
University of Pennsylvania
ScholarlyCommons

Department of Physics Papers Department of Physics

4-11-1977

Critical Behavior of Random Resistor Networks
A. Brooks Harris
University of Pennsylvania, harris@sas.upenn.edu

Ronald Fisch
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/physics_papers

Part of the Physics Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/physics_papers/314
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Harris, A., & Fisch, R. (1977). Critical Behavior of Random Resistor Networks. Physical Review Letters, 38 (15), 796-799.
http://dx.doi.org/10.1103/PhysRevLett.38.796

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fphysics_papers%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers?utm_source=repository.upenn.edu%2Fphysics_papers%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics?utm_source=repository.upenn.edu%2Fphysics_papers%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers?utm_source=repository.upenn.edu%2Fphysics_papers%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=repository.upenn.edu%2Fphysics_papers%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevLett.38.796
http://repository.upenn.edu/physics_papers/314
mailto:repository@pobox.upenn.edu


Critical Behavior of Random Resistor Networks

Abstract
We present numerical data and scaling theories for the critical behavior of random resistor networks near the
percolation threshold. We determine the critical exponents of a suitably defined resistance correlation
function by a Padé analysis of low-concentration expansions as a function of dimensionality. We verify that
d=6 is the critical dimensionality for the onset of mean-field behavior. We use the coherent-potential
approximation to construct a mean-field scaling function for the critical region.
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We present numerical data and scaling theories for the critical behavior of random re-
sistor networks near the percolation threshold. We determine the critical exponents of a
suitably defined resistance correlation function by a Pade analysis of low-concentration
expansions as a function of dimensionality. We verify that d=6 is the critical dimension-
ality for the onset of mean-field behavior. We use the coherent-potential approximation
to construct a mean-field scaling function for the critical region.

In this Letter we report some new ideas con-
cerning the properties of random resistor net-
works near the percolation threshold. ' The model
we treat is that of an electrical network on a d-
dimensional hypercubic lattice of I-" sites with
conductances 0;, connecting nearest neighboring
pairs of lattice sites i and j. Each o,, is an inde-
pendent random variable assuming the values 0,
or o& with respective probabilities 1-p and p.
The macroscopic conductivity, Z, is then defined
to be the configurational average of oL' ", where
v= I/V, where I is —the current when the potentia. l
difference V is applied between two opposite (d
-1)-dimensions. l faces of the hypercube. We may
define clusters as being groups of sites which are
connected with respect to the conductances o&.
The statistics of cluster size and the associated
pair connectedness correlation length, $(p), were
shown' to be related to the thermodynamics of the

s-state Potts model in the limit s —1, if the iden-
tification p = 1 -e '"r is made, where J is the
coupling constant for nearest-neighbor interaction
in the Potts model. This relation indicates that
the usual exponent description for phase transi-
tions can be applied to the percolation threshold
and that the various scaling relations and univer-
sality predictions can be expected to hold as well.
It was later shown'" that for d&d, =6, mean-field
theory gives correct values for cluster statistics
nea. r the percolation thresholdo. := —1, P = 1, y
= 1, and v = —,'. In view of scaling arguments which
relate the resistor network and percolation prob-
lems, de Gennes' has suggested that d, =6. Here
we present numerical evidence which confirms
that this suggestion is correct. We also discuss
several new scaling relations.

A way to determine d, without using the renor-
malization group (RG) is to analyze the high-tem-
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perature expansion for the susceptibility, X, as
a function of dimensionality, d.' At d=4 an anal-
ysis for the Ising model' based on a single pow-
er-law divergence yields y = 1.09. However, the
RG predicts' corrections to scaling of the form

X=A[1+(1-a/et, )(t"~ -1)]'t ",

where e=d, -d, t=(T-T, )/T„A and B are non-
universal constants, and 6y 8, and y are univer-
sal exponents. Pitting to a form of this type, Van
Dyke and Camp' found y = 1.00 + 0.02 for the Ising
model at d = 4, thus confirming d, = 4 for this
model. We have carried out the same program
for the random resistor network by analyzing a
low-concentration expansion for an analogous
susceptibility. In order to do this, one must
identify the order parameter. For arbitrary net-
works, Kasteleyn and Fortuin' show that the cor-
relation function for the s -0 state Potts model
yields the resistance, R;, , between lattice points
i and j. This correlations function can also be
obtained by averaging x;x, over the Gaussian
density matrix, p = exp[- ~ „a „(z -z„)'].
These observations suggest that R,, plays the
role of the correlation function and therefore we
define the resistive susceptibility as y~ "l =Q,.)t;, ,
where

Here and below, the lattice sums are restricted
to a single cluster. To get the response at wave
vector q we need to evaluate

V(q) =Q, ~ V(r )[exp(-iq r ) -exp(-iq r)]. (6)

Here again we subtract the term exp(-i q r), be-
cause we can arbitrarily fix the average voltage
of each cluster to be zero. Thus

V(q}/I =+G(r, r')(q. br)(q br'),
t,r'

where 5r =r -r. In a cluster the distances are of
order $(p) and G(r, r') is related to R-tr. , so that

G~ l-e(p}Z~ =~(p}Xt &.

If we assume G '~ to be governed by the same ex-
ponent for p &p, as for p &p, , we obtain from
Eqs. (4} and (8) that"

(8)

p &p„ to a, current source I,e'q' '. In order to be
able to solve Kirchoff's equations we must elim-
inate the q =0 component of current. Thus we
take the current source to be I,[exp(iq ~ r) -exp(iq
~ r)], where r is approximately the center of
gravity of the cluster. In the limit q -0 the in-
duced voltage V(r') is then

V(r ') =I+-, G(r, r ') i q (r -r). (5)

X.i J [~ i j~ ij ]av t (2) yt"l= p. 2P+2v-= p, -(d-2)v+y, (9)

G(~) Q G( n)~n
Tl

then one has

G'" -P'(p) ((p)'/&(p). (4)

where v, , = 1 if i and j are in the same cluster and
v, , = 0 otherwise, and [ ]„denotes a configura-
tional average.

We first consider the case o, =0 and relate y ",
the exponent for X "~, to the conductivity exponent
p defined by Z-(p -p, )", p -p, '. Consider the
Green's function G(r, r') which gives the voltage
at r' in response to a unit current source at r.
In the limit q -0 the Fourier transform of this
Green's function is of the form

G4) = P'(P) ( ~ (P)~'P[&(P)V) j ',

where P(p) is the fraction of sites in the infinite
cluster and $(p) is the correlation length. This
Green's function is identical to that for trans-
verse excitations in a Heisenberg ferromagnet at
zero temperature for which Eq. (3) holds. ' In Eq.
(3) E(z) is analytic at z = 0, so that if one writes

where P(p} -(p -p, ) and $(p) - (p -p, ~

". The
second equality in Eq. (9) follows by using the
scaling relation 2P =dv-y for the percolation ex-
ponents.

We have developed a low-p expansion for yt"~ a.s
y

"~ =pa„(d)p" and have obtained the polynomia, ls'
in d for a„(d) for n 10. This was done as fol-
lows. For any cluster, r, we define )t'(r) to be
the value of y~"& for that cluster. The cumulant,
y'(r), is defined recursively as

lt'(r) = x'(r) -Z x'(y),

where the sum is over aB connected clusters con-
tained within r. Then the result is a„(d) =Qr&„~
b(I")y'(r), where the sum is over all clusters
with n bonds and b(I') is the number of times the
cluster I" can be formed on a hypercubic lattice
in d dimensions. The mean-field-theory value of
y ", denoted y&F~", can be obtained by taking d
large and keeping only self-avoiding walk dia-
grams. For n-step walks b-(2d)(2d-1)" ' and X'
is equal to the resistance between the ends of the
wa. lk, viz. n/o&. Thus

Now consider the response of finite clusters for y& "& -Q„p"(n/(x, )(2d -1)", (10)



VOLUME 38, NUMBER 15 PHYSICAL RKVIKW LKTTKRS 11 A.PRIL 1977

TABLE I. Pade approximant results for p and P") .

1/2 37a
0.2465 2.78
0.1600 2.46
0.1181 2.19 (2.22) b

0.1047 2.13 (2.10)b

0.0943 2.09 (2.00)
0.0858 2.06
0.0787 2.04

~This value is rather uncertain (+0.2) (see Ref. 12).
The errors for the other entries (p, and y(")) are of
order one in the last decimal place quoted.

Values obtained using corrections to scaling, Eq. (1).

2
3
4
5

5.5
6
6.5
7

which gives y~F(") -—2. For finite d one uses the
a„'s to construct the various Padd' approximants
to B lnX(")/Bp -y(" /(p, -p) to determine y ". The
results of this and similar procedures are sum-
marized in Table I. [The coefficients a„(d) will
be published elsewhere. ]

The effect for d near d, of the logarithmic cor-
rections of Eq. (1) [with f+(p, - p) /p] is scaled
by 0. For isotropic n-vector y' and y' models"
one has 6=2(Byi")/Be) i, 0 and b, , = —,'. Without in-
cluding logarithmic corrections we find y("&

-yMF " ——0.09 for d= 6, and y(") -y&F(")- e/5 for
e ~1, which gives 0~0.4. These values are quite
similar to those for the Ising model for d =4. In-
cluding logarithmic corrections as in Eq. (1) we
find an acceptable fit to the series at 0 =6 for y("&

=yMF" with 8=0.4. This result is again similar
to that found for the Ising model, and confirms
that d, =6 here.

The scaling relation, Eq. (9), is satisfied by
the mean-field-theory values, viz. y(") =2, P=1,
v= —,', and (see below) p, =3. For d =3 one has" p.
= 1.6, P = 0.4, and v = 0.95, which yields y(") = 2.7

from Eq. (9), in good agreement with our value
y" =2.78. For d=2, the values" p. =1.1, P=0.15,
and v=1.35 yield y(" =3.5, which is also consis-
tent with our result, y~") = 3.7 + 0.3."

Finally, we propose scaling relations for the
ease v&g0. We will use the coherent-potential
approximation" (CPA) to generate mean-field val-
ues of the critical exponents. Within the CPA
Kirkpatriek" finds that the network is described
by an effective conductance a, ff which is deter-
mined by

1-p 2
P =(v.ff-«) +

+ef f ~ +e f f-

p =(I-T)y. (i4)

To develop another scaling relation we consider
the regime p &p„v, -0 and study the behavior of

as defined in Eq. (2). In the limit of large
separation A, , tends to a value proportional to
Z(p) ', since we take v, g0. In this limit, then,
one has [R,,v;, ],„=[v,,],„/Z(p), so that X(")-X(~)/

Z(p), where X(~) is the percolation susceptibility,
i.e., the mean-square cluster size. We now as-
sume a scaling form for X&"i:

x'"'= '(P -P.) ' G(( / )(P.-p) ') (15)

with G(0) = 1 and G(x) -x ' for large x. Then for
v, /v, » (p -p,)~ we have

X'"/Z(p) =(p-p.) ' '"(v, 'v. ' ').

For this to agree with the definition of 7, we

(i6)

In this approximation p, =p*=2/z. For

gati

«1,
with t=(p-p*)/p*, and v, /v, «1, the dominant
behavior of o,ff is given by the scaling form

veff= 2v)(t+ [t'+ 2(v(/v))/(z -2)]' ]. (12)

If we define the exponents" p by Z(p) -(p, -p)
for p-p, with v&=~, a,nd T by Z(p,)-v, 'v, ' ',
then Eq. (12) implies P =1 and r =-,'. To deter-
mine p, from Eq. (12) we must be able to relate
0 f f to Z, when v, = 0. Kirkpatrick" assumed
a,ff and Z to be equivalent. However, it is more
plausible to assume that the CPA provides an ap-
proximation to the Green's function of Eq. (3), in
which case one would write G '(q) - v«fq', for
q)(p) «1. Equation (3) would then imply that Z(p)

v ffP'(P), which would give p, = 3 as the mean-
field result. These mean-field values of p, and p,

agree with those given, respectively, by de
Gennes' and Straley. " In particular, our treat-
ment and numerical values of y~"i confirm de
Qennes's argument' that Stinchcombe's result"
(p, = 2) for the conductivity of the Bethe lattice is
not the appropriate value for p, MF. The CPA re-
sult for v does not agree with Straley's value, "
which, however, is based in par t on the Bethe
lattice value for p,.

Now we consider the regime d «6, where mean-
field theory is not va. lid. For p &p, and v& —~,
we assume that Z(p) obeys a scaling form

(i3)

where E(0) = 1. [The CPA, Eq. (12), provides the
mean-field-theory result, y =2.] For v& =~, Eq.
(13) implies that
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must set s = T. Then we get

&(~) (p p
)-7(')+~v

so that

(17)

Combining relations (9), (14), and (17) we get"

7 = [p, —(d -2)v] /t g+ p. -(d -2) v]

as contrasted to Stra. ley s result, ' T = p, /(V, + p).
For d = 2, our result agrees with Straley's and
with the exact results, " v = ~, p, = p,. For d=6,
our mean-fieM-theory values of the exponents
satisfy Eq. (18), whereas Straley's do not. The
numerical evidence for d = 3 is not yet conclusive,
although Eq. (18) does not work very well for the
current values, p, ~ "~ = 1.6. p, & "& = 0.6, and v'

=0.77." However, since Straley's values" of
the exponents do not satisfy universality very
well, they may not be sufficiently accurate for
this comparison.

Our conclusions are summarized in the Ab-
stract.
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