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Phase Locking in Heisenberg Helimagnets

Abstract
We consider a Heisenberg model with ferromagnetic nearest‐neighbor and competing further‐neighbor
exchange interactions in a small applied magnetic field at low temperature T. As a function of the exchange
constants, the modulation vector is shown to have devil’s staircase behavior. We consider the effects of
nonzero temperature and quantum effects. We find a special modulation wave vector at which the
incommensurability energy vanishes for the classical system at T=0.
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Phase locking in Heisenberg helimagnets 
A. B. Harris 
Department of Physics. University of Pennsylvania. Phi/adelphia, Pennsylvania 19104 

E. Rastelli and A. Tassi 
Dipartimento di Fisica dell'Universita 43100 Parma. Italy 

We consider a Heisenberg model with ferromagnetic nearest-neighbor and competing further­
neighbor exchange interactions in a small applied magnetic field at low temperature T. As a 
function of the exchange constants, the modulation vector is shown to have devil's staircase 
behavior. We consider the effects of nonzero temperature and quantum effects. We find a 
special modulation wave vector at which the incommensurability energy vanishes for the 
classical system at T = O. 

I. INTRODUCTION 

Magnets with competing interactions often have quite a 
rich phase diagram. For instance, in the ANNNI model,I.2 
which is an Ising model with competing interactions along 
only one direction (labeled the z direction), one studies the 
phase diagram in the T-J2 plane, where the nearest-neighbor 
interaction is assumed to be ferromagnetic and of unit mag­
nitude, 12 is the next-nearest antiferromagnetic interaction, 
and Tis the absolute temperature in energy units. The phase 
diagram at low temperature2 shows (a) for small J2 a ferro­
magnetic phase, (b) for large J2 an antiferromagnetic phase 
in which the spins along the z direction form a periodic struc­
ture with a unit cell in which the sequence of spins is (up, up, 
down, down), and finally (c) at intermediate values of 12 an 
incomplete devil's staircase, in which the modulation vector 
is constant over small ranges of 12, which separates regions 
where the wave vector varies continuously with 12, 

For the Heisenberg model one obtains rather different 
behavior. Here, in the absence of anisotropy (or with easy 
plane anisotropy), the modulated phase is a helix of wave 
vector Q. U For this model Q is a continuous function of J o • 

Basically, the difference between the Ising model and th-e 
Heisenberg model is that in the former the entropy depends 
on the phase of the order parameter modulation, whereas in 
the latter the spin magnitude (which determines the en­
tropy) is constant over the modulation, and therefore the 
entropy is independent of the phase of the modulation. How­
ever, in the presence of a magnetic field h applied in the plane 
of the spins, it is clear that the magnitude of the spins does 
depend to some extent on the orientations, at least at non­
zero temperature. If the modulation involves a variation in 
the magnitude of the order parameter, it is clear that the free 
energy can depend on the phase of the modulation, so that 
one gets phase locking as in the ANNNI model. 

To study such effects we consider spin models with com­
peting interactions: 

H = - 2"J,jSU) 'SU) - h L Sx (i). (I) 
iJ ' 

We treat spins on a simple tetragonal lattice with interac­
tions within a basal plane given by J, = I, J2, and J" respec­
tively between first, second, and third neighbors. 4 Spins i and 
j which are nearest neighbors in adjacent basal planes are 
subject to a ferromagnetic interaction J'. We shall treat two 

models of the type of Eq. (1), the first a classical x-y model, 
and the second a quantum Heisenberg model, in which case 
we carry calculations as an expansion in liS. We restrict 
ourselves to the limit of small but nonzero field h. The T = 0 
phase diagram4 for the classical model for h = 0 is shown in 
Fig.l. 

The phase diagram we find for the model ofEq. (1) for 
small h #0 is similar to that of the Frenkel-Kontorova5 

(FK) model whose phase diagram (for the parameter analo­
gous to h being small) is known to be in the form of an 
incomplete devil's staircase. The model we treat differs from 
the FK model in that we allow further-than-nearest-neigh­
bor interactions, and also the competing interactions occur 
in a plane, rather than along a single direction. Also, because 
we do not impose any particular chirality, our model would 
have different critical properties from the chiral x-y model 
considered by Yokoi et al./' although the ground-state prop­
erties are expected to be similar. We should note that in no 
case have quantum interactions or finite temperature effects 
been investigated for such a model. A unique result of our 
analysis is that for modulation with a wavelength equal to 
three lattice spacings, the commensurability energy vanishes 
at T = 0, i.e., the ground state energy in the classical model is 
independent of phase. 

II I 

ill 
112m 

IV 

ffim 
FIG. l. Phase diagram (Ref. 4) of the classical model for Eq. ( I ) for h = O. 
Within region /II Q lies along a [1,0] direction and its magnitude is given 
bycos(aQ) = - (I + 2J,)/(4J,). whereaisthelatticeconstant. 
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II. SUMMARY OF CALCULATIONS 

We now briefly describe the calculations. First, we dis­
cuss the classical x-y model, in which the orientation of the 
ith spin is specified by the angleri such that Sx (i) = cos X, 
and S" (i) = sin X,, We calculate the free energy as a pertur­
bation expansion for small h in the form 

F(h) = F(O) + -f,F2h 2 + i;,F,h'l + .... (2) 

We focus on F
" 

which is given as 

F, = (32 I (X(i)XU)X(k» 1:= (A) r, (3) 
l.j.J... 

where (3 = (k T) J, ( > r indicates a thermal average at 
temperature T, and h = 0, and 

X(i) = cos(Q'r, + </J + 8, ). (3) 

Thus, F, is evaluated in terms of averages taken with respect 
to the h = 0 undistorted helix whose ground state is given by 
X, = Q'r, + f/J. Note that we have allowed for an arbitrary 
phase. f/J, in the modulated spin ground state. The thermal 
average in Eq. (3) is over the phase space of angular fluctu­
ations 8, of all spins i = 1,2," . relative to their ground state 
orientations for which 8, = O. In this notation the Hamilto­
nian at zero magnetic field takes the form 

(5) 
'.; 

where r lj = r, - rj and 8'j = e, - e
j

• Since it is not possible 
to evaluate F, exactly, we have recourse to a spin-wave ex­
pansion. Thus, we expand both X (i) and H in powers of 8i, 
writing 

H=Ho+V, (6) 

with 

(7) 
I,J 

where Eo is the ground state energy. The value ofQ is deter­
mined so as to minimize H when e,; = O. Thus, Q is an im­
plicit function of the J,j's. 

We evaluate Eq. (3) using 

(A> r = (Ae (II ).,!(e (11)0' (8) 

where ( )0 indicates a thermal average with respect to the 
non interacting spin-wave Hamiltonian H". Note that 
(B,B/)" = kTG", where G'j is the spin-wave Green's func­
tion whose spatial Fourier transform is given in terms of the 
Fourier transform of the exchange integrals as 

G J (q) = 2J(Q) - J(Q -- q) - J(Q + q). (9) 

Thus, 0, - \ T and (3 V - \ T. By expanding X, in powers of 
8, and (A) I as written in Eq. (8) in powersof{3V, we obtain 
F, as an expansion in powers of T. Thereby we find results of 
the form 

F, = NA,( T) I c5(3Q - G)cos(3</J), (10) 
G 

where G is a reciprocal lattice vector and N is the total num­
ber of spins. A tedious calculation described elsewhere 7 gives 
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the result 

A 3 ( n = - 9~T G(Q)3( Za~ r f dq 

X(1 - ZG(Q + q) 
G(q) 

+ G(Q+q)G(Q-q»)+OCT 2 ). (11) 
G(q)2 

The integral is carried over - 'IT < aqa < 'IT, where a is the 
lattice constant and a labels components x,y, or z. Note that 
A) (n vanishes at T = 0, in agreement with the results of 
Elliott and Lange. K However, for finite temperatureA, (T) is 
nonzero, as expected in analogy with results for the FK mod­
el. 

From Eq. (10) we see that after minimization with re­
spect to ¢, one has a result whose general form is 

Fp = -NIAp(T)hPI2:8(pQ-G), (12 ) 
G 

which indicates the presence of a commensurability energy 
of order lAp (T)hP I. For p = 3 we have the explicit result 
given in Eq. (11). For higher values of p, i.e., p = 5 and 
p = 7 we have verified by numerical calculations that Ap (T) 

is nonvanishing even at T = 0, in contrast to our result for 
p = 3. For such a calculation we set J 2 = 0 and fixed J~ so 
that pQ = G. Then we verified that the dependence of the 
ground state energy on h, and ¢ could be represented as 
Eo + NAp hP cos(pf/J). For modulation vectors near rational 
values, such a phase locking energy will give rise to regions of 
size h pl2 around Q = G/p, where the modulation vector is 
constant. To see this we consider a region in J 2 - J, param­
eter space centered about the point where the modulation 
vector which minimizes Eo assumes the value Q*. We as­
sume that Q* is close to Qp :=G/p. For Q in this vicinity we 
have the free energy per spinf(Q) as 

f(Q) =f(Q*) + ~(Q - Q*)2f"(Q*) 

-IA p (T)h PI8(Q-Qp)' (13 ) 

We see that due to the last term describing the commensura­
tion energy,J( Q) is minimized by Q = Qp over a range of J~ 
and J, corresponding to 

(14) 

III. DISCUSSION 

Note that for the model we consider, the modulation 
vector in zero field is restricted to a symmetry direction,4 
either along a [1,0] direction in region III or a [1,1] direc­
tion in region IV of Fig. I, but has a magnitude which de­
pends on the exchange parameters J 2 and J 3 • Thus, well 
within regions III and IV we need only concern ourselves 
with Q values along the appropriate symmetry direction. 
Around each point in (J2,J3 ) space for which Q = G/p (p is 
the smallest integer of this form), there is an ellipse whose 
area is of order hP over which Q is constant. Between such 
ellipses Q is a continuously variable function of J 2 and J3 . 

Near the boundary between regions III and IV, the situation 
is more complicated. Exactly on this boundary the ground 
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state in zero field is infinitely degenerate: Q can assume any 
orientation but has an orientation-dependent magnitude.9 

Thus, for any point on the phase boundary in J2 - J3 space, 
the ground state has a modulation vector which can be any­
where on a curve defined by IQI =f({JQ)' where8 Q defines 
the orientation of Q. One can see that now it is necessary to 
consider the effect of commensurability energies associated 
with points obeying pQ = G, which have any orientation, 
provided they are within a distance of order h p/2 of the curve 
I Q I = f( 8 Q ). Furthermore, it is not necessary to be exactly 
on the boundary III-IV for this effect to come into play. 
Thus, one sees that even for arbitrarily small h, the phase 
boundary becomes a sort of scalloped curve in which ellipti­
cal regions corresponding to Q's not along a symmetry di­
rection are the steps in a generalized devil's staircase. Space 
does not permit us to discuss this in complete detail. 

We make some observations concerning the quantum 
Heisenberg system having a modulated ground state. Our 
preliminary results indicate that Ap (T = 0) is nonzero for 
all p, even p = 3, where the classical model gives a vanishing 
commensurability energy at zero temperature. Further­
more, since quantum effects lift the infinite degeneracy of the 
III-IV phase boundary, the "scallop" effect mentioned 
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above will become less relevant as S decreases. Including 
further-than-nearest-neighbor interactions 10 also removes 
the infinite degeneracy along the III-IV boundary and hence 
would similarly reduce the "scallop" effect. 
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