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Three-Dimensional Ordering in bet Antiferromagnets Due to Quantum
Disorder

Abstract

Quantum effects on magnetic ordering in body-centered-tetragonal antiferromagnets with only nearest-
neighbor interactions are studied in detail using interacting spin-wave theory. The model consists of M
noninteracting (in a mean-field sense) antiferromagnetic planes which together form a body-centered-
tetragonal structure. We obtain the leading quantum correction of order 1/S from the zero-point energy for a
system of M planes whose staggered moments have arbitrary orientations. The infinite degeneracy of the
ground-state manifold of this system is partially removed by collinear ordering in view of effects previously
calculated by Shender at relative order J2,/(JS), where J, the antiferromagnetic in-plane exchange
interaction, is assumed to dominate ], the out-of-plane interaction which can be of either sign. We study the
complete removal of the remaining degeneracy of the collinear spin structures by assigning an arbitrary sign o;
(i=1,2,..M) to the staggered moment of the planes. Our result for the zero-point energy (for M>2) up to the

sixth order in j=], /] is E({oi}) =E1+CEg(j®/$)[-20103-20M-20M+2%; 1M 20i0142-32i=11 3010141 01420143],

where C>0 and E are constants independent of the ¢’s, and Eg is the classical ground-state energy. (Here
sums from i to j when j<<em>i are interpreted to be zero.) Surprisingly, there is no o-dependent contribution
at order j*/S. This result shows that for M>4 second-neighboring planes are antiferromagnetically coupled in

the ground state and thus the three-dimensional spin structure cannot be described by a single wave vector, as

is often assumed. At order j4, o-dependent terms first appear at order 1/ $3 and these also favor
antiferromagnetic coupling of alternate planes.
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Quantum effects on magnetic ordering in body-centered-tetragonal antiferromagnets with only nearest-
neighbor interactions are studied in detail using interacting spin-wave theory. The model conblstsoaf
interacting(in a mean-field senentiferromagnetic planes which together form a body-centered-tetragonal
structure. We obtain the leading quantum correction of ordefrbm the zero-point energy for a systemMf
planes whose staggered moments have arbitrary orientations. The infinite degeneracy of the ground-state
manifold of this system is partially removed by collinear ordering in view of effects previously calculated by
Shender at relative ordéﬁ/(JZS), whereJ, the antiferromagnetic in-plane exchange interaction, is assumed
to dominate], , the out-of-plane interaction which can be of either sign. We study the complete removal of the
remaining degeneracy of the collinear spin structures by assigning an arbitrary;qigh 1,2, . . .M) to the
staggered moment of the planes. Our result for the zero-point erfengyvi >2) up to the sixth order in
=3, 13is

M-2 M-3

E({o})=E; +CEg(j%S) —20103_20M—2UM+2§; UiUi+2_3§; 0107+10i+207+3|,
i= i=

whereC>0 andE, are constants independent of s, andE is the classical ground-state ener¢ifere

sums fromi to j whenj<i are interpreted to be zejdSurprisingly, there is n@-dependent contribution at
orderj4/S. This result shows that fdvl >4 second-neighboring planes are antiferromagnetically coupled in

the ground state and thus the three-dimensional spin structure cannot be described by a single wave vector, as
is often assumed. At ordgf, o-dependent terms first appear at orde3*1dnd these also favor antiferromag-

netic coupling of alternate planes.

[. INTRODUCTION spins on a fcc lattice and showed that thermal fluctuations
select the collinear states out of infinite degenerate ground-
Recently there has been much attention on the phenomeséate manifold. At zero temperature where the thermal fluc-
of order by disorderin frustrated magnetic systerhs. tuations are absent, ground-state selection occurs due to
Thermal®>® quantunt*® and even quenched disorflanay  quantum fluctuations. This phenomenon was studied theo-
sometimes give rise to long-range ordering in systems withetically by Shendérand shortly thereafter confirmed experi-
frustration, where one must often consider the selectioomentally by inelastic neutron scattering in some antiferro-
among classically degenerate ground states which are natagnetic garnets.
equivalent by any symmetry. An outstanding and the sim- Since the work of Ref. 4, a large number of systems have
plest example is the nearest-neighbor Ising antiferromagnéteen studied® such as AF spins on a square and cubic lattice
(AF) on a triangular or a face-centered-cutfiw) lattice?”®  with nearest and next-nearest neighbor interacttonsk
These systems have highly degenerate ground states. Villagpins on akagomelattice}>~*® AF spins on a pyrochlore
et al. showed that at any nonzero temperature thermal fluctatticel” and the axial next-nearest-neighbor Ising mddel,
tuations break the degeneracies in these systems, producietg. All of these studies show that “order by disorder” is
well-defined long-range order. They called this phenomenorery general in that it should exist in many quantum systems
“ordering due to disorder? Later Henley extended this with a classically degenerate ground state. In the cases of
phenomenon to a system of unit lengticomponent vector interest to us here, it is found that quantum fluctuations favor
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states in which spins are collinear. Hence, for a system where
all possible collinear states are symmetry equivalent, the re- ]
moval of the infinite degeneracy of the ground-state mani- :
fold by quantum fluctuations is as complete as permitted by
symmetry and one has a ground state with no accidental
degeneracy. To the best of our knowledge all collinear sys-
tems studied so far are of this type and hence it is of interest
to study how quantum fluctuations select a unique ground
state if the collinear states are not all symmetry equivalent.
This issue is addressed in this paper by studying a particular
system, namely quantum spins with nearest-neighbor AF in-
teractions on a body-centered-tetragofidt) lattice. In this
system, the Shender mechanism can only resolve the con-
tinuous degeneracy of the ground-state manifold into an in- FIG. 1. A spin with its interactions. The full lines show the
finite discrete Ising-type degeneracy, as we shortly discusgearest-neighbor vectors, in the plane for the interactiod. The
below. The selection of a unique ground state out of thisjashed lines show the nearest-neighbor vecgrérom the pth
infinite Ising-type degenerate manifold by higher-order ef-plane to thep+ 1st plane(above it for the interactionJ, . Note
fects of quantum fluctuations is analyzed in detail in thisthat the mean-field interaction between adjacent planes is zero and
paper. Another case where collinear configurations are nahus the direction of the staggered magnetization in each plane is
equivalent by symmetry is provided by the “second kind of arbitrary.
AF ordering” on an fcc latticE where one has two inequiva-
lent collinear states; typé and typeB. We studied this magnetization in théth plane. Thus the continuous degen-
system elsewhef®and found that quantum fluctuations fa- eracy with respect to the orientations of this, is resolved
vor the state of typé\. into a twofold degeneracy for each collingar Actually, the
Three-dimensionaf3D) magnetic ordering in a bct anti- - exact symmetry of this Heisenberg system is such that if one
ferromagnet is of special interest because the magnetic propixes thef;, for alternate(even-numbered, sayplanes, then
erties of such structures are believed to be relevant to highte configuration obtained by the replacement for all odd-
temperature superconductivity. The most important exampl@yumpered layer$;— —fy; is degenerate in energy with the
of such layered structures is perhaps,Ca0O,,*! in which  original one. This exact symmetfylue to the fourfold axes
long-range magnetic order is observed beldy~300 K.  of the tetragonal crystaindicates that there is no possibility
However it is now believed that most of the magnetic prop-of finding an effective interaction of the for@n;-f, ;.
erties can be understood in terms of the Dzyaloshinskii‘However, symmetrWOesaHOW an interaction of the form
Moriya interaction which arises due to the orthorhombicch,. . ,, which would uniquely fix the orientation of all
distortion®” Recently, new systems which preserve the te-even numbered layers with respect to one another. One
tragonal symmetry at all temperatures have been studiedhould note the physical origin of these zero-point effects:
Rare-earth R) cupratesR,CuO, (Ref. 23 (which super-  ajthough the classical ground-state energy is independent of
conduct after electron dopiffj and SLCUO,Cl, (Ref. 25 the f's, the spin-wave spectrum does depend on these vari-
are the most studied ones. In particular, the latter compoungples. Thus the quantum zero-point motion, which involves a
is the best experimental realization of the System that we argum over Spin_wave energies’ can introduce a dependence on
going to study in this paper. However, as we have discusseghe f's and thus lead to ground-state selection. Very simple
in Ref. 26, there are other type of interactions, such as thgpproximate calculations of these effects are poséfbiea
magnetic dipole interaction, magnetic anisotropy, and biquagiscussion of quantum ground-state selection can be found in
dratic exchange interactions, which may compete with thegef, 1.
effective interactions due to quantum disorder we are going As far as we know, there are two studies of the effect of
to calculate here. Accordingly, it is important calculate thequantum fluctuations on the structure of the bct
effective interaction due to quantum fluctuations in order togntiferromagnet’2 On the whole, their conclusions are as
compare its strength with that of other interactions. ~ expected from Ref. 4 in that collinear spin structures are
We now describe in detail the model that we are going tayored. In contrast, some of the more detailed conclusions
study in this paper. We consider a bct antiferromagnet witfregarding the global spin structure of the ground state of bct
dominant antiferromagnetic interactions between nearegintiferromagnets are less well established. For instance, Ref.
neighbors in the same basal plane and weaker interactions; considered only helical configurations with particular em-
between nearest neighbors in adjacent planes, as illustratgfiasis on the structure with helical wave vector equal to
in Fig. 1. (The interplane interactions may be either ferro-5 .i/5 \yhich we refer to as “Case I.” In this structure next-
magnetic or antiferromagnetjcFrom the work of Ref. 4, oarest antiferromagnetiey planes are stacked in phase, as
one may conclude .that zero-point fluctuations give rise t0 & justrated in Fig. 2. In this model adjacexty planes are
collinearity zero-point energy of order forced to stack so as to form a helical configuration, corre-
12 5oon 2 sponding to a single wave vector. This work did not address
AE JISLH (N Ni )7, @D nonhelical stacking sequences in which successive layers
where J (J,) is the antiferromagnetic coupling between have arbitrary phases. In particular “case Il,” where next-
nearest-neighbor spins in the safagjacent basal plane of nearesik-y planes are stacked out of phase, is not subject to
the bt lattice andh; defines the orientation of the staggereda helical description. In a later wofR,Rastelliet al. consid-
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orderJf/(J3S). As with the zero-point energy of linear spin-
waves, this energy stabilizes structure 1l of Fig. 2.
O5=-1 Briefly this paper is organized as follows. In Sec. Il we
describe the model and discuss the expected form of the
6.1 results. In Sec. Il we study the effects of zero-point energy
4 associated with noninteracting spin waves. These correc-
tions, all of relative order B, indicate that the coupling
-1 energy between second-neighboring planes tends to set them
} antiparallel and, surprisingly, is of relative ordgt, where
j=J, /3. In Sec. IV we find the coupling energy for second-
o=-1 neighboring planes which is of ord¢f. This contribution
requires consideration of spin-wave interactions and is of
relative order 1%°. Finally our conclusions are summarized

F—o=1 in Sec. V.
P =

I I il Il. FORMALISM

A. Statement of the model
FIG. 2. Various spin structures. Structures | and Il have unit . . . .
cells which span two and four planéserpendicular t&@), respec- We consideM X (2N) spins on the sites of a bct lattice

tively. In the right-most panel, spins of an arbitrary structgtie in ~ consisting oM 2D antiferromagnetic layers, each consisting

the planey=0 are shown. The values of, for theith plane per- Of 2N strongly coupled antiferromagnetic spins on a square
pendicular tcz as defined by Eqg7) and (9), are given. lattice with periodic boundary conditions. We write the

Hamiltonian as

ered a less restrictive model in which even numbered planes M M-1

were described by a helix with a given wave vector and TH=, Hp+ > Hppr1 (2
initial phase angle and odd numbered planes were described p=1 p=1

by a he.li.x with the same wave vector bgt wi_th an indepe”'wherer refers to thepth plane alone and is given by
dent initial phase angle. This formulation included more

structures, and in particular it included case Il of Fig. 2.

Their model was more general than the one considered here Hp=\]§ Sp(ri) - Sp(ri+ 1) (3
in that they allowed an interactiodz=];J, between nearest o

neighboring spins in second neighborirgy planes. How- and the interactiorH, ,.; between thepth and @+ 1)th
ever, they stated that “for anys<0 the AF[i.e., linFig. 2  planes is
configuration is established.” But they did not carry out any
calculations for the casg=0, for which the infinite degen-

eracy still remains.

We have decided to reopen the study of this situation for ) ) o
two reasons. First of all, it appears that no comparison ha¥hereSy(ri) is the spin at position; in planep. Also 6, and
actually been made between structures | and Il of Fig. 292 are the vectors joining a site to its NN's in plane and NN's
Secondly, there still has not yet been given a treatment ofut Of plane, respectively, as shown in Fig. 1. We find it
arbitrary nonhelical configurations, which is the essential angonvenient to dfascrlk_)e each ant_lferror_nagnetlc Iayer_ In terms
correct way to treat this problem with its most general form.Of a Bravais lattice with a two-spin basis. Thus up spins in an
In order to treat arbitrary configurations we take advantagé) dd-numbered layerp) have
of the well established fadiwhich we rederive hepethat
zero-point fluctuations favor collinear structufeShe most
general collinear stacking of antiferromagnetic planes is deand down spins in odd-numbered layers have
scribed by introducing one Ising-like variable for each plane ) A
to specify the phase of that plane. We then develop an ex- r,=(n4i+nyj)a+ m(p), (6)
pansion scheme in which we can calculate the zero-point
energy for an arbitrary set of these Ising variables. We carryvhere
the calculations of the ground-state energy up to the order in PN
J, 13 at which the classical degeneracy is first removed. In m(p)=(1-op)(i+]j)a/a @)
that way we establish that structure Il of Fig. 2 is stabilized, 4
by zero-point fluctuations, at least if one considers only ef-
f%cts 5at (_)rder B. This stabilization energy is of order r2(p)=(1+0p)( +])asa. @)
J} S/J°. Sinced, /J can be very much smaller thanS]l/iwe
carried out perturbation theory in§,/to locate contributions Herea is a lattice constant anfd(]) is a unit vector in the
to the stabilization energy which were of ord&t/J% but  basal plane along the(y) direction. The meaning of Eg7)
were higher order in B. We found a stabilization energy of is that if o,=1 (for oddp), the spin at the origin is up and if

Hp,p+1=2JL§ So(ri) - Spaa(ri+8,), (4)

ri=(nyi +nyj)a+ ry(p) (5)
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o,=—1, it is down. For an even-numbered plang) (we Fourier transformed variables are defined by
still have Egs.(5) and (6) for up and down spins, respec-

tively, but for this case L 1 S
L L a (p;|)=72 e'vriag (), 17
r1(p)=(+])ald+oy(i—])ala 9 N
and 1 _
. . . s b*(p;i)=-—=2, €%"ib](q),
7(p)=(i+])ald—op(i—])ala. (10 (P mé e (@

Thus forp even,o,=1 means that the spin at=a/2, y=0  where the sum is over thd wave vectors in the magnetic
in the pth plane is up. These parametrizations are illustratedrillouin zone:|q,|</a andlqy|<7-r/a. Note that in each

in Fig. 2. plane there are R spins and; is a vector in thex-y plane.
The Hamiltonian in Eq.2) can be written in momentum
B. Transformation to bosons space as
V\ge1 introduce the transformation to bosons in the usual Y M-1 M
way;™ according to the Dyson-Maleev transformatiSrizor H=Eg+ Z HE)Z)+ Z V(p,p+1)+ Z H;;l)
up spins we write p=1 p=1 p=1
M-1
Si(i)=S—a’(p;i)a(p;i), (11
P + pzl SIS (18

S, (i)=\291-a*(p;ha(p;i)/(29)]a(p;i), (12 _ ,
HereEg=—2MNzJ$ is the classical ground-state energy,

S, (i)=v2Sa"(p;i), (13  wherez=4 is the coordination number within a layét{?)
andV(p,p+1) represent the interactions quadratic in boson

and for down spins operators, respectively, within thh layer and between lay-

S(i)= —S+b*(p:i)b(pii), (14 erspandp+1, _an_dHff') andH{" ., are the analogous in-
P teractions quartic in boson operators.
S5 (i)=42Sb" (pi)[1-b" (p;D)b(p;D)/(29)], (15 ~ ‘\Wehave
S, (i)=2Sh(p;i). (16) H?'=223SY, {a! (@)ay(a)+b; (q)by(q)
q
Here we should note that the form of the interaction depends
on whether the interacting spins are parallel or are antiparal- +yglap(@bp(—a)+a, (b, (=1}, (19

lel. However, changing the interplanar interactions from an-

tiferromagnetic to ferromagnetic only involves changing theWhere

sign of J, . Hence all our results will be valid for either sign

of J, . In fact, to lowest order inJ, we will see that the yq=2 1> €9 %=codq,al2)cogq,a/2).  (20)
o

results do not depend on the sign of this variable.

To obtainV(p,p+1) we write®
V(p,p+ 1)=2~LS; {la*(psi)a(p+1;))+b* (p;)b(p+ 1)1 vppsa(isi)

+[a(p;i)b(p+1;))+b(p;alp+1;i) ]y, 1(i,))+H.cl, (21)

whereygjz,ﬂ(i ,J) is unity if spinsi in planep andj in planep+1 are like(i.e., either both up or both dowmand are nearest

interplanar neighbors and is zero otherwiﬁﬁ’gﬂ(i ,]) 1s unity if spinsi andj are unlike(i.e., one up and one dowand are
nearest interplanar neighbors and is zero otherwise, and H.c. indicates the Hermitian conjugate of all the preceding terms
inside the bracket. Thus

V<p,p+1>=4Jis; {¥ass(@lag (q)ap.1(q)+by (q)by.1(a)]

+ Yo+ 1(D[Ap(A) by 1(— Q) +bp(@ap 1 (— T} +H.c., (22)
where we have the Fourier transforms

'y;)IT;))Jrl(Q):Cq_O'p,p-*—lsq ’ 'yE)L,Jngl(Q):Cq_'—O'p,p-#lSq ’ (23)
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where

Cq=coga(qy+ay)/4]coda(ay—ay)/4], sq=sina(ayx+aqy)/4]sina(a.—ay)/4], (24)

andop b 1=0p0p11- l_JgefuI relations involving, a.nds9 are developed in Appendix C of Ref. 34. Aleqf) is the quartic
part of the term describing theth plane alone and is given by

Jz . + n
HY == ) B & 7 el 285 (1)35(~2)b7 (3)Dy(—4) ¥s..4
+a7 (1)ay(—2)ag (3)by(—4) yatag (1)by (2)by (3)by(—4) y21 5441, (25)

wheredg=6(1+2+3+4+G), 1=0,, 2=0;, etc., the wave vectors are all summed over the magnetic Brillouin zone, and
G is summed over all reciprocal-lattice vectoG*(nll +n21)(21-r/a) The occurrence of the phase factor in E2p) may
not be familiar, so we discuss it in Appendix A. In carrying out a calculation for a single plane, these phase factors never have
any significanceébecause they depend on the absolute placement of the )phbginhere we must keep track of thébecause
the location of the origin of one plane relative to that of a neighboring plane is signjficant
Also HE;‘,))H, the quartic part of the term describing the interaction between plarssl p+ 1 is given by

HG 1= Vo(p,p+ 1) + Vi (p,p+1) + Vi (p+1p), (26)

where the terms come from ti®S,, S, S_, andS_S, interactions, respectively. Then
4, iG-m(pP)fqt (L) +
Vadpp+1)= o, 2 8ae'® P ey (Day(=2)[Vpea(3+4)25.1(3)842(—4) = ¥ 3s1(3+ 40y 1(3)Dp 1(—4)]

X by (1)by(=2)[ Yo+ 1(3+ 4y, 1(3)bp i 1(—4) = ¥ih.1(3+d)ay, 1 (3) a1 (—4) ] ve} (27)

2J
VL (p+1,p)= ——E 5e'C P

1234G
X{lay (1) ¥pps1(243+4) + y6bp(— D) v 1(2+ 3+ 4)Jag. 1(2) @42 (—3)8p11(—4)
+ap (1) Ypps1(2+3+4) + v6bp(—= 1) ¥pps2(2+3+4) b7, 1(2)by, 1(3)bya(— 4}, (28
|
and V. (p,p+1) is obtained fromVy, (p+1,p) by inter- Es=—2NMzJS[1+¢/S)?, (32
changing the roles g andp+ 1. Equation(28) is discussed
in Appendix A. with
We now introduce a Bogoliubov transformation to diago-
nalize H{?)
N E=N"1Y (1-€y)/2. (33
ap(q) " =lgay (q) —mgBy(—a); a
v — + _ The presence of the factgrcomes from reordering operators
Bp(— @)=~ Maap () +1gBp(~ ), (29 so that creation operators are to the left of annihilation op-
where erators. In other words; indicates corrections due to quan-
tum zero-point motion. However, since these corrections are
1+ e 1—e all intraplane corrections, they do not affect our calculation
=1/ d = g €q=vV1- yqz_ (30 in a significant way. As we will see, they simply resc&8e
2¢q andJ in an inessential way.
Then we rewrite the Hamiltonian in terms of magnon opera- The quadratic part of the term describipth plane alone
tors as :
M M-1 M 2 - N N
=Bt D, HD+ S HID + S Hp' =22JS% gl ap (Q)ap(a)+ B, (q)Bp(a)], (34)
p=1 p=1 " p=1
M-1

where:]:J[lJr ¢/S] includes the effects of normally order-
1(4)
+ p; Hpp+1: B ing HED.

The quadratic part of the term describing the interaction
where between planep andp+1 is
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HQFSL;MJS% {Xpps1(@ap (@) ap:1(a)

+ ,BS(Q),BpH(Q)] + Yp,p+1(q)[a'p(q),8p+1( —q)
+Bp(Qap(—a)]i+H.c, (39)

whereS=S— NflEqu‘ includes the effects of normally or-

deringH{!) . ;, and

Xp.p+1(0) =Y 1 (@ 13+ m2) = 21qmgyi, 1(a)
:tc(Q)_Up,erlts(Q): (36)

Y ps1(0)= Yo 1 (@ (13 +m2) — 2l gmgyi) 5 (a)
=tc(q) + U'p,p+1ts(q)r 37

where

1
tc(Q):( 7/q)COS{Ei(qX+qy)/4]COS{a(qX—qy)/4], (39)

€q

+ Yq
€q

1
ts(q)=( sifa(gy+qy)/4]sina(gy—ay)/4]. (39
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mentioned in Eq(1) and implicitly assumed by the form of
the transformation to bosons. If we evaluate the zero-point
energy in terms of the sum over all spin-wave modes of the
3D system, we will get all contributions te of order 15.

We will carry out such a calculation only to an order jin
sufficient to obtain a dependence on thie. As we shall see,
this requires an evaluation of all terms of orde® p to and
including orderj®. It is somewhat surprising that to get a
coupling between second-neighboring planes at ord8r 1/
one has to go to ordef®. In fact, if the calculations are
extended to higher order in3/we expect to eventually get

a contribution toe of order j* which does depend on the
o’s. This calculation, requiring an evaluation@fip to order
1/S% is described in Sec. IV.

Ill. 1/ S CALCULATION

We show here how the contributions to the quantum zero-
point energy can be calculated to arbitrary ordey it first
order in 15 for an arbitrary configuration of’s. Such a
calculation seemingly requires a calculation of the normal
modes of such a nonuniform system. Obviously, an exact
calculation of the normal modes is out of the question. We
start by noting from Eq(34) that the Hamiltonian quadratic

The explicit expressions for the quartic part of the Hamil-in the normal modes can be written in the form

tonian in terms of normal-mode operators will be given in
Sec. IV when we calculate the contributions at higher order

of 1/S.

C. Perturbation theory in 1/S and J

=3 T, 4

where.77,(q) is a product of matrices of the form

We may write the quantum corrections to the ground-state

energy as

AE=E—Eg=Eg> ayn(j)"(1/S)"=Egze, (40
n,m

P =3 X HX=ME(q)], (42)

WhereEo(q)ZZZTJSeq, X is a column matrix with elements
taken from the operators which appear in the Hamiltonian,

wherej=J, /J. Shender$result that the zero-point energy andH is a 2V X 2M square matrix formed with the coeffi-

favors collinearity is contained in the teraep,, as already

a;y (9)
" ay(9) |
B1(—a)
Bu(—0q)
where
Eo(@) Ky(a)
Ki(a) Eo(q) Ky(q)

Ka(a) Eo(q)

cients of the Hamiltonian, i.e.,

(Hl(Q) Hz(Q)) @3
Ha(a) Hi(@)] 0

K

f(q) (44)

Knm-20a)  Eo(q) Kyn-1(q)

Km-1(9) Eo(Q)
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and

0 Li(g)
Li(@ 0 Ly
Lo(q) 0 Ls(q)

Lm—2(9) 0 Ly-1(9)
Lm-a(a) 0
in the above matrices the entries which are not shown are all zero, and
Kp(q) =43, SX, p41(9), (46)
Lo(@)=43,SY; p41(0). (47)
The square of the spin-wave energies of the Hamiltonian in(4&2).are the eigenvalues of the dynamical matrix
H,_=H_,_H_, (48)
where
1 Jp(g)
jp(@) 1 jp(a)
ip@ 1 jpa) .
H,.=H;+H;=Eq(q) . .. =Eo(Q)[1+]jp(a)A4] (49)
jp(@ 1 jp(a)
jp() 1
and
1 17"1
Irl 1 Trz
jro 1 irs _ ~
H_=H;—H,=Eq(q) R . =Eo(q)[I +]r(d)A]. (50)
IVM—z 1 IrM—l
I'm-1 1
| is the unit matrix,JT=Jlé/(‘~JS), and
( )—t°(q)— coda(q,+qy)/4]cod a(q,— qy)/4] (51)
p q - e_q - 1+7q qX qy qX qy ’
r-——ﬂ oi1= — Tt gy E( +0q,) |sin E( —ay) |=r(q)ojo; (52
i = e Oi0j+1~ 1_'}’q 4 axTQy 4 dx—Qqy) |=r(q)oioi+1,
and
0 1 O 0107
1 0 1 010> 0 0,03
1 0 1 0,0 0 030
Ay= R R Ve S o § NG
1 0 1 OM-20M -1 0 OM-10Mm

1 0 OM—-10M 0
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The eigenvalueg,(q) are the solutions of the character- (2m)!
istic equation Km=(— 1)m7122m(m! Z(2m—1)° (60)
F(E)=deDx}(@) ~Ip(@) A1~ ]r(@A,
—J2p(q)r(q)A;A,]=0, (54) Note that the term witm=0 corresponds to the case

5 ) . where the planes do not couple with each other and hence the
wherex{’(q) =[E;(q)/Eo(q)]°— 1. After normal ordering of  total quantum correction is just the number of planes times

operators, one finds the quantum correction due to a single plane. In this expan-
M sion we find the desired dependence on éfgat orderj®.
W= AEn~+ E. + ()t ot ) 1 To evaluate terms in Eq59) we note that only terms in
2 Q .21 % (@l (@m(@+pi(@pi(a)] which A; and A, both appear an even number of terms

(55) survive the trace and integration ovgr For such terms we

where thex’s and p’s are the exact normal modes of the needed to uséfor M>2)

M-layer system andEg is given by

M TrA2=TrA3=2M-2,
AEQ=§ El [Ei(q)—Eo(q)]=(2NJz$)Aeq, (56)

whereAeg is normalized relative to the classical energy perTrA‘f:TrA‘Z‘:ﬁM —10,
plane and

Ei() =Eo(a) V1+X7(q). (57 TrAS=TrAS=20M - 44,

SinceF(E;) given in Eq.(54) is of high degree, it cannot be

solved explicitly. However, to calculate the quantum correc-

tion in AEq to any finite order off we need, not the roots Tr[2A§A§—A1A2A1A2]=6M —10,

x;(q), but only thesummation of any power of thelve can

see this by writingAeq as
M T 14AA3—6A,A 1 A,AS—3AFA,A3A,]

Aeg=S"1> N1 e[V1+x¥(q)—1] (58 M-2

=t a =27M —57— 40,05~ day_oq+4 X, 00},

and then expanding in powers xﬁ(q) to get =1

M-3
Aeg=S"1 2 kN2 eTlip(QAL+ir(Q)A; 02, 7101y 2es (61
T2 m
TITp@r(@AAT, (59 In the last equation, the four-spin term is absentNb# 3.
where Thereby we finally obtain the result

2
AeQ:§

8 26 22 27 29 | 42 29 I 6

M-1 ., [(BM—5) 5(3M-5) |\ , | 2IM-57 105M —55
o)+ | 50— l4])7+ —

M—2
1 .
+ ?IQ( _40103_4<TM—2CTM4‘4izl 00 42—6(01020304+ - "+UM3UM20M10M))]JG}1 (62)

where the positive constants are .
(PMq=N""2 p(@)"(Q)"€q. (64)

In=(P"+1Mq, 122=(P’r?q,
The consequences of this result depend on the number of
42 4 planesM in the system. IM = 3, theo-dependent part of the
l4,= (P 1%+ 1%p%)q, (63 energy is proportional te- o, o5, which indicates that in this
case, planes 1 and 3 have lower energy when ferromagneti-
where cally coupled. ForM=4, the energy is proportional to
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—0,0,030,4. To this order the configuration of the layers zero-point energy is proportional t# . As we have said,
still has some degeneracy and a full solution for the groundhis result motivates us to analyze spin-wave interactions to
state would require evaluation of terms still higher ordej in locate a stabilization energy which, although higher order in
than we have here. F&d >4, the energy is minimized when 1/S, is lower order inJ, /J. This analysis is relevant because
second-neighboring planes are antiparallel to one anotheiy many cases, /J is much smaller than &

Ji= = 0j+2-

We now discuss brief!y this result in the light qf Rgfs. 27 IV. EFEFECTS OF SPIN-WAVE INTERACTIONS
and 28 for the case whgn=0. The structure we find is the
one they call AF providing their anglé is fixed to be 90° so In this section we consider the effect of spin-wave inter-

as to obtain a collinear structure. In principle, by comparingactions, because we expect that these will give rise to a non-
the spin-wave zero-point energy of this structure with that ofzero contribution to ther-dependent energy at ordgt. To

the one(AF ;= structure | of Fig. 2 they find to be stabi- start we record the form of the quartic interactions. The quar-
lized, one could verify our results. However, the procedurdic interactionH py, within a single layer is obtained from Eg.
we follow is more general, more direct, and actually is much(25) in terms of normal-mode operators ésith the layer
simpler computationally. In addition, we determine that thesubscriptp on the operators omitted

H
Hom(P) =~ xg, 2, 96ll21ala€® PP e (D" (2)a(=3)a(~4)

+20 55" (1)B(—2)a(—3)a(—4) + 20" (1)a’ (2)B7(4)a(—3)
+40 e’ (1B (4)B(—2)a(—3)+201558" (3)B(— 1) B(—2)a(—4)
+20507(2) BT (3BT (HB(- 1)+ PPha” (Lat(2)87(3)B7(4)
+ @ 38(~ 1 B(—2)a(~3)a(—4)+ P13587(3) BT (4)B(— 1) B(—2)]. (65)
Here
D= VoD 3a™ Vo1 aXoXa V2 aXoXat Y1y aXaXaT Vit aXiXg
= Y2XoXgXa T Y1X1X3Xa T Y1+3+4X1 7 V2+3+4X2, (66)
D35 VoD 5™ — Vor aXo— Y1+4X1— Y2+ 3XoXaXa~ Y1+ 3X1XaXa
+ ¥2XoXgt Y1XaXgF Vo4 3+4X2X3F Y143+ 4%X1X3, (67)
D= VoD a™ — Vo aXa— Y2+ 3Xa— Y14+ 4X1XoXa— Y1+ 3X1XoXg
T y2 viXiXot V2434 4X3Xa T Y1434 4X1XoX5X4, (68)
D= VoD Pas™ Vor aXoXat Vo aXoXat Y14 3XaXa T Vit aXiXa
= Y2X2 T ¥1X1 7 Y143+4X1X3Xa T Y243+ 4X2X5X4, (69)
DL YePous™ Yora Yo+ aXaXat Y14 3X1XoXaXa T V114X X2

= YoX4™ Y1X1X2Xa ™ Y1+3+4X1X2X3 ™ ¥213+4X3, (70

wherex;=m;/l;,=m(q;)/1(q;). We have corrected the results of Ref. 31 to treat umklapp processes properly.
Now we conS|der the nonlinear interactions between layers. First we write down the quartic terms coming &8, the
interactions. They will later be shown not to contribute at the order $tdAvhich we work. We have

4] )
Vo dp,p+1)= Wll 223:46 d¢lalal 3|AGIG'Tl(p)[H(llz)aﬂg(1),8;(2)0‘;+1(3):8;+1(4)

+HB5ap (1) By (2) gy 1(3)apa(—4) + HiZhay (1)Bg (2)Bpea(D)Bpaa(=3)+ ... 1. (7D
We only wrote those terms in E¢71) which affect our calculation. Note from EQ7) thatV,, is Hermitian. Here

H1234 (X2=X1Y6)(Xa=X3)C314—= 0p0p1(Xo+X1Y6) (XaTX3)S(3+44) (72)

H{35= (Xo—X176) (XaXa— 1)Cas 4+ Tp0p+1(Xo T X176) (X3Xa+1)S34 4, (73
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H{35= (Xo—X176) (1—XaX,4)Cas g+ Tp0p+1(XoTX176) (1+X3X4)S34 4 (74)

The quartic perturbations from the transverse fluctuations written iZ8y.are
2J ,
VaL(p+1p)=—"= X 8lil,lal,e P
N 17346

X[y (D 1(2) By 1(3) B a(4) +1155051(2) By 1(3) B 1(4) Bp 2 (— 1)
155005 (1D By 1(3) By 1(4) Bps 1( = 2) 115585 1(3) By 1(4) By 1(—2) Bp(— 1)

+ 213k (Day.1(2) By 1(8) apsa(—4) +21 550y 1(2) By 1(3) Bp( — D ap.1(—4)

+ 2185 (1) B 1(8) Bosa(—2) gy 1(— 3) + 2135487 1(4) Bp(— 1) B 1(— 2) g 1(— 3)
18y (Dap1(2ep (=3 ap (=) H By~ Dap1(2 apia(—ap.1(—4)

+|(122)34ap(1):8p+1( 2api1(—3)apiq(— 4)+I1234Bp( 1)Bpi1(—2)apii(—apii(—4)], (79
2 |
VNL(plp+1):__l 2 5G|1|2|3|4e|G'Tl(p)
N 15346

X155, 1(Day (2) B, (3) By (4)+15505 (2) By (3) By (4) By 1(— 1)

+1 5554 1(1) By (3) By (4) B —2) +1533485 (3) By (4) Bpr1(— 1) By(—2)

+ 215500 1(D ey (2) By (3) ap(—4) +21 By (2) B5 (3) Bp s 1(— L) ap(—4)

+ 2180, 1(1) By (8) Bo( = 2) arp(—3) + 215385 (4) Bps1(— 1) Bp(— 2) ap(—3)
15905 1(1) ey (2) (= 3) (= 4) +13548p 1 1(— 1)y (2) g~ 3) erp(—4)
1% 1(1) By — 2) arp(— 3) (= 4) + 155851 1(— 1) B —2) ap( — 3) arp(—4)], (76)

where volve the coupling between planes 1 and 2 and two will
" involve the couping between planes 2 and\®e only need
11534 0p0p+1) = (1—=X176) (X3Xa—X2)C2+3+4— 0p0p+1(1  to consider three planes because four interplane perturbations
cannot span four planes at ordér) From now on we there-
FX1Y6) (XXa T X2)S24 514, 7D fore write o= 0,0, anda’' = 0,05 and seto;=1. In other

words, for plane 17,=0, for plane 2,
|(13§)34(0'p0p+1):(1_X13’G)(1_X2X3X4)Cz+3+4+ 0p0p11(1 P ! P

+X176) (1+X2X5Xa)S2 344 (78) 1(2)=[(o+1)i +(1—0)](ald)= 7" 83)

5
|(12)34(Up0p+ 1) =(1=X176) (XoX4=X3)Co 344t opopi1(L

1
Y’ Y’
2

The other coefficients are obtained from the relations ob-
tained in Appendix D of Ref. 34:

155 0)=vel B3V (— o), (80) )
[4
18554 0) =6l ad @), (81)
I(lrgf ( )=ei[71(p+1)771(p>]l(1’§)34( o). (82 FIG. 3. The topologies of diagrams for the ground-state energy

at relative ordej*S™. HereX andY denoteX, andY,, respec-
Before starting the calculations we make some preliminaryyely, andx’ andY’ denotex,. andY,., respectlvely In diagrams
remarkS FII’St Of a” we are |nterested Only In terms Of Ol’del’a and b the Ordenngo the r|ght is forward go|npof vertices is

j*. So we only consider contributions which involve four unique. In diagram c there are four ways to order the ¥over-
powers of the interplane interactions, each of which could, inices with respect to th& vertices. The labels indicate in which
principle, be either the quadratic ones of E85) or the plane the propagation occurs, but all possible choices of polariza-
quartic ones of Eqs(71) and (75). However, two will in-  tion labels @) must be included.
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and for plane 3

n(3)=(1—oa’)[i+]l(ald)=7" (84)
2 2
are locations of up spins in these plariese Fig. 2. Sec-
ondly, we have considered terms quadratic in the normal 2
modes which result from normally ordering operators when 3 3

we transformed to normal modes. As will become apparent,

such terms do.not contribute at the leading nonzero or_der N o vbpMm ® VNL o VG, j)

1/S. Thirdly, since we are studying the structure as influ-

enced by quantum corrections, we will only analyze terms
: . ,

which are prOpor.tlon?l toro. (B}’ S¥mnﬁ?try there _can be quadratic vertices can be eith¥ror Y, but to get a contribution

no terms proportional tor or to o”".) In this connection we proportional tooo’ two quadratic vertices in the same loop must

should note thaiX,(q)Y ,(q) iS_ independent_ obr. As 8S " gither both beX or both beY. Here VDM denotedd(® and VNL
consequence, when we consider perturbative contnbutmn@eﬂmes\,m_ P

involving two V(i,j)’s, we only keep diagrams having two
Xs'S Or two Y,,'s. L Figs. 3 and 4 give zero contributions to the energy even in
Now we carry out the calculations indicated above. Wefthe presence of the spin-wave renormalizatiahs;J and
S-S,
Finally, we are led to consider the contribution to the en-
ergy proportional todjmr’ which is of order 15. As we

In principle, we should also give each propagator an in_shall see, we obtain a nonzero r_esult 'at this order B 1/
dex, such asr or 3 for excitations in the first layer. How- #ccordingly, to get results at ordgf which are correct to

ever, in evaluating diagrams we will count the number ofl€ading order in 13 we henceforth sej=J and S=S. At
ways of assigning such labels. For instance, we find the surhis order in 15 there are six types of perturbative contribu-

FIG. 4. As in Fig. 3, the topologies of diagrams at order 1. The

first consider the perturbative contribution to the energy o
orderj* at leading order in B. Such terms are represented
by the diagram® shown in Fig. 3, where we label the propa-
gators according to the layer they are in.

of the contributions from Fig. 3 to be tions, T; for i =1,6, which are represented schematically in
Fig. 5.
TS (Y () 2K, (0)2+ X ()Y ()2 We consider the first type of term shown in Fig. 5. We
E= ‘33_% (- Zeq)3 show that these contributions involving tw ;s vanish. To

see this consider the allowed ordering of vertices of this type.
Note that the two quatrtic interplane interactions must be con-
, (85  nected by three lines, all of which must go in the same di-

oo’ rection. (For this analysis we use a diagrammatic
where[ ], indicates the contribution of orders’ that we formulatior™ in which only forward-going lines are allowed
want. Here the subscript o and Y gives the value of @t Zero temperatureTo obtain an allowed ordering we have
0p0ps1. The prefactor to the sum in E¢85) includes a only the diagramsin which only forward-going lines occhr
factor (41, S)* for the four interlayer interactions, &) ~3 shown in Fig. 6. Note that in all cases, we need the square

to scale the three energy denominators, and a factor of Qf(z) an lnterplar!e _mat_rlx _element,H(l)(1,2,3,4) or
corresponding to interchanging the rolesoind 8. In Eq. 1" '(1.2,3,4), which is given in Eqd72)—(74). There we
(85) the factor 4 comes from the four different orderings of S€€ that ';her;dep_endent part of matrix element is propor-
vertices possible for diagrafi) of Fig. 3. In particular, note  tional tox;—xj. Since the rest of the integrand is even under

Y (@)2Y 0 (q)?

T 26— 4ey)

the crucialo-dependent parts 02 and Y?: interchange ofk; and k,, such a factor vanishes when
summed ovek, andk,. ThusT,=0.
[X(D)?]o=—[Y(9)?],= 20CySq- (86) We now consider terms of type No. 2 of Fig. 5. The two

ossible topologies of diagrams of interest are those shown

Using this result one sees that the contribution to the energ Fig. 7. In the first two of these, the insertions of two

written in Eq. (85) vanishes. This result was expected, of
course, because the work of Sec. Il indicated that there was
zero contribution toSE at orderSJ'/J°.

VDM() VYDM(1) 1

. . _ . 1
At order S (i.e., relative orderS™?) we have contribu- VDM
tions such as those represented in Fig. 4, which involve a  vzzas  wwen  vieaz vaz) vaz) VNLGD
guartic intraplane interactiotin plane 2 and four quadratic vizan  vap vaz) vaz) vaz viz)
interplane interactions or four interplane interactions, one of
which is quartic. We label the wave vectors of the upper loop oo vomMe) 2
k and the lower loom. Then for theoo'-dependent terms
. . V23) ‘VNL(23) V23 vy Vi23) v(23)

from each diagram one see that in the sum ayéne sum- v

N . N ) 32) v(32) v(32) v(32) V(32 V(32)
mand includes the factoc,s, which is odd under inter- N s

change ofq, andq,. Since the rest of the summand is an

even under interchange gf andg,, this sum oveqg van- FIG. 5. The six types of perturbation ternig,, at order 1%.
ishes. So, in this order we still get a vanishing contribution toHere VZZ denotes/,,, VNL denotesVy, , and VDM(p) denotes
the energy proportional to¢’. Note that the diagrams of Hg,“).
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A vzz O Vij)
3

FIG. 6. Various types of contributions B, of Fig. 5. For the
right-most diagram there are four ways to order the vertices main-
taining the directions assigned to each of the lines. For the left-most
diagram the quartic vertices involv¢?(1,2,3,4) and for the others
the quartic vertices involvelY(1,2,3,4), wherey, andq, are the
wave vectors of the propagators for layer 1.

guadratic perturbations occur in the same line. Otherwise the
insertions occur in different lines. Note that the quartic inter-
layer perturbations have no terms involving eitlm%’ra;r or
BpBp- What this means is that it is impossible to have a
diagram with two lines of the same type or 8) connecting
the two quartic vertices in Fig. 7. This consideration indi-
cates that the left-hand case of Fig. 7 cannot actually occu
Also, in the right-hand case the tvgo lines with no inzertion-{]NLQl) always comes (o the lefbeford the vertexViy (23). The.

’ ) : internal perturbations should be distributed over all time orderings
must be one of each type. Now we consider completing th%uch that all lines are forward goirtge., have their arrows pointing

quartic V%rtice§ with the ?tf:er lines which do carry i, the righy. There is a one-to-one correspondence between these
insertions® For instance, the “1” vertexi.e., the one with a diagrams and those in whicNy, (21) comes to the right of

“1” line ) is completed by two additional lines. One of thesey  (23). Here and in succeeding figuress a;, B=8;, y=ay,

is either aB, (B,=4) outgoing line or ana, (a,=y) in-  5=p,, p=az, and p=pB;. The legend for the interactions is
coming line. The other is either am («;=«) outgoing line  shown in Fig. 4. In all figures we label lines with wave vectors
or aB; (B1=p) incoming line. The “3” vertex(i.e., the one  q,=1, q,=2, q3=3, q,=4, starting from the top.

which a “3” line) is also completed by two additional lines,
one of which is either anx, (a,=1v) incoming line or a

B> (B,=06) outgoing line. The other is either amag
(a3z=p) outgoing line or 885 (B3=7) incoming line. Bear-

ing in mind that when time ordered, these diagrams must not
have any backward-going.e., leftward lines, we have the
possible diagrams shown in Fig. 8.

Each of the diagrams in Fig. 8 gives rise to one or two
time-ordered diagram. For instance, diagram 1 of Fig. 8
can have the quadratic vertices in either of two time se-
guences. In diagram 2 of Fig. 8 only one time ordering is
possible(The quadratic perturbation of the second line down
from the top must occur to the right of the quartic vertices in
order for the two parts of this line to be forward going.

For the diagrams in Fig. 8 we get the respective contribu-
tions to the energy

FIG. 8. The nine vertices of typ€,;. In all cases the vertex

s VDM@

2 5G|%|§|§|£21[t|(2)]0'0"1 (87)

FIG. 9. The allowed labelingd —7) of diagrams of typd ; with
Vpwm first. Diagrams withVy, first are obtained from those with
Vpw first by (a) reversing the direction of the time arrows on each
line and(b) interchanging labels:d« B, y«< &, n<p). To illus-
FIG. 7. The two topologies fof, of Fig. 5. The diagram on the trate, we show the diagrar(8), which is obtained by this procedure
left does not exist, as is discussed in the text. The legend for théom diagram 1. The contribution of each such transformed diagram
interactions is shown in Fig. 4. is the same as that of its antecedent.
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FIG. 10. Left: The topology of diagrams of the typpg. Center:
The topology of similar diagrams of typgs. Right: topology of
diagrams of typ€l's with insertions on two different leggContri-
butions from the former are denot@d, and from the lattefls, .)
The legend for interactions is the same as in Fig. 3.

where the prefactor comes froa) 2 for the two orderings
of the quartic vertices: “1” before “3” and “3” before “1”
(In Fig. 8 we only show “1” to the left of “3"), (b)
(—2J, /IN)? from the nonlinear interactiongc) (4J,S)?

6467

X 2 Y Y 2 X
y Jokd v x Y v X
2 2 2 2
2 2 2
FIG. 12. Various ways to assign directions to the topology of
type Ts, . In each diagram one of the unlabeled lines is a “1” and

the other is a “3.” The contribution from each of these two choices
from the linear interactiongd) (8J9)° to scale the energy of labelings is the same. The legend for interactions is the same as

denominators, ande) an overall minus sign. We have the in Fig. 3.

results:

i 2 -
t? =S 5 X (D)X (2 55l )il o) 4,

o 1 .
1P =¢lC7 <“>mzxg,(1)vo(2)|;13111(0)2&}113)2(0')2,

(=67 S X (DY) B )l )4,

o 1 -
(= 5 Y (DX(2)21 Fe o) Td )2

° deje,A Yo (1)Y,(2)21 53 0) 2184 o)1,

=7 Y (DY, (202080 o)2

o 1 .
P =giG (o) 261A2Y(,/(1)X(,(2)|<213)41(a)|(ligz(a’)4,

=) Y (Y21 B 0218302,

t)=e® 7@ Yo (1Y (21 Zp ) Esd )4,

(88)

46162A

whereA=¢,+ e, + €3+ €, and the final factor is the multi-
plicity of the graph(i.e., the number of ways the contractions
can be madeand the first factor is the appropriate sum of the
energy denominators over all time orderings. The above re-
sults are simplified in Appendix E of Ref. 34 where the final
result is

FIG. 13. Topology of diagrams that contributeAq , (m,n) of
Eq. (109 (left pane), to A_,(I,m) of Eqg. (113 (right pane),
wherem andn are momentum labels of linéstarting with 1 for the
top line and going to 4 for the bottom lineAny line without an
arrow can be assigned either direction and can be made forward

FIG. 11. Seven ways to assign directions to the topology of typegoing by suitable time ordering of the perturbations. In each dia-
T,. The diagram are numbered 1 through 7 in reading order. Hergram one of the unlabeled lines is a “1” and the other is a “3.” The
X=X, , X"=X,, etc. The legend for interactions is the same as incontribution from each of these two choices of labelings is the

Fig. 3.

same.
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_2)foo’ 1 222 4 1 1 1 2
To=—D3c— 7S N2 Z 5(3 1'2'3'401510252((F— A% A2€2+ Aelez)(X1X4_ YeX2X3)
1 l 1 )
" Aee, AZe Azez)(x4_X1X2X37’G) ] (89

We now consider th&; terms shown in Fig. 5. We see that 1

the V,3s must come together to form a renormalized 2-2 t&=—20"cii[Y (D1 35 0)] CD3412(A(26 3 (4),
line. Also recall thaf X/ Y!],=0. So the only allowed dia- ! (94)
grams are those shown in Fig. 9. We write

- 1
i1 t= —2cr’c1s1[va<1>|&?4o>]g[2¢><i>12](3—
Ts=1335 NZ,% 2 5@ |§|421i:219ti(3)- (90 ° ’ A 2ey)
1
+ +

Here the prefactor reflects) a factor of 2 because we could A%(2€y)* A(251)3> (2, 9
consideVy, (3,2) instead o/ (1,2), (b) a factor of 2 as to
which vertex comes earlier in timgg) —2J/N from the 1 1
D-M perturbation,(c) (4J, S)® for the linear interactiongd)  t&'=20"c51[ Y (1)1 554 0) ], [20E) (—r+ —2—2)
—2J, IN for the nonlinear interaction, ar(@) (8JS)* in the 4eA - 4ed

denominator for the energies. Note théﬁ) includes both X(2), (96)

matrix elements and the energy denominators, summed over

all allowed time orderings. 1
We find that =207y X, (DT Gad o) 1,205 (W)(Z)'

€1)

97)

¥ =—20"cy8,[ X (1) Dad o anmz( ) 4), (91
! 18X Dlzsd 7)o Paa A% (@), @b In writing these results we used E@6). We also used re-

sults for the sums of energy denominators over allowed time

1 1 ordering of vertices from Appendix F of Ref. 34. These re-

=20" 151 X, (DT %sd 0)] ‘Dauz(As( 3 t 3%ze sults are simplified in Appendix FRef. 34 into the form

1

1

+ A 26 (4), (92

1 1
=20' C131[Ya(1) 234(0)] ¢3412<m+462A2)(4)1
1 1

(93 ® VNL(21)
s VDM(2)
O Vi
® VNL(21)
N VDM(2)
O Vi)

FIG. 15. Further ways,i&10,18), to assign directions to the
topology of typeTg, . The last diagranil9) is one withVy, to the
left of Vpy and is obtained from diagram 18 by replaciggby
FIG. 14. Various ways,iE1,9), to assign directions to the to- o, etc., as explained in the caption to Fig. 9. Its contribution is the
pology of typeTg,. Further ways are shown in Fig. 15. same as diagram 18.
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Yoo’ 1 4 2
121212120252
3= 7335 N2 4 2 5G 1l3l5l5c1s] 52?12( VGX3X4_X1X2)<_A4_ _61A3

2
+(X— YGX1X3X4)CD(33)12( m) ] (99)

In the terms of the typ&, of Fig. 5, it is easily seen that th&(2,3)’s must be connected to give a renormalized propagator
for momentum 2. The only way to now contract the 2 lines is to use this renormalized propagator to connect the two
V(1,2)’s. We therefore have the topology shown in the left panel of Fig. 10.

Since we know that we must be able to make a time ordered diagram with no backward lines, the three lines with no
insertions must all be in the same direction. Given this, the possible directions of the linesteams are as shown in Fig.
11. Also we must not useX,(1)Y,(1) since that quantity does not depend eon Similar reasoning applies to
Xo”(l)YU’(l)'

We write

J4
4=~ 163518 12 Sl2121212t9 | (99)

where we took factoré) 2 for interchanging the roles of “1” and “3,(b) (—2J/N)? for the two Dyson-Maleev vertices;)
(43, S)* for the linear interplane interactions, afel (—8JS)° to scale the energy denominators. Then, from Appendix G of
Ref. 34 we have that

167 —8e3A — A%
E V=400 cis{(A)[ 205, D Pt 20 @0 — s
i=1,4 1661A

. (100

where we took account of the fact that the insertions could take place in any of the four forward-going lines. In Appendix G
(Ref. 34 we obtain

46?+261A+A2
2 tV=—400"cIs{(2)[ (2051 (2D ) + (20 ) PG ) ]| — 77— (10D
i=5,7 16€;A
Therefore we have
23t aa’ 16e]—8e3A— A% 4€2+2e, A+ A2
T,=— IRES A E Sali151515¢isT] (DS D) 8eiAS 3412<D1234)—86411A3 . (102

Of the terms of typ€dl 5 there are two subtypes: in the first subtyde, shown in the center panel of Fig. 1@e put all
the insertions in the same leg. The resulting diagréshswn in Fig. 12 will have sums over energy denominators which can
be related to those of typg, (shown in Fig. 11 Thus we write

J4

T5a= ~ 7653518 NPy 55

> S(1+2+3+4-G)I2221%5, (103
3,45

Here we again have the factor of 2 in the prefactor because of the degeneracy between the labels “1” and “3.” The first four
diagrams correspond to contractions ob&’ and ad®(®), whereas the last three correspond to contracting eitdef®aand
a®®@ or a®® and a®®). However, theS factors for the energy denominators is different here tharmforWe have

S(lsa): 8(14) ’ S(ZSa) _ S(35a) _ 8(24) ' Sasa) _ 3(34) ’ SéSa): SE(” ’ Sgsa) _ S(75a) _ S<74) _ (104)
Thus, using Eq(86), we have

3 =400 o151 20 20 (S - 28+ 5] (105
and
2 =400 o(1)S(1)7] (20551 (201550 + (2P55) (2051 1(2)[ S - 257, (108
So
4J40'0' 16e7— 1663 A —4e2A%+ A% A+2¢
Tsa=— 2 861515151 5cist) DYy P 5, 16€7A5 ‘D3412‘b123416 dl (107)
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are only interested in the contributions proportional to
oa'. Here the factors- 2J/N come from the Dyson-Maleev
perturbation, the 8S is for each energy denominator, and
each interplane linear interaction carries a factdr 4

Thus we have

® VNL2D

=200 D8 (4) (o)A (LD +A, (1,3
+AL L (LATA, (23+A, (24 +A, (34)],
(109

whereA , takes account of the possible arrow assignments
in Fig. 13:

B VDMQ)

3(e1+€r) E%‘f‘ eg 1
—<— - +
A®  2A% e, 4A3e§6§ 2e,6,A°

A, (1,2=

61+ €r
FIG. 16. The allowed labelingl—7) of diagrams of the type + oot a7 [4C181CS,. (110
. ' : CSNL g . 8ele5A°  16eferA

Tep With Vpy, first. Diagrams withV;; first (obtained by the trans-

formation shown in Fig. Pgive the same contributions. For ex- Note that in Eg.(109 we included a factor of 2 for the

ample, diagram 8 gives the same contribution as diagram 1. degeneracy between labels “1” and “3” in the insertions.
The factors 2s come from theo-dependent parts of and
Y. Recall that we have the restriction that in each leg either

. ) ) 2 X’s or two Y’s (but not XY) can appear to get the de-
The second, and new, type has insertions on two differenbendence. Likewise

legs. (This was not possible within typ&,.) The possible

assignment. of directions of lines i§ shown in Fig. 13. The t<25b)=2[(2<pg§1>12)(2q><122>34)+(2q>(1‘§>34)(2q><3i)12)]

corresponding evaluation of their energy denominators

summed over all possible time orderings is now obtained by X(2)(oa )[A-(L,+A_ (L9 +A_,(19],

the same formalism as was used aboveTigr (112
Now we discuss in more detail how to put all this together ) ) o

for Ts,. (More details are given in Appendix H of Ref. 34. Where the insertion factok_, is given by

Clearly the best way to think about these diagrams is to start

with the entire family of diagrams generated by two Dyson- A, (12= 26§+2A - g 4C15,C,S,. (112
Maleev quartic interactions with at most two backward lines. 16e7€5A%  4efA®
Then we select two legéncluding all the backward leggor :
. ) : : Finally,
insertions. If all four lines are forward going we therefore
have six choices for the two lines in which to make inser- (5b) _ (1) §D) 9 19 (4)
t377=2(405,, D155+ 4D + (40
tions. If we have only two forward lines in the bare diagram, 3 (403028P 1254 safP1zsat (4312
then we must make insertions on both backward lines. We X(4D5NA_ (1,900, (113
write
where
(—2JIN)? b
Tep=— ———e—(43,5)* 82151313 >, (%,
5b (83J9° " 1%49 clr2s 4i:21,3 ' A__(1,2)= —5—5—C;15/C,S,. (114
(108) 46162A
whereti(5b) comes from insertions in diagrams with-1 To summarize this result, we writ€sp=Tspa+ Tspi,
backward lines. These three cases are shown in Fig. 13. Weith
|
Yoo 12 3(et+e) €+eés 1 €1+ € 1
_SLe 2/212)2 D &6 | _ =< _ _ _
Tsba \]35,\@11223‘4G |1|2|3|45G(31510252[ q)3412q)1234( AT ANere, | 20%2E8 €A% 4EEA% 8l
1 1 1 1
3) (2 1) gy (1
OB s s g s P s

and with a change of some momentum labels,
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Moo’ 24 (8e;t+4dey) 2 2 1 1
7 21212 N pd [ =" 1 2 -
Tspe °SN\P 1'223;4 171513l 45GC131C252{ Do 1324( AS Aele, A?’eg ere,A3 elezAz 4efe§A
+ O D) 22 - L~ 2:L i 21 - PS5 (116
€A% €fe,A? 2efe5A ) defesA

The diagrams of the typ€g are again of two subtypeSg, in which the two insertions occur on different legs argj in
which all the insertions occur on the same leg. The former are shown in Fig. 14. Now we put this all td§etherore details
of the evaluation ofT see Appendix | of Ref. 34.For the diagrams of Fig. 14 we have the following contributfrio
Tea:

Tean=2(2)(—2J/IN)(4J,9)3(—23, IN)(8IS) %o’ >, 121212254
1,2,3,4G

- 3 A+4
><20151b(e'6'7[ 2314{ 124 0) X, (4)( A3+A3(2 6)1 )(4)

1 1 1
1(
v 124“”“(4)( N2y T 2enA2end | (2e)(2epA +)(4)}

1 1 1
(2e)D% " (2e1)22e)h | (2e1)(2e)A2

(2)

+ 2¢)(2%)41 Giod ‘T)Ya(4)<

(ZJé)JA 4123Y (4)

1
(Ze)?2enh (4)])
(117

+2<I><2%L{ B o(4) s (2) 4T Y<4>;<2>
o (2 ) A 4123 o ( ) ( )A

and for those of Fig. 15 we have the contributiBrto Tg,:
Teap=2(2)(—2JIN)(43,9)%(—23, IN)(89) %o’ > 1213121254
1,2,3,4G

3 A+4
2| £ | 0 8,0 51+ G| ©

1 1 1
(2e)A’ T (2e)?(2enh (2e1><2e4>A2)(8)}

+T£é>13<a)v,,<4>(

+2<I>(3)27(1)3(0)Y(4)<— 3+ = * ;
1342 42139) Yo (254)A3 (2€1)%(2e4)A  (2€1)(2€4)A?

(4)

+2q)(1%)24{ 2722)3?(0(4) (26 )2A2 (2)4'2'4%)31\(0(4) +4c[)31422 Yo1Y o(4)

1
(261)2(264)A ] )
(118
The factors here are 2 for the two orderings\qfi, andVpy, 2 for usingVNL(2,3) rather tharvNL(2,1), (—2J/N) for

Vpm, (=23, /N) for V., (43, S) for each linear interplane interaction, andJ@ for each energy denominator. Also, the
last factor in parenthesis for each diagram is the number of ways of contracting lines for that diagram, ¢4} fdor

instance. Note tha¥py, carries a factoe'® 7. Also note that the contraction factors are twice as large Byrthan for (A)
because the latter has two equivalent choices for diagrams in which to put insertions. These are evaluated to be

1
(2 ) (2en?(2epa ?)

Yoo pi2in @ 12 4 2 1 1 1
Tean= _WZ“% 1% 113131266C151C2S| P3a1d X1 X2~ Y6XaXa) _P+ 61A3+ €2A3+ eiAz_ 6162A2_ ZEEEZA
2 1 1 1

+ D) A XaXaX1 Ya— X2)| — - + + - DL
3414 XaXaX1 76~ X2) 6A° " €e,A? e%AZ 26§elA 26%62A

1
D3d1— X1X2X3X47’G)< 16 A)]

(119
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and from the diagrams of Fig. 15 we have

oo’ 221212 @ 24 8 4 2 2 1
T6aB:W1,2§‘,4G 1115131566C1S51C2S2) Pog1d XaXs— YeXoXa)| — A + A3 + € A3 + e%AZ - ere,A2 - egelA
+ PG L
2414 X1X2Xa Y6 — X3) A% e e,A? elegA
(6) 2 1 (4) _1
+ @ 1344 X3 Y6~ X1X2Xa4) A - ZeA + D14 XoX3— YeX1X4) Zed) [ (120

where, in the term invoving(®) we interchanged momentum labels.
Finally, we consider the various contributionsTg, from the diagrams of Fig. 16. The sums over energy denominators are
similar to those of Fig. 9. So we get

2121212:22 3
Tep=—33g —,@122,3’4 86131313150353] (voxaXa—XuX2) D5 A% gA® aaaz)t (Xz— 7GX1X3X4)(D(34)12( A2
(121

We now use the relation in Appendix B to combine our re-P(5), P(6), P(7), andP(8) come from combinindlg,a
sults in the following compact waffFor details see Appendix andTgu:

J Ref. 34:
ETOT j40,0_/ 1 521212 ) _ (7) \2 _ <, 3 " 3 " 1 n 1
NIZS~ B Niay,0elildlE 2 P() PO)I=(Paad™| ~ x5+ (A%t a7 T 2247 T 2ac
_j40'0" B 1 1 ~ 1
- 833 i=§1:11Ei' (122 €16,A3 4616§A2 46%62A2
- 4 . 1
wherej=(J, /J)* andP(1) andP(2) come fromT,: - 52 2A)015102521 (127)
€16
P(1)=2 ! - + !
( )_ F AZE]_ A2€2 Aflfz (X1X4 1 1
— (3 2 _ _
— Y6XaX5)°C151CS,, 123  PO=(Pan (EiAs 42A 26562A2>"151°232’
(128
P(2)=-2 ! ! !
( )_ AE]_EZ Azfl AZEZ
1
X (X4_ X1X2X3’}/G)2C151C252 . (124) P(?) = - ((I)g]‘i)lz)2< m) Cls]_CZSz, (129)
1€2

P(3) and P(4) come from combiningls, T,, Ts;, and

Tep:
P(8)= ( m) [ D551 A X1Xa— YaXaXa) + 2P0 A X1X5Xa ¥
6 1€2
Y SURY 2.2
P(3)=(P341) ( AS T A€, - A3621)C151' (129 — %) + DG AL =X XoX3X476) 1€181CoS, - (130
P(4)=(DY),, 2<A§ z)Cisi- (1260  P(9), P(10), andP(11) come from combiningls,s and
€1 TSbB:
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N 8 N 4 N 2 2 1 1
A A @AY A% e16,A° € e5A%  AefesA

P<9>={<<I>§Z& ?

(X1X3— YeX2Xa)

46262 <I><21)13+ C151C2Sy, (131
1€2

(X3—X1X2X4YG)

2 1 1
P(10)={ (#5342 - - — B
(10 r( 2197 Zx3 T Zoa? T 22A D13

26%6%
2 1 (3) (6)
T\ 2a2 ™ Zea (Pra15+ Y6 P13ad (X3—X1X2X4YG) [ €151C2S7, (132
1 1€2
- () 2 1 @ , (e17€)
P(1D)=) - @(q’msﬁ - Elreg(xlx4_><2x37e)q)2431+ @¢2431(X2X370_X1X4) C181C2S2. (133
|
It is not easy to check the correctness of this algebra. How- V. DISCUSSION

ever, the fact that quite different mechanisms can be com-
bined to yields results as iR(3) or P(4), for example,
suggests that these terms, at least, are correct. Such a res

ing form (in terms of squares of the non-Hermitian matrix . . )
9 ( N Rastelliet al2?® However, to avoid relying on such an as-

element was found previously in a complicated spin-wave . .
sumption, we performed a more general calculation at order

calculation®’ 2 0 which w ioned bit iantat ified b
To determine the numerical values of these sums we dil ch we assigned an arbitrary orientati@pecified by

vided each of the nine momentum integrals into a sum ovef unit vectom,) fo_r the staggered magnetization in theh

a mesh of points. Our work up to=28 showed that these p_Iane. A calculation following the methods of Sec. llI
values could be extrapolated o= by each sum to a form yielded the result

A+ B/n. We thereby found

In deriving our results, it may seem that our results rely
) the assumption that the ground state is a collinear struc-
ure by analogy with the previous results of Shefiden of

M-1

Ae=—(r?2+p?)4i2 > [1+(Ry-Ppi1)?], (139
{10'E;}={169,- 603, 5627, 2332987, 99, p=1

—1210, 0, 52, 2668; 45} (139

as expected. At ordgr® we recover the expected result that

the fluctuation energy at ordgf selects collinear states.
and =,E;=4.00< 10 4 gives the energy in Eq122. The Thus we were justified to treat a collinear model to discuss
uncertainty in these results is at the level of a percent or séhe way the remaining degeneracy within collinear structures
[The result that the term iR(8) vanishes is obtained ana- was resolved.
lytically in Appendix M of Ref. 34] The fact that this sum is In many cases of interest, e.g., in the cuprate antiferro-
positive, indicates that second-neighboring layers have lowehagnets, the assumption that one has dominantly antiferro-
energy when they are out of phase. One may well asknagnetic planes which are weakly coupled by interplane in-
whether or not there is some simple argument which coulderactions has the result thatJ, /J is small enough that
indicate the sign of the result. Had we obtained a nonzer¢®/S is very much less thaj*/S*. In that case, the calcula-
result at orderS, we could have reproduced the answertion of Sec. IV becomes relevant. As it happens, both the
qualitatively by a calculation in which we neglected the contributions of ordej®/S and those of ordej*/S® indicate
propagation of modes: we could have treated spin waves as lower energy when alternate planes are antiferromagneti-
Einstein (localized excitations?®3° To obtain a result at or- cally coupled. Thus we think that this result does hold for a
der 1 we would have to take account of spin-wave interacfrange of parameters in the Heisenberg model with only
tions (whereby the energy of two localized modes would benearest-neighbor interactions. If one includes a direct cou-
different when the excitations are on neighboring sites agling, J3, between second-neighboring planes, the energy of
contrasted to being separatedo obtain a result at order this interaction[Ae~(J3/J)] must be compared to that
1/S from a localized calculation would require a very in- found here due to indirect interactions. Since such interac-
volved calculation, from which one would not learn more tions come from overlap of wave functions, it is possible that
than from the present calculation. J3/J is comparable tg*. Needless to say, in real systems
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in j=J, /3, whereJ is the in-plane interaction, the energy
favors collinear structures, as expected from previous calcu-
lations.

(2) If we write the quantum zero-point energl, as
Eq=Ec[1+Aeq], whereEc is the classical ground-state
energy of a single plane, theke, can be calculated as a
perturbation series i and 16. At first order in 15, the We first discuss the phase factor in E5). For illustra-
leading contribution ta e which involves the configuration tive purpose we consider only the first term Htﬁ,“) (which
of the planes(assumed to be collineais of orderj° as we denoteT,) and for simplicity we temporarily omit the
written in the abstract. For systems consisting of more thamdicesp. Then
four layers, this energy favors second-neighboring planes be-
ing antiparallel. Thus the entire structure has only the degen-
eracy associated with the relative phase of the odd-numbered

APPENDIX A: NONLINEAR MATRIX ELEMENTS

layers relative to the even numbered layers. This degeneracy 2] . .
reflects a true symmetry of the system and cannot be re- T1=— ng‘i w2 (Da(=2)b™(3)b(—4)
moved. SIS

(3) At order j*, the leading contribution tddeq which
involves the configurations of the layers is of orde8*4nd
is given by the complex expressions of Sec. IV. Numerical
evaluation of this result shows that this energy also favors 2J
second-neighboring layers being antiparallel. = Ny 2;49 dca’ (l)a(—2)b"(3)b(—4)

(4) An interesting result is found for a system consisting -
of a small number of bct layers. In particular, for a three- ,
layer system, we find that the first and third layers are paral- Xl Cyy.y, (A1)
lel to one another in the ground state. It would also be inter-
esting to study experimentally a system with four bct layers.
In that case our results indicate that all configurations in . . .
which both next-nearest neighboring planes are parallel ar\@’here' € up means that; is summed only over the positions
degenerate with those in which both next-nearest neighboRl UP SPinsfas in Eq.(5)] and we noted that all positions
ing plnaes are antiparallel. Although this degeneracy will no/ere referred_tml(p). Alternatively, we could refer posi-
doubt be removed by higher-order effects, it does suggest tH¥PNS 10 72(p) in which case we would have
possibility of obtaining unusual spin structures in extremely
thin-film systems.

x @illi-(1+2+3+4)+(3+4)- 1]

2J

(5) We mention a caution that in real systems there may 1, - _ = > a*(l)a(—2)b*(3)b(—4)
be other energie€ such a single ion anisotropy, dipolar, or N1,2,3,451 i e down
further-neighbor interactions, which might be more impor- ([ (14243+4)+(142)- 6]
tant than those discussed here. In particular, fosQs0,, xe
experiment® show that the Dzyaloshinskii-Moriya anisot- 2]
ropy determines the three dimensional spin structure. =~N > sgat(1l)a(—2)b*(3)b(—4)
(6) In Ref. 4 it was shown that the most important effect 12,346
of quantum fluctuations was to introduce an effective biqua- Xl m2PCy o (A2)

dratic exchange interaction between sublattices of the form

written in Eqg.(1). In agreement with Ref. 4 for the bcc case,

this effective interaction can be shoffirio give rise to non- These are equivalent because whet 2t-3+4+G=0,
zero frequencies of the “optical” modes at zero wave vectorthen

in which sublattices do not precess in phase. Because the

collinearity energy(which is of orderJ?/J) is much larger

than the energy which determines how spins in alternate

planes orient relative to each other, these optical mode fre- enP) G =g 2P Gy o (A3)
guencies are essentially determined by the collinearity en-

ergy of Eq.(1) and are not very sensitive to the global spin

structure. Similarly, we discuss Eq28). We have
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Vi (p+1p)= —Jiglj b(p;i)a*(p+1;j)a(p+1;)alp+1;i) i, 1(i.i)

J. g -
TUONG,, z,ovm 12234%(—1)a$+1(2)ap+1(—3)ap+1(—4) Yppea(i,))eh iglGztdst a1

Ju

RN igdown 12234bp(_1)a;’r+1(2)ap+l(_3)ap+1(_4) Yo+ 1(is])

x @l (A1t d2tdg+ds) Tig—i(da+dztay)-(rj—r))

23, A
=— Wl 2246 5Ge'G.72(D>7E)L‘Jp)+1(q2+ qs+ q4) (A4)
[
priEm s, o Ton D535 YeP13= (Xa— YeXiXoXa) (2€1—4),  (B4)

Here we give some relations between the DM coefficients
which we used to obtain the forms given in the summary: and

D A(XyXo— YoXaXa) = P, (B1)
Doy~ PEo= (XX~ YoXoXa) (€1+ €,— €3~ €4).  (BS)
D (A=261) (Xo— YoXaXaXa) = Pihp,  (B2)

" " A derivation of these relations is given in Appendix L of Ref.
¢)1234+(A_261_262)(1_X1X2X3X4’}/G):¢)3412, (B3) 34.
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