
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2015

Real-Time Storytelling with Events in Virtual
Worlds
Alexander Shoulson
University of Pennsylvania, ashoulson@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1134
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Shoulson, Alexander, "Real-Time Storytelling with Events in Virtual Worlds" (2015). Publicly Accessible Penn Dissertations. 1134.
http://repository.upenn.edu/edissertations/1134

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1134?utm_source=repository.upenn.edu%2Fedissertations%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1134
mailto:libraryrepository@pobox.upenn.edu

Real-Time Storytelling with Events in Virtual Worlds

Abstract
We present an accessible interactive narrative tool for creating stories among a virtual populace inhabiting a
fully-realized 3D virtual world. Our system supports two modalities: assisted authoring where a human
storyteller designs stories using a storyboard-like interface called CANVAS, and exploratory authoring where
a human author experiences a story as it happens in real-time and makes on-the-fly narrative trajectory
changes using a tool called Storycraft. In both cases, our system analyzes the semantic content of the world
and the narrative being composed, and provides automated assistance such as completing partially-specified
stories with causally complete sequences of intermediate actions. At its core, our system revolves around
events -â?? pre-authored multi-actor task sequences describing interactions between groups of actors and
props. These events integrate complex animation and interaction tasks with precision control and expose
them as atoms of narrative significance to the story direction systems. Events are an accessible tool and
conceptual metaphor for assembling narrative arcs, providing a tightly-coupled solution to the problem of
converting author intent to real-time animation synthesis. Our system allows simple and straightforward
macro- and microscopic control over large numbers of virtual characters with diverse and sophisticated
behavior capabilities, and reduces the complicated action space of an interactive narrative by providing
analysis and user assistance in the form of semi-automation and recommendation services.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Norman I. Badler

Keywords
Artificial Intelligence, Computer Graphics, Interactive Narrative, Storytelling, Virtual Worlds

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1134

http://repository.upenn.edu/edissertations/1134?utm_source=repository.upenn.edu%2Fedissertations%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages

REAL-TIME STORYTELLING WITH EVENTS IN VIRTUAL WORLDS

Alexander Shoulson

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2015

Supervisor of Dissertation

Norman I. Badler, Professor,

Computer and Information Science

Graduate Group Chairperson

Lyle Ungar, Professor,

Computer and Information Science

Dissertation Committee

Ladislav Kavan, Assistant Professor,

Computer and Information Science

Lyle Ungar, Professor,

Computer and Information Science

Mark Riedl, Associate Professor,

Georgia Institute of Technology

(External Committee Member)

Stephen H. Lane,

Associate Professor of Practice,

Computer and Information Science

Acknowledgements

The use of “we” is not a figure of speech when describing this work. The work done here

was made possible by numerous teams over several years on multiple individual projects.

Norman I. Badler and Mubbasir Kapadia provided consistent mentoring, supervision, and

co-authorship on nearly every publication from which this document draws. In addition,

individual projects were made possible with the help and co-authorship of Francisco Gar-

cia, Cyril Steimer, Samuel Oberholzer, Kai Ninomiya, Max Gilbert, Nathan Marshak,

Robert Mead, Matthew Jones, and Daniel Garcia.

In addition, I would like to thank Ben Sunshine-Hill, Aline Normoyle, John Drake,

Pengfei Huang, Joe Kider, Cory Boatright, and Tiantian Liu for help with advice, bounc-

ing ideas around, and rehearsal presentations during the course of my time in the SIG Lab.

Similarly I would like to thank Seth Frey, Fabio Zünd, Bob Sumner, Fabian Hahn, and

Antoine Milliez and everyone else at Disney Research Zürich for our numerous discus-

sions during my work there. Particularly, I would like to thank Mairuzio Nitti and Alessia

Marra for their art assets used in the Storycraft and CANVAS projects.

All of this work is due in great part to the teachers and mentors that have brought me

to this point. I would like to thank Stu Hirshfield, Alistair Campbell, and Rick Decker

at Hamilton College for fostering my love for Math and Computer Science, and guiding

me into this field in the first place. I am grateful to Larbi Mouedden at EA Tiburon and

to Kevin Dill for introducing me to the video game industry and guiding me through

ii

the first steps. To my professors at Penn and elsewhere – Ani Nenkova, Ben Taskar,

Sampath Kannan, Milo Martin, and Matt Blaze, and especially those willing to serve on

my committee – Steve Lane, Ladislav Kavan, Lyle Ungar, and Mark Riedl from Georgia

Tech. Finally, I would like to thank Mike Felker and Brittany Binler for greatly simplifying

my life as a graduate student.

Most importantly, I owe a great debt of gratitude to my family, my parents, my grand-

parents, and my siblings for bringing me through this particular journey from start to

typeset finish. I have been lucky to have you all with me in Philadelphia while working

on my degree, and was much better off for it.

iii

ABSTRACT

REAL-TIME STORYTELLING WITH EVENTS IN VIRTUAL WORLDS

Alexander Shoulson

Norman I. Badler

We present an accessible interactive narrative tool for creating stories among a virtual

populace inhabiting a fully-realized 3D virtual world. Our system supports two modali-

ties: assisted authoring where a human storyteller designs stories using a storyboard-like

interface called CANVAS, and exploratory authoring where a human author experiences

a story as it happens in real-time and makes on-the-fly narrative trajectory changes us-

ing a tool called Storycraft. In both cases, our system analyzes the semantic content of

the world and the narrative being composed, and provides automated assistance such as

completing partially-specified stories with causally complete sequences of intermediate

actions. At its core, our system revolves around events – pre-authored multi-actor task

sequences describing interactions between groups of actors and props. These events in-

tegrate complex animation and interaction tasks with precision control and expose them

as atoms of narrative significance to the story direction systems. Events are an accessible

tool and conceptual metaphor for assembling narrative arcs, providing a tightly-coupled

solution to the problem of converting author intent to real-time animation synthesis. Our

system allows simple and straightforward macro- and microscopic control over large num-

bers of virtual characters with diverse and sophisticated behavior capabilities, and reduces

the complicated action space of an interactive narrative by providing analysis and user

assistance in the form of semi-automation and recommendation services.

iv

Contents

Acknowledgements ii

Contents v

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Story Participation . 2

1.2 Story Control . 5

1.3 Contributions . 7

1.4 Applications. 8

2 Related Work 10

3 Architecture 19

3.1 Events . 23

3.1.1 Characters Interacting with Each Other 24

3.1.2 Scheduling . 25

3.1.3 Characters Interacting with the Environment 27

v

4 ADAPT: The Agent Development and Prototyping Testbed 29

4.1 Framework . 31

4.2 Shadows in Full-Body Character Animation 33

4.3 Choreographers . 34

4.4 The Coordinator . 35

4.5 Using Choreographers and the Coordinator 38

4.6 Example Choreographers . 39

4.7 Character Behavior . 41

4.8 Body Capabilities . 44

4.9 Computational Performance . 45

5 PAStE: A Platform for Adaptive Storytelling with Events 47

5.1 Problem Definition . 48

5.2 State Domain . 48

5.2.1 Smart Object Affordances . 49

5.2.2 Affordance State Encoding . 50

5.2.3 Rules and Inference . 52

5.3 Events and the Action Domain . 53

5.3.1 Smart Object Groups . 55

5.3.2 Event Instances, the Action Domain 56

5.3.3 Goals . 56

5.4 Exploring the Affordance Domain . 57

5.4.1 Discovering the Event Domain 60

5.4.2 Reaching a Goal . 61

5.5 Progressive Differentiation . 62

vi

6 CANVAS: Computer-Assisted Narrative Animation Synthesis 64

6.1 Defining a CANVAS Story . 65

6.1.1 Event Authoring and Story Structures 65

6.1.2 The Story Sequence . 67

6.2 Handling Underspecified Stories . 69

6.3 Parameter Filling for Incomplete Story Arcs 71

6.4 Story Inconsistency . 72

6.4.1 Local Inconsistency Resolution 73

6.4.2 Global Inconsistency Resolution 75

7 Real-Time Story Exploration via Storycraft 81

7.1 Overview . 81

7.1.1 Sentiment Tagging and Analysis. 82

7.1.2 Generative Storytelling. 83

7.1.3 Intervention Storytelling. 84

7.2 The Story Web . 85

7.2.1 Pre-computation . 86

7.3 Story Web Analysis . 87

7.3.1 Low-level Features . 88

7.3.2 Heuristics and High-level Features 89

7.3.3 Sentiment Tagging and Qualitative Analysis 91

7.4 Story Generation . 91

7.4.1 Generative Storytelling . 93

7.4.2 Intervention Storytelling . 94

8 Results 95

8.1 Objects, Actors, and the Environment 95

vii

8.2 Story Events . 97

8.3 Scenario Creation Effort . 98

8.4 Explicitly Authored Narratives . 100

8.4.1 Fully Manual Authoring . 100

8.4.2 Automated Parameter Selection 101

8.4.3 Global Inconsistency Resolution 101

8.4.4 Fully Automated Narrative Generation 102

8.5 Dynamically Exploring Narratives . 103

8.5.1 Metrics . 105

8.6 Independent Authors . 106

9 Conclusions and Discussion 113

9.1 Future Directions . 115

Bibliography 118

viii

List of Tables

8.1 Metadata definition of some events used in the bank scenario. 109

ix

List of Figures

2.1 An example deployment of a semi-automated forces (SAF) system. . . . 16

3.1 An illustration of the functionality of our system at runtime. 20

3.2 An illustration of the solution stack, using four discrete tools organized

into three operational tiers. 21

3.3 A simple conversation PBT controlling two characters, a1 and a1, with a

MeetingPoint parameter. 25

3.4 The state machine for a chair smart object’s “sit” affordance. 28

4.1 Overview of ADAPT framework. 30

4.2 Blending multiple character shadows to produce a final output skeleton pose. 34

4.3 A sample dataflow graph we designed for evaluating ADAPT. 37

4.4 The ADAPT Character Stack. 42

4.5 Update frequency for the character animation and navigation components

in ADAPT. 45

5.1 Two sets of group activity. 55

5.2 Affordance domain exploration. 59

6.1 CANVAS Overview. 64

x

6.2 An illustration of the various arcs and vertices that describe a Story Se-

quence Diagram. 68

7.1 An illustration of the story web pre-computation process. 83

7.2 An illustration of the real-time storytelling process. 85

8.1 A sketch of the layout for the bank scenario. 108

8.2 A complex narrative authored using CANVAS. 110

8.3 Filling in an incomplete story specification. 111

8.4 A globally inconsistent story definition. 112

8.5 A screenshot of the virtual world and Storycraft interface overlay. 113

8.6 Close-up view of the storytelling dialog showing sentiment and event se-

lection. 113

xi

Chapter 1

Introduction

Interactive virtual worlds present a unique opportunity for simulation, training, and en-

tertainment in settings that are otherwise prohibitive to recreate or control. One way to

produce a more immersive experience is to populate these 3D environments with fully

articulated virtual humans capable of exhibiting functional, purposeful behavior and rich

interactions with other objects in the environment. Complex virtual worlds with sophisti-

cated artificial actors present a unique opportunity for telling immersive interactive stories.

With a large behavioral repertoire, virtual characters can perform narrative roles, represent

personalities, and convey information or emotion to a human viewer. These types of set-

tings create a fertile setting for dynamic storytelling, where sequences of occurrences in

the environment are designed and carried out with overarching narrative intent rather than

simply emerging from the individual motivations of the digital actors.

Purpose. This work is designed to facilitate the creation of complete interactive vir-

tual worlds from the lowest-level animation controllers to the high-level abstract narrative

intent defining a story scenario. While individual aspects of the virtual world experi-

ence (character animation, story generation, etc.) are well explored in isolation, there

1

is a significant lack of research on systems capable of deeply assimilating these discrete

disciplines into one cohesive experience that can fully exploit the state of the art in each

field. Integration between bodies of research in these areas is sometimes considered an

afterthought, while in reality the task of incorporating meaningful narrative and lifelike

animation is non-trivial. Our work explores and addresses the problems that lie within

and, perhaps more importantly, between the story control and animation synthesis tasks

involved in creating a virtual world.

By far the most significant problem presented in authoring interactive narratives is in

empowering an author to communicate narrative intent to the system in such a way that

that abstract story can be converted into the moment-by-moment joint actuations on a

virtual actor’s body in real time. To give our authors the power to bring stories to life in a

virtual world, we use a conceptual structure we call the event. Where the term “event” is

typically used to described observed occurrences, our events are an accessible metaphor

for describing intended outcomes (i.e., scripted interaction sequences) – authors dictate the

events they expect to see in a scenario, and it becomes the responsibility of our authoring

tool to ensure their appearance and animate their results.

1.1 Story Participation

A key goal of interactive narrative is to create environments where users can interact with

the computer-controlled characters and act with agency in the world to change the story’s

outcome. However, because of the dynamic and mercurial nature of human interaction,

the authoring process for these real-time stories can be prohibitively expensive in terms of

both time and required expertise. The techniques by which human users can interact with

these kinds of dynamic stories is increasingly well explored, within both academia and the

entertainment industry, but the task of designing the stories themselves, particularly with

2

rapid prototyping and feedback, remains elusively arduous. We are interested in designing

a system where authors with minimal training can easily create interactive stories in large,

continuous environments full of ambient human activity that unfold in real-time for the

benefit of a human story participant. For high-fidelity expression, we need characters with

responsive controllers to react to intervention from human users and adapt the structure of

the narrative to incorporate this external input. Furthermore, fully simulating every virtual

actor is computationally expensive, and wastes resources on characters that may be less

important than others, so virtual characters from the ambient populace can be “promoted”

in our system on an as-needed basis and augmented with richer behaviors that advance a

story’s plot. Our key goal is to allow an author to compose a compelling story using a cast

of characters that all begin as simple pedestrians, but that can be upgraded at runtime to

exhibit rich behaviors relevant to the narrative. This facilitates immersion by affording the

author more complete ownership of his or her story based on which characters he or she

chooses to include in the plot, and in what manner.

In our system we discuss two kinds of user – the author, upon whom our work focuses,

and an end-user participant who interacts with the story in real-time after the author has

crafted it. The system also relies on a third user, a domain expert, who designs the rules

of the virtual world itself, but this domain expert is also not the focus of our work. In

traditional media the participant user role would be represented by a reader or viewer, but

interactive narrative blurs the lines between the creator/consumer roles by affording the

consumer agency in and control over the creator’s content. Similarly, the author most

closely parallels the role of a screenwriter, and the domain expert could be considered the

equivalent of a set designer or visual effects engineer.

This form of adaptive storytelling is specifically suited for open world or free-roam en-

vironments that place an emphasis on the participant’s ability to explore and interact with

a variety of world features. Our system cultivates a “primordial soup” of undifferentiated

3

characters in the world that can transition from background ambience to pivotal actors in

a long-form narrative. In so doing, we develop the ability for the author to design, and the

participant to encounter compelling narratives at any point in the virtual world without the

computational cost of fully simulating every character from the start. This draws inspira-

tion from Alibi Generation (AG) [85], but where AG focuses on justifying a character’s

past observed behavior, we want to use a human-designed story as a blueprint for enrich-

ing future behavior by temporarily enhancing a character’s complexity when needed.

There are a number of limitations that must be surmounted before a robust and fully

realized open world interactive narrative system can be created. First, from a graphics per-

spective, virtual actors must be able to exhibit a rich repertoire of individual capabilities,

with specialized controllers for navigation, locomotion, gaze tracking, reaching, gesture

animation, and others. Second, specialized control structures are needed to facilitate both

individual character autonomy and the coordination of complex multi-character interac-

tions with a high degree of control fidelity. The author needs tools to control character

coordination at varying levels of granularity, from two characters exchanging a prop to

large groups of characters participating in a riot. Once the author crafts the story and

conveys his or her intent to the system, the system must have the ability to carry out the

author’s story design by use of an automated virtual director. That director (sometimes

called a drama manager) is a virtual agent that reasons about the objects and characters in

the world, and the narrative impact of different character capabilities in order to produce

animated action sequences that accomplish predetermined story goals and to decide which

characters should participate in accordance with the author’s instructions.

4

1.2 Story Control

Traditional interactive narrative approaches typically focus on using a small cast of char-

acters to tell a single story. However, for large environments containing an entire populace

of diverse and sophisticated characters, it is rare for a single narrative thread to continu-

ously tie those characters into a cohesive story. Few traditional stories manage to contain

an ensemble of dozens of characters that each significantly contribute a pivotal role in a

single overarching plot. For these sorts of open-world environments, the narrative con-

nections must consist of numerous interwoven story “threads” that combine to convey a

sense of meaning, cohesion, and causality to a user’s experience in the world. A single

story “plan” or dictated story arc will not always suffice for this many potential principal

characters in an interactive setting.

We address this problem in two ways. For offline story authoring, we use automation

and computer assistance to mitigate the complexity of the virtual world and create richer

stories with less effort. In addition, our solution also provides the opportunity involve the

human author “in the loop” as part of a real-time authorial control process while the story

progresses. This combined approach accomplishes two goals. First, since managing a

populace of characters in a narrative setting is a demanding task, we can better leverage

the unique creativity of a human storyteller rather than a completely automated system.

This can help enrich the experience for the story participants and make for more varia-

tion between distinct storytelling sessions. Second, while automated storytellers are an

important tool, they emphasize the merit of being in the story as a character participant,

while discarding to an extent the value of the storytelling experience. Our author-centric

approach recognizes that telling stories is an important aspect of day-to-day human com-

munication, and fully automated directors disconnect the creator of the story from the

5

recipient by limiting the accessibility of story specification. In effect, we aim to democra-

tize the digital storytelling experience with accessible tools for creating narrative.

Authoring stories in our system can be done in many different modalities. First, stories

can be created offline using an intelligent storyboarding tool. This interface eases the

authoring burden of creating complex stories in rich environments by allowing authors to

significantly under-specify their desired narratives – allowing our system to fill in causal

gaps with a series of planning tasks. In addition to this offline process, we provide a tool

for real-time interactive story authoring in which the author manipulates the trajectory of a

story as it progresses. In both cases, the author is presented with the world’s virtual actors

and a lexicon of events that those actors can perform with each other and the environment.

The author composes the story by selecting sequences of events and their participants,

and can immediately observe that story’s execution in real-time by the virtual actors for

instant feedback. This allows the author to make adjustments and see their effects with

no computational downtime. Our system allows an author to explore a story space in

real-time, observing events as they unfold for the characters, and making choices in the

moment that affect the future trajectory of the story. With a human storyteller deciding the

overall trajectory of the narrative, the computer is not responsible for directing the story

entirely, but rather for facilitating the storyteller’s vision of narrative-relevant events and

interpreting the results of those event selections in a causally consistent manner.

This presents a daunting complexity problem, however. For example, in a well-authored

story scenario, there may be hundreds of potential events that can occur in a world fea-

turing any number of a virtual populace’s several-dozen members. This is a prohibitively

large action space to expose to a human user for real-time decision making, or even as an

offline process in a rapid prototyping or previsualization environment. To solve this com-

plexity problem, we introduce CANVAS, a system for Computer-Aided Narrative Anima-

tion Synthesis [29]. CANVAS understands the consequences of an event on the world and

6

story, and can convert partially-specified stories by the author into complete and causally

consistent narratives to execute on screen. An additional module, called Storycraft, can

filter useful actions to produce a list containing the few most relevant, meaningful, and in-

teresting events for the computer-aided human author to invoke in the world in real-time.

1.3 Contributions

The core contribution of our system is the event, a conceptual structure that forms an in-

termediary language between story and animation. Events represent atoms of narrative

significance – interactions between characters and objects that drive the story forward in

a meaningful way (recall that events are intended outcomes, not observed occurrences

as the term is sometimes used to describe in other works). They are easy for a human

author to select, describe, and arrange into a plot, and easy for our system to convert

into high-fidelity animations on-screen once the story is decided. The rest of the system

revolves around the creation, manipulation, understanding, and digestion of events. As

such, CANVAS and Storycraft fill several roles in the authoring process, in terms of re-

ducing the complexity and the burden on the author when designing stories using the event

structure.

Understanding Ramifications. Both CANVAS and Storycraft can understand and com-

municate the effects of events to the human storyteller, such as the effect that a riot event

will make its participating virtual characters angry, or that a conversation event between

two characters will make them friends. This helps the human storyteller accomplish goals

or produce interesting situations around which to revolve the narrative.

7

Populating Intermediate Events. CANVAS specifically can take partially-authored sto-

ries comprised of loosely related events and tie them together with reasonable causal asso-

ciations by adding in the correct intermediary events. For example, if the human storyteller

instructs a character to take her dog for a walk and then buy something at the store across

town, CANVAS can fill in the intermediate events such as returning the dog to the house

and the character using her car to drive to the store before shopping there. Furthermore,

because CANVAS now has a horizon of future events that it has been told to enact, it can

predictively interweave character actions such as the character picking up her car keys on

the way to fetch her dog for the walk, removing that step later when she needs to enter

her car. This kind of narrative understanding makes CANVAS a facilitator for the human

storyteller to minimize authorial effort, focus on the creative aspects of storytelling, and

create interesting scenarios for entertainment, education, or instruction without worrying

about mechanical details.

Narrative Topology Analysis. Storycraft relies on the analysis and understanding of a

complete Story Web generated as part of an offline process. Because Storycraft can ex-

amine a complete graph of the story space, it can extract topological domain-independent

features from that graph and use these features to recommend choices to the user. This

helps mitigate the effect of having an intimidating amount of choice and flexibility in the

system, reducing a dauntingly large action space to a small but meaningfully diverse set

of options.

1.4 Applications.

Our system in its current form is intended primarily for entertainment and education in vir-

tual worlds. It is ideally situated for rapid prototyping and pre-visualization for film and

8

other storyboard-based media, as an author can very quickly convert a narrative trajectory

into a visual representation of actors in a scene. Additionally, because our simulation can

accommodate interaction and generates simulations with real-time controllers at interac-

tive frame rates, it could easily be used for more immersive applications. We envision

using our tool both for open-world exploration experiences and proctored training sce-

narios where an educator or researcher (serving as the author) monitors the progress of

their trainees or respondents and manipulates the parameters and story of the simulation

in real-time to react to those participating users’ actions.

9

Chapter 2

Related Work

This kind of interactive narrative system crosses many disciplines with respect to display-

ing sophisticated actors in a fully realized 3D virtual world, and managing them with a

centralized system capable of driving an interactive narrative. There exists a wealth of

research [58, 86, 26, 64] that separately addresses the problems of character animation,

steering and path-finding, behavior authoring, and interactive narrative, with many open

challenges [28] that remain to be addressed for the next generation of interactive narrative

virtual worlds.

Character Animation. Data-driven approaches [35, 2] use motion-capture data to an-

imate a virtual character. Motion clips can be manipulated and concatenated by using

warping [93], blending [49, 50], layering [5], or planning [70, 18] to enforce parametric

constraints on recorded actions. Interactive control of virtual characters can be achieved by

searching through motion clip samples for desired motion as an unsupervised process [36],

or by extracting descriptive parameters from motion data [21]. Procedural methods are

used to solve specific tasks such as reaching, and can leverage empirical data [42], ex-

ample motions [10], or hierarchical inverse kinematics [4] for more natural movement.

10

Physically-based approaches [8, 94] derive controllers to simulate character movement in

a dynamic environment. We refer to Pettré et. al. [60] for a more extensive summary of

work in these areas.

Steering and Path-finding. For navigation, the environment itself is often described and

annotated as a reduction of the displayed geometry to be used in path planning. Proba-

bilistic roadmaps superimpose a stochastic connectivity structure between nodes placed in

the maneuverable space [33]. Navigation meshes [22] provide a triangulated surface upon

which agents can freely maneuver. Potential Fields [90] generate a global field for the

entire landscape where the potential gradient is contingent upon the presence of obstacles

and distance to goal, but is prone to local minima. Dynamic potential fields [88] have been

used to integrate global navigation with moving obstacles and people, efficiently solving

the motion of large crowds without the need for explicit collision avoidance.

Steering techniques use reactive behaviors [62] or social force models [17, 57] to

perform goal-directed collision avoidance in dynamic environments. Local perception

fields [30, 31] and predictive approaches [55, 89] enable an agent to avoid others by an-

ticipating their movements, while more complex scenarios such as group interactions and

deadlocks are solved using hybrid techniques [77], space-time planning [78], or by ex-

ternalizing steering logic [67]. Data-driven steering [38, 37] focuses on generating local-

space samples from observations of real people which are used to create databases, or

serve as training data to learn computational models which are queried to emulate real-

human behavior. Recast [52] provides an open-source solution to generating navigation

meshes from arbitrary world geometry by voxelizing the space, and the associated Detour

library provides path planning and predictive steering on the produced mesh. Pelechano

et. al. [58] provide a detailed review of additional work in this field.

11

Behavior Authoring. Animating virtual human characters has been addressed using mul-

tiple diverse approaches, particularly with respect to how behaviors themselves are de-

signed. Early work focuses on imbuing characters with distinct, recognizable person-

alities using goals and priorities [43] along with scripted actions [59]. The problem of

managing a character’s behavior can be represented with decision networks [95], cogni-

tive models [12], goal-oriented action planning [53, 25], or via learning [41]. Very sim-

ple agents can also be simulated on a massive scale using GPU processing [7]. Recent

work [81, 71, 84] proposes an event-centric authoring paradigm to facilitate multi-actor

interactions with contextual awareness based on agent type and event location. Our sys-

tem makes use of Parameterized Behavior Trees (PBTs) [73] to coordinate interactions

between multiple characters.

Our system is built on the PAStE platform (described in more detail in Section 5).

Like PAStE’s events, A Behavior Language (ABL) [47] provides a generalized scripting

language for single- or multi-character actions based on manually authored preconditions

for successful action execution. Multi-actor behaviors in ABL use a role-based negotiation

process to determine factors like leader/follower relationships. Since PAStE events are

based on PBTs, they share some similarities with ABL. Both ABL and PBTs allow for

sequential and parallel control structures for synchronous actions. However, PAStE’s PBT

events differ from ABL in two key ways:

Character Interactions. ABL has support for character interactions, but its joint

behaviors are still agent-centric and rely on an agent’s autonomy. An ABL “follow

the leader” event has two different versions, one for the leader, and one for the fol-

lower, that both agents execute individually. PAStE’s PBT event version of “follow

the leader” contains only one event behavior structure that suspends the autonomy

of both the leader and follower, and controls both exclusively for the duration of the

12

event as limbs of a single entity. This centralizes the authoring process for complex

synchronous interactions.

Behavior Metadata. ABL and PAStE events both require precondition and effect

information in order to to be used effectively. In ABL, these are hand-authored in the

behavior script, while PAStE can derive this descriptive information without man-

ual annotation. After experimenting with the world’s objects in the Smart Object

Laboratory, PAStE can simulate its events using combinations of arbitrary partici-

pant descriptions to determine whether an event will succeed or fail under certain

conditions.

Multi-Solution Character Animation Platforms. End-to-end commercial solutions [45,

3] combine multiple diverse character control modules to accomplish simultaneous tasks

on the same character, incorporting navigation, behavior, and/or robust character anima-

tion. SteerSuite [76] is an open-source platform for developing and evaluating steering al-

gorithms. SmartBody [69] is an open-source system that combines steering, locomotion,

gaze tracking, and reaching. These tasks are accomplished with 15 controllers working

in unison to share control of parts of the body. SmartBody’s controllers are hierarchically

managed [23] where multiple animations, such as gestures, are displayed on a virtual

character using a scheduler that divides actions into phases and blends those phases by in-

terpolation. The controllers must either directly communicate and coordinate, or fix cases

where their controlled regions of the body overlap and overwrite one another, making

the addition of a new controller a process that affects several other software components.

ADAPT, our animation platform (described in more detail in Section 4), shares some qual-

ities with SmartBody, but also differs in several fundamental ways. While ADAPT does

13

provide a number of character controllers for animating a virtual human, the platform fo-

cuses more on enabling high-level behavioral control of multiple interacting characters,

the modularity of these character controllers, and the ease with which a user can introduce

a new animation repertoire to the system without disturbing the other controllers already

in place.

Crowd Simulation. In addition to telling a story, we are also interested in creating a realis-

tic, immersive environment with interesting ambient activity. Traditional approaches [58]

for large-scale crowd simulation incorporate social force models [17], reactive behav-

iors [62], or hybrid solutions [77] to handle the characters’ navigation and decision pro-

cesses. Typically, characters in a crowd are simulated with low behavioral fidelity, driven

by simple goals [68] or heavy scripting [45] that do not incorporate narrative objectives.

Our work builds on traditional crowd simulation approaches by developing a narrative on

the backdrop of a virtual populace. Characters in PAStE can move fluidly in and out of fo-

cus, participating in the story when needed for an event, and returning to simple autonomy

when not involved in the narrative [71]. Using this hybrid approach, we can tell stories in

“living” worlds populated by functional, purposeful agents.

Visual Authoring. Visual languages have been successfully used in many applications [92]

and are a natural metaphor for specifying narratives, particularly those taking place in a

fully realized virtual environment. Game authoring systems [34, 66] facilitate the author-

ing of game logic by providing visual analogies to programming constructs, but typically

operate at the level of an individual character’s action space. There is a growing body

of work in storyboard generation for interactive entertainment: Skorupski et al. [79] pro-

vide a storyboarding tool for novice users to author interactive comics. LongBoard [20]

provides a hybrid sketch and scripting interface for authoring 2D storyboards which are

14

used as visual constraints for rendering an animated 3D scene, while using a planner to

fill in the unspecified shots. Hajarnis et al. [15] provide a graphical interface for authoring

dialogue in generated cinematic scenes based on a case-based planning approach.

Automation. One of the earliest planning systems, the STRIPS planner [11], lays down

the framework of a described world state with operators, preconditions, and effects manip-

ulating that state. Subsequent developments to the pervasive STRIPS archetype include

the planning domain definition language [48], cognitive-oriented planning [13, 61], hier-

archical task networks [6], and planning with smart objects [1]. Planning has also been

explored specifically in interactive narrative [74, 64]. Traditional planning approaches are

limited by a lack of authorial control in the planning process and the need for detailed do-

main specification. They are typically restricted to simple problem domains (small state

and action spaces) with a small number of agents and simplified representations [32, 20].

Our system can derive domain information from simple object affordances, while crowd-

sourced [39] domain knowledge could also be used in narrative automation tasks.

To our knowledge no comparable system exists that allows an untrained author to sparsely

specify a narrative in an accessible storyboard-like interface and use an automated plan-

ning framework to complete the narrative and display it in real-time in a fully-realized

3D virtual environment. Similarly, no system exists to our knowledge that (1) allows an

author or explore and control a story in real-time as it happens with full authorial control

over the environment and (2) uses a domain-independent topology-based recommendation

system to nominate interesting story trajectories to the author while the story is executing.

Semi-Automated Forces (SAF). SAF systems are simulations in which one or more

skilled operators control opposition forces in virtual military training exercises. Systems

15

like ModSAF [51], OneSAF [83] exist in the sphere of military simulations, and similar

systems have been applied to multi-player video games [19]. Applications of these sys-

tems are extremely complicated, and professional deployments require multiple skilled

operators to manage the intricate detail of a military encounter with mission-critical real-

ism, as illustrated in Figure 2.1. Additionally, SAF systems deployed both in video games

and by the military perform little to no analysis of the scenario, relying instead on man-

ual control from human authors and emergent behavior of autonomous virtual actors. In

contrast, our system is designed to be far more accessible to untrained users, and is capa-

ble of assessing the narrative trajectories of the stories being created in order to provide

recommendations to the human author and reduce the otherwise massive decision space.

Figure 2.1: An example deployment of a semi-automated forces (SAF) system.

Interactive Narrative. The field of interactive narrative has produced the concept of a vir-

tual director or drama manager [44]. Virtual director systems are driven by a virtual agent

responsible for steering the agents in the world towards predetermined narrative goals

[91]. This area has been well studied, and a number of techniques exist for designing ef-

fective directors. Facade [46] executes authored beats to manage the intensity of the story,

Mimesis [63] employs narrative planning [40] with atomic agent actions, Thespian [75]

16

uses decision-theoretic agents to create actors with social awareness, while PaSSAGE [87]

and the Automated Story Director [65] monitor a user’s experience through the story to

choose between scenes and character behavior. Riedl and Bulitko provide a more detailed

survey [64] of the current work in interactive narrative.

The bulk of research in interactive narrative focuses on the virtual director, which rep-

resents only part of the interactive narrative problem. Most of this work is concerned with

an automated system that performs an ordered selection of abstract, story-relevant action

sequences to produce a narrative that responds to the actions of a user. Our approach is

more author-centric than participant-centric. In our virtual world, a human author man-

ages the ambient activity of a pool of “primordial” characters with little initial personality,

and the system exposes to this human storyteller an accessible interface for involving those

characters in events with narrative significance. The human storyteller is aided by a set

of automated tools that reduce the complexity of the storytelling space and filters the in-

formation presented to the author. Specifically, our system differs from the traditional

interactive narrative system in the following ways:

Control Granularity. Because our system is built on the PAStE platform, both the

human storyteller and the automated system express their control over the virtual

populace at the level of “events”. Events represent compound interactions with nar-

rative significance, rather than atomic actions such as opening a door or gazing at an

object. Fine-grained details like these are necessary for proper character animation,

but are also largely irrelevant to a human storyteller, and so the PBT-based event

abstraction hides them.

17

Online Authoring. Typical interactive narrative systems involve human authoring

of the story as an offline pre-process, where a human designer will specify a story

prior to execution, and an automated virtual director is responsible for adhering to

the story while also incorporating input from human participants. Our system allows

an author to either (a) create stories in a distinct authoring phase and then immedi-

ately see the story in action in the virtual world with no compilation step, or (b)

explore a story space in real-time to make top-level reactive decisions in the narra-

tive as it happens. We focus on facilitating the human storyteller’s decision-making

process rather than completely automating the telling of the story.

Animation/Narrative Integration. While our system shares some similarities with

the overall structure of other interactive narrative systems (like Automated Story

Director [65] and Merchant of Venice [61]), these systems typically focus on the

higher levels of narrative control – the arrangement and assembly of narrative atoms.

Our work delves instead into the unsolved problems between the level of narrative

atom, and the actual animations displayed on-screen during simulation. Events,

as encoded in parameteized behavior trees, present contextually significant behav-

ior control structures that are not only easy to reason about (as in a traditional in-

teractive narrative), but also directly translate to complex coordinated multi-actor

animated interactions with control down to the level of frame-by-frame joint ori-

entations. Where other systems typically stop at the animation synthesis layer, our

work examines the inherent and nontrivial issues of converting a generated or au-

thored machine-readable story into a fully-realized real-time 3D simulation in rich

virtual worlds using events as an intermediary language.

18

Chapter 3

Architecture

Figure 3.1 illustrates the manner in which our system will behave when simulating a narra-

tive. Each story takes place in a fully realized 3D virtual world (1) containing virtual char-

acters and objects embedded with narrative state information (2). Virtual human avatars

controlled by human story participants can also negotiate and interact with the world and

its characters (though this is not the focus of our work as presented) (3). Complex interac-

tions between characters and other objects are accomplished using a pre-authored library

of events (4). In order to decide on a course of action, the system draws candidate events

from the event database (5), populates them with potential actor and object participants

from the world, and analyzes the expected effects on the world should that event take

place. These candidate events are passed to either CANVAS or Storycraft, each of which

will filter them, add additional contextually useful information, and expose these events to

a human storyteller (6). The storyteller decides on one or more events to execute, which

are then instantiated into the event scheduler and begin dispatching commands to their

participating actors and objects either in real-time (if using Storycraft), or after the story

is completed and played (if using CANVAS) (7).

19

����������	
����

	��������������

����������

���������	
����
�����������	

�����

���	
�����

������������

	������

������

��������

���������������

�	�����

������

�������

�� ��������!�"

������������

�������������������

���������	
���

�

�

�

�

�

�

#	����	����

���������	
�
���	�

��	��
�

Figure 3.1: An illustration of the functionality of our system at runtime.

Because these stories take place in a fully-realized 3D virtual world, we have the added

challenge (as opposed to text-based, 2D, or representational environments) of solving a

problem that can be referred to, informally, as the “brains-to-bones” problem. That is,

how can we take abstract narrative events and convert them into the frame-by-frame joint

actuations on the rigged model skeletons of a populace of virtual characters. This is a

significant conversion process that requires a complete solution stack of technologies and

contributions in character animation, behavior authoring, and higher-level reasoning. We

assume the availability of a graphics engine capable of sufficiently rendering rigged 3D

models, but everything from character animation to interactive narrative generation re-

mains a set of open problems to which our systems contribute.

20

������ ����	
����

����

����

���������	
���

�����������

��������	���������

���������

����������	��������

�������	�����	������

������	������

��������	��	���������

Figure 3.2: An illustration of the solution stack, using four discrete tools organized into

three operational tiers.

The full system can be divided into three functional tiers with distinct responsibilities,

as illustrated in Figure 3.2. These three tiers communicate with one another using the

event, which is a dynamic encoding of multi-actor behavior used to represent narrative-

relevant interactions. The lowest tier of the system, which sits right above the graphics en-

gine, consists of the Agent Development and Prototyping Testbed (ADAPT) [27]. ADAPT

is responsible for interpreting character behavior commands and events, using the infor-

mation encoded in those behavior structures to pass messages to the various controllers

acting on each character’s skeleton, creating the final displayed animations for the story.

ADAPT takes the skeleton of each virtual character’s model rig and exposes simple com-

mands like “ReachFor” and “LookAt” so that events can act upon the character’s body.

ADAPT is also the layer at which human story participants would use to interact with the

system, using similar commands to control their virtual avatars and interact with the world.

ADAPT receives events from the Platform for Adaptive Storytelling with Events (PAStE),

which is responsible for managing a database of pre-authored events, assembling lists of

21

what events can be enacted by which objects in the world, and analyzing the changes that

will occur in the world state once those events are executed. PAStE exposes its library

of events to both CANVAS and Storycraft. CANVAS and Storycraft occupy the human-

facing top tier of the stack, and are the means through which the human author interacts

with the system. Both tools filter the lists of candidate events from PAStE into a small set

of the most narratively salient options, and both expose these to the human storyteller with

additional information describing those events’ ramifications. CANVAS exposes events

and objects in such a way as to allow the human author to create long-form narratives in

a distinct authoring phase, while Storycraft presents an interactive experience where the

human user explores the branches of a story as it unfolds in real-time. In both cases the

human storyteller is never concerned with narratively irrelevant details like making sure

that characters open doors correctly, or how characters approach and orient towards one

another before engaging in a conversation. Rather, the language of events focuses entirely

on atoms of narrative significance and the communicative content of the story being told.

As an example, consider a story revolving around a bank robbery scenario. To tell

this story, we need a virtual world presenting a 3D graphical representation of a bank,

with rooms and various props. The bank is also inhabited by actors – fully articulated

virtual humans serving roles such as those of the robbers, the guards, the bank staff, and

customers. In our framework, the virtual human actors would respond to basic func-

tional commands like “ReachFor” and “LookAt”, but these more mechanical behavior

commands do not represent narratively-significant actions. Series of actions on different

characters can be combined into scripted sequences representing events. These events rep-

resent more contextual and meaningful interactions between characters and objects, such

as a robber incapacitating a guard (involving, say, a “GoTo” command and an “Attack”

animation command), or a bank staff member opening the vault. At its core, the means

by which an author controls the world is by dictating (or partially specifying) the series

22

of events that will take place in the world as well as indicating which characters should

carry them out. From that point the system breaks down the event sequences into the more

atomic functional commands that comprise them and uses those commands to animate the

scene.

3.1 Events

The fundamental narrative atom of our system is called an event. An event is a centralized

process that temporarily suspends the autonomy of any participating objects, carries them

through an interaction, and then restores those objects’ autonomy once the event com-

pletes. Events are manually authored and stored in an event library using Parameterized

Behavior Trees (PBTs). These are dynamic structures capable of dispatching commands

to multiple characters from a central data structure, controlling them as limbs of the same

entity. Because events have a single decision-making process, they are useful for coor-

dinating carefully timed sequences of animations necessary for complex interactions be-

tween objects in the world. These can represent interactions between groups of characters

like a conversation or riot, or interactions between characters and non-character objects

using the smart object formalism. For very specific coordination of characters, this ap-

proach can be preferable over traditional behavior models where characters are authored

in isolation and interactions between characters are designed in terms of stimuli, message-

passing, and responses to triggers. When not involved in an event, characters continue to

act autonomously with personal PBTs dictating their behavior, but this individual behav-

ior is intentionally simple and intended only to occupy the character with ambient activity

until the character is needed for its next event.

23

3.1.1 Characters Interacting with Each Other

Events are pre-authored by domain experts as part of the behavior design process. This is

currently done using a simplified scripting syntax we have created, but the visual nature

of PBTs also lends them well to authorship using a graphical user interface. Using PBTs,

an event is designed to take one or more actors and props as parameters, and execute com-

mands with direct control over those participating objects. The designer of an environment

produces a number of PBT events that reside in an event library or lexicon during the sim-

ulation. At runtime, events are instantiated from the library and populated with objects

from the world, at which point it is temporarily granted exclusive control over those par-

ticipants. The autonomous behavior of those objects (if they have any) is suspended, and

the event dispatches commands such as those instructing two actors to navigate towards

and interact with one another. Once the event ends, control is returned to the characters’

own individual decision processes, which re-evaluates the character’s state after the event

and decides on a new course of action. A conversation event can be authored as a simple

sequential and/or stochastic sequence of commands directing agents to face one another

and take turns playing gesture animations.

Figure 3.3 illustrates a sample PBT event conducting two characters through a conver-

sation using our action repertoire. The characters, a1 and a2, are passed as parameters to

the tree, along with the meeting position (an invisible prop). The tree directs the two char-

acters to approach one another at the specified point, face each other, and alternatively play

randomly selected gesture animations. The gesturing phase lasts for an arbitrary duration

determined by the configuration of the loop node in the tree. After the loop node termi-

nates, the event ends, reporting success, and the two characters return to their autonomous

behaviors. Note that this tree can be reused at any time for any two characters and any

two locations in the environment in which to stand. This framework can be exploited

24

GoTo(MeetingPoint)

GoTo(MeetingPoint)

a2

a1

������

Gesture(“G1”)

a1

Gesture(“G2”)

a1

Gesture(“G1”)

a2

Gesture(“G2”)

a2

����

������	�
����

GazeAt(a1)

GazeAt(a2)

a1

����	���
����

Conversation(a1 : Actor, a2 : Actor, MeetingPoint : Position)

a2

������

Figure 3.3: A simple conversation PBT controlling two characters, a1 and a1, with a

MeetingPoint parameter.

to create highly sophisticated interactions involving crowds of agents, and its graphical,

hierarchical nature makes subtrees easier to describe and encapsulate for regular reuse.

3.1.2 Scheduling

Events are managed by a fully-featured scheduler responsible for updating both the per-

sonal behavior trees belonging to each character and higher-level event behavior trees

encompassing multiple objects. Four basic principles in behavior design enable the sched-

uler to work effectively for orchestrating the behavior in a virtual world environment.

PBT Clock. PBTs operate on periodic clock ticks, where each tree refreshes itself, eval-

uates its current state, sends messages through the character’s body controllers, and tran-

sitions to its next node if necessary. The scheduler keeps track of all of the active trees in

25

the environment, both personal trees for individual characters, and event trees for multi-

character interactions, and ticks them 30 times per second.

Character Suspension. Each autonomous character owns a “behavior process” object in

its behavior controller, which maintains that character’s status with regards to autonomy.

A character will not receive ticks to its personal tree if it has been suspended and placed

under the control of a multi-character event tree.

Behavior Termination. PBTs are designed to respond to a termination signal. Termina-

tion signals can come at any time, and instruct a tree to interrupt its current action and

end. The result of a termination signal can last multiple PBT clock ticks, so that poses

such as reaching can be smoothly faded out before the tree reports that it has completed

termination.

Event Priority. Multi-character event trees are assigned a priority value, where all char-

acter personal trees have minimal priority. When a character receives an event with a

priority higher than its current tree, the scheduler terminates the current tree and suspends

the character until all involved characters are ready. The event then begins ticking and

dispatching commands to the new participant group. Once the event terminates, the char-

acters return from being suspended. They may either continue their previous event that

was interrupted, or return to their baseline autonomous behavior.

These four concepts allow very direct control over groups of characters in the envi-

ronment, with smooth transitions between drastically different tasks. Since events can be

cleanly terminated at any point in their execution, groups of characters involved in wan-

dering or conversing with one another in an environment could very quickly activate a

26

new, higher priority event to respond quickly to an event such as a loud noise or a fire.

Each event tree operates as its own cooperatively multithreaded process with no direct

communication between them.

3.1.3 Characters Interacting with the Environment

Using the same four principles for the behavior scheduler allows us to implement smart

objects [24] into our virtual world for allowing characters to interact with the environment.

A smart object’s affordances can be encoded sequentially in a manner similar to that of a

behavior tree or state machine. Smart objects receive ticks from the scheduler clock, and

will block until reporting either success or failure. For example, when a character wants

to sit in a chair, the behavior tree invokes the chair’s “Sit” affordance with the character as

a parameter. From that point, the tree will divert any ticks it receives from the scheduler

clock to the smart object, which temporarily takes control of the character and directs it

to approach and sit properly on the chair. Once the smart object chair determines that the

character has succeeded in sitting down, it will report success to the behavior tree respon-

sible for the character’s behavior, so that the tree can move on to other actions. Parallel

nodes in the tree can be used to synchronize actions, allowing a character to gesture or

gaze at a target while still approaching and sitting. Smart objects represent the primary

means of interaction with the environment, and are useful for a wide array of other inter-

action tasks. Figure 3.4 illustrates a simple state machine example for a chair smart object

that instructs a character to approach and sit on it in the proper orientation. All objects in

our virtual world are designed using affordances and the smart object formalism, including

the virtual actors.

27

������������	��
������

�������

����		���
������	��

������� �������

����

�������

�������

�������	����	� ����	�����������	���� ��	������

����	��	�������������

�� �����	�������	�����	��!�"��

Figure 3.4: The state machine for a chair smart object’s “sit” affordance. The object

transitions between states after evaluating predicates on the state of the character, period-

ically sending commands to the actor and reporting a status (running, success, or failed)

to the behavior tree controlling the affordance.

28

Chapter 4

ADAPT: The Agent Development and

Prototyping Testbed

Executing events in our virtual world is dependent on fully-animated virtual human char-

acters that can react in real-time to the world around them, and carry out complicated

narrative-related interactions with one another in a 3D space. Animating these sophis-

ticated virtual humans in real-time is a complex undertaking, requiring the solution to

tightly coupled problems such as steering, path-finding, and full-body character anima-

tion (e.g., locomotion, gaze tracking, and reaching). This complexity is amplified as we

increase the number and sophistication of characters in the environment. In order to pro-

vide this functionality, our system’s lowest level consists of the ADAPT platform, a mod-

ular and extensible system that allows for the integration of multiple character animation

controllers on the same model. ADAPT combines these animation controllers with an

interface for path-finding and steering, as well as an integration of PBTs and events for

single- and multi-character behaviors. ADAPT is highly extensible, allowing the addition

of new character animations and capabilities for use in more sophisticated animations.

29

������� ��	
�������

��������

���������
���	�����

�

���������	
��

��
�� �������
��

����������	

�������

����

��������

�������	
�
�����������

�����������

Figure 4.1: Overview of ADAPT framework.

30

4.1 Framework

The animation system performs control tasks such as locomotion, gaze tracking, and

reaching as independent modules, called choreographers, that share parts of the same char-

acter’s body and dictate joint movements on a frame-by-frame basis. These modules are

managed by a coordinator, which acts as a central point of contact for manipulating the

virtual character’s pose in real-time. The navigation system performs path-finding with

predictive steering and communicates directly with the rest of the framework. The be-

havior level is split into two tiers. Individual behaviors are attached to each character and

manipulate that character using the behavior interface, while events are used to orches-

trate the behavior of multiple interacting characters in real-time. The ultimate product of

ADAPT is a pose for each character at an appropriate position in the environment, pro-

duced by the animation coordinator and applied to each rendered virtual character in the

scene each frame. Figure 4.1 provides an illustration of the framework from an architec-

tural integration perspective (the framework appears more hierarchical from a behavior

control perspective, as illustrated in Figure 4.4).

We divide the problem of character animation into a series of isolated, modular compo-

nents called choreographers attached to each character. Each choreographer operates on a

shadow, which is an invisible clone of the character skeleton, and has unmitigated control

to manipulate the skeletal joints of its shadow. Each frame, a choreographer produces an

output pose consisting of a snapshot of the position and orientation of each of the joints

in its private shadow. A coordinator receives the shadow poses from each choreographer

and performs a weighted blend to produce a final pose that is applied to the display model

for that frame. Since each choreographer has its own model to manipulate without inter-

ruption, choreographers do not need to communicate with one another in order to share

control of the body or prevent overwriting one another. This allows a single structure,

31

the coordinator, to manage the indirect interactions between choreographers using a sim-

ple, straightforward, and highly authorable process centered around blending the shadows

produced by each choreographer. This system is discussed in more detail in Section 4.2.

We use a navigation mesh approach for steering and path-finding with dynamic ob-

stacle avoidance. Each display model is controlled by a point-mass system, which sets

the root positions (usually the hips) of the display model and each shadow every frame.

Character choreographers do not directly communicate with the navigation layer. Instead,

choreographers are made aware of the position and velocity of the character’s root, and

will react to that movement on a frame-by-frame basis. A character’s orientation can fol-

low several different rules, such as facing forward while walking, or facing in an arbitrary

direction, and we handle this functionality outside of the navigation system itself.

To facilitate both rich character repertoires, and interesting narrative-relevant multi-

actor events, ADAPT has a hierarchical behavior control system for its virtual characters.

Each character has capabilities like ReachFor, GoTo, and GazeAt that take straightfor-

ward parameters like positions in space and send messages to that character’s navigation

and animation components. These are the capabilities that are invoked by PBTs repre-

senting a character’s behavior, both in a character’s automous decision-making process,

and within the structure of an event. Having a single, flat interface for a character’s action

repertoire reduces the burden of behavior authoring with PBTs and the event paradigm,

with well-described and defined tasks that a character can perform. The behavior system

is discussed in more detail in Section 4.7.

32

4.2 Shadows in Full-Body Character Animation

General character controllers animate a virtual character using pre-recorded motions, or

procedurally with physical models or inverse kinematics. We address the problem of coor-

dination between these controllers by allocating each character controller its own private

character model, a replica of the skeleton or a subset of the skeleton of the character being

controlled. Our modular controllers, called choreographers, act exactly the same way as

traditional character controllers, but do so on private copies of the actual rendered charac-

ter model. These skeleton clones (shadows), match the skeletal hierarchy, bone lengths,

and initial orientations of the final rendered character (display model), but have no visual

component in the scene. Figure 4.2 illustrates a two-step blend process. First we combine

the pose of the locomotion choreographer (green, full-body) during a walk cycle with the

gesture choreographer (blue, upper-body) playing a waving animation, and then we apply

the arm of the reaching choreographer (red, upper-body) full blend weight, safely over-

writing the previous step for the joints of the left arm. The partial blend is represented

with a mix of colors in the RGB space. Blend ordering is discussed in greater detail in

Section 4.4.

33

������� ���	
����	�������

���������	
������������

����������
��

�����������
���
��

Figure 4.2: Blending multiple character shadows to produce a final output skeleton pose.

Character animation has two interleaving steps. First, each choreographer manipulates

its personal shadow and outputs a snapshot (called a shadow pose) describing the position

and orientation of that shadow’s joints at that time step. Then, we use a centralized con-

troller to blend the shadow pose snapshots into a final pose for the rendered character.

For clarity, note that “shadow” refers to the invisible skeleton allocated to each choreog-

rapher to manipulate, while a “shadow pose” is a serialized snapshot containing the joint

positions and orientations for a shadow at a particular point in time.

4.3 Choreographers

The shadow pose of a character at time t is given by Pt ∈ R
4×|J | where P

j
t is the con-

figuration of the jth joint at time t (expressed as a quaternion). A choreographer is a

function C(Pt) −→ Pt+1 which produces the next pose by changing the configuration

of the shadow joints for that time step. Using these definitions, we define two classes of

choreographers:

34

Generators. Generating choreographers produce their own shadow pose each frame, re-

quiring no external pose data to do so. Each frame, the input shadow pose Pt for a gen-

erator C is the pose Pt−1 generated by that same choreographer in the previous frame.

For example, a sitting choreographer requires no external input or data from other chore-

ographers in order to play the animations for a character sitting and standing, and so its

shadow’s pose is left untouched between frames. This is the default configuration for a

choreographer.

Transformers. Transforming choreographers expect an input shadow pose, to which they

apply an offset. Each frame, the input shadow pose Pt to a transformer C is an external

shadow pose P′
t+1 from another choreographer C ′, computed for that frame. The coor-

dinator sets its shadow’s pose to P′
t+1 and applies an offset to the given pose during its

execution, to produce a new pose Pt+1. For example, before executing, the reach choreog-

rapher’s shadow is set to the output pose of a previously-updated choreographer’s shadow

(say, the locomotion choreographer with swinging arms and torso movement). The reach

choreographer then solves the reach position from the base of the arm based on the torso

position it was given, and overwrites its shadow’s arm and wrist joints to produce a new

pose. This allows the reach choreographer to accommodate multiple torso configurations

without the choreographers directly communicating or even being fully aware of one an-

other. A transforming choreographer can receive an input pose, or blend of input poses,

from any other choreographer(s).

4.4 The Coordinator

During runtime, our system produces a pose for the display model each frame, given

the character choreographers available. This is a task overseen by the coordinator. The

35

coordinator is responsible for maintaining each choreographer, organizing the sequence

in which each choreographer performs its computation each frame, and reconciling the

shadow poses that each choreographer produces. The coordinator’s final product each

frame is a sequence of weighted blends of each active choreographer’s shadow pose. We

compute this product using the pose dataflow graph, which dictates the order of updates

and the flow of shadow poses between choreographers. Generators pass data to trans-

formers, which can then pass their data to other transformers, until a final shadow pose is

produced, blended with others, and applied to the display model.

Blending is accomplished at certain points in the pose dataflow graph denoted by blend

nodes, which take two or more input shadows and produce a weighted blend of their

transforms. If the weights sum to a value greater than 1, they are automatically normalized.

B({(Pi, wi) : i = 1..n)}) −→ P′ (4.1)

Designing a dataflow graph is a straightforward process of dictating which nodes pass

their output to which other nodes in the pipeline, and the graph can be modified with

minimal effort. The dataflow graph for a character is specified by an engineer during the

actor development process. The weights involved in blending are bound to edges in the

graph and then controlled at runtime by commands from the behavior system. The order of

the pose dataflow graph roughly dictates the priority of choreographers over one another.

Choreographers closer to the final output node in the graph have the authority to overwrite

poses produced earlier in the graph, unless bypassed by the blending system. We generally

design the graph so that choreographers controlling more parts of the body precede those

controlling fewer.

Blended poses are calculated on a per-joint basis using each joint’s orientation quater-

nion. The blend function produces a new shadow pose that can be passed to other trans-

formers, or applied to the display model’s skeleton. Taking a linear weighted average of

36

vectors is a solved problem, but such is not the case with the problem of quickly averaging

n > 2 weighted quaternions. We discuss the techniques with which we experimented, and

the final calculation method we decided to use in our related work on ADAPT [27]. In

addition, Feng et. al. [9] provide a detailed review of more sophisticated motion blending

techniques than our linear approach.

��������	
���

������

�
�
�
��
�

�������

������������� ��������

��

����� 1���

��

1���

��

�1�������

�������

1���

��

Figure 4.3: A sample dataflow graph we designed for evaluating ADAPT. Generating

choreographers appear in blue, transmuting choreographers appear in green, and blend

nodes appear as red crosses. The final display model node is highlighted in orange. The

sitting weight ws, gesture weight wg, gaze weight wz, reach weight wr, and physical reac-

tion weight wp are all values between some very small positive ǫ and 1− ǫ.

Figure 4.3 illustrates a sample dataflow graph. Three generating choreographers (blue)

begin the pipeline. The gesture choreographer affects only the upper body, with no skele-

ton information for the lower body. Increasing the value of the gesture weight wg places

this choreographer in control of the torso, head, and arms. The sitting and locomotion

choreographers can affect the entire body, and the user controls them by raising and low-

ering the sitting weight ws. If wg is set to 1 − ǫ, the upper body will be overridden by

the gesture choreographer, but since the gesture choreographer’s shadow has no legs, the

lower body will still be controlled by either the sitting or locomotion choreographer as de-

termined by the value of ws. The first red blend node combines the three produced poses

and sends the weighted average pose to the gaze tracker. The gaze tracking choreographer

receives an input shadow pose, and applies an offset to the upper body to achieve a desired

gaze target and produce a new shadow pose. The second blend node can bypass the gaze

tracker if the gaze weight wz is set to a low value (ǫ). The reach and physical reaction

37

choreographers receive input and can be bypassed in a similar way. The final result is sent

and applied to joints of the display model, and rendered on screen.

4.5 Using Choreographers and the Coordinator

The dataflow graph, once designed, does not need to be changed during runtime or to

accommodate additional characters. Instead, the coordinator provides a simple interface

comprising messages and exposed blend weights for character animation. Messages are

commands (e.g., SitDown) relayed by the coordinator to its choreographers, making the

coordinator a single point of contact for character control, as illustrated in Figure 4.1. In

addition to messages, the weights used for blending the choreographers at each blend node

in the dataflow graph are exposed, allowing external systems to dictate which choreogra-

pher is active and in control of the body (or a segment of the body) at a given point of

time.

As an example, when the coordinator receives a gesture command, it raises wg (in

Figure 4.3), which takes control of the arms and torso away from both the locomotion and

sitting choreographers and stops the walking animation’s arm swing. Given sole control,

the gesture choreographer plays an animation on the upper body, and then is faded back

out to allow the walking arm-swing to resume. Since the gesture choreographer’s shadow

skeleton has no leg bones, it never overrides the sitting or locomotion choreographer, so

the lower body will still be sitting or walking while the upper body gesture plays. All

weight changes are smoothed over several frames to prevent jitter and transition artifacts.

The division of roles between the coordinator and choreographers centralizes character

control to a single externally-facing character interface, while leaving the details of char-

acter animation distributed across modular components are isolated from one another and

can be easily updated or replaced.

38

4.6 Example Choreographers

ADAPT provides a number of diverse choreographers for animating a fully articulated, ex-

pressive virtual character. Some of these choreographers were developed specifically for

ADAPT, while others were off-the-shelf solutions used to highlight the ease of integra-

tion with the shadow framework. ADAPT is designed to “trick” a well-behaved character

control system into operating on a dedicated shadow model rather than the display model

of the character, and so the process of converting an off-the-shelf character control library

into a character choreographer is straightforward. Since shadows replicate the structure

and functionality of a regular character model, no additional considerations are required

once the choreographer has been allocated a shadow. Note that the choreographers pre-

sented here are largely baseline examples. The focus of ADAPT is to allow a user to add

additional choreographers, experiment with new techniques, and easily exchange generic

choreographers with more specialized alternatives.

Locomotion. ADAPT uses a semi-procedural motion-blending locomotion system for

walking and running released as a C# library with the Unity3D engine [21]. The system

takes in animation data, analyzes those animations, and procedurally blends them accord-

ing to the velocity and orientation of the virtual character. We produced satisfactory results

on our test model using five motion capture animation clips. The user annotates the char-

acter model to indicate the character’s legs and feet, which allows the locomotion library

to use inverse kinematics for foot placement on uneven surfaces. We extended this library

to work with the ADAPT shadow system, with some small improvements.

Gaze Tracking. We use a simple IK-based system for attention control. The user defines

a subset of the upper body joint hierarchy which is controlled by the gaze tracker, and can

39

additionally specify joint rotation constraints and delayed reaction speeds for more realis-

tic results. These parameters can be defined as functions of the characters velocity or pose,

to produce more varied results. For instance, a running character may not be permitted to

rotate its torso as far as a character standing still.

Upper Body Gesture Animations. We dedicate a shadow with just the upper body skele-

ton to playing animations such as hand gestures. We can play motion clips on various

parts of the body to blend animations with other procedural components.

Sitting and Standing. The sitting choreographer maintains a simple state machine for

whether the character is sitting and standing, and plays the appropriate transition ani-

mations when it receives a command to change state. This choreographer acts as an al-

ternative to the locomotion choreographer when operating on the lower body, but can be

smoothly overridden by choreographers acting on the upper body, such as the gaze tracker.

Reaching. We implemented a simple reaching control system based on Cyclic Coordinate

Descent (CCD). We extended the algorithm to dampen the maximum angular velocity per

frame, include rotational constraints on the joints, and apply relaxation forces in the iter-

ation step. During each iteration of CCD (100 per frame), we clamp the rotation angles

to lie within the maximum extension range, and gently push the joints back towards a

desired “comfortable” angle for the character’s physiology. These limitations and relax-

ation forces are based on an empirical model for reach control based on human muscle

strength [80]. This produces more realistic reach poses than naı̈ve CCD, and requires no

input data animations. The character can reach for an arbitrary point in space, or will try

to do so if the point is out of range.

40

Physical Reaction. By allocating an upper-body choreographer with a simple ragdoll, we

can display physical reactions to external forces. Once an impact is detected, we apply

the character’s last pose to the shadow skeleton, and then release the ragdoll and allow

it to buckle in response to the applied force. By quickly fading in and out of the reeling

ragdoll, we can display a physically plausible response and create the illusion of recovery

without requiring any springs or actuators on the ragdoll’s joints.

4.7 Character Behavior

One of the most fundamental problems we needed to address in our system is converting

simple commands like “reach for that object”, or cooperative directives like “engage in

a conversation” into a series of complicated joint actuations on one or more articulated

bodies. ADAPT accomplishes this task with a hierarchy of abstractions known as the

ADAPT Character Stack, illustrated in Figure 4.4. The stack is split into four main tiers:

Behavior, Actor, Body, and Animation. The higher two levels (“Behavior” and “Actor”) of

the stack are designed for use by comparitively untrained authors, while lower levels levels

offer more fine-grain control fidelity at the expense of simplicity, and can be accessed by

expert authors to ensure very specific constraints on the character’s movements.

41

��������

	
���

���

�����������

�
�
�
��
�
�
�

�
�
�
��
�
�
�

�
�
�
��
�
�
�

�

��������
����������

�����������
���

��
����������

�������

Figure 4.4: The ADAPT Character Stack.

Commands from each layer of the stack are filtered, converted, and distributed to sub-

components, starting as behavior invocations, translating to messages sent to the naviga-

tion or animation system, and finally converting into joint angles and blend weights used

for posing the character on a frame-by-frame basis. Each layer in the character stack pro-

vides a different entry point for technical control over the character. The “Behavioral”

layers offer interfaces for controlling the character at a high level, suitable for invocation

by behavior trees and smart objects.

Animation (Navigation and Coordinator). This layer provides the lowest-level exter-

nal access to the character’s animation. A component accessing this part of the character

stack is concerned with sending messages directly to choreographers (such as to change

the reaching target position), or modifying blend weights to adjust the influence of a chore-

ographer.

Body. This layer converts abstract commands like ReachFor into a series of messages

passed to the reach choreographer and coordinator to set the reach target and raise the

42

blend weight for the reaching pose. The Body layer is created to encapsulate the pose

dataflow graph for a particular character, and assigns more semantic meaning to the blend

weights for each blend node in the graph. An ADAPT character’s list of capabilities is

discussed in more detail in Section 4.8.

Actor. This layer abstracts commands in the Body layer. However, unlike the Body layer,

the commands in the Actor layer will keep track of the duration of a task, and report suc-

cess or failure. A call to ReachFor in the Body layer will return instantly and begin

the reaching process, whereas a call to ReachFor in the Actor layer will begin the reach

process and then block until the reach has succeeded or failed. Commands in the Actor

layer are also designed to respond to a termination signal for scheduling, as described in

Section 3.1.2. This layer of abstraction is necessary for controlling a character’s behavior

with behavior trees.

Behavior. This layer contains more sophisticated, contextual commands comprising mul-

tiple sequential calls to the Actor layer, such as playing a series of gestures to convey

approval in a conversation. The Behavior layer also contains the character’s personal

behavior tree, and a BehaviorProcess node responsible for scheduling multi-character in-

teractions using the behavior scheduler described in Section 3.1.2. Unless involved in a

multi-actor event, the Behavior layer is responsible for directing the character’s personal

goals, and external calls to the Behavior layer are usually concerned with suspending or

re-activating a character’s autonomy.

43

4.8 Body Capabilities

The navigation and shadow-based character animation system provides a number of capa-

bilities, enumerated below. Passing an empty target position will end that task, stopping

the gaze, reach, or navigation. The locomotion choreographer will automatically react to

the character’s velocity, and move the legs and arms to compensate if the character should

be turning, walking, side-stepping, backpedaling, or running. Note that only sitting and

navigating are mutually exclusive. All other commands can be performed simultaneously

without visual artifacts.

Commands Description

ReachFor(target) Activates the reaching choreographer, and reaches to-

wards a position.

GazeAt(target) Activates the gaze choreographer, and gazes at a po-

sition.

GoTo(target) Begins navigating the character to a position.

Gesture(name) Activates the gesture choreographer for the duration

of an animation.

SitDown() Activates the sitting choreographer and sits the char-

acter down.

StandUp() Stands the character up and then disables the sitting

choreographer.

Adding a New Body Capability. Adding a new behavior capability with a motion compo-

nent, such as climbing or throwing an object, requires a choreographer capable of produc-

ing that motion. Since choreographers operate on their own private copies of the charac-

ter’s skeleton, they can be designed in isolation and integrated into the system separately.

44

Once the choreographer is developed, the process of adding a new behavior capability to

take advantage of the choreographer requires two steps. First, the choreographer must

be authored into the pose dataflow graph, either as a generating or transforming node,

with appropriate connections to blend nodes and other choreographers. Next, the behav-

ior interface can be extended with new functions that either modify the blend weights

relevant to the new choreographer, and/or pass messages to that choreographer by relay-

ing them through the coordinator. The sophistication of character choreographers varies,

but ADAPT is specifically designed for integrating new choreographers into the character

behavior and animation pipeline.

4.9 Computational Performance

�

��

��

��

���

���

���

����

����

��	�

��	�

� � �� �� �� ��� ��� ���

�
�
�
�
��
��
	�

�
�
�
�
��
�
��

��������	�
����

����������

	��
�����

��
������

Figure 4.5: Update frequency for the character animation and navigation components in

ADAPT.

ADAPT supports approximately 150 agents with full fidelity at interactive frame rates on

commodity hardware. Figure 4.5 displays the update frequency for the animation and nav-

igation system (for our scenes, the computational cost of behavior was negligible). This

45

varies with the complexity of the choreographers active on each character. The ADAPT

animation interface and the pose dataflow graph has little impact on performance, and the

blend operation is linear in number of choreographers. Each joint in a shadow is serialized

with 7 4-byte float values (a 3-vector and a quaternion), making each shadow 28 bytes per

joint. For 26 bones, the shadow of a full-body character choreographer has a memory foot-

print of 728 bytes. For 200 characters, the maximum memory overhead due to shadows is

less than 1 MB in the worst case. In practice, however, most choreographers use reduced

skeletons with only a limb or just the upper body, making the actual footprint much lower

for an average character.

Separating character animation into discrete modules and blending their produced

poses as a post-processing effect also affords the system unique advantages with respect

to dynamic level-of-detail (LOD) control. Since no choreographer is architecturally de-

pendent on any other, controllers can be activated and deactivated arbitrarily. Deacti-

vated controllers can be smoothly faded out of control at any time, and their nodes in the

dataflow graph can be bypassed using the already-available blend weights. This drasti-

cally reduces the number of computed poses, and conserves processing resources needed

for background characters that do not require a full repertoire of actions. The system

retains the ability to re-activate those choreographers at any time if a specific complex ac-

tion is suddenly required. Since choreographers are not tightly coupled, no choreographer

needs to be made aware of the fact that any other choreographer has been disabled for

LOD purposes.

46

Chapter 5

PAStE: A Platform for Adaptive

Storytelling with Events

ADAPT is responsible for interpreting the commands sent to characters either from their

own personal, autonomous PBTs, or from an event’s PBT as it executes. Much of the

rest of the system revolves around the selection and analysis of a library of created events

for use on the virtual world’s characters. PAStE sits directly above the ADAPT layer,

and is responsible for three aspects of the system. First, PAStE manages the available

library of authored events and provides the means for the rest of the system to access

them. Second, PAStE handles the instantiation and execution of an event (adding it to

the scheduler) once a higher-level directive (such as CANVAS or Storycraft) has selected

an event to use. Finally, and most importantly, PAStE performs analysis on the events

in the library, and provides information about what the pre- and post-conditions are for

each event, which is necessary for a virtual director to understand the effects each event

will have on the narrative. Fundamentally PAStE’s role is to construct a more formal state

and action space out of the virtual world and the events that can occur in it, allowing for

higher-level reasoning about narrative trajectories.

47

5.1 Problem Definition

For a narrative involving events, we define our problem domain as Σ = 〈σ, α〉, where σ

is the state domain, and α is the action domain. We define a single problem instance as

P = 〈Σ, Sstart, Sgoal〉 where Sstart, Sgoal ∈ σ are the start and goal states. Note that we

are never committed to a single overarching problem instance, start state, or goal state, as

our system revoles around producing numerous small interwoven narratives across a large

populace. There may be many simultaneous problem instances at any given point during

simulation.

5.2 State Domain

Each object (actors are objects with autonomy) in the world W is described as w =

〈c, s, F 〉 ∈W where c is an ADAPT controller, s is the object’s encoded state, and F is

a set of smart object affordances. The object’s state is defined as s = 〈A,R〉 where A

comprises an object’s individual attributes, and R is a sparse collection of pairwise rela-

tions with all other objects in W. We define these two components of an object’s state as

follows.

Attributes. An attribute aiwj
∈ Awj

is a binary flag that denotes the value of the ith at-

tribute for the object wj ∈W. The vocabulary of attributes is predefined and global across

all objects, so that this example each ith attribute definition exists in a global attribute lex-

icon A. These attributes consist of qualities affecting only only the owning object and

can be immutable roles (such as IsActor, IsChair) or dynamic qualities (such as

IsSleeping, HasKey, etc.). The symbol Awj
denotes the compound value of all of

object wj’s attributes, encoded as a vector of bits.

48

Relations. A relation ri·(·) is a |W| × |W| matrix where riwn
(wm) ∈ Rwn

maps to the

true or false value of the ith relation between objects wn and wm. Like attributes, the

vocabulary of relations is predefined and global across all objects, so that in this exam-

ple the relation key i ∈ 1..|R|. Also like attributes, relations can be immutable (such as

Sibling(x, y)) or dynamic (like IsSittingOn(x, y)). Note that relations are

not necessarily symmetric in our system. The symbol Rwn
(wm) denotes the compound

value of all of object wn’s relations relative to wm, encoded as a vector of bits. Similarly,

the symbol Rwn
denotes the compound value of all of object wn’s relations relative to all

other objects in W, encoded as a sparse triangular matrix of binary vectors1.

Globally, the world state can be described as the compound state SW = {s1, s2, . . . , s|W|}

of all objects w ∈ W, but the processes responsible for selecting events will only rarely

examine that complete world state. Instead, the world state is broken into subdomains

containing the states of the objects in a particular event, so that for an event e, Se =

{s1, . . . , sm} where each si belongs to an object wi participating in e.

5.2.1 Smart Object Affordances

A smart object affordance f ∈ Fwo
for an object wo is a function

f(wo, wu) : ((Awo
, Rwo

(wu)), (Awu
, Rwu

(wo))→ ((A′
wo
, Rwo

(wu)
′), (A′

wu
, Rwu

(wo)
′)

1These binary vector encodings allow us to store significant amounts of state data into a small number

of 64-bit integers for each actor and object in the world, requiring a tiny memory footprint and allowing us

to perform massive amounts of state evaluations with simple bitwise operations for maximum efficiency at

scale.

49

that takes in the object wo itself (the “owner” of the affordance) and another object wu

(the “user” of the affordance, not to be confused with a human user) and manipulates their

controllers to modify their states and relations. The affordance can only modify relations

under one of the following conditions: either the relation is of the form riwo
(wu) ∈ Rwo

,

or it is of the form riwu
(wo) ∈ Rwu

for some i. That is, during the affordance, an object

can only add or remove a relation in the single other object involved in that affordance,

and only relations that refer to itself. Note that the activation of an affordance can persist

over a period of time, and both the affordance user and the object being used have their

autonomy suspended for the duration (as described in Section 3.1.3). An affordance can

also fail during its execution, such as if the user or used object do not match certain state

criteria, in which case no change is made to any object’s state.

Affordances represent the use or activation of an object. For instance, a chair has a

“sit” affordance that, when used by a character, directs the character to approach that chair

and sit on it, writing to that character an IsSittingOn relationship. By preventing the

affordance from modifying or writing references to any objects aside from itself and its

current user, we limit the portion of the global state domain affected by the affordance and

simplify the transition function created by using it. This allows us to enforce an efficient

and well-defined subdomain decomposition of an otherwise massive world space.

5.2.2 Affordance State Encoding

When evaluated during an affordance activation, the state swn
of an object wn is encoded

as a binary vector with two regions. The attributes of the object, Awn
, is already stored in

binary and fills the first region of the bit vector, while the second region of the vector is

constructed dynamically based on the object’s relations Rwn
relative to some other object

wm. We represent the total binary encoding for an object wn, relative to wm as dwn
(wm) =

50

[Awn
|δ(Rwn

(wm))]. The binary vector region δ(Rwn
(wm)) = [e0 . . . e|R|], where ei =

riwn
(wm) ∈ {0, 1}. That is, the bit entry ei for each relationship Rwn

(wm) is set to 1 if and

only if the object wn contains a true value for the ith relation in the relation vocabulary R

when evaluated relative to wm.

For example, suppose we have four individual state flags in our simulation: IsActor,

IsChair, Empty, and HasKey, and the following relationships: SittingOn, and

Friend. Let us define two characters a and b, and a chair c. Character object a has

the following state information: IsActor, HasKey, and Friend(a, b). Character

object b has IsActor, Friend(b, a), and SittingOn(b, c). Chair object c only

has IsChair, since b is sitting on it and it is not currently empty. We can produce the

following encoded states:

da(b) = [1 0 0 1 | 0 1], da(c) = [1 0 0 1 | 0 0]

db(a) = [1 0 0 0 | 0 1], db(c) = [1 0 0 0 | 1 0]

dc(a) = [0 1 0 0 | 0 0], dc(b) = [0 1 0 0 | 0 0]

By encoding relationships in this way, we reduce the impact a single affordance can

have on the world state, compartmentalizing the complete world affordance domain into

manageable subdomains. This is important due to the fact that we may have multiple

simultaneous problem instances at any given time. Rather than considering a large set of

relationships for each object with every other object, we restrict the information that is

encoded and made available to both the affordance itself and any higher-level controller in

charge of activating the affordance. Since affordances are unable to write to or reference

any objects other than the two immediate participants, the scope of their possible effect on

the state of the world is limited and easier to reason about.

It is important to note that the high-level state of an object (i.e., A and R) is very much

an abstraction of its actual state in the world. Objects in our virtual world contain a wealth

51

of information pertaining to factors like animation, inverse kinematics, and geometry. The

state domain for our problem ignores any details that are irrelevant to the narrative, so the

affordance functions themselves are responsible for making sure that an underlying state

change in the character is reflected with a change in the high-level state of that character

object. We treat two characters with the same high-level state (i.e., their encoded state

vectors are equal) in the same affordance context as functionally identical. That is, if

objects wu and wv both use some affordance fwp
of object wp, and (dwp

(wu), dwu
(wp)) =

(dwp
(wv), dwv

(wp)), then u ≡ v relative to affordance fwp
. That is, as far as affordance

fwp
is concerned, u and v are interchangeable and should produce the same result upon

activation with wp, even if the details of their condition within the virtual world differ at a

lower level (like being in different positions or poses).

5.2.3 Rules and Inference

Rules allow for logical inference on objects. A rule R(wi, wj) between two objects wi,

wj is true or false, depending on the states and relationships of both objects. Rules are

defined and solved using a declarative PROLOG-like interface2 for logical programming

where rule free variables are unified with the objects in the world that satisfy them. The

following represents a small sample of the top-level rules used in our system according to

their PROLOG representation:

% Can object U access object O?

RULE_can_access_object(U, O) :-

% C: Object’s current zone

is_in_zone(O, C),

RULE_can_access_zone(U, C).

2For efficiency, we do not use an actual PROLOG interpreter in real-time. Instead, we employ a cus-

tomized tool capable of converting PROLOG statements into C# code during a precomputation step that can

tie directly into our event evaluation framework.

52

% Can object U access zone Z?

RULE_can_access_zone(O, Z) :-

% C: Object’s current zone

is_in_zone(O, C),

RULE_path_exists_for_object(C, Z, O).

% A object can manipulate

% an object if it is unguarded ...

RULE_can_manipulate_object(U, O) :-

is_guardable(O),

is_unguarded(O).

% ...or if it is guarded

% by an allied character

RULE_can_manipulate_object(U, O) :-

is_guarding(G, O),

is_allied_with(G, U).

Rules are used for narrative-level reasoning and tasks such as evaluating whether a charac-

ter can access a particular room, or manipulate another smart object based on the current

world state.

5.3 Events and the Action Domain

In the problem domain, each event is defined as

e = 〈t, c, φ : Wn → {0, 1},∆ : Se → S ′
e〉

where the t contains the event behavior (a PBT, as described in Section 3.1.1), c is the

event’s cost (either authored or derived based on its postconditions), the precondition func-

tion φ transforms a selection of n objects from the world into a true or false value, and the

postcondition function ∆ transforms the event state subdomain as a result of the event.

The precondition function φ : Wn → {0, 1} is a conjunctive normal form (CNF)

53

expression evaluated on the compound state Se, composed of the states of the objects

wi attempting to participate in the event (these participating objects comprise the event’s

“candidacy set”). The CNF expression is composed of unary predicates evaluating indi-

vidual objects’ attributes, as well as relations and rules between the objects within that

candidacy set. We also sometimes consider a reduction of the precondition function called

the role evaluation function Γ, which more cheaply evaluates immutable aspects of an ob-

ject’s attributes (such as IsActor) to quickly identify the narrative role that object fills

in the story.

Similarly, the postcondition function ∆ : Se → S ′
e evaluates the compound state of the

participating objects in the candidacy set we ⊂W, and produces a new compound state

of attributes and relations to be applied to those objects (rules are never stored in memory,

only inferred based on attributes and relations). If the precondition function is not satisfied,

or the event fails during execution (either due to an error or by being interrupted), Se = S ′
e

– that is, no affect to the world state is recorded.

The transition information for an example event that instructs an actor to unlock a door

would take two objects, have preconditions such as “Object 1 is a character”, “Object 2 is a

door”, “Door is closed”, and “Door is locked”, and effects such as “Door is unlocked”. In

practice, the author designs t and c, and can either manually author the pre- and postcondi-

tion functions, or automatically derive them (as explained in Section 5.4). In addition, the

system is robust enough to infer parts of the participating object candidacy set in certain

situations. For example, if a character is sitting on a chair, any subsequent event execu-

tions requiring the involvement of both that character, and the chair the character is sitting

on (such as an event where the character wants to stand up), can automatically populate

the chair as a participant based on the IsSittingOn relation between the two objects.

This relieves author burden for enforcing consistency within the world.

54

5.3.1 Smart Object Groups

Figure 5.1: Two sets of group activity. The left image displays groups of characters

shopping in a street market and conversing with one another, while the right illustrates a

coordinated group event of characters watching a break-dancer in the plaza.

To more easily create ambient activity, individual smart objects can be grouped to-

gether to create groups that present a singular affordance interface and exhibit coordinated

ambient activity. A group wg = 〈cg, s, F,w〉 where cg is a (non-ADAPT) group coor-

dinator [72], s is the group object’s state (treated as if it were a single object), F is the

group’s collective affordances, and w is the set of objects w ⊂W, wg 6∈ w contained in

the group. The set w is malleable and objects can freely move in and out of groups based

on contexts such as relationships or location in the virtual world.

The group coordinator operates on a group event lexicon Lg containing a library

of group-oriented events that the coordinator can invoke and dispatch to its members

to conduct their activity. The group events in Lg are non-transformative in that ∀e ∈

Lg,∆(Se) = S ′
e. That is, the events in the group’s event lexicon do not affect the states

of the objects they execute on and are purely cosmetic. The group’s ambient coordina-

tor enforces manually authored distributions of events and dispatches events as needed to

prevent objects in its group from appearing idle or inactive. These groups are effective

for designating an ambient population to occupy and continually interact with a setting

like a bank lobby, while also providing affordances for mass simultaneous activity like

55

running from the sound of a gunshot. Where events are useful for singular cooperative ac-

tivities between arbitrary objects, groups are designed for prolonged cosmetic interactions

between actors and objects in the background of the scene. Since group membership is

malleable, unneeded principal characters can temporarily join groups to stay visually busy

and then be removed at any point when involved again in the story.

5.3.2 Event Instances, the Action Domain

An event instance Ie = 〈e,we〉 is a tuple containing an event paired with a candidacy set

w. The instance is valid iff φ(swe
) = 1. An event instance can be partially complete, in

which case some of the members of we are undefined (i.e., ∃wi ∈ we s.t. wi = ∅). The

final action domain for PAStE consists of all possible valid event instances given the set of

objects in the world and the authored event lexicon. The act of generating a story within

the PAStE framework consists of creating valid event instances and arranging them into

a narrative order such that the postcondition function of one event leads to the validation

of the precondition function of the next event(s) in the story sequence. The worst case

growth for picking n objects for one event would be
|W|!

(|W|−n)!
, but we will introduce some

segmentation, filtering, and sampling techniques to avoid this combinatorial growth.

5.3.3 Goals

PAStE alone is not responsible for satisfying story goals. Ultimately it is the human sto-

ryteller’s responsibility to select events and participants with the help of CANVAS or

Storycraft, but PAStE can help in this process. Rather than specifying a desired value for

the composite world state, goals can be predicated on the existence of an object with a

given state. For instance, we can specify that there exists an object in the world with a

certain set of flags, or that for a specific object in the world, certain conditions hold on

56

the state of that object. A story goal could be for a character to be holding a certain prop,

or for two characters to gain an Friend relation. All of this information is made readily

available by the PAStE system.

5.4 Exploring the Affordance Domain

By definition, we encapsulate all character actions into affordance activations, where a

virtual actor can activate affordances on itself, other actors, or non-autonomous props in

the environment. In effect, this means that PBTs for events and autonomous behavior

consist of three types of node: control nodes that affect the flow of tree ticks, assertion

nodes that evaluate the state of the object(s) involved in the tree, and affordance nodes that

activate affordances on participating objects. An affordance has only two participants,

the activator and the object being activated, and generally comprises multiple mechanical

tasks (navigation, reaching, gazing, gestures, etc.) to accomplish one objective (such as

coming to sit on a chair, or picking up an object from a table). The affordances of a

smart object are manually authored by an expert user, and given handwritten preconditions

and effects. An event can have an arbitrary number of participants, and can use these

participants to express complex behavioral phenomena (such as a group conversation or a

riot).

All higher level behavior in an event is authored as a series of affordance activations

with additional control structures for decision-making, synchronization, and so on. How-

ever, since events involve more participants, and represent more complex behavior than an

affordance, their preconditions and effects are likely to be more complex and difficult to

manually author. Fortunately, if the system understands the preconditions and effects of

each affordance, and events are presented as sequential or simultaneous affordance acti-

vations, then the preconditions and effects for an event can be derived automatically. This

57

step does not learn anything “new” about the system or environment, but takes advan-

tage of several assumptions about the nature of affordances to massively reduce authorial

burden and allow less trained authors to create events.

Once a world is designed with character and object archetypes, our first task is to run

a series of simulations to exhaustively explore the affordance domain for the objects de-

signed by the author. This exploration task operates on a reduced world called the Smart

Object Laboratory (SOL). The reduced world does not require complete functionality em-

ulating the full simulation space, as the goal of the SOL is only to learn the behavior of

each object. In practice, we expect a simulation space to simply be a line-up of each object

archetype (including other actors in different configurations), with one or more exemplar

character(s) to experiment with each object. The laboratory is simple to make alongside

the intended full simulation environment, requiring only the placement of each object in a

position that can be reached. The character attempts all sequences of interactions with all

of the available objects, until the behavior of each object (carrying state changes from one

object to the next) until all new discoveries are exhausted.

The process for exploring the SOL is illustrated in Algorithm 1. The algorithm walks

through the affordance domain, branching whenever it encounters previously unseen com-

binations of object, affordance, and state. Whenever the algorithm encounters a situation

identical to a seen example (defined by equality over dwo
and dwu

), it ceases that branch.

Recall that we consider two objects to be functionally identical if their encoded states

match in the context of a given affordance activation – this is the property that allows

our search to terminate. The final result of the simulation is a set T of transition records

{(wo, f ∈ Fwo
, (dwo

, dwu
) → (d′wo

, d′wu
)} over all affordances f belonging to all object

archetypes wo, over all possible state encodings dwo
and dwu

for affordance owner wo and

candidate user object wu. Note that our binary state encoding is an optimization that is not

required for the algorithm to function properly.

58

Algorithm 1: Exploring the affordance domain.

Data: simulation world object list W′

Data: a sampling object ws

Result: transition record T
1 create sets O, C
2 serialize current world state S
3 foreach wo ∈W′ do

4 foreach f ∈ Fwo
do

5 O = O ∪ {(S,wo, f)}
6 C = C ∪ {(wo, f, dwo

, dws
)}

7 while |O| > 0 do

8 select (S,wo, f) from O
9 set current world state to S

10 record tin = (dwo
, dws

)
11 execute f(wo, ws)

12 serialize current world state S ′

13 if f is successful then

14 record tout = (d′wo
, d′ws

)
15 foreach wo

′ ∈W′ do

16 foreach f ′ ∈ Fwo
′ do

17 let c = (wo
′, f ′, d′wo

, d′ws
)

18 if c 6∈ C then

19 O = O ∪ {(S ′, wo
′, f ′)}

20 C = C ∪ {c}

21 T = T ∪ {(wo, f, tin, tout)}

Figure 5.2: Affordance domain exploration. The actor (a) sits, then (b) picks up an object

and tries both (c) sitting with that object and (d) handing that object to another dummy

actor.

As long as a full representative set of examplar objects, with all of their starting config-

urations, is tested on all starting character configurations, this will generate an exhaustive

59

coverage of the affordance domain. If a state transition is not present in the final database,

then it cannot be achieved from the starting configuration of the world, irrespective of user

input (which is also bound to the affordance domain). The process, as it appears in our

simulation engine, is displayed in Figure 5.2.

5.4.1 Discovering the Event Domain

An understanding of the affordance domain allows us to approximate the transition func-

tion for each event. To do so, we create replace each event’s affordance activations with the

modeled transition functions found in the SOL. Instead of fully executing the affordance

in the virtual world, these “proxy” events transform the states of their participants accord-

ing to how each affordance would. If an object’s state cannot be found as a valid input

for that affordance’s transition function model, then the event is treated as a failure. If the

event terminates successfully, having executed all of its affordances and transformed the

states of its participants, we store the input and output states of the participants into a new

table to produce a model of the event’s transition function, like we do with affordances.

Evaluating all permutations of input states as input would be prohitively expensive.

Suppose we have an event taking a objects with Nt total attribute flags and Nr total relation

flags in their encoding. Each of the a objects has a − 1 possible encoded relationship

values, one relative to each of the other objects. The number of possible encoded inputs

to the event then is 2(aNt)+(a(a−1)Nr). This grows too fast to exhaustively enumerate, so

we perform static analysis on the event tree and detect all of the possible first affordances

each object could be instructed to activate. If the event is non-deterministic, an object

could have multiple first affordances. For all of those affordances, we collect their valid

input states (since we know under which conditions the affordance succeeded and failed

in the SOL), and evaluate the event on that collection. This number will be much smaller

60

than the worst case estimate, as each event will only have a small number of starting

affordances, and those affordances will have a small number of valid inputs. This ensures

coverage of all the ways an event could possibly succeed, without wasting time on object

configurations that will fail on the first affordance invocation.

5.4.2 Reaching a Goal

Once we have a transition function for the event domain, we can project the outcome

of the event and the new states that those objects will take on. We can also predict if

a set of candidate objects is a valid selection for an event, since we know under what

state conditions the event will succeed and fail. These are the main tools that PAStE

exposes to CANVAS and Storycraft. The process of achieving a narrative goal is to execute

successive events until the result of one of those events places a number of objects in

a desired configuration. With events, however, the action domain is more than just a

selection of which events to perform, but also which objects in the world are selected to

participate in those events. The director could naively select all combinations of objects

from the world to explore the action domain for all events, but this is intractable for rich

worlds with numerous props and actors. One way of reducing this complexity is to divide

objects into roles, and author role requirements into an event’s parameter list. As a pre-

processing step before runtime, we divide all of the world objects into bins by archetype,

creating lists of objects each filling a particular role in the narrative. An event would then

specify that its first object must be of a certain type (such as IsActor or IsChair), its

second object of the same or another type, and so on. For an event e with n participating

objects, this reduces the possible combinations of valid participants from |W|n to r1 · r2 ·

· · · · rn, where ri is the number of objects matching the ith role required by e. Thus, the

number of candidates would be much smaller for a diverse environment.

61

5.5 Progressive Differentiation

One reason that a large number of candidates is undesirable is that all candidate objects

are equal in value to the process responsible for selecting events. That process has no

exposed knowledge of what the state of an object means, other than seeing a binary vector

encoding. To reduce the uniformity of the objects in the world, we introduce a metric

called salience. As objects (actors or props) participate in events, they are given a grow-

ing salience weight. The event-selecting process searching through the action domain

is then rewarded for using objects and characters with higher salience values. Salience

has two parts: a way for events to leave residual information in their participants, and a

search heuristic that weights higher actors and objects that have already been featured in

events. This creates a phenomenon we call progressive differentiation [72], where char-

acters begin as primordial actors with little individual qualities, and through involvement

in events, pick up traits and qualities that contribute to their involvement in subsequent

events. Salience does not mitigate preconditions – a character still requires a key to un-

lock a door, but by rewarding the use of salient characters, we can drive CANVAS and

Storycraft to select “main characters” when it needs an actor to retrieve a key and use

it. We expect a single character participating in three narrative events to matter more to

the user than three characters participating in one event each. There are other ways we

can limit the branching factor induced by the number of possible candidates to an event,

including character “priming” and restricting selection to a geometric radius [81]. We ex-

plored these options during development, but ultimately did not need to implement them.

Progressive differentiation is especially important to an event-driven narrative system.

Individual characters contain very little decision-making capability by design – all com-

plicated interactions are either stored in events, or in smart objects. Individual characters

62

are not responsible for knowing how to perform tasks like holding a conversation, partici-

pating in a riot, or sitting in a chair. This makes each character essentially a “blank slate”

onto which we can add information relevant to the narrative. Human story participants

interacting with the system as character avatars initially know as little about the virtual

actors as the system itself does. As a result, when a virtual actor participates in an event,

two things happen. First, the human user avatar witnesses the event and ascribes narra-

tive value to both the event and the personality of the participant (a character involved in

a number of conversations can be perceived as friendly or talkative), and the event itself

leaves residual information in the character (as a result of the conversation, the character

is now “friends” with one or more other actors). Thus, the human participants understand-

ing of the characters evolves with the system’s own differentiation of those actors. Most

actors are mechanically capable of performing most events from the very beginning, but

it may not make narrative sense to do so. If two characters become friends, they may

become eligible for more events such as playing a game of catch or buying one another a

gift – actions that would otherwise be narratively inconsistent. The characters themselves

don’t become more sophisticated or capable, but information stored residually within them

enables them to more plausibly play different roles in the stories that form.

63

Chapter 6

CANVAS: Computer-Assisted Narrative

Animation Synthesis

Figure 6.1: CANVAS Overview. (a) Visual Story Authoring: Authors specify key plot

points in the narrative using a graphical interface. (b) Automatic Story Completion:

CANVAS automatically identifies and resolves incomplete stories by filling in missing par-

ticipants and introducing new story elements to generate a consistent and cohesive narra-

tive. (c) Instant Execution: The story is immediately displayed in real-time in the virtual

world using the animated characters involved in the story.

Sitting at the top of the ADAPT and PAStE platform stack is CANVAS, one of our two

top-level interfaces (alongside Storycraft) that serves as the means for the human author

to control the characters in the virtual world by selecting, populating, and dispatching

events to execute. The event and action space described by PAStE is too large and com-

plex for a human author to effectively constantly reason about in its entirety while creating

64

long-form narratives. The principal role of the CANVAS, then, is to interpret the wealth

of information provided by PAStE about the way events affect the narrative space of the

world and use that information to fill gaps in the author’s story specification. CANVAS is

designed to receive a partially-defined trajectory of loosely affiliated choices (sequences of

events that do not directly follow one another in causality), and through narrative interpo-

lation insert the necessary connective events to produce a cohesive sequence of character

actions. This improves the flexibility afforded to the author, and allows the author to create

richer stories with less manual effort.

6.1 Defining a CANVAS Story

Like PAStE, CANVAS relies on its own set of abstractions to describe a story sequence as

the author designs it. The fundamental building block for CANVAS is the event instance

(as described in Section 5.3.2).

6.1.1 Event Authoring and Story Structures

Events themselves are authored as PBTs with parameter fields for their participating actors

and objects. Because of their graphical nature, behavior trees are easy to author using

a graphical user interface and accessible commercial products for doing so are widely

available [14]. Because graphical authoring is an explored problem (while still taking

considerable development resources to implement), for our purposes we author behavior

trees using a structured code format in C#. An example PBT authored in C# appears as

follows (with minor syntax simplifications):

65

public static Node Subtree_DistractAndIncapacitate(

SmartCharacter distractor,

SmartCharacter aggressor,

SmartCharacter target)

{

return Sequence(

distractor.GoTo(target.position),

ParallelSequence(

Subtree_Distract(distractor, target),

Sequence(

Wait(17000),

aggressor.GoTo(target.backWaypoint))),

aggressor.UseAffordance(target, "Knockout"));

}

public static Node Subtree_Distract(

SmartCharacter distractor,

SmartCharacter target)

{

return Sequence(

distractor.Icon("speaking"),

distractor.Gesture("callover", 3000),

target.GoTo(distractor.transform.position),

distractor.UseAffordance(target, "Talk"),

distractor.Icon(null));

}

This code snippet presents most of the logic involved in the “Distract and Incapacitate”

task, where two characters coordinate in such a way where one disractor calls the tar-

get over towards them, while the aggressor moves behind the target and incapacitates

them. Some events have no animation component, and exist to silently change the state

of the world (like BreakAlliance, which enables two previously allied characters to take

aggressive actions against one another by changing their relationship flags). This system

exposes the most power to advanced users, but could certainly be converted to a more

accessible user interface for end-users with little conceptual difficulty. Once these events

66

are authored, we organize them into the system with appropriate metadata and begin to

assemble more complex narrative structures from them.

Story Beats. A Story Beat β = {I1, . . . , In} is a collection of event instances for events

occurring simultaneously at a particular juncture in the story. The preconditions of a beat

β = {I1 . . . In} are a conjunction of the CNF preconditions of all its event instances:

φβ = φe1 ∧ φe2,∧ . . . ∧ φen . Multiple event instances within the same beat cannot share

any object participant between them (as all of the events in that beat will begin in parallel).

A beat β is valid if all instances I ∈ β are valid. Recall that some of the instances of a

beat may be partially defined, in that their candidate sets are missing members for a full

successful execution of the event.

Story Arcs. A Story Arc α = (β0, β1, . . . , βm) is an ordered sequence of beats represent-

ing a story, where events can occur both sequentially and simultaneously throughout that

story’s execution. The beat β0 is the initial configuration of the world as defined by the

author, and operates on the initial authored world state SW.

6.1.2 The Story Sequence

Story arcs are authored using a structure called the Story Sequence Diagram (SSD) in the

CANVAS graphical authoring interface. These diagrams chart the progression of the beats

within the story arc, and illustrate which objects participate in each beat’s event instances.

An SSD is a directed acyclic graph Q = 〈V,D〉.

The vertices of an SSD are divided into two classes V = VW ∪VI . Object vertices

VW refer to objects from the world, i.e., VW ≈ {w1, . . . , wn} ⊆W, while event vertices

refer to event instances, i.e., VI ≈ {I1, . . . , Im} ⊆ I. An SSD’s edges are divided into

67

three classes D = Dπ ∪ Dφ ∪ Dτ that indicate three relationship types. Participation

edges Dπ ⊆ VW ×VI denote a “participates in” relationship between an object and an

event instance as a participant. Precedent edges Dφ ⊆ VI ×VI denote a “comes after”

relationship between two event instances and are used to align events to different story

beats. Termination edges Dτ ⊆ VI × VI denote a termination dependency, where an

edge between (Ii, Ij) indicates that event instance Ij is terminated as soon as instance Ii

finishes executing (typically used for repeating background activity). Note that Ii and Ij

must be in the same story beat for this relationship to be created.

I(2,1)

I(1,1) I(1, 2)

w1 w2 w3 wn

I(q,1) I(q,2)

β1

β2

βq

…

DΤ

DΦ

D
π

I(q,m)
…

Figure 6.2: An illustration of the various arcs and vertices that describe a Story Sequence

Diagram.

Precedent edges can be manually added by the author to define separate story beats.

The CANVAS system also automatically detects when the a single object is used twice

in the same beat, and will move one of the two involving event instants to a subsequent

beat with a new precedent link between them. We display the SSD in such a way that

each horizontal row of event instances delineates a beat, and the ordered sequence of beats

represents the resulting story arc. Figure 6.2 illustrates a generic story arc represented as

a story sequence diagram.

68

6.2 Handling Underspecified Stories

CANVAS is designed for authors to partially author stories where some events instances

may have gaps in their participation sets, or may be omitted altogether in the causal se-

quence of narrative actions. The authoring environment is designed to accommodate these

underspecified stores and perform inference to fill in the gaps in the author’s desired nar-

rative.

Automated Parameter Selection. Partially-specified story beats can contain event in-

stances such as I = 〈e,w〉 where w ⊂ W ∪ {∅}. That is, the participant objects of

e may contain some entries that do not refer to an object in the world and are instead

undefined. Note that objects in w are assigned to specific roles in order in the context

of an event instance (i.e., e may be a “Sit on Chair” event, for which we use a PBT

that takes an object to fill the role of the person sitting, and the chair, in that order),

so we can consider w here both as an ordered vector and as a set. For every unde-

fined participant object {wj ∈ w|wj = ∅}, we consider the domain of possible values:

xj = {x | x ∈ W,Γe(x) = 1} such that the candidate object x satisfies e’s role evalu-

ation function Γe for that particular role in the event. This produces a set of all possible

combinations of objects P(I) that satisfy the role requirements of the event. Algorithm 2

details the process for computing P(I).

Once we generate P(I), we reduce the space complexity by filtering it according to

three hard constraint criteria:

1. Duplicate Elimination. We filter duplicates in two ways. First, each candidate

vector in P(I) must be unique relative to all other candidate vectors. Second, no

object may appear more than once within the vector itself (i.e., an object can fill

only one role in any given event instance).

69

Algorithm 2: Generating all possible parameter combinations for incomplete event

instance I
Data: I = 〈e,w〉
Result: P , described as a set of vectors of length |we|

1 P = {()} (P begins as a set of one empty vector)

2 foreach j = 1..|w| (for every role that needs to be filled in e) do

3 create set P ′ = {}
4 foreach v ∈ P do

5 if wj = ∅ (if the jth candidate is undefined) then

6 // append all role-satisfying objects to all the participant vectors

7 foreach w′ ∈W do

8 if Γj
e(w

′) (if w’ satisfies the requirements for the jth role) then

9 P ′ = P ′ ∪ {(v w′)}

10 else

11 // just add the object already selected by the author to all the vectors

12 P ′ = P ′ ∪ {(v wj)}

13 P = P ′

2. Precondition Satisfaction. A candidate object vector w for an event e must sat-

isfy the precondition function φe(sw). This includes the evaluation of all attributes,

relations, and rules within and between the objects in the candidate vector. The pre-

condition function trivially includes an evaluation of the role evaluation function Γe,

but is a more costly computation overall and so we wish to compute it as few times

as possible. For events that appear in story beats after the first beat in a story arc,

we predictively extrapolate the effects of all prior story beats to anticipate changes

to the potential participants in the current candidate event instance.

3. Unique Usage. Objects are treated as unique resources in our story environment.

No object can be used in more than one event at any given time during simula-

tion. As such, when we evaluate story beats, we must ensure that no object is used

simultaneously by two or more event instances in the same beat.

We can additionally weight event instance candidates by soft constraints to compute a

70

score. We currently employ two such scoring strategies, which are mutually exclusive:

1. Salience. As described in Section 5.5, objects that have already participated in more

events are given preferential treatment in selection for future events. This helps to

establish “main characters” as recurring focal points in the story.

2. Balanced Usage. The inverse of salience, this criteria prefers a uniform distribution

of all objects in the world, rather than focusing on recurring individuals.

Once the powerset P(I) is assembled, we compute the optimal object candidate vector wo
I

as

wo
I = argmax

w∈P(I)

score(w)

such that ¬dup(w)∧φe(sw)∧unique(w, β). This method can be extended to fill missing

candidates in entire beats rather than individual event instances. To fill missing candidates

across multiple instances in a story beat, we calculate P(Ii) for each Ii ∈ β that does not

contain duplicates, satisfies each respective event’s preconditions, and used each partici-

pating object only once. Of these, we pick a combination of candidate vectors for each

event instance in β that maximizes score(w) without violating the unique usage precon-

dition between each object in each event instance in β.

6.3 Parameter Filling for Incomplete Story Arcs

For partially-defined story arcs where the author has omitted certain events in the ex-

pected causal trajectory of the story, there exist “narrative gaps” where the system must

fill in entire events or beats and we cannot predict the state changes made to the world

by the events in these gaps. In order to find valid participants for events to which we

don’t immediately know every preceding event, we relax the precondition satisfaction re-

quirement when filtering the power set P(I). Rather than enforcing that each candidate

71

vector strictly satisfies φe(s) (here s represents the collective state of the objects w), we

introduce a second scoring term that evaluates the objects’ likelihood of satisfying φe(s)

(or the beat-wide precondition function φβ({sI1 , . . . , sI|β|}). We estimate the world state

before and after the execution of the current story beat β, sβ−1 and sβ . The hamming

distance dist(d(sβ−1), d(sβ)) between the number of bits in the encoded state description

d(sβ−1) and description d(sβ) provides a good estimate of the likelihood of the parame-

ters satisfying φβ . (The intuition here stems from estimating the number of bits that have

to be changed in some initial state in order to satisfy the desired state.) The function

RelaxedFill(x, βi) returns the xth best valid population for βi produced while optimizing

dist(d(sβ−1), d(sβ)).

6.4 Story Inconsistency

Enabling the story author to be arbitrarily sparse in their story specification implies that

authored stories may completely omit expected beats, or contain other inconsistencies

that need to be resolved by the system in order to generate a consistent narrative. Two

successive beats {(βi−1, βi) | βi−1, βi ∈ α, 1 ≤ i ≤ |α|} in a story arc α are locally

inconsistent if either of the following two conditions are violated: (1) There exists one

or more event instances I ∈ βi that have unspecified participants. (2) The participant

object states si−1 reached by executing the postcondition functions of all of the event

instances in all prior beats up to βi−1 do not satisfy the collective beat-wide precondition

function φβi
({sI1 , . . . , sI|βi|}) (where each Ij ∈ βi). The story arc α is said to be globally

inconsistent if it contains more than one local inconsistency.

72

6.4.1 Local Inconsistency Resolution

Local inconsistency between two successive beats is resolved by ensuring that all event

instances contained in the two beats are fully populated (i.e., all of their participants are

defined) and valid. This is achieved by populating the parameters of incomplete event

specifications, and inserting new event instances (and possibly new beats) to satisfy the

preconditions of all events. All human-authored events are treated as hard constraints and

our system never generates a resolution strategy where authored events are removed or

reordered relative to one another.

Consider a locally inconsistent beat pair: (βq, βr) in a story arc α such that the world

state sβq
after the execution of βq violates βr’s precondition function φβr

. To resolve this

inconsistency, we formulate a problem domain Σ = 〈Ψ,Θ〉 where Ψ is the space of

possible compound world states that the objects in the world can possibly take, and Θ is

the space of all possible valid event instances for every e contained in the event lexicon E.

The problem instance is defined as: P = 〈Σ, sβq
, φβr
〉. We use a heuristic planner [16] to

generate a sequence of complete event instances I ∈ Θ, starting from sβq
, and eventually

producing a world state that satisfies φβr
. The resulting plan Π(sβq

, φβr
) = {I1, · · · , In} is

inserted either within or between between the two beats βq and βr to produce an ordered set

of consistent story beats {β′
q, · · · , β

′
r) that may both modify the original beats (βq, βr) and

potentially introduce new beats. While the plan Π returned by the planner is a sequence of

event instances, we identify events that can execute in parallel and add them to the same

beat, while events operating with overlapping participants need to be executed in different

beats.

Heuristic Function. In order to focus the search expansion to most promising states, we

define a heuristic estimate of distance to the desired goal state, calculated by hamming

distance based on the number of bits that need to be changed in order to reach the goal

73

state:

h(sW, sr
W
) = ||sW ⊕ sr

W
|| (6.1)

where sW represents the initial state of the world and all of its objects, sr
W

represents a

state of the world where the beat βr can successfully execute, and ||sW ⊕ sr
W
|| returns

the number of 1′s occurring in the binary encoding vector of sW XOR sr
W

. However,

the desired goal state sr
W

is not uniquely defined in our problem definition, since our goal

formulation is simply the satisfaction of φβr
on some set of objects in W. We first generate

a possible sr
W

by iteratively changing the bits of sW until φβr
(s′

W
) evaluates to true for

some s′
W

. In order to only consider the bits that are relevant to φβr
, we introduce a bitmask

Mβr
that filters out all irrelevant bits. We thus get a modified definition of the heuristic

function:

h(sW, βr) = ||(sW ⊕ sr
W
) & Mβr

|| (6.2)

where & represents bitwise AND. The branching factor when considering the space of

all possible event instances Θ, even when considering a small library of events, grows

exponentially large due the large number of unique possible combinations of participants

that each event can take at any state (see Section 5.3.2). To optimize our planner, we use

Weighted A* [56] by introducing an inflation factor ǫ > 1 to bias the exploration towards

states that are more likely to satisfy φβr
, as follows:

f(sW) = g(s0
W
, sW) + ǫ · h(sW, βr) (6.3)

For the experiments and results described in our work, we found that 2 ≤ ǫ ≤ 4 worked

well and produced a dramatic reduction in planning cost. Practitioners may set ǫ = 1 if

74

their application necessitates strict optimality guarantees.

6.4.2 Global Inconsistency Resolution

A story arc with more than one local inconsistency cannot be resolved by independently

resolving each local inconsistency. In this case, the resolution of one set of preconditions

may invalidate other preconditions, making existing consistent beats inconsistent and cre-

ating a cycle of invalidation. In situations of multiple local inconsistencies, there may

be cases where a coordinated resolution strategy is needed across multiple inconsistent

beats where the optimal solution for one inconsistency may invalidate the possibility of

any resolution for another inconsistency.

Consider a simple scenario with a guard and robber. The robber has a weapon for

coercion or incapacitation and the guard has the key to the manager room which has a

button to open the bank vault. We author an incomplete story where in β1, the robber will

unlock the door to the manager room (which requires the key) and in β2, the robber will

coerce the guard into pressing the vault button. Resolving the local inconsistency of β1

produces a narrative where the robber incapacitates the guard and takes the key, allowing

him to open the door. However, this prevents any possible solution for β2 since the guard

is incapacitated and can no longer be coerced into pressing the vault button.

To address this chained inconsistency resolution problem, we introduce an algorithm

to resolve globally inconsistent story arcs in an efficient way. The key intuition is to

back-propagate the preconditions of a later beat φβi+1
when a plan between two locally in-

consistent beats (βi, βi+1) fails. A new plan for the previous local inconsistency (βi−1, βi)

is generated that satisfies the stricter preconditions φβi
∧ φβi+1

. In the previous example,

we propagate φβ2
← ¬Incapacitated(guard) backwards to produce a resolution for

(β0, β1). In so doing, we ensure that the guard is not incapacitated in the process of the

75

robber taking the key. This produces a globally consistent narrative where the robber in-

stead coerces the guard to hand over the keys and later to press the button to open the

vault door. Algorithm 3 details two variants of the back-propagated planning algorithm.

The theoretically complete version uses the lines indexed using ⊖ while a more practical

estimation-based algorithm is obtained by replacing them with the lines indexed using ⊕.

Complete Algorithm. The algorithm iterates through successive beats in the story arc

α. When it identifies an inconsistent beat pair (βi−1, βi), it first populates βi with the

optimal set of event participants (Line 8) to generate an example populated beat β∗ using

relaxed-fill estimation. The simulation function Simulate(·, ·) is a PAStE-based function

used to predict the “current” world state (i.e., the expected world state at the time of beat

invocation) sc
W

of the objects by forward simulating the postconditions of the preceding

beats (Line 6). A plan Π(sc
W
, φβ∗) is computed to satisfy the preconditions of this optimal

beat φβ∗ and inserted into the story arc (Lines 13, 14). This process continues until all

inconsistencies are resolved. If the planner is unsuccessful, we increment j and try the

next valid beat population (Lines 33 – 36) for this particular inconsistency.

If the planner is unable to resolve the local inconsistency for any of the valid beat pop-

ulations, it propagates the preconditions backwards to earlier beats in the story. It marks

the previous beat pair (βi−2, βi−1) as inconsistent (Line 23), thus invalidating the previ-

ously computed plan, and generates the set of preconditions for βi using each possible beat

population, denoted as Φ (Line 25). Each precondition φprop ∈ Φ is successively concate-

nated to φβi
(Line 26) to check if a resolution strategy can be computed for the previous

inconsistency while accommodating the preconditions of the current inconsistency, for a

particular beat population (Line 10). In this case, we store both the precondition function

and the set of objects on which that precondition must hold (hence the pairs of precondi-

tion function and object candidacy vector in Line 27). We use this function-object pairing

76

Algorithm 3: Algorithm for finding a solution to an inconsistent story arc

Data: α, a partially specified story arc containing some beats

Data: s0
W

, the initial world state

Result: An in-place modification of story arc α
1 sc

W
= s0

W
(set the current world state to the initial world state)

2 Φ=∅ (Φ is the set of preconditions)

3 i← 1; j ← 1; k ← 1
4 while i ≤ |α| ∧ i 6= 0 do

5 if incons(βi−1, βi) = TRUE then

6 sc
W

= Simulate(s0
W
, {β0, · · · , βi})

7 λ← |RelaxedFill(· · · , βi)| (λ is the number of populations)

8 β∗ ← RelaxedFill(j, βi)
9 if Φ 6= ∅ then

10 φprop ← Φk ⊖
11 φprop ← Φ1 ⊕
12 φβ∗ ← φprop ∧ φβi

13 P = 〈Σ, sc
W
, φβ∗〉

14 Π(sc
W
, φβ∗)← Plan(P)

15 if Π(sc
W
, φβ∗) 6= ∅ ∨ ¬incons(βi−1, βi) then

16 α← α ∪Πsc
W
φβ∗

17 i← i+ 1; j ← 1
18 k ← 1 ⊖
19 Φ ← ∅

20 else

21 if j ≥ λ ∧ k ≥ |Φ| ⊖
22 if j > ε ⊕
23 incons(βi−2, βi−1)← TRUE

24 if Φ = ∅ then

25 {w1
βi
, . . . ,wm

βi
} = RelaxedFill(· · · , βi) ⊖

26 foreach w
p
βi
∈ {w1

βi
, . . . ,wm

βi
} ⊖

27 Φ ← Φ ∪ (φβi
,wp

βi
) ⊖

28 w1
βi
= RelaxedFill(1, βi) ⊕

29 Φ ← {(φβi
,w1

βi
)} ⊕

30 j = 1; i = i− 1
31 k = 1 ⊖
32 else

33 if j ≤ λ then ⊖
34 j ← j + 1 ⊖
35 else ⊖
36 j ← 1; k ← k + 1 ⊖
37 j = j + 1 ⊕

38 return α

77

to specify that any prior beats must resolve in such a way as to enable the precondition

function for future beats to evaluate to true. The back-propagation of preconditions con-

tinues to earlier beats (Line 30) until either the inconsistency is resolved, or the start of the

arc is reached when no further back-propagation is possible.

It is important to note that this is not a traditional backtracking algorithm. Rather

than performing a search through strings of potential solutions, when the global planner in

CANVAS encounters an inconsistency, it identifies conflicting constraints on later events

in the authored sequence and moves those preconditions to earlier gaps in the story to re-

solve as a single search problem. The system back-propagates preconditions rather than

executing sequences of search problems on a stack. The core algorithm works by ex-

panding local search problems with constraints taken from global inconsistencies. In this

way, solutions for the local problem (with the addition of the back-propagated consistency

preconditions) are guaranteed to resolve the later inconsistencies that were previously en-

countered in the planning process. Of course, a solution for the expanded global-to-local

planning process may not exist if the event lexicon is limited.

Practical Estimation. The theoretical algorithm may take minutes to find a solution due

to the exponential number of parameter combinations that need to be considered when

resolving inconsistencies across many beats in large worlds. To offset this computational

overhead, we introduce certain practical estimations to dramatically reduce the computa-

tional complexity of our approach at the expense of completeness guarantees:

1. We introduce a threshold ε that limits the maximum number of beat populations that

are investigated (Line 22).

2. The back-propagation of preconditions is done only for the single best beat popula-

tion (Replace Lines 25 – 27 with Lines 28, 29), rather than iterating down the list of

all potential objects that may fill each beat’s required roles.

78

This algorithm works well in practice with real-time planning, and provides a responsive

authoring experience where the planner generates possible solutions almost instantly for

the author to refine and iterate. If the algorithm is unable to find a globally consistent

solution, we have two options. First, we can choose to provide the partially consistent

story arc to the author for reference and highlight the remaining inconsistent story beat(s)

to help the author resolve the inconsistencies. Second, we can fall back on the more

theoretically complete satisfaction process as an offline step with the author’s approval at

the cost of more computation time.

The overall computational complexity of this algorithm is dependent on the nature of

the virtual environment and the story being authored. The biggest contributor to complex-

ity is the expected number of inconsistencies that require global re-planning, and this is

entirely dependent on environmental factors and the author’s intent. With respect to the

task of populating potential beats in the complete and practical versions of the satisfaction

algorithm for a given inconsistency, the computational complexity is, in the worst case,

bounded by the total number of potential beats. This number relies on the number of ob-

jects in the world n, the maximum number k of events per beat, and the maximum number

of participants per event p, and the size of the event lexicon e, as O(ek(
n
kp)). This repre-

sents the number of potential beats that can be considered in the world for inconsistency

resolution, based on permutations of the event lexicon and combinations of characters and

objects chosen from the world to populate them. The practical estimation algorithm, in

contrast, selects only one beat (the “best guess” beat it had at the time the inconsistency

was discovered), and uses that when back-propagating preconditions and computing a

new local resolution problem, effectively making the “beat population” problem O(1). Of

course, this comes at the cost of completeness, where the algorithm may fail if that partic-

ular greedily-selected beat is irreconcilable.

79

Event Failure. We experimented with using CANVAS’s real-time planning capabilities

to produce new, alternative plans in case of an event failing to execute (because of a bad

navigation request, or some animation or IK malfunction). CANVAS is capable of find-

ing alternative events by automatically creating planning subdomains between the current

state of the world (during the event failure), and the next intended event in the story series.

However, in practice, we found that this was unnecessary. Events themselves (and behav-

ior trees in general) are designed with robustness in mind, and are capable themselves of

accounting for failure in the event execution structure. If an event itself fails in our sys-

tem, it represents a major error that must be fixed, and attempts by CANVAS to recover

and re-plan around the failed event often still produce undesirable and unavoidable visual

artifacts.

80

Chapter 7

Real-Time Story Exploration via

Storycraft

In addition to the CANVAS system for authoring stories as a cohesive storyboard expe-

rience, our system supports an additional module for creating stories in real-time using

an exploratory narrative generation process. Where traditional story authoring exists in

two phases, one where the author defines the story, and one where a viewer or partici-

pant experiences it, the real-time Storycraft system merges both the act of authoring and

experiencing a story into one interaction with the system. To do so, we rely on offline pre-

computation of the story space described by PAStE and CANVAS, with both quantitative

and user-driven qualitative analysis of the story space.

7.1 Overview

During an offline step, we pre-compute the space of all possible narrative trajectories

that may ensue within a collection of characters in an environment, referred to as the

“story web”. By performing graph analysis of the story web, we can extract a variety of

81

low-level features about the shape and topology of the graph, including: (1) measures of

node popularity (PageRank), assessing how likely a random exploration of the story space

would visit it, (2) inverse measures that identify rarely visited nodes which open up new

possibilities in the story space, and (3) measures of the strength of connection between

two arbitrary nodes in the graph (MinCut).

These low-level features can be combined to create high-level intuitive heuristics that

estimate the “narrative value” of any path between two nodes in the story web. For ex-

ample, bottleneck identification identifies clusters in the graph and loosely connected seg-

ments between them. This heuristic highlights “points of no return” where events in the

story irreversibly change the state of the world and its characters.

7.1.1 Sentiment Tagging and Analysis.

Environment designers and content creators can semantically tag events with their asso-

ciated sentiment (e.g., loyalty, betrayal, etc.). These analyses produce an annotated story

web that estimates both the quantitative and qualitative value of a narrative, as well as

the sentiment associated with any story traversal. They additionally open up numerous

opportunities to enrich and streamline the process of experiencing and creating stories.

Figure 4 illustrates the offline pre-computation process. The virtual world is exported

in its initial configuration with all objects and characters in their starting state, along with a

lexicon of all possible events that can be executed in the world. That export is loaded into

an offline story explorer that produces an exhaustive story web by considering all possible

ways of executing each event from any reachable world state. The story web is then stored

and serialized for real-time interactive storytelling.

During the real-time story interaction, we explore two new modalities for a author to

interact with the virtual world and its inhabitant, that are made possible using story webs.

82

����������	�
�	������ ���
�	������

�����	������������

�����	��	

����������

��������������

��������������

��������������

��������������

����������	�����	��

����������	
����

�������

�����	�����	������

Figure 7.1: An illustration of the story web pre-computation process.

The first is a highly generative approach where a author dictates the progression of a story

one step at a time, and the second is a more editorial modality where a author manipulates

and diverts the course of complete generated story arcs as they unfold on-screen.

7.1.2 Generative Storytelling.

In generative storytelling, the author is presented with the virtual environment and given

a list of potential events that can occur in the world involving different collections of

characters and objects from the virtual world. As the author chooses events, those events

execute in real-time (either sequentially or in parallel) and alter the state of the world.

Because there may be a wide array of possible events for any particular story juncture,

the system uses our state- and graph-analysis metrics on the complete generated story

web to automatically suggest events that are more likely to take the story down a path

83

that maximizes any author-specified criteria. These filters focus on identifying events that

it believes the author would consider interesting. This allows the author to interactively

explore the different ways in which characters and object may interact while progressively

contributing to an overarching narrative.

7.1.3 Intervention Storytelling.

In intervention storytelling, our system selects and begins animating a default story using

the characters and objects in the designed environment. At any point, the author can pause

the story progression and alter its trajectory. This can be done either by modifying the

sentiment of the story (i.e., changing a story about camaraderie to one based on betrayal),

or by explicitly selecting the next event(s) for one or more story participants. After the

author’s intervention, the system continues autonomously along the new course of action

determined by the author’s perceived intent, until the author decides to intervene once

again. As in the generative modality, the list of events presented to the author are filtered

to remove meaningless and uninteresting options.

Figure 7.2 illustrates the online storytelling process (in the generative modality). The

system loads in a serialized story web and plots candidate story trajectories based on the

pre-computed graph topological features. The top trajectories are ranked and selected,

and a series of choices are presented to the author for selecting the next event to execute.

When the event is selected, it dispatches commands for the virtual actors and objects to

carry out on screen. Afterwards, the change in world state is fed back to the storyteller

and a new set of choices are selected for the author based on the story web.

84

��������������

��������������

��������������

��������������

����������	�
���	��

���������	

�
���
�����

��������	
�����

�������
�	�
���

������
�����

�����
��

� � �

����
	�������	���������	
�	����

��������

���
	
�

��
���

�
����

Figure 7.2: An illustration of the real-time storytelling process.

7.2 The Story Web

The Storycraft system operates on the same CANVAS/PAStE/ADAPT backbone, defining

objects, their states, and the world’s events in the same way. We depend on the story

web as an additional data structure for the story exploration process. A story web B =

(N,A) is a graph with nodes N and edges A. A node N ∈ N contains a complete

representation sW of the compound state of all of the smart objects in the virtual world

W, as well as containing space for storing scalar value features describing that world state

configuration. As in PAStE, these compound world states are expressed as |W| × |W|

matrices of encoded bit vectors containing both individual object attributes and pairwise

relationships1. An edge A ∈ A is defined as a triple (Ni, I, Nj) containing a source node

Ni, a target node Nj , and the event instance I that transforms the world state contained in

Ni to that contained in Nj by modifying the attributes and relationships of some objects in

1Incidentally, each world state snapshot can be serialized very efficiently as a single delta-encoded matrix

of fixed-size bit vectors where the asymmetric relations between objects form the two triangular sections,

and individual character attributes occupy the diagonal.

85

WNi
. Paths in the story web can be converted to story arcs, each representing one possible

traversal of the complete story space as well as the transformations of the world performed

by the events in the web’s edges (which are collapsed and converted to beats).

7.2.1 Pre-computation

The story web is created in several phases. First, the initial world state sW is serialized

and exported into a series of descriptive headers. These headers contain all of the story-

relevant objects in the world with their initial state and relationships towards one another,

as well as a complete listing of that world’s event lexicon E. The events are also tagged

with one or more descriptive sentiments that align the event with a particular mood or

theme such as “Brave” or “Non-violent”. This world serialization is loaded into an external

tool that will produce the story web.

Once the web explorer receives the tool, it performs a complete graph exploration of

the web B. For each node N in the graph, and for each event e in the complete event

library, the explorer evaluates all possible event instances Ie ∈ I across all possible partic-

ipant populations such that φe(wIe) = 1. For each such instance I , the explorer creates a

new node and corresponding world state N ′, sWN′ expressing the state created by modi-

fying N by the postconditions ∆e of the event e. A new edge A is created linking N and

N ′ with the event instance I that precipitated their transition. The exploration terminates

when all unique world state configurations have been found and any further event execu-

tions result in produced world states that have already been bound to nodes in the web.

This process is illustrated in greater detail in Algorithm 4.

Pre-computation of the story web allows for later real-time analysis of the complete

story space, including an understanding of the long-term trajectories of local event selec-

tion as performed by a user. Creating a full graph enables reasoning on the topological

86

Algorithm 4: Producing the story web through exhaustive story space exploration.

Data: an initial world configuration W0

Data: a library of events E

Result: a story web B = (N,A)
1 O = {W0} ;

2 C = {W0} ;

3 N = {W0} ;

4 A = {} ;

5 while |O| > 0 do

6 let n = pop(O) ;

7 for each e ∈ E do

8 for each permutation w ∈W
|re|
n do

9 if φe(w) == TRUE then

10 let n′ = transform(n, e) ;

11 if n′ 6∈ C then

12 add n′ to O ;

13 add n′ to C ;

14 add n′ to N ;

15 add (n, 〈e,w〉, n′) to A ;

shape of the story itself, and can reveal qualities like climactic “points of no return” story

moments without any domain-specific knowledge of the meaning of each world state ele-

ment.

7.3 Story Web Analysis

After we have a complete graph containing connectivity information between world states,

we pre-compute features and meta-data for use in story selection. The first analysis per-

formed on the graph is a pre-computation of all of the shortest paths between nodes. This

is a highly parallel process and we observed very promising results by computing this

pathing step with a GPU-based “flood fill” algorithm.

87

7.3.1 Low-level Features

In addition to storing the shortest path between each node (and its length), we store three

more heuristic features: Pagerank, Inverse Pagerank, and graph Min-Cut. Pagerank and

Inverse Pagerank, are calculated using the techniques described by Page et al. [54] and

their inverse, while Min-Cut is calculated according to a parallel version of the method

described by Stoer et al. [82].

Pagerank. (Per node.) As a heuristic, Pagerank gives an estimate, for each node, of how

likely a node is to be selected in a random exploration of the web. We use this heuristic to

get an estimate of a node’s “popularity”, in terms of how much traffic can be directed to it

in the graph.

Inverse Pagerank. (Per node.) In contrast, Inverse Pagerank gives an estimate of redun-

dant or unnecessary nodes. That is, a node with a high Inverse Pagerank score is unlikely

to be accessed, while also leading to many other nodes in the graph. We use this heuristic

to identify “low-value” nodes that add little to the story beyond simply being another step

in its trajectory.

Min-Cut. (Per node pair.) Min-Cut measures, between two nodes, the minimum number

of edges that must be removed from the graph in order to sever all paths from the first

node to the second. It gives a measure of the robustness of the graph’s connectivity. We

use min-cut to identify bottlenecks in our graph. Our intuition is that when two clusters

of nodes are connected by a small bottleneck of one or two edges, then the events of those

edges represent critical “climax” points of the story that drastically change the story along

interesting points of no return. We also store the average min-cut in and out for each node.

88

Avg. Min-Cut In. (Per node.) Measures the average connective strength of other nodes in

reaching this particular node. Nodes with high average min-cut in are very easy to reach

and represent commonly reused story elements.

Avg. Min-Cut Out. (Per node.) Measures the average connective strength of this node

in reaching other story nodes. Nodes with high average min-cut out represent the hubs of

“story clusters”, and can generally originate multiple diverse story trajectories.

These features are computed during the offline exploration process and serialized along-

side the complete story web for use in real-time story exploration.

7.3.2 Heuristics and High-level Features

During the online story exploration process, we combine these low-level features into

higher-level functions that assign a score to a potential story trajectory. Given a start state

s, end state e, and path p(s, e), we compute cost(s, e, p(s, e)). Note that p(s, e) consists

of a list of triples

p(s, e) = ((s, I1, n1), (n1, I2, n2), . . . , (nk−1, Ik, nk), (nk, Ik+1, e))

where each triple (ni, Ii+1, ni+1) consists of a source node ni, a target node ni+1, and a

connective event instance Ii+1 that precipitates the transition between them. We have sev-

eral different formulae for these cost functions, that can be changed based on story author

preference. We prefer lower cost scores when selecting stories to execute. All values are

assumed to be normalized both before and after computation.

89

Skinny-Pipe:

cost(s, e, p(s, e)) = mincut(s, e)/length(p(s, e))

Divides the min-cut from the first node to the second by the length of their path. This

prefers longer stories with at least one major bottleneck.

Trap-Nodes:

cost(s, e, p(s, e)) = avgmincutout(e) ∗ invpagerank(e)

Prioritizes story goal nodes with a low average page-rank out (i.e., low connectivity to the

rest of the graph) and penalizes nodes with a high inverse pagerank (indicating low value).

This finds nodes that represent drastically different states from their immediate peers,

which would produce highly volatile chains of events that would cause major changes in

the world when they execute.

Hub-Nodes:

cost(s, e, p(s, e)) = 1.0/(avgmincutout(e) ∗ pagerank(e))

The opposite of trap-nodes, prioritizes “popular” nodes that can branch out to a wide array

of other nodes, creating more possibilities for new and interesting story trajectories.

No-Return:

cost(s, e, p(s, e)) = mincut(e, s)−mincut(s, e)

Finds stories that are difficult to reverse, creating story trajectories along a “point of no

90

return”. This indicates transformative world events that modify the world state in drastic,

meaningful, and irreversible ways. This value is normalized between 0 and 1, taking neg-

ative values into account.

Because these high-level heuristics are still rather simple, they can continue to be com-

bined and weighted for a final story candidate analysis, taking additional factors like story

path length into account.

7.3.3 Sentiment Tagging and Qualitative Analysis

In addition to the story feature heuristics, potential story start- and end-state pairs are

weighted according to their involvement of events matching certain sentiments. When

a cost score is computed for a start and end state, the scoring algorithm also traverses

the path from start to end, and applies a bonus or penalty to the cost function depending

on which sentiments appear in the path’s transitions. The bonus or penalty is applied

by multiplying or dividing the score by some small order of magnitude. For testing, our

system’s current sentiments are “Negligent”, “Brave”, “Violent”, and “Nonviolent”. These

can be trivially expanded with additional themes and moods by tagging events in the event

library. For a given start-end node pair, the score for that path is multiplied by a constant

k for every occurrence of a desired sentiment, and divided by k for every occurrence of a

sentiment that is not desired.

7.4 Story Generation

Story generation is dependent on the loaded story web and the score calculations based on

sentiment and the cost function evaluation. Story generation proceeds in rounds, where

the system identifies its current state and then evaluates potential candidates for the next

91

event instance to execute. Given the current node c in the story web B = (N,A), the

system iterates over each potential goal node gi ∈ N s.t. ∃p(c, gi) and computes ti =

cost(c, gi, p(c, gi)) (including sentiment bonuses or penalties). We create a list of scored

goals S = ((ti, gi, p(c, gi)), . . .) sorted in ascending order by ti. Next, our goal is to

produce k (a user-configurable constant) potential unique event instances to execute from

the given state.

Algorithm 5: Producing the list of candidate events.

Data: a constant k
Data: a sorted list of scored goals S = ((ti, gi, p(c, gi)), . . .)
Result: a sorted list of candidate instances and results D = ((I1, n1), . . .)

1 D = () ;

2 V = () ;

3 for each (ti, gi, p(c, gi)) ∈ S do

4 expand p(c, gi) = ((c, I1, n1), . . . , (nk, Ik+1, gi)) ;

5 if I1 6∈ V then

6 add (I1, n1) to D ;

7 add I1 to V ;

8 if |D| == k then

9 break ;

For each tuple (ti, gi, p(c, gi)), we extract the first event to be executed in the path. That

is, if p(c, gi) = ((c, I1, n1), (n1, I2, n2), . . . , (nk, Ik+1, gi))), we extract I1 and nominate

that instance as a candidate for the next transition. We store the candidate instance I1 and

the next state in the path n1 as a tuple (I1, n1) our candidate list. Note that while two

different goals gi1 and gi2 may differ, the paths p(c, gi1) and p(c, gi2) may have the same

first transition and resulting event instance, hence we filter for only presenting unique

events by potentially skipping entire goals. Algorithm 5 illustrates this process in action.

Once a candidate (I1, n1) is selected from the list, the results of the event execution are

displayed on-screen, and the current world state node becomes n1. We then recalculate

goals, and produce new candidates. For consistency, and to prevent vacillating goals in

92

continuous stories, we always add the goal from the previously selected event candidate

as the first goal in our new candidate list S for this round that we present to the user, so

long as that goal is still reachable from our new state. This ensures that the first candidate

option is to continue along the path towards the previously selected goal.

Ultimately, the process of story generation is to produce lists of candidates, select

those candidates (either according to the user’s wishes or automatically), wait for the se-

lected event to play out on screen, transition to the new state, and then generate a new

set of candidates. There are two control modalities that we can employ with respect to

selecting events. These two modalities have no bearing on the manner that candidates are

selected, but rather represent two different types of interaction with the user in terms of

story control.

7.4.1 Generative Storytelling

Generative storytelling exposes the candidate events directly to the user at each round and

waits for the user to pick each event from the top choices. During each round, the system

pauses and the user is given an illustration of the top candidate events and which charac-

ters and objects those events involve. The user can also modify the story goal selection

heuristics (sentiment and cost function) in real-time to generate new sets of candidates.

When the user picks an event, the event executes on-screen and eventually terminates, at

which point the system presents the user with new candidates. In this modality, the user is

wholly responsible for generating the story based on the options available and picks events

on a round-by-round basis.

93

7.4.2 Intervention Storytelling

Intervention storytelling instructs the system to automatically select the best candidate, but

allows the user to pause the story at any time to change selection criteria or manually select

an event as per generative storytelling. When left completely untouched, the automatic

storyteller will play out and animate an entire story from start to finish. At any point,

and in real time, the user can pause the story and either change goal selection criteria,

or explicitly select the next event from a set of candidates. After this point, the user can

continue to select events one after another as in generative storytelling, or unpause the

automatic storyteller and continue until deciding to intervene instead. In this modality, the

user is charged with selectively shaping the trajectory of the story, but is not necessarily

concerned with every detail.

94

Chapter 8

Results

To demonstrate the capabilities of CANVAS and Storycraft, we designed a bank robbery

scenario illustrated in Figure 8.1. Section 8.1 introduces the objects and actors used in this

scenario, with their affordances and capabilities, and Section 8.2 describes the event lexi-

con exposed to the CANVAS and Storycraft authors to create the stories we demonstrate

in this environment.

8.1 Objects, Actors, and the Environment

The bank robbery scenario includes 65 total objects. Of these, 19 of these objects are

actors, split into four categories as follows:

Robbers. The robbers serve as the principal characters in the scene and are equipped with

weapons that can be used to fire a warning shot (to frighten the customers), incapacitate

other characters, or coerce them into opening doors and pressing buttons.

Guard. Guards keep the bank safe from robbers and are equipped a keycard to the locked

95

doors in the scene. Some guards are also equipped with weapons.

Bank Teller and Manager. Tellers work at the bank counter to serve the customers while

the manager oversees bank operations.

Customers. Bank customers provide ambient activity in the scene; wandering the bank,

purchasing and consuming beverages from the drink dispenser, recycling used cans, and

filling in forms. The customers are controlled by a group coordinator object (as described

in Section 5.3.1), but they can be dynamically removed from their coordinator group. As

such, the customers, bank tellers, and any other character in the scene can be promoted

from a background role to playing a more significant part in the narrative depending on

the author’s intent.

In addition to the categories of actors, there are numerous other smart object props that

are used for the actors to interact with in the scene, as follows:

Doors and Buttons. The doors to the teller room and vault entry area are locked by de-

fault and are additionally guarded by the security guards. There are two buttons located in

the manager’s office and teller room which must both be pressed (but not simultaneously)

to unlock the vault door.

Bank Counters. The bank counters themselves have affordances for customers to fill out

forms and present them to the bank tellers for service. These are used to present a more

realistic set of baseline activities for the characters in the scene.

Ambient Props. Props such as chairs, a drink dispenser, and a trash can are added to the

96

scene and can be interacted with. Characters can sit, purchase a drink, and dispose of it

respectively using these props’ affordances.

Note that small hand-held props themselves (like keys, weapons, and service forms) are

not modelled themselves as smart objects. Rather, they are visual representations of char-

acter attributes such as HasWeapon or HasKey. The affordances of the smart objects

read these character attributes and advertise additional affordances (such as a door’s “Un-

lock” affordance if a character is holding a key).

8.2 Story Events

The bank scenario has an event lexicon containing 54 events. Of these, 11 are group events

concerned with the background activity of characters controlled by a group coordinator

object. A domain expert can easily add and remove events as needed, using a simple

programming interface that directly links with the event lexicon. Even with a handful

of events, we are able to author a variety of compelling narratives with vastly different

outcomes. We outline a representative set of events and their metadata in Table 8.1, and

we provide a brief high-level description as follows:

CoerceIntoUnlockDoor(Actor a1, Actor a2, Door d). Actor a1 coerces a2 into opening

the door, d. In order for this event to be successful, a1 must have a weapon, a2 must have

the keycard to open d, and must be able to access d.

IncapacitateStealthly(Actor a1, Actor a2). Actor a1 sneaks up on a2 and incapacitates

him using his weapon. Actor a1 must have a weapon and should be able to reach a2

without being seen by him.

97

WarningShot(Actor a, Crowd: c). Actor a fires his weapon into the air, frightening the

members of crowd c. The precondition for this event is that a must have a weapon.

TakeWeaponFromIncapacitated(Actor a1, Actor a2). Actor a1 takes the weapon of a2

who has been previously incapacitated. Actor a2 must have a weapon and a1 must be able

to reach a2.

DistractAndIncapacitate(Actor a1, Actor a2, Actor a3). Actor a1 distracts a2 while a3

sneaks up from behind to incapacitate a2 using his weapon. For example, two robbers can

cooperate to distract and incapacitate a guard using this event.

PressButton(Actor a, Button b). Actor a presses a button b which may have some effect

elsewhere in the scene (e.g., unlocking the vault door). Actor a must have access to b in

order to execute this event.

LockDoor(Actor a, Door d). Actor a locks the door d. In order to do this, he needs to

have the keycard and should be able to access d. This event can be used to lock other

characters in a room.

Flee(Crowd c). The members of c find the nearest exit and leave the bank. This event can

be used to trigger the response of the crowd to the arrival of the robbers, for example.

8.3 Scenario Creation Effort

We estimate that within the framework of our system, the bank robbery scenario was

created in a total of 50 man-hours by experienced programmers (not including planning

and graphical asset creation). By far the most time consuming task was that of designing

affordances for each smart object, and coordinating the animations used by the characters

98

interacting with those objects (including IK targets, navigation waypoints, and trigger

activation timing). Given a geometric level design and smart object affordances, however,

the task of authoring behavior tree events was comparatively simple and iteration on the

behavior trees themselves can be done with an immediate turn-around time. Note that

this does not include the time spent on authoring the stories themselves, which can be

completed in a matter of minutes by a skilled user of our CANVAS interface.

It is important to note that the addition of a single smart object to the environment

does not automatically incur a performance or creative effort cost with respect to any of the

other objects already in the world. Affordances are tied to existing user types (for example,

a door expects a human character user). In the process of creating a new smart object, the

object’s designer decides which other types of objects in the world should interact with

it (usually just a human), and creates affordances for those user object types. Likewise,

if the new object’s designer decides that that new object should be able to interact with

pre-existing objects, then those pre-existing objects should be given new affordances to

accommodate the new object. In practice, most smart objects fall into two categories:

props (which are to be interacted with), and human actors (which perform the interactions).

Almost every new smart object is usually just a prop designed to accommodate human

interaction, and ultimately requires the addition of only a few new affordances.

Many of the narrative assets created in the bank robbery scenario could be reused in

other settings. Interactions such as conversations, opening and closing doors, or exchang-

ing props are highly portable and applicable to a large number of story domains. Smart

objects themselves can be re-purposed for different environments and can typically per-

form their duties when placed in a variety of locations. Similarly, since behavior tree

events rely only on the smart objects involved in them, they can be ported to different sce-

narios with minimal refactoring or adaptation effort. We expect that over time, scenario

authors will develop a collection of smart objects and environments similar to a “back

99

lot” of a movie studio. As in the real-world analogy, these object props can be periodi-

cally reused in other settings with minimal adaptation thanks to the nature of PBTs and

events. The process of designing an environment, however, is a task that requires skilled

programmers, especially if new smart objects must be created and used. End-users would

not be capable of creating an entirely new story domain within the current iteration of our

system.

8.4 Explicitly Authored Narratives

To demonstrate CANVAS specifically, we author a variety of narratives and execute them

in the virtual scene. In this framework, the process of automatically generating globally

consistent narratives, even for extremely sparse specifications where the planner had to

introduce more than five beats into the story arc, takes only a few seconds on commodity

hardware. We found that the practical variant of Algorithm 3 worked well in most cases

and, when compared to the more theoretically complete algorithm, performed an order of

magnitude faster while still providing useful results.

8.4.1 Fully Manual Authoring

Our manually-authored story begins with robbers r1, r2, and r3 entering the bank from

the bank’s rear entrance. Robber r1 incapacitates the guard g1 who is protecting the back

entrance. He then proceeds down the hallway to distract g2. Meanwhile, r2 sneaks up from

behind and incapacitates g2. Robber r3 enters the main bank lobby and fires a warning shot

at the ceiling of the lobby. Upon hearing the shot, the bank customers flee from the bank

while r1 takes the keys from the incapacitated guard g2. He then proceeds to unlock the

teller door, while r2 and r3 secretly scheme to betray r1. Robber r2 breaks his alliance with

r1 and stealthily incapacitates him from behind. At the same time, r3 coerces the manager

100

into unlocking the door to the vault entrance area. Robber r2 enters the manager’s office

and presses the manager vault button while the manager and bank tellers escape. While r2

is opening the vault, r3 sneaks up and incapacitates him. Robber r3 takes the money and

escapes the bank alone with all of the money.

8.4.2 Automated Parameter Selection

Our first variant of the original narrative narrative outlines the sequence of events without

specifying all of the event’s participants. In this case, the author specifies the following

story, which is missing explicit parameterization. Some three characters enter the bank and

proceed to incapacitate the guards, as before. One character fires a warning shot which

causes the customers to flee while another coerces someone to press the teller button.

Some character then coerces the manager into unlocking his door and incapacitates him,

while another unspecified character presses the manager button. Someone opens the vault

and the three characters take all the money and escape. Figure 8.2 displays the sequence

of animations synthesized by CANVAS in this case, and Figure 8.3 illustrates the authored

narrative with the automatically populated event parameters. The CANVAS planner auto-

matically selects a suitable combination of actors and objects (highlighted) to fill the roles

of the story while ensuring the consistency of the story progression as partially dictated

by the author. The user may choose between the two population heuristics described in

Section 6.2: salience prefers characters who have already participated in events, while

balanced usage prefers to distribute the events evenly among all valid actors in the scene.

8.4.3 Global Inconsistency Resolution

We created a second story variant using events that map only to climactic plot points in

the story arc, without fully specifying the set of causally preceding events that lead up

101

to them. This story, as authored, assumes there is only one guard in the bank, g1. We

specified that robber r1 fires a warning shot and unlocks the teller door (which can not

be done without obtaining a key). He then coerces g1 into pressing the teller button and

locks the guard in the teller room. Finally, we specify that some customer coerces r1

into surrendering (which can not be done without a obtaining a weapon). Figure 8.4(a)

illustrates the authored narrative with the highlighted nodes and parameters automatically

inserted by CANVAS to create a globally consistent narrative. The planner inserts two

beats at the beginning where r1 first coerces g1 into dropping his weapon, and takes his

keys. This allows r1 to unlock the teller door (as was authored) and to coerce g1 into

pressing the teller button. Finally, in order to satisfy the authored constraint where a

customer must coerce the robber into surrendering, the planner inserts an event into the

story where the customer picks up the weapon dropped by the guard at the beginning of

the story, before proceeding with the rest of the author-specified resolution.

8.4.4 Fully Automated Narrative Generation

As a final variant of our story, we specified as little as possible to the CANVAS system, and

let the planner generate its own story to satisfy our requirements. In this case, we specified

only that a robber must take the money from the vault and escape. CANVAS in this case

generates a complete story where the robber proceeds to coerce or incapacitate the guards

to access the manager and teller rooms and press the buttons to open the vault door so

he can successfully steal the money. After such a story is generated, users may edit the

story to meet further requirements or choose from different possible narratives that suits

their needs while relying on automation for story generation. This type of full narrative

generation serves as a good starting point when creating a story, rather than requiring every

user to begin each story from scratch. Figure 8.4(b) illustrates the minimally-specified

102

desired outcome, and the CANVAS-generated story (highlighted).

8.5 Dynamically Exploring Narratives

In addition to the stories generated during an explicit authoring phase via CANVAS, we

can use Storycraft to explore stories in the bank scenario in real-time using a precomputed

story web. We additionally demonstrate three real-time authored narratives designed with

both modalities of Storycraft. In Storycraft’s real-time authoring mode, the user is pre-

sented with a simple dialog box to change the overall sentiment of the story (currently

“Brave”, “Violent”, “Nonviolent”, and “Negligent”), and to specifically intervene when

desired to explicitly select events. The user can choose to “Select Events Automatically”,

which places the system into the intervention modality and will automatically generate a

complete story from the user’s chosen criteria. Alternatively, while the story is running,

the user can select “Pause after Next Event”, at which point, once the event terminates,

the system will pause the story and switch to the generative modality. In the generative

modality, the user is presented with three choices, each reflecting the next event in one

potential story line for the virtual world and its characters. While paused, the user can

also change the sentiment selections using a list of check boxes to change the story lines

that the heuristic story explorer considers when generating event choices. Once the user

clicks one of the three1 event description buttons to choose the next event in the sequence,

the event is executed by dispatching animation synthesis commands to the characters and

objects in the virtual world, and then the system pauses and waits after presenting the

next batch of choices to the user. At any point during the generative modality, the user

can return to the intervention modality by instructing the system to begin automatically

selecting events in sequence. Figure 8.5 displays a screenshot of the real-time storytelling

1This number is configurable.

103

interface, and Figure 8.6 shows a close-up view of the control dialog, including the button

to switch modalities, the sentiment selection check boxes, and the event choice descriptor

buttons.

Our first Storycraft narrative is created using the intervention modality with very little

direct user input. The user selects only the “Nonviolent” sentiment and instructs the story-

teller to proceed. The storyteller then generates a story where the robber coerces the guard

to unlock a door and press a button to partially unlock the bank vault, then proceeds into

the vault to steal its contents. Because of the “Nonviolent” sentiment selection, the robber

does nothing to harm either the guard or the bank teller behind the counter.

Our second Storycraft narrative begins as the first, also using the intervention modality.

However, in this case, just after the robber coerces the guard to press the bank vault button

behind the teller counter, the user intervenes. The user pauses the event progression, which

waits for the currently running event to terminate and then presents an event selection

prompt in the control dialog (generative modality). In this case, the user opts to change

the sentiment from “Nonviolent” to “Violent”, and explicitly selects one of the next events

to execute. The user then returns the system to the intervention modality by instructing

the storyteller to automatically select events. The story that is generated from this case

differs significantly from the first, even though the two stories began the same way. In this

“Violent”-sentiment story, the robber incapacitates both the guard and the teller, stealing

a key from the guard and using it to proceed into the vault and empty its contents.

The third narrative is created entirely through the generative authoring modality. The

user creates the entire story semi-manually by selecting an event, waiting for the event to

terminate, and then making a choice about the next event to execute. In this case, the user

begins with the “Violent” sentiment, and instructs the robber to incapacitate the guard and

steal the guard’s keys. The user then replaces the “Violent“ sentiment with “Negligent”,

which enables the option for the robber to drop his weapon on the floor. The robber then

104

uses the guard’s keys to begin unlocking doors and pressing the two necessary buttons to

unlock the final vault door. However, during this process, the user once again replaces

the “Negligent” sentiment with “Brave”. This prioritizes a new story trajectory where the

bank teller thwarts the robber’s attempt to rob the bank. The “Brave” sentiment prioritizes

an event where the teller picks up the robber’s discarded weapon by the incapacitated

guard. The user then selects the “Violent” sentiment (in addition to “Brave”), and is

presented with the option for the teller to sneak up behind and incapacitate the robber with

the weapon.

All three of these stories were created with minimal and/or intuitive control from the

user, requiring little training or experience with the underlying story engine beyond the

ability to select from the simple presented choices. The sentiment-based heuristic search

produces interesting and varied story trajectories with drastically differing outcomes and

methods, even in constrained scenarios such as a bank robbery. We expect that using a

combination of these two real-time Storycraft modalities, casual users can easily exploit

the event-driven system to create interesting and meaningful stories with minimal effort.

8.5.1 Metrics

The Storycraft offline exploration for the bank robbery scenario produced an upper limit

of 12,992 story web nodes (variations during iteration and experimentation caused this

number to fluctuate). We reduced the number of objects and events for this process be-

cause of a lack of early optimization. Subsequent optimizations and GPU processing for

story web generation for this scenario demonstrate promising preliminary results, bringing

computation time down from approximately 20 hours to an order of minutes. Depending

on acceptable turnover time (we consider 8 hours an upper limit on a single machine),

we expect that an optimized Storycraft system could accommodate the full bank robbery

105

scenario (65 characters and objects, and a lexicon of 54 events). Given the highly par-

allel nature of the exploration algorithm, however, this computation could be scaled and

distributed to accommodate much larger and richer environments and stories.

8.6 Independent Authors

In the process of evaluating CANVAS, we designed a simple preliminary experiment to

evaluate developed competency with the system in untrained authors. We asked users to

perform two tasks.

Task 1. Given a partially authored story (consisting of the robbers entering the bank and

incapacitating guards), complete the narrative trajectory by having at least one robber suc-

cessfully exit the bank with money from the vault.

Task 2. Taking the previously completed story, alter the ending so that the robbers are

thwarted in their effort to rob the bank and leave (either through guard or civilian inter-

vention).

These tasks were always presented in order after a five minute verbal orientation with the

system. Both tasks required the addition, population, and/or manipulation of 2-3 events to

accomplish, requiring approximately 7 interactions with the system’s interface.

Ultimately we evaluated 12 users with moderate computer experience (but no prior

experience with our system). The average time taken to accomplish task 1 was 6 minutes

and 48 seconds, while the average time for task 2 was 4 minutes and 19 seconds. While not

conclusive, we believe this decrease in time indicates acquired proficiency with the system.

Feedback was generally positive, but users cited issues with clarity of the event library

106

(events were difficult to distinguish, and in some cases the meaning of the event’s name

was unclear) and general user interface interaction issues (scrolling, dragging, zooming,

etc.). While not a conclusive, formal user evaluation, we believe this test shows promise

with respect to a naive user’s ability to create coherent stories using our CANVAS system.

107

Figure 8.1: A sketch of the layout for the bank scenario. A and B are buttons that need to

be pressed in order to unlock the vault. The robbers begin the scene in the rear parking

lot, and must deal with the guards (in blue), tellers (in white), and manager (in brown) to

steal money from the vault.

108

Event: OpenVault

Params: Actor: a1, [VaultDoor: d, Zone: z1, z2]

Precondition φ:

¬Incapacitated(a1) ∧ BMPressed(d)
∧BTPressed(d) ∧ ¬Open(d)
∧InZone(a1, z1) ∧ FrontZone(d, z2)
∧CanAccessZone(a1, z2)

Postcondition ∆:

Open(d) ∧ ¬InZone(a1, z1)
∧InZone(a1, z2)

Behavior Summmary:

a1 opens the vault door

Event: IncapacitateStealthily

Params: Actor: a1, a2, [Zone: z1, z2]

Precondition φ:

HasWeapon(a1) ∧ ¬Incapacitated(a1)
∧¬Incapacitated(a2) ∧ InZone(a1, z1)
∧¬Allied(a1, a2) ∧ InZone(a2, z2)
∧CanAccessObj(a1, a2)

Postcondition ∆:

Incapacitated(a2) ∧ ¬InZone(a1, z1)
∧InZone(a1, z2)

Behavior Summmary:

a1 incapacitates a2 from behind

Event: TakeMoney

Params: Actor: a1, Container: c, [Zone: z1, z2]

Precondition φ:

¬Incapacitated(a1) ∧ Occupied(c)
∧HasMoney(c) ∧ InZone(c, z2)
∧InZone(a1, z1) ∧ CanAccessObj(a1, c)

Postcondition ∆:

HasMoney(a1)¬Occupied(c)
∧¬HasMoney(c) ∧ InZone(a1, z2)
∧¬InZone(a1, z1)

Behavior Summmary:

a1 takes the money out of container c

Event: TakeWeaponFromIncapacitated

Params: Actor: a1, a2, [Zone: z1, z2]

Precondition φ:

¬Incapacitated(a1) ∧ HasWeapon(a2)
∧Incapacitated(a2) ∧ InZone(a1, z1)
∧InZone(a2, z2) ∧ CanAccessObj(a1, a2)
∧RHandEmpty(a1)

Postcondition ∆:

HasWeapon(a1) ∧ ¬InZone(a1, z1)
∧¬HasKeys(a2) ∧ InZone(a1, z2)
∧¬RHandEmpty(a1)

Behavior Summmary:

a1 takes keys from the incapacitated a2

Event: LockDoor

Params: Actor: a1, Door: d, [Zone: z1, z2]

Precondition φ:

HasKeys(a1) ∧ ¬Incapacitated(a1)
∧Unlocked(d) ∧ CanManipulate(a1, d)
∧InZone(a1, z1) ∧ FrontZone(d, z2)
∧CanAccessObj(a1, z2)

Postcondition ∆:

¬Unlocked(d) ∧ ¬InZone(a1, z1)
∧InZone(a1, z2)

Behavior Summmary:

a1 locks d

Event: PressButton

Params: Actor: a1, Button: b,

[VaultDoor: d, Zone: z1, z2]

Precondition φ:

¬Incapacitated(a1) ∧ InZone(a1, z1)
∧InZone(b, z2) ∧ CanAccessObj(a1, b)
∧CanManipulate(a1, b)

Postcondition ∆:

BPressed(b, d) ∧ ¬InZone(a1, z1)
∧InZone(a1, z2)

Behavior Summmary:

a1 presses the button b

Event: DistractAndIncapacitate

Params: Actor: a1, a2, a3, [Zone: z1, z2, z3]

Precondition φ:

HasWeapon(a3) ∧ ¬Incapacitated(a1)
∧¬Incapacitated(a2) ∧ ¬Allied(a1, a2)
∧¬Incapacitated(a3) ∧ ¬Allied(a3, a2)
∧InZone(a1, z1) ∧ InZone(a2, z2)
∧InZone(a3, z3) ∧ CanAccessObj(a1, a2)
∧CanAccessObj(a3, a2)

Postcondition ∆:

Incapacitated(a2) ∧ ¬InZone(a1, z1)
∧InZone(a1, z2) ∧ ¬InZone(a3, z3)
∧InZone(a3, z2)

Behavior Summmary:

a1 distracts a2, so a3 can incapacitate a2

Event: CoerceIntoUnlockDoor

Params: Actor: a1, a2, Door: d, [Zone: z1, z2]

Precondition φ:

HasWeapon(a1) ∧ ¬Incapacitated(a1)
∧¬Incapacitated(a2) ∧ HasKeys(a2)
∧¬Unlocked(d) ∧ InZone(a1, z1)
∧¬Allied(a1, a2) ∧ InZone(a2, z2)
∧FrontZone(d, z2) ∧ CanAccessObj(a1, a2)
∧CanManipulate(a2, d)

Postcondition ∆:

Unlocked(d) ∧ ¬InZone(a1, z1)
∧InZone(a1, z2)

Behavior Summmary:

a1 coerces a2 into unlocking door d

Table 8.1: Metadata definition of some events used in the bank scenario. We summarize

the behavior for each event when executed, but in practice the logic and control structures

for these events are authored as PBTs and are not shown here. Implicit parameters are

italicized and indicated with brackets.

109

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8.2: A complex narrative authored using CANVAS. (a) Robbers enter the bank

from the back door and begin incapacitating guards. (b) A robber fires a shot into the

air to intimidate the crowd. (c) A second robber coerces the a teller to (d) press a button

behind his desk to unlock the vault. (e) The robbers enter the manager’s office and coerce

the manager to unlock the door leading to the vault, while also pressing the second button

needed to unlock the vault door. (f) The robbers incapacitate the manager and open the

vault door. (g) The three robbers steal the money from the vault and (h) they escape by

running out the back entrance.

110

Robber1 Guard1

Incapacitate
Stealthily

Incapacitate
Stealthily

Robber2 Guard2

Incapacitate
Stealthily

Robber3 Guard3

PressButton

Robber2

CoerceIntoPressButton

Robber1

Incapacitate

ManagerRobber1

TakeMoney

Robber1

Escape

OpenVault

Robber2

CoerceIntoUnlockDoor

Robber1 Manager MDoor

Teller2 TellerButton

Robber1

MButton

TakeMoney TakeMoney

Robber3

Escape

Robber2

Escape

Robber3

WarningShot

Robber3

Flee

Crowd

Escape

Teller2

Converse

Robber2 Robber3

Robber2

Crowd

Escape

Teller1

Figure 8.3: Filling in an incomplete story specification. Automatically filled in parameters

are highlighted in orange.

111

CoerceIntoMoveZone

R1

CoerceIntoPressButton

R1 G1 TellerButton

G1 TellerRoom

LockDoor

TellerDoorR1

WarningShot

Crowd

G1

R1

R1

CoerceIntoDropWeapon

CoerceIntoSurrender

R1Customer

CoerceIntoGiveKey

G1R1

UnlockDoor

TellerDoorR1

PickUpWeapon

Customer

CoerceIntoMove

R1

Unlock

MDoorR1

TakeMoney

R1

Escape

OpenVault

R1

G1 TellerRoom

R1

PressButton

MButtonR1

CoerceIntoPressButton

R1 G1 TellerButton

LockDoor

TellerDoorR1

Unlock

TellerDoorR1

CoerceIntoGiveKey

G1R1

(a) (b)

Figure 8.4: (a) A globally inconsistent story definition. CANVAS fills in missing param-

eters (orange) and inserts new story events (green) to automatically complete the story.

(b) CANVAS can automatically generate an entire story to satisfy a user-specified desired

outcome.

112

Figure 8.5: A screenshot of the virtual world and Storycraft interface overlay.

Figure 8.6: Close-up view of the storytelling dialog from Figure 8.5 showing sentiment

and event selection.

113

Chapter 9

Conclusions and Discussion

This hierarchy of systems – ADAPT, PAStE, and CANVAS/Storycraft – provides a pow-

erful, accessible, and extensible framework for creating and sharing stories taking place in

rich virtual worlds full of active and dynamic characters and objects. We solve the myriad

problems across the entire pipeline, from taking even the most vague story specifications

and translating them through fully defined narratives down to the individual frame-by-

frame joint angles and actuations of each individual virtual actor. Using this system, un-

trained authors can create narratives using a wide variety of different modalities, from a

strictly specified, fully-authored set of events, to a partially specified story high concept,

and even in an on-the-fly exploratory process requiring no prior designs or expectations.

This allows us to fully explore the ramifications of what a virtual world can be used for,

and how we can harness these rich digital spaces for meaningful communication of ideas.

One quality of this system worth emphasizing here is its focus on expansion and adapt-

ability. The underlying animation platform, ADAPT, is purpose-built for adding new ca-

pabilities to the system to improve the physical repertoire of the characters and objects

in the world. The PAStE system is designed to allow domain experts to easily expand

the ways in which they describe their characters and their relationships with each other

114

and the world. CANVAS and Storycraft hinge entirely on the ability to create new and

interesting events for characters to exhibit intricate coordinated activity in interacting both

with each other and with their environment. Though for brevity we focus only on a bank

robbery scenario, this system or aspects of it have already been used to simulate city parks,

a virtual middle eastern marketplace, and adversarial situations like an interactive “prison

break” environment [74].

The core advantage of this system is the single architectural element around which

every aspect revolves – the event. This simple notion of collecting multi-object behavior

into a library of centralized, disposable control-flow data structures enables a number of

otherwise impossible tasks:

1. Complex coordination of difficult actions between large groups of individuals is

trivially reduced to a set of timed command dispatches. Rather than the tradi-

tional model of sensory perception and message passing between monolithic agents,

events enable a simple and lightweight method to temporarily augment actors with

all the behavior they need for a particular interaction on the fly.

2. Events present a new way of describing the world and what happens within it.

Where a traditional simulation or planning model would focus on atomic actions

within the repertoire of the characters (sit down, stand up, open the door), events

serve as atoms of narrative significance with functional purpose for furthering the

story (have a conversation, incapacitate a guard, break an alliance). Events exist

at the ideal level of action-space granularity to provide accessible metaphors to un-

trained authors charged with deciding what should happen in a story.

3. The parametric structure of events (in that actor and object participants are filled in

to an event’s role slots) provides a simple and effective way for authors to inten-

tionally under-specify stories without harming the system’s ability to resolve them.

115

Events allow the author to focus on what happens in their story, while allowing the

system to decide who does it. In a traditional agent model, this would be far more

difficult to communicate to an author, if not impossible. And yet, it is a powerful

tool for planning flexibility both in rapid story prototyping, and in accommodating

interactive narrative where plans can be invalidated and require a new solution.

Designing the system around events fundamentally changes the way characters and objects

are controlled from more traditional models, and, as we have demonstrated, opens up new

opportunities for creating compelling and purposeful stories.

9.1 Future Directions

Real-time User Participants. The single most important avenue of expansion for this sys-

tem would be continued work exploring how a user participant can interact with the story

once an author has created it. Though we did not focus on this aspect in this project, pre-

vious work [74] demonstrates a proof of concept where a user can interact with a real-time

event planner to change the trajectory of a generated story. Our ideal scenario would be

a multi-user real-time Storycraft environment, where a Storycraft author dynamically dis-

patches events for the characters and objects in the world, and one or more real-time user

participants take part in those events and alter their outcome. We believe this collaborative

storytelling experience could be a powerful tool in education, training, and entertainment.

Accomplishing this would be more of a logistical challenge (developing a networked

multi-user synchronized story client) than a research problem. The real-time Storycraft

scenario lends itself well to real-time story participant interaction. Where currently the

human author of a Storycraft scenario selects events and simply waits for their execution,

a multi-user Storycraft scenario would consist more of the scenario author picking events

in response to the actions of the user participant. As the human participant interacts with

116

the world, he or she moves the story state to different nodes in the story web, which alter

the suggestions presented by Storycraft to the scenario controller. The main conceptual

challenge would be that the participant’s action space would be that of affordances, while

the scenario author’s would be that of events. In terms of research problems we would

need to explore how to expand the story web exploration process to allow the human

participant to activate arbitrary affordances on objects in the world through their avatar

without moving the world state out of the precomputed story web.

Missing Events. Currently, the system is dependent on a pre-designed lexicon of exist-

ing events. CANVAS and Storycraft are both incapable of reaching certain world states

if the required event transitions do not exist. While automatically generating narratively-

contextualized world state transitions on the fly is well beyond the scope of our system, it

is conceivable for the system to suggest areas of the world state space that are difficult to

reach with the current lexicon of events. This would help guide domain experts towards

producing a broad and balanced repertoire of character actions. Additionally, this kind of

analysis could better inform situations where story planning fails if the system is able to

identify areas where hypothetical event additions could help.

Exploration and Optimization. General exploration of the Storycraft framework would

also greatly benefit this system. ADAPT, PAStE, and CANVAS are mature, fully-developed

frameworks while Storycraft exists in a more prototypical state. More efficient algorithms

for story web generation and exploration would allow Storycraft to accommodate bigger

stories in richer worlds with more events, actors, and objects to involve. GPU-based par-

allel processing has been incredibly promising in this regard, but some work remains to be

done in this endeavor. Additionally, a multi-author Storycraft system where different au-

thors are responsible for different parts of the populace would additionally mitigate some

117

accessibility and complexity issues.

Evaluation and Iteration. Finally, these systems rely on iteration based on use-case

experience to reach their full potential. CANVAS and Storycraft are largely unique in their

author-centric purpose and approach, making them difficult to evaluate or compare against

any peer systems. However, evaluating users’ experience authoring real-world narrative

scenarios (outside of a purely academic environment) for education and training would

be incredibly insightful and allow for significant improvements in both the way end-users

interact with the system, and domain experts expand its capabilities. The complete system

has shown promise in our use of it, would benefit greatly from real-world application and

feedback.

118

Bibliography

[1] Tolga Abaci and Daniel Thalmann. Planning with smart objects. In In The 13th

International Conference in Central Europe on Computer Graphics, Visualization

and Computer Vision: WSCG, pages 25–28, 2005.

[2] Okan Arikan and D. A. Forsyth. Interactive motion generation from examples. ACM

TOG, 21(3):483–490, July 2002.

[3] Autodesk, Inc. Autodesk gameware - artificial intelligence middleware for games,

2012.

[4] Paolo Baerlocher and Ronan Boulic. An inverse kinematics architecture enforcing

an arbitrary number of strict priority levels. Vis. Comput., 20(6):402–417, August

2004.

[5] Mira Dontcheva, Gary Yngve, and Zoran Popović. Layered acting for character

animation. ACM Trans. Graph., 22(3):409–416, July 2003.

[6] Kutluhan Erol, James Hendler, and Dana S. Nau. Htn planning: Complexity and

expressivity. In Proceedings of AAAI, pages 1123–1128. AAAI Press, 1994.

[7] Ugo Erra, Bernardino Frola, and Vittorio Scarano. BehaveRT: a GPU-based library

for autonomous characters. In Motion in Games, MIG’10, pages 194–205, 2010.

119

[8] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Composable

controllers for physics-based character animation. ACM SIGGRAPH, pages 251–

260, 2001.

[9] Andrew W. Feng, Yazhou Huang, Marcelo Kallmann, and Ari Shapiro. An analysis

of motion blending techniques. In MIG, 2012.

[10] Andrew W. Feng, Yuyu Xu, and Ari Shapiro. An example-based motion synthesis

technique for locomotion and object manipulation. I3D, pages 95–102, 2012.

[11] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 1971.

[12] Michael Fleischman and Deb Roy. Representing intentions in a cognitive model of

language acquisition: Effects of phrase structure on situated verb learning. In AAAI

’07, pages 7–12.

[13] John Funge, Xiaoyuan Tu, and Demetri Terzopoulos. Cognitive Modeling: Knowl-

edge, Reasoning and Planning for Intelligent Characters, pages 29–38. ACM

Press/Addison-Wesley Publishing Co., 1999.

[14] Gavalakis Vaggelis. Nodecanvas, 2014. http://nodecanvas.com/.

[15] Sanjeet Hajarnis, Christina Leber, Hua Ai, Mark Riedl, and Ashwin Ram. A case

base planning approach for dialogue generation in digital movie design. In Ash-

win Ram and Nirmalie Wiratunga, editors, Case-Based Reasoning Research and

Development, volume 6880 of Lecture Notes in Computer Science, pages 452–466.

Springer Berlin Heidelberg, 2011.

120

[16] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. Correction to ”a formal basis

for the heuristic determination of minimum cost paths”. SIGART Bull., (37):28–29,

1972.

[17] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. PHYS-

ICAL REVIEW E, 51:42–82, 1995.

[18] Yazhou Huang, Mentar Mahmudi, and Marcelo Kallmann. Planning humanlike ac-

tions in blending spaces. In Intelligent Robots and Systems (IROS), 2011.

[19] Bohemia Interactive. Arma 3 dlc “zeus”, 2014. http://arma3.com/dlc/zeus.

[20] Arnav Jhala, Curtis Rawls, Samuel Munilla, and R. Michael Young. Longboard:

A sketch based intelligent storyboarding tool for creating machinima. In FLAIRS

Conference, pages 386–390. AAAI Press, 2008.

[21] Rune Skovbo Johansen. Automated semi-procedural animation for character loco-

motion. Master’s thesis, Aarhus University, 2009.

[22] Marcelo Kallmann. Shortest paths with arbitrary clearance from navigation meshes.

In Eurographics/SIGGRAPH SCA, 2010.

[23] Marcelo Kallmann and Stacy Marsella. Lncs ’05. chapter Hierarchical motion con-

trollers for real-time autonomous virtual humans, pages 253–265. 2005.

[24] Marcelo Kallmann and Daniel Thalmann. Direct 3d interaction with smart objects.

In ACM symposium on Virtual reality software and technology, VRST ’99, pages

124–130, 1999.

[25] M. Kapadia, S. Singh, G. Reinman, and P. Faloutsos. A Behavior-Authoring Frame-

work for Multiactor Simulations. IEEE CGA, 31(6):45 –55, 2011.

121

[26] Mubbasir Kapadia and Norman I. Badler. Navigation and steering for autonomous

virtual humans. Wiley Interdisciplinary Reviews: Cognitive Science, 2013.

[27] Mubbasir Kapadia, Nathan Marshak, and Norman I. Badler. Adapt: The agent devel-

opment and prototyping testbed. IEEE Transactions on Visualization and Computer

Graphics, 99(PrePrints):1, 2014.

[28] Mubbasir Kapadia, Alexander Shoulson, Cory D. Boatright, Pengfei Huang, Funda

Durupinar, and Norman I. Badler. What’s next? the new era of autonomous virtual

humans. In MIG, pages 170–181, 2012.

[29] Mubbasir Kapadia, Alexander Shoulson, Cyril Steimer, Samuel Oberholzer, and

Robert Sumner. CANVAS: Computer-Assisted Narrative Animation Synthesis. Eu-

rographics, 2015 (Under Review).

[30] Mubbasir Kapadia, Shawn Singh, William Hewlett, and Petros Faloutsos. Egocentric

Affordance Fields in Pedestrian Steering. In Interactive 3D graphics and games, I3D

’09, pages 215–223. ACM, 2009.

[31] Mubbasir Kapadia, Shawn Singh, William Hewlett, Glenn Reinman, and Petros

Faloutsos. Parallelized egocentric fields for autonomous navigation. The Visual

Computer, pages 1–19.

[32] Bilal Kartal, John Koenig, and Stephen J. Guy. User-driven narrative variation in

large story domains using monte carlo tree search. In Proceedings of the 2014 Inter-

national Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’14,

pages 69–76, Richland, SC, 2014. International Foundation for Autonomous Agents

and Multiagent Systems.

122

[33] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE-RAS, 12:566 –

580, 1996.

[34] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. Storytelling alice motivates middle

school girls to learn computer programming. In Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems, CHI ’07, pages 1455–1464, New

York, NY, USA, 2007. ACM.

[35] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. SIGGRAPH,

pages 473–482, 2002.

[36] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S.

Pollard. Interactive control of avatars animated with human motion data. ACM

TOG, 21(3):491–500, 2002.

[37] Kang Hoon Lee, Myung Geol Choi, Qyoun Hong, and Jehee Lee. Group be-

havior from video: a data-driven approach to crowd simulation. In ACM SIG-

GRAPH/Eurographics SCA, pages 109–118, 2007.

[38] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. CGF,

26(3):655–664, 2007.

[39] Boyang Li, Stephen Lee-Urban, George Johnston, and Mark Riedl. Story generation

with crowdsourced plot graphs. In Marie desJardins and Michael L. Littman, editors,

AAAI. AAAI Press, 2013.

[40] Boyang Li and Mark O. Riedl. Creating customized game experiences by leveraging

human creative effort: A planning approach. In Agents for Games and Simulations

II, pages 99–116. Springer, 2010.

123

[41] Weizi Li and Jan M. Allbeck. The virtual apprentice. In IVA, pages 15–27, 2012.

[42] Ying Liu and Norman I. Badler. Real-time reach planning for animated characters

using hardware acceleration. CASA, pages 86–93, 2003.

[43] A. Bryan Loyall. Believable Agents: Building Interactive Personalities. PhD thesis,

Carnegie Mellon University, 1997.

[44] Brian Magerko, John E Laird, Mazin Assanie, Alex Kerfoot, and Devvan Stokes.

AI Characters and Directors for Interactive Computer Games. Artificial Intelligence,

1001:877–883, 2004.

[45] Massive Software Inc. Massive: Simulating life, 2010. www.massivesofware.com.

[46] Michael Mateas and Andrew Stern. Integrating plot , character and natural language

processing in the interactive drama facade. In Proceedings of the 1st International

Conference on Technologies for Interactive Digital Storytelling and Entertainment

TIDSE03, volume 2. 2003.

[47] Michael Mateas and Andrew Stern. A behavior language: Joint action and behavioral

idioms. In Life-Like Characters, pages 135–161. Springer, 2004.

[48] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,

and D. Wilkins. Pddl - the planning domain definition language. Technical Report

TR-98-003, Yale Center for Computational Vision and Control,, 1998.

[49] Stephane Menardais, Franck Multon, Richard Kulpa, and Bruno Arnaldi. Motion

blending for real-time animation while accounting for the environment. CGI, pages

156–159, 2004.

124

[50] Jianyuan Min and Jinxiang Chai. Motion graphs++: a compact generative model for

semantic motion analysis and synthesis. ACM Trans. Graph., 31(6):153:1–153:12,

November 2012.

[51] Howard Lee Mohn. Implementation of a Tactical Mission Planner for Command and

Control of Computer Generated Forces in ModSAF. PhD thesis, Naval Postgraduate

School, 1994.

[52] Mikko Mononen. Recast/Detour navigation library, 2009.

[53] Jeff Orkin. Agent architecture considerations for real-time planning in games. In

Interactive Digital Entertainment Conference, pages 105–110. AAAI Press, 2005.

[54] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank

citation ranking: Bringing order to the web. Technical Report 1999-66, November

1999.

[55] Sbastien Paris, Julien Pettr, and Stphane Donikian. Pedestrian reactive navigation

for crowd simulation: a predictive approach. Computer Graphics Forum, 26(3):665–

674, 2007.

[56] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

[57] N. Pelechano, J. M. Allbeck, and N. I. Badler. Controlling individual agents in high-

density crowd simulation. In ACM SIGGRAPH/Eurographics SCA, pages 99–108,

2007.

[58] Nuria Pelechano, Jan M. Allbeck, and Norman I. Badler. Virtual Crowds: Methods,

Simulation, and Control. Synthesis Lectures on Computer Graphics and Animation.

Morgan & Claypool Publishers, 2008.

125

[59] Ken Perlin and Athomas Goldberg. Improv: a system for scripting interactive actors

in virtual worlds. SIGGRAPH, pages 205–216, 1996.

[60] Julien Pettré, Marcelo Kallmann, and Ming C. Lin. Motion planning and autonomy

for virtual humans. In ACM SIGGRAPH classes, pages 42:1–42:31, 2008.

[61] Julie Porteous, Marc Cavazza, and Fred Charles. Applying planning to interactive

storytelling: Narrative control using state constraints. ACM Trans. Intell. Syst. Tech-

nol., 1(2):10:1–10:21, December 2010.

[62] Craig Reynolds. Steering behaviors for autonomous characters, 1999.

[63] M O Riedl, C J Saretto, and R M Young. Managing interaction between users and

agents in a multi-agent storytelling environment, volume 34, pages 186–193. ACM

Press, 2003.

[64] Mark O. Riedl and Vadim Bulitko. Interactive narrative: An intelligent systems

approach. AI Magazine, 34(1):67–77, 2013.

[65] Mark O Riedl, Andrew Stern, Don Dini, and Jason Alderman. Dynamic experience

management in virtual worlds for entertainment, education, and training. Interna-

tional Transactions on Systems Science and Applications, Special Issue on Agent

Based Systems for Human Learning, 4(2):23–42, 2008.

[66] Rodolfo Rosini. Storybricks. Namaste Entertainment Inc., 2014.

[67] Matthew Schuerman, Shawn Singh, Mubbasir Kapadia, and Petros Faloutsos. Sit-

uation agents: agent-based externalized steering logic. Comput. Animat. Virtual

Worlds, 21:267–276, May 2010.

[68] Wei Shao and Demetri Terzopoulos. Autonomous pedestrians. Graph. Models,

69:246–274, September 2007.

126

[69] Ari Shapiro. Building a character animation system. MIG, pages 98–109, 2011.

[70] Ari Shapiro, Marcelo Kallmann, and Petros Faloutsos. Interactive motion correction

and object manipulation. In Interactive 3D graphics and games, I3D ’07, pages

137–144. ACM, 2007.

[71] Alexander Shoulson and Norman I. Badler. Event-centric control for background

agents. In International conference on Interactive Digital Storytelling, ICIDS, pages

193–198, 2011.

[72] Alexander Shoulson, Daniel Garcia, and Norman Badler. Selecting agents for narra-

tive roles. In INT4. 2011.

[73] Alexander Shoulson, Francisco Garcia, Matthew Jones, Robert Mead, and Nor-

man I. Badler. Parameterizing Behavior Trees. In Motion in Games, pages 144–155.

Springer, 2011.

[74] Alexander Shoulson, Max L. Gilbert, Mubbasir Kapadia, and Norman I. Badler. An

event-centric planning approach for dynamic real-time narrative. In Proceedings

of Motion on Games, MIG ’13, pages 99:121–99:130, New York, NY, USA, 2013.

ACM.

[75] Mei Si, Stacy C. Marsella, and David V. Pynadath. Thespian: An architecture for

interactive pedagogical drama. In Proceeding of the 2005 Conference on Artificial

Intelligence in Education, pages 595–602. 2005.

[76] Shawn Singh, Mubbasir Kapadia, Petros Faloutsos, and Glenn Reinman. An open

framework for developing, evaluating, and sharing steering algorithms. In MIG,

pages 158–169, 2009.

127

[77] Shawn Singh, Mubbasir Kapadia, Billy Hewlett, Glenn Reinman, and Petros Falout-

sos. A modular framework for adaptive agent-based steering. In ACM SIGGRAPH

I3D, pages 141–150, 2011.

[78] Shawn Singh, Mubbasir Kapadia, Glenn Reinman, and Petros Faloutsos. Footstep

navigation for dynamic crowds. Computer Animation and Virtual Worlds, 22(2-

3):151–158, 2011.

[79] James Skorupski and Michael Mateas. Novice-friendly authoring of plan-based in-

teractive storyboards. In Proceedings of the Sixth AAAI Conference on Artificial In-

telligence and Interactive Digital Entertainment, AIIDE 2010, October 11-13, 2010,

Stanford, California, USA, 2010.

[80] Damian Slonneger, Matthew Croop, Jeremy Cytryn, Joseph T. Kider Jr., Richard

Rabbitz, Eric Halpern, and Norman I. Badler. Human model reaching, grasping,

looking and sitting using smart objects international symposium on digital human

modeling. Proc. International Ergonomic Association Digital Human Modeling,

2011.

[81] Catherine Stocker, Libo Sun, Pengfei Huang, Wenhu Qin, Jan M. Allbeck, and Nor-

man I. Badler. Smart events and primed agents. In Proceedings of the 10th in-

ternational conference on Intelligent virtual agents, IVA’10, pages 15–27, Berlin,

Heidelberg, 2010. Springer-Verlag.

[82] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–

591, July 1997.

[83] U.S. Army PEO STRI. Product manager one semi-automated forces (pdm onesaf),

2014. http://www.peostri.army.mil/PRODUCTS/ONESAF/.

128

[84] Libo Sun, Alexander Shoulson, Pengfei Huang, Nicole Nelson, Wenhu Qin, Ani

Nenkova, and Norman I. Badler. Animating synthetic dyadic conversations with

variations based on context and agent attributes. Comput. Animat. Virtual Worlds,

23(1):17–32, February 2012.

[85] Ben Sunshine-Hill and Norman I. Badler. Perceptually realistic behavior through

alibi generation. In AIIDE. The AAAI Press, 2010.

[86] Daniel Thalmann and Soraia Raupp Musse. Crowd Simulation, Second Edition.

Springer, 2013.

[87] David Thue, Vadim Bulitko, Marcia Spetch, and Eric Wasylishen. Interactive story-

telling: A player modelling approach. In AIIDE, 2007.

[88] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds. In ACM

SIGGRAPH, SIGGRAPH ’06, pages 1160–1168, 2006.

[89] Jur van den Berg, Ming C. Lin, and Dinesh Manocha. Reciprocal velocity obstacles

for real-time multi-agent navigation. In ICRA, pages 1928–1935. IEEE, 2008.

[90] C.W. Warren. Global path planning using artificial potential fields. In IEEE-RAS,

pages 316–321 vol.1, 1989.

[91] Peter William Weyhrauch. Guiding interactive drama. PhD thesis, Carnegie Mellon

University, Pittsburgh, PA, USA, 1997.

[92] K. N. Whitley and Alan F. Blackwell. Visual programming: The outlook from

academia and industry. In Papers Presented at the Seventh Workshop on Empiri-

cal Studies of Programmers, ESP ’97, pages 180–208. ACM, 1997.

[93] Andrew Witkin and Zoran Popovic. Motion warping. SIGGRAPH, pages 105–108,

1995.

129

[94] KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbicon: simple biped

locomotion control. ACM TOG, 26(3), 2007.

[95] Qinxin Yu and Demetri Terzopoulos. A decision network framework for the behav-

ioral animation of virtual humans. SCA, pages 119–128, 2007.

130

	University of Pennsylvania
	ScholarlyCommons
	1-1-2015

	Real-Time Storytelling with Events in Virtual Worlds
	Alexander Shoulson
	Recommended Citation

	Real-Time Storytelling with Events in Virtual Worlds
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	thesis.dvi

