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Exact Solution of a Model of Localization

Abstract
The exact solution is presented for the "susceptibility," χ (the number of sites covered by the maximally
extended eigenfunction), for the zero-energy solutions of a hopping model on a randomly dilute Cayley tree.
If p is the concentration, then χ~(p*−p)−1 with p*~pce1/ξ1, where pc is the critical percolation concentration
and ξ1 the one-dimensional localization length. This result is argued to hold for the dilute quantum
Heisenberg antiferromagnet at zero temperature.
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Exact Solution of a Model of Localization

A. Brooks Harris
DePartment of Physics, University of Pennsylvania, PhiladelPhia, Pennsylvania l9104

(Beceived ll May 1982)

The exact solution is presented for the "susceptibility, "
g (the number of sites covered

by the maximally extended eigenfunction), for the zero-energy solutions of a hopping
model on a randomly dilute Cayley tree. If p is the concentration, then y - {p*-p) ' with
p*-p, e ', where p, is the critical percolation concentration. and (~ the one-dimension-~/&

al localization length. This result is argued to hold for the dilute quantum Heisenberg
antiferromagnet at zero temperature.

PACS numbers: 71.55.Jv, 64.60.Cn

Recently much interest has been shown in the
relation between classical' and quantum' percola-
tion. The latter phenomenon is a model for the
transition from localized to extended states that
may occur for excitations in a random potential. '
In these models bonds between nearest-neighbor-
ing sites are randomly present with probability
p and absent with probability I -p. For both
models we express the susceptibility, y, in
terms of the susceptibility, y(I'), of the cluster
I of sites connected by occupied bonds:

where &(I") is the probability of occurrence of a
cluster I which intersects the origin. For clas-
sical percolation, ' y(1) is simply the number of
sites in the cluster I".

To define y(I") for quantum percolation one con-
siders the eigenfunctions of the hopping Hamil-
tonian which obey

where t, , assumes the value t if the bond between
sites i and j is present and o otherwise. I con-
sider only lattices which can be decomposed into
two sublattices a and b such that t;, is nonzero
only when sites i and j are on different sublattices.
Then, even in the presence of dilution, the den-
sity of states, p(E), is an even function of E and

is nonzero for -zt &E &zt, where z is the coordi-
nation number of the lattice. As the concentra-
tion p is decreased from unity the states near
the edge of the band become localized (See Fig.
I). Thus there exist mobility edges at energies
+E„such that states with ~E~ &E, are localized
whereas for ~E

~
&E, extended states appear (pos-

sibly coexisting with special localized states').
The mobility edges move towards E =0 as p ap-
proaches a critical value, p*.

Under the reasonable assumption that extended
states first appear at E = 0, I locate p* by an

exact analysis of the eigenfunctions for E =0. To
do this I introduce a localization susceptibility
which diverges when extended states begin to
form. Following the concept of the participation
ratio introduced by Thouless' I define y(I') by

p (E)

-zt -E
C Ec zt

FIG. 1. The density of states for random hopping
models. Here L denotes localized states, F,, the
mobility edge energy, and .F, extended states (possibly
coexisting with localized states).

g(I") '=ming, .q(i)',
where the minimization is over p's such that j (i)
is a zero-energy eigenfunction with nonzero am-
plitude on the origin (which is on the a sublattice).
To avoid any spurious effect of localized states,
g must be connected, i.e., not decomposable
into nonoverlapping eigenfunctions. It can be
shown that such a connected eigenfunction is non-
zero only on the a sublattice. The classical per-
colation problem can be obtained from Eq. (3)
if, instead of solving Eq. (2), one sets g(i) =n '~',

where n is the number of sites in the cluster
I. An important question is whether the concen-
tration P* is larger than the critical concentra-
tion p, for percolation. Simulation' and series
work' both suggest this to be the case, but the
present work is the first to establish this con-
clusively and also leads to a simple intuitive
picture for why p* and p, differ. These results
follow from an exact solution for the quantum
percolation susceptibility for a Cayley tree of
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coordination number 3 (see Fig. 2). The Cayley
tree is a lattice for which the exact solution is
expected to reproduce mean field theory.

To evaluate X(I") from Eq. (3) note that a mini-
mum value for a normalized g(i) is obtained if it
is possible to set

~ g(i) ~'=n(I') ', in which case
X(I ) =n( I"), where n(l') is the largest number of
sites of the cluster which a zero-energy eigen-
function can cover. For E =0 Eq. (2) is satisfied
by choosing the phase of the wave function at
sites j to be the complex nth roots of unity,
where n is the number of neighbors over which
the sum is taken. Thus, to evaluate X one has
to solve a modified percolation problem to find
&(I'). Note that Eq. (2) forces any zero-energy
wave function to vanish at a site adjacent to a
free end. Thus n(I ) is not simply the number
of a sites in the cluster I . To illustrate the
construction of X(I") Fig. 3 shows a cluster I'
for which a choice for g(i) is given.

I now construct a generating function E(q, p)
such that

E(q, p) =Q P( r) q"' ',

so that X=[SF/Bq], ,. Since t—here are three
statistically independent branches emanating
from the origin, it is convenient to write

F(q, p) = qA(q, p)'(1 —P)',

where A(q, p) is the generating function for a
single branch. In a fuller paper the following re-
sult will be derived:

A(q, p) =«(q, p)/p(1 —p),
wher e x(q, p) s atisf ie s

0 =P(1 —p) -x(q, p) +q'x(q, p)'+2qx(q, p)'x(1, p) .

(9)

For small p the negative sign in Eq. (9) is the
correct one to take and this solution obviously
treats finite clusters. It would be incorrect to
take the negative sign in Eq. (9) for p & —,'. So
doing would yield a solution for x, and then for
Xp' which would be an even function of —,

' —p.
Since the probability of forming a finite cluster
of n, bonds is given by (1 —p)'y"', where y =p(1
-p) is an even function of —,'-p, I conclude that
the negative sign in Eq. (9) corresponds for all p
to treating only finite clusters. To describe the
growth of the wave function within the infinite
cluster, we analytically continue the low-p solu-
tion for p &p, = —,', i.e., we set

+ r~) = a +P ~
(10)

for p &p*, where p* is the concentration at which

x diverges. I argue for Eq. (10) as follows. ' Be-
cause of the blocking effect which effectively
eliminates a finite fraction of free ends, the wave
functions are localized near p =p, . Thus near
p =p, the distribution of sizes for wave functions
is not anomalous and contributes analytically to

But in the absence of nonanalyticity, Eq. (10)
must hold and yields

X = V(p)/(1+4p —16p'),

Equation (6) is obtained by summing contributions
to E(p, q) from all finite clusters. ' Thus we find

X as

x=(x/p)(31+2 '+2 ')/(1-4 '-4«'),
where now x =«(1,p) is the solution to Eq. (7) for
q = 1 and is given by

12

FIG. 2. Part of a Cayley tree with coordination num-

ber 3.

FIG. 3. A random cluster. If site 4 is the origin,
then the only nonzero values of $(i) resulting from the
minimization in Eq. (3) are $(1) = c~, g(2) = c~~, and

P(4) = —g(6) = g(8) = —$(10) = c, where c = 6 and &
= exp(27ti/3). Note that the free ends at sites 10 and

12 prevent the wave function from reaching the right
end of the cluster.
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where

y ( P) = (2P') '[-1 —P + 12P'+ 4P' —24P + (1 + 4P) ' '(1 —p —8p' + 8p' + 8p~) ] = 1 +p + 3p'. . . (12)

Thus y has a simple pole at a critical value of p
denotedP*, withP*/P, =1.191, withP, =0.5. I
have checked Eq. (11) by a diagrammatic evalua-
tion of the low-P expansion for y to order p'.

The interpretation of the above result that p*
&p, is worth noting. For classical percolation
on a Cayley tree with coordination number 0+1
the following argument gives p, exactly. The
average number of paths in continuing a branch
is pv. For infinite cluster growth one sets p =1
and obtains p, =o '. In the present case of quan-
tum percolation the transmission coefficient of

.an occupied bond is not unity, because even if a
bond is occupied, the wave function need not
spread through it. For example, if an a site on

a chain has a single. dangling bond attached to it
(cf. site 11 in Fig. 3), that bond will force the
zero-energy eigenfunction to vanish on the a site
and thereby the propagation of the wave function
down the chain will be terminated. This blocking
means that the average number of effective bonds
is of order 2P[1-P(1-P)] for v=2, since half
the sites (i.e. , the a sites) can be blocked by the
appearance of a single free end which occurs
with probability p(1-p). For this effective num-
ber of bonds to be unity p =p*&-,'(1+ 8). This
argument clearly underestimates p*, since block-
ing can be caused by larger odd-parity groups.
An intuitive way of stating this result is to say
that the transmission probability is not simply p,
but rather is p exp(-I/$, ), where $, is the one-
dimensional localization length in units of lattice
constants. For a homogeneous chain, the cor-
relations will fall off with a power of distance so
that $, = ~ and the above argument is inappropri-
ate. However, the proper $, to use is the local-
ization length of a chain in the presence of the
disordered medium. Here disorder is created
by randomly attached side groups to the chain.

It remains to understand whether an alternative
definition for y would display more unambiguous-
ly a crossover' from percolation, for which g
-(p, -p) ', to dilute polymers, "for which g
-(p, -p) ' '. It seems plausible that my result
should be interpreted as a crossover from per-
colation to animals. "'" Note that the animals
exponent y= —, is associated with the divergence
in y as the energy E is varied, "'"whereas here
E is fixed but another variable, p, is varied. It
is possible that the present solution is sensitive
to the animals exponent at fixed order parameter

!for which y assumes its usual mean-field value
of unity. "

The implication of this work for some other
problems is evident. For instance, one con-
cludes that p* for the emergence of long-range
order in the dilute quantum Heisenberg antiferro-
magnet at zero temperature will be greater than

p, . One expects that p*-p, exp(l/$, ), where, as
before, $, is the localization length for the Hei-
senberg antiferromagnetic chain in the presence
of randomly placed side groups. Again, it would
be wrong to ignore disorder and use the power-
law decay of correlations for the Heisenberg
chain. It seems clear that a crossover scaling
theory like that given by I ubensky" for the dilute
magnet can be formulated to describe the gradual
introduction of quantum effects.
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by the National Science Foundation under Grant
No. DMR-76-21703 and by the U. S. Office of
Naval Research under Grant No. N00014-76-
C01016. The author also acknowledges discus-
sions with Dr. Y. Shapir and Professor A. Aharony
concerning the definition of the localization sus-
ceptibility.
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