tuations. We will compare the mean-field forms for the
above quantities with their experimentally determined
(or estimated) values to obtain estimates for the phe-
nomenological parameters a, To, A, etc. , of our theory.

First, we note from Eqs. (2.24) and (2.25) that the
system becomes locally unstable to the development of a
nonzero order parameter Q, when r —A becomes zero.
Since r = a(T —Tp), this instability occurs at T = T,
where

This results indicates that the difference between T,
(where the thermodynamic transition occurs) and T*
(which is the limit of metastability on cooling) is of or-
der f /(ae). If T** is the limit of metastability of the
ordered phase on heating, then T** —T, is also of order
f2/(ae). The latent heat (I) of the phase transition is
TAS, where LS is the jump in entropy that accompa-
nies the transition and is given by

S=T
) (T—T.)~o+

(OF )
) {T T)+0— (2.31)

= —anT, d rQp(r) = aNT, Qo, —
2 ' 2

(2.32)

b2E
(2.33)

Above T, in the disordered state, the Fourier transform
y &(k) of this susceptibility is diagonal with entries

—1 —1 —1
+aa +cc ~ee

where we have assumed that the predominant tempera-
ture dependence near the transition is contained in r and
N is the number of molecules in the system.

The order parameter susceptibilities are easily calcu-
lated via

(2.28)
= n(r —A+ Dk ) = n[a(T —T*) + Dk ], (2.34)

where Qp(T, ) is the mean-field value of Qp at the tran-
sition. Equations (2.27) and (2.28) determine T, and
Qp(T, ) to be

——y&&
——n(r + Dk ) = n[a(T —Tp) + Dk ]. (2.35)

Below T, in the ordered state, Q and Qb couple to each
other but are decoupled from other Q's. Q, and Qg are
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similarly coupled to each other and decoupled from the
other Q's and Q, remains independent. We have

& '(a b) = ~ '(c d)

& n(2fqo+ Dk2)
v/2nf Qo

Jrnfqe
n(A+ fQ, + Dk') p

'

(2.36)
(2.37)~.—.' = n(- fq. + 2.q', + Dk').

Note that when A = 0, det[y ~(a, b)] Dk2 as k -+ 0
as required by rotational invariance of the mean-field.
ground state. We recall that in the classical limit of in-
terest to us here, the susceptibility y p is linearly pro-
portional to the fluctuations in Q

S p(k) = d x (b Q (x)8qp (x') )e (2.38)

= k~Ty p(k), (2.39)

where 6Q = Q —(Q ) and k~ is the Boltzmann con-
stant. In evaluating the Fourier transform use has been
made of the fact that the system must be translationally
invariant, at least in the long-wavelength limit where the
lattice can be ignored.

E. Numerical estimates of the coe8icients

Constant
c (A.)

Qo (T.)
e
A

T, (K)
To (K)
T (K)

D
Ip

TABLE I. Values of various constants.

Value (experimental)
14.39

204k~
20k~T

0.1
136k~T
27k~T,

300
259
299

20c~k~T
1360 nh'/(k~T )

4/c'

We will now fix the unknown coefFicients in our free
energy by fitting the predictions of our theory to exper-
imental results. From the NMR response width at T,
we can determine Qo(T, ). The constants a, f, A, and e
can be fixed using Qo(T, ) and the experimental value of
the latent heat of the transition. D can be determined
either from the width of the diffusion peak above T or
from the range and strength of interactions between the
molecules. The value of moment of inertia can be cal-
culated from the geometry of the molecule. The lattice
constant of the cubic phase is c = 14.39 A. . We will ex-
press the coefEcients in terms of these constants and the
number density of the molecules in the solid (n). The
results are collected in Table I.

Transition temperatur e (T,)

Depending on the experiment chosen ' ' the value
of T, ranges from 300 K to 340 K. We choose, for our
calculations,

T = 300 K. (2.40)

2. Or'der parameter at the tr'ansition, Qs(T )

q. (T-) = d3/2Q- = 43/2(P/3) = 0»
For our calculations we choose

Qo(T ) = 0.1.

(2.41)

(2.42)

In the ordered state, the NMR reponse width of a pow-
der sample is a direct measure of the order parameter as
shown in Eq. (5.5). If this is studied close to the transi-
tion temperature, we can establish Qo at T . Prom our
Eq. (5.5), below, we know that the width of the NMR
absorption line is given, as a fraction of the original reso-

nance frequency for C, by 2
—ooQO(T), where (1—os)

is the factor to which the magnetic field is renormalized
by the screening. Tycko et a/. find oo 45 x 10
and the width is approximately 65—70 x10 . This gives
Qo(T) 0.8 as compared to the zero-temperature value
of 0.82. But since these measurements were made in the
fully ordered low-temperature state, we do not consider
them further. Sprik et a/. have suggested a model based
on their molecular dynamics simulations. In the high-
temperature phase, the long axes of the molecules point
with equal probability along the six face diagonals. In
the intermediate phase the orientation of the long axes
of the molecules is distributed such that on average they
point along the threefold axis of the rhombohedral lattice,
but their angular distribution is peaked at an angle of 18
with respect to the threefold axis. Blinc et a/. have used
a variant of this model to explain their NMR results. In
their model the long axes of the molecules are allowed
to point along one of the six face diagonals of the cubic
lattice [(110), (011), (101), (110), (011), and (101)] in
the high-temperature phase. In the intermediate phase,
they have two sets, consisting of three axes each, along
which the long axes of the molecules can point. The first
set consists of three directions oriented at an angle e with
respect to the threefold axis and the second set consists
of three directions prependicular to the threefold axis.
The two sets are occupied with probabilities, (1 + P)/2
and (1 —P)/2. In the high-temperature regime the six
directions coincide with the face diagonals of the cube.
The order parameter as defined by us (they also choose
the same order parameter) would then become a function
of both the angle e and P which is a measure of how they
favor the occupation of the first set of directions over the

second. In the fcc phase, e = cos — 35.5. In the

intermediate phase, Q, = +—cos e —s. Using their
values of P = 0.3 and e = 35.5 close to the transition we
get
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8. Determination of a 7. Determination of D

n=1.237x 10 m (2.43)

Thus we have, from Eq. (2.32),

(a/k~) = (2L)/[k~T, QO(T )n] 200 (2.44)

for T, = 300 K and Qe(T, ) = 0.1.

From the experimentally determined latent heat (L) of
the transition we can determine a using Eq. (2.32). There
are two experiments to consider. Grivei et at. report a
value of 2.2 J/g for the latent heat of the transition and
T~ of 340 K and Vaughan et a/. report a value of 3.6
3/g and T, = 345 K. We choose a latent heat of 3 3/g
for our calculations. Using the density (1.74 g/cc), we
And that the latent heat per unit volume is I = 8.7 x 10
J m . The density also tells us that the number density
n of C7p molecules in the solid is

D = UB = aT*c /z = 20kiiT, c . (2.49)

The second method uses the width of the non-Bragg
(or difFuse) peaks of neutron scattering experiments in
the disordered state. These measurements have not been
performed. The width of the x-ray and neutron difFuse
peaks is inversely proportional to the correlation length.

Thus, the width of the peak is given by ~
' . From

the value of D estimated above we would predict a disuse
peak width of about 0.15 A

There are two methods of estimating the size of the
constant D. The first method uses the range (A) and
strength (U) of the interactions between the molecules.
The strength of the interaction between two molecules
is of the order of aT*/z, where z = 12 is the number of
nearest neighbors. The range is approximately the lattice
constant c = 15 A. . Thus,

Determination of A. 8. Calculation of I0

Some muon spin resonance experiments ' ~ detect the
efFects of the cubic anisotropy in the motions of the
molecules at an anisotropy temperature T, which is
about 40 K above the transition temperature, so that
T = T + 40 K. This means that we can estimate the
value of A to be approximately

I,' = 1.43 x 10-4' K g' = 1360
kgb T~

Ip ——nIp,

(2.50)

(2.51)

The moment of inertia Ip of the molecule is determined
by its geometry. We And that

A = a(T —T, ) = 200kii(40K) = 27kgy T, . (2.45) where Ip is the moment of inertia density.

5. Determination of T'

For the I andau expansion to be valid around the tran-
sition temperature, T —T* should be small. Experimen-
tally, the difFerence in transition temperatures observed
in a cooling versus a heating experiment is less than 5 .2
Thus a reasonable value is (T, —T*) 1 K and for this
choice we get

Tp ——259 K, (2.46)

8. Static mean jield dete-wmination of f, e

From Eq. (2.29) and Eq. (2.30) we have

e = 2a(T, —T*)/Qo(T, ) = 133kiiT„

f = 3eQ&(T )/2 = 20k~T, .

(2.47)

(2.48)

since T* = To + A/a. Choosing a smaller value of T*
or a larger value for T —T* makes the order parameter
relatively more insensitive to the temperature close to
the transition. So, if the order parameter were carefully
measured close to the transition, the value of T* could
be fixed quite easily.

III. DYNAMICS

A. Phenomenological equations of raotion

In this section, we will derive the phenomenological dy-
namical equations for the Cye order parameter Q;~ valid
at long wavelength and low frequency. Long-wavelength
hydrodynamical modes, with frequencies that tend to
zero with wave number k, are determined entirely by con-
servation laws and broken continuous symmetries. In the
absence of anisotropy, angular momentum L is conserved.
In addition there are two variables Q, and Q„„describ-
ing broken rotational symmetry. When anisotropy is in-
cluded, angular momentum is no longer conserved and
the modes associated with broken rotational symmetry
are no longer hydrodynamic. We will assume, however,
that all modes associated with the order parameter Q;z
and L are slow compared to microscopic relaxation times
at long wavelengths. Our dynamical theory must, there-
fore, include angular momentum as well as Q,~. and our
equations of motion will contain nondissipative Poisson
bracket couplings between L and Q,~. . These are the
couplings responsible for librons in the low-temperature
nondissipative limit.

The microscopic dynamical variables of our model are
the angle variables 0(l) and P(1) for each molecule (the
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Euler angles) and their associated canonically conjugate
momenta,

p,-.&&
and I',. are also dissipative tensors. In the absence

of anisotropy, L is conserved and I' is zero and

pg = Io~(1)

'[0(1)]&(I)

(3.1)

(3.2)
L

pz~A) = p~jk~il ~ (3.12)

1
L(1) = pgep — ppeg,

sin 0
(3.3)

where Io is the moment of inertia of the C70 molecule
about the axes perpendicular to its long axis. The angu-
lar momentum of the molecule is

In the presence of anisotropy (A nonzero), L is not con-
served and I';. is strictly speaking nonzero. If it is as-

sumed that the microscopic I', is zero, then mode cou-

pling will produce a I', that is of order A . We will
assume that

where ey and eg are the usual unit vectors on a sphere.
We can now introduce an angular momentum density L Lr,, =~ b;, . (3.i3)

L(r) = ).L(I)b(r —1).

The long-wavelength kinetic energy is then

(3 4)
To calculate the mode structure, it is convenient to re-
express Eq. (3.7) and Eq. (3.8) in terms of the five inde-
pendent variables Q, . . . , Q, of Q,j. Using the identities

I'Ic = — d'xL'(x),
2I

where I = nIO. The effective free energy is

(3.5)

(3.6)

bQ;,(x), 1 (
, = b(*-*')-

I
b'kb'i+ b'lb'k —-b*'bkl

IbQ„, (x') 2 0
' 3 )

(3.14)

(3.15)
The phenomenological equations of motion for Q;j and
L can be written as we get

~Q', (*)
Bt

BL,(x)
Bt

d'*'[Q*'(*) Lk(*')1 (,
bH

ij kl bQ

d'x'[L'(*) Qkj(x')]
b kjix j

yzg k l 2

(3.7)

(3.8)

bH

bQ;, (x)
bH bQ (x')

bQ-(x') bQ'j(x)
bH bQkl (x')

bQ-(*') bQ' (*)
bH"bQ (x)

(3.i6)

Here

Using these relations, it is straightforward to rewrite Eq.
(3.7) and Eq. (3.8) as

(3.9)

= b(x —x') [e;klQ, l(x) + ejkiQ;i(x')],
(3.iO)

[Q., (-),L.(-')] = ) . 'Q"'"' ""("')
8 (1) 8 (1)

OQ,j (x) BLk (x') )
Bp (1) olq (1) )

BQ (r, t)
Ot

d r' [Q (r, t), L, (r')]
bL, l,r'

bH
bQ (r, t)'

bH—(~ —~& ) bL (,).
BL;(r, t) s, , bH

d r' [L; (r, t), Q (r')]

(3.i7)

(3.is)

where q = (0, P) and p = (pg, p~) is the Poisson bracket
of Q;j(x) with Lk(x. ). I', .

kl is a dissipative tensor It.
must be symmetric and traceless in ij and k/. In a cubic
environment, there can in general be two independent
constants in I',. -&&. To simplify our analysis we will use
the form appropriate to an isotropic system with a single
constant:

These are the equations governing the long-wavelength
dynamics of L and Q;j. They are nonlinear equations
which could in principle be used to calculate the eÃects
of mode-mode coupling.

To obtain the dynamical modes to harmonic level, we
linearize Eq. (3.17) and Eq. (3.18). These linearized
equations can be written as

1 ( 2
I'; kl

= —I'g
~

b,kb, l + b*lb, k ——b*jbkl
~2 ( 3

(3.11)
M~ p(k, B )be~(k, t) = 0, (3.19)
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where bX = (bQ, . . . , hq„SL, . . . , 8L, ) is the com-
plete set of eight independent variables and Bq

—— . The
equations for 8X (and the matrix M p) decompose into
two independent equations for Q, and L, and two sets of
equivalent equations for the triads Q, Qb, and L and
Q„Qd, and L„:

M„(k, a, )sq. = (a, + r~&.—.') aq, = o,

Ml, I, (k, O)bL, = [0 +rL, (k)/I]SL
M~ p(k, Bg)SXp~ ——0,

M. ~(k, a, )ax~"' = o,

where

(3.2o)

(3.21)

(3.22)

(3.23)

rl. (k) = p +pk,
Sxl'l = (aq. , Sqb, SL.),
~X~'l = (~Q. , SQ. , ~L„),

(a, +r &—.'
+I'g X.b'

QpDk
M p(k, Bg) =

+rgy b
—I Qp

Og + rgybb' ~2I Qp
v2q—p(Dk2 + A) 0, + rL, (k)/I )

(3.24)

(3.25)

(3.26)

(3.27)

—1—zP. g g
—a~b ——~~ ———zI'@ebb .

(3.28)

(3.29)

These equations predict modes with respective frequen-
cies w, = —irony, , and w, = —irL, (k)/I for Q, and L, . .

Imaginary frequencies correspond to purely dissipative
modes. The other mode frequencies are determined by
detM(k, w) = 0. In the isotropic phase this gives

(us = —irg (nDk + 3nfQp) . (3.31)

The superscript 0 denotes the isotropic case. w3 is
the frequency associated with biaxial Huctuations and is
nonzero. Since we are interested only in the small k limit
we can simplify the expressions above to give

In the ordered phase, there are two sets of three cou-
pled modes. The frequencies of these modes, in terms
of the coefBcients of the free energy, are quite compli-
cated. They can, however, be calculated analytically in
two limits, which we will now consider.

~~ 2 = —(rgnDk + pk /I) + Qpk/3nD/I, (3.32)

~s = —irg (nDk + 3nfQp).

Isotropic limit (A. = 0)

In this limit we expect the real parts of the mode fre-
quencies to go to zero in the limit k = 0 since the prop-
agat;ng modes must be Goldstone modes. There are two
modes each at frequencies w& and w2 and a dissipative
mode at uz and their values are given by

(u~ 2 = —(rgnDk + pk /I)

12Qp2k2nD/I —(I"gnDk2 —pk2/I) 2,

(3.3o)

There is one mode at w = —zI'gy, , corresponding to
Q, and another at cu = —ipk2/I corresponding to I, .
Because we have not included any anisotropy, the librons
(i.e. , cuz 2) have a dispersion relation quite similar to that
of phonons, namely, w oc A: with k damping for each of
the allowed modes of oscillation.

2. Small di88ipation: Small aniaotropy limit

In this limit, rgy b « rgy ', rgybb' « QnA/I
(where ebb ——y ~ + nA), and rgnA && rgy, and we
have

. (1 Dk2+A 5 1
[r&(k)/I + r&& ]

—nAr&
~
+ — Q (12nDk + 8nA)/I —[rl, (k)/I —rgy ']

(2 3Dk' + 2A) 2

DA~+ A
~2 — i

~

—[rl, (k)/I + rgy —
]
—nArg

~

—— Qp(12nDk2 + 8nA)/I —[rL(k)/I —rgg ]2 3Dk'+ 2A) 2

Dk2
ld = —zI gg —zAAI g 3DA:2+ 2A

(3.34)

(3.35)

(3.36)

The Q, mode remains at &u = —irony, ~, but the L mode
becomes w = —iri, (k)/I, which does not go to zero with
k because I is no longer conserved in the anisotropic
limit. We see that in the presence of anisotropy the li-

I

brons are no longer phononlike but have a nonzero fre-
quency at k = 0. The argument of the square root can
become negative for some range of temperatures if the
damping is too large or the order parameter Qp is too
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small, in which case the librons are overdamped. If Qp
is large enough, then the librons are well-defined excita-
tions with a frequency at k = 0 Qp +2nA/I.

Figure 3 shows the dispersion relation obtained for the
values of the constants determined in the section on ther-
modynamics. Figure 4 shows the variation of the fre-
quency of the propagating mode with temperature for
diferent choices of damping.

B. Dynamic structure factar

Phenom. enoloyieal model

The dynamic correlation function for bX„and bXq is
defined as

Szq(r, r, t, t ) = (8X&(r, t)SX&(r, t )). (3.37)

Neutron scattering measures the Fourier transform of S&q
defined by

S (k, ~)p= J d'(T —.') f d(tT—t )d~, (x, x', tt''),
Xei(~(t—t') —k (x—x') ) (3.38)

where p, q represent the order parameter variables. This
is then related to the dissipative part of the response
functions y" p(k, u) via the fluctuation dissipation the-
orem, which in the classical limit of interest to us here
is

2k~T, (S,p(k, od) = y" p(k, ur). (3.39)

The dynamic response function y p(k, z) is related in

the usual ways4 to the matrix M p(k, —iz) by

FIG. 3. Variation of the real part of the propagating mode
frequency uz z versus wave vector for the underdamped case
at T = 290 K & T, For th. is case we took I'g = 100 (3 sec)
p = 10 m /sec, p = 0, and the other parameters as given
in Table I.

250 260 270 280 290

M p(k, —iz) = —. [y ~(k, z) —y ~(k)j y p(k). (3.40)

Thus

S p(k, cu) = 2[M (k, —i(ur + ie))

+M '(k, —i(~ —ie))]S~ p(k), (3.41)

where S~ p(k) = I 2 S~ p(k, cu) = k~Ty~ p(k) is the
instantaneous correlation function.

In the disordered phase, all modes are decoupled and
dissipative, and

S p(k, (u) = S (k, (u)b p = b p.
21 gk~T

(r~~.-'.)

(3.42)

We can give an explicit expression for the correlations in
the ordered phase in the limit of small dissipation that
we discussed earlier in the calculation of the mode fre-
quencies (I'gy b « I'gy, I'gy&& « gnA/I, y&&

+ nA, and I'gnA « I'gy ). Let us define the
following quantities so that it is easy to express the cor-
relation (we only give (bQ hQ ) here):

Dk2= I'gy + nAI'g
3Dk2 + 2A'

Dk2+ A
A) ——I gy + I' (k1)/I —nAI'g

3Dk2+ 2A

(3.43)

(3.44)

(up —— Q2p(12nDk2 + 8nA)/I —[I'gy —I'1, (k)/I)2,

(3.45)

where uo is the frequency of the propagating mode and
Ao and Ai represent the dissipation of the modes. Using
these expressions we have

FIG. 4. Variation of the real part of the propagating mode
frequency (t)) 2 versus temperature for k = 0.1 A and for

p = 5 x 10 m /sec and p = 0. The straight line is the un-

derdamped case, for which I'g = 180 (3 sec) . The dashed
line is the overdamped case, for which I'c) = 300 (Jsec)
Note the discontinuity for the underdamped case at the
first-order transition at T = 300 K.

I

(' 2DI(: + 2A ) 2Ap Dk Ap((u —~p)
(3Dk2 + 2A) )i ~2 + p2 ~~ 3Dk2 ~ 2A (~2 od2)2 + 4~2p2+ 2k~Ty

Dk2 2Ag (odp2)
x2k~Ty~~~~ 3Dk2 + 2A (od2 ~2)2 + 4~2 p2

' (3.46)
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2. Digusi, on model

We can also calculate the dynamic correlations us-
ing the difFusion model. We will compare the two ap-
proaches here. The dift'usion model assumes that the C70
molecules act as independent rotors at each site. Each
rotor undergoes a rotational random walk with diffusion
constant D~~ for rotations about the long axis and D~ for
rotations perpendicular to the long axis. If we ignore the
spinning degree of freedom, the molecule is the difFusion
analog of the symmetric top problem in quantum me-
chanics. This model ignores all interactions among the
molecules. It cannot distinguish between the ordered and
disordered phases, and, in particular, it does not predict
the existence of low-temperature librons. It, nonetheless,
is a useful model for the high-temperature phase.

We are interested in evaluating correlations of the form

fivefold axis of the molecule) we may write

Y('r;, t), = ) D (A. b)*Y (r, )b, (3.48)

(3.49)

Due to the symmetry of the molecule, only o0 is nonzero.
Furthermore,

C „(t) = p(Q. b(t), A. b(0))p(O(0))

where O,~b denotes the triad of Euler angles which takes
the space fixed axes into the body fixed axes. For the C70
molecule we set

70

(3.47)

x ) D( l (0, b(t))D„p (0, b(0))*o."ap,
nP

where the subscript 8 on the spherical harmonics indi-
cates that it is evaluated in a system of coordinates fixed
in space and the angle brackets indicate an average over
the canonical probability distribution. In terms of body
fixed (B) coordinates (in which the z axis lies along the

I

where p(O(0)) is the probability that the orientation at
t = 0 is O(0) and p(O(t), A(0)) is the probability that the
orientation at time t is O(t) given that it was O(0) at t =
0. This conditional probability is the Green's function
discussed in Appendix C. Also p(O(0)) = 1/(8' ). So

(t) = ) o-*op d~i d~o ),, D ' (~li)D„p(~o)*DM~(~i)*DM~(flo)e
nP LMN

~2 —A2rnN t jao ™ +2+ ~2mot/a0 m~ 2 6+J

1V

(3.5l)

where

&Liiiiv = L(L+ &)D~ + &'(D~~ —Di) (3.52)

where D~~ and D~ are orientational diffusion constants
proportional to

I~~
and I&, respectively. Using the def-

initions Q, . . . , Q, given in Eq. (4.5), Eq. (4.6), and Eq.
(4.7) we get the correlations for the order parameters:

(3.53)

This result for the correlation function is identical to that
predicted within our model in the isotropic limit (A = 0)
when interactions between molecules are ignored so that
one can make the identifications (a) I'gy = 6D~ and
(b) 2 an(T —To) = k~T Note that although . the hy-
drodynamic and difFusion approaches represent quite dif-
ferent approximations, they nevertheless lead to similar
results. The fact that we studied a Y2 correlation func-
tion [see Eq. (3.47)j limited the sum over L in Eq. (3.51)
to I = 2. A more general correlation function (as is
needed to interpret neutron scattering) requires a sum
over L Then, 8 b(w) w. ill be the sum over a large num-
ber of I orenztian line shapes each of which has a dif-
ferent width. Qn the other hand, the hydrodynamic
result, Eq. (3.42), has only a single Lorenztian, whose

I

width, however, is temperature dependent. These calcu-
lations incorporate quite diBerent physics: The difFusion
model, by its complete neglect of correlations between
adjacent molecules, is restricted to a very large wave vec-
tor, whereas the hydrodynamic model is valid in just the
opposite limit.

IV. NEUTRON SCATTERING

The cross section for coherent neutron scattering at
wave vector k and energy u is given by

I, h(k, u)) oc
out

(
ik r, (t) ik r&(O)) i(utdt— (4.l)

1=0 m= —l

(4.2)

We can either use the symmetric top di8'usion model,
discussed earlier, or our phenomenological model of the
dynamics.

which is the Van Hove relation. We can calculate this
quantity using our theory. To evaluate I, h we use
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A. Phenomenological model

This is the model we have proposed. It gives us a uni-
fied description of the system above and below the transi-
tion. We use Eq. (4.2) in the expression for S, h and sum
over all the atoms in the solid. The coordinate of the nth
atom on the pth molecule can be written as r = rn„+K„,

where r„p is the coordinate of the atom with respect to
the center of the molecule and. Rp is the coordinate of the
center of the molecule with respect to the origin. ]r „~
and Kp are independent of time in our model since we
ignore the inter- and intramolecular phonons. We choose
the coordinate system to be along the crystal axes. Car-
rying out the expansion, we obtain

7r 2
{e' ' e ' ' l) = ) ) ) ) e' '(»'l(jt(kr „)jt (kr z )Ytp(r" ~{0))Yt, *(r „(t)))

p,p' n, n' l, l' m, m'

x Yt *(k)Yt, (k). (4.3)

We make the approximation of keeping only terms with l & 2 since in the hydrodynamic limit (k « 0.5 A) the
higher-order terms do not make an appreciable contribution.

Since the various / moments are not correlated with one another (that is, t = 2 is not correlated to l = 0 terms) in
our theory, we can separate the l = 0 and l = 2 terms. Since we are ignoring the phonons, the l = 0 term contributes
only to static scattering, i.e., b(w), and yields the Bragg peaks, i.e. , b(k —G) peaks (G is a reciprocal lattice vector).
We are interested in the intensity at k g G for information on dynamics.

We can consider the spinning molecule to be made up of five structures of the form shown in Fig. 9 below. It is
shown in Appendix A that for a given molecule the sum over n can be converted to a sum over the five structures
indexed by n so that P,- j2(A,'r;)Y2 (r" ) = X(k)Y2 (v), where v is the direction of the long axis of the molecule and
X(k) = P g(o.)j2(kr ). The geometrical constant g(n) is defined in Appendix C. Thus,

4~~2 2
ik r(t) —ik r(0)) ( j ~2(k) ) ~ )

p$p m)m 2

x Y2 *(k)Y2 (k).

e'" ( ~ ~'~(Y2 (v(R„, t = 0))Y2 '(v(R„, t)))

(4.4)

Y'(v) = 15
(Q** —Qyy +»Q*v)

[v 2Q. + Q& + i(Qs + v 2Q.)], (4 5)

The Yl 's in the equation above can now be expressed
in terms of the order parameters of our theory. The sum
over p, p' results in giving us the Fourier transforms at
k of the correlation functions of the order parameters.
We also perform a temporal Fourier transform to get the
intensity as a function of k and u.

We need to average over the directions of k since we
are interested in the results of powder experiments (the
qualitative results remain the same for single-crystal ex-
periments). The correlations involve only the magnitude
of the wave vector so that the integration over directions
of k will involve only the averages of the spherical har-
monics of k. Using the orthogonality of the Yl 's and.
the definitions

I(k, (u) oc 30vr X (k)[S (k, cu) + St,s(k, cu)
IIl

+S„{k,~) + Sgg(k, ur) + S„(k,~)], (4.8)

where k;„,k „q are the wave vectors of the incoming and
outgoing neutrons, respectively. Note that off-diagonal
terms in S p(k, w) do not contribute although they would
in a single crystal. We can calculate the scattering inten-
sity as a function of w at a particular k for various values
of dissipation using the values for the oceKcients that
we estimated in the previous section. The value of I'g
controls the height and width of the peak at u = 0 while
both l g and p control the height and width of the peak
belonging to the propagating mode. Figures 5, 6, and
7 show the neutron scattering cross section, calculated
from our theory, as a function of w at k = 0.1 A i for
different temperatures. They show how the increase in
ordering leads to well-defined peaks. For these figures
the dissipation constants have been chosen to be

Y2'(v) = — —(Q, + zQil ) =15

+i(—Q + ~2Qt, )],

Y'(v) = 5 15
3Q, = —Q„

we can simplify Eq. (4.4) to get

„[Q.—~2Q.

(4 6)

(4.7)

p=5x 10 m /sec, I'g =600 (Jsec), p =0.

(4.9)

Actual measurements of the peak widths should con-
strain these constants. We cannot extend the formulas
given above to large values of k, such as those used in
Refs. 26 and 35, since our theory is valid only for small
A: « 0 5 A.
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FIG. 5. Neutron scattering cross section predicted by the
phenomenological theory T = 350 K & T, = 300 K, with the
parameters given in Eq. (4.9) and Table I.

FIG. 6. Neutron scattering cross section predicted by the
phenomenological theory T = 295 K ( T, = 300 K, with the
parameters given in Eq. (4.9) and Table I.

B. Diffusion model

This model is designed to be valid at large k where we
may consider each molecule to be executing rotational
diffusion independent of its neighbor. Thus, we need to
evaluate the expression

fixed Z axis along k, since the lattice is irrelevant in this
model. Then

e'""' = 4' ) i'jt(kr;) ) D'* (Q(t)) Yt (~,),

70

(
'""'~ '"' ~') = —) f dBo dBp(BBo,t),

',,=1

X (0 )
ik r, (t) —ik r~(0) (4 10

where r, is the position of atom i relative to the center of
the molecule and N = 70 the number of atoms. VJe can
evaluate this using the expansion of Eq. (4.2) and Eq.
(3.51). Without loss of generality we can have the space

I

(4.11)

where 0 is the time-dependent angular coordinates of the
body fixed axes with respect to the space fixed axes and
w is the angular coordinate of the atom with respect to
the body fixed axes. In Appendix C we give a derivation
of p(O, Bo, t) which enables the evaluation of Eq. (4.10).
Thereby we get the well-known ' result

oo 70 l

S(k, t) = '" ) ) (4~) jt(kr, )jt(kr, ) ) Yt *(ur;)Yt ((u, )e ~ ' ' '+'
l=l i,j=1 m= —l

(4.12)

70

I,Bk(k, ~) = '" ) (4~)'j t(kr;)j, (kr, )1 + (u7 kaut 1

Y'*( *)Y'( ') (4.13)

To compare with our hydrodynamic model we will limit
this model to small k. Then only the smallest values of
l are important. The l = 1 and l = 3 terms do not con-
tribute because of the symmetry of the molecule. Thus
the most important contribution comes from the l = 2
term and the rest can be ignored without substantially
altering the results. The body fixed z axis is a fivefold
axis of symmetry, and so only m = 5n ( I (n is an inte-
ger) contribute. Taking the temporal Fourier transform
of Eq. (4.12) we get

Intensity QQQ ~

250

200

150-
T=290K, k=0. 1 A

I

well, is the isotropic limit in which D~ ——D~~. This limit
described the orientational digusion of a sphere. Obvi-
ously, it is better to use the more complete theory of
Eq. (4.12). To emphasize the fact that the molecule is a

where I/7 = 6Dq. We have already discussed, Sec III,
the limit in which this result approaches the isotropic
high-temperature result of the phenomenological theory.

Here we discuss various simple limits of this model.
The most obvious limit, and one that works reasonably

—0. 5 0. 5

FIG. 7. Neutron scattering cross section predicted by the
phenomenological theory for T = 290 K & T, = 300 K, with
the parameters given in Eq. (4.9) and Table I.
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prolate ellipsoid one may assume that I)~ (( I~ or that

D~~ && D~. In the literature ' this has been done
by setting D~ ——0 in a limit called "uniaxial" difFusion.
By that, it is meant that diffusion takes place around
the fivefold axis, but the fivefold axis itself remains fixed
in space. This approximation seems to us to be an im-
plausible one, and indeed the data does not support it.
If it desired to fit the data with a single parameter, a
more appealing approximation would be to set D~~

——oo,
i.e. , to assume that the spinning motion is very rapid,
so that the diffusive width in the neutron scattering re-
flects, not the rotations about the fivefold axis, but rather
the diffusive motion of the fivefold axis itself. In partic-
ular, this picture fits in with the idea that the cubic to
rhombohedral transition is one in which the difFusive mo-
tion of the fivefold axis is becoming nearly hydrodynamic,
whence effectively D~I

——oo. Apparently, this approxima-
tion (D~~ = oo) was not used to interpret the experiments
of Refs. 26 and 35. Ultimately, we hope that the data will
be refined so as to allow a determination of both D~~ and
Dg.

0 0)
(o) = 0 oi 0

&0 0-, )
(5.2)

(o.) =
~

—o., + cr2—
~

0
(3 3 ) (()

(-l
+—(o 2

—o-i) 0

( 0

0 0)
1 0
0 1j

0 0)
01

0 1)
(5 3)

The first part is a uniform shift irrespective of the mag-
netic fields orientation and can be absorbed in the defi-
nition of the Larmor frequency.

B. Order parameter

where ( ) indicates an average over the orientation mo-
tion. The value of o i, 02 obviously depends on the molec-
ular site under consideration. We can rewrite (o') in the
form shown below, following the standard approach,

V. NMR

Since C has no magnetic moment it is impossible
to do NMR studies on a sample with only this isotope
present. Thus, we require the existence of C, which
has a nuclear magnetic moment, for these studies. The
natural abundance of C is quite low, which means that
the probability that two C isotopes will occur on a given
C70 molecule is very small, and we may assume that no
more than one C occurs on any molecule. The nucleus
of C does not have an electric quadrupole moment.
Hence, the only magnetic efFect, other than the field ap-
plied, is the magnetic field due to the orbital motion of
electrons (the chemical shift). We derive the expression
for the shift of the NMR frequency due to the chemical
shift and show how the density of states at different fre-
quencies in a powder sample, due to the shift, gives us
information on the order parameter. We also calculate
Ti, due to chemical shift efFects, from our theory.

1
P(v) =—

2 i

2
d(cos Oa) h

~

v —vo + P2(cos Oa)A—v ~,

(5.4)

where Av = (3/2) +3/2Qocrovo. Thus,

1
2v/(&v){& &o (~&)/3)

P(v) = & for Av & 3(v —v ) & —24v,
, 0 otherwise.

The second, anisotropic, part of the tensor leads to a
shift in the Larmor frequency that depends on the de-
gree of ordering (the size of the order parameter) of the
molecules in the solid. This can be used to directly mea-
sure the order parameter by studying the response width
of an NMR experiment performed on a powder sample,
as we shall soon show. This is a static phenomenon.

If the consequence is worked through then it is found
that the resonance line shape is determined by

A. Chemical shifts
Figure 8 shows the frequency dependence of P(v). De-

Chemical shifts occur due to the electrons in the envi-
ronment of the nucleus with the magnetic moment. The
analysis given here follows Munowitz. There is a mag-
netic field (B') at the nucleus due to the electron cloud
in the presence of a magnetic field (diamagnetism). The
resultant field need not be parallel to the applied field.
This is reflected by choosing B' = 0 B, where n is the
diamagnetic shielding tensor. The Hamiltonian for the
nuclear moment in the magnetic field is given by

0 = —&„SX B+&„SI.o. . B,

where the sign implies that the electrons act to screen
out the B field. Since the molecule is spinning about the
long axis, in the molecular frame we must have

—2 h, v/3 Q A v/3

6v=v —
vp

FIG. 8. P(v), the resonance line shape, calculated from the
phenomenological theory according to Eq. (5.5).
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termination of the line width Av then leads to a deter-
mination of Qp.

C. T~. The longitudinal relaxation time

dA—= —2lVn.
dt

(5.7)

Ti is the time constant of relaxation of the magnetic
moment in the B-Geld direction to its equilibrium value.
We have a spin- — nuclear magnetic moment in a mag-2
netic Geld, which makes it a two-state system. If we
have a perturbation that causes transitions between the
+ and —states, then the transition rates obey the re-
lations tV+~ ——W ~+ ——TV. Let the difference in
populations be n. Each transition changes this number
by 2; thus,

o.",s + io.2's = - e'~ o.
p [sin 20c (3Q, —~2Q —Qg)

4 6
—i2 sin 0c (Qg + ~2Q )

+22 cos 0c(—Q~ + ~2Qb)

+2 cos 20c(Q, —~2Q~)]. (5.12)

2 1—d(&c)
27r

1 1—d(cos 0c)
i Ti 0c, c

(5.13)

We are interested in results from powder samples. Each
microcrystal in the sample has a fixed alignment with
respect to the laboratory axes; that is, 0c, Pc are not
dynamical variables, but, since the orientations are ran-
domly distributed, we must finally perform an average
over a random distribution of these variables to get the
experimentally observed 7 . Thus,

This can also be derived in a conventional manner. If
the state is in equilibrium and the transition rate is slow
enough to keep the states in thermal equilibrium on av-
erage (the thermal relaxation time is faster than the in-
duced transition rate), then (as shown by Slichters ),

Using S = S, arid St,g
——Sgd we get

Ti 40
= —(apBp„) [S-„(r,r, ~p)

+2S~~(r, r, wp) + 2Sgg(r, 1,cdp)]. (5.14)

(5.8) The correlations in the expressions above are local and
determined at frequency u0. Hence they are given by

The b function ensures that absorption occurs only at the
the Larmor frequency (wp ——w~ —w~). We can write the
perturbation as

S,;(r, r, ~p) =
=0

S,, (k, ~p )4vr k dk, (5.15)

II' = q„[I.B.' + ,'(I+B' + I—B+)], (5 9)

where B' = o ~ B. The first term cannot contribute to
any decay process but the second term will and can be
used to calculate the consequent decay rate. We then
have

1= =21—= 2' = p„Ti " 2
B+(t)B' (0)e* "dt (5.1O)

—= 2W = p2 —((o", + io-„" )(o" —io.„",)),T] 2
(5.11)

The states are defined with respect to the magnetic G.eld
which is defined to be along the z axis of the laboratory
coordinate frame. Let us define the intermediate crystal
coordinates such that its axes are along the rhornbohe-
dral coordinate axes. The angular coordinates of this
system with respect to the laboratory system are 0c, Pc.
The molecular coordinate axes are at 0, P with respect
to the intermediate crystal axes. Let the diamagnetic
shielding tensor in the molecular system, o., be given by
o' in the crystal system and o" in the laboratory system.
Then B+ ——(o", +ior„",)B, and

where A is a cutoff that we have introduced which is jus-
tiBed by the coarse-grained nature of our effective Hamil-
tonian.

It can be seen from Eq. (5.14) that Tq is proportional
to the square of the applied magnetic fi.eld. This de-
pendence has been verifi. ed by Mizugochi et al. The
magnetic Beld comes in due to ~0 in the correlations but
that can be ignored since, for the strength of the fields
usually applied in experiments, its contribution is negli-
gible. On the basis of the discussion above we can ex-
pect to see a discontinuity in Ti at the transition. One
experiment reports that this does not happen. More
investigations are required to verify that this is indeed
the case. The decay time is a function of I g, which is a
function of temperature due to mode-mode coupling. In
the high-temperature regime, the dependence on I'g is
Lorentzian, as shown in Eq. (3.42). It is clear that after
performing the wave-vector integration, the value of Ti
diverges for both very small and very large values of I'g.
Then Ti passes through a minimum when the coupling
between NMR and the orientational modes is optimal.
We have not attempted to determine the dependence of
Ti on temperature through its dependence on I'g, since
there seem to be no experimental studies of this effect
and the calculations are quite tedious.

where the correlations are evaluated locally at frequency
w0. Using the rotation matrices that connect the various
coordinate systems we can rewrite the correlations above
in terms of the order parameters of our theory. We have

VI. C(3NCI USIONS

We have given a united mean-field picture of the stat-
ics and dynamics around the high-temperature transition
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for C70. The theory is not parameter free. We have de-
termined the parameters by calculating the latent heat,
neutron scattering cross section, NMR linewidth, and Tq
using our theory. We can suggest a few experiments that
can be conducted keeping our theory in mind. The most
important ones are the determination of the order pa-
rameter as a function of temperature close to the tran-
sition determination of the mode frequency for small k.
Measuring Tq as a function of temperature might also
be considered. It is hoped that this study spurs further
investigations in this Geld.

ACKNOWLEDGMENTS

R.S. thanks the NSF for a predoctoral fellowship. This
work was supported in part by the NSF under Grant
No. 91-22784 and Grant No. DMR88-19885 of the MRL
program. We also thank P. A. Heiney, 3. Fischer, and K.
Prassides for useful discussions.

APPENDIX A: Qz Y2M(Rz) Jz(KRz)
FOR THK SPINNING MOLECULE

FIG. 9. Shown here is one of the five similar structures
of which the molecule is made up when it is spinning about
its long axis. The circle could contain either a pentagon or
a decagon. In the intermediate phase the atoms are smeared
out over this circle.

When the molecule is spinning about its long axis then
it can be modeled as a collection of five structures of the
form shown in Fig. 9. All the positions of the atoms
in the structure are equidistant from the origin (0, the
center of mass of the molecule). Thus,

of atoms in o.. Equation (A2) is true even when the long
axis of the molecule points in an arbitrary direction since
both sides of that equation transform identically under
rotations. From the coordinates calculated by Fowler et
al.28 we have

).&. (*)~2(k *) =~2(~ -)) &™(')

where o. indexes the structure and the sum is over posi-
tions in the structure o.. If the long axis of the molecule,
which is along OD, is aligned with the z axis, then, from
geometry, we get

g(l) = 5.78, g(2) = 3.11, g(3) = 1.32,

g(4) = —4.52, g(5) = —3.3 .

APPENDIX B: POISSON BRACKETS

).&2 (r*) = g(~)&2 (~) (A2)

where v is the direction of the long axis of the molecule
and g(n) = n (2L —o, )/(3L +3a ). n is the number

In this appendix we evaluate a few expressions that are
useful writing down the equations of motion.

To evaluate the equations of motion for the dynamical
variables we need certain Poisson brackets. From the
definitions of the dynamical variables we find

Q. (x, t) + Q„(~,t)
[Q.(x, t), L, (x', t)] = h(x —x') Qb(~, t)

2 g x, t + x, t
(@2)

( —Q.(* t) —~~q. (* t) l
[Qb(x, t), L, (x', t)] = h(x —x') —Q.(x, t)

~2Q. (x, t) )
(B3)
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( Q (*t)
[q.(x, t), L;(x', t)] = b(x —x') Q—d(x, t) + Q.(*,t)

( -Q-(*, t) —~&q (*,t) )
(B4)

( -q-(, t)
[Q,(x, t), I„(x',t)] = b(x —*') —~2Q. (x, t)+ q. (x, t)

y2Q (x, t)
(S5)

where the first element of the column is the result for
i = x, etc. Below, the transition (Q, ) = Qp(T) which
is determined by the equation of state. We get from the
Hamiltonian, to linear order in the variables,

2+ a, —G(A', t'; A, t) = —a,h(A —A')h(t —t'),

bH
gq (k)

= X~,pq)s t
with the boundary condition that G vanish for t' ( t.
One has

where y has been defined in the section on thermody-
namics. G(A', t'; A, t) = e(t' —t) ) g„(A)@„(A')*

x exp[ —(A„/ap) (t' —t)], (C6)
APPENDIX C: THE SYMMETRIC TOP

AND THE EQUATION OF ANGULAR
DIFFUSION

where 8(x) = 1 for x ) 0 and is zero otherwise, and the
vP 's are defined by

The diffusion equation is of the form

08 —ap —@(t) = 0,
Bt

(C1)

L,2
y z (C2)

where (ap) is a difFusion constant and the boundary
condition is that @(0) is given. For diff'usion of a point
particle in ordinary Cartesian space, 8 = m V' and
@(t) ~ hatt(r, t), and D, the usual diffusion constant for
which (r ) = Dt, is given by D oc (map) . For orienta-
tional diffusion of a symmetric top,

C@„(a)= —A„@„((u) .

f'2L+ I)
O'I„M, iv(~) =

l
~

DM ~(,p, p),8vr2 )
L(L+1) 2 (1 1 )

~L,M,N- + I)I'
/

———
I~)

(C8)

These symmetric top eigenfunctions can be found in var-
ious sources, several of which, however, have some mis-
prints. An explicit result is given by Edmonds. In our
notation (which coincides with that of Rose ) one has
[correcting his expression for the wave function in the
equation preceding his Eq. (4.23)]

where L is the angular momentum relative to axes (x,
y, and z) fixed in the body, and I~ (I~~) is the mo-
ment of inertia for rotation around and axis perpendic-
ular (parallel) to the symmetry axis of the body. Then
g(t) —

& Q(A, t), where A stands for the triad of Euler
angles (as defined by Edmonds ), o., P, and p, which
take the space fixed coordinate system into a body fixed
system. Edmonds gives

In the limit I~~
——0, the solution only involves DM o, a

i

spherical harmonic, which, as expected, does not depend
on the Euler angle p. This reasoning indicates that the
solution given in the equation preceding Eq. (4.23) in
Rose cannot be correct.

We now replace I by an appropriate diffusive con-
ap Ig

stant D~ and I by the diffusive constant D~~.

1 ( 8' ) 1 8' 0+ cot p

1 |' c) c) ')'
—cos p

sin p Bp)
(C3)

G(A', t'; A, ) = 0(t' —t) ) ', 'D~"„(A').D"I (A)
n

x exp( —[L(I + l)D& + X (D(( —Dz)]
x(t' —t)} . (C10)

tt(tt, t) = f tttt G(ttt;tt', 0)t)t('tt', 0), ,

where the Green's function satisfies

(C4)

A general solution to this diffusion problem is given by
In reference to Eq. (3.51), note that
p(A, ~q(t), A, ~i, (0)) = G(A, ~i, (t), t; A, ~b(0), 0). We
will use the results in this form to carry out the cal-
culation of the coherent neutron scattering cross section
for the case of the an object diffusing with two different
rates along two difFerent directions.
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