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Three-Dimensional Ordering in bct Antiferromagnets Due to Quantum
Disorder

Abstract
Quantum effects on magnetic ordering in body-centered-tetragonal antiferromagnets with only nearest-
neighbor interactions are studied in detail using interacting spin-wave theory. The model consists of M
noninteracting (in a mean-field sense) antiferromagnetic planes which together form a body-centered-
tetragonal structure. We obtain the leading quantum correction of order 1/S from the zero-point energy for a
system of M planes whose staggered moments have arbitrary orientations. The infinite degeneracy of the
ground-state manifold of this system is partially removed by collinear ordering in view of effects previously
calculated by Shender at relative order J2

⊥/(J2S), where J, the antiferromagnetic in-plane exchange
interaction, is assumed to dominate J⊥, the out-of-plane interaction which can be of either sign. We study the
complete removal of the remaining degeneracy of the collinear spin structures by assigning an arbitrary sign σi
(i=1,2,...M) to the staggered moment of the planes. Our result for the zero-point energy (for M>2) up to the
sixth order in j=J⊥/J is E({σi}) =E1+CEG(j6/S)[-2σ1σ3-2σM−2σM+2∑i =1M-2σiσi+2-3∑i=1M-3σiσi+1σi+2σi+3],

where C>0 and E1 are constants independent of the σ’s, and EG is the classical ground-state energy. (Here
sums from i to j when j<<em>i are interpreted to be zero.) Surprisingly, there is no σ-dependent contribution
at order j4/S. This result shows that for M>4 second-neighboring planes are antiferromagnetically coupled in
the ground state and thus the three-dimensional spin structure cannot be described by a single wave vector, as
is often assumed. At order j4, σ-dependent terms first appear at order 1/S3 and these also favor
antiferromagnetic coupling of alternate planes.
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Quantum effects on magnetic ordering in body-centered-tetragonal antiferromagnets with only nearest-
neighbor interactions are studied in detail using interacting spin-wave theory. The model consists ofM non-
interacting~in a mean-field sense! antiferromagnetic planes which together form a body-centered-tetragonal
structure. We obtain the leading quantum correction of order 1/S from the zero-point energy for a system ofM
planes whose staggered moments have arbitrary orientations. The infinite degeneracy of the ground-state
manifold of this system is partially removed by collinear ordering in view of effects previously calculated by
Shender at relative orderJ'

2 /(J2S), whereJ, the antiferromagnetic in-plane exchange interaction, is assumed
to dominateJ' , the out-of-plane interaction which can be of either sign. We study the complete removal of the
remaining degeneracy of the collinear spin structures by assigning an arbitrary signs i ( i51,2, . . .M ) to the
staggered moment of the planes. Our result for the zero-point energy~for M.2! up to the sixth order in
j5J' /J is

E~$si%!5E11CEG~ j6/S!F22s1s322sM22sM12(
i51

M22

sisi1223(
i51

M23

sisi11si12si13G,
whereC.0 andE1 are constants independent of thes ’s, andEG is the classical ground-state energy.~Here
sums fromi to j when j, i are interpreted to be zero.! Surprisingly, there is nos-dependent contribution at
order j 4/S. This result shows that forM.4 second-neighboring planes are antiferromagnetically coupled in
the ground state and thus the three-dimensional spin structure cannot be described by a single wave vector, as
is often assumed. At orderj 4, s-dependent terms first appear at order 1/S3 and these also favor antiferromag-
netic coupling of alternate planes.

I. INTRODUCTION

Recently there has been much attention on the phenomena
of order by disorder in frustrated magnetic systems.1

Thermal,2,3 quantum,4,5 and even quenched disorder6 may
sometimes give rise to long-range ordering in systems with
frustration, where one must often consider the selection
among classically degenerate ground states which are not
equivalent by any symmetry. An outstanding and the sim-
plest example is the nearest-neighbor Ising antiferromagnet
~AF! on a triangular or a face-centered-cubic~fcc! lattice.2,7,8

These systems have highly degenerate ground states. Villain
et al. showed that at any nonzero temperature thermal fluc-
tuations break the degeneracies in these systems, producing
well-defined long-range order. They called this phenomenon
‘‘ordering due to disorder.’’2 Later Henley3 extended this
phenomenon to a system of unit lengthn-component vector

spins on a fcc lattice and showed that thermal fluctuations
select the collinear states out of infinite degenerate ground-
state manifold. At zero temperature where the thermal fluc-
tuations are absent, ground-state selection occurs due to
quantum fluctuations. This phenomenon was studied theo-
retically by Shender4 and shortly thereafter confirmed experi-
mentally by inelastic neutron scattering in some antiferro-
magnetic garnets.9

Since the work of Ref. 4, a large number of systems have
been studied,10 such as AF spins on a square and cubic lattice
with nearest and next-nearest neighbor interactions,11 AF
spins on akagome´ lattice,12–16 AF spins on a pyrochlore
lattice,17 and the axial next-nearest-neighbor Ising model,18

etc. All of these studies show that ‘‘order by disorder’’ is
very general in that it should exist in many quantum systems
with a classically degenerate ground state. In the cases of
interest to us here, it is found that quantum fluctuations favor
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states in which spins are collinear. Hence, for a system where
all possible collinear states are symmetry equivalent, the re-
moval of the infinite degeneracy of the ground-state mani-
fold by quantum fluctuations is as complete as permitted by
symmetry and one has a ground state with no accidental
degeneracy. To the best of our knowledge all collinear sys-
tems studied so far are of this type and hence it is of interest
to study how quantum fluctuations select a unique ground
state if the collinear states are not all symmetry equivalent.
This issue is addressed in this paper by studying a particular
system, namely quantum spins with nearest-neighbor AF in-
teractions on a body-centered-tetragonal~bct! lattice. In this
system, the Shender mechanism can only resolve the con-
tinuous degeneracy of the ground-state manifold into an in-
finite discrete Ising-type degeneracy, as we shortly discuss
below. The selection of a unique ground state out of this
infinite Ising-type degenerate manifold by higher-order ef-
fects of quantum fluctuations is analyzed in detail in this
paper. Another case where collinear configurations are not
equivalent by symmetry is provided by the ‘‘second kind of
AF ordering’’ on an fcc lattice19 where one has two inequiva-
lent collinear states; typeA and typeB. We studied this
system elsewhere20 and found that quantum fluctuations fa-
vor the state of typeA.

Three-dimensional~3D! magnetic ordering in a bct anti-
ferromagnet is of special interest because the magnetic prop-
erties of such structures are believed to be relevant to high-
temperature superconductivity. The most important example
of such layered structures is perhaps La2CuO4,

21 in which
long-range magnetic order is observed belowTN;300 K.
However it is now believed that most of the magnetic prop-
erties can be understood in terms of the Dzyaloshinskii-
Moriya interaction which arises due to the orthorhombic
distortion.22 Recently, new systems which preserve the te-
tragonal symmetry at all temperatures have been studied.
Rare-earth (R) cuprates,R2CuO4 ~Ref. 23! ~which super-
conduct after electron doping24! and Sr2CuO2Cl 2 ~Ref. 25!
are the most studied ones. In particular, the latter compound
is the best experimental realization of the system that we are
going to study in this paper. However, as we have discussed
in Ref. 26, there are other type of interactions, such as the
magnetic dipole interaction, magnetic anisotropy, and biqua-
dratic exchange interactions, which may compete with the
effective interactions due to quantum disorder we are going
to calculate here. Accordingly, it is important calculate the
effective interaction due to quantum fluctuations in order to
compare its strength with that of other interactions.

We now describe in detail the model that we are going to
study in this paper. We consider a bct antiferromagnet with
dominant antiferromagnetic interactions between nearest
neighbors in the same basal plane and weaker interactions
between nearest neighbors in adjacent planes, as illustrated
in Fig. 1. ~The interplane interactions may be either ferro-
magnetic or antiferromagnetic.! From the work of Ref. 4,
one may conclude that zero-point fluctuations give rise to a
collinearity zero-point energy of order

DE;2J'
2S@11~ n̂i•n̂i11!

2#/J, ~1!

where J (J') is the antiferromagnetic coupling between
nearest-neighbor spins in the same~adjacent! basal plane of
the bct lattice andn̂i defines the orientation of the staggered

magnetization in thei th plane. Thus the continuous degen-
eracy with respect to the orientations of then̂’s, is resolved
into a twofold degeneracy for each collinearn̂i . Actually, the
exact symmetry of this Heisenberg system is such that if one
fixes then̂i for alternate~even-numbered, say! planes, then
the configuration obtained by the replacement for all odd-
numbered layersn̂i→2n̂i is degenerate in energy with the
original one. This exact symmetry~due to the fourfold axes
of the tetragonal crystal! indicates that there is no possibility
of finding an effective interaction of the formCn̂i•n̂i11 .
However, symmetrydoesallow an interaction of the form
Cn̂i•n̂i12 , which would uniquely fix the orientation of all
even numbered layers with respect to one another. One
should note the physical origin of these zero-point effects:
although the classical ground-state energy is independent of
the n̂’s, the spin-wave spectrum does depend on these vari-
ables. Thus the quantum zero-point motion, which involves a
sum over spin-wave energies, can introduce a dependence on
the n̂’s and thus lead to ground-state selection. Very simple
approximate calculations of these effects are possible.29,30A
discussion of quantum ground-state selection can be found in
Ref. 1.

As far as we know, there are two studies of the effect of
quantum fluctuations on the structure of the bct
antiferromagnet.27,28 On the whole, their conclusions are as
expected from Ref. 4 in that collinear spin structures are
favored. In contrast, some of the more detailed conclusions
regarding the global spin structure of the ground state of bct
antiferromagnets are less well established. For instance, Ref.
27 considered only helical configurations with particular em-
phasis on the structure with helical wave vector equal to
2p î /a, which we refer to as ‘‘Case I.’’ In this structure next-
nearest antiferromagneticx-y planes are stacked in phase, as
is illustrated in Fig. 2. In this model adjacentx-y planes are
forced to stack so as to form a helical configuration, corre-
sponding to a single wave vector. This work did not address
nonhelical stacking sequences in which successive layers
have arbitrary phases. In particular ‘‘case II,’’ where next-
nearestx-y planes are stacked out of phase, is not subject to
a helical description. In a later work,28 Rastelliet al. consid-

FIG. 1. A spin with its interactions. The full lines show the

nearest-neighbor vectors,dW 1 in the plane for the interactionJ. The

dashed lines show the nearest-neighbor vectorsdW 2 from the pth
plane to thep11st plane~above it! for the interactionJ' . Note
that the mean-field interaction between adjacent planes is zero and
thus the direction of the staggered magnetization in each plane is
arbitrary.
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ered a less restrictive model in which even numbered planes
were described by a helix with a given wave vector and
initial phase angle and odd numbered planes were described
by a helix with the same wave vector but with an indepen-
dent initial phase angle. This formulation included more
structures, and in particular it included case II of Fig. 2.
Their model was more general than the one considered here
in that they allowed an interaction,J3[ j 3J, between nearest
neighboring spins in second neighboringx-y planes. How-
ever, they stated that ‘‘for anyj 3<0 the AF1@ i.e., I in Fig. 2#
configuration is established.’’ But they did not carry out any
calculations for the casej 350, for which the infinite degen-
eracy still remains.

We have decided to reopen the study of this situation for
two reasons. First of all, it appears that no comparison has
actually been made between structures I and II of Fig. 2.
Secondly, there still has not yet been given a treatment of
arbitrary nonhelical configurations, which is the essential and
correct way to treat this problem with its most general form.
In order to treat arbitrary configurations we take advantage
of the well established fact~which we rederive here! that
zero-point fluctuations favor collinear structures.4 The most
general collinear stacking of antiferromagnetic planes is de-
scribed by introducing one Ising-like variable for each plane
to specify the phase of that plane. We then develop an ex-
pansion scheme in which we can calculate the zero-point
energy for an arbitrary set of these Ising variables. We carry
the calculations of the ground-state energy up to the order in
J' /J at which the classical degeneracy is first removed. In
that way we establish that structure II of Fig. 2 is stabilized
by zero-point fluctuations, at least if one considers only ef-
fects at order 1/S. This stabilization energy is of order
J'
6S/J5. SinceJ' /J can be very much smaller than 1/S, we
carried out perturbation theory in 1/S, to locate contributions
to the stabilization energy which were of orderJ'

4 /J3 but
were higher order in 1/S. We found a stabilization energy of

orderJ'
4 /(J3S). As with the zero-point energy of linear spin-

waves, this energy stabilizes structure II of Fig. 2.
Briefly this paper is organized as follows. In Sec. II we

describe the model and discuss the expected form of the
results. In Sec. III we study the effects of zero-point energy
associated with noninteracting spin waves. These correc-
tions, all of relative order 1/S, indicate that the coupling
energy between second-neighboring planes tends to set them
antiparallel and, surprisingly, is of relative orderj 6, where
j5J' /J. In Sec. IV we find the coupling energy for second-
neighboring planes which is of orderj 4. This contribution
requires consideration of spin-wave interactions and is of
relative order 1/S3. Finally our conclusions are summarized
in Sec. V.

II. FORMALISM

A. Statement of the model

We considerM3(2N) spins on the sites of a bct lattice
consisting ofM 2D antiferromagnetic layers, each consisting
of 2N strongly coupled antiferromagnetic spins on a square
lattice with periodic boundary conditions. We write the
Hamiltonian as

H5 (
p51

M

Hp1 (
p51

M21

Hp,p11 , ~2!

whereHp refers to thepth plane alone and is given by

Hp5J(
i ,d1

Sp~r i !•Sp~r i1d1! ~3!

and the interactionHp,p11 between thepth and (p11)th
planes is

Hp,p1152J'(
i ,d2

Sp~r i !•Sp11~r i1d2!, ~4!

whereSp(r i) is the spin at positionr i in planep. Also d1 and
d2 are the vectors joining a site to its NN’s in plane and NN’s
out of plane, respectively, as shown in Fig. 1. We find it
convenient to describe each antiferromagnetic layer in terms
of a Bravais lattice with a two-spin basis. Thus up spins in an
odd-numbered layer (p) have

r i5~n1î1n2 ĵ !a1t1~p! ~5!

and down spins in odd-numbered layers have

r i5~n1î1n2 ĵ !a1t2~p!, ~6!

where

t1~p!5~12sp!~ î1 ĵ !a/4 ~7!

and

t2~p!5~11sp!~ î1 ĵ !a/4. ~8!

Herea is a lattice constant andî ( ĵ ) is a unit vector in the
basal plane along thex (y) direction. The meaning of Eq.~7!
is that ifsp51 ~for oddp!, the spin at the origin is up and if

FIG. 2. Various spin structures. Structures I and II have unit
cells which span two and four planes~perpendicular toẑ), respec-
tively. In the right-most panel, spins of an arbitrary structure~III ! in
the planey50 are shown. The values ofs i for the i th plane per-
pendicular toẑ as defined by Eqs.~7! and ~9!, are given.
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sp521, it is down. For an even-numbered plane (p) we
still have Eqs.~5! and ~6! for up and down spins, respec-
tively, but for this case

t1~p!5~ î1 ĵ !a/41sp~ î2 ĵ !a/4 ~9!

and

t2~p!5~ î1 ĵ !a/42sp~ î2 ĵ !a/4. ~10!

Thus forp even,sp51 means that the spin atx5a/2, y50
in the pth plane is up. These parametrizations are illustrated
in Fig. 2.

B. Transformation to bosons

We introduce the transformation to bosons in the usual
way,31 according to the Dyson-Maleev transformation.32 For
up spins we write

Sp
z~ i !5S2a1~p; i !a~p; i !, ~11!

Sp
1~ i !5A2S@12a1~p; i !a~p; i !/~2S!#a~p; i !, ~12!

Sp
2~ i !5A2Sa1~p; i !, ~13!

and for down spins

Sp
z~ i !52S1b1~p; i !b~p; i !, ~14!

Sp
1~ i !5A2Sb1~p; i !@12b1~p; i !b~p; i !/~2S!#, ~15!

Sp
2~ i !5A2Sb~p; i !. ~16!

Here we should note that the form of the interaction depends
on whether the interacting spins are parallel or are antiparal-
lel. However, changing the interplanar interactions from an-
tiferromagnetic to ferromagnetic only involves changing the
sign ofJ' . Hence all our results will be valid for either sign
of J' . In fact, to lowest order inJ' we will see that the
results do not depend on the sign of this variable.

Fourier transformed variables are defined by

a1~p; i !5
1

AN(
q
eiq–r iap

1~q!, ~17!

b1~p; i !5
1

AN(
q
eiq–r ibp

1~q!,

where the sum is over theN wave vectors in the magnetic
Brillouin zone: uqxu,p/a and uqyu,p/a. Note that in each
plane there are 2N spins andr i is a vector in thex-y plane.
The Hamiltonian in Eq.~2! can be written in momentum
space as

H5EG1 (
p51

M

Hp
~2!1 (

p51

M21

V~p,p11!1 (
p51

M

Hp
~4!

1 (
p51

M21

Hp,p11
~4! . ~18!

HereEG522MNzJS2 is the classical ground-state energy,
wherez54 is the coordination number within a layer,Hp

(2)

andV(p,p11) represent the interactions quadratic in boson
operators, respectively, within thepth layer and between lay-
ersp andp11, andHp

(4) andHp,p11
(4) are the analogous in-

teractions quartic in boson operators.
We have

Hp
~2!52zJS(

q
$ap

1~q!ap~q!1bp
1~q!bp~q!

1gq@ap~q!bp~2q!1ap
1~q!bp

1~2q!#%, ~19!

where

gq5z21(
d1

eiq•d15cos~qxa/2!cos~qya/2!. ~20!

To obtainV(p,p11) we write33

V~p,p11!52J'S(
i j

$@a1~p; i !a~p11; j !1b1~p; i !b~p11; j !#gp,p11
~L ! ~ i , j !

1@a~p; i !b~p11; j !1b~p; j !a~p11;i !#gp,p11
~U ! ~ i , j !1H.c.%, ~21!

wheregp,p11
(L) ( i , j ) is unity if spinsi in planep and j in planep11 are like~i.e., either both up or both down! and are nearest

interplanar neighbors and is zero otherwise,gp,p11
(U) ( i , j ) is unity if spinsi and j are unlike~i.e., one up and one down! and are

nearest interplanar neighbors and is zero otherwise, and H.c. indicates the Hermitian conjugate of all the preceding terms
inside the bracket. Thus

V~p,p11!54J'S(
q

$gp,p11
~L ! ~q!@ap

1~q!ap11~q!1bp
1~q!bp11~q!#

1gp,p11
~U ! ~q!@ap~q!bp11~2q!1bp~q!ap11~2q!#%1H.c., ~22!

where we have the Fourier transforms

gp,p11
~L ! ~q!5cq2sp,p11sq , gp,p11

~U ! ~q!5cq1sp,p11sq , ~23!
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where

cq5cos@a~qx1qy!/4#cos@a~qx2qy!/4#, sq5sin@a~qx1qy!/4#sin@a~qx2qy!/4#, ~24!

andsp,p115spsp11 . Useful relations involvingcq andsq are developed in Appendix C of Ref. 34. AlsoHp
(4) is the quartic

part of the term describing thepth plane alone and is given by

Hp
~4!52

Jz

N (
1,2,3,4,G

eiG•t1~p!dG@2ap
1~1!ap~22!bp

1~3!bp~24!g314

1ap
1~1!ap~22!ap

1~3!bp~24!g41ap
1~1!bp

1~2!bp
1~3!bp~24!g21314#, ~25!

wheredG5d(11213141G), 1[q1 , 2[q2 , etc., the wave vectors are all summed over the magnetic Brillouin zone, and
G is summed over all reciprocal-lattice vectors:G5(n1î1n2 ĵ )(2p/a). The occurrence of the phase factor in Eq.~25! may
not be familiar, so we discuss it in Appendix A. In carrying out a calculation for a single plane, these phase factors never have
any significance~because they depend on the absolute placement of the origin!, but here we must keep track of them~because
the location of the origin of one plane relative to that of a neighboring plane is significant!.

Also Hp,p11
(4) , the quartic part of the term describing the interaction between planesp andp11 is given by

Hp,p11
~4! 5Vzz~p,p11!1VNL~p,p11!1VNL~p11,p!, ~26!

where the terms come from theSzSz , S1S2 , andS2S1 interactions, respectively. Then

Vzz~p,p11!5
4J'

N (
1,2,3,4G

dGe
iG•t1~p!$ap

1~1!ap~22!@gp,p11
~L ! ~314!ap11

1 ~3!ap11~24!2gp,p11
~U ! ~314!bp11

1 ~3!bp11~24!#

3bp
1~1!bp~22!@gp,p11

~L ! ~314!bp11
1 ~3!bp11~24!2gp,p11

~U ! ~314!ap11
1 ~3!ap11~24!#gG%, ~27!

VNL~p11,p!52
2J'

N (
1234,G

dGe
iG•t1~p!

3$@ap
1~1!gp,p11

~L ! ~21314!1gGbp~21!gp,p11
~U ! ~21314!#ap11

1 ~2!ap11~23!ap11~24!

1@ap
1~1!gp,p11

~U ! ~21314!1gGbp~21!gp,p11
~L ! ~21314!#bp11

1 ~2!bp11
1 ~3!bp11~24!%, ~28!

and VNL(p,p11) is obtained fromVNL(p11,p) by inter-
changing the roles ofp andp11. Equation~28! is discussed
in Appendix A.

We now introduce a Bogoliubov transformation to diago-
nalizeHp

(2)

ap~q!15 l qap
1~q!2mqbp~2q!;

bp~2q!52mqap
1~q!1 l qbp~2q!, ~29!

where

l q5A11eq
2eq

, mq5A12eq
2eq

, eq5A12gq
2. ~30!

Then we rewrite the Hamiltonian in terms of magnon opera-
tors as

H5EG8 1 (
p51

M

Hp8
~2!1 (

p51

M21

Hp,p118~2! 1 (
p51

M

Hp8
~4!

1 (
p51

M21

Hp,p118~4! , ~31!

where

EG8 522NMzJS2@11j/S#2, ~32!

with

j5N21(
q

~12eq!/2. ~33!

The presence of the factorj comes from reordering operators
so that creation operators are to the left of annihilation op-
erators. In other words,j indicates corrections due to quan-
tum zero-point motion. However, since these corrections are
all intraplane corrections, they do not affect our calculation
in a significant way. As we will see, they simply rescaleS
andJ in an inessential way.

The quadratic part of the term describingpth plane alone
is

Hp8
~2!52zJ̃S(

q
eq@ap

1~q!ap~q!1bp
1~q!bp~q!#, ~34!

whereJ̃5J@11j/S# includes the effects of normally order-
ing Hp

(4) .
The quadratic part of the term describing the interaction

between planesp andp11 is
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Hp,p118~2! 54J'S̃(
q

$Xp,p11~q!@ap
1~q!ap11~q!

1bp
1~q!bp11~q!#1Yp,p11~q!@ap~q!bp11~2q!

1bp~q!ap11~2q!#%1H.c., ~35!

whereS̃5S2N21(qmq
2 includes the effects of normally or-

deringHp,p11
(4) , and

Xp,p11~q!5gp,p11
~L ! ~q!~ l q

21mq
2!22l qmqgp,p11

~U ! ~q!

5tc~q!2sp,p11ts~q!, ~36!

Yp,p11~q!5gp,p11
~U ! ~q!~ l q

21mq
2!22l qmqgp,p11

~L ! ~q!

5tc~q!1sp,p11ts~q!, ~37!

where

tc~q!5S 12gq

eq
D cos@a~qx1qy!/4#cos@a~qx2qy!/4#, ~38!

ts~q!5S 11gq

eq
D sin@a~qx1qy!/4#sin@a~qx2qy!/4#. ~39!

The explicit expressions for the quartic part of the Hamil-
tonian in terms of normal-mode operators will be given in
Sec. IV when we calculate the contributions at higher order
of 1/S.

C. Perturbation theory in 1/S and J'

We may write the quantum corrections to the ground-state
energy as

DE5E2EG5EG(
n,m

anm~ j !n~1/S!m[EGe, ~40!

where j5J' /J. Shender’s4 result that the zero-point energy
favors collinearity is contained in the terma21, as already

mentioned in Eq.~1! and implicitly assumed by the form of
the transformation to bosons. If we evaluate the zero-point
energy in terms of the sum over all spin-wave modes of the
3D system, we will get all contributions toe of order 1/S.
We will carry out such a calculation only to an order inj
sufficient to obtain a dependence on thes ’s. As we shall see,
this requires an evaluation of all terms of order 1/S up to and
including order j 6. It is somewhat surprising that to get a
coupling between second-neighboring planes at order 1/S
one has to go to orderj 6. In fact, if the calculations are
extended to higher order in 1/S, we expect to eventually get
a contribution toe of order j 4 which does depend on the
s ’s. This calculation, requiring an evaluation ofe up to order
1/S3 is described in Sec. IV.

III. 1/ S CALCULATION

We show here how the contributions to the quantum zero-
point energy can be calculated to arbitrary order inj at first
order in 1/S for an arbitrary configuration ofs ’s. Such a
calculation seemingly requires a calculation of the normal
modes of such a nonuniform system. Obviously, an exact
calculation of the normal modes is out of the question. We
start by noting from Eq.~34! that the Hamiltonian quadratic
in the normal modes can be written in the form

H25(
q
H2~q!, ~41!

whereH2(q) is a product of matrices of the form

H2~q!5(
q

@X1HX2ME0~q!#, ~42!

whereE0(q)52zJ̃Seq , X is a column matrix with elements
taken from the operators which appear in the Hamiltonian,
andH is a 2M32M square matrix formed with the coeffi-
cients of the Hamiltonian, i.e.,

X5S a1
1~q!

A

aM
1~q!

b1~2q!

A

bM~2q!

D , H5SH1~q! H2~q!

H2~q! H1~q!
D
2M32M

~43!

where

H15 S E0~q! K1~q!

K1~q! E0~q! K2~q!

K2~q! E0~q! K3~q!

� � �

KM22~q! E0~q! KM21~q!

KM21~q! E0~q!

D ~44!
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and

H25S 0 L1~q!

L1~q! 0 L2~q!

L2~q! 0 L3~q!

� � �

LM22~q! 0 LM21~q!

LM21~q! 0

D , ~45!

in the above matrices the entries which are not shown are all zero, and

Kp~q!54J'S̃Xp,p11~q!, ~46!

Lp~q!54J'S̃Yp,p11~q!. ~47!

The square of the spin-wave energies of the Hamiltonian in Eq.~42! are the eigenvalues of the dynamical matrix

H125H1H2 , ~48!

where

H15H11H25E0~q!S 1 j̃ p~q!

j̃ p~q! 1 j̃ p~q!

j̃ p~q! 1 j̃ p~q!

� � �

j̃ p~q! 1 j̃ p~q!

j̃ p~q! 1

D [E0~q!@ I1 j̃ p~q!L1# ~49!

and

H25H12H25E0~q!S 1 j̃ r 1

j̃ r 1 1 j̃ r 2

j̃ r 2 1 j̃ r 3

� � �

j̃ r M22 1 j̃ r M21

j̃ r M21 1

D [E0~q!@ I1 j̃ r ~q!L2#. ~50!

I is the unit matrix,j̃5J'S̃/( J̃S), and

p~q!5
tc~q!

eq
5

1

11gq
cos@a~qx1qy!/4#cos@a~qx2qy!/4#, ~51!

r i52
ts~q!

eq
s is i1152

s is i11

12gq
sinS a4 ~qx1qy! D sinS a4 ~qx2qy! D[r ~q!s is i11 , ~52!

and

L15S 0 1

1 0 1

1 0 1

� � �

1 0 1

1 0

D , L25S 0 s1s2

s1s2 0 s2s3

s2s3 0 s3s4

� � �

sM22sM21 0 sM21sM

sM21sM 0

D . ~53!
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The eigenvaluesEi(q) are the solutions of the character-
istic equation

F~Ei !5det@xi
2~q!I2 j̃ p~q!L12 j̃ r ~q!L2

2 j̃ 2p~q!r ~q!L1L2#50, ~54!

wherexi
2(q)5@Ei(q)/E0(q)#

221. After normal ordering of
operators, one finds

H25DEQ1(
i51

M

(
q
Ei~q!@h i

1~q!h i~q!1r i
1~q!r i~q!#,

~55!

where theh ’s and r ’s are the exact normal modes of the
M -layer system andDEQ is given by

DEQ5(
q

(
i51

M

@Ei~q!2E0~q!#[~2NJzS2!DeQ , ~56!

whereDeQ is normalized relative to the classical energy per
plane and

Ei~q!5E0~q!A11xi
2~q!. ~57!

SinceF(Ei) given in Eq.~54! is of high degree, it cannot be
solved explicitly. However, to calculate the quantum correc-
tion in DEQ to any finite order ofj we need, not the roots
xi(q), but only thesummation of any power of them. We can
see this by writingDeQ as

DeQ5S21(
i51

M

N21(
q

eq@A11xi
2~q!21# ~58!

and then expanding in powers ofxi
2(q) to get

DeQ5S21 (
m50

`

kmN
21(

q
eqTr@ j̃ p~q!L11 j̃ r ~q!L2

1 j̃ 2p~q!r ~q!L1L2#
m, ~59!

where

km5~21!m21
~2m!!

22m~m! !2~2m21!
. ~60!

Note that the term withm50 corresponds to the case
where the planes do not couple with each other and hence the
total quantum correction is just the number of planes times
the quantum correction due to a single plane. In this expan-
sion we find the desired dependence on thes ’s at order j̃ 6.
To evaluate terms in Eq.~59! we note that only terms in
which L1 and L2 both appear an even number of terms
survive the trace and integration overq. For such terms we
needed to use~for M.2!

TrL1
25TrL2

252M22,

TrL1
45TrL2

456M210,

TrL1
65TrL2

6520M244,

Tr@2L1
2L2

22L1L2L1L2#56M210,

Tr@14L1
4L2

226L2L1L2L1
323L1

2L2L1
2L2#

527M25724s1s324sM22sM14 (
j51

M22

s js j12

26 (
j51

M23

s js j11s j12s j13 . ~61!

In the last equation, the four-spin term is absent forM53.
Thereby we finally obtain the result

DeQ5
2

SF2
M21

8
I 2 j

21S ~3M25!

26
I 222

5~3M25!

27
I 4D j 41H 27M257

29
I 422

105M255

29
I 6

1
1

29
I 42S 24s1s324sM22sM14 (

i51

M22

s is i1226~s1s2s3s41•••1sM23sM22sM21sM !D J j 6G , ~62!

where the positive constants are

I m5^pm1rm&q , I 2,25^p2r 2&q ,

I 4,25^p4r 21r 4p2&q , ~63!

where

^pmr n&q5N21(
q

p~q!mr ~q!neq . ~64!

The consequences of this result depend on the number of
planesM in the system. IfM53, thes-dependent part of the
energy is proportional to2s1s3 , which indicates that in this
case, planes 1 and 3 have lower energy when ferromagneti-
cally coupled. ForM54, the energy is proportional to
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2s1s2s3s4 . To this order the configuration of the layers
still has some degeneracy and a full solution for the ground
state would require evaluation of terms still higher order inj
than we have here. ForM.4, the energy is minimized when
second-neighboring planes are antiparallel to one another:
s i52s i12 .

We now discuss briefly this result in the light of Refs. 27
and 28 for the case whenj 350. The structure we find is the
one they call AF providing their angleu is fixed to be 90° so
as to obtain a collinear structure. In principle, by comparing
the spin-wave zero-point energy of this structure with that of
the one~AF15 structure I of Fig. 2! they find to be stabi-
lized, one could verify our results. However, the procedure
we follow is more general, more direct, and actually is much
simpler computationally. In addition, we determine that the

zero-point energy is proportional toJ'
6 . As we have said,

this result motivates us to analyze spin-wave interactions to
locate a stabilization energy which, although higher order in
1/S, is lower order inJ' /J. This analysis is relevant because
in many casesJ' /J is much smaller than 1/S.

IV. EFFECTS OF SPIN-WAVE INTERACTIONS

In this section we consider the effect of spin-wave inter-
actions, because we expect that these will give rise to a non-
zero contribution to thes-dependent energy at orderj 4. To
start we record the form of the quartic interactions. The quar-
tic interactionHDM within a single layer is obtained from Eq.
~25! in terms of normal-mode operators as~with the layer
subscriptp on the operators omitted!

HDM~p!52
HE

4NS (
1,2,3,4,G

dGl 1l 2l 3l 4e
iG•t1~p!@F1234

~1! a1~1!a1~2!a~23!a~24!

12F1234
~2! a1~1!b~22!a~23!a~24!12F1234

~3! a1~1!a1~2!b1~4!a~23!

14F1234
~4! a1~1!b1~4!b~22!a~23!12F1234

~5! b1~3!b~21!b~22!a~24!

12F1234
~6! a1~2!b1~3!b1~4!b~21!1F1234

~7! a1~1!a1~2!b1~3!b1~4!

1F1234
~8! b~21!b~22!a~23!a~24!1F1234

~9! b1~3!b1~4!b~21!b~22!#. ~65!

Here

F1234
~7! 5gGF1234

~8! 5g214x2x31g213x2x41g113x1x41g114x1x3

2g2x2x3x42g1x1x3x42g11314x12g21314x2 , ~66!

F1234
~3! 5gGF1234

~5! 52g214x22g114x12g213x2x3x42g113x1x3x4

1g2x2x41g1x1x41g21314x2x31g11314x1x3 , ~67!

F1234
~2! 5gGF1234

~6! 52g214x42g213x32g114x1x2x42g113x1x2x3

1g21g1x1x21g21314x3x41g11314x1x2x3x4 , ~68!

F1234
~1! 5gGF1234

~9! 5g214x2x41g213x2x31g113x1x31g114x1x4

2g2x22g1x12g11314x1x3x42g21314x2x3x4 , ~69!

F1234
~4! 5gGF2143

~4! 5g2141g213x3x41g113x1x2x3x41g114x1x2

2g2x42g1x1x2x42g11314x1x2x32g21314x3 , ~70!

wherexi5mi / l i5m(qi)/ l (qi). We have corrected the results of Ref. 31 to treat umklapp processes properly.
Now we consider the nonlinear interactions between layers. First we write down the quartic terms coming from theSzSz

interactions. They will later be shown not to contribute at the order in 1/S to which we work. We have

Vzz~p,p11!5
4J'

N (
1,2,3,4,G

dGl 1l 2l 3l 4e
iG•t1~p!@H1234

~1! ap
1~1!bp

1~2!ap11
1 ~3!bp11

1 ~4!

1H1234
~2! ap

1~1!bp
1~2!ap11

1 ~3!ap11~24!1H1234
~3! ap

1~1!bp
1~2!bp11

1 ~4!bp11~23!1 . . . #. ~71!

We only wrote those terms in Eq.~71! which affect our calculation. Note from Eq.~27! thatVzz is Hermitian. Here

H1234
~1! 5~x22x1gG!~x42x3!c3142spsp11~x21x1gG!~x41x3!s~314! , ~72!

H1234
~2! 5~x22x1gG!~x3x421!c3141spsp11~x21x1gG!~x3x411!s314 , ~73!
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H1234
~3! 5~x22x1gG!~12x3x4!c3141spsp11~x21x1gG!~11x3x4!s314 . ~74!

The quartic perturbations from the transverse fluctuations written in Eq.~28! are

VNL~p11,p!52
2J'

N (
1,2,3,4,G

dGl 1l 2l 3l 4e
iG•t1~p!

3@ I 1234
~1! ap

1~1!ap11
1 ~2!bp11

1 ~3!bp11
1 ~4!1I 1234

~2! ap11
1 ~2!bp11

1 ~3!bp11
1 ~4!bp11~21!

1I 1234
~3! ap

1~1!bp11
1 ~3!bp11

1 ~4!bp11~22!1I 1234
~4! bp11

1 ~3!bp11
1 ~4!bp11~22!bp~21!

12I 1234
~5! ap

1~1!ap11
1 ~2!bp11

1 ~3!ap11~24!12I 1234
~6! ap11

1 ~2!bp11
1 ~3!bp~21!ap11~24!

12Ĩ 1234
~6! ap

1~1!bp11
1 ~4!bp11~22!ap11~23!12Ĩ 1234

~5! bp11
1 ~4!bp~21!bp11~22!ap11~23!

1 Ĩ 1234
~4! ap

1~1!ap11
1 ~2!ap11~23!ap11~24!1 Ĩ 1234

~3! bp~21!ap11
1 ~2!ap11~23!ap11~24!

1 Ĩ 1234
~2! ap

1~1!bp11~22!ap11~23!ap11~24!1 Ĩ 1234
~1! bp~21!bp11~22!ap11~23!ap11~24!#, ~75!

VNL~p,p11!52
2J'

N (
1,2,3,4,G

dGl 1l 2l 3l 4e
iG•t1~p!

3@ I 1234
~7! ap11

1 ~1!ap
1~2!bp

1~3!bp
1~4!1I 1234

~8! ap
1~2!bp

1~3!bp
1~4!bp11~21!

1I 1234
~9! ap11

1 ~1!bp
1~3!bp

1~4!bp~22!1I 1234
~10! bp

1~3!bp
1~4!bp11~21!bp~22!

12I 1234
~11! ap11

1 ~1!ap
1~2!bp

1~3!ap~24!12I 1234
~12! ap

1~2!bp
1~3!bp11~21!ap~24!

12Ĩ 1234
~12! ap11

1 ~1!bp
1~4!bp~22!ap~23!12Ĩ 1234

~11! bp
1~4!bp11~21!bp~22!ap~23!

1 Ĩ 1234
~10! ap11

1 ~1!ap
1~2!ap~23!ap~24!1 Ĩ 1234

~9! bp11~21!ap
1~2!ap~23!ap~24!

1 Ĩ 1234
~8! ap11

1 ~1!bp~22!ap~23!ap~24!1 Ĩ 1234
~7! bp11~21!bp~22!ap~23!ap~24!#, ~76!

where

I 1234
~1! ~spsp11!5~12x1gG!~x3x42x2!c213142spsp11~1

1x1gG!~x3x41x2!s21314 , ~77!

I 1234
~3! ~spsp11!5~12x1gG!~12x2x3x4!c213141spsp11~1

1x1gG!~11x2x3x4!s21314 , ~78!

I 1234
~5! ~spsp11!5~12x1gG!~x2x42x3!c213141spsp11~1

1x1gG!~x2x41x3!s21314 . ~79!

The other coefficients are obtained from the relations ob-
tained in Appendix D of Ref. 34:

I 1234
~2n!~s!5gGI 1234

~2n21!~2s!, ~80!

Ĩ 1234
~n! ~s!5gGI 1234

~n! ~s!, ~81!

I 1234
~n16!~s!5ei @t1~p11!2t1~p!#I 1234

~n! ~s!. ~82!

Before starting the calculations we make some preliminary
remarks. First of all, we are interested only in terms of order
j 4. So we only consider contributions which involve four
powers of the interplane interactions, each of which could, in
principle, be either the quadratic ones of Eq.~35! or the
quartic ones of Eqs.~71! and ~75!. However, two will in-

volve the coupling between planes 1 and 2 and two will
involve the couping between planes 2 and 3.~We only need
to consider three planes because four interplane perturbations
cannot span four planes at orderj 4.) From now on we there-
fore write s5s1s2 ands85s2s3 and sets151. In other
words, for plane 1,t150, for plane 2,

t1~2!5@~s11! î1~12s! ĵ #~a/4![t8 ~83!

FIG. 3. The topologies of diagrams for the ground-state energy
at relative orderj 4S21. HereX andY denoteXs andYs , respec-
tively, andX8 andY8 denoteXs8 andYs8, respectively. In diagrams
a and b the ordering~to the right is forward going! of vertices is
unique. In diagram c there are four ways to order the twoY8 ver-
tices with respect to theY vertices. The labels indicate in which
plane the propagation occurs, but all possible choices of polariza-
tion labels (a) must be included.
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and for plane 3

t1~3!5~12ss8!@ î1 ĵ #~a/4![t9 ~84!

are locations of up spins in these planes~see Fig. 2!. Sec-
ondly, we have considered terms quadratic in the normal
modes which result from normally ordering operators when
we transformed to normal modes. As will become apparent,
such terms do not contribute at the leading nonzero order in
1/S. Thirdly, since we are studying the structure as influ-
enced by quantum corrections, we will only analyze terms
which are proportional toss8. ~By symmetry there can be
no terms proportional tos or to s8.) In this connection we
should note thatXs(q)Ys(q) is independent ofs. As as
consequence, when we consider perturbative contributions
involving two V( i , j )’s, we only keep diagrams having two
Xs’s or two Ys’s.

Now we carry out the calculations indicated above. We
first consider the perturbative contribution to the energy of
order j 4 at leading order in 1/S. Such terms are represented
by the diagrams35 shown in Fig. 3, where we label the propa-
gators according to the layer they are in.

In principle, we should also give each propagator an in-
dex, such asa or b for excitations in the first layer. How-
ever, in evaluating diagrams we will count the number of
ways of assigning such labels. For instance, we find the sum
of the contributions from Fig. 3 to be

dE5
J'
4S

J̃3 (
q

FYs~q!2Xs8~q!21Xs~q!2Ys8~q!2

~22eq!
3

14
Ys~q!2Ys8~q!2

~22eq!
2~24eq!

G
ss8

, ~85!

where@ #ss8 indicates the contribution of orderss8 that we
want. Here the subscript onX and Y gives the value of
spsp11 . The prefactor to the sum in Eq.~85! includes a
factor (4J'S)

4 for the four interlayer interactions, (8J̃S)23

to scale the three energy denominators, and a factor of 2
corresponding to interchanging the roles ofa andb. In Eq.
~85! the factor 4 comes from the four different orderings of
vertices possible for diagram~c! of Fig. 3. In particular, note
the crucials-dependent parts ofX2 andY2:

@Xs~q!2#s52@Ys~q!2#s52scqsq . ~86!

Using this result one sees that the contribution to the energy
written in Eq. ~85! vanishes. This result was expected, of
course, because the work of Sec. III indicated that there was
zero contribution todE at orderSJ'

4 /J3.
At order S0 ~i.e., relative orderS22) we have contribu-

tions such as those represented in Fig. 4, which involve a
quartic intraplane interaction~in plane 2! and four quadratic
interplane interactions or four interplane interactions, one of
which is quartic. We label the wave vectors of the upper loop
k and the lower loopq. Then for thess8-dependent terms
from each diagram one see that in the sum overq the sum-
mand includes the factorcqsq which is odd under inter-
change ofqx andqy . Since the rest of the summand is an
even under interchange ofqx andqy , this sum overq van-
ishes. So, in this order we still get a vanishing contribution to
the energy proportional toss8. Note that the diagrams of

Figs. 3 and 4 give zero contributions to the energy even in
the presence of the spin-wave renormalizations,J→ J̃ and
S→S̃.

Finally, we are led to consider the contribution to the en-
ergy proportional toJ'

4ss8 which is of order 1/S. As we
shall see, we obtain a nonzero result at this order in 1/S.
Accordingly, to get results at orderj 4 which are correct to
leading order in 1/S we henceforth setJ̃5J and S̃5S. At
this order in 1/S there are six types of perturbative contribu-
tions,Ti for i51,6, which are represented schematically in
Fig. 5.

We consider the first type of term shown in Fig. 5. We
show that these contributions involving twoVzz’s vanish. To
see this consider the allowed ordering of vertices of this type.
Note that the two quartic interplane interactions must be con-
nected by three lines, all of which must go in the same di-
rection. ~For this analysis we use a diagrammatic
formulation35 in which only forward-going lines are allowed
at zero temperature.! To obtain an allowed ordering we have
only the diagrams~in which only forward-going lines occur!
shown in Fig. 6. Note that in all cases, we need the square
of an interplane matrix element,H (1)(1,2,3,4) or
H (2)(1,2,3,4), which is given in Eqs.~72!–~74!. There we
see that thes-dependent part of matrix element is propor-
tional tox2

22x1
2 . Since the rest of the integrand is even under

interchange ofk1 and k2 , such a factor vanishes when
summed overk1 andk2 . ThusT150.

We now consider terms of type No. 2 of Fig. 5. The two
possible topologies of diagrams of interest are those shown
in Fig. 7. In the first two of these, the insertions of two

FIG. 4. As in Fig. 3, the topologies of diagrams at order 1. The
quadratic vertices can be eitherX or Y, but to get a contribution
proportional toss8 two quadratic vertices in the same loop must
either both beX or both beY. Here VDM denotesHp

(4) and VNL
denotesVNL .

FIG. 5. The six types of perturbation terms,Ti , at order 1/S.
Here VZZ denotesVzz, VNL denotesVNL , and VDM(p) denotes
Hp
(4) .
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quadratic perturbations occur in the same line. Otherwise the
insertions occur in different lines. Note that the quartic inter-
layer perturbations have no terms involving eitherap

1ap
1 or

bpbp . What this means is that it is impossible to have a
diagram with two lines of the same type (a or b) connecting
the two quartic vertices in Fig. 7. This consideration indi-
cates that the left-hand case of Fig. 7 cannot actually occur.
Also, in the right-hand case the two lines with no insertion
must be one of each type. Now we consider completing the
quartic vertices with the other lines which do carry
insertions.36 For instance, the ‘‘1’’ vertex~i.e., the one with a
‘‘1’’ line ! is completed by two additional lines. One of these
is either ab2 (b2[d) outgoing line or ana2 (a2[g) in-
coming line. The other is either ana1 (a1[a) outgoing line
or ab1 (b1[b) incoming line. The ‘‘3’’ vertex~i.e., the one
which a ‘‘3’’ line ! is also completed by two additional lines,
one of which is either ana2 (a2[g) incoming line or a
b2 (b2[d) outgoing line. The other is either ana3
(a3[r) outgoing line or ab3 (b3[h) incoming line. Bear-
ing in mind that when time ordered, these diagrams must not
have any backward-going~i.e., leftward! lines, we have the
possible diagrams shown in Fig. 8.

Each of the diagrams in Fig. 8 gives rise to one or two
time-ordered diagrams.35 For instance, diagram 1 of Fig. 8
can have the quadratic vertices in either of two time se-
quences. In diagram 2 of Fig. 8 only one time ordering is
possible.~The quadratic perturbation of the second line down
from the top must occur to the right of the quartic vertices in
order for the two parts of this line to be forward going.!

For the diagrams in Fig. 8 we get the respective contribu-
tions to the energy

T2,i52
1

4

J'
4

J3S

1

N2 (
1,2,3,4

dGl 1
2l 2
2l 3
2l 4
2@ t i

~2!#ss8, ~87!

FIG. 6. Various types of contributions toT1 of Fig. 5. For the
right-most diagram there are four ways to order the vertices main-
taining the directions assigned to each of the lines. For the left-most
diagram the quartic vertices involveH (2)(1,2,3,4) and for the others
the quartic vertices involveH (1)(1,2,3,4), whereq1 andq2 are the
wave vectors of the propagators for layer 1.

FIG. 7. The two topologies forT2 of Fig. 5. The diagram on the
left does not exist, as is discussed in the text. The legend for the
interactions is shown in Fig. 4.

FIG. 8. The nine vertices of typeT2i . In all cases the vertex
VNL(21) always comes to the left~before! the vertexVNL(23). The
internal perturbations should be distributed over all time orderings
such that all lines are forward going~i.e., have their arrows pointing
to the right!. There is a one-to-one correspondence between these
diagrams and those in whichVNL(21) comes to the right of
V NL(23). Here and in succeeding figuresa[a1 , b[b1 , g[a2 ,
d[b2 , r[a3 , and h[b3 . The legend for the interactions is
shown in Fig. 4. In all figures we label lines with wave vectors
q1[1, q2[2, q3[3, q4[4, starting from the top.

FIG. 9. The allowed labelings~1–7! of diagrams of typeT3 with
VDM first. Diagrams withVNL first are obtained from those with
VDM first by ~a! reversing the direction of the time arrows on each
line and~b! interchanging labels: (a↔b, g↔d, h↔r). To illus-
trate, we show the diagram,~8!, which is obtained by this procedure
from diagram 1. The contribution of each such transformed diagram
is the same as that of its antecedent.

6466 53T. YILDIRIM, A. B. HARRIS, AND E. F. SHENDER



where the prefactor comes from~a! 2 for the two orderings
of the quartic vertices: ‘‘1’’ before ‘‘3’’ and ‘‘3’’ before ‘‘1’’
~In Fig. 8 we only show ‘‘1’’ to the left of ‘‘3’’!, ~b!
(22J' /N)2 from the nonlinear interactions,~c! (4J'S)

2

from the linear interactions,~d! (8JS)3 to scale the energy
denominators, and~e! an overall minus sign. We have the
results:

t1
~2!5eiG•t8~s!

2

D3Xs8~1!Xs~2!I 2341
~1! ~s! Ĩ 1432

~7! ~s8!4,

t2
~2!5eiG•t8~s!

1

2e2D
2Xs8~1!Ys~2!I 2341

~1! ~s!2Ĩ 1432
~11! ~s8!2,

t3
~2!5eiG•t8~s!

1

2e2D
2Xs8~1!Ys~2!I 2341

~2! ~s! Ĩ 1432
~7! ~s8!4,

t4
~2!5eiG•t8~s!

1

2e1D
2Ys8~1!Xs~2!2I 2341

~5! ~s! Ĩ 1432
~7! ~s8!2,

t5
~2!5eiG•t8~s!

1

4e1e2D
Ys8~1!Ys~2!2I 2341

~5! ~s!2Ĩ 1432
~11! ~s8!1,

t6
~2!5eiG•t8~s!

1

4e1e2D
Ys8~1!Ys~2!2I 2341

~6! ~s! Ĩ 1432
~7! ~s8!2,

t7
~2!5eiG•t8~s!

1

2e1D
2Ys8~1!Xs~2!I 2341

~1! ~s! Ĩ 1432
~8! ~s8!4,

t8
~2!5eiG•t8~s!

1

4e1e2D
Ys8~1!Ys~2!I 2341

~1! ~s!2Ĩ 1432
~12! ~s8!2,

t9
~2!5eiG•t8~s!

1

4e1e2D
Ys8~1!Ys~2!I 2341

~2! ~s! Ĩ 1432
~8! ~s8!4,

~88!

whereD5e11e21e31e4 and the final factor is the multi-
plicity of the graph~i.e., the number of ways the contractions
can be made! and the first factor is the appropriate sum of the
energy denominators over all time orderings. The above re-
sults are simplified in Appendix E of Ref. 34 where the final
result is

FIG. 10. Left: The topology of diagrams of the typeT4 . Center:
The topology of similar diagrams of typeT5 . Right: topology of
diagrams of typeT5 with insertions on two different legs.~Contri-
butions from the former are denotedT5a and from the latterT5b .)
The legend for interactions is the same as in Fig. 3.

FIG. 11. Seven ways to assign directions to the topology of type
T4 . The diagram are numbered 1 through 7 in reading order. Here
X[Xs , X8[Xs8, etc. The legend for interactions is the same as in
Fig. 3.

FIG. 12. Various ways to assign directions to the topology of
typeT5a . In each diagram one of the unlabeled lines is a ‘‘1’’ and
the other is a ‘‘3.’’ The contribution from each of these two choices
of labelings is the same. The legend for interactions is the same as
in Fig. 3.

FIG. 13. Topology of diagrams that contribute toA11(m,n) of
Eq. ~109! ~left panel!, to A21( l ,m) of Eq. ~113! ~right panel!,
wheremandn are momentum labels of lines~starting with 1 for the
top line and going to 4 for the bottom line!. Any line without an
arrow can be assigned either direction and can be made forward
going by suitable time ordering of the perturbations. In each dia-
gram one of the unlabeled lines is a ‘‘1’’ and the other is a ‘‘3.’’ The
contribution from each of these two choices of labelings is the
same.
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T25
2J'

4ss8

J3S

1

N2 (
1,2,3,4

dGl 1
2l 2
2l 3
2l 4
2c1s1c2s2H S 4D3 2

1

D2e1
2

1

D2e2
1

1

De1e2
D ~x1x42gGx2x3!

2

2S 1

De1e2
2

1

D2e1
2

1

D2e2
D ~x42x1x2x3gG!2J . ~89!

We now consider theT3 terms shown in Fig. 5. We see that
the V23’s must come together to form a renormalized 2-2
line. Also recall that@Xs8Ys8 #s50. So the only allowed dia-
grams are those shown in Fig. 9. We write

T35
J'
4

4J3S

1

N2 (
1,2,3,4

dGl 1
2l 2
2l 3
2l 4
2 (
i51,9

t i
~3! . ~90!

Here the prefactor reflects~a! a factor of 2 because we could
considerVNL(3,2) instead ofVNL(1,2), ~b! a factor of 2 as to
which vertex comes earlier in time,~c! 22J/N from the
D-M perturbation,~c! (4J'S)

3 for the linear interactions,~d!
22J' /N for the nonlinear interaction, and~e! (8JS)4 in the
denominator for the energies. Note thatt i

(3) includes both
matrix elements and the energy denominators, summed over
all allowed time orderings.

We find that

t1
~3!522s8c1s1@Xs~1! Ĩ 1234

~7! ~s!#sF3412
~7! S 1D4D ~4!, ~91!

t2
~3!52s8c1s1@Xs~1! Ĩ 1234

~7! ~s!#sF3412
~7! S 1

D3~2e1!
1

1

D2~2e1!
2

1
1

D~2e1!
3D ~4!, ~92!

t3
~3!52s8c1s1@Ys~1! Ĩ 1234

~8! ~s!#sF3412
~7! S 1

4e1
3D

1
1

4e1
2D2D ~4!,

~93!

t4
~3!522s8c1s1@Ys~1! Ĩ 1234

~8! ~s!#sF3412
~7! S 1

D~2e1!
3D ~4!,

~94!

t5
~3!522s8c1s1@Ys~1! Ĩ 1234

~7! ~s!#s@2F3412
~3! #S 1

D3~2e1!

1
1

D2~2e1!
2 1

1

D~2e1!
3D ~2!, ~95!

t6
~3!52s8c1s1@Ys~1! Ĩ 1234

~7! ~s!#s@2F3412
~3! #S 1

4e1
3D

1
1

4e1
2D2D

3~2!, ~96!

t7
~3!52s8c1s1@Xs~1! Ĩ 1234

~8! ~s!#s@2F3412
~3! #S 1

D~2e1!
3D ~2!.

~97!

In writing these results we used Eq.~86!. We also used re-
sults for the sums of energy denominators over allowed time
ordering of vertices from Appendix F of Ref. 34. These re-
sults are simplified in Appendix F~Ref. 34! into the form

FIG. 14. Various ways, (i51,9), to assign directions to the to-
pology of typeT6a . Further ways are shown in Fig. 15.

FIG. 15. Further ways, (i510,18), to assign directions to the
topology of typeT6a . The last diagram~19! is one withVNL to the
left of VDM and is obtained from diagram 18 by replacingb by
a1, etc., as explained in the caption to Fig. 9. Its contribution is the
same as diagram 18.
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T35
J'
4ss8

J3S

1

N2 (
1,2,3,4

dGl 1
2l 2
2l 3
2l 4
2c1

2s1
2H F3412

~7! ~gGx3x42x1x2!S 4D4 2
2

e1D
3D1~x22gGx1x3x4!F3412

~3! S 2

e1D
3D J . ~98!

In the terms of the typeT4 of Fig. 5, it is easily seen that theV(2,3)’s must be connected to give a renormalized propagator
for momentum 2. The only way to now contract the 2 lines is to use this renormalized propagator to connect the two
V(1,2)’s. We therefore have the topology shown in the left panel of Fig. 10.

Since we know that we must be able to make a time ordered diagram with no backward lines, the three lines with no
insertions must all be in the same direction. Given this, the possible directions of the lines forT4 terms are as shown in Fig.
11. Also we must not useXs(1)Ys(1) since that quantity does not depend ons. Similar reasoning applies to
Xs8(1)Ys8(1).

We write

T452
J'
4

16J3SN2 (
1,2,3,4,G

dGl 1
2l 2
2l 3
2l 4
2t i

~4! , ~99!

where we took factors~a! 2 for interchanging the roles of ‘‘1’’ and ‘‘3,’’~b! (22J/N)2 for the two Dyson-Maleev vertices,~c!
(4J'S)

4 for the linear interplane interactions, and~e! (28JS)5 to scale the energy denominators. Then, from Appendix G of
Ref. 34 we have that

(
i51,4

t i
~4!54ss8c1

2s1
2~4!@2F3412

~7! F1234
~8! 12F1234

~7! F3412
~8! #F16e1428e1

3D2D4

16e1
4D5 G , ~100!

where we took account of the fact that the insertions could take place in any of the four forward-going lines. In Appendix G
~Ref. 34! we obtain

(
i55,7

t i
~4!524ss8c1

2s1
2~2!@~2F3412

~3! !~2F1234
~2! !1~2F1234

~6! !~2F3412
~5! !#S 4e1

312e1D1D2

16e1
4D3 D . ~101!

Therefore we have

T452
2J'

4ss8

J3SN2 (
1,2,3,4,G

dGl 1
2l 2
2l 3
2l 4
2c1

2s1
2H ~F3412

~7! F1234
~8! !

16e1
428e1

3D2D4

8e1
4D5 2~F3412

~3! F1234
~2! !

4e1
212e1D1D2

8e1
4D3 J . ~102!

Of the terms of typeT5 there are two subtypes: in the first subtype (T5a , shown in the center panel of Fig. 10! we put all
the insertions in the same leg. The resulting diagrams~shown in Fig. 12! will have sums over energy denominators which can
be related to those of typeT4 ~shown in Fig. 11!. Thus we write

T5a52
J'
4

16J3SN2 (
1,2,3,4G

d~11213142G!l 1
2l 2
2l 3
2l 4
2t i

~5a! . ~103!

Here we again have the factor of 2 in the prefactor because of the degeneracy between the labels ‘‘1’’ and ‘‘3.’’ The first four
diagrams correspond to contractions of aF (7) and aF (8), whereas the last three correspond to contracting either aF (3) and
a F (2) or aF (6) and aF (5). However, theS factors for the energy denominators is different here than forT4 . We have

S1
~5a!5S1

~4! , S2
~5a!5S3

~5a!5S2
~4! , S4

~5a!5S3
~4! , S5

~5a!5S4
~4! , S6

~5a!5S7
~5a!5S7

~4! . ~104!

Thus, using Eq.~86!, we have

(
i51,4

t i
~5a!54ss8c~1!2s~1!2@2F3412

~7! F1234
~8! 12F1234

~7! F3412
~8! #~4!@S1

~4!22S2
~4!1S3

~4!# ~105!

and

(
i55,7

t i
~5a!54ss8c~1!2s~1!2@~2F3412

~3! !~2F1234
~2! !1~2F1234

~6! !~2F3412
~5! !#~2!@S4

~4!22S7
~4!#. ~106!

So

T5a52
4J'

4ss8

J3SN2 (
1,2,3,4G

dGl 1
2l 2
2l 3
2l 4
2c1

2s1
2FF3412

~7! F1234
~8!

16e1
4216e1

3D24e1
2D21D4

16e1
4D5 1F3412

~3! F1234
~2!

D12e1
16e1

4D2G . ~107!
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The second, and new, type has insertions on two different
legs. ~This was not possible within typeT4 .) The possible
assignment of directions of lines is shown in Fig. 13. The
corresponding evaluation of their energy denominators
summed over all possible time orderings is now obtained by
the same formalism as was used above forT4 .

Now we discuss in more detail how to put all this together
for T5b . ~More details are given in Appendix H of Ref. 34.!
Clearly the best way to think about these diagrams is to start
with the entire family of diagrams generated by two Dyson-
Maleev quartic interactions with at most two backward lines.
Then we select two legs~including all the backward legs! for
insertions. If all four lines are forward going we therefore
have six choices for the two lines in which to make inser-
tions. If we have only two forward lines in the bare diagram,
then we must make insertions on both backward lines. We
write

T5b52
~22J/N!2

~8JS!5
~4J'S!4 (

1,2,3,4,G
dGl 1

2l 2
2l 3
2l 4
2 (
i51,3

t i
~5b! ,

~108!

where t i
(5b) comes from insertions in diagrams withi21

backward lines. These three cases are shown in Fig. 13. We

are only interested in the contributions proportional to
ss8. Here the factors22J/N come from the Dyson-Maleev
perturbation, the 8JS is for each energy denominator, and
each interplane linear interaction carries a factor 4J'S.

Thus we have

t1
~5b!52F3412

~7! F1234
~8! ~4!~ss8!@A11~1,2!1A11~1,3!

1A11~1,4!1A11~2,3!1A11~2,4!1A11~3,4!#,

~109!

whereA11 takes account of the possible arrow assignments
in Fig. 13:

A11~1,2!5F 6D5 2
3~e11e2!

2D4e1e2
2

e1
21e2

2

4D3e1
2e2

2 1
1

2e1e2D
3

1
e11e2
8e1

2e2
2D2 1

1

16e1
2e2

2DG4c1s1c2s2 . ~110!

Note that in Eq.~109! we included a factor of 2 for the
degeneracy between labels ‘‘1’’ and ‘‘3’’ in the insertions.
The factors 2cs come from thes-dependent parts ofX and
Y. Recall that we have the restriction that in each leg either
2 X’s or two Y’s ~but not XY! can appear to get thes de-
pendence. Likewise

t2
~5b!52@~2F3412

~3! !~2F1234
~2! !1~2F1234

~6! !~2F3412
~5! !#

3~2!~ss8!@A21~1,2!1A21~1,3!1A21~1,4!#,

~111!

where the insertion factorA21 is given by

A21~1,2!5S 2e21D

16e1
2e2

2D2 2
1

4e1
2D3D4c1s1c2s2 . ~112!

Finally,

t3
~5b!52~4F3412

~1! F1234
~1! 14F3412

~9! F1234
~9! 1~4F3124

~4! !

3~4F2431
~4! !!A22~1,2!ss8, ~113!

where

A22~1,2!5
1

4e1
2e2

2D
c1s1c2s2 . ~114!

To summarize this result, we writeT5b5T5bA1T5bB ,
with

T5bA5
J'
4ss8

J3SN2 (
1,2,3,4,G

l 1
2l 2
2l 3
2l 4
2dGc1s1c2s2H F3412

~7! F1234
~8! S 2

12

D5 1
3~e11e2!

D4e1e2
1

e1
21e2

2

2D3e1
2e2

2 2
1

e1e2D
3 2

e11e2
4e1

2e2
2D2 2

1

8e1
2e2

2D D
1F3412

~3! F1234
~2! S 1

e1
2D3 2

1

2e1
2e2D

2 2
1

4e1
2e2

2D D 2
1

8e1
2e2

2D
F3412

~1! F1234
~1! J ~115!

and with a change of some momentum labels,

FIG. 16. The allowed labeling~1–7! of diagrams of the type
T6b with VDM first. Diagrams withV21

NL first ~obtained by the trans-
formation shown in Fig. 9! give the same contributions. For ex-
ample, diagram 8 gives the same contribution as diagram 1.
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T5bB5
J'
4ss8

J3SN2 (
1,2,3,4,G

l 1
2l 2
2l 3
2l 4
2dGc1s1c2s2H F2413

~7! F1324
~8! S 2

24

D5 1
~8e114e2!

D4e1e2
1

2

D3e2
2 2

2

e1e2D
3 2

1

e1e2
2D2 2

1

4e1
2e2

2D D
1F2413

~3! F1324
~2! S 2

e1
2D3 2

1

e1
2e2D

2 2
1

2e1
2e2

2D D 2
1

4e1
2e2

2D
F3124

~4! F2431
~4! J . ~116!

The diagrams of the typeT6 are again of two subtypes,T6a in which the two insertions occur on different legs andT6b in
which all the insertions occur on the same leg. The former are shown in Fig. 14. Now we put this all together.~For more details
of the evaluation ofT6 see Appendix I of Ref. 34.! For the diagrams of Fig. 14 we have the following contributionA to
T6a :

T6aA52~2!~22J/N!~4J'S!3~22J' /N!~8JS!24s8 (
1,2,3,4,G

l 1
2l 2
2l 3
2l 4
2dG

32c1s1bS eiG•t8H F2314
~7! F Ĩ 4123~1! ~s!Xs~4!S 2

3

D3 1
D14e1

D3~2e1!
2D ~4!

1 Ĩ 4123
~2! ~s!Ys~4!S 2

1

D3~2e4!
1

1

~2e1!
2~2e4!D

1
1

~2e1!~2e4!D
2 1 D ~4!G

12F2341
~3! Ĩ 4123

~1! ~s!Ys~4!S 2
1

~2e4!D
3 1

1

~2e1!
2~2e4!D

1
1

~2e1!~2e4!D
2 1 D ~2!

12F2314
~3! F Ĩ 4123~3! Xs~4!

1

~2e1!
2D2 ~2!1 Ĩ 4123

~4! Ys~4!
1

~2e1!
2~2e4!D

~2!G1F2314
~1! Ĩ 4123

~3! Ys~4!
1

~2e1!
2~2e4!D

~4!J D
~117!

and for those of Fig. 15 we have the contributionB to T6a :

T6aB52~2!~22J/N!~4J'S!3~22J' /N!~8JS!24s8 (
1,2,3,4,G

l 1
2l 2
2l 3
2l 4
2dG

32c1s1bS eiG•t8H F1342
~7! F Ĩ 4213~1! ~s!Xs~4!S 3D4 1

D14e1
D3~2e1!

2D ~8!

1 Ĩ 4213
~2! ~s!Ys~4!S 1

~2e4!D
3 1

1

~2e1!
2~2e4!D

1
1

~2e1!~2e4!D
2D ~8!G

12F1342
~3! Ĩ 4213

~1! ~s!Ys~4!S 2
1

~2e4!D
3 1

1

~2e1!
2~2e4!D

1
1

~2e1!~2e4!D
2D ~4!

12F1324
~6! F2Ĩ 4231~5! Xs~4!

1

~2e1!
2D2 ~2!12Ĩ 4231

~6! Ys~4!
1

~2e1!
2~2e4!D

~2!G14F3142
~4! 2Ĩ 4231

~5! Ys~4!
1

~2e1!
2~2e4!D

J D .
~118!

The factors here are 2 for the two orderings ofVNL andVDM , 2 for usingVNL(2,3) rather thanVNL(2,1), (22J/N) for
VDM , (22J' /N) for VNL , (4J'S) for each linear interplane interaction, and (8JS) for each energy denominator. Also, the
last factor in parenthesis for each diagram is the number of ways of contracting lines for that diagram, (4) forF (7), for
instance. Note thatVDM carries a factoreiG•t8. Also note that the contraction factors are twice as large for (B) than for (A)
because the latter has two equivalent choices for diagrams in which to put insertions. These are evaluated to be

T6aA5
J'
4ss8

J3SN2 (
1,2,3,4,G

l 1
2l 2
2l 3
2l 4
2dGc1s1c2s2H F3412

~7! ~x1x22gGx3x4!S 2
12

D4 1
4

e1D
3 1

2

e2D
3 1

1

e1
2D2 2

1

e1e2D
2 2

1

2e1
2e2D

D
1F3412

~3! ~x3x4x1gG2x2!S 2
2

e1D
3 1

1

e1e2D
2 1

1

e1
2D2 1

1

2e2
2e1D

2
1

2e1
2e2D

D 1F3412
~1! ~12x1x2x3x4gG!S 1

2e1
2e2D

D J
~119!
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and from the diagrams of Fig. 15 we have

T6aB5
J'
4ss8

J3SN2 (
1,2,3,4,G

l 1
2l 2
2l 3
2l 4
2dGc1s1c2s2H F2413

~7! ~x1x32gGx2x4!S 2
24

D4 1
8

e2D
3 1

4

e1D
3 1

2

e2
2D2 2

2

e1e2D
2 2

1

e2
2e1D

D
1F2413

~3! ~x1x2x4gG2x3!S 2
4

e1D
3 1

2

e1e2D
2 1

1

e1e2
2D D

1F1342
~6! ~x3gG2x1x2x4!S 2

e1
2D2 2

1

e1
2e2D

D 1F4213
~4! ~x2x32gGx1x4!S 1

e2
2e1D

D J , ~120!

where, in the term invovingF (6) we interchanged momentum labels.
Finally, we consider the various contributions toT6b from the diagrams of Fig. 16. The sums over energy denominators are

similar to those of Fig. 9. So we get

T6b5
4J'

4ss8

J3S

1

N2 (
1,2,3,4

dGl 1
2l 2
2l 3
2l 4
2c1

2s1
2F ~gGx3x42x1x2!F3412

~7! S 1

D3 2
1

e1D
3 2

1

4e1
2D2D 1~x22gGx1x3x4!F3412

~3! S 1

e1
2D2D G .

~121!

We now use the relation in Appendix B to combine our re-
sults in the following compact way~For details see Appendix
J Ref. 34!:

ETOT

2NJzS2
5
j 4ss8

8S3
1

N3 (
1,2,3,4

dGl 1
2l 2
2l 3
2l 4
2 (
i51,11

P~ i !

[
j 4ss8

8S3 (
i51,11

Ei , ~122!

where j[(J' /J)4 andP(1) andP(2) come fromT2:

P~1!52S 4D3 2
1

D2e1
2

1

D2e2
1

1

De1e2
D ~x1x4

2gGx2x3!
2c1s1c2s2 , ~123!

P~2!522S 1

De1e2
2

1

D2e1
2

1

D2e2
D

3~x42x1x2x3gG!2c1s1c2s2 . ~124!

P(3) and P(4) come from combiningT3 , T4 , T5a , and
T6b :

P~3!5~F3412
~7! !2S 2

8

D5 1
6

D4e1
1

1

D3e1
2D c12s12 , ~125!

P~4!5~F3412
~3! !2S 1

D3e1
2D c12s12 . ~126!

P(5), P(6), P(7), andP(8) come from combiningT6aA
andT5bA :

P~5!5~F3412
~7! !2S 2

12

D5 1
3

e1D
4 1

3

e2D
4 1

1

2e1
2D3 1

1

2e2
2D3

2
1

e1e2D
32

1

4e1e2
2D2 2

1

4e1
2e2D

2

2
1

8e1
2e2

2D D c1s1c2s2 , ~127!

P~6!5~F3412
~3! !2S 1

e1
2D3 2

1

4e1
2e2

2D
2

1

2e1
2e2D

2D c1s1c2s2 ,
~128!

P~7!52~F3412
~1! !2S 1

8e1
2e2

2D D c1s1c2s2 , ~129!

P~8!5S 1

8e1
2e2

2D @F3412
~7! ~x1x22gGx3x4!12F3412

~3! ~x1x3x4gG

2x2!1F3412
~1! ~12x1x2x3x4gG!#c1s1c2s2 . ~130!

P(9), P(10), andP(11) come from combiningT6aB and
T5bB :
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P~9!5H ~F2413
~7! !2S 2

24

D5 1
8

e2D
4 1

4

e1D
4 1

2

e2
2D3 2

2

e1e2D
3 2

1

e1e2
2D2 2

1

4e1
2e2

2D D
1

~x1x32gGx2x4!

4e1
2e2

2 F2413
~7! J c1s1c2s2 , ~131!

P~10!5H ~F2413
~3! !2S 2

e1
2D3 2

1

e1
2e2D

2 2
1

2e1
2e2

2D D 2F2413
~3!

~x32x1x2x4gG!

2e1
2e2

2

1S 2

e1
2D2 2

1

e1
2e2D

D ~F2413
~3! 1gGF1342

~6! !~x32x1x2x4gG!J c1s1c2s2 , ~132!

P~11!5H 2
1

4e1
2e2

2D
~F2431

~4! !22
1

4e1
2e2

2 ~x1x42x2x3gG!F2431
~4! 1

~e12e2!

2e1
2e2

2D
F2431

~4! ~x2x3gG2x1x4!J c1s1c2s2 . ~133!

It is not easy to check the correctness of this algebra. How-
ever, the fact that quite different mechanisms can be com-
bined to yields results as inP(3) or P(4), for example,
suggests that these terms, at least, are correct. Such a result-
ing form ~in terms of squares of the non-Hermitian matrix
element! was found previously in a complicated spin-wave
calculation.37

To determine the numerical values of these sums we di-
vided each of the nine momentum integrals into a sum over
a mesh ofn points. Our work up ton528 showed that these
values could be extrapolated ton5` by each sum to a form
A1B/n. We thereby found

$107Ei%5$169,2603, 5627, 233,22987, 99,

21210, 0, 52, 2668,245% ~134!

and ( iEi54.0031024 gives the energy in Eq.~122!. The
uncertainty in these results is at the level of a percent or so.
@The result that the term inP(8) vanishes is obtained ana-
lytically in Appendix M of Ref. 34.# The fact that this sum is
positive, indicates that second-neighboring layers have lower
energy when they are out of phase. One may well ask
whether or not there is some simple argument which could
indicate the sign of the result. Had we obtained a nonzero
result at orderS, we could have reproduced the answer
qualitatively by a calculation in which we neglected the
propagation of modes: we could have treated spin waves as
Einstein~localized! excitations.29,30 To obtain a result at or-
der 1 we would have to take account of spin-wave interac-
tions ~whereby the energy of two localized modes would be
different when the excitations are on neighboring sites as
contrasted to being separated!. To obtain a result at order
1/S from a localized calculation would require a very in-
volved calculation, from which one would not learn more
than from the present calculation.

V. DISCUSSION

In deriving our results, it may seem that our results rely
on the assumption that the ground state is a collinear struc-
ture by analogy with the previous results of Shender4 and of
Rastelliet al.27,28 However, to avoid relying on such an as-
sumption, we performed a more general calculation at order
j 2 in which we assigned an arbitrary orientation~specified by
a unit vectorn̂p) for the staggered magnetization in thepth
plane. A calculation following the methods of Sec. III
yielded the result

De52^r 21p2&qj
2 (
p51

M21

@11~ n̂p•n̂p11!
2#, ~135!

as expected. At orderj 2 we recover the expected result that
the fluctuation energy at orderj 2 selects collinear states.
Thus we were justified to treat a collinear model to discuss
the way the remaining degeneracy within collinear structures
was resolved.

In many cases of interest, e.g., in the cuprate antiferro-
magnets, the assumption that one has dominantly antiferro-
magnetic planes which are weakly coupled by interplane in-
teractions has the result thatj5J' /J is small enough that
j 6/S is very much less thanj 4/S3. In that case, the calcula-
tion of Sec. IV becomes relevant. As it happens, both the
contributions of orderj 6/S and those of orderj 4/S3 indicate
a lower energy when alternate planes are antiferromagneti-
cally coupled. Thus we think that this result does hold for a
range of parameters in the Heisenberg model with only
nearest-neighbor interactions. If one includes a direct cou-
pling, J3 , between second-neighboring planes, the energy of
this interaction @De;(J3 /J)# must be compared to that
found here due to indirect interactions. Since such interac-
tions come from overlap of wave functions, it is possible that
J3 /J is comparable toj 4. Needless to say, in real systems
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many other small energies, such as dipolar energies would
also have to be considered.26

We may summarize our conclusions as follows:

~1! We have calculated the contributions to the energy
which distinguish between various orderings of antiferro-
magnetic planes in the bct antiferromagnet with weak
nearest-neighbor interplane interactionsJ' . At second order
in j5J' /J, whereJ is the in-plane interaction, the energy
favors collinear structures, as expected from previous calcu-
lations.

~2! If we write the quantum zero-point energy,EQ as
EQ5EC@11DeQ#, whereEC is the classical ground-state
energy of a single plane, thenDeQ can be calculated as a
perturbation series inj and 1/S. At first order in 1/S, the
leading contribution toDeQ which involves the configuration
of the planes~assumed to be collinear! is of order j 6, as
written in the abstract. For systems consisting of more than
four layers, this energy favors second-neighboring planes be-
ing antiparallel. Thus the entire structure has only the degen-
eracy associated with the relative phase of the odd-numbered
layers relative to the even numbered layers. This degeneracy
reflects a true symmetry of the system and cannot be re-
moved.

~3! At order j 4, the leading contribution toDeQ which
involves the configurations of the layers is of order 1/S3 and
is given by the complex expressions of Sec. IV. Numerical
evaluation of this result shows that this energy also favors
second-neighboring layers being antiparallel.

~4! An interesting result is found for a system consisting
of a small number of bct layers. In particular, for a three-
layer system, we find that the first and third layers are paral-
lel to one another in the ground state. It would also be inter-
esting to study experimentally a system with four bct layers.
In that case our results indicate that all configurations in
which both next-nearest neighboring planes are parallel are
degenerate with those in which both next-nearest neighbor-
ing plnaes are antiparallel. Although this degeneracy will no
doubt be removed by higher-order effects, it does suggest the
possibility of obtaining unusual spin structures in extremely
thin-film systems.

~5! We mention a caution that in real systems there may
be other energies,26 such a single ion anisotropy, dipolar, or
further-neighbor interactions, which might be more impor-
tant than those discussed here. In particular, for La2CuO4,
experiments38 show that the Dzyaloshinskii-Moriya anisot-
ropy determines the three dimensional spin structure.

~6! In Ref. 4 it was shown that the most important effect
of quantum fluctuations was to introduce an effective biqua-
dratic exchange interaction between sublattices of the form
written in Eq.~1!. In agreement with Ref. 4 for the bcc case,
this effective interaction can be shown20 to give rise to non-
zero frequencies of the ‘‘optical’’ modes at zero wave vector
in which sublattices do not precess in phase. Because the
collinearity energy~which is of orderJ'

2 /J) is much larger
than the energy which determines how spins in alternate
planes orient relative to each other, these optical mode fre-
quencies are essentially determined by the collinearity en-
ergy of Eq.~1! and are not very sensitive to the global spin
structure.
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APPENDIX A: NONLINEAR MATRIX ELEMENTS

We first discuss the phase factor in Eq.~25!. For illustra-
tive purpose we consider only the first term inHp

(4) ~which
we denoteT1) and for simplicity we temporarily omit the
indicesp. Then

T152
2J

N2 (
1,2,3,4;d1 ,iP up

a1~1!a~22!b1~3!b~24!

3ei @r i•~1121314!1~314!•d1#

52
2J

N (
1,2,3,4;G

dGa
1~1!a~22!b1~3!b~24!

3ei t1~p!–Gg314 , ~A1!

whereiPup means thatr i is summed only over the positions
of up spins@as in Eq.~5!# and we noted that all positions
were referred tot1(p). Alternatively, we could refer posi-
tions tot2(p) in which case we would have

T152
2J

N2 (
1,2,3,4;d1 ,iP down

a1~1!a~22!b1~3!b~24!

3ei @r i•~1121314!1~112!•d1#

52
2J

N (
1,2,3,4;G

dGa
1~1!a~22!b1~3!b~24!

3ei t2~p!–Gg112 . ~A2!

These are equivalent because when 11213141G50,
then

ei t1~p!•Gg3145ei t2~p!–Gg112 . ~A3!

Similarly, we discuss Eq.~28!. We have
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VNL~p11,p!52J' (
p,i , j

b~p; i !a1~p11; j !a~p11; j !a~p11; j !gp,p11
~U ! ~ i , j !

525
J'

N2 (
p, j ,iPdown

(
1,2,3,4

bp~21!ap11
1 ~2!ap11~23!ap11~24!gp,p11

~U ! ~ i , j !eiq1•r iei ~q21q31q4!•r j

52
J'

N2 (
p, j ,iPdown

(
1,2,3,4

bp~21!ap11
1 ~2!ap11~23!ap11~24!gp,p11

~U ! ~ i , j !

3ei ~q11q21q31q4!•r ie2 i ~q21q31q4!•~r i2r j !

52
2J'

N (
1,2,3,4,G

dGe
iG•t2~p!gp,p11

~U ! ~q21q31q4!. ~A4!

APPENDIX B: RELATIONS FOR F

Here we give some relations between the DM coefficients
which we used to obtain the forms given in the summary:

F1234
~8! 1D~x1x22gGx3x4!5F3412

~7! , ~B1!

F1234
~2! 2~D22e1!~x22gGx1x3x4!5F3412

~3! , ~B2!

F1234
~1! 1~D22e122e2!~12x1x2x3x4gG!5F3412

~1! , ~B3!

F2413
~3! 2gGF1342

~6! 5~x32gGx1x2x4!~2e12D!, ~B4!

and

F2431
~4! 2F3124

~4! 5~x1x42gGx2x3!~e11e22e32e4!. ~B5!

A derivation of these relations is given in Appendix L of Ref.
34.
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