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Spin‐Wave Damping and Hydrodynamics in the Heisenberg
Antiferromagnet

Abstract
The Dyson‐Maleev formalism is used to calculate the decay rate of antiferromagnetic spin waves at low
temperatures and long wavelengths. Various regimes must be distinguished depending on the relation
between the wavevector k, the temperature T, and the anisotropy energy. For the isotropic system the relevant
parameters are (a) the incident energy, (b) the thermal energy, (c) the deviation from linearity ("curvature
energy'') of thermal spin waves, and (d) the curvature energy of the incident spin wave. In the anisotropic case
the damping of the k=0 mode has the same dependence on spin‐wave energy as in the isotropic system. In all
cases, the decay rate is small compared to the frequency, which implies that the spin waves are appropriate
elementary excitations for small k and T, and that they interact weakly among themselves in this limit. For k→0
with T fixed, the decay rate is proportional to k 2 in the isotropic system. This agrees with an earlier
hydrodynamic prediction and contradicts previous microscopic calculations. In this low‐k limit the full
spin‐spin correlation function is calculated, and it agrees with the hydrodynamic form proposed earlier. The
possibility of experimental verification of these predictions is briefly discussed.
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Spin Dynamics 
L. R. WALKER, Chairman 

Spin-Wave Damping and Hydrodynamics in the Heisenberg Antiferromagnet* 

A. B. HARRIS AND D. KUMAR 

University of Pennsylvania, Philadelphia, Pennsylvania 19104 

AND 

B. 1. HALPERIN AND P. C. HOHENBERG 

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07974 

The Dyson-Maleev formalism is used to calculate the decay rate of antiferromagnetic spin waves 
at low temperatures and long wavelengths. Various regimes must be distinguished depending on 
the relation between the wavevector k, the temperature T, and the anisotropy energy. For the isotropic 
system the relevant parameters are (a) the incident energy, (b) the thermal energy, (c) the deviation 
from linearity ("curvature energy") of thermal spin waves, and (d) the curvature energy of the 
incident spin wave. In the anisotropic case the damping of the k =0 mode has the same dependence 
on spin-wave energy as in the isotropic system. In all cases, the decay rate is small compared to the 
frequency, which implies that the spin waves are appropriate elementary excitations for small k 
and T, and that they interact weakly among themselves in this limit. For k-->O with T fixed, the 
decay rate is proportional to k 2 in the isotropic system. This agrees with an earlier hydrodynamic 
prediction and contradicts previous microscopic calculations. In this low-k limit the full spin-spin 
correlation function is calculated, and it agrees with the hydrodynamic form proposed earlier. The 
possibility of experimental verification of these predictions is briefly discussed. 

Using the Dyson-Maleev representation for the spin 
Hamiltonian of an antiferromagnetic insulator,1.2 we 
have calculated the decay rate of a long-wavelength 
spin wave, and the dynamic spin-correlation function, 
to lowest order in the temperature. The results ob
tained disagree with previous microscopic calcula
tions,a-5 but they agree in detail with the predictions 
of a recent "hydrodynamic" analysis,6 when the long 
wavelength limit is taken at fixed temperature. Cal
culations have been carried out in both quantum
mechanical and classical low-temperature regimes, for 
isotropic and anisotropic models. In this note we shall 
summarize the principal results; the detailed calcula
tions will be published elsewhere.7 

In the quantum-mechanical low-temperature regime 
(kBT«HE== liwE= 2JzS, i.e., T«1) we obtain the fol
lowing results for the isotropic modelS on a bcc lattice: 

1. LOWEST-ORDER CALCULATION: 
QUANTUM CASE 

To lowest order in the spin-wave interaction the 
decay of a spin wave is due to scattering from thermally 
excited spin waves. The conservation laws of energy 
and momentum define a scattering surface which de
pends sensitively on the relations among the energy 
of the incoming spin waveS HEEk, the thermal energy 
kB T== !HET, the anisotropy energy HA, and the "curva
ture energy" for both incoming and thermal spin waves. 
The curvature energy represents the deviation from 
linearity of the spin-wave excitation spectrum, and is 
of order HEEk3 and HEr3, for the incoming and thermal 
spin waves, respectively. A number of different regimes 
must be distinguished for the decay rate rk, depending 

Regime A: Ek«r3«1, 

rk= 2WES-2Ek2T3(27T )-3[a lInT I +a/J; (1) 

(3) 

(4) 

where a, a', b, and b' are constants of order unity, 
and g(k) is a numerical function of the angle k; the 
values of these constants are given in Ref. 7. 

For the model with axial single-ion anisotropy2 
HA«HE, the decay rate of a k=O spin wave maybe ex
pressed in terms of its energy HEEO= (2HAHE+HA2)1/2• 

The results are then analogous to those for the iso
tropic model. 

Regime A': Eo«r3«1, 

on the relative magnitudes of the various energies. ro=!wES-2Eo2r3(27T)--a[allnTI+a'-(8/9)7T21n2J; (5) 
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1362 HARRIS ET AL. 

Regime B': r3«Eo«r«1, 

ro= 2wES-2E02r3(27r )-3 

X[b In(r/2Eo)+b'- (4/3)S-(2)Ji (6) 

Regime C': r«Eo«l, 

ro= 64wES- 2(27r )-3 

X[exp( -HEEO/kBT) J(kBT/HE)2Eo3. (7) 

II. SELF-CONSISTENCY AND 
HIGHER-ORDER TERMS 

The foregoing results may be shown to be unmodified 
to leading order in the temperature when the damping 
of the intermediate spin waves is taken into account 
in a self-consistent manner. The calculations may also 
be generalized to the case of an incident spin wave 
whose energy and momentum are not related by the 
resonance condition liw=HEEk. An analysis of the terms 
left out of the lowest-order calculation shows these 
to be of higher order in either (kBT/HE) or (zS)-I, 
for long wavelengths. In particular it may be argued, 
although not proved rigorously, that terms of relative 
order (kBT/HEEk), for instance, do not appear in the 
perturbation series. We may thus conclude that the 
lowest-order diagrams already yield the correct long
wavelength (hydrodynamic) behavior for the spin
wave damping, in contrast to the case of phonons in a 
crysta1.9 

III. THE CLASSICAL LOW-TEMPERATURE 
DOMAIN 

The classical limit is obtained by taking S-'>oo, 
li-'>O J-'>O with liS=tNo, and 2zJ S2==tNoWE=kBTo , . 
remaining finite. In this case the decay rate may agam 
be calculated, to lowest order in k and (T / To) , yielding 

rk= (47]/37r)WE(T/To)2Ek2, (8) 

where 7] is a numerical constant depending on the form 
of the magnetic lattice. The corrections to this formula 
are of relative order Ek and (T / To). 

IV. SPIN-CORRELATION FUNCTIONS 

The Dyson-Maleev representation for spin operators 
may be used to calculate the dynamic spin-correlation 
functions at long wavelengths. Denoting by CQ+
and Cs+ - the correlation functions transverse to the 
direction of antiferromagnetic alignment, for staggered 
and total spins, respectively, we have for the isotropic 
model to lowest order in the temperature, 

CQ+-(k, w) = (32kBT Sli/ek2) 

D' e2k4+ !D'k2(w2-e2k2) 

X [(w-ek)2+ (tD'k2)2J[(w+ek)2+ (tD'k2)2J ' 

Cs+-(k, w) = (2kBT Sli/e) 

D' e2k4+ tD' k2 (w2 - e2k2) 

(9) 

(10) 

where e= tWE is the spin-wave velocity in frequency 
units, k is a dimensionless wavenumber, and D' is 
the temperature-dependent damping constant for spin 
waves, obtainable from Eqs. (1) and (8), for quantum 
and classisal cases, respectively, (note that Ek'"'-'tk). The 
form of Eqs. (9) and (10) is identical to the one 
predicted earlier from the hydrodynamic theory [see 
Eq. (6.11) of Ref. 6J, and a comparison of the expres
sions yields the transport coefficients of the macroscopic 
theory. 

V. CONCLUSION 

In the isotropic model, the decay rate vanishes more 
rapidly than the spin-wave frequency as the wave
number k goes to zero. This confirms that the antiferro
magnetic spin waves interact weakly at long wave
lengths. This result disagrees with conclusions drawn 
from previous calculations,a,4 but is closely analogous 
to the situation in ferromagnets. lO 

Since the predicted decay rate is very small at low 
temperatures and long wavelengths, it cannot be easily 
observed by neutron scattering experiments. A method 
which seems more hopeful is the parallel pumping 
technique,!! which has higher resolution. The damping 
of the uniform mode in the anisotropic model may be 
measured by antiferromagnetic resonance,12 and the 
experimental results agree qualitatively with theory. 
One difficulty, however, is that our theoretical model 
for the anisotropy may not be a very accurate one. 

Finally, we note that the calculations reported here 
have also been carried oue using the Holstein-Prima
koffl3 formalism. The results for observable quantities 
agree in the two formalisms, except in the domain 
Ek«r5, where the Holstein-Primakoff modes are not 
self-consistent in lowest order. 

* The portion of the work done at the University of 
Pennsylvania was partially supported by the U.S. Office of Naval 
Research and the National Science Foundation. 
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