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small in-plane anisotropy gap in the spin-wave spectrum of YBa2Cu3O6.
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This paper derives the anisotropic superexchange interactions from a Hubbard model for excitations within
the copper 3d band and the oxygen 2p band of the undoped insulating cuprates. We extend the recent
calculation of Yildirim et al. @Phys. Rev. B52, 10 239~1995!# in order to include the most general on-site
Coulomb interactions~including those which involve more than two orbitals! when two holes occupy the same
site. Our general results apply when the oxygen ions surrounding the copper ions form an octahedron which
has tetragonal symmetry~but may be rotated as in lanthanum cuprate!. For the tetragonal cuprates we obtain an
easy-plane anisotropy in good agreement with experimental values. We predict the magnitude of the small
in-plane anisotropy gap in the spin-wave spectrum of YBa2Cu3O6 .

I. INTRODUCTION

The magnetic anisotropies of the family of compounds
with structures similar to that of La2CuO4 ~LCO! has been a
subject of much current interest.1–8 These materials are
antiferromagnets,9 with a dominant easy-plane anisotropy.10

The parent compound, LCO, is orthorhombic in the regime
of interest. In this structure the oxygen octahedra surround-
ing each copper rotate by a small angle relative to their ori-
entation in the tetragonal phase. This phase was found to
have an antisymmetric Dzyaloshinskii-Moriya interaction, as
allowed by the lack of inversion symmetry about the center
of a Cu-Cu bond.11 More recently, members of this family
which remain tetragonal, such as Sr2CuO2Cl 2,

12 have
been studied. In many such compounds, for example,
Sr2CuO2Cl2,

13 Nd2CuO4,
14 and Pr2CuO4,

15 the gap in the
spin-wave spectrum at zero wave vector due to the easy-
plane anisotropy has been found to be about 5 meV, just as
in LCO.16

Since these systems involve copper ions in a 3d9 configu-
ration which have spin 1/2, the usually dominant mechanism
of single-ion anisotropy does not come into play. Instead,
anisotropy must be due to the anisotropy of the superex-
change interaction. Microscopic derivations of the anisotropy
energies have been carried out1–8 on the basis of Anderson’s
theory17 of kinetic superexchange, and Moriya’s extension18

to incorporate spin-orbit interactions. These have been
mostly confined to the consideration of the orthorhombic
phase and were based on terms requiring the existence of a
distortion. As a result, these calculations produce anisotropy
energies which are proportional to the distortion angle and
which therefore vanish in the tetragonal phase. However,
since the experiments cited above13–16 indicate that the mag-
nitude of the easy-plane anisotropy is independent of the
structural distortion, these theories, while giving correct in-

formation about the Dzyaloshinskii-Moriya interaction,18,19

did not provide a satisfactory basis for understanding
the easy-plane anisotropy. Recognizing this fact, Yildirim
et al. 6,7 undertook an investigation of a model designed to
calculate the anisotropy of the superexchange interaction so
as to account correctly for the tetragonal symmetry of the
lattice. In their treatment all five crystal-field states of the
copper 3d band~with a single hole on each copper ion! were
taken into account, as well as all the~occupied! 2p states of
the oxygen ions. As a result, the exchange interaction asso-
ciated with each Cu-Cu bond had biaxial exchange anisot-
ropy. ~I.e., all three diagonal components of the exchange
tensor were in general different.! In that work, a model of
Coulomb interactions was used which contained more terms
than usual, but was still not completely general. Here we
carry out the calculation with completely general on-site
Coulomb interactions necessary to treat excited states with
two holes on a single Cu ion, or on a single oxygen ion,
assuming tetragonal site symmetry. As is known,20 such in-
teractions can be parametrized in terms of only three param-
eters, the Racah parameters,A, B, andC, with A@B and
A@C. In Refs. 6 and 7 it was shown that for tetragonal
symmetry the exchange anisotropy vanishes ifB5C50.
Here we obtain results which include all contributions to the
exchange anisotropy correct to first order in bothB andC.
Compared to the previous work, we find an additional con-
tribution which slightly increases the biaxiality of the anisot-
ropy, without sensibly changing the easy-plane anisotropy,
which still agrees quite well with experimental results. Under
certain approximations, our results can be applied to the
orthorhombic phase of LCO. We should emphasize, how-
ever, that our aim in this paper is to calculate only the an-
isotropy of the exchange interaction. This point is discussed
at the end of Sec. III.

Briefly, this paper is organized as follows. In Sec. II we
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describe the model for which we calculate the exchange an-
isotropy. In Sec. III we describe the perturbative calcula-
tions, Sec. IV contains specific results for tetragonal symme-
try, and in Sec. V we discuss and briefly summarize our
results. We will attempt to make this paper self-contained,
but readers wishing more details on the approach or the his-
tory of this problem are advised to consult Ref. 7, Yildirim,
Harris, Aharony, and Entin-Wohlman~YHAE!. That refer-
ence also contains the details of the spin-wave spectrum
which results from a calculation of the exchange anisotropy.

II. THE MODEL

We start by considering the ground state of the CuO2
plane, when the kinetic energy is completely neglected. In
that case, there is a single 3d hole on each copper ion and the
oxygen 2p band is completely full. Since the spin of the Cu
hole is arbitrary, this ground state is 2N-fold degenerate,
whereN is the number of Cu ions. The kinetic superex-
change interaction is obtained as the effective interaction
within this degenerate manifold when the kinetic energy is
treated perturbatively. For this purpose we write the Hamil-
tonian as

H5HCu1HO1Hhop. ~1!

Here,HCu (HO) describes the Hamiltonian of the copper
~oxygen! ions andHhop is the kinetic energy~hopping be-
tween Cu and O ions!. To describe the Cu ions we work in a
representation in which the crystal-field Hamiltonian is diag-
onal. Diagonalization of the crystal field potential yields five
spatiald states, denoted byua&, with site energiesea . Each
such energy is doubly degenerate due to spins561. In the
systems under consideration, the fived-statesua& are deter-
mined by the tetragonal symmetry. Even in the orthorhombic
phase the site symmetry of the copper ions can be taken to be
tetragonal, since the crystal-field is primarily generated by
the neighboring oxygen ions, which, to a good approxima-
tion, still form an octahedron, albeit a rotated one. For tetrag-
onal symmetry we label these crystal field states as
u0&;x22y2, u1&;3z22r 2, uz&;xy, ux&;yz, and
uy&;zx, where thez axis is perpendicular to the CuO2 plane
and u0& is the lowest energy single-particle state. Thus

HCu5(
ias

eadias
† dias1

l

2(iab
(
ss8

Lab•@sW #ss8dias
† dibs8

1
1

2 (
abgd

(
iss8

Uabgddias
† dibs8

† digs8dids , ~2!

wheredias
† creates a hole in the crystal-field statea at site

i with spins. Here the first term is the crystal-field Hamil-
tonian. The second term is the spin-orbit interaction, where
l is the spin-orbit coupling constant andLab denotes the
matrix elements of the orbital angular momentum vector be-
tween the crystal-field statesa andb. The last term is the
Coulomb interaction, where

Uabgd5E dr1E dr2ca~r1!cb~r2!
e2

r 12
cg~r2!cd~r1! ~3a!

[~adubg! ~3b!

in the notation21 of Table A26 of Ref. 20. The second term in
Eq. ~1! gives the Hamiltonian of the oxygen ions. We assume
that the spin-orbit interaction on the oxygen is much smaller
than that on the copper and may be neglected. Hence we
write

HO5(
kns

enpkns
† pkns

1
1

2 (
n1n2n3n4

(
ss8k

Un1n2n3n4
pkn1s
† pkn2s8

† pkn3s8pkn4s ,

~4!

in which pkns
† creates a hole in one of the threep orbitals

~denoted byn) on the oxygen at sitek. Here the Coulomb
matrix element is obtained analogously to Eqs.~3!. Finally,
Hhop describes the hopping between two neighboring oxy-
gen and copper ions:

Hhop5(
ias

(
kns

tan
ik dias

† pkns1H.c., ~5!

in which tan
ik is the hopping matrix element and H.c. denotes

the Hermitian conjugate of the preceding terms. As men-
tioned, it isHhop that lifts the degeneracy of the 2N-fold
degenerate ground state.

In order to derive the effective magnetic Hamiltonian it is
convenient to start from the unperturbed Hamiltonian which
contains the spin-orbit interaction exactly. To achieve this,
we introduce the unitary transformation which diagonalizes
the single-particle part ofHCu. As noted previously,6,7 the
spin dependence of this transformation is fixed by tetragonal
symmetry, so that we can write

dias5(
as8

maa@s~a!#ss8cias8, ~6!

where cias8 destroys a hole in the exact eigenstate of the
Hamiltonian which consists of the crystal-field and spin-orbit
interactions. These states have a site labeli , a state label~for
which we use roman letters!, and a pseudospin indexs8. In
Eq. ~6! we defines(a) for each crystal-field stateua& as
follows: s(a)5sa is the Pauli matrix fora5x,y,z and
s(a)5I is the unit matrix, fora50,1. The 53 5 matrix
m is the solution to

eamab1(
b
Labmbb5Ebmab ~7!

with (amaa* mab5dab , whered is the Kronecker delta func-
tion. HereLab are related to the matrix elements of the
orbital angular momentum vector and are given by

L0z52 il, L0x5L0y5 il/2, L1x52L1y5 iA3l/2,

Lzx5Lzy5Lxy5l/2. ~8!

Matrix elements not listed and not obtainable using
Lab5Lba* are zero. Whenl→0, each stateua& approaches
one of the statesua&. Using this identification, the indices
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a also run over the values 0,1,z,x, andy. We use the values
of the parameters which are listed in Table I and are dis-
cussed in detail in YHAE.

III. PERTURBATION EXPANSION

We now divide the total HamiltonianH into an unper-
turbed part,H0 , and a perturbation termH1 . The part
H0 contains the single-particle Hamiltonians on the coppers
and on the oxygens,and the leading on-site Coulomb poten-
tials,

H05(
ias

Eacias
† cias1

U0

2 (
iab
ss8

cias
† cibs8

† cibs8cias

1(
kns

enpkns
† pkns1

UP

2 (
knn8
ss8

pkns
† pkn8s8

† pkn8s8pkns .

~9!

For tetragonal site symmetry, we chooseU0[Uaaaa
5A14B1C and UP[Unnnn. The perturbation Hamil-
tonian includes the kinetic energy and the remaining Cou-
lomb interactions. Because of the transformation~6!, the
hopping becomes spin dependent. Thus we have

H15Hhop1DHC , ~10!

in which

Hhop5(
ias

(
kns8

~ t̃ an
ik !s8scias8

† pkns1H.c., ~11!

with the 232 matrix

t̃ an
ik 5(

a
tan
ik maa* s~a!, ~12!

and DHC describes the perturbation parts of the on-site
Coulomb potentials,

DHC5
1

2 (
ss8s1s18
iabcd

DŪss8s1s18
~abcd!cias

† cibs8
† cics1cids18

1
1

2 (
kss8

n1n2n3n4

DUn1n2n3n4
pkn1s
† pkn2s8

† pkn3s8pkn4s ,

~13!

with

DŪss8s1s18
~abcd!5 (

abgd
DUabgdmaa* mbb* mgcmdd

3@s~a!s~d!#ss
18
@s~b!s~g!#s8s1. ~14!

DU involves only the small Racah coefficients,B andC.
The effective magnetic interactionH( i , j ) between mag-

netic ions i and j is found by perturbation expansion with
respect toH1 . All the perturbation contributions to
H( i , j ) should involve products of matrix elements which
begin and end within the 2N-fold degenerate ground-state
manifold ofH0 , each state of which has one hole at each
copper site, with arbitrary spins. Denoting such a ground
state byuc0&, and concentrating on perturbation terms which
involve only two coppersi and j and one oxygen between
them, it is convenient to replace uc0& by
(ss1

ci0s
† cj0s1

† cj0s1
ci0suc0&. This ensures thatuc0& indeed

has exactly one hole on each copperi and j . Clearly the
lowest-order contributions to the energy are of ordert̃4.
There are two possible channels in this order, which we de-
note bya andb. In channela, the hole is transferred from
one of the coppers to the oxygen, then to the second copper.
Afterwards, one of the holes on this second copper returns to
the empty copper. Hence in this channel there are two holes
on the copper in an intermediate state. In channelb, the hole
is transferred from one of the coppers to the oxygen, and
then a second hole is taken from another copper to the same
oxygen. Then the two holes hop back, each to one of the
initial coppers. Thus in channelb there are two holes on the
oxygen in an intermediate state. When the perturbation con-
tributions coming from the Coulomb potentialDHC @Eqs.
~10!, ~13! and ~14!# are included, the on-site interactions on
the copper are effective in channela, and those on the oxy-
gen appear in channelb. These contributions are of order
t 4̃DHC .

The perturbation contributions to ordert̃4 are the same as
those given by YHAE and are

H~1!~ i , j !5(
nn8

gnn8Tr$s
W
•Si t̃0n

ik t̃n0
k j sW •Sj t̃0n8

jk t̃n80
ki %, ~15!

in which

Si5
1

2(ss8
ci0s
† ~sW !ss8ci0s8, ~16!

is the spin on the copper at sitei in the orbital stateu0&,
t̃ 0n
ik is the 232 matrix given by Eq.~12! and

gnn85
2

U0

1

enen8
1

1

UP1en1en8
S 1en 1

1

en8
D 2. ~17!

The first term ingnn8 results from channela, while the sec-
ond arises from channelb. In deriving expression~15! we
have assumed that the single-particle energyEa50 on the
copper is equal to zero.

From the form ofH(1)( i , j ) it is clear that it may yield
anisotropic magnetic interactions only when the effective
hopping between the coppers,t̃ ikt̃k j, involves spin flips.

TABLE I. Values~in eV! of the parameters used to calculate the
anisotropic exchange. For a discussion of these values, see YHAE.

l A B C (pds) e1 ex5ey ez epx epy epz
0.1 7.0 0.15 0.58 1.5 1.8 1.8 1.8 3.25 3.25 3.25
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When the hopping conserves the spin, thet̃ products are
proportional to the 232 unit matrix and the trace in Eq.~15!
gives a result proportional toSi•Sj . This is indeed the case
for tetragonal symmetry, as we discuss in the next section.6,7

In the orthorhombic phase of La2CuO4, however, the effec-
tive hopping between the coppers is accompanied by spin
flip, and consequentlyH (1)( i , j ) includes the antisymmetric

Dzyaloshinskii-Moriya interaction, as well as symmetric
magnetic anisotropies.2,3

We now turn to the contributions of the Coulomb poten-
tial. In particular, we consider contributions to the magnetic
energy which are of ordert̃4 and first order inDHC . Fol-
lowing the approach of YHAE one finds that the processes
from channela ~indicated by a subscript ‘‘a’’ ! yield

Ha
~2!~ i , j !5F (

a,b,Þ0
abgd

DUabgd

~U01Ea!~U01Eb! S TrH sW •Si(
n

t̃0n
ik t̃nb

k j

en
s~a!s~d!(

n8

t̃ an8
jk t̃n80

ki

en8 J Tr$sW •Sjs~b!s~g!%mab* mb0* mg0mda

2TrH sW •Si(
n

t̃0n
ik t̃nb

k j

en
s~a!s~d!sW •Sjs~b!s~g!(

n8

t̃ an8
jk t̃n80

ki

en8 Jmab* mb0* mgamd0D 1~ i↔ j !G , ~18!

where i↔ j denotes the sum of previous terms withi and j
interchanged. Here it is convenient to classify the Coulomb
matrix elements into two classes, by writing

DUabgd5Uabgd
~1! 1Uabgd

~2! , ~19!

whereUabgd
(1) is nonzero only if

s~a!5s~d!, and s~b!5s~g!, ~20a!

while Uabgd
(2) is nonzero only if

s~a!s~d!5C1sm5C2s~b!s~g!, for m5x,y,z,
~20b!

whereC1 and C2 are constants which may be imaginary.
This classification will be of immediate use. For the elements
denotedUabgd

(1) , the productss(a)s(d) ands(b)s(g) are
both proportional to the unit matrix. Therefore the first term
in the square brackets of Eq.~18! vanishes, and one is left
with the second term alone. For the matrix elements denoted

by Uabgd
(2) , both productss(a)s(d) ands(b)s(g) are pro-

portional tosm , m5x,y,z. In treating this contribution it is
convenient to use the identity

smsW •Ssm52smSm2sW •S. ~21!

We see that the matrix elementsUabgd
(2) give rise to magnetic

interactions which depend on the Cartesian indexm. Rear-
ranging the terms in~18! and defining

Qab5 (
abgd

Uabgd
~2! 2Uabgd

~1!

~U01Ea!~U01Eb!
mab* mb0* mg0mda ,

~22a!

Kab
m 5 (

abgd

Uabgd
~2!

~U01Ea!~U01Eb!
~mab* mb0* 2mbb* ma0* !

3~mdamg02md0mga!, ~22b!

we obtain

Ha
~2!~ i , j !5 (

a,bÞ0
FQabTrH sW •Si(

n

t̃0n
ik t̃nb

k j

en
sW •Sj(

n8

t̃ an8
jk t̃n80

ki

en8
J 1(

m
Kab

m SjmTrH sW •Si(
n

t̃0n
ik t̃nb

k j

en
sm(

n8

t̃ an8
jk t̃n80

ki

en8
J 1~ i↔ j !G .

~23!

Note that the sum over state labels in Eqs.~22a! and~22b! is restricted by the conditions of Eqs.~20a! and~20b!. One notes
that the first term in Eq.~23! has a structure similar to that ofH (1)( i , j ) in Eq. ~15! and therefore has the same magnetic
symmetries. The second term, however, leads to magnetic anisotropy even for tetragonal symmetry, for which the effective
hopping between the coppers is spin independent. This is elaborated upon in the next section.

Finally we consider the processes in channelb, in which the two holes are on the oxygen in an intermediate state and thus
experience the Coulomb interaction on the oxygen. These processes yield

Hb
~2!~ i , j !5 (

nn8n1n18
S 1en 1

1

en8
D S 1

en1
1

1

en
18
D DUn1n18nn8

~UP1en1en8!~UP1en11en
18
!
@Tr$sW •Si t̃0n1

ik t̃n80
ki %Tr$sW •Sj t̃0n

18
jk
t̃n0
k j %

2Tr$sW •Si t̃0n1
ik t̃n80

k j sW •Sj t̃0n
18

jk
t̃n0
ki %#. ~24!
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To the order we work, the total magnetic interaction between
a pair of copper ions is given by

H~ i , j !5H~1!~ i , j !1Ha
~2!~ i , j !1Hb

~2!~ i , j !. ~25!

In the next section we examineH( i , j ) in the tetragonal
phase. In the orthorhombic phase the situation is more com-
plicated. In principle, one should start by replacing the te-
tragonal crystal-field states by those which are calculated in
the presence of the orthorhombic distortion. A reasonable
approximation is to take account of this distortion by consid-
ering the crystal-field states of the octahedron of oxygen ions
assuming this octahedron to be rotated rigidly away from its
orientation in the tetragonal phase. Then, to the extent that
the crystal field is wholly determined by the octahedron of
oxygen neighbors, it will be tetragonal in the rotated coordi-
nate system fixed by the shell of oxygen neighbors. Then the
result of Eq.~25! can be used. The major complication is that
the hopping matrix elements are those between rotated orbit-
als, as will be detailed elsewhere.22

Some comments concerning the applicability of our re-
sults should be made. As discussed in YHAE, we believe
that the use of perturbation theory is justified for the calcu-
lation of the anisotropy of the superexchange Hamiltonian.
In contrast, for the isotropic terms it has been shown23 that
perturbation theory is not reliable, mainly because the ener-
gies of the excited states of the oxygen levels are not very
large in comparison tot. However, since the spin-orbit in-
teraction takes place on the copper ions, this effect is much
reduced in the anisotropic terms. In addition, there are con-
tributions to the isotropic interactions which cannot be ob-
tained by consideration of a single bond. In one of these, a
hole hops from a copper to one nearest-neighboring oxygen,
then diagonally to a different nearest-neighbor oxygen, and
finally back to the original copper.23 Also, the effective spin
Hamiltonian acquires isotropic contributions from processes
of order t̃8 which involve a hole hopping around a plaquette
of Cu ions.24 These plaquette interactions involve both two-
spin interactions~between nearest- and next-nearest neigh-
bors! and four-spin interactions.

IV. TETRAGONAL SYMMETRY

Here we study the effective magnetic Hamiltonian
H( i , j ) @Eqs.~15! and ~23!–~25!# for the case of tetragonal
symmetry. For this symmetry the effective interaction which
is bilinear in the spin operators must be of the form

H~ i , j !5(
m

Jmm~ i , j !Sm~ i !Sm~ j !, ~26!

wherem5x,y,z. Since we are interested in theanisotropic
part of the exchange interaction, we will drop any contribu-
tions which we identify as being isotropic. Obviously, our
results cannot be used for the magnitude of an individual
Jmm , but rather apply to the difference between two such
quantities.

Investigation of Eqs.~15!, ~23!, and~24! reveals that one
can define an effective hopping between the copper ions,
which is generally given by the productt̃ an

ik t̃n8b
k j . $The inter-

actionHb
(2)( i , j ) @Eq. ~24!# requires also the casesi5 j .% We

therefore start by examining this quantity. To this end we
note that the nonzero hopping matrix elements between the
tetragonal statesua& on the coppers and the statesun& on the
oxygen aret0px, t1px, typz, and tzpy for a bond along thex

direction in the CuO2 plane, and analogouslyt0py, t1py,

txpz, and tzpx for a bond alongy.6,7 Using now Eq.~6! we
find

t̃ ant̃n8b5(
ab

tantn8bmaa* mbbs~a!s~b!, ~27!

where we have omitted the site indices for convenience. It
therefore follows that in the casen5n8 the quantity in Eq.
~27! is proportional to the 232 unit matrix, namely, the
effective hopping between the copper ions isnot accompa-
nied by spin flip. This means that in the expressions for the
interactionsH (1)( i , j ) andHa

(2)( i , j ) @Eqs.~15! and~23!# we
may take allt̃ ’s outside the trace. Consequently, the contri-
bution to the magnetic energy from Eq.~15! is isotropic, and
so is that from the first term in Eq.~23!, proportional to
Qab . The second term inHa

(2)( i , j ), which arises from
Uabgd
(2) , leads to an anisotropic magnetic interaction of the

form of Eq. ~26!, with

Jmm54 (
a,bÞ0

Kab
m (

n

t̃0nt̃nb
en

(
n8

t̃ an8 t̃ n80
en8

. ~28!

We now consider the magnetic symmetry ofHb
(2)( i , j ),

which results from the on-site Coulomb potential on the oxy-
gen. The only nonzero matrix elementsDUn1n18nn8

are25

DUnn8n8n , DUnn8nn8, DUnnn8n8. ~29!

The first of these implies terms of the formt̃0nt̃n0 @cf. Eq.
~24!#, which are proportional to the unit matrix. As a result
the first term in the square brackets of~24! disappears. The
second, which yields an isotropic interaction, can be com-
bined intoH (1)( i , j ) by redefininggnn8 @Eq. ~17!# to be

gnn85
2

U0

1

enen8
1

1

UP1DUnn8n8n1en1en8
S 1en 1

1

en8
D 2.
~30!

For simplicity we have put theDU in the denominator of this
expression. The results of this paper are correct to first order
in DHc .

The other two matrix elements of Eq.~29! lead to
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Hb
~2!~ i , j !5 (

nn8
nÞn8

FDUnn8nn8S 1en 1
1

en8
D 2S 1

UP1en1en8
D 2~Tr$sW •Si t̃0nt̃n80%Tr$sW •Sj t̃0n8 t̃ n0%2Tr$sW •Si t̃0nt̃n80s

W
•Sj t̃0n8 t̃ n0%!

1DUnn8nn8

4

enen8

1

~UP12en!~UP12en8!
~Tr$sW •Si t̃0nt̃n80%Tr$s

W
•Sj t̃0nt̃n80%2Tr$sW •Si t̃0nt̃n80s

W
•Sj t̃0nt̃n80%!G . ~31!

The main point to note here is that althought̃0nt̃n80 implies a
spin flip in the sense that this product is proportional to one
of the Pauli matrices@cf. Eq. ~27!#, it is thesamePauli ma-
trix for both products appearing in each term of Eq.~31!.
This makes the resulting interaction isotropic. For example,
writing t̃0nt̃n80}sm , with m5x,y or z, we find that the spin
dependence in each of the terms in Eq.~31! is proportional to

Tr$sW •Sism%Tr$sW •Sjsm%2Tr$sW •SismsW •Sjsm%52Si•Sj ,
~32!

where we have used the identity~21!. Thus the perturbation
processes for which there are two holes on the oxygen in the
intermediate state do not contribute to the magnetic anisot-
ropy in tetragonal symmetry. This result holds because the
spin-orbit interaction on the oxygen has been discarded.

The anisotropic exchange interactions in the tetragonal
phase thus come exclusively from channela. Also, as pre-
viously noted, only the term proportional toK in Eq. ~23!
gives rise to anisotropy. Furthermore one notes that there is
no anisotropic contribution toJmm from the matrix elements
Uabgd
(2) for which a5b or g5d.
Up to now, our results have been valid to all orders in the

spin-orbit coupling,l. We now obtain an explicit expression
for the anisotropic part ofJmm to leading order inl, which
turns out to beO (l2). To this end we use Eq.~7!, from
which we get

maa5H 1 for a5a

Laa

ea2ea
for aÞa

1O ~l2!, ~33!

whereLaa for aÞa @see Eqs.~8!# is of orderl. Next we
note that the summation indicesa andb of Eq. ~28! can take
the valuesua&,ub&5u1& or ua&,ub&5ux&,uy& or uz&. We there-
fore need to evaluate(nt̃0nt̃nb /en for ub&5u1& and for
ub&5un&, wheren5x,y,z. Using Eqs.~12! and~33! we find

(
n

t̃0nt̃n1
en

5(
n

t0ntn1
en

1O ~l2!,

(
n

t̃0nt̃nm

en
5(

n

t0n
2 2tmn

2

en

L0m

em
1(

n

t0ntn1
en

L1m

em2e1

1O ~l2!, ~34!

where thet ’s are the hopping matrix elements for the tetrag-
onal states. Equations~33! and~34!, in conjunction with Eq.
~22b!, imply that the contributions ofUabgd

(2) where more
than two of the indicesa, b, g, andd take the valuesx,
y or z are at least of orderl3. Take for example the element
U1zxy
(2) . From Eqs.~22b! and~33! we see that them products

in ~22b! are of order l2 provided that ub&5u1& and
ua&5ux& or uy&. In all other cases them products are at least
of orderl3. But with this choice@see Eqs.~34!# the hopping
matrix elements provide another factor ofl, to renderJmm to
be of orderl3. It follows that out of all nonzeroUabgd

(2) , the
ones that contribute toJmm up to orderl2 are

U0m0m
~2! 5Um0m0

~2! , U1m1m
~2! 5Um1m1

~2! ,

U0m1m
~2! 5Um0m1

~2! 5Um1m0
~2! 5U1m0m

~2! . ~35!

We are now in position to calculateKab
m . When bothua& and

ub& are equal tou1& one finds

K11
m 5

2

~U01e1!
2 F2

Lm1L1m

~e12em!2
U0m0m

~2! 2
Lm0L0m

em
2 U1m1m

~2!

2
L1mLm01L0mLm1

em~e12em!
U0m1m

~2! G . ~36!

When ua&5u1& and ub&5um& or vice versa, we have

K1m
m 5~Km1

m !*5
2

~U01e1!~U01em! F2
Lm1

e12em
U0m0m

~2!

2
Lm0

em
U0m1m

~2! G , ~37!

where we have kept terms up to orderl since the hopping
elements in this case will contribute another factor ofl.
Finally, the case where bothua& and ub& are equal toum&
requires terms to orderl0 and is therefore

Kmm
m 52

2

~U01em!2
U0m0m

~2! . ~38!

Combining the results of Eqs.~34!–~38! we obtain

Jmm52
8U0m0m

~2!

~U01em!2U Lm1

U01e1
(
n

t0ntn1
en

2
Lm0

em
(
n

t0n
2 2tmn

2

en
U2

2
8U1m1m

~2!

~U01e1!
2ULm0

em
(
n

t0ntn1
en

U2

2
16U0m1m

~2!

~U01e1!~U01em!

Lm0

em
(
n

t0ntn1
en

3FL0m

em
(
n

t0n
2 2tmn

2

en
2

L1m

U01e1
(
n

t0ntn1
en

G . ~39!

It remains to insert here the explicit expressions for the hop-
ping terms, Eqs.~34!, in conjunction with the expressions for
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the angular momentum matrix elements,Lab , Eqs.~8!. To
be specific, we consider a bond alongx, and use the values
of Uabgd[(adubg) as listed in Table II. One then finds

Jxx52
2l2~3B1C!

~U01ex!
2 F2

A3
U01e1

t0pxt1px
epx

1
1

ex

t0px
2

epx
G 2

2
2l2~B1C!

~U01e1!
2 F 1ex t0pxt1pxepx

G 2
2

4l2~2BA3!

~U01e1!~U01ex!

1

ex

t0pxt1px
epx

3F 1ex t0px
2

epx
2

A3
U01e1

t0pxt1px
epx

G ; ~40a!

Jyy52
2l2~3B1C!

~U01ey!
2 F A3

U01e1

t0pxt1px
epx

1
1

ey
S t0px2

epx
2
typz
2

epz
D G 2

2
2l2~B1C!

~U01e1!
2 F 1ey t0pxt1pxepx

G 2
2

4l2~BA3!

~U01e1!~U01ey!

1

ey

t0pxt1px
epx

F 1ey S t0px
2

epx
2
typz
2

epz
D

1
A3

U01e1

t0pxt1px
epx

G ; ~40b!

Jzz52
8l2C

~U01ez!
2 F 1ez S t0px

2

epx
2
tzpy
2

epy
D G 2

2
8l2~4B1C!

~U01e1!
2 F 1ez t0pxt1pxepx

G 2. ~40c!

An alternative derivation of these results is given in the Ap-
pendix.

One should keep in mind that Eq.~25! holds for a single
bond. To obtain the effective magnetic Hamiltonian of the
entire CuO2 plane, one has to sum the magnetic interaction
H( i , j ) over all bonds, allowing for the crystal symmetry.
Within a classical approximation the resulting exchange
Hamiltonian of the crystal has only an easy-plane anisotropy.
To obtain the fourfold anisotropy within the easy plane re-
quires a consideration of the spin-wave zero-point motion.7

Now we evaluate these results numerically. In this con-
nection it is useful to emphasize that for their less general
model YHAE have shown that the perturbative results for the
anisotropy in theJ’s agrees to within about 10% with the

numerical evaluations of exact diagonalization within a Cu-
O-Cu cluster. For our numerical evaluation we use the pa-
rameters of Table I. We note that all the nonzero hopping
matrix elements can be expressed in terms of (pds) and

(pdp)'2 1
2 (pds):26

t0,px52A3t1,px5A3

2
~pds!, ty,pz5t0,py5~pdp!.

~41!

Thereby we find~in meV!

DJ[Jav2Jzz530, dJ[J'2Ji541, ~42!

whereJav5(Jxx1Jyy)/2, J'5Jyy , and Ji5Jxx . Note that
the gap in the spin-wave spectrum due to the easy-plane
anisotropy is proportional to (DJ)1/2 whereas, as explained
by YHAE, the gap due to the anisotropy within the basal
plane is proportional todJ. ~This statement applies to sys-
tems like YB2Cu3O6. In Sr2CuO2Cl 2 the in-plane anisot-
ropy will have contributions from dipolar interactions.! In
YHAE, the terms inJxx and Jyy involving BA3 were not
included because only Coulomb matrix elements involving at
most two orbitals were kept. To see the effect of the addi-
tional terms in the present work, we give, for comparison,
the perturbative results of YHAE:DJ530 meV and
dJ5 26 meV. ~The results from exact diagonalization on a
Cu-O-Cu cluster wereDJ531 meV anddJ531 meV.!

V. CONCLUSIONS

In view of the results of Ref. 4, YHAE already demon-
strated that the out-of-plane anisotropy in the superexchange
interaction between Cu ions is dominated by Coulomb ex-
change terms. Therefore, the simplified Coulomb interaction
of Eq. ~9!, used widely in the literature, is insufficient to
explain this anisotropy. YHAE then considered the anisot-
ropy due to the simplest exchange terms, likeUabba , which
involve only two orbitals, and thereby obtained an anisotropy
in the superexchange interaction whose value agreed with
experiments.

In the present paper we included all the Coulomb terms
which are allowed by tetragonal site symmetry, and found
that the additional terms, involving (a0ua1), practically do
not affect the out-of-plane anisotropyDJ. The in-plane
single-bond anisotropy,dJ, is somewhat larger than before.
YHAE showed that the in-plane gap in the spin-wave spec-
trum is a manifestation of quantum zero-point fluctuations
and is proportional todJ. Using the results of our present
calculation in Eq.~82! of YHAE we estimate the in-plane
gap in the spin-wave spectrum to be about 33meV ; 0.27
cm21. The direct observation of this gap would provide an
interesting and significant test of our calculations.
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TABLE II. Values of (adubg)5Uabgd in terms of the Racah
coefficients, taken from Table A26 of Ref. 20~Ref. 21!.

a5x a5y a5z
(a0ua 0! 5 3B1C 3B1C C
(a0ua 1! 5 2A3B A3B 0

(a1ua 1! 5 B1C B1C 4B1C

53 11 667MAGNETIC ANISOTROPIES AND GENERAL ON-SITE . . .



APPENDIX: ALTERNATIVE CALCULATION
OF THE EXCHANGE ANISOTROPY

In this appendix we obtain the result forJmm for tetrago-
nal symmetry by direct application of perturbation theory.
We take the unperturbed Hamiltonian to be the same as that
of Eq. ~9!, except that we do not include in it the spin-orbit
interaction on the copper ions.@See Eq.~2!.# That term is
now to be included intoH1 . For simplicity we only con-
sider the contribution to the anisotropy from channela. A
similar calculation to that given here shows that channelb
gives no anisotropy. Since we only consider channela, we
can eliminate the oxygens completely from the problem by
introducing an effective hopping matrix elementt̄ ab between
crystal-field states on near-neighboring copper ions. For in-
stance,

t̄ 005t0,px
2 /epx, t̄ 015t0,pxt1,px /epx, t̄ xx50,

t̄ yy5ty,pz
2 /epz, t̄ zz5tz,py

2 /epy, ~A1!

as in Eq.~53! of YHAE. Accordingly, we need to work to
fifth order in perturbation theory, where the perturbations are
V, the spin-orbit interaction, which we take to second order,
Hhop[T , the hopping between copper ions, which we take
to second order, andDHC5C on the copper ions, which we
take to first order. We also use the fact thatUabgd is only
nonzero whens(a)s(b);s(g)s(d).

In fifth-order perturbation theory there are,a priori , 30
different ways to order these perturbations. But obviously the
Coulomb perturbation can only appear when the two holes
are on the same site. So we have only to consider how to
insert two powers ofV into the sequenceT C T . There are
basically three types of terms to consider. The first is

H1[SV 1

E
T 1T

1

E
VD 1

E
C
1

E
SV 1

E
T 1T

1

E
VD , ~A2!

whereE denotes the appropriate energy denominator. The
second type of terms are those in which the twoV’s are both
to the left ofC , and the third type are terms which are the
Hermitian conjugates of the second type, i. e., those in which
the twoV’s are to the right ofC .

That the second type of term does not lead to any anisot-
ropy can be established by the following argument. Suppose
we show that these terms vanish when applied to any triplet
spin state. That would imply that these terms are of the form
(1/4)2Si•Sj , which obviously gives rise to no anisotropy.
The second type of term has first~reading from right to left!
T acting on the triplet state. That will put the two holes,
which were initially distributed one on sitei , the other on
site j , onto the same site, perforce one in stateu0&, the other
in stateu1&. Now apply the Coulomb perturbation. This op-
erator can leave the two holes in the same states, viz. one in
u0& and the other inu1&. In fact, by our observation on the
form of Uabgd and by the fact that parallel spins are not
allowed in the same spatial orbital, there are no other final
states. But such a diagonal matrix element ofU was treated
by YHAE and found to give no anisotropy in the second type
of term. So we conclude that the second type of term does
not give rise to any anisotropy. Terms of the third type are

the Hermitian conjugate of type two and therefore are subject
to the same argument. Thus all the anisotropic terms are
contained in the expression in Eq.~A2!.

If Ti j denotes hopping fromi to j , we can write Eq.~A2!
as

H152 (
a5x,y,z

Qa
† 1

E
C
1

E
Qa , ~A3!

where

Qa5SVa

1

E
Ti j1Ti j

1

E
VaD . ~A4!

Here Va5(hLa(h)sa(h), where the sum is over the two
holes,h. Acting on the ground state, the operatorQa pro-
duces two final states, depending on whether the orbitalu0&
or u1& is occupied. So we define

@Qa
~g!#s,h;s8,h85^0udi ,g,sdi ,a,hSVa

1

E
Ti j

1Ti j
1

E
VaDdi ,0,h8

† dj ,0,s8
† u0&, ~A5!

whereg can be 0 or 1. Then

H152 (
agg8

@Qa
~g8!#†@C a

g8g#@Qa
~g!#Dga

21Dg8a
21 , ~A6!

whereDga5eg1ea1U0 and

@C a
g8g#s9h9;s8h85^0udig8s9diah9DHCdiah8

† digs8
† u0&

5dh9,h8ds8,s9^ag8uDHCuag&

2dh9,s8ds9,h8^ag8uDHCuga&. ~A7!

Now we introduce the notation for direct products

@AB#s8,h8;s,h5As8sBh8h , ~A8!

so that

C a
g8,g5@O #^ag8uDHCuag&[@O #~aguag8! ~A9!

in the notation of Eqs.~3!. Also @O #5@I I2sW •sW #/2.
From Appendix H of YHAE we also take the results

@Qa
~0!#5~C11C2!@I sa#2C2@I sa#@O # ~A10!

and

@Qa
~1!#5C3@I sa#, ~A11!

where

C11C25F ~ t̄aa2 t̄00!L0a

ea
1

t̄01L1a

~e11U0!
G ~A12!

and

C352 t̄01L0aS e11ea1U0

ea~e11U0!
D . ~A13!

Thus we obtain the result
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H~ i , j !5(
a

H 2~a0ua0!

D0
2 @C1* I I1C2* I I2C2*O #@I sa#@O #@I sa#@C1I I1C2I I2C2O #

1
2~a1ua1!

D1
2 ~C3* @I sa#@O #@I sa#C3!1

2~a0ua1!

D0D1
C3* @I sa#@O #@I sa#@C1I I1C2I I2C2O #

1
2~a0ua1!

D0D1
@C1* I I1C2* I I2C2*O #@I sa#@O #@I sa#C3J . ~A14!

Now we use the equality

@I sa#@O #@I sa#5
1

2
@I I22sasa1sW •sW #. ~A15!

So, dropping isotropic terms, we have21

H~ i , j !5(
a

H 2
2~a0ua0!

D0a
2 @C1* I I1C2* I I2C2*O #@sasa#@C1I I1C2I I2C2O #2

2~a1ua1!

D1a
2 C3* @sasa#C3

2
2~a0ua1!

D0aD1a
C3* @sasa#@C1I I1C2I I2C2O #2

2~a1ua0!

D0aD1a
@C1* I I1C2* I I2C2*O #@sasa#C3J . ~A16!

Now use

2@sasa#@O #52@O #@sasa#5@sW •sW 2I I #. ~A17!

Thus the terms involvingO are isotropic. So the anisotropic terms are correctly given by Eq.~26! with

Jmm52
8~m0um0!

D0m
2 uC11C2u22

8~m1um1!

D1m
2 uC3u2216 Re

~m0um1!

D0mD1m
C3* ~C11C2!. ~A18!

Now we use Eqs.~A12! and ~A13! to write

Jmm5
8~m0um0!

~U01em!2 F ~ t̄002 t̄mm!L0m

em
2

t̄01L1m

~e11U0!
G21 8~m1um1!

em
2 ~e11U0!

2 t̄01
2
L0m

2 2
16~m0um1! t̄10L0m

em~U01em!~e11U0!

3F ~ t̄mm2 t̄00!L0m

em
1

t̄01L1m

~e11U0!
G . ~A19!

This result reproduces Eqs.~40! of the text.
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