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Multiscale Simulations of Dynamics of Ferroelectric Domains

Abstract
Ferroelectric materials exhibiting switchable polarization have been used as critical components in
electronics, memory, actuators and acoustics, and electro-optics. The applications of ferroelectric materials
heavily rely on the interactions between the polarization and external perturbations, such as electric field,
stress, and temperature. It is therefore crucial to understand the dynamics of ferroelectric response at finite
temperature. Despite the tremendous advance of computational power and the success of first-principles
methods, large-scale simulations of dynamics in oxides at finite temperature can still only be performed using
classical atomistic potential. We first develop a model potential based on principles of bond-valence and bond-
valence vector conservation. The model potentials for PbTiO3 and BiFeO3 are parameterized using the results
from first-principles calculations. The bond-valence-based force field allows for molecular dynamics
simulations of ferroelectric response at large time and length scale. The intrinsic inertial response of
ferroelectric domain walls is studied in PbTiO3. Examination of the evolution of the polarization and local
structures of domain walls reveal that they stop moving immediately after the removal of the electric field,
demonstrating that ferroelectric domain walls do not exhibit significant intrinsic inertial response. Taking the
90Â° domain walls in PbTiO3 as an example, we quantitatively estimate the domain wall velocity under a wide
range of temperatures and electric fields. We find that many properties of ferroelectrics are dictated by the
intrinsic nature of domain walls. We demonstrate that even in the absence of defects the intrinsic temperature-
and field-dependence of the wall velocity can be described with a strongly non-linear creep-like region and a
power-law depinning-like region. We propose a simple universal nucleation-and-growth-based analytical
model that is able to quantify the dynamics of all types of domain walls in various ferroelectrics; this enables
the prediction of the temperature- and frequency-dependence of coercive fields at finite temperature from
first-principles. We also investigate the orientation-dependent evolution of nanoscale ferroelectric domain
structures in PbZr0.2Ti0.8O3 films. Molecular dynamics simulations predict both 180Â° for (001)-/(101)-
oriented films and 90Â° multi-step switching for (111)-oriented films, and these processes are subsequently
observed in stroboscopic piezoresponse force microscopy. Finally, we investigate the domain walls in
organometal halide perovskites. We find that organometal halide perovskites can form both charged and
uncharged domain walls, due to the flexible orientational order of the organic molecules. The presence of
charged domain walls will significantly reduce the band gap. We demonstrate that charged domain walls can
serve as segregated channels for the diffusion of charge carriers.
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ABSTRACT

MULTISCALE SIMULATIONS OF DYNAMICS OF FERROELECTRIC DOMAINS

Shi Liu

Andrew M. Rappe

Ferroelectric materials exhibiting switchable polarization have been used as critical compo-

nents in electronics, memory, actuators and acoustics, and electro-optics. The applications

of ferroelectric materials heavily rely on the interactions between the polarization and ex-

ternal perturbations, such as electric field, stress, and temperature. It is therefore crucial

to understand the dynamics of ferroelectric response at finite temperature. Despite the

tremendous advance of computational power and the success of first-principles methods,

large-scale simulations of dynamics in oxides at finite temperature can still only be per-

formed using classical atomistic potential. We first develop a model potential based on

principles of bond-valence and bond-valence vector conservation. The model potentials

for PbTiO3 and BiFeO3 are parameterized using the results from first-principles calcula-

tions. The bond-valence-based force field allows for molecular dynamics simulations of

ferroelectric response at large time and length scale. The intrinsic inertial response of

ferroelectric domain walls is studied in PbTiO3. Examination of the evolution of the po-

larization and local structures of domain walls reveal that they stop moving immediately

after the removal of the electric field, demonstrating that ferroelectric domain walls do not

exhibit significant intrinsic inertial response. Taking the 90◦ domain walls in PbTiO3 as an

example, we quantitatively estimate the domain wall velocity under a wide range of tem-

peratures and electric fields. We find that many properties of ferroelectrics are dictated by

the intrinsic nature of domain walls. We demonstrate that even in the absence of defects

the intrinsic temperature- and field-dependence of the wall velocity can be described with a

strongly non-linear creep-like region and a power-law depinning-like region. We propose a
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simple universal nucleation-and-growth-based analytical model that is able to quantify the

dynamics of all types of domain walls in various ferroelectrics; this enables the prediction

of the temperature- and frequency-dependence of coercive fields at finite temperature from

first-principles. We also investigate the orientation-dependent evolution of nanoscale ferro-

electric domain structures in PbZr0.2Ti0.8O3 films. Molecular dynamics simulations predict

both 180◦ for (001)-/(101)-oriented films and 90◦ multi-step switching for (111)-oriented

films, and these processes are subsequently observed in stroboscopic piezoresponse force

microscopy. Finally, we investigate the domain walls in organometal halide perovskites.

We find that organometal halide perovskites can form both charged and uncharged domain

walls, due to the flexible orientational order of the organic molecules. The presence of

charged domain walls will significantly reduce the band gap. We demonstrate that charged

domain walls can serve as segregated channels for the diffusion of charge carriers.
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Chapter 1

Introduction
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Ferroelectric materials possess a spontaneous, switchable macroscopic polarization in

the absence of an applied field [1]. The switchable polarization makes ferroelectrics critical

components in non-volatile random access memory [2–5], actuators and sensors [6], and

electro-optic devices [7]. The use of ferroelectric perovskite oxides in a variety of techno-

logical applications has prompted extensive investigations of their structures and dynamics.

First-principles density functional theory (DFT) has served as a powerful tool to elucidate

the structure-property relationship for ferroelectric materials [8–10]. Despite the success

of first-principles methods, the great computational expense and the difficulties of studying

finite-temperature properties have driven the development of more efficient atomistic and

effective Hamiltonian potentials for molecular dynamics (MD) simulations [11–22]. The

effective Hamiltonian method requires the dynamical modes that determine a specific prop-

erty should be known a priori. Therefore, the MD simulations with an atomistic potential

accounting for all the modes still own distinct advantages. However, the development of

general atomistic potentials for ferroelectric oxides has proven difficult due to the complex

nature of various metal-oxygen bonds [23].

Previously, an atomistic potential based on the widely used bond-valence (BV) the-

ory [24] has been used to study phase transitions and domain wall motions in PbTiO3 [25]

as well as the structure and dynamics in the classic 0.75PbMg1/3Nb2/3O3–0.25 PbTiO3

relaxor ferroelectric material [26, 27]. However, the potentials were found to be accurate

for constant-volume constant-temperature (NV T ) simulations only, with incorrect ground-

state structures obtained when the constant volume constraint is lifted. In Chapter 4, we

present a modified model potential based on the principles of bond-valence and bond-

valence vector (BVV) conservation [28]. An energy term, bond-valence vector energy,

is introduced into the atomistic model. The relationship between the bond-valence model

and the bond-order potential is derived analytically in the framework of a tight-binding

model, providing a quantum mechanical justification for the bond-valence potential. We
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parameterized the model potential for PbTiO3. This model potential can be applied both to

canonical-ensemble and isobaric-isothermic ensemble (NPT ) MD simulations. Our force

field also reproduces the experimental phase transition inNV T MD simulations and exhib-

ited the experimental sequence of temperature-driven and pressure-driven phase transitions

in NPT simulations. In Chapter 5, we apply this model to BiFeO3, a multiferroeic per-

ovskites oxides with high Curie temperature and Néel temperature [29–31]. We optimize

the atomistic potential for BiFeO3 based on DFT results. This classical interatomic poten-

tial reproduces the ferroelectric-to-paraelectric phase transition in both NV T and NPT

simulations. The calculated domain wall energies for 71◦, 109◦, 180◦ domain walls agree

well with DFT results. The success of our simple model potential for BiFeO3 indicates that

BV and BVV conservation provides firm basis for the development of accurate atomistic

potentials for complex oxides.

In many cases, ferroelectrics adopt a multi-domain state where domains with polariza-

tion uniformly oriented in one direction are bounded by domains with polarization pointing

in other directions. The interface separating regions of different polarities is called the do-

main wall [32]. The domain wall can be moved by applying external stimulus, such as

electric filed and stress. The ability of manipulate domain walls with an external stim-

ulus offers a powerful paradigm for novel device engineering at the nanoscale [5]. One

important question that is of interest both scientifically and technologically is whether the

ferroelectric domain wall has significant inertial response. In Chapter 6, we address this

problem with NPT MD simulations of 180◦ and 90◦ domain walls under applied electric

fields. Examination of the evolution of the polarization and local structure of domain walls

reveals that they stop moving immediately after the removal of electric field, demonstrating

that ferroelectric domain walls do not have significant intrinsic internal response.

Despite intense studies of domain walls, achieving controlled material design and de-

vice optimization for ferroelectrics remains a significant challenge. Experimentally, the
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observed dynamics of domain walls are usually explained as the behavior of an elastic in-

terface pinned by a random potential generated by defects, which appear to be strongly

sample-dependent [33–46]. Theoretically, it is difficult to connect 0 K first-principles-

based microscopic quantities (e.g., domain wall energy) to finite-temperature macroscopic

properties (e.g., coercive field) that are critical for material design and device perfor-

mance [47]. In Chapter 7, taking the 90◦ domain walls in PbTiO3 as an example, we

explore the intrinsic ferroelectric response of domain walls with MD simulations under a

wide range of temperatures and electric fields. We find that even in the absence of defects

the intrinsic temperature- and field-dependence of the wall velocity can be described with a

non-linear creep-like region and a power-law depinning-like region; the transition indicates

a transformation from the nucleation-limited mechanism with large critical nucleus under

low fields to the growth-limited mechanism with small critical nucleus under high fields.

The estimated theoretical dynamical exponent µ and the velocity exponent θ agree well

with the experimental values, highlighting the intrinsic origin for the domain wall motion

in real materials. By mapping non-180◦ domain walls to a 180◦ domain wall, we propose

a simple universal nucleation-and-growth-based analytical model that is able to quantify

the dynamics of all types of domain walls in various ferroelectrics; this enables the predic-

tion of the temperature- and frequency-dependence of coercive fields at finite temperature

from first principles. This work offers a unified picture for domain wall motion and also an

efficient framework for optimizing material properties of ferroelectrics.

In Chapter 8, we investigate the nature of switching in PbZr0.2Ti0.8O3 thin films with

a combination of thin film epitaxy, macro- and nanoscale property and switching charac-

terization, and MD simulations. Differences are demonstrated between (001)-/(101)- and

(111)-oriented films, with the latter exhibiting complex, nano-twined ferroelectric domain

structures with high densities of 90◦ domain walls and broadened switching characteris-

tics. Our MD simulations predict both 180◦ and 90◦ switching and these processed are
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subsequently observed in stroboscopic piezoresponse force microscopy. These observa-

tions provide insight into a previously unexplored aspect of ferroelectric switching and

highlight the complexity of these materials. Such results have implications for our under-

standing of ferroelectric switching and offer opportunities to change domain reversal speed

and potentially lead to interesting multi-state devices.

Finally, in Chapter 9, we explore the domain structures in organometal halide per-

ovskites, a promising solar-cell material for next-generation photovoltaic applications [48–

54]. We find that organometal halide perovskites can form both charged and uncharged

domain walls, due to the flexible orientational order of the organic molecules. The elec-

tronic band gaps for domain structures possessing 180◦ and 90◦ walls are estimated with

density functional theory. It is found that the presence of charged domain walls will signif-

icantly reduce the band gap by 20%-40%, while the presence of uncharged domain walls

has no substantial impact on the band gap. We demonstrate that charged domain walls can

serve as segregated channels for the diffusion of charge carriers. These results highlight

the importance of ferroelectric domain walls in hybrid perovskites for photovoltaic appli-

cations and suggest a possible avenue for device optimization through domain patterning.
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Chapter 2

Ferroelectrics and domain walls
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2.1 Ferroelectric perovskite oxides

A ferroelectric is defined as an insulating system with two or more discrete stable or

metastable states possessing different nonzero spontaneous macroscopic polarization in

the absence of external electric field [1]. The spontaneous polarization can be switched by

applying external perturbations such as electric and stress field (Fig. 2.1). Ferroelectricity

was first discovered in Rochelle salt (sodium potassium tartrate tetra hydrate, NaKC4H4O6

· 4H2O) by Valasek in 1920 [55]. The ballistic galvanometer studies of charge and dis-

charge of Rochelle salt clearly demonstrated the switchable polarization and its significant

temperature dependence [56–58], which eventually leads to the firm establishment of the

term ferroelectricity. The study of ferroelectricity was greatly facilitated by the discov-

ery of stable ferroelectric oxides, barium titanate (BaTiO3), with the perovskite structure

in early 1940s [59–61]. The name “perovskite” in materials science is generally referred

to a class of materials (formula ABO3) with the same type of crystal structure as calcium

titanium oxide, CaTiO3. The perovskite structure (Fig. 2.2) consists of corner-shared BO6

octahedra with the B cation in the body center of the unit cell. This structure is able to

adapt to a mismatch between the equilibrium A–O and B–O bond length. Moreover, it

tolerates multiple types of A-site/B-site cations, allowing for realization of a large number

of stoichiometric perovskites [62].

The discovery of ferroelectricity in BaTiO3 was significant in a number of ways [23].

First, it demonstrated that ferroelectricity can be realized in inorganic materials without

hydrogen bonding, which was previously suspected to be crucial for ferroelectric behavior.

Second, the perovskite structure is much simpler than the Rochelle salt structural, making

the analysis much simpler. Finally, after the discovery of BaTiO3, a large number of other

perovskites are found to support ferroelectricity (e.g., PbTiO3 , KNbO3 ), and display other

interesting electronic properties, such as antiferroelectricity in PbZrO3 [63].
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This thesis is focused on two technologically important ferroelectric perovskites, PbTiO3

and BiFeO3. Pure PbTiO3 forms the end member of a number of solid solution sys-

tems with high electromechanical coupling properties, such as Pb(Zr1−xTix)O3 (PZT),

PbZn1/3Nb2/3O3-PbTiO3 (PZN-PT) and PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT). [64] PbTiO3

has a well-defined single transition with TC = 766 K from a paraelectric cubic to a ferro-

electric tetragonal phase [65]. The origin of ferroelectricity was attributed to the delicate

balance between the long-range Coulomb forces and short-range repulsion [9]. In general,

long-range Coulomb interaction favors a ferroelectric distortion, while the short-range re-

pulsion will stabilize the paraelectric cubic phase. In PbTiO3, the hybridization between

the d-orbital of Ti atom at B site and p-orbital of oxygen atoms soften the B–O repul-

sion and allows the ferroelectricity. BiFeO3 is a multiferroic perovskite oxide (Fig. 2.3)

with high Curie and Neel temperature (TC ≈ 1100 K and TC ≈ 643 K) [29, 30]. The

room-temperature phase of BiFeO3 is classed as rhombohedra (point group R3c) [30]. The

perovskite-type unit cell has a lattice constant of 3.965 Å and a rhombohedral angle of

89.3-89.4◦, with ferroelectric polarization along the [111] direction [66].
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Figure 2.1: Schematic diagram of free energy as a function of polarization for a ferro-
electric PbTiO3 unit cell. The two degenerated ground states can serve as binary states in
memory device.
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Figure 2.2: Perovskite (ABO3) structure. (a) Cubic PbTiO3 (b) Tetragonal PbTiO3
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Figure 2.3: Structure of R3c BiFeO3.
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2.2 Ferroelectric domains and domain walls

A domain is defined as a continuous volume within the material that dipoles align along the

same direction. The formation of domains and domain walls in a bulk ferroelectric material

is inevitable [32]. Many factors including strain, microscopic defects, surface charges,

depolarization fields, and the thermal and electrical history of the sample may cause the

formation of domains [67]. The equilibrium domain pattern for a particular (mechanical

and electrostatic) boundary condition is determined by the minimization of the total energy

(εtotal) of the crystal. In terms of energy density, the general formalism is [68]

εtotal = εe + εq + εDW + εs, (2.1)

where εe is the elastic energy, εq is the electrostatic energy, εDW is the domain wall (inter-

face) energy and εs is the surface energy associated with crystal terminations. Last decade

has also seen a surge of interests in ferroelectric thin films grown over oxide substrates of

similar lattice constants [69, 70]. In the thin-film form, film thickness and the mismatch

of film-substrate lattice constants will also influence the formation and stability of domain

configurations.

In experiments, piezoresponse force microscopy (PFM) is widely used to visualize

and manipulate domains at nanoscale [71–75]. In PFM, an alternating voltage, V =

Vdc + Vaccos(ωt) is applied through the scanning probe tip which causes periodic local

vibrations (piezoelectric response) of the sample surface (Fig. 2.4). The resulting oscil-

lations of the cantilever are detected and sensitively read out with the help of a lock-in

amplifier (LLA) [76]. The first harmonic component, A1ω, of the tip defection, A =

A0 + A1ωcos(ωt + φ), depends on the tip motion and is given in the units of length; the

phase φ carries information of the local polarization direction below the tip [77]. For ex-

ample, the application of a positive bias on a c− ferroelectric domain (polarization vector
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normal to the surface pointing downward) will have φ = 0◦; for a c+ domain, φ = 180◦

under a positive tip bias. The ability to apply field though the PFM tip also enables local

switching experiments.

A domain wall is defined as the interface separating neighboring domains of different

polarities. The type of a domain wall is defined by the relative angle between the orienta-

tions of the polarization axes of the domains adjacent to it [32]. For example, Figure 2.5

shows domain structures with 180◦ and 90◦ domain walls in PbTiO3. First-principles den-

sity functional theory calculations reveal that the widths of domain walls are of the order of

two lattice constants or less [78, 79]. However, transmission electron microscopy (TEM)

studies reported widely ranging values between 10–60 Å [80–82]. The theory-experiment

disagreement in values of domain wall widths may be attributed to the presence of de-

fects and/or inhomogeneous stress field in the vicinity of domain boundaries. It should be

noted that the domain wall widths calculated from first-principles are intrinsic values for

defect-free ideal crystals, and therefore is a lower limit for the width of a domain wall.
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Figure 2.4: Schematic diagram of PFM detection. Local deformation of the sample surface
leads to deflection of the cantilever.
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Figure 2.5: Domain wall structures in PbTiO3.
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2.3 Domain wall motion

In response to an external perturbation that selects for one polarization state over another,

the domain wall will move to increase the size of the domain favored by the perturbation.

The model for domain wall motion involves thermal nucleation of oppositely polarized

nuclei aligning along with the electric field at the domain wall and their subsequent lateral

expansion. This nucleaiton-and-growth was used to describe the 180◦ domain wall motion

in BaTiO3 crystals [33–35]. The energy of a nucleus U in the presence of a electric field E

can be written as

U = −2PsEV + σDWS, (2.2)

where Ps is the spontaneous polarization, V is the volume of the nucleus, S is the surface

area of new domain walls, and σDW is the domain wall energy. The nuclei of new domains

become stable and grow if the energy gain from aligning dipoles along with the electric

field supersede the energy penalty for forming new domain walls. However, it was shown

that a model assuming a sharp triangular nucleus (Fig. 2.6a) would necessitate implausibly

large nuclei that leads to unrealistically large nucleation energies [83]. It was later revealed

with multiscale simulations that the nucleus has a square shape with a diffuse interface

(Fig. 2.6b). The nature of the diffuse interface significantly reduces the nucleation barrier

and hence gives rise to much lower activation fields for domain wall motion [25].

Efforts have been made to estimate coercive fields with phenomenological free-energy

theory [84, 85]. However, theoretical predictions for coercive fields are orders of magni-

tude higher than the experimentally observed values. Kim et al. calculated the theoretical

coercive fields as 2.75 MV/cm for LiTaO3 and 5.42 MV/cm for LiNbO3 with a Landau-

Ginsburg-Devonshire (LGD) type phenomenological model [84]. In contrast, the coercive

fields for near-stoichiometric LiTaO3 is ≈ 17 kV/cm, for near-stoichiometric LiNbO3 is

≈ 40 kV/cm, and ≈210 kV/cm for their congruent compositions [86, 87]. Similarly, the
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idea intrinsic coercive field for PZT thin films estimated from first-principles ranged from

2.5 MV/cm to 10 MV/cm, [85] which are serval orders of magnitude higher than exper-

imental values (10 kV/cm) [88–91]. These discrepancies were usually attributed to the

presence of various crystal inhomogeneities and defects in real materials. In Chapter 7,

we propose a simple universal nucleation-and-growth-based analytical model that is able

to quantify the dynamics of all types of domain walls in various ferroelectrics; this enables

the prediction of the temperature- and frequency-dependence of coercive fields at finite

temperature from first-principles. The coercive fields estimated from our model agree well

with experimental results, resolving long-standanding inconsistencies between the coercive

fields calculated from phenomenological models and measured experimentally.
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Figure 2.6: Schematic illustration of the nucleation model for 180◦ domain wall motion. (a)
Miller–Weinreich model with a sharp triangular nucleus. (b) Shin-Grinberg-Rappe model
with a square nucleus with a diffuse interface.
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2.4 Creep and depinning

The dynamics of domain wall is usually understood as an elastic interface moving in a

disordered media [92]. The competition between the elasticity, which tends to flatten the

domain wall, and pinning of defects, which prevents the domain wall from sliding, is likely

to govern the complex dynamical behavior of domain walls [46]. Figure 2.7 shows the

velocity of the domain wall as a function of the driving force. In the absence of thermal

activation (T = 0), the domain wall remains pinned until the driving force (F ) reaches a

critical threshold (Fc), then the domain wall moves with the velocity increasing abruptly.

This behavior resembles the evolution of the order parameter during a second-order phase

transition. Therefore, a universal scaling v ∝ (F − Fc)
θ may be expected, where θ is

called velocity exponent. When the driving force is high enough compared to the pinning

contribution, the velocity becomes linear with the driving force v ∝ F . In the presence of

thermal fluctuation (T > 0), the domain wall may move under subcritical forces F � Fc.

In this region, the domain wall has a strongly non-linear creep response to the external

driving force,

v ∝ exp

[
− Uc
kBT

(
Fc
F

)µ]
. (2.3)

where Uc is is a characteristic energy scale and µ is called dynamical exponent. The dy-

namical exponent depends on the dimensionality of the system and the universality class of

the disorder. The dynamical exponent µ = 1 is usually ascribed to the random-field nature

of the defects which break the symmetry of the ferroelectric double-well potential [39, 40],

while µ = 0.5 is an indication of random-bond defects which locally modify the symmetric

ferroelectric double-well potential depth [36, 41, 42].
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Figure 2.7: Velocity of an elastic interface as a function of the driving force.
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Chapter 3

Theory and methodology
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3.1 Introduction

Since 1911, it has been known that atoms and molecules are composed of electrons and

nuclei (protons and neutrons). Classical mechanics predict that electrons will collapse into

nuclei within a femtosecond. Hence, atoms, molecules, and other complex matters can not

exist in a world governed by classical mechanics. This conundrum is resolved by quantum

mechanics, which well explained the existence of matters. The ability of quantum mechan-

ics to predict the total energy of a system of electrons and ions allows for the calculations of

all physical properties of atoms, molecules, and solids [93]. Nearly all physical properties

are related to the total energies or to differences between total energies. For example, the

ground-state geometry of a molecule can be determined by minimizing the total energy as

a function of internal coordinates (e.g., bond lengths and angles); the value of the equi-

librium lattice constant of a crystal is the value of the lattice constant that gives the lowest

energy. Computational modeling with quantum mechanics (first-principles) have been used

to address a large amount of problems in a wide range of scientific disciplines.

Despite the tremendous success of first-principles methods, simulations based on clas-

sical mechanics still play a significant role in providing microscopic insights into the struc-

ture, dynamics and thermodynamics of complex systems consisting of large numbers of

atoms [94]. Molecular dynamics (MD) simulations is a technique that calculates the time

dependent behavior of an ensemble of atoms by integrating Newton’s laws of motion [95].

In MD simulations, all atoms or ions are treated as structureless classical particles, inter-

acting with each other through a predefined interatomic potential. With the knowledge of

the force on each atom, the acceleration of each atom in the system is calculated accord-

ing Newtons’s second law (F = ma). Integration of the equations of motion then yields

a trajectory of configurations that specifies how the positions, velocities and accelerations

vary with time. From this trajectory, the average values of properties can be determined as
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a function of the positions and momenta of the particles in the system. Therefore, to carry

out a MD simulation, one only needs the initial positions of the atoms, an initial distribu-

tion of velocities and a predefined potential energy function specifying all the interatomic

interactions. The equations of motion are time reversible and deterministic: for a system

of particles with given positions and velocities, the state of the system can be determined

at any time in the future or the past.

3.2 Computational quantum mechanics

3.2.1 The Born-Oppenheimer approximation

The Schrödinger equation plays the central role in quantum mechanics. For a system of

electrons and nuclei, the time-independent form of the Schrödinger equation is

HΦ(r, σ,R) = EΦ(r, σ,R), (3.1)

where H is the total (non-relativistic) Hamiltonian, Φ(r, σ,R) is the eigenstate wavefunc-

tion, r denotes the positions of electrons, σ is a composite symbol for the spins of the

electrons, and R denotes the positions of nuclei, and E is the eigenstate energy. In follow-

ing part, the spin symbol σ is suppressed and will only be expressed explicitly when spin

states become relevant. The Hamiltonian contains all the interactions and can be written as

H = Te + Tn + Vnn + Vee + Vne, (3.2)

where Te is the kinetic energy operator for electrons,

Te = −
∑
i

h̄2

2me

∂2

∂r2
i

, (3.3)
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Tn is the kinetic energy operator for nuclei,

Tn = −
∑
l

h̄2

2Ml

∂2

∂R2
l

, (3.4)

Vnn is the nucleus-nucleus interaction and can be written as

Vnn =
1

2

∑
l,l′,l 6=l′

e2

4πε0

ZlZl′

|Rl −Rl′|
, (3.5)

Vee is the electron-electron interaction,

Vee =
1

2

∑
i,j,i6=j

1

4πε0

e2

|ri − rj|
, (3.6)

and Ven is the electron-nuclei interaction,

Ven = −
∑
i,l

Zl
4πε0

e2

|Rl − ri|
, (3.7)

where ri denotes the position of an electron i, Rl the position of a nucleus l, me the elec-

tronic mass, Ml the ionic mass and Zle the ionic charge of nucleus l.

Finding the solution of the time-independent Schrödinger equation for the entire system

is a formidable task. The Born-Oppenheimer (BO) approximation [96] allows us to treat

electrons and nuclei as nearly independent entities, considerably simplifying the procedure

for solving the Schrödinger equation. This approximation is justified by the fact that the

nuclei, being much (103-105 times) heavier than electrons, move much more slowly than

electrons. As a result, the electrons adjust quickly to the motions of ions. When solving the

electronic problem, one can thus assume that the nuclei are fixed at their instantaneous con-

figuration, and the electrons will quickly adjust (adiabatically) and stay at their ground state

for that particular instantaneous configuration of nuclei. Within the BO approximation, the
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total wavefunction can be decomposed as

Φ(R, r) = χn(R)ψe(R, r), (3.8)

whereψe(R, r) represents the many-body electron wavefunction and satisfies the Schrödinger

equation with nuclei at fixed positions R,

[Te + Vee(r) + Ven(r,R)]ψe(R, r) = Eeψe(R, r), (3.9)

where Ee is the energy of electrons for nuclei frozen at positions R. χn(R) satisfies fol-

lowing Schrödinger equation,

[Tn + Vnn(R) + Ee(R)]χn(R) = Eχn(R). (3.10)

From above equation, it is clear that the binding of nuclei is provided by Ee(R), as the

nucleus-nucleus interaction Vnn(R) is repulsive. Thus, electrons form a “glue” that holds

ions together.

The BO approximation is a good approximation for semiconductors and insulators with

(large) band gaps. In these materials, typical phonon energies are of the oder of 0.01 eV,

which is not large enough to excite electrons to states of higher energies. On the other hand,

in metallic materials, the gap is zero and phenomena beyond BO approximation (such as

phonon-mediated superconductivity) may occur [97]. Therefore, one has to be very careful

when simulating metallic system with the BO approximation.

3.2.2 Hartree-Fock method

The BO approximation allows the decoupling of electronic motions from the ionic motions.

However, the solution of Eq. 3.9 is still a challenging problem due to the large number of
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electrons as well as complicated geometry of many systems. A variety of approaches have

been developed to obtain approximate solutions of Eq. 3.9. The simplest one is the Hartree

approximation [98] in which the ground state wavefunction ψH is assumed to be a product

of single-particle functions,

ψH(r) = ψ1(r1)ψ2(r2) · · ·ψN(rN), (3.11)

where ψi(ri) denotes the wavefunction of a single electron i and satisfies the orthonormal

condition. The variational principle states that the exception value of the energy

E = 〈ψH|He |ψH〉 ≤ E0, (3.12)

where E is the energy of electrons (the subscript “e” in Eq. 3.9 is dropped for simplicity

in following discussions) and E0 is the ground-state energy. Substituting Eq. 3.11 into

Eq. 3.12, leads to

E =−
∑
i

∫
ψ∗i

h̄2

2me

∇2
iψidri −

1

4πε0

∑
i

∑
l

∫
ψ∗i

e2Z

|ri −Rl|
ψidri

+
1

8πε0

∑
i

∑
j 6=i

∫
ψ∗iψ

∗
j

e2

|ri − rj|
ψiψjdridrj. (3.13)

The wavefunction ψi is varied to minimize E under the constraint
∫
ψ∗iψidri = 1. This can

be done using Lagrange multiplier method through minimizing

E −
∑
i

εi

[∫
ψ∗iψidr− 1

]
, (3.14)

which is equivalent to solve
δE

δψ∗i
− εiψi = 0. (3.15)
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Taking the functional derivative of E, we get

− h̄2

2me

∇2
iψi −

1

4πε0

∑
l

e2Z

|ri −Rl|
ψi +

1

4πε0

∑
j 6=i

∫
ψi
e2 |ψj|2
|ri − rj|

drj = εiψi. (3.16)

The Hartree potential is defined as

vH(ri) =
1

4πε0

∑
j 6=i

∫
e2 |ψj|2
|ri − rj|

drj. (3.17)

and the potential from the nuclei is defined as

vn(ri) = − 1

4πε0

∑
l

Ze2

|ri −Rj|
. (3.18)

We can rewrite Hartree potential as

vH(ri) =
1

4πε0

∫ ∫ ∑
j 6=i

e2 |ψj|2
|ri − r|δ(r− rj)drdrj (3.19)

=
1

4πε0

∫
e2

|ri − r|dr
∑
j 6=i

|ψj|2 . (3.20)

Therefore, the Hartree potential is the average electrostatic potential created by the rest of

the electrons. For a system with a large number of electrons, vH can be approximated by

vH(r) =
1

4πε0

∫
e2n(r′)

|r− r′|dr. (3.21)

Thus, the Hartree equation can be written as

[
− h̄2

2me

∇2 + vn(r) + vH(r)

]
ψi(r) = εiψi(r). (3.22)
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Above equation is similar to the Schrödinger’s equation for a single electron moving in a

potential vn(r) + vH(r). The Hartree approximation therefore reduces the many-electron

problem to one-electron problem.

There are two problems with the Hartree method. First, it neglects the correlations be-

tween electrons due to the Coulomb repulsion between electrons: electrons try to avoid

each other as soon as possible. However, in Hartree approximation, electrons move in-

dependently. Second, the electronic wavefunction should be antisymmetric as electrons

are fermions. The Hartree wavefunction (Eq. 3.11) violates the antisymmetry requirement.

The second issue is resolved by using the Slater determinant as the many-electron wave-

function. The determinantal form of the wavefunction

ψ(r1, r2, · · · , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r1) · · · ψN(r1)

ψ2(r1) ψ2(r2) · · · ψN(r2)

...
... . . . ...

ψN(r1) ψN(rN) · · · ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.23)

is antisymmetric with respect to exchange of two electrons. Submitting the Slater determi-

nant into Eq. 3.12 gives:

E =
∑
i

∫
ψ∗i (ri)

[
− h̄2

2me

∇2
i −

∑
il

Ze2

|ri −Rl|
ψi(ri)

]
dri

+
1

2

∑
i

∑
i 6=j

∫ ∫
1

4πε0

e2ψi(ri)
2ψi(rj)

2

|ri − rj|
dridrj

− 1

2

∑
i,j

∑
j 6=i

∫ ∫
1

4πε0

e2ψ∗j (ri)ψ
∗
i (rj)ψi(ri)ψj(rj)

|ri − rj|
dridrj. (3.24)

Comparing to Eq. 3.11 in Hartree approximation, Eq 3.24 has an extra energy term (last

term) known as exchange energy arising from the Pauli Exclusion Principle. The exchange

energy is non-zero only for parallel spins. As in the Hartree’s case, minimizing E under
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the constraint of
∫
ψ∗i (ri)ψi(ri)dri = 1 gives the Hartree-Fock equation written as

[
h̄2

2me

∇2
i + vn + vH

]
−
∫ ∑

j 6=i

1

4πε0

e2

|r− r′|ψj(r
′)∗ψi(r

′)dr′ψj(r) = εiψi(r). (3.25)

The Hartree-Fock is a mean-field theory: each electron moves in an average field gener-

ated by other electrons. The presence of exchange energy does include some correlations

between the parallel spins.

3.2.3 Density functional theory

3.2.3.1 Hohenberg-Kohn theorems

The many-body wavefunction depends on the coordinates of all the electrons, making it a

function of 3N variables, where N is the number of electrons. This makes the solution of

the Schödinger equation numerically demanding as the system becomes larger. The first

attempt to describe electronic systems in terms of n(r), a function of only three variables,

was made by Thomas and Fermi (Thomas-Fermi model) [99, 100]. Although Thomas-

Fermi theory for homogenous electron gas is a very approximate theory, it contains the

seeds for the development of modern density functional theory (DFT). In 1964, Hohenberg

and Kohn proved two theorems [101, 102] that laid the foundation of the DFT:

Theorem 1. The external potential v(r) is a unique functional of the electron density n(r).

As a result, the total ground-state energy E of any many-electron system is also a unique

functional of n(r).

Theorem 2. The functional E[n] for the total energy has a minimum equal to the ground-

state energy at the ground-state density.

To start, we first show that the expectation value of the electron-nuclei interaction Ven

can be written as a functional of electron density. Recall that the Hamiltonian for interacting
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inhomogeneous electron gas is

H = Te + Vee + Ven, (3.26)

where

Ven = −
∑
i,l

Zl
4πε0

e2

|Rl − ri|
=
∑
i

v(ri). (3.27)

Introducing the electron density operator as

n̂(r) =
N∑
i

δ(r− ri), (3.28)

the electron density is then

n(r) = 〈ψ| n̂(r) |ψ〉 =

∫
ψ∗n̂(r)ψdr1 · · · drN (3.29)

Then 〈ψ|Ven |ψ〉 can therefore be written as

〈ψ|Ven |ψ〉 =

∫
ψ∗
∑
i

v(ri)ψdr1 · · · drN

=

∫
ψ∗
∑
i

v(r)δ(r− ri)ψdr1 · · · drNdr

=

∫
ψ∗v(r)n̂(r)ψdr1 · · · drNdr

=

∫
v(r)n(r)dr. (3.30)

Proof. The first theorem is proved by contradiction. One can assume there are two different

potentials v(r) and v′(r) with ground state ψ and ψ′ producing the same density n(r). For

simplicity, the ground state is assumed to be nondegenerate. Denote the Hamiltonians and

ground-state energies associated with ψ and ψ′, H and H ′, and E and E ′. Based on the
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variational principle, we have

E = 〈ψ|H |ψ〉 < 〈ψ′|H |ψ′〉 . (3.31)

Then

E < 〈ψ′|H |ψ′〉 = 〈ψ′|H +H ′ −H ′ |ψ′〉

= 〈ψ′|H ′ |ψ′〉+ 〈ψ′|H −H ′ |ψ′〉

= E ′ + 〈ψ′|V − V ′ |ψ′〉

= E ′ +

∫
(v(r)− v′(r))n(r)dr. (3.32)

Similarly, starting with

E ′ = 〈ψ′|H ′ |ψ′〉 < 〈ψ|H ′ |ψ〉 (3.33)

will lead to

E ′ = E +

∫
(v′(r)− v(r))n(r)dr. (3.34)

Adding Eq. 3.32 and Eq. 3.33, we get

E + E ′ < E + E ′, (3.35)

which is clearly absurd. Therefore, the initial assumption must be false and hence the

ground-state electron density determines v(r) uniquely, proving Theorem 1. It follows

directly that the ground-state electron density is produced by a unique H , which further

determines the nondegenerate ground state of the system. Putting all these altogether, n(r)

determines the ground-state wavefunction uniquely and consequently the ground-state en-

ergy.

31



Proof. We start by writing the ground-state energy E[n(r)] as

E[n(r)] = 〈ψ|V |ψ〉+ 〈ψ|T + Vee |ψ〉

=

∫
v(r)n(r)dr + F [n(r)]. (3.36)

It is evident F = 〈ψ|T + Vee |ψ〉 is a functional of n(r) as ψ is a functional of n(r).

Assuming a changed electron density n′(r) under the same potential v(r), then the energy

functional is

E[n′(r)] =

∫
v(r)n′(r)dr + F [n′(r)]. (3.37)

We know from the variational principle that for the state ψ′ associated with n′(r),

E[ψ] < E[ψ′]. (3.38)

As proved in Theorem 1, E[ψ′] = E[n′(r)] and E[ψ] = E[n(r)], therefore

E[n(r)] < E[n′(r)], (3.39)

proofing Theorem 2.

3.2.3.2 Kohn-Sham equations

The functional F [n] defined in last section can be decomposed into three parts

F [n] = Ts[n] +
e2

2

∫ ∫
1

4πε0

n(r)n(r′)

|r− r′| drdr
′ + Exc[n], (3.40)

where Ts[n] is the kinetic energy of noninteracting electron gas of density n(r) at its ground

state, the second term is the classical Coulomb energy, and the third term Exc[n] is the
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exchange-correlation energy. The total energy functional is then

E[n] =

∫
v(r)n(r)dr + F [n]. (3.41)

Again, one has to minimize the energy subjecting to the constraint
∫
n(r)dr = N . This

gives
δE[n]

δn(r)
− µ = 0, (3.42)

or equivalently

δTs[n]

δn(r)
+ v(r) +

∫
e2

4πε0

n(r′)

|r− r′|dr
′ +

δExc[n]

δn(r)
− µ = 0, (3.43)

where µ is the Lagrange multiplier. By defining

vH(r) =

∫
e2

4πε0

n(r′)

|r− r′|dr
′ (3.44)

and

vxc(r) =
δExc[n]

δn(r)
(3.45)

we obtain
δTs[n]

δn(r)
+ v(r) + vH(r) + vxc(r)− µ = 0. (3.46)

However, in Eq. 3.46, neither functional Ts[n] nor vxc(r) is known. Kohn and Sham intro-

duced orbitals (KS orbitals) into DFT by defining

n(r) =
N∑
i

∣∣ψKS
i (r)

∣∣2 , (3.47)
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and an effective potential veff(r)

veff(r) = v(r) + vH(r) + vxc(r). (3.48)

Substituting Eqs. 3.47 and 3.48 into Eq. 3.46 then leads to the Kohn-Sham equation:

[
− h̄2

2me

∇2 + veff(r)

]
ψKS
i (r) = εKS

i ψKS
i (r). (3.49)

The most important idea of the KS equation is to map an interacting many-electron system

onto an auxiliary non-interacting system of independent particles, which has the same den-

sity as the original system. The particles each move independently in an effective potential

veff(r). This one-electron approximation is similar to Hartree and HF method. However,

the KS equation includes the effects of exchange and correlation through vxc(r). It is noted

that the exchange-correlation potential is an unknown function and approximations have to

be made in order to solve the KS equation. The total energy can be expressed in terms of

εKS
i as

E =
∑
i

εKS
i −

e2

2

∫ ∫
1

4πε0

n(r)n(r′)

|r− r′| drdr
′ + Exc[n]−

∫
vxc(r)n(r)dr. (3.50)

3.2.3.3 Local density approxiamtion

In practice, the exchange-correlation energy functional must be approximated as the exact

form is unknown. The first such approximation was developed by Kohn and Sham in 1965

and is known as LDA (local density approximation) [102]. It is assumed that the electron

density n(r) varies slowly in space, and the electron gas within a small volume could

be considered locally homogenous. Thus, the local exchange-correlation energy could be

calculated (at the lowest approximation) as a product of the small volume and the exchange-

correlation energy density from the homogenous electron gas theory. The total exchange-
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correlation energy is then

Exc[n] =

∫
εxc[n(r)]n(r)dr, (3.51)

where εxc[n(r)] is the exchange-correlation energy density from Thomas-Fermi model. The

vxc(r) can then be found by taking the functional derivation of Exc[n],

vxc(r) =
δExc[n]

δn(r)
=
d (εxc[n(r)]n(r))

dn
= µxc[n(r)]. (3.52)

The total energy in LDA approximation can now be written as

E =
∑
i

εi −
e2

2

∫ ∫
1

4πε0

n(r)n(r′)

|r− r′| drdr
′ +

∫
(εxc[n(r)]− µxc[n(r)])n(r)dr. (3.53)

The exchange energy in LDA has a very simple form

ELDA
x =

∫
d3r n(r)εunif

x [n(r)], (3.54)

where

εunif
x = −0.75(

3

π
)
1
3n(r)1/3 = Axn(r)1/3. (3.55)

The correlation energy density (εunif
c ) in LDA is more complicated as the exact analytical

form are known only in extreme limits for homogenous electron gas. An expression that

recover both high-density and low-density limits is given by Perdew and Wang [103], with

parameters fitted to accurate Quantum Monte Carlo correlation energies.

The LDA has been generalized to the ground state of magnetic systems. The electron

density is now equal to the sum of spin-up density n↑(r) and spin-down density n↓(r).

The exchange-correlation function becomes a functional of n↑(r) and n↓(r). The spin-
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dependent KS equation reads

[
− h̄2

2me

∇2 + vσeff

]
ψKS
iσ (r) = εiσψ

KS
iσ (r), (3.56)

where

vσeff = v(r)− σµBB(r) +
e2

4πε0

∫
n′(r)

|r− r′|dr
′ +

δExc[n↑(r), n↓(r)]

δnσ(r)
[σ = ±1] (3.57)

and

nσ(r) =
∑

occupied

|ψiσ|2 (3.58)

3.2.3.4 Non-local approximation

It was argued that one can improve Exc[n] by expanding it in terms of gradient of the

density and truncated it at some order. This is known as gradient expansion approximation

(GEA) [102, 104]. The general form is

EGEA
xc = ELDA

xc +

∫
Bxc(n,∇n)dr. (3.59)

However, this recipe did not provide improvement over LDA. A breakthrough in DFT is

represented by the following proposition of Perdew and Wang:

EPW91
xc =

∫
f(n↑(r), n↓(r),∇n↑(r),∇n↓(r))dr, (3.60)

where f is a functional of density and its gradient [103, 105]. Later on, Perdew et al. [106]

proposed another functional, PBE, which retains important features of PW91 while strat-

ifying some exact properties (e.g., spin-scaling relation, uniform coordinate scaling and

36



Lieb–Oxford bound). The PBE exchange energy is expressed as

Ex =

∫
d3r n(r)εunif

x (n(r))Fx(s), (3.61)

where

Fx(s) = 1 + κ− κ

1 + µs2/κ
, (3.62)

κ = 0.804, µ = 0.235, s = |∇n|/2πkF , and kF = (3πn)1/3 is called the Fermi wavevector.

The PBE correlation energy has the form

EPBE
c =

∫
d3r n[εunif

c (n) +H(rs, ξ, t)], (3.63)

where

H(rs, ξ, t) =
e2

a0

γφ3 ln

[
1 +

β

γ
t2
(

1 + At2

1 + At2 + A2t4

)]
, (3.64)

rs = (3/4πn)1/3 is the local Seitz radius, ξ = (n↑(r) − n↓(r))/n is the relative spin

polarization, t = |∇n|/(2φksn), a0 = h̄2/(mee
2), γ = (1 − ln 2)/π2 = 0.031091, β =

0.066725, φ(ξ) = [(1 + ξ)2/3 + (1 − ξ)2/3]/2 is a spin-scaling factor, ks =
√

4kF/(πa0),

and

A =
β

γ

[
exp

[ −εunif
c

γφ3e2/a0

]
− 1

]−1

. (3.65)

3.2.4 Bloch’s theorem

For a periodic solid, the potential veff(r) is also periodic,

veff(r) = veff(r + R). (3.66)

The solutions of the single-particle in the Schrödinger equation (or KS equation) in a peri-

odic potential veff(r) have a simple form which is known as Bloch’s theorem. It states that
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the wave functions at points separated by a lattice vector R are connected with following

relation,

ψk(r + R) = exp(ik ·R)ψk(r). (3.67)

Following that, it is easy to see that the wave function should have a form

ψk(r) = eik·ruk(r), (3.68)

where uk(r) is a periodic function with uk(r) = uk(r + R). The vector k is a good quan-

tum number for a periodic system; the wave function and energy eigenvalues of an electron

in a periodic solid can be labeled by k. If k satisfies the Bloch’s theorem, k + G also

satisfies the Bloch theorem, where G is a reciprocal lattice vector. Therefore, all possible

values of k can be confined to the unit cell of the reciprocal lattice, the first Brillouin zone.

For each k, there are serval energy eigenvalues that are labeled as εnk where n is called the

band index. The band structure is a plot of εnk versus k.

3.2.5 Plane wave expansion method

The periodic function un,k(r) can be expanded in a Fourier series:

un,k(r) =
∑
m

cn,m(k)eiGm·r. (3.69)

Equivalently,

ψn,k(r) =
∑
m

cn,m(k)ei(k+Gm)·r. (3.70)

Let q = k + Gm, we have Bloch states expressed as

ψn,k(r) =
∑
q

cn,q |q〉 . (3.71)
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From above equation, we can see that the Block state ψn,k(r) is a superposition of plane

waves with q wave vectors differ by G. The effective potential can also be expanded in a

Fourier series:

veff(r) =
∑
m

veff(Gm)eiGm·r (3.72)

The non-zero matrix elements are

〈q′| veff(r) |q〉 =
∑
m

veff(Gm)
〈
q′
∣∣ eiGm·r

∣∣q〉 =
∑
m

veff(Gm)δq′−q,Gm . (3.73)

Substituting Eq. 3.72 into the KS equation, multiplying by 〈q′| from the left and integrating

over r gives the secular equation ,

〈
q′

∣∣∣∣∣
[
− h̄2

2me

∇2 + veff(r)

]∑
q

cn,m

∣∣∣∣∣q
〉

=

〈
q′

∣∣∣∣∣ εn∑
q

cn,m

∣∣∣∣∣q
〉

(3.74)

and ∑
m′

[
h̄2

2me

|k + Gm|2 δm,m′ + veff(Gm −G′m)

]
cn,m′ = εncn,m. (3.75)

In this form, the kinetic energy is diagonal, and the effective potential is described in terms

of Fourier transforms. The size of the matrix is determined by the choice of cutoff energy

h̄2

2me
|k + Gc|

3.2.6 The pseudopotential approximation

The Bloch’s theorem indicates the wave function for electrons in a periodic potential can

be expanded with a plane-wave basis set. However, a large number of plane waves are

needed to expand the tightly bound core orbitals in order to reproduce the rapid oscillations

of the wave functions of the valence electrons in the core region. The pseudopotential

(PP) approximation replaces the core electrons with a weaker potential that acts on pseudo
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wave functions [107–113]. As depicted in Fig. 3.1, the Coulomb potential is very strong

and approaches infinity near the origin, while the PP is close to zero. Consequently, the

pseudo wave function is smooth and nodeless in the core region (Fig. 3.2), which requires

a smaller number of plane waves for its expansion than needed for the true wave function.

In the PP approximation, the core electrons are eliminated and therefore the core levels are

assumed to be fully occupied and unchanged in all atomic environments. This is known

as the frozen core approximation, which is justified by the fact that inner-shell electrons

hardly participate in bonding and are less sensitive to the environment.
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Figure 3.1: Schematic diagram of the relationship between all electron potential and pseu-
dopotential
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Figure 3.2: Comparison of pseudo and all-electron wave functions for Pb
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We briefly discuss the main steps to construct PPs:

(1) True radial wave function for chosen reference configuration Rl(r) is obtained by solv-

ing the radial KS equation:

[
−1

r

h̄2

2me

d2

dr2
r +

h̄2

2me

l(l + 1)

r2
+ v(r)

]
Rl(r) = εlRl(r), (3.76)

where

v(r) = − 1

4πε0

e2Z

r
+ vH(r) + µxc(r). (3.77)

(2) The pseudo wave function φPP
l (r) is constructed such that it satisfies following condi-

tions [109]:

i. The φPP
l (r) is nodeless.

ii. Beyond a suitably chosen cutoff radius rc, the pseudo wave function φPP
l (r) is equal to

the true radial wave function Rl(r):

φPP
l (r) = Rl(r), for r > rc. (3.78)

iii. The pseudo wave function φPP
l (r) gives the same eigenvalues as the true wave function.

εPP
l = εl. (3.79)

iv. Norm-conservation: the charge enclosed within rc for the φPP
l (r) and true wave function

Rl(r) must be equal:

∫ rc

0

∣∣φPP
l (r)

∣∣2 r2dr =

∫ rc

0

|Rl(r)|2 r2dr. (3.80)

A PP that fulfills this condition is called “norm-conserving pseudopotential” (NCPP) [109].

v. The logarithm derivatives of the real and pseudo wavefunction and their first energy
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derivatives agree for r > rc. Note that properties (iv) and (v) are related through

−1

2

[
[rR(r)]2

d

dε

d

dr
lnR(r)

]
=

∫ R

0

r2 |R(r)|2 dr. (3.81)

that applies to each angular momentum l.

(3) The radial KS equation can be inverted to yield a screened potential that has the pseudo

wave function as its eigenfunction with correct eigenvalue.

[
−1

r

h̄2

2me

d2rφPP
l (r)

dr2
+

h̄2

2me

l(l + 1)

r2
φPP
l (r) + wscr

l φPP
l (r)

]
= εlφ

PP
l (r). (3.82)

The screened semi-local PP wscr
l lacks the transferability as the screening of the valence

electrons depends on the environment strongly. The transferability can be improved by

removing the screening effects of the valence electrons (descreen),

wps
l (r) = wscr

l − vH(r)− µxc(r), (3.83)

where

vH(r) =

∫
e2

4πε0

nv(r′)

|r− r′|dr
′, (3.84)

and µxc(r) is also calculated from nv(r′), the valence electron density, estimated with

nv(r′) =
∑

l,occupied

∣∣φPP
l (r)

∣∣2 . (3.85)

When the atom is placed in a different environment, vH(r) and µxc(r) are recalculated and

added to wscr
l . The non-local (NL) PP in a solid-state calculation then takes the form of a

44



sum over all angular momentum channels,

V̂NL(r) =
∑
l

wps
l (r)Pl, (3.86)

where Pl is the projector on the angular momentum state. Because the PP is angular-

momentum-dependent, each angular momentum state l has its own potential that can be

determined independently from the other potentials. It is therefore possible to use differ-

ent reference configurations for different angular momenta. This allows the use of excited

states or (partially) ionic states as reference states to construct the PP to improve the trans-

ferability.

As proposed by Kleinman and Bylander (KB) [114], the non-local PP can be repre-

sented in a semi-local form:

V̂NL = Vloc(r) +
∑
l

|∆Vl(r)Rref
l 〉 〈Rref

l ∆Vl(r)|〈
Rref
l

∣∣∆Vl(r) ∣∣Rref
l

〉 , (3.87)

where ∆Vl(r) = wps
l (r)−Vloc(r) and Vloc(r) is arbitrary. The action of non-local potential

on reference state is expressed as

V̂NL |Rref
l 〉 = Vloc(r) |Rref

l 〉+
∑
l

|∆Vl(r)Rref
l 〉 〈Rref

l ∆Vl(r)| |Rref
l 〉〈

Rref
l

∣∣∆Vl(r) ∣∣Rref
l

〉
=
∑
l

wps
l (r) |Rref

l 〉 . (3.88)

Because the choice of Vloc(r) is arbitrary in the KB form, Ramer and Rappe [115] proposed

to generate PPs with enhanced transferability by adding augmentation function A(r) to

local potential

V̂NL = Vloc(r) + A(r) +
∑
l

|(∆Vl(r)− A(r))Rref
l 〉 〈Rref

l (∆Vl(r)− A(r))|〈
Rref
l

∣∣ (∆Vl(r)− A(r))
∣∣Rref

l

〉 . (3.89)
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By adjusting A(r), better transferability can be achieved.

Rappe et al. proposed to use the kinetic energy expansion as an optimization criterion

in the construction of the PPs, based on the observation that the total energy and the kinetic

energy have similar convergence properties [112]. For each l channel,the pseudo wave

function within the cutoff rc,l is expressed in terms of Bessel functions,

φPP
l (r) =

n∑
i

cijl(Gir), (3.90)

where jl(Gir) are spherical Bessel functions with i− 1 zeros at positions smaller than rc,l.

The value of Gi are fixed satisfying

j′(Girc,l)

j(Girc,l)
=
R′l(rc,l)

Rl(rc,l)
. (3.91)

The values of ai are determined such that:

i. φPP
l (r) is normalized.

ii. First and second derivatives of φPP
l (r) are continuous at rc,l.

iii. ∆Ekin({ci}, Gc) is minimal for

∆Ekin = −
∫
φPP
l (r)∗∇2φPP

l (r)dr−
∫ Gc

0

G2
∣∣φPP
l (G)

∣∣2 dG, (3.92)

where ∆Ekin is the kinetic energy contribution above a target cutoff value Gc. In practice,

Gc is changed to minimize ∆Ekin to a small enough value.
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3.3 Molecular dynamics

3.3.1 Equation of motion

Hamilton’s variational principle summarizes most of classical mechanics, and has been

extended to quantum mechanics and quantum field theory. It states that the trajectory of a

mechanical system in the phase space has the time integral
∫
Ldt at an extremum, where

L is the Lagrangian. Given a set of N independent generalized coordinates and velocities

{qi, q̇i}, the Lagrangian L satisfies the Euler–Lagrange equations

d

dt
(
∂L
∂q̇i

)− ∂L
∂qi

= 0. (3.93)

If qi denotes a component of the cartesian coordinates for one of the atoms of mass mi, we

have

L =
1

2

∑
i

miq̇
2
i − U({qi}), (3.94)

where U({qi}) is the potential. Then Eq. 3.93 becomes

miq̈i = −∂U
∂qi

= fi, (3.95)

where fi is the corresponding force component. An alternative formulation is based on the

HamiltonianH = H({qi}, {pi}, t) that is defined as

H =
∑
i

q̇ipi − L, (3.96)

where pi is the generalized momentum

pi =
∂L
∂q̇i

. (3.97)
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The Hamiltonian equations of motion read

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

. (3.98)

3.3.2 Interatomic potenital

At the very heart of any MD simulation is the question of how to describe or approximate

the interatomic potential U{qi} [94]. As discussed in Section 3.2, it is a highly nontrivial

task to determine the potential energy surface from first-principles. MD scheme adopts a

classical point of view, that is, each atom is represented as point mass, interacting through

forces that depend on the separation. The interatomic potential used in MD is therefore

a classical effective potential that approximates the quantum mechanical description. In

practice, the full interaction is decomposed into two-body and many-body terms, long-

range and short-range terms, and electrostatic and non-electrostatic interactions, which are

represented by suitable functional forms. The parameters in these analytical energy func-

tionals, in most cases, are not derived (calculated) directly from first-principles, but rather,

are the product of the parametrization using a database of information, including the results

of quantum mechanical calculations of energies and forces, experimental thermodynamic

properties (e.g., density), spectroscopic data (e.g., vibrational frequency) and so on [116].

The parameters may be refined to improve the agreement between theory and experiment

for a particular observable of interest (with possible sacrifice of the accuracy of other prop-

erties). Following are some widely used potentials:

(1) Lennard-Jones potential,

U = εij

[(
σij
rij

)12

−
(
σij
rij
,

)6
]

(3.99)
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where ε is the depth of the potential well, σ is the distance at which the potential becomes

zero.

(2) Buckingham potential,

U = Ae−Br − C

r6
, (3.100)

where A, B and C are constants for a given atomic pair.

(3) Harmonic bond potential,

U = kb(r − r0)2, (3.101)

where kb is the spring constant and r0 is the equilibrium bond length.

We developed a model potential based on two conservation principles in bond-valence

theory for oxides:

(1) Bond-valence conservation principle: each atom i prefers to have the total bond valence

of its bonds equal to its atomic valence, V0,i [24]. The actual atomic valence Vi for atom i

can be calculated by summing over the individual bond valences Vij for bonds between the

atom and its nearest neighbors

Vij = (
rij
r0
ij

)Nij (3.102)

where r0
ij and Nij are Brown’s empirical parameters.

(2) Bond-valence vector conservation principle: each atom is assumed to have a desired

length of bond-valence vector sum (BVVS). The bond-valence vector (BVV),Vij , is de-

fined as a vector directed along the bond line with magnitude equal to the scalar bond

valence. The bond-valence vector sum,W0,i, is the vector sum of individual Vij [28]. As

will demonstrated in Chapters 4 and 5, the BVVS serves as a measure of local symmetry

breaking. Based on these conservation principles, we proposed bond-valence energy and
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bond-valence vector energy.

UBV =
∑
i

Si(Vi − V0,i)
2, (3.103)

and

UBVV =
∑
i

Di(W
2
i −W2

0,i)
2 (3.104)

where Si and Di are scaling factors.

The force can be evaluated with Eq. 3.95 once the analytical form of the potential is

known. Here we document the detailed derivation of the force resulting from bond-valence

vector energy. The BVVS Wi for atom i at (xi, yi, zi) can be calculated with

Wi = Wix + Wiy + Wiz, (3.105)

where

Wix =
∑
j 6=i

Vij
(xi − xj)

rij
x̂

Wiy =
∑
j 6=i

Vij
(yi − yj)
rij

ŷ

Wiz =
∑
j 6=i

Vij
(zi − zj)
rij

ẑ (3.106)
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For a given atom n, the x-component of the force is

−fxn =
∂UBVV

∂xn

=
∑
i

2Di(W
2
i −W2

0,i)2Vix
∂Vix
∂xn

+
∑
i

2Di(W
2
i −W2

0,i)2Viy
∂Viy
∂xn

+
∑
i

2Di(W
2
i −W2

0,i)2Viz
∂Viz
∂xn

, (3.107)

where

∂Vix
∂xn

=
∑
j 6=i

(
∂Vij
∂xn

(xi − xj)
rij

+ Vij(xi − xj)
∂(1/rij)

∂xn
+
Vij
rij

∂(xi − xj)
∂xn

)
. (3.108)

Given that
∂rij
∂xn

=
xi − xj
rij

δin +
xj − xi
rij

δjn, (3.109)

we have

∂Vij
∂xn

= −Nij

(
r0
ij

rij

)Nij−1
r0
ij

r2
ij

∂rij
∂xn

= −NijVij
rij

[
xi − xj
rij

δin +
xj − xi
rij

δjn], (3.110)

∂(1/rij)

∂xn
= − 1

r2
ij

(
xi − xj
rij

δin +
xj − xi
rij

δjn). (3.111)

Substituting Eqs. 3.110 and 3.111 into Eq. 3.108 leads to

∂Vix
∂xn

=
∑
j 6=i

Vij
rij

(δin − δjn −
(Nij + 1)(xi − xj)2

r2
ij

δin +
(Nij + 1)(xj − xi)2

r2
ij

δjn). (3.112)

51



Similarly, we have

∂Viy
∂xn

=
∑
j 6=i

(
∂Vij
∂xn

(yi − yj)
rij

+ Vij(yi − yj)
∂(1/rij)

∂xn

)
, (3.113)

∂Viz
∂xn

=
∑
j 6=i

(
∂Vij
∂xn

(zi − zj)
rij

+ Vij(zi − zj)
∂(1/rij)

∂xn

)
. (3.114)

Now the x-component of the force can be written as

fxn =
∑
i

Dix

[∑
j 6=i

Vij
rij

(−δin + δjn +
(Nij + 1)(xi − xj)2

r2
ij

δin −
(Nij + 1)(xj − xi)2

r2
ij

δjn)

]

+
∑
i

Diy

[∑
j 6=i

Vij
rij

(
(Nij + 1)(yi − yj)(xi − xj)

r2
ij

δin −
(Nij + 1)(yj − yi)(xi − xj)

r2
ij

δjn)

]

+
∑
i

Diz

[∑
j 6=i

Vij
rij

(
(Nij + 1)(zi − zj)(xi − xj)

r2
ij

δin −
(Nij + 1)(zj − zi)(xi − xj)

r2
ij

δjn)

]
,

(3.115)

where Diα = 4Di(W
2
i −W2

0,i)Viα, [α = x, y, z]. By defining following terms:

E(i, j) =
(Nij + 1)

r2
ij

∆ij
x =xi − xj

∆ij
y =yi − yj

∆ij
z =yi − yj, (3.116)
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we can write the force in a more concise way

fxn =
∑
i

Dix

{∑
j 6=i

Vij
rij

[
−δin + δjn + E(i, j)(∆ij

x )2δin − E(i, j)(∆ij
x )2δjn

]}

+
∑
i

Diy

{∑
j 6=i

Vij
rij

[
E(i, j)∆ij

x ∆ij
y δin − E(i, j)∆ij

x ∆ij
y δjn

]}

+
∑
i

Diz

{∑
j 6=i

Vij
rij

[
E(i, j)∆ij

x ∆ij
z δin − E(i, j)∆ij

x ∆ij
z δjn

]}
. (3.117)

Applying the Kronecker delta function and rearranging the terms, we obtain

fxn = −Dnx

∑
j 6=n

Vnj
rnj

+
∑
i 6=n

Dix
Vin
rin

+Dnx

∑
j 6=n

Vnj
rnj

E(n, j)(∆nj
x )2 −

∑
i 6=n

Dix
Vin
rin

E(i, n)(∆in
x )2

+Dny

∑
j 6=n

Vnj
rnj

E(n, j)∆nj
x ∆nj

y −
∑
i 6=n

Diy
Vin
rin

∆in
x ∆in

y

+Dnz

∑
j 6=n

Vnj
rnj

E(n, j)∆nj
x ∆nj

z −
∑
i 6=n

Diz
Vin
rin

E(i, n)∆in
x ∆in

y , (3.118)

fxn = −Dnx

∑
j 6=n

Vnj
rnj

+
∑
j 6=n

Djx
Vjn
rjn

+Dnx

∑
j 6=n

Vnj
rnj

E(n, j)(∆nj
x )2 −

∑
j 6=n

Djx
Vjn
rjn

(∆jn
x )2

+Dny

∑
j 6=n

Vnj
rnj

∆nj
x ∆nj

y −
∑
j 6=n

Djy
Vjn
rjn

∆jn
x ∆jn

y

+Dnz

∑
j 6=n

Vnj
rnj

∆nj
x ∆nj

z −
∑
j 6=n

Djz
Vjn
rjn

∆nj
x ∆nj

z . (3.119)
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Finally, we reach

fxn =
∑
j 6=n

(Djx −Dnx)
Vnj
rnj

+
∑
j 6=n

Vnj
rnj

E(n, j)(∆nj
x )2(Dnx −Djx)

+
∑
j 6=n

Vnj
rnj

E(n, j)∆nj
x ∆nj

y (Dny −Djy)

+
∑
j 6=n

Vnj
rnj

E(n, j)∆nj
x ∆nj

z (Dnz −Djz). (3.120)

3.3.3 Integration algorithms

The trajectory in MD simulations is advanced by integrating the equations of motion. A

variety of integrators are available. The Verlet algorithm is one of the simplest and yields

coordinates that are accurate to third order in ∆t (time step) [95, 117]. The derivation of the

Verlet formula follows immediately from the Taylor expansion of the coordinate variable,

x(t+ ∆t) = x(t) + ∆tẋ(t) +
∆t2

2
ẍ(t) +

∆t3

3!

...
x(t) +O(∆t4), (3.121)

where t is the current time. Similarly

x(t−∆t) = x(t)−∆tẋ(t) +
∆t2

2
ẍ(t)− ∆t3

3!

...
x(t) +O(∆t4). (3.122)

Summing these two equations give

x(t+ ∆t) + x(t−∆t) = 2x(t) + ∆t2ẍ(t) +O(∆t4), (3.123)

or

x(t+ ∆t) ≈ 2x(t)− x(t−∆t) + ∆t2ẍ(t). (3.124)
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The estimate of the new position contains an error that is of order ∆t4. The velocity can

also be obtained as

x(t+ ∆t)− x(t−∆t) = 2∆tẋ(t) +O(∆t3), (3.125)

or

v(t) = ẋ(t) =
x(t+ ∆t)− x(t−∆t)

2∆t
+O(∆t2). (3.126)

The expression for the velocity is only accurate to the order ∆t2. An equivalent integrating

algorithm is the so-called Leapfrog algorithm [94]. It integrates the velocities at half-integer

time steps and uses these velocities to compute the new positions,

v(t−∆t/2) =
x(t)− x(t−∆t)

∆t
, (3.127)

and

v(t+ ∆t/2) =
x(t+ ∆t)− x(t)

∆t
. (3.128)

From Eq. 3.128, the new position can be calculated with

x(t+ ∆t) = x(t) + v(t+ ∆t/2)∆t. (3.129)

It is noted that the coordinates and velocities are evaluated at different times. If an estimate

for v(t) is required, following is a simple connection

v(t) = ẋ(t) = ẋ(t∓∆t/2)± (∆t/2)ẍ(t). (3.130)

Once the new positions x(t + ∆t) is known, we may discard the positions at time t −∆t.

The current positions become the old positions and the new positions become the current
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positions.

3.3.4 Temperature control: thermostat

A convenient definition of the temperature T in a classical many-body system makes use

of the equipartition theorem over all degrees of freedom,

1

2
kBTNdf = 〈K〉 =

〈∑
i,α

1

2
miv

2
iα

〉
, (3.131)

where kB is Boltzmann’s constant, Ndf is the number of internal degrees of freedom, K is

the instantaneous internal kinetic energy, mi is the mass of the particle i, and viα is the α-th

component of its velocity. The instantaneous temperature T is defined as

T =
2

kBNdf

K (3.132)

It is noted that the condition of constant temperature is not equivalent to the condition of

constant kinetic energy [118]. For a canonical ensemble, the instantaneous kinetic energy

per particle fluctuates, and its relative variance is 2/3N , where N is the number of parti-

cles [95]. If the average kinetic energy per particle were fixed constant, then the system

simulated is not a true constant-temperature ensemble. The ad hoc naive velocity-scaling

scheme does not correspond to any known ensemble [95].

3.3.4.1 Anderson thermostat

Andersen proposed to couple the system to a heat bath to impose the desired tempera-

ture [119]. The coupling to a heat bath is achieved by occasionally changing the veloc-

ities of randomly selected particles. These “stochastic collisions” ensure that all acces-

sible constant-energy levels are visited according to their Boltzmann weight. The cou-
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pling strength between the system and the heat bath is determined by the frequency (f ) of

stochastic collisions. Assuming successive collisions are independent, the distribution of

time intervals between successive collisions follows the Poisson distribution:

P (t, f) = f exp(−ft), (3.133)

and P (t, f)dt is the probability that collision will occur in interval [t, t+ dt]. When a par-

ticle is selected to undergo a collision, it is given to a new velocity based on the Maxwell-

Boltzmann distribution of the desired temperature T . Though Anderson thermostat yields

good results for time-independent properties, it can not be applied to study dynamical prop-

erties. Because the stochastic collisions are unphysical disturbations, which may lead to

sudden and random decorrelation of particles.

3.3.4.2 Nosé thermostat

Nosé proposed a temperature control algorithm based on an extended-system method [120].

The idea is to extend the real system by adding an artificial dynamical variable s̃ associated

with an effective mass Q. The timescale in the extended system is stretched by the factor s̃

r̃ = r, ˙̃r = s̃−1ṙ, s̃ = s, ˙̃s = s̃−1ṡ (3.134)

The Lagrangian for the extended system is

L(r̃, ˙̃r, s̃, ˙̃s) =
1

2

N∑
i

mis̃
2 ˙̃r2
i − U(r̃) +

Q

2
˙̃s2 − gkBTo ln s̃ (3.135)

where g is the number of degrees of freedom in the real system and To is the reference tem-

perature of the heat bath. The first two terms represent the Lagrangian of the real physical

system. The third and fourth terms represent Lagrangian associated with s̃ variable. The
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equations of motion for the extended system is

¨̃ri = m−1
i s̃−2F̃i − 2s̃−1 ˙̃s ˙̃ri (3.136)

for physical variables and

¨̃s = Q−1s̃−1

(
N∑
i=1

mis̃
2 ˙̃r− gkBTo

)
(3.137)

for the s̃ variable. The Nosé equations of motion can also be derived using a Hamilto-

nian formalism. For the extended-system, the physical momenta p̃i and the momentum p̃s

associated with the s̃-variable are defined as

p̃i =
∂L(r̃, ˙̃r, s̃, ˙̃s)

∂ ˙̃r
= mis̃

2 ˙̃ri, p̃s =
∂L(r̃, ˙̃r, s̃, ˙̃s)

∂ ˙̃s
= Q ˙̃s. (3.138)

Compared with the real-system momenta,

pi = miṙi, ps = Qs−2ṡ, (3.139)

the extended-system momenta are amplified by a factor s̃. The extended-system Hamilto-

nian reads

H(r̃, p̃, s̃, p̃s) =
1

2

N∑
i

m−1
i s̃−2p̃2

i + U(r̃) +
1

2
Q−1p̃2

s + gkBTo ln s̃ (3.140)

The corresponding Hamiltonian equations of motion are

˙̃pi = F̃i, ˙̃ri = m−1
i s̃−2p̃i (3.141)
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for the physical variables, and

˙̃ps = s̃−1

(
N∑
i

m−1
i s̃−2p̃2

i − gkBTo
)
, ˙̃s = Q−1p̃s (3.142)

for the s̃-variable. For the whole extended system, the Nosé equations of motion sample a

microcanonical ensemble with a constant energy. However ,the energy of the real physical

system is not constant. The heat transfers between the real physical system and the heat bath

as s̃ fluctuates. The sign of ˙̃s determines the direction of the heat flow: when ˙̃s < 0, the heat

flows into the real system; when ˙̃s > 0, the heat flows out of the real system. Nosé proved

that Eqs. 3.136 and 3.137 sample a canonical ensemble of microstates of the real physical

system [120]. The Nosé equations of motion are smooth, deterministic and time-reversible.

Because the evolution of the variable s̃ (Eq. 3.137) is described by a second-order equation,

the temperature of the real system will fluctuate in a nearly-periodic fashion as heat flows

into and out of the system in an oscillatory way. However, the dynamics of the temperature

evolution should not be periodic due to stochastic fluctuations and exponential thermal

relaxation. The frequency of oscillation is closely related to the value of the effective mass

Q and can be approximated as [118]

ν = (2π)−1(2NdfkBTo)
1/2Q−1/2, (3.143)

providing the velocities of the real system are initiated from a Maxwell-Boltzmann distri-

bution, together with s̃(0) = 1 and ˙̃s(0) = 0.
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3.3.4.3 Nosé-Hoover thermostat

As shown by Nosé and Hoover [121], the Nosé equations of motion can be reformulated in

terms of real-system variables through following transformations:

dt = s̃−1dt̃, d/dt = s̃/dt̃,

s = s̃, ṡ = s̃ ˙̃s, s̈ = s̃2 ¨̃s+ s̃ ˙̃s2,

r = r̃, ṙ = s̃ ˙̃r, r̈ = s̃2¨̃r + s̃ ˙̃s ˙̃r,

ps = s̃−1p̃s, ṗs = ˙̃ps −Q−1s̃−1p̃2
s,

p = s̃−1p̃, ṗ = ˙̃p−Q−1s̃−1p̃sp̃. (3.144)

By defining the quantity γ = s−1ṡ = Q−1sps, the Lagrangian equations of motion can be

rewritten as

r̈i = m−1
i Fi − γṙi, (3.145)

where

γ̇ = −kBNdfQ
−1T

(
g

Ndf

To
T − 1

)
. (3.146)

It is noted that γ is a dynamical variable as its time derivative γ̇ is determined by the instan-

taneous microstate of the system (T ). The variable γ plays the same role in Nosé-Hoover

formulation as ˙̃s in the Nosé formulation. That is, when γ is positive (negative), heat flows

out of (into) the system. Noticeably, when the system temperature increases above To, the

derivative of γ becomes positive, and the heat flow is progressively reduced. It is also

proved that Nosé-Hoover equations of motion sample a canonical ensemble. The Nosé-

Hoover equations of motion are smooth, deterministic and time-reversible.

The choice of fictitious mass Q requires some more words. One the one hand, too large
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value of Q may cause a poor temperature control. A long simulation time is required to

obtain canonical distribution. On the other hand, too small value of Q may cause rapid

temperature oscillations (v ∝ Q−1/2). When the frequency of the s̃-variable oscillation is

significantly higher than the characteristic frequencies of the real physical system, the heat

bath becomes effectively decoupled from the physical degrees of freedom. Consequently,

a long simulation time is also required to achieve canonical sampling. If the initial real-

system velocities are taken from a Maxwell-Boltzmann distribution, Q ≈ 1.4NdfkBToξ
2
T is

suggested as an appropriate value for simulations, where ξT is the temperature relaxation

time [118, 122].

3.3.5 Pressure control: barostat

For a spatially homogenous system, the instantaneous internal pressure P of a system can

be calculated with

P =
1

dV

[
N∑
i

(
p2
i

mi

+ riFi

)
− dV ∂U

∂V

]
, (3.147)

where U is the potential. Andersen originally proposed a method for constant pressure MD

simulations based on the extended ensemble approach [119]. The essential idea is to couple

the system to an external variable V , the volume of the simulation box. This coupling

mimics the effect of a piston. The piston has an effective mass Q. The coordinates and

velocities of atoms in the real system are scaled as

r = V 1/3s and ṙ = V 1/3ṡ. (3.148)

The Lagrangian for the extended system is

L(s, V ) =
1

2

N∑
i

miV
2/3ṡ2

i − U({V 1/3s}) +
1

2
QV̇ − PoV, (3.149)
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where Po is the specified pressure. The equations of motion are

s̈ =
f

mV 1/3
− 2

3
ṡV̇ /V

V̈ = (P − Po)/Q. (3.150)

Both f and P are calculated using normal, unscaled coordinates and momenta.

Andersen’s method only allows for isotropic changes in the volume of the simulation

box. Parrinello and Rahman extended this method to allow for anisotropic changes, vary-

ing both shape and size [123]. This technique is particularly useful for simulating phase

transitions of solid crystals which involve the changes in the cell dimensions and angles.

The coordinates are scaled as

r = hs, (3.151)

where h is a 3× 3 matrix whose columns are the vectors a,b and c of the simulation box.

The volume of the box is given by V = |h| = a ·b× c. The equations of motion are again

obtained from the Lagrange of the extended system:

ms̈ = h−1f −mG−1Ġṡ

Qḧ = (P − Po)V (h−1)T, (3.152)

where G = hTh. The instantaneous stress tensor is given as

Pαβ =
1

V

(∑
i

m(hṡi)
T
α(hṡi)β +

∑
i

∑
j>i

(hsij)α(fij)β

)
. (3.153)

where fij is the force on i due to j in unscaled form.
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Chapter 4

Reinterpretation of bond-valence model

with bond-order formalism: an

improved bond-valence based

interatomic potential for PbTiO3
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4.1 Introduction

The use of ferroelectric perovskite oxides in a variety of technological applications has

prompted extensive investigations of their structure and dynamics [1, 4]. First-principles

density functional theory (DFT) calculations have played an important role in enhancing

microscopic understanding of the relationships between composition, structure and prop-

erties [8–10]. Despite the success of first-principles methods, the great computational ex-

pense and the difficulties of studying finite-temperature properties have driven the devel-

opment of more efficient atomistic and effective Hamiltonian potentials suitable for large-

scale molecular dynamics (MD) simulations [11–22]. In particular, an atomistic potential

based on the widely used bond-valence (BV) theory [24] has been developed [14, 16].

BV-based atomistic potentials have since been used to study phase transitions [124] and

domain wall motion in PbTiO3 [25], as well as structure and dynamics in the classic

0.75PbMg1/3Nb2/3O3-0.25PbTiO3 relaxor ferroelectric material [26, 27].

The bond-valence theory, or bond-valence conservation principle, states that in a crystal

structure, each atom i prefers to obtain a certain atomic valence, V0,i. The actual atomic

valence Vi, for atom i can be obtained by summing over the bond valences Vij , which can

be calculated from an empirical inverse power-law relationship [125, 126] between bond

valence and bond length rij:

Vij =

(
r0,ij

rij

)Cij

. (4.1)

r0,ij and Cij are Brown’s empirical parameters. The energy contribution of the bond-

valence is chosen to have the following form:

EBV =
∑
i

εi =
∑
i

Si(Vi − V0,i)
2, (4.2)

where εi is the atomic bond-valence energy and Si is a scaling parameter.
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Despite the success of the rather simple ten-parameter BV model potential [16] for

PbTiO3, no rigorous quantum mechanical justification has been provided for the bond-

valence potential energy, raising questions about the general applicability of this type of

atomistic potential. In addition, the potentials obtained in previous work [16, 124] were

found to be accurate for NV T simulations only, with incorrect ground state structures

obtained when the constant volume constraint is lifted. In this paper, we show how the

bond-valence energy can be derived from the second-moment bond-order potential, extend

the model to represent higher moments of the local density of states (LDOS), and show that

this allows accurate simulations for both constant-volume and constant-pressure conditions.

4.2 Methodology

An analysis of the physics that gives rises to the bond-valence conservation principle shows

that the bond-valence energy can be naturally derived from the second-moment bond-order

potential, such as the well-known Finnis-Sinclair potential [127, 128]. Within the frame-

work of a tight-binding model [129], the Finnis-Sinclair potential can be partitioned into

atomic contributions as:

UFS(r1, ...rN) =
∑
i

Ei =
∑
i

∑
〈j〉

φ(rij)− γi(µ(2)
i )

1
2

 , (4.3)

where ri is the atomic position, Ei is the local atomic energy and φ(rij) is a pair-wise

repulsive potential depending on the distance between atom i and its nearest-neighboring

atom j. The second term represents the bonding energy; γi is a constant and µ(2)
i is the

second moment of the LDOS. The second moment µ(2)
i measures the width of the LDOS

distribution, and as shown by Cyrot-Lackmann and Ducastelle [130–132], can be evaluated

from the summation over all the nearest-neighbor hopping paths that start and end on atom
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i:

µ
(2)
i =

∑
〈j〉

βijβji =
∑
〈j〉

β2
ij, (4.4)

where 〈j〉 means the summation of nearest neighbors of i, and βij is the averaged hop-

ping integral between atom i and j. Because the overlap of atomic orbitals decays as

exp(−σijrij) [128], Eq (3) can be written as

UFS =
∑
i

Ei =
∑
i

∑
〈j〉

aije
−2σijrij −

∑
i

γi

∑
〈j〉

bije
−2σijrij

 1
2

, (4.5)

with φ(rij) = aije
−2σijrij and µ(2)

i =
∑
〈j〉 bije

−2σijrij , where aij is a constant that scales

the strength of the repulsive interactions between atom i and atom j, and bij scales the

bonding interaction.

Despite the different appearance of Eq (4.2) and Eq (4.5), we can rewrite the bond-

valence energy in a similar form to the FS potential. First of all, we point out that the

energy function for bond-valence energy is not unique since Eq (4.2) simply enforces that

any deviation from the desired atomic valence will incur an energy penalty. Therefore, we

could rewrite the bond-valence energy as

E ′BV =
∑
i

S ′i(
√
Vi −

√
V0,i)

2
, (4.6)

with a proper choice of S ′ as a scaling parameter. The bond-valence is an empirical con-

cept, and it has been modeled with various functional forms including inverse power law

and exponential [24]. For the narrow range of distances of first nearest neighbor pairs,

exponential and power law yield similar results. Given that the bond-valence reflects the

66



bonding strength, we define it as an exponential of the interatomic distance:

Vij = b′ije
−2σijrij (4.7)

where b′ij is a parameter depending upon the type of atomic pair. Expanding Eq (4.6) gives

E ′BV =
∑
i

S ′iVi − 2S ′i
√
V0,iVi + S ′iV0,i. (4.8)

The last term, S ′iV0,i, is a constant and will cancel out when energy differences are consid-

ered. Henceforth we will not write out this constant term explicitly. Substituting Eq (4.7)

into Eq (4.8), we obtain

E ′BV =
∑
i

∑
〈j〉

S ′ib
′
ije
−2σijrij −

∑
i

2S ′i
√
V0,i

∑
〈j〉

b′ije
−2σijrij

 1
2

. (4.9)

It becomes evident that the bond-valence energy expressed in Eq (4.9) is remarkably similar

to the FS potential in Eq (4.5). Eq (4.5) and Eq (4.9) becomes equivalent if we choose

S ′ib
′
ij = aij (4.10a)

2S ′ib
′
ij

√
V0,i = bij (4.10b)

Rearranging Eq (4.10), we obtain V0,i = b2
ij/4a

2
ij . Therefore, for any system where the ratio

of coefficients for bonding and repulsive interactions, bij/aij , is constant among the neigh-

bors of atom i, this ratio defines this atom’s bond valence. Thus, the bond valence energy

Eq (4.9) is equivalent to Eq (4.5). The equivalence between the bond-valence energy and

the Finnis-Sinclair potential means that the bond-valence conservation experimentally ob-

67



served in solids is based on the quantum-mechanical description of bonding that underlies

the Finnis-Sinclair model.

Compared to the bond-order potential, the application of the bond-valence model does

not require extra efforts to parametrize hopping integrals, because the bond-valence param-

eters for a wide variety of atomic pairs are already known from crystallography [24]. Since

the bond-valence model is a second-moment bond-order potential, its limitations, such as

the inability to obtain the correct ground state structure in NPT simulations, are likely due

to the fact that the second moment only accounts for the width of LDOS but does not reflect

its shape. One consequence of this is that the BV energy depends only on the total valence

and is entirely insensitive to the number of bonds or their relative strengths. This feature

of all second-moment models makes it difficult to distinguish between competing crystal

structures, which are controlled by the higher moments [128]. Therefore, a systematic way

to improve the bond-valence model is to include the contributions of higher moments of

the LDOS (such as fourth moment) to the total energy [133, 134].

In this work, we choose the bond-valence vector sum (BVVS) [24, 28] to reflect the

change of the fourth moment of the LDOS. The bond-valence vector is defined as a vector

lying along the bond with magnitude equal to the bond-valence (|Vij| = Vij), as shown

in Fig. 4.1. A simple argument is presented in the Appendix to illustrate the relationship

between the fourth moment of the LDOS and the sum of the bond-valence vectors in a pe-

riodic structure. Generally, the changes in the local symmetry of the bonding environment

affect the value of the fourth moment of the LDOS, which is also reflected by the change

of BVVS. We suggest that BVVS is a natural way to capture the change in the fourth

moment of LDOS. For many materials, it has been shown that the ground-state structure

favors symmetric local bonding environment and a zero BVVS. Therefore, the criterion of

BVVS = 0 for the ground-state structure has been suggested as a complement to the origi-

nal bond-valence conservation principle [24, 28]. However, this is not followed for crystal
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structures in which symmetry breaking (BVVS 6= 0) becomes significant due to electronic-

structure driven distortions, such as the second order Jahn-Teller distortion exhibited by Ti

atoms in an octahedral environment and the stereochemical lone-pair driven distortions of

Pb2+ cation. The BVVS can thus be considered as a measure of local symmetry breaking.

We therefore generalize this principle by proposing that each ion has a desired length of

bond-valence vector sum. The bond-valence vector energy, EBV V , is defined as

EBV V =
∑
i

Di(W
2
i −W2

0,i)
2
, (4.11)

where

Wi =
∑
j 6=i

Vij =
∑
j 6=i

VijR̂ij. (4.12)

Di is the scaling factor, R̂ij is a unit vector pointing from atom i to j, Wi is the calculated

bond-valence vector sum and W0,i is the desired value of bond-valence vector sum. It

is noted that only the norm of the bond-valence vector sum is taken in the energy term

(square of Wi) since the energy is a scalar quantity and the energy expression should bot

break the system symmetry. The value of W0,i can be computed using the optimized

atomic positions in the lowest-energy structure identified from first principles. We note

here that the proposed BVV energy is a simplified fourth-moment bond-order potential,

as the calculation of BVVS for a given atom only requires the knowledge of its nearest

neighbors.

The interatomic potential for our modified bond-valence model is given by:

E = Ec + Er + EBV + EBV V + Ea (4.13)
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Ec =
∑
i<j

qiqj
rij

(4.14)

Er =
∑
i<j

(
Bij

rij

)12

(4.15)

Ea = k

Noxygen∑
i

(θi − 180◦)2 (4.16)

where Ec is the Coulomb energy and Er is the short-range repulsive Lennard-Jones energy.

In both the Finnis-Sinclair potential and the bond-valence model, only averaged hopping

integrals between neighboring atoms are used, which is equivalent to approximating all

the atomic orbitals as s-type [128]. However, bonding in PbTiO3 involves p-d orbital hy-

bridizations, which do display angular dependence. Physically, in PbTiO3 this results in

an energy cost for rotations of oxygen octahedra. To introduce the dependence of energy

on the interatomic angles, we include an angle potential term, Ea, which is defined locally

for all the O-O-O angles along the oxygen octahedral axes, as shown in Fig. 4.2. This

rotationally-invariant angle potential prevents unphysically large tilting of oxygen octahe-

dra.
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Ti

O

Pb

(a) (b)

Figure 4.1: Schematic representation of bond-valence vector summation around Ti in (a)
cubic PbTiO3 and (b) tetragonal PbTiO3. Gray, blue and red balls denote Pb, Ti and O.
The back arrows scale the individual bond-valences, and the blue arrow shows the resultant
bond-valence vector sum WTi.
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ɵ

Figure 4.2: Angle potential in bond-valence model.
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The potential parameters required to be fitted for PbTiO3 can be summarized as follows:

spring constant k for angle potential, charges qi, scaling factors Si and Di for each species,

and short-range repulsion parameters, Bij , for each pair type (Pb-Ti, Pb-O, Ti-O and O-O).

The Brown’s empirical parameters (r0,ij and C0,ij) are taken from Ref [125] and Ref [126].

We implemented this bond-valence model in the LAMMPS code [135].

Figure 4.3 shows our parameterization protocol. The optimization of the potential pa-

rameters is performed using simulated annealing (SA) global optimization method to fit a

database of structural energy differences and atomic forces (E & F) derived from ab initio

DFT calculations with the ABINIT code [136]. We used the 2×2×2 supercell as the refer-

ence structure. The energy and atomic forces are computed with 2×2×2 Monkhorst-Pack

k-point mesh [137] using PBEsol [138] as the exchange-correlation energy functional. We

start with an initial database that contains the lowest-energy tetragonal structure, strained

tetragonal structures, the lowest-energy cubic structure, strained cubic structures, and ran-

domly picked orthorhombic structures with various lattice constants. After each SA run,

the optimized potential parameters are used to perform constant-stress MD simulations to

generate equilibrium structures at various temperatures, which are then put back to the

database. The process is continued until the energies and forces of the structures sampled

during MD simulations are accurately reproduced (difference between MD value and DFT

value is ≈4 meV/atom).
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Database (E & F)


Simulated Annealing


MD simulations


MD simulations reproduce 


DFT energies and forces


Yes 

Optimized parameters


No 

DFT 


Fitted Parameters


Figure 4.3: Potential optimization protocol used in this work.
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4.3 Results and discussion

4.3.1 MD simulations of temperature-driven phase transition

Table 4.3.1 presents the optimized potential parameters. To account for the overestimation

of the PbTiO3 c/a ratio by PBEsol (c/a=1.10 versus c/a=1.07 experimentally) [139], we

adjusted Brown’s empirical parameter r0,ij to make the Vβ for Pb, Ti and O reach their

atomic valences in the lowest-energy tetragonal structure obtained with PBEsol. The value

of preferred BVVS is then calculated with the modified r0,ij . We find that the oxygen atoms

do not have a preference for a specific value of bond-valence vector sum. This is because

in perovskites, some oxygen atoms are highly displaced (|WO| > 0), while others stay

around the high-symmetry point (|WO| = 0). So the BVVS term is included for Pb and Ti

only.

75



Table 4.1: Optimized potential parameters of modified bond-valence model. The angle
potential parameter k is 0.0152 eV/(deg)2.

Bββ′(Å)
r0,βO C0,βO qβ(e) Sβ(eV) Dβ Pb Ti O V0,β W0,β

Pb 1.960 5.5 1.38177 0.31646 2.23180 – 2.17558 1.71871 2.00 0.40297
Ti 1.798 5.2 0.99997 – 0.11888 – – 1.28582 4.00 0.46541
O - - -0.79391 1.52613 – – – 1.83109 2.00 –
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Figure 4.4: Temperature-dependent properties of PbTiO3 obtained from NV T simulations
with lattice constants fixed to experimental values. The c axis is along z direction. (a)
Time evolution of components of polarization for various temperatures. (b) Spontaneous
polarization and atomic displacements along the c axis as a function of temperature.
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Using this optimized model potential for PbTiO3, we studied the temperature depen-

dence of lattice constants, polarization and displacements of Pb and Ti ions using an

8 × 8 × 8 supercell. We first performed canonical-ensemble MD simulations with lat-

tice constants fixed to experimental values, using the Nosé-Hoover thermostat to control

the temperature. Figure. 4.4(a) shows the evolution of polarization at different tempera-

tures: only Pz along the c axis has significant values at low temperature and the overall

polarization becomes zero at and above Tc. For these simulations, we obtained 830 K

for the ferroelectric-to-paraelectric first-order phase transition temperature Tc, shown in

Fig. 4.4(b). This agrees well with the experimental Tc of 765 K [65], and is an improve-

ment relative to the 550 K value obtained in NV T calculations with an earlier BV poten-

tial without BVVS term [16, 124]. We then used the new potential in NPT simulations,

with the pressure maintained at 0.1 MPa by the Parrinello-Rahman barostat [123]. For the

ground state structure at 10 K, we obtained the lattice constant a=3.834 Å and c/a=1.15.

The equilibrium c/a ratio in MD is larger than the PBEsol DFT value [139]. Figure 4.5 dis-

plays the temperature dependence of lattice constants, spontaneous polarization and atomic

displacements of Pb and Ti obtained from NPT simulations. As temperature increases,

the c/a ratio decreases gradually, together with the polarization and atomic displacements.

The phase transition from tetragonal to cubic occurs at 400 K, lower than the experimental

value. The rather large magnitude of spontaneous polarization compared to experimental

value (P = 1.25 C/m2 vs. experimental P = 0.75 C/m2) and the large atomic displace-

ments at temperatures below Tc are due to the overestimated tetragonality of the PBEsol

functional and some amplification of this effect in the resulting potential.
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Figure 4.5: Temperature-dependent properties of PbTiO3 obtained fromNPT simulations.
Time dependence of (a) profiles of lattice constants and (b) profiles of polarization along
the Cartesian axes for various temperatures. (c) Spontaneous polarization and atomic dis-
placements as a function of temperature. (d) Snapshots of the structures of PbTiO3.
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4.3.2 MD simulations of domain walls

We find that the new potential is capable of describing domain wall (DW) energetics and

structures. The supercell used to model the domain wall is constructed following the

method in Ref. 42. The domain wall energy (EDW) is calculated by

EDW =
EN − Ebulk

SDW

, (4.17)

where EN is the energy of the supercell, Ebulk is the energy of a single-domain supercell of

the same size, and SDW is the area of the domain wall. Figure 4.6(a) presents simulation of

180◦ Pb-centered domain walls at 10 K. The computed domain wall energy is 208 mJ/m2,

agreeing very well with 170 mJ/m2 obtained via PBEsol DFT calculations (with an 8×1×1

supercell). To simulate a 90◦ domain wall, we used a supercell with N1 = 16, N2 = 4,

and N3 = 4, as shown in Fig. 4.6(b). The dimensions of the supercell are fixed to the

values calculated based on experimental lattice constants of tetragonal PbTiO3. The domain

wall energy is estimated to be 90 mJ/m2 and also shows a satisfying agreement with the

PBEsol DFT value of 64 mJ/m2 (with an 8 × 1 × 1 supercell). We note that the BV

potential is highly efficient, as all the interactions are pair-wise. This allows simulation of

a 40×40×40 supercell (320,000 atoms) for 40 ps with a 1.0 fs timestep using only 2268

seconds of clocktime with 320 cores on the iBM iDataPlex supercomputer at the Navy DoD

Supercomputing Resource Center.
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Figure 4.6: Simulated domain wall using modified bond-valence model. (a) 180◦ domain
wall constructed with a 12×4×4 supercell; (b) 90◦ domain wall with N1 = 16, N2 = 4,
N3 = 4.
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4.3.3 MD simulations of pressure-driven phase transition

We have also examined the performance of the potential in simulations of pressure-induced

phase transitions in PbTiO3 with a 10 × 10 × 10 supercell. Figure 4.7 shows the pressure

dependence of lattice constants and polarization. We find two phase transitions, at 6.5 GPa

and 11 GPa. Below 6.5 GPa, the structure is ferroelectric. The tetragonality decreases with

increased pressure and the magnitude of polarization along the long axis reduces accord-

ingly. Above 6.5 GPa, the c/a ratio becomes 1 but the structure maintains ferroelectricity

up to 11 GPa. Between 6.5 GPa and 11 GPa, we find the coexistence of multiple monoclinic

phases. The polarization disappears when the pressure exceeds 11 GPa and the structure

becomes centrosymmetric and paraelectric. Our simulated results are consistent with Wu

and Cohen’s first-principles studies [140, 141] and recent experimental results by Ahart et

al [142]. We did not find any reentrance of ferroelectricity up to 60 GPa.
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4.4 Conclusion

We have shown that bond-valence energy is formally equivalent to the second-moment

bond-order potential. The introduction of bond-valence vector energy based on the bond-

valence vector conservation principle improve the bond-valence model. The new poten-

tial of PbTiO3 reproduces the polarization, ferroelectric instability and phase transition in

NV T simulations, and also captures the temperature-driven phase transition qualitatively

in NPT simulations. Both calculated 180◦ DW energy and 90◦ DW energy using this

new potential are in agreement with DFT values. This new potential is efficient enough to

simulate large supercells. The studies of pressure-induced phase transition with the new

potential show two phase transitions, consistent with previous experimental studies. We

expect that this improved bond-valence model can be applied to other oxides due to its

simplicity, efficiency and accuracy. [143]

4.5 Appendix

The bond valence of an individual bond Vij is defined in Eq. 4.7 to be proportional to the

square of hopping integral βij . Both the bond-valence vector sum, Wi, and the fourth-

moment of the LDOS, µ(4)
i , can reflect the change of local symmetry of bonding envi-

ronment. Figure 4.8 gives an example of a one-dimensional AB alloy. The desired bond

valence of A − B in the undistorted structure is set to be a, and therefore the hopping in-

tegral is equal to
√
χa, where χ is a constant. It is easy to calculate that the bond valence

summation and µ(2) at atom A are 2a and 2χa, respectively. Suppose that the lattice con-

stant and A-B bond distances are changed such that the bond-valence of the longer A− B

bond to (a − δ) and the shorter one becomes (a + δ). Accordingly, the hopping integral

for the longer A − B become
√
χ(a− δ) and the shorter one

√
χ(a+ δ). The bond-

84



valence conservation principle is obeyed in both structures so they cannot be distringuised

at the second moment or bond-valence level. However, the WA changes from zero in the

undistorted structure to 2δ in the distorted structure, and the µ(4)
A is reduced from 6χ2a2 to

6χ2a2−2χ2δ2. It is evident that only the hopping path involving the next-nearest neighbors

contributes to the change of fourth-moment. Since the fourth moment hopping terms and

the BVVS change at the same order, the change of fourth moment, ∆µ
(4)
i , can be approxi-

mated with (|Wi| − |Wi,0|)2. We choose W2
i instead of |Wi| in the formula of EBV V to

make sure EBV V is a differentiable function for each Wi.
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1) Undistorted 

Hopping path with length 2

Hopping path with length 4

2) Distorted 

Hopping path with length 2

Hopping path with length 4

Figure 4.8: Hopping paths in one-dimensionalAB alloy. Empty and filled circles represent
elements A and B. The bond-valence between A and B is represented as a.
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Chapter 5

Development of a bond-valence based

interatomic potential for BiFeO3 for

accurate molecular dynamics simulation
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5.1 Introduction

BiFeO3 (BFO) is a multiferroic perovskite oxide with high Curie and Neel temperatures

(TC ≈ 1100 K and TN ≈ 643 K) [29, 30]. Recently, it has attracted intense attention, both

experimentally and theoretically, due to its potential technological applications [31, 144–

150]. First-principles density functional theory (DFT) calculations have been applied to

study the structural, electronic, magnetic, and ferroelectric properties of BiFeO3 [151–155].

However, conventional first-principles methods are limited due to their large computational

cost. Bellaiche et al. [156] recently developed an effective Hamiltonian scheme for BiFeO3,

which enables the computational investigation of finite-temperature properties via Monte

Carlo simulations [157, 158]. Despite this success, there is still a strong need for a true

atomistic potential that could reproduce the full dynamical behavior of BiFeO3 at finite

temperature. However, the development of general atomistic potentials for ferroelectric

oxides has proven difficult due to the complex nature of various metal-oxygen bonds [23].

5.2 Methodology

We recently developed a classical potential for PbTiO3 [159] based on the bond-valence and

the bond-valence vector conservation principles [24, 28]. The bond-valence conservation

principle states that each atom i prefers to have the total bond valence of its bonds equal

to its atomic valence, V0,i. The actual atomic valence Vi for atom i can be calculated by

summing over the individual bond valences Vij for bonds between the atom and its nearest

neighbors. It has been shown in many inorganic compounds that the bond valence (BV)

can be modeled with an inverse power-law correlation between the bond length and bond
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valence [125, 126] given in Eq (1).

Vij =

(
r0,ij

rij

)Cij

, (5.1)

where r0,ij and Cij are Brown’s empirical parameters and are readily available for many

atomic pairs [24]. The bond-valence vector (BVV),Vij , is defined as a vector directed along

the bond line with magnitude equal to the scalar bond valence. The bond-valence vector

summation (BVVS),V0,i, is the vector sum of individual Vij [28]. As shown in Fig 5.1,

the BVVS serves as a measure of local symmetry breaking. We therefore propose that each

atom is assumed to have a desired length of BVVS. The bond-valence vector conservation

principle applies not only to a vast number of materials where BVVS = 0 is preferred

but also to materials exhibiting noncentrosymmetric atomic environments due to electronic

distortions, such as the second-order Jahn-Teller distortion for d0 cations (Ti4+ and Nb5+)

and lone-pair driven distortion of Pb2+ and Bi3+. The improved model potential of PbTiO3

has been applied to both canonical ensemble (NV T ) and isobaric-isothermal ensemble

(NPT ) molecular dynamics (MD) simulations. In this paper, we demonstrate that our

BV model can be generalized to other materials by developing an atomistic potential for

BiFeO3.

89



(a)

(b) (c)

|VTi| = 0 |VTi| > 0

|VSr| = 0

|VBi| > 0

Pb

Ti

O

Ti
O

Sr

O

Fe

Bi

Figure 5.1: Schematic representation of bond-valence vector summation. (a) cubic PbTiO3

and tetragonal PbTiO3; (b) cubic SrTiO3; (c) ground state BiFeO3.
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The total interatomic potential for BFO is given by:

E = Ec + Er + EBV + EBV V (5.2)

Ec =
∑
i<j

qiqj
rij

(5.3)

Er =
∑
i<j

(
Bij

rij

)12

(5.4)

EBV =
∑
i

Si(Vi − V0,i)
2, (5.5)

EBV V =
∑
i

Di(V
2
i −V2

0,i)
2 (5.6)

where Ec is the Coulomb energy, Er is the short-range repulsive Lennard-Jones energy,

EBV is the bond-valence energy, and EBV V is the bond-valence vector energy. The EBV

and EBV V will be minimized when all the ions in a crystal structure have positions satisfy-

ing the desired BVS and BVVS. We note that we recently justified the BV energy quantum

mechanically in a framework of a tight-bonding model, showing that the BV energy term is

formally equivalent to a second moment bond order potential, and the BVVS term is linked

to the fourth moment of the local density of states [159]. Those derivations provide a firm

physical basis for our BV model. The potential parameters obtained from the fitting are:

charges qi, scaling factors Si and Di for each species and short-range repulsion parameters,

Bij .

We use the simulated annealing global optimization method to optimize potential pa-

rameters by fitting a database of ab initio-derived structural energy differences and atomic

91



forces. The electronic structure is calculated with the local density approximation (LDA)

plus Hubbard U parameter as implemented in the QUANTUM-ESPRESSO [160] package.

We use the 40-atom supercell as the reference structure. The Brillouin zone is sampled

using a 4×4×4 Monkhorst-Pack k-point mesh [137]. We use norm-conserving pseudopo-

tentials [112] generated using OPIUM [161] with a plane-wave energy cutoff of 50 Ry.

The initial database contains the ground-state ferroelectric rhombohedral (R3c) structure,

strained R3c structures, paraelectric rhombohedral (R3̄c), strained R3̄c structures, and ran-

domly chosen orthorhombic structures with various lattice constants. The optimized force

field obtained from each simulated annealing run is used to run both constant-volume and

constant-stress MD simulations to generate equilibrium structures at various temperatures,

the energies and atomic forces of which are then added to the fitting database. We also

used the 109◦ domain wall structure found by Lubk et al. [162] in the database to ensure

correct domain wall energies. The parameterization process is continued until the force

field correctly reproduces the DFT energies and atomic forces of structures sampled by

MD simulations.

5.3 Results and discussion

5.3.1 MD simulations of temperature-driven phase transition

Table 5.3.1 presents the optimized potential parameters. Brown’s empirical parameters r0,ij

are tuned until V0,i values for Bi, Fe and O in the ground-state structure are equal to their re-

spective atomic valences (CBiO = 6.0, r0,BiO = 2.071 Å, CFeO = 5.117, r0,FeO = 1.756 Å).

The value of desired BVVS is then calculated with the modified empirical parameters. The

validity of the potential is first tested via constant-volume MD simulations at various tem-

peratures with lattice constants fixed to experimental values. [31] For these simulations, we
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used a 5120-atom rhombohedral supercell (a = b = c = 44.64 Å, α = β = γ = 60◦) and

the Nosé-Hoover thermostat to control the temperature. Figure 5.2(a) shows the tempera-

ture dependence of polarization along the [111] axis. The simulations show a ferroelectric-

to-paraelectric first-order phase transition at Tc=760 K. Analysis of local displacements

(Fig. 5.2(b)) shows that at T < Tc, all displacements are only along the [111] direction. At

T > Tc, the local displacements are non-zero but are evenly split between the positive and

negative directions, resulting in no net polarization. This behavior is characteristic of the

order-disorder phase transition. The magnitude of the local displacements decreases with

temperature, which is characteristic of the displacive phase transitions. We therefore con-

clude that the phase transition is of the mixed order-disorder and displacive phase character,

as is typical for ferroelectrics.
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Table 5.1: Optimized potential parameters for BiFeO3.

Bij(Å)
qβ(e) Sβ(eV) Dβ Fe Bi O V0,β V0,β

Fe 1.93753 0.84065 – – 1.70139 1.48115 3.00 0.01798
Bi 1.77706 0.70313 0.76798 – 1.78529 1.77085 3.00 0.87373
O -1.23820 0.67213 4.50044 – – 1.39114 2.00 0.32866

94



We then used the potential inNPT simulations. The external stress is maintained at 0.1

MPa by the Parrinello-Rahman barostat. We used a 2560-atom perovskite-type orthorhom-

bic supercell as the starting structure. Figure 5.3 depicts the evolution of polarization and

atomic displacements with temperature. At low temperature, all three components of polar-

ization, Px, Py and Pz, have significant values with small fluctuation, such that the overall

polarization points toward the [111] direction. As the temperature increases, the magni-

tude of the polarization decreases. At high temperature (700 K), Px, Py and Pz all become

zero, indicating a paraelectric structure. Therefore, the Tc obtained from NPT MD simu-

lation is 660 K. This underestimates the experimental Tc of 1100 K. Such underestimation

is consistent with the previously found underestimation of Tc in NPT BVMD PbTiO3

simulations [163]. The difficulty of reproducing experimental Tc appears to be a general

feature for both atomistic simulation using interatomic potential [12, 164] and the effective

Hamiltonian scheme [21, 165–167]. We believe that this systematic error is partly due to

the use of LDA functional in potential parametrization. DFT calculations with LDA func-

tionals are known to underestimate the experimental lattice constants and P values. Since

in perovskites Tc scales as P 2, smaller P magnitude leads to underestimation of theoretical

Tc. The underestimation of Tc may also be partially due to an imperfect representation

of the DFT potential by the atomistic force-field model. Since our bond-valence model is

essentially a simplified fourth-moment bond-order potential, introducing new energy terms

that utilize higher moments may further improve its performance.
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Figure 5.2: Temperature-dependent properties of BiFeO3 obtained fromNV T simulations.
(a) Spontaneous polarization and average atomic displacements of Bi and Fe along the
[111] axis for BiFeO3. (b) Probability distributions of atomic displacements along [100]
axis. The atomic displacements along [010] and [001] show similar distributions.
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Figure 5.3: Temperature-dependent properties of BiFeO3 obtained fromNPT simulations.
(a)-(d) Evolution of polarization along Cartesian axes. (e) Spontaneous polarization and
atomic displacements along the [111] axis as a function of temperature.(f) Pair distribution
function for Bi-O atomic pair as a function of temperature. (g) Oxygen octahedral tilting
in BiFeO3 at 700 K along c axis.
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Analysis of local structure shows that below Tc the displacements of Fe3+ ions with re-

spect to the center of their oxygen octahedra do not change with temperature significantly.

On the other hand, the displacement of Bi3+ shows a stronger temperature dependence,

with a strong decrease as temperature increases. This agrees with previous experimental

studies [168, 169] which found that the shift of Bi3+ makes the main contribution to the

temperature changes of the electric polarization of BiFeO3. It is also found that the pair dis-

tribution function (PDF) for Bi-O atomic pair exhibits two well separated peaks below Tc,

and then become more dispersed above Tc. This indicates the change of the coordination

number of Bi during phase transion, which supports the R3C to Pbnm phase transition

reported previously [169]. The time-averaged structure of the paraelectric phase (aver-

aged with 500 structures obtained from a 20 ps MD simulation) is close to the structure

of GdFeO3, which shows octahedral tilting of a−a−b+, typical for perovskite with space

group Pbnm (Figure 3(g)). This further supports the assignment of Pbnm as the space

group of the paraelectric phase.

5.3.2 MD simulations of domain walls

Domain structure and dynamics play important roles in ferroelectric switching, photo-

voltaic effects and other phenomena intensely studied in BiFeO3. To further test the po-

tential and its applicability to the study of BFO domain walls, we calculate the energies of

71◦, 109◦, and 180◦ domain walls. The domain wall energy is estimated using:

EDW =
EN − Ebulk

SDW

(5.7)

where EN is the energy of the supercell containing the domain wall, Ebulk is the energy of

the bulk BiFeO3 supercell of the same size, and SDW is the domain wall area. For BFO, the

DW structure is particularly interesting, as recent DFT calculations by Diéguez et al. [170]
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found that several local minima are possible for the domain walls with up to factor of three

difference in DW energy for the same DW orientation, compared to the values reported

by Lubk et al [162]. The three low-energy and three high-energy DW structures found by

Lubk et al. and Diéguez et al. therefore provide a stringent test of our potential, which as

stated above, was parameterized using only the high-energy 109◦ wall.

To assess the accuracy of our BV potential, we carried out NPT simulations at 10 K

using supercells shown in Fig. 5.4. The 71◦ wall was constructed with 6
√

2 × 2
√

2 × 4

supercell with domain boundary in the (110) plane; the 109◦ domain wall was simulated

with a 12 × 2
√

2 × 2
√

2 supercell with the boundary in (100) plane and polarization vec-

tor changing from [11̄1̄] to [111] across the domain wall; a 6
√

2 × 2
√

2 × 4 supercell

was used for constructing the 180◦ domain wall with boundary in the (110) plane. We

found DW energies of 372 mJ/m2, 232 mJ/m2, 1032 mJ/m2 for the 71◦, 109◦ and 180◦

high-energy walls, respectively. For the low-energy DWs, we found 156 mJ/m2, 34 mJ/m2

and 110 mJ/m2 for the 71◦, 109◦ and 180◦ walls. These values compare favorably with

363 mJ/m2, 205 mJ/m2, 829 mJ/m2, 167 mJ/m2, 62 mJ/m2 and 82 mJ/m2 DW energies

obtained by the corresponding DFT calculations [162, 170]. The agreement between DFT

and atomistic potential values is quite good and indicates that our atomistic potential ac-

curately reproduces the BiFeO3 potential energy surface. We emphasize once again that

this agreement was achieved while only using the high-energy 109◦ structure in potential

parameterization and is due to the firm physical basis of the potential.

5.4 Conclusion

In this work, we present an atomistic interatomic potential for BiFeO3 based on the bond-

valence and the bond-valence vector conservation principles. This model potential repro-

duces the ferroelectric to paraeletric phase transition and the temperature dependence of
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Figure 5.4: Simulated domain wall structures using the BV potential of BiFeO3. (a) 71◦;
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a. The blue arrow represents the direction of polarizations.
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local cation displacements in BiFeO3 in both NV T and NPT simulations. The calcu-

lated energies of various domain walls are also in agreement with DFT results. We believe

that the bond-valence model approach achieves a balance between efficiency, accuracy, and

transferability and we therefore expect that this type of interatomic potential will be appli-

cable to a broad range of oxides.
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Chapter 6

Exploration of the intrinsic inertial

response of ferroelectric domain walls

via molecular dynamics simulations
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6.1 Introduction

Ferroelectric materials have been studied intensely due to their numerous important techno-

logical applications in electronics, optics, and acoustics [1, 4, 171, 172]. In many cases, fer-

roelectrics adopt a multi-domain state where domains with polarization uniformly oriented

in one direction are bounded by domains with polarization pointing in other directions.

The boundary separating regions of different polarity is called the domain wall (DW) [1].

The DW can be moved by external electric field and stress, causing one region to grow.

Therefore, controlling DW motion is critical to applications of ferroelectric materials such

as non-volatile random access memory [2, 3, 5, 173]. Though ferroelectric materials have

been studied for more than fifty years, the microscopic understanding of how different types

of DWs form and move remains incomplete.

One unanswered question that is of interest both scientifically and technologically is

whether ferroelectric DWs exhibit real momentum and significant inertial response. It is

generally reported that a ferroelectric DW, the motion of which involves movements of

atoms, has real inertia, whereas the magnetic DW, which is due to the flipping of mass-

less spins, has no momentum [174, 175]. However, these claims has been challenged re-

cently for both ferroelectric and magnetic DWs [176–179]. For magnetic domains, exper-

imental studies reveal that magnetic DWs can exhibit significant momentum and inertial

response [178, 179]. For ferroelectrics, the inertial response of a DW can be evaluated

by examining its behavior after the driving force is removed. This effect is currently a

subject of debate. Dawber et al. [180] observed that the ferroelectric DW travels from

the perimeter to the center in a circular capacitor: once the wall motion is initiated, it

propagates with viscous drag, which they attributed to the coupling of the domain wall to

acoustic phonons. The good agreement between the measured dependence of impedance

response on capacitor perimeter and theoretical predictions with a simple one-dimension
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phonon drag equation suggests that the ferroelectric DW has significant inertial response.

Similar deceleration of the DW under applied field was observed by Kim et al. [181] and

also assigned to ballistic character of DW motion. However, Molotskii et al. [176] later

pointed out that Dawber et al. used a high value of the relaxation time (τ ≈ 50 ns). After

using a much smaller τ (≈ 10−4 ns) derived from the effective DW mass reported by Kit-

tel [182], Molotskii et al. obtained a post-field propagation distance around 10−10 m, which

is smaller than the lattice constant [176]. Furthermore, recent in-situ investigations of the

dynamics of superdomain (a-c domain bundles) boundaries in BaTiO3 with piezoresponse

force microscopy (PFM) also indicated that the DW stops when the external voltage is

turned off [177]. The presence or lack of the domain wall momentum can have both extrin-

sic or intrinsic origins. To elucidate the intrinsic inertial response, we perform molecular

dynamics (MD) simulations of ferroelectric DWs.

6.2 Methodology

To model the dynamics of DWs, the simulation of a large system at finite temperature

is required. We have recently developed an interatomic potential based on bond-valence

theory [14, 16, 24, 25, 143, 159]. The model potentials for two ferroelectric materials,

PbTiO3 and BiFeO3, have been parameterized based on first-principles results [143, 159].

The optimized potential is accurate for both constant volume (NV T ) and constant pressure

(NPT ) conditions and sufficiently efficient for large-scale (≈1,000,000 atoms) molecular

dynamics (MD) simulations. In this work, we use MD simulations to study the momentum

of DWs in the classic PbTiO3 ferroelectric. As shown in Fig. 6.1, the 180◦ DW (the wall

separating regions with antiparallel polarization) is constructed with a 24× 8× 8 supercell

with polarization aligned along z axis. The 90◦ DW (the wall separating regions with per-

pendicular polarization) is modeled with a 40× 40× 40 supercell with alternating domains
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having polarization in the xy plane.
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Figure 6.1: Domain walls in PbTiO3. (a) 24 × 8 × 8 supercell used for 180◦ DW. (b)
40 × 40 × 40 supercell used for 90◦ DW. (c) domain pattern of 180◦ DW in xz plane. (d)
domain pattern of 90◦ DW in xy plane. Each cell is colored based on the direction of the
dipole: green for +x, orange for +y, red for +z, and blue for −z.
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6.3 Results and discussion

6.3.1 Domain structures at finit temperature

We perform NPT MD simulations with a Parrinello-Rahman barostat as follows: first, the

DW motion is initiated by applying an external electric field for a period of time; then the

field is turned off allowing the DWs to evolve freely. If the DW does indeed have momen-

tum, it will keep moving after the electric field is removed. Given that accurate determina-

tion of the DW position is critical for the evaluation of momentum, we first determined the

thickness of DWs. As shown in Fig. 6.2, we calculated the averaged polarization for each

layer of cells across the DWs at temperatures from 10 K to 240 K. We found that the 180◦

DW is 1-2 unit cells thick, while the width of 90◦ DW is 4-5 unit cells (the half width of

the polarization profile around the domain boundary) at finite temperature. In this study,

we propose that only when a DW moves inertially by a distance comparable to the width

of a DW, the inertial response can be regarded as “significant”.
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Figure 6.2: (a) Illustration of our choice of layer index, N , in DWs. The Ti-centered unit
cell is used for local polarization calculation. (b)-(c) Temperature-dependent polarization
profiles across the 180◦ DW and the 90◦ DW. (d) Temperature-dependent x-component
and y-component polarization profiles across the 90◦ DW from layer N=35 to layer N=50.
Lines with different color represent different temperatures: black, 10 K; red, 100 K; green,
160 K; blue, 200 K; orange, 220 K; magenta, 240 K.
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6.3.2 Inertial response of 180◦ DW

The change of the overall polarization of the supercell directly reflects the DW motion.

Figure 6.3 presents the change of Pz for 180◦ DW under various pulses at 220 K. As the

electric field is applied along +z direction, the magnitude of Pz increases, indicating the

field-driven movement of DW along +x. Once the field is turned off, two types of equi-

librations are observed: 1) the magnitude of Pz is reduced until it reaches equilibrium,

for example for E = 1.8 MV/cm, tE=4 ps; 2) the magnitude of Pz first decreases, then

increases by a small amount and eventually equilibrates, for example E = 2.2 MV/cm,

tE=4 ps. To elucidate the origins of these two types of equilibrations, we examined the

structure of 180◦ DW by analyzing the evolution of the local polarizations in the supercell.

Figure 6.4 presents the change of the polarization profile in response to a 4 ps-long electric

field pulse. The drop of Pz at the instant of field removal results mainly from the reduction

in the magnitudes of local dipoles that were aligned with the applied field (+z) and the

increase in the magnitude of the dipoles pointing toward −z. When the field is removed,

both types of dipoles return to their zero-field values. More importantly, both the polariza-

tion profiles and the visualized domain patterns show that the position of the DW does not

change once the field is removed, which suggests that the 180◦ DWs do not have inertial

response. The two types of polarization responses are actually caused by the growth or

annihilation of a nucleus at the domain boundary. At 4 ps, we see from Fig. 6.4(a) that the

local dipoles in layer N = 16 were partially switched at the time of field removal. Simi-

larly, in Fig. 6.4(b), it is observed that the switching process in layer N = 16 has already

started, but has not yet finished. This means the domain wall is not flat during the motion.

Figure 5 shows the changes of the dipoles in these two layers in the absence of electric field.

We can see that at 4 ps, the nucleus (number of red squares) in N = 16 (E=1.8 MV/cm)

is small and eventually disappears, resulting in the reduction of the polarization (Type 1

response). This is consistent with experimentally observed backswitching of the domain
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boundary after the driving electric field is removed [177]. On the other hand, the size of

nucleus in layer N = 16 (E = 2.2 MV/cm) is already large; therefore, the nucleus can keep

growing until the whole layer becomes +z polarized. This spontaneous switching process

is responsible for the increase of the polarization (Type 2 response). We therefore suggest

that after the electric field is turned off, only the layers in which the size of nucleus exceeds

the critical size will finish the switching process in the absence of electric field. The ces-

sation of DW motion at the instant of field-removal is a direct consequence of the intrinsic

energy barrier for nucleation. We would like to note here the difference between a phonon

and a DW. The motion of a phonon and a DW both involve the displacements of atoms.

However, phonons are distortions away from a single local minimum in the structural phase

space; displacing one atom creates forces on its neighbors, leading to the propagation of a

phonon wave. By contrast, when a ferroelectric bicrystal is at rest, atoms are located in one

of the two local minima (+z or −z domain) and are not under any force. A traveling DW,

as we showed, moves one plane of atoms from one local minimum (−z domain) to another

local minimum (+z domain). Therefore, during DW motion there is no restoring force

that would cause the atoms in nearby unit cells to switch the direction of their off-center

ferrroelectric distortion.
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Figure 6.3: The evolution of z-component polarization of 180◦ DW in response to electric
filed pulse. Lines with different color represent different electric fields: red, 1.8 MV/cm;
green, 2.0 MV/cm; blue, 2.2 MV/cm; orange, 2.4 MV/cm; magenta, 2.6 MV/cm; cyan,
2.8 MV/cm. The electric field is turned off at 3 ps, 4 ps, and 5 ps, respectively.
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Figure 6.4: Evolution of the polarization profiles (left) and domain patterns (right) of a
180◦ DW in PbTiO3.
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Figure 6.5: Schematic representation of nucleus annihilation (top) and growth (bottom) at
domain boundary. The electric field is turned off at 4 ps.
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The experimental studies cited above [177, 180, 181] have found that the DW velocity

under applied field is time-dependent and the speed of DW at a given time depends on the

initial velocity and damping. However, according to Merz’s law, DW velocity depends only

on the strength of the applied field at the given time [33]. To investigate whether there is

any memory of previous conditions in the intrinsic DW motion mechanism, we carried out

two sets of simulations. In one set of simulations, the DWs are initially driven by electric

fields of different magnitudes and then the field magnitudes are changed to the same value

for all simulations. In another set of simulations, the same electric field is applied initially

for all simulations, followed by the application of different electric fields. Figure 6.6 shows

the time evolution of the polarization obtained by using this protocol in NV T simulations

with a 48× 8× 8 supercell. The slope of the polarization profile, k, specifies the speed of

the DW. As shown in Fig. 6.6(a), the DWs that experience a higher initial field show larger

velocities before 6 ps. For t > 6 ps, the field is set to the same value for all simulations,

all DWs show nearly identical velocities, regardless of their initial launching velocities.

The dramatic difference in the velocities before and after 6 ps is illustrated in the insert

in Fig. 6.6(a). From Fig. 6.6(b), we find that the velocities of DWs under different fields

follow Merz’s law, lnv ∝ 1/E [33]. Our simulations show that the velocity of the DW

does not depend on the initial velocity and has no time dependence, dissimilar to a ballistic

motion. Instead, the velocity follows Merz’s low and is solely dependent on the magnitude

of the external electric field. This further demonstrates that the 180◦ DW has little or no

intrinsic inertial response.
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Figure 6.6: Evolution of the polarization of a 180◦ DW under sequentially applied electric
fields of different magnitudes. The electric field is applied along −z direction. Symbols
with different colors represent different electric fields: black, 3.2 MV/cm; red, 3.4 MV/cm;
green, 3.5 MV/cm; blue, 3.6 MV/cm. For a given electric field, 20 simulations starting
with different initial equilibrated structures are performed to get the averaged polarization
profile. (a) Different electric fields are applied until 6 ps and then switched to the same
electric field (3.2 MV/cm). The inset illustrates the dependence on the DW velocity on the
initial applied field for t < 6 ps (magenta) and t > 6 ps (orange). (b) The electric fields
of the same magnitude (3.2 MV/cm) is applied until 6 ps and then switched to different
electric fields. The inset shows that the speed of a domain wall follows Merz’s law.
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6.3.3 Inertial response of 90◦ DW

We now examine the 90◦ DWs. The evolution of Px for 90◦ DW in response to different

electric-field pulses at 200 K is shown in Fig. 6.7. Since the 90◦ DW energy is known to

be about four times lower than 180◦ DW energy [79], much smaller electric fields were

applied along +x direction. The increased magnitude of x-component of total polarization

under electric field again indicates the movement of DWs driven by field. Similar to what

was found for 180◦ DWs, the removal of electric field results in a decrease of Px. Figure 6.8

shows the changes of domain patterns and Px profiles for a 4 ps 0.4 MV/cm electric pulse.

The motion of 90◦ DW (highlighted as red broken line) is evident from 0 ps to 4 ps. The

overall result is an increase of the area of field-favored domains at the expense of the do-

mains with dipoles oriented opposite to the field. After the field is turned off, the positions

of the DWs from 4 ps to 20 ps did not change (Fig. 6.8b), suggesting that 90◦ DW also does

not have physically meaningful intrinsic inertial response. The main effect after the field

removal is the structural relaxation leading to reduction of the x-component polarizations.
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Figure 6.7: The evolution of x-component polarization of 90◦ DW in response of electric
pulse. The electric field is turned off at 3 ps, 4 ps, and 5 ps, respectively.

117



Figure 6.8: Evolution of (a) the domain patterns and (b) polarization profiles of a 90◦ DW
experiencing 4 ps 0.4 MV/cm electric pulse.
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6.4 Conclusion

In summary, we have explored the motions of both 180◦ and 90◦ domain walls in PbTiO3,

subjecting multi-domain samples to electric field pulses via molecular dynamics simula-

tions. The analysis of changes of polarization and evolution of domain patterns reveal that

both types of domain walls stop moving when the electric field is turned off and show that

the velocity is solely determined by the strength of the electric field at any given time. We

therefore conclude that ferroelectric domain walls do not exhibit significant intrinsic in-

ertial response. Inertial movement found in previous simulations is therefore likely to be

driven by extrinsic effects (e.g., stress).
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Chapter 7

Universal intrinsic mechanism for

ferroelectric switching
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7.1 Introduction

Domain walls in ferroelectrics are homointerfaces separating regions of different polar-

ity [183]. The existence of domain walls in ferroelectric materials can have a profound

influence on the dielectric [184–187], piezoelectric [188, 189], pyroelectric [190, 191], and

electronic properties [5, 192, 193] of ferroelectrics. In particular, domain wall motion is

crucial for the polarization switching as characterized by the hysteresis loop that is the

signature feature of ferroelectric materials [47]. Despite intense studies of domain walls,

achieving controlled material design and device optimization for ferroelectrics remains a

significant challenge. Experimentally, the observed dynamics of switching and domain

walls are usually explained as the behavior of an elastic interface pinned by a random poten-

tial generated by defects[92], which appear to be strongly sample-dependent and affected

by a wide variety of elastic, microstructural and other extrinsic effects [33–46]. Theoreti-

cally, it has been difficult to connect 0 K first-principles-based microscopic quantities (e.g.,

domain wall energy) to finite-temperature macroscopic properties such as the coercive field

that are critical for material design and device performance [84, 85]. This has prevented

the use of computational high-throughput methods and genetic algorithms that have been

successfully applied to the ab initio based design of other types of materials (e.g. heteroge-

neous catalysts, electrochemical battery materials, and semiconducting oxides). Using the

90◦ domain walls in PbTiO3 as an example, we explore the intrinsic ferroelectric response

of domain walls with molecular dynamics (MD) simulations [159] under a wide range of

temperatures and electric fields. With the microscopic insights obtained from MD simu-

lations, we then propose a simple universal nucleation-and-growth-based analytical model

that is able to quantify the dynamics of all types of domain walls in various ferroelectrics

and use it to predict the temperature- and frequency-dependence of hysteresis loops and co-

ercive fields at finite temperature from first-principles. Comparison of the theoretical and
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experimental results shows that even in the absence of defects the intrinsic temperature- and

field-dependence of the wall velocity can be described with a non-linear creep-like region

and a power-law depinning-like region. The estimated theoretical dynamical exponent µ

and the velocity exponent θ agree well with the experimental values [39], highlighting the

intrinsic origin for the domain wall motion in real materials. Similarly, the coercive fields

estimated from our model agree well with experimental results for ceramics and thin films.

This work suggest that despite the complexity of ferroelectric materials, the switching in

ferroelectrics is largely governed by a simple universal mechanism of intrinsic domain wall

motion; this provides an efficient framework for predicting and optimizing material prop-

erties of ferroelectrics.

In ferroelectric materials, domain walls separate regions with different polarization ori-

entations. In response to an external perturbation that favors one polarization state over

another, the domain wall will move to increase the size of the domain favored by the per-

turbation, eventually leading to polarization switching of the whole material. The transla-

tional motion of the 180◦ domain wall has been studied both experimentally [33, 34, 39, 40]

and theoretically [25, 35, 79, 163, 194, 195]. The dynamical behavior of a domain wall is

usually understood as an elastic interface moving in a fluctuating pinning potential created

by defects[92]. Under relatively weak electric fields (E), the propagation of domain walls

at finite temperature (T ) can be described with a creep process [39, 40],

v ∝ exp

[
− U

kBT

(
EC0

E

)µ]
(7.1)

where U is a characteristic energy barrier, kB is Boltzmann’s constant,EC0 is a critical field

at which depinning occurs at 0 K and µ is called dynamical exponent determined by the

nature of defects. The dynamical exponent µ = 1 is usually ascribed to the random field

defects which break the symmetry of the ferroelectric double-well potential [39, 40], while
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µ = 0.5 is an indication of random bond disorder which locally modify the symmetric

ferroelectric double-well potential depth [36, 41, 42]. Another widely used equation that

characterizes switching and domain wall motion takes the form of v = v0 exp(−Ea/E),

where Ea is the temperature-dependent activation field (Merz’s law) [33–35]. Merz’s law

can be viewed as a reformulation of equation (7.1) with µ = 1 and Ea = UEC0/kBT .

When the electric field becomes larger than the crossing field EC0, the wall experiences a

pinning-depinning transition [39] with the velocity becoming temperature-independent and

given by

v ∝ (E − EC0)θ (7.2)

where θ is a velocity exponent that reflects the dimensionality (D) of the wall. A clas-

sical theory based on a nucleation-and-growth mechanism was developed by Miller and

Weinreich [35] to explain the intrinsic origin of Merz’s law and creep behavior. However,

the Miller-Weinreich model assumes an atomically-sharp triangular critical nucleus which

incorrectly leads to implausibly high activation field for nucleation [40, 42]. Multiscale

simulations for 180◦ domain walls in defect-free PbTiO3 revealed a square critical nucleus

with diffusive and beveled interface that significantly reduces the nucleation barrier and

hence leads to much lower activation fields for domain wall motion, suggesting an intrinsic

origin for µ = 1 [25].

Unlike the motion of 180◦ domain walls, switching processes in ceramic, thin film

and single crystal ferroelectrics are much less understood. The presence of a variety of

extrinsic features, the possible role of ferroelastic non-180◦ switching and the long mus-

ms time scales typically studied for switching make it challenging to relate the observed

hysteresis loops to the microscopic properties of ferroelectric materials. Because of the

strong clamping effect of the substrate [32, 196], the intrinsic dynamics of non-180◦ do-
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main walls cannot be studied in high-quality ferroelectric thin films; instead, most recent

experimental and theoretical studies of the non-180◦ domain walls have focused on the

static properties [186, 187, 197]. Here, we use a multiscale approach to computationally

model the switching process. We first obtain the missing quantitative understanding of the

intrinsic dynamics of non-180◦ domain walls and encapsulate it in a simple and general

model for domain wall speed. The model is then used in coarse grained simulations on

long time scale that enable accurate calculation of ferroelectric switching hysteresis loops

and coercive fields.

7.2 Results and discussion

7.2.1 Intrinsic creep-depinning transition

We quantitatively estimate the velocity of 90◦ domain wall in defect-free PbTiO3 over a

wide range of temperatures and electric fields using large-scale MD simulations (see Meth-

ods). Figure 7.1 presents the velocity as a function of applied electric field for various

temperatures, revealing an intrinsic “creep-depinning” transition. In the low-field region

(E < 0.5 MV/cm), the velocity depends on the temperature significantly and has a strong

non-linear dependence on the electric field. In the high-field region (E > 0.5 MV/cm),

the temperature dependence of the domain wall velocity becomes weaker, as seen in the

overlap of the velocity data obtained at different temperatures. For example, the velocity

data obtained at 20 K are nearly indistinguishable from those at 40 K. Plotting ln v vs 1/E

(Fig.2b), we find that ln v has a linear relationship with 1/E in the low-field region. This

confirms that for relatively low electric fields and high temperatures the velocity of the 90◦

domain wall follows Merz’s law, or equivalently, shows µ = 1.0 and a creep-like response

even in the absence of defects. The slope of the line in the ln v versus 1/E plot gives the ac-
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tivation field Ea (UEC0/kBT ). The inset in Fig 7.1b shows the temperature dependence of

Ea above 140 K. The nearly linear relationship between Ea and 1/T shows that UEC0/kB

is temperature independent in the creep-like region with a value of 283 K MV/cm. Fitting

the velocity data at 40 K with equation 7.2, we find that θ = 0.72 and EC0 = 0.48 MV/cm.

The crossing field for the 90◦ domain wall is lower than that for the 180◦ domain wall

(1 MV/cm) in Pb(Zr, Ti)O3 (PZT) thin films [38]; this is expected because ab initio cal-

culations have shown that the 90◦ domain wall in PbTiO3 has lower energy than the 180◦

domain wall in PZT [79, 85]. The values of the dynamical exponents are the same (µ = 1)

for both 90◦ domain wall and 180◦ domain wall [25]. This indicates a universal intrinsic

response for ferroelectric domain walls under a relatively low driving force. The observed

intrinsic “creep-depinning” transition can be explained with an intrinsic nucleation-and-

growth mechanism. The nucleation barrier and the size of critical nucleus decrease for

stronger applied electric fields. At low fields, the large size of the critical nucleus and the

high nucleation barrier relative to thermal fluctuation make nucleation the rate limiting step

and lead to an Arrhenius-dependence of the velocity observed in the creep region. At high

fields, the nucleation barrier is small and the domain wall velocity is growth dominated,

resulting in near-linear dependence on electric fields and weak temperature dependence.
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Figure 7.1: Domain wall velocity from molecular dynamics simulations. a, Temperature
and field dependent domain wall velocity (v) data reveal an intrinsic “creep-depinning”
transition. The wall velocity data at 40 K are in the flow region and are fit to equation 2.
We find θ = 0.72, EC0 = 0.482 MV/cm (boundary of the shadow area). The solid lines are
guidelines for eyes. b, ln v vs 1/E curves. The inset shows the temperature dependence of
the activation field Ea (UEC0/kBT ) in the creep-like region.
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7.2.2 LGD nucleation-and-growth model

We now develop an analytical model for nucleation at a non-180◦ domain wall based on

our results of 90◦ domain wall from MD simulations. As shown in Fig. 7.2a 90◦ domain

wall in x-y coordinates can be viewed as a special 180◦ domain wall in X-Y coordinates:

the polarization component parallel to the domain wall (PY ) is reversed by 180◦ across

the boundary, while the polarization component perpendicular to the domain wall (PX) re-

mains almost unchanged. This is confirmed by the polarization profile obtained from the

MD simulations (bottom of Fig. 7.2a). This transformation allows us to treat all types of

non-180◦ domain walls as a 180◦ domain wall. Detailed examinations of nucleation events

at the domain wall (X = 0) at low temperature (T = 20 K) reveal a diamond-like nucleus

in the Y -Z plane (Fig. 7.2b), with significant diffuseness at the boundary characterized

by a gradual polarization change. With this microscopic picture of nuecleaiton, we use

Landau-Ginzburg-Devonshire (LGD) theory to relate the nucleation energy to the funda-

mental characteristics of the material. The nucleation energy Unuc can be expressed as:

Unuc = ∆UE + ∆Ui (7.3)

where

∆UE = −E
∫ ∞
−∞

dX

∫ ∞
−∞

dY

∫ ∞
−∞

dZ (Pnuc(X, Y, Z)− PDW(X, Y, Z)) (7.4)

∆Ui =

∫ ∞
−∞

dX

∫ ∞
−∞

dY

∫ ∞
−∞

dZ {[Ug(Pnuc) + Uloc(Pnuc)]−

[Ug(PDW) + Uloc(PDW)]} (7.5)
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Here Pnuc(X, Y, Z) and PDW(X, Y, Z) are the polarization profiles of a domain wall with

and without the nucleus, respectively. Uloc is the local energy penalty due to the deviation

of the local polarization from the ground state bulk value (Ps) and is given by Uloc(P ) =

Aloc [1− (P/Ps)
2]

2, where Aloc is the energy difference between the ferroelectric phase

and the paraelectric phase. Ug is the gradient energy due to the polarization changes (∂jPi)

at the domain wall and is given by Ug(Pi) =
∑

j gij (∂jPi)
2, where gij is the coefficient for

the gradient of the i-th component of P along direction j. The value of gij can be derived

from the energy and diffusiveness of the domain wall (see Methods). The contributions

from stress (σ2) and stress-polarization coupling (σP 2) terms can easily be implemented

into equation 3. However, we find that the change of elastic energy (see Supplementary

Information) is not significant and is therefore omitted in following analysis. At the lowest

approximation, the PX and PZ remain unchanged across the domain wall, and therefore,

the nucleation energy only depends on PY . The profile of PY for a domain wall containing

a nucleus of size l1 × l2 × l3 can be described as:

PY =
2Ps√

2
f (X, l1, δ1) f

(
Y + Z,

√
2l2, δ2

)
f
(
Y − Z,

√
2l3, δ3

)
+
Ps√

2
g (X, l1, δ1)

(7.6)

where f(t, l, δ) = 1
2

[
tanh( t+l/2

δ/2
)− tanh( t−l/2

δ/2
)
]
, g(t, l, δ) = tanh

(
t−l/2
δ/2

)
and δi charac-

terizes the diffuseness of the nucleus along direction i. Fig. 7.2c shows the polarization

profile in Y -Z and X-Y planes generated by equation 7.6. Numerically integrating equa-

tion 3 allows the identification of the critical nucleus and the estimation of the nucleation

activation energy (∆Unuc). According to Avrami theory of transformation kinetics, ∆Unuc

can be related to the activation field in Merz’s law as Ea ≈ 1
d+1

∆Unuc

kBT
E, where d is the

dimensionality [25]. Applying this relation with d = 2 and using parameters (Aloc and gij)

obtained from our classical BV potential, we obtain Ea values for a range of temperatures.
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As shown in Fig. 7.2d, the activation fields predicted from the analytical model agree well

with MD results. To apply the model to the other types of non-180◦ domain walls, only

a simple modification of the input parameters is required with the necessary values easily

obtained from first-principles density functional theory (DFT) calculations of the particular

domain wall (see Methods).
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Figure 7.2: Landau-Ginzburg-Devonshire model of nucleation at domain walls. a,
Schematic of mapping a 90◦ domain wall in x-y coordinates to a 180◦ domain wall in
X-Y coordinates. The bottom figure shows the polarization profile of a 90◦ domain wall
in X-Y coordinates. The change of PX across the domain wall is small. b, Simulated
nucleation process at the domain wall in the Y -Z plane. The black arrows scale with the
local dipole magnitudes of each unit cell in Y -Z plane. The background of each arrow is
colored based on the magnitude of Y -component of the local dipole. c, Polarization profile
of a nucleus generated by equation 6. d, Comparison of the activation fields obtained from
MD simulations with the results of the Landau-Ginzburg-Devonshire model. The analyt-
ical model reproduces MD activation fields using BV-potential-based parameters together
with the MD temperature dependence of local polarization.
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7.2.3 Simulating hysteresis loops and coercive fields

The availability of an analytical model that uses DFT inputs enables a rapid estimation of

activation fields without the much more time-consuming MD simulations, which further

enables us to make the connection between the microscopic characteristics calculated by

DFT and the hysteresis loops and coercive fields (Ec) measured experimentally for a vari-

ety of macroscopic material samples. The coercive field reflects the ease of domain reversal

and is one of the most important characteristic parameters of ferroelectrics for practical ap-

plications. For the domain reversal process achieved via domain wall motion, the change of

the polarization under an applied electric field directly correlates with the distance moved

by the domain wall, the velocity of which can be estimated based on Merz’s law (see Meth-

ods). We extract the pre-exponential factor v0 in Merz’s law from MD simulations in the

creep-like region and obtain Ea values for PbTiO3 from the LGD model with parameters

calculated with DFT PBEsol calculations [139]. With these values of v0 and Ea, we then

simulate hysteresis loops at 300 K and obtain the frequency dependence of Ec for varying

domain sizes (Fig. 7.3a). Since the structure and polarization of PZT are similar to those

of PbTiO3, we compare the simulated values of the PbTiO3 Ec to various experimental

values for PZT materials. It is found that our theoretical coercive fields (Fig. 7.3b) using

parameters of 90◦ domain wall motion agree well over a large frequency range with ex-

perimental Ec values (5-20 kV/cm) [88–91]. The Ec values based on 180◦ domain wall

motion are quite large and exhibit the correct frequency dependence, in agreement with

experimental results obtained in thin films [198]. This suggests that the 180◦ switching in

ceramics proceeds via sequential 90◦ domain wall motion [88], due to the much smaller

intrinsic nucleation barrier at the 90◦ domain wall. Thus, the switching and coercive fields

in PZT are largely determined by the intrinsic properties of the appropriate domain wall

motion mechanism. Similar to the PZT results, we find that switching in BaTiO3 ceramics

is governed by the motion of 90◦ domain walls, with the predicted coercive field of around
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0.1 kV/cm at 300 K close to the experimental value for coarse BaTiO3 ceramics [199–201].

Polarization reversal in BiFeO3 is another good test of our model due to the importance

of octahedral rotations and the presence of three types of domain walls in the rhombohe-

drally polarized BiFeO3. Previous DFT calculations revealed that the 71◦ domain wall has

the highest energy, followed by 180◦ domain wall, with the lowest domain wall energy for

the 109◦ domain wall[170, 202, 203]. The higher energy of 71◦ domain wall is attributed

to the mismatch of oxygen octahedra rotation across the domain boundary. We introduce

a second order parameter, oxygen octahedra rotation (θ), into our LGD-based nucleation-

and-growth model (see Methods). Using DFT domain wall energies, our analytical model

predicts the opposite order for the coercive field: Ec is lowest for the 71◦ wall, followed by

the 109◦ and 180◦ domain wall. The predicted coercive fields for 180◦ walls are comparable

with the experimental values in thin films[144, 204]. The ability of our simple analytical

model to estimate the Ec values accurately indicates that the value of the coercive field is

largely determined by the intrinsic properties of the material, with the nucleation barrier on

the domain wall controlling the dynamics of polarization reversal.
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Figure 7.3: Hysteresis loops and coercive fields for several materials simulated using first-
principles data. a, Simulated frequency dependence of coercive fields for various domain
sizes at 300 K. Theoretical values are comparable to various experimental values in ceram-
ics. b, Hysteresis loops of BaTiO3 with a domain size of 10 µm (coarse grain). c, Frequency
and temperature dependent coercive fields for PZT thin films. Experimental data are taken
from Ref. 47. A domain size of 500 nm is used to obtain the theoretical values. d, Coercive
fields for different domain walls in BiFeO3 with a domain size of 500 nm.
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7.3 Conclusions

In summary, we have demonstrated that the motion of ferroelectric domain walls exhibits an

intrinsic creep-depinning transition resulting from the nucleation-and-growth mechanism

at the domain wall and is governed by a universal nucleation mechanism. Comparison of

coercive fields obtained from hysteresis loops due to the intrinsic mechanism shows that

switching in FE films and ceramics is largely controlled by intrinsic characteristics of the

materials. Such a unified framework relates microscopic zero-Kelvin quantities to macro-

scopic material parameters at finite temperature, and thus suggests an appealing avenue for

rational material design.

7.4 Methods

7.4.1 Molecular dynamics simulations of 90◦ domain wall

To understand the intrinsic dynamics of non-180◦ domain walls, we study the motion of

the 90◦ domain wall in defect-free PbTiO3 as an example and then generalize the obtained

results to other types of non-180◦ domain walls. We perform molecular dynamics simu-

lations over a wide range of temperatures and electric fields using a bond-valence-based

classical potential (BV) and extract the velocity data for the 90◦ domain wall [159, 163].

As shown in Fig. 7.4, we use a 40× 40× 40 supercell with polarization direction changing

from [01̄0] to [1̄00] across the boundary. Due to the usage of an orthorhombic supercell,

the domains are homogeneously strained, making the relative angle between the orienta-

tions of the polarization axes of neighboring domains exactly 90◦ rather than 2arctan(a/c)

that is geometrically required for a tetragonal ferroelectric. The electric field is applied

along [100] direction; this will cause the domain wall to move along the [110] direction
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(vDW) due to the 90◦ switching of [1̄00] dipoles to [01̄0] dipoles at the domain boundary

(Fig. 7.4b). The velocity of the domain wall motion can be calculated from the slope of the

time evolution profile of the supercell dimension along [100] direction (Lx) and is given

by vDW = vx
√
a2 + c2/(c − a), where vx = dLx/dt, c is the long-axis lattice constant

and a is the short-axis lattice constant. Owing to the stochastic behavior of nucleation, 20

simulations with slightly different initial structures are carried out for a given temperature

and electric field to obtain the velocity average and standard deviation.

7.4.2 Model parameters for non-180◦ domain walls

The nucleation model discussed here closely follows the methods in Ref. 25. The mapping

scheme discussed in the paper allows the treatment of a non-180◦ domain wall as a gener-

alized 180◦ domain wall lying in the Y -Z plane with polarization changing from +PY to

−PY along X . The following five parameters are required to estimate the nucleation en-

ergy at the domain wall under a given temperature T : Ps(T ), Aloc(T ), g
Y Y

, g
Y X

and gY Z ,

where

PY (T ) = γPs(T ) (7.7)

Aloc(T ) = Aloc(0)
P 4
s (T )

P 4
s (0)

(7.8)

AYloc(0) = γ4Aloc(0) (7.9)

g
Y X
≈ gY Z =

[
3σY XDW

8PY (0)

]2
1

AYloc(0)
= AYloc(0)

[
δX

2PY (0)

]2

(7.10)

g
Y Y

=

[
3σY YDW

8PY (0)

]2
1

AYloc(0)
= AYloc(0)

[
δY

2PY (0)

]2

(7.11)

Here Ps is the total local polarization, γ is the percentage of the polarization variation

across the domain boundary (e.g., γ =
√

2/2 for a 90◦ domain wall), Aloc is the energy
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difference between the ferroelectric phase and the high symmetry paraelectric phase; σY XDW

is the energy of a domain wall with normal along X and neighboring dipoles along X ,

and δX is the diffusiveness parameter across the domain boundary; In analogy, σY YDW is

the energy of a domain wall with normal along Y and neighboring dipoles also along Y

(head-to-head or tail-to-tail domain wall), and δY is associated diffusiveness parameter.

Ps(0) and Aloc(0) are easily assessable to zero-Kelvin DFT calculations. The temperature

dependence of Ps(T ) is taken from experiments when available. The values of g
Y Y

and

gY Z can be determined based on the domain wall energy (σDW, calculated from DFT) or

diffusiveness parameters (δ, calculated from MD). In practice, g
Y Y

and g
Y X

(gY Z) are of the

same order, and therefore g
Y X
≈ g

Y Y
is a useful approximation.

For BaTiO3, DFT calculations using PBEsol with a = 3.986 Å and c/a = 1.1 give

Aloc(0) = 3.48×107 J/m3, σ180DW = 11 mJ/m2, σ90DW = 3.89 mJ/m2, Ps(0) = 0.283 C/m2

and g
Y X

= 0.61 × 10−11 m3F−1. These parameters are used for simulating the hysteresis

loop in Fig. 7.3a. For PbTiO3, we used experimental lattice constants (a = 3.9 Å, c =

4.15 Å) for DFT calculations with PBEsol and obtainAloc(0) = 5.05×108 J/m3, σ180DW =

175 mJ/m2, σ90DW = 67 mJ/m2, g
Y X

= 1.21× 10−11 m3F−1. The temperature dependence

of polarization is taken from Ref with Ps(0) = 0.872C/m2. These parameters are used for

predicting the coercive fields of PbTiO3-based ceramics and thin films in Fig. 7.3(b,c).

7.4.3 LGD model for BiFeO3

71◦, 109◦ and 180◦ domain walls are possible in BiFeO3. The energetics of these three types

of domain walls have been investigated with DFT in several studies[170, 203]. Diéguez et

al. [170] reported σ71DW = 152 mJ/m2, σ109DW = 62 mJ/m2, and σ180DW = 73 mJ/m2 using

LDA. Wang et al. [203] reported σ71DW = 128 mJ/m2, σ109DW = 33 mJ/m2, and σ180DW =

98 mJ/m2 with GGA+U. From equation 10, it is easy to deduct that σY XDW ∝ PY
√
AYlocgY X

.

Assuming the polarization gradient coefficient is isotropic, a non-180◦ domain wall energy
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(σγDW) can be related to the 180◦ domain wall energy with σγDW = γ3σ180DW. Therefore,

for a given ferroelectric, σ71DW : σ90DW : σ109DW : σ180DW = 0.192 : 0.354 : 0.544 : 1.

Such relationship appears to work well for 90◦ and 180◦ domain walls in BaTiO3 and

PbTiO3 [79], and reasonably well for 109◦ and 180◦ domain walls in BiFeO3 [170, 203].

However, the 71◦ domain wall is found to have the highest energy in BiFeO3, which is

attributed to the mismatch of oxygen octahedra rotation across the domain boundary [170,

203]. To capture this feature, we introduce a second order parameter, oxygen octahedra

rotation (θ), into the LDG model of BiFeO3. Therefore, the 71◦ domain wall in BiFeO3 has

following extra energy term

Uθ =
1

2
K

∫ ∞
−∞

dX

∫ ∞
−∞

dY

∫ ∞
−∞

dZ (θDW(X, Y, Z)− θBulk(X, Y, Z)) (7.12)

where K is the harmonic angle constant and θBulk(X, Y, Z) ≈ 8◦ [203]. The value of K is

optimized such that the LGD model reproduces the DFT value of σ71DW. Following term

is added to equation 3 when estimating the nucleation energy,

∆Uθ =
1

2
K

∫ ∞
−∞

dX

∫ ∞
−∞

dY

∫ ∞
−∞

dZ (θnuc(X, Y, Z)− θDW(X, Y, Z)) (7.13)

where an analytical equation similar to equation 6 to describe the angle profile θnuc(X, Y, Z).

Other parameters are Aloc(0) = 5.81×108 J/m3, Ps(0) = 0.987 C/m2, T0 = 1120 K.

7.4.4 Analytical simulation of P -E hysteresis loop

Following the experimental setup in most hysteresis loop measurements, a triangular elec-

tric field, E(t), with frequency f and maximum magnitude E0 is used in the simulation:
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E(t) =


4fE0t 0 < t < 1

4f

−4fE0t+ 2E0
1

4f
< t < 3

4f

4fE0t− 4E0
3

4f
< t < 1

f

(7.14)

At t = 0, the domain of size d is fully poled with saturation polarization−Ps. Assuming the

domain reversal is achieved via domain wall motions, the polarization at t can be calculated

with

P (t) = −Ps +

∫ 1/f

0
v(t)dt

d
Ps, (7.15)

where v(t) is the domain wall velocity at time t and is calculated using Merz’s law, v(t) =

v0 exp(−Ea/E(t)). When the value of P (t) obtained from equation 7.15 is larger than Ps

(the domain is fully reversed), P (t) is set to Ps. Plotting E(t) with respect to P (t) leads

to the hysteresis loop. The coercive field Ec is the magnitude of the electric field when

P (t) = 0. We used v0 = 300 m/s for predicting room-temperature coercive fields based

on results from MD simulations. We find that the coercive field is not sensitive to the value

of v0, as demonstrated by the moderate change of coercive fields in response to orders of

magnitude change in d (which is equivalent to changing v0 for fixed d).
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Figure 7.4: Large-scale molecular dynamics simulations of 90◦ domain wall motions. a,
Schematic diagram of a 40 × 40 × 40 supercell with 90◦ domain walls used in molecular
dynamics simulations. The colors of the domains correspond to the polarization wheel
shown at the bottom. b, Simulated domain evolution under [100]-oriented electric field.
The electric field is turned on at t0. The wall velocity v along [110] is estimated based on
the change of supercell dimension Lx along [100] from t0 to t0 + ∆t. The black arrow
scales with the local dipole of each unit cell. The domain wall motion is achieved via the
90◦ switching of [1̄00] dipoles to [01̄0] dipoles.
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Chapter 8

Ferroelectric polarization reversal via

successive ferroelastic transitions
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8.1 Introduction

Ferroelectric materials are increasingly being considered as critical components in next

generation logic [205], non-volatile memories [4], actuators and sensors [6], and electro-

optic elements for waveguide devices [7]. Such applications require a deep understanding

of the susceptibilities (especially to electric fields) and routes to control and manipulate the

order parameters in these materials. Recent advances in thin-film synthesis have enabled

the manipulation of structure and properties of ferroelectric thin films [69, 206]. For ex-

ample, in the tetragonal ferroelectric PbZr0.2Ti0.8O3 both the domain structure [207, 208]

and properties (i.e., dielectric [186, 188, 209], piezoelectric [188, 210], and pyroelec-

tric [211, 212]) can be dramatically tuned by varying epitaxial strain, film thickness, elec-

trical boundary conditions, and other parameters. To date, the majority of work on such

films has focused on (001)-oriented heterostructures, where the possible domain structures

have been theoretically predicted [212, 213] and observed [212, 214]. How these domain

structures evolve in other film orientations, however, has not been widely probed. Stud-

ies of single-crystal ferroelectrics, however, where it is possible to apply the stimulus field

along different crystallographic directions [187, 215, 216], have demonstrated that a poling

field that is not purely along the bulk polarization direction produces increased domain wall

density and enhanced dielectric [217] and piezoelectric [218] responses. Similar studies on

thin-film samples have not been completed.

Breakthrough applications of these materials require knowledge of both the static struc-

ture and the dynamics of field-dependent responses. Real-time studies of polarization

dynamics including (for example) X-ray scattering, [219–221] piezoresponse force mi-

croscopy (PFM) [74, 75], and transmission electron microscopy [222–224] have shed new

light on switching processes. Despite these advances, it remains difficult to explore some

aspects of switching that take place on very short time scales. Advances in molecular dy-
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namics (MD) simulations now provide an unprecedented look at the dynamics of complex

nanoscale events [23], and interatomic potentials derived from ab initio calculations can

be applied to study finite-temperature properties in a variety of environments [13, 27, 143,

159, 225]. These studies provide insight into the coupling of polarization, strain, electric

field, stress, temperature, and local structure; however, there are still very few MD sim-

ulations of domain wall motion and growth rates [25], and the dynamics of 90◦ domain

walls has not been investigated previously. In this work, we develop a comprehensive

picture of the interrelationships between thin-film epitaxy, nanoscale domain structures,

and electric field switching in PbZr0.2Ti0.8O3. Clear differences are demonstrated between

(001)-/(101)- and (111)-oriented films with the latter exhibiting complex, nanotwinned fer-

roelectric domain structures with high densities of 90◦ domain walls, considerably broad-

ened ferroelectric switching characteristics, and lower threshold fields for the onset of non-

linearity in Rayleigh studies. MD simulations reveal the presence of both 180◦ switching

and multi-step 90◦ switching domain reversal processes. Subsequent stroboscopic PFM

studies confirm the presence of intermediate, 90◦ switching events in (111)-oriented films

and 180◦ switching events in (001)- and (101)-oriented films. The varying effects of do-

main sizes (or volume fractions) and electric field on the different film orientations give rise

to the difference in switching mechanism. These results have implications for our funda-

mental understanding of ferroelectric switching and provide avenues to accelerate domain

reversal in these materials for next-generation applications.
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8.2 Results and discussion

8.2.1 Characterization of differently oriented heterostructures

We focus on 150 nm PbZr0.2Ti0.8O3/10 nm SrRuO3 or La0.7Sr0.3MnO3/SrTiO3(001), (110),

and (111) heterostructures grown via pulsed-laser deposition (see Methods section for de-

tails). X-ray diffraction studies show that the films are epitaxial and single-phase. The

ferroelectric domain structure was probed using PFM. Throughout the remainder of the

discussion, we will use the following terminology to describe the polarization variants in

the samples: for tetragonal PbZr0.2Ti0.8O3, domains with polarization along the positive

and negative [100], [010], and [001] axes will be referred to as P+/−
1 ,P+/−

2 , and P+/−
3 , re-

spectively. In (001)-oriented heterostructures, a typical polydomain structure with majority

P−3 domains and minority P+
1 and P−2 domains is observed (Fig. 8.1a,b). In (101)-oriented

heterostructures, three different domain types are found (Fig. 8.1c,d), with majority P+
3

domains (in which the polarization is oriented at an angle of ≈43.6◦ from the plane of the

film) and the remainder primarily composed of in-plane polarized stripe-like P+
2 and P−2

domains and small fractions of P−1 domains (also oriented ≈43.6◦ from the plane of the

film). The as-grown domain structure of the (001)- and (101)-oriented films, as probed by

PFM studies which enable exact determination of the polarization directions, represents the

equilibrium domain structure predicted for these film orientations [226, 227], and does not

change with electric field cycling.

Analysis of the (111)-oriented heterostructures reveals a dramatically different picture.

The as-grown domain structure has a complex, metastable nanoscale domain pattern. A do-

main structure consistent with that predicted to the equilibrium domain structure is obtained

after a series of ±6 V d.c. voltages were applied to the PFM tip to switch a 1.5 µm × 1.5

µm region of the film a total of 2-6 times. The domain pattern consists of a high density of

nanotwinned domains (Fig. 8.1e). The observed domain structure is the result of the tiling
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of three types of domain bands, separated by 120◦ (noted as areas 1, 2, and 3, Fig. 8.1e) with

average domain band widths of ≈300 nm. Within each domain band, the domain structure

consists of a mixture of all three degenerate polarization variants (P−1 ,P−2 ,and P−3 , each

possessing a polarization direction that is oriented at an angle of ≈33.9◦ form the plane of

the film) distributed into two sub-bands, with each sub-band composed of only two of the

polarization variants. The average domain size within the domain sub-bands is ≈40 nm.

The geometry of such domain structures is shown in a schematic illustration (Fig. 8.1f).

Prior theoretical treatments predicted such equilibrium domain structures [228].

Having established the difference in domain structures for the various heterostructure

orientations, we probed their dielectric and ferroelectric properties using symmetric metal-

oxide capacitor structures [229] and MD simulations (see Methods section for details). All

heterostructures, regardless of orientation, were found to exhibit symmetric, well-saturated

polarization-electric field hysteresis loops (Fig. 8.2a) that are maintained down to at least

1 Hz. As expected, the saturation polarization scales with the film orientation, with (001)-

and (111)-oriented films having the largest and smallest values, respectively. In addi-

tion, although all films possess high remnant polarization, the (001)- and (101)-oriented

films show nearly square hysteresis loops with sharp electric field switching, while (111)-

oriented films exhibit more slanted hysteresis loops regardless of frequency, indicative of

switching at a broader range of fields.

The dielectric permittivity was then measured as a function of increasing ac electric

field excitation. Since we are focused here on switching behavior, we have extended this

analysis to larger fields than are typically applied in Rayleigh studies [230]. These stud-

ies reveal that (111)-oriented heterostructures exhibit a lower threshold field (8.2 kV/cm)

for the onset of non-linearity (or polarization switching) as compared to (001)- and (101)-

oriented films (46.3 kV/cm and 22.5 kV/cm, respectively) (Fig. 8.2b). Additionally, the

field dependence of the dielectric response of the (111)-oriented film shows a gradual in-
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crease (and, therefore, ferroelectric switching) over a much larger range of fields, relative to

the (001)- and (101)-oriented films, consistent with the polarization-electric field hysteresis

loops (Fig. 8.2a).

8.2.2 Molecular dynamics simulations of domain switching

To understand what gives rise to these different electric field responses, we used MD sim-

ulations to examine the evolution of domain switching under differently oriented electric

fields. We studied the evolution of domain structures resembling those experimentally ob-

served in (001)-, (101)- and (111)-oriented films possessing 90◦ domain walls under electric

fields applied along the film normal directions [001̄], [1̄01̄] (Fig. 8.3a), and [1̄1̄1̄] (Fig. 8.3b),

respectively. The volume fraction of the minority domain used in the simulations is based

on experimental observations. The MD simulations provide a time-resolved view of the

evolution of the domain structure including specific polarization variants.

For brevity, we discuss here only the detailed MD studies of (101)-oriented films, but

detailed studies of (001)-oriented films, which show similar results, are also provided. In

the case of (101)-oriented films, in the initial state (0.0 ps) we simulate a domain config-

uration with 20% minority P+
2 domains (green, Fig. 8.3a) and 80% majority P+

1 domains

(red, Fig. 8.3a) with the electric field applied along the [1̄01̄] (yellow arrow, Fig. 8.3a).

This results in a series of complicated changes (Fig. 8.3a). At 3 ps, we observe that the

volume fraction of P+
2 domains increases as they widen via changes of the type P+

1 → P+
2

at the domain boundary due to the [1̄1]-component of the electric field. In addition, a sig-

nificant number of P+
1 dipoles close to domain boundaries are switched by 180◦ to P−1

dipoles (cyan). Further application of electric field facilitates the growth of the P−1 do-

mains via the 180◦ switching process of P+
1 → P−1 (see 5 and 7 ps images, Fig. 8.3a). At

10 ps, the whole supercell reaches a nearly single-domain state. Subsequent relaxation of

the structure (after the field is turned off) for another 30 ps results in the reemergence of
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domain structures similar to that in the initial state (albeit poled in the opposite direction)

due to strain accommodation. The lateral shift of the domain boundary is likely due to the

application of large electric field to achieve picosecond switching in MD simulations.

In the case of (111)-oriented films, in the initial state (0.0 ps) we simulate a domain con-

figuration with 50% P+
1 domains (red, Fig. 8.3b) and 50% P+

2 domains (green, Fig. 8.3b)

with the electric field applied along the [1̄1̄1̄] (yellow arrow, Fig. 8.3b). This process results

in a fundamentally different domain switching evolution (Fig. 8.3b). First, we observe

that there is no significant domain wall motion. Although decidedly different from the

behavior in (101)-oriented films, this is expected since all polarization directions are en-

ergetically equivalent with respect to the applied field. Additionally, at 5 ps, we see new

domains perpendicular to their parent domains appear via two types of 90◦ switching pro-

cesses: P+
1 → P−2 and P+

2 → P−1 , respectively. By 8 ps, the new domains spread quickly

across their parent domains and dipole frustration at domain boundaries, leading to tran-

sient charged domain walls, is also observed. [231] This switching process continues, until

the final configuration of P−1 and P−2 domains is achieved by 10 ps. The strain-driven struc-

tural relaxation for another 10 ps in the absence of electric field leads to a slight change in

the positions of domain walls, but overall the reemergence of domain structures similar to

that in the initial state (albeit poled in the opposite direction). What these MD simulations

reveal, is that if one only considers the starting and final states, the domain structures could

potentially lead one to assume only 180◦ switching has taken place on the macroscale.

These time-dependent models, however, reveal a more nuanced evolution with clear differ-

ences between (001)-/(101)- and (111)-oriented films with the latter revealing a multi-step,

90◦ switching domain reversal process.
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8.2.3 PFM switching in differently oriented films

To further explore these proposed switching pathways and their implications for mate-

rial properties, we completed local-scale PFM switching studies where a time series of

images was produced while incrementally increasing the applied tip bias. Focusing first

on switching in the (001)- and (101)-oriented films, similarly abrupt switching processes

occurring in a narrow field range have been observed, consistent with the macroscale prop-

erty studies. For brevity, we discuss here only the detailed switching studies of (101)-

oriented films (Fig. 8.4), but detailed studies of (001)-oriented films are provided. The

(101)-oriented films show no obvious contrast change in either the lateral or vertical PFM

images (Fig. 8.4a, b) when applying biases from 0-3.0 V to locally switch a 1 µm × 1

µm square region in the center of the scanned area. A schematic of this domain structure

before switching is provided (Fig. 8.4c). Upon increasing the applied tip bias further, to 3.5

V, domains in the film start to switch, resulting in a contrast change in both the lateral and

vertical PFM images (Fig. 8.4d). Further increasing the bias to 4.0 V results in complete

switching of the central square region (Fig. 8.4e). Based on the PFM images, the final

switched domain structure is interpreted such that both domains initially possessing po-

larization P+
3 (orange regions, Fig. 8.4c) and in-plane oriented stripe domains P−2 and P+

2

(black and grey regions, Fig. 8.4c) are switched by 180◦ (Fig. 8.4f). These observations are

consistent with the abrupt switching that occurs in a narrow field range in the polarization

hysteresis loops and with the abrupt increase of dielectric response in the Rayleigh anal-

ysis. These results indicate that 180◦ switching reversal occurs in (101)-oriented films, in

agreement with MD prediction.

Similar studies of (111)-oriented films, however, reveal decidedly different responses

with a complex evolution of domain structures involving four characteristic steps in the

switching (Fig. 8.5a-d). Detailed static domain structure characterization of the (111)-

oriented films has been discussed above, and here we focus on an area possessing fully
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down-poled nanotwinned domain bands of a single type for simplicity (Fig. 8.5a). When

applying a tip bias of –2.5 V to locally switch a 1 µm × 1 µm square region, only a small

fraction of the domains switch (inset, Fig. 8.5b). Examination of the lateral PFM contrast

reveals that the orientation of the long axes of the domains that were switched rotates by

90◦ in-the-plane of the film, resulting in a new domain configuration with a characteristic

angle of 60◦ between the domain sub-bands (Fig. 8.5b). Upon further increasing the bias to

3.5 V, the majority of the square region subjected to the bias has been switched in the out-

of-plane direction (inset, Fig. 8.5c) with the contrast changing accordingly in the lateral

PFM images to reveal a characteristic angle of 60◦ between all domain sub-bands in the

switched region (Fig. 8.5c). The domain structure does not exhibit further evolution until

the applied tip bias exceeds –6 V. At this point, all domains in the square region subjected

to the bias have been fully up-poled (inset, Fig. 8.5d). The nanotwinned domain pattern is

observed to return to the initial orientation and reestablishes the characteristic angle of 120◦

between the long axes of the domains (Fig. 8.5d). Although a similar nanotwinned domain

structure has been achieved, the in-plane contrast in the nanotwinned array has changed as

compared to the initial state (i.e., sub-bands with dark PFM contrast become light and vice

versa, Fig. 8.5d) suggesting that full switching is accompanied by an orientation change of

the in-plane component of polarization.

This multi-step switching process is intriguing, and here we systematically analyze it.

We provide schematic illustrations of the geometry of the sample including the crystallo-

graphic axes (Fig. 8.5e), the six possible polarization variants (Fig. 8.5f), and the twelve

possible (six distinct) 90◦ domain boundaries (i.e., those between P+
1 –P+

2 (P−1 –P−2 ), P+
1 –

P+
3 (P−1 –P−3 ), P+

2 –P+
3 (P−2 –P−3 ), P+

1 –P−2 (P−1 –P+
2 ), P+

1 –P−3 (P−1 –P+
3 ), P+

2 –P−3 (P−2 –

P+
3 ); each given a unique color in the figure) (Fig. 8.5g) projected on the (111) of the PFM

image. Additional details about the geometry of the domain boundaries are provided. To

aid the discussion, we provide schematic illustrations of the domain structures (Fig. 8.5h-o)
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in each distinct domain sub-band type for the four PFM images (Fig. 8.5a-d). Three dif-

ferent colors (orange, blue, and grey) are used to represent the three different polarization

variants with solid and dashed lines corresponding to down- and up-poled versions, respec-

tively. In the initial state (Fig. 8.5a), all domains are down-poled, and the dark (Fig. 8.5h)

and light (Fig. 8.5i) domain sub-bands consist of alternating P−1 /P−2 and P−1 /P−3 domains,

respectively. Upon application of the –2.5 V applied bias (Fig. 8.5b), the orientation of the

domain boundaries in both the dark (Fig. 8.5j) and light (Fig. 8.5k) domain sub-bands are

found to rotate by 90◦ in-the-plane of the film. Such a change in the domain boundary ori-

entation can only be achieved by a complex switching process which includes three differ-

ent switching events including 90◦ switching that maintains the vertical component of the

polarization (P−1 → P−2 , area 1, Fig. 8.5j), 180◦ switching (P−1 → P+
1 , area 2, Fig. 8.5j),

and 90◦ switching that changes the vertical component of the polarization (P−2 → P+
1 , area

3, Fig. 8.5j) as well as regions that experience no switching (P−2 → P−2 , area 4, Fig. 8.5j).

Similar complex switching occurs in the light domain sub-bands as well (Fig. 8.5k). Upon

further increasing the bias to 3.5 V (Fig. 8.5c), the orientation of the domain boundaries

remains the same, but all domains are now up-poled (Fig. 8.5l,m) with a change of the in-

plane contrast from light to dark (and vice versa) for the different domain sub-band types.

This switching process includes 90◦ switching that maintains the vertical component of

the polarization (P+
1 → P+

2 , Fig. 8.5l) and 90◦ switching that changes it (P−2 → P+
1 ,

Fig. 8.5l). Similar 90◦ switching events occur in the other domain sub-bands (Fig. 8.5m).

Based on the PFM analysis, this up-poled domain structure should likely possess charged

domain walls; however, it is not changed until the applied bias is further increased to –6

V (Fig. 8.5d). At this point, the domain boundaries are again rotated in-the-plane of the

film by 90◦ and the domain structure is returned to a configuration consistent with the ini-

tial state (Fig. 8.5n,o), but with a change of the in-plane contrast in the PFM from light to

dark (and vice versa) for the different domain sub-band types. Again, the domain walls
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in the final state are uncharged. This process is again accomplished by two types of 90◦

switching events that maintain the vertical component of the polarization (P+
1 → P+

2 and

P+
2 → P+

1 , Fig. 8.5n). Similar 90◦ switching events are observed for both domain sub-band

types (Fig. 8.5o). In the end, regardless of how the switching is probed and acknowledging

potential differences in the fine-scale nature of excitation and final domain structure pro-

duced by the different methodologies, the mechanisms underlying the switching events are

innate to the materials. Thus the combination of macroscopic capacitor, scanning-probe,

and MD studies provides a detailed, multiple length- and time-scale look at the switching

in these materials. From these studies, we observe that (001)-/(101)-oriented films switch

via 180◦ switching processes while (111)-oriented films undergo domain reorientation via

90◦ switching mediated processes.

8.2.4 Origin of successive ferroelastic switching

Although the nucleation and growth process for 180◦ switching events is fairly well under-

stood, little evidence for 90◦ switching mediated domain reversal has been presented. It has

been suggested that broadened (or double) current peaks during reverse switching of pre-

viously poled PbZr0.415Ti0.585O3 ceramics could be the result of non-180◦ domain switch-

ing as a result of the residual stresses developed during forward poling [232] and that in

single-crystals of [111]-oriented 95.5% PbZn1/3Nb2/3O3–4.5% PbTiO3, polarization rever-

sal through intermediate polarization rotations of 71◦ and 109◦ can occur. citeYin01p4556,

Daniels07p104108 Despite these observations, the mechanisms underlying such behavior

are not entirely clear [32] and no direct measurements and examples of 90◦ switching me-

diated domain reversal have been reported in the literature. This is particularly the case for

thin films where there are no reports in this regard. In thin films, the 90◦ domain switch-

ing process, due to the elastic clamping of the substrate, is thought to be so energetically

costly that it does not typically occur. Enhanced 90◦ domain switching can be realized
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in thin films if the effect of clamping can be compensated by engineering specific film or

domain structures such as in patterned ferroelectric layers [233] or through a layered struc-

ture where the top layer is anchored on an underneath layer of a secondary ferroelectric

phase [234]. Here we have achieved the 90◦ switching mediated domain reversal process

in thin films by utilizing (111)-oriented domain structures where the energetics are such

that it permits these events to take place.

The preference for a 90◦ or 180◦ switching process in different films is ultimately con-

trolled by the clamping of the ferroelectric film (and the resulting domain size). In both

(001)-/(101)-oriented heterostructures, the elastic constraints from the substrate lead to dra-

matic differences in the fraction of in-plane and out-of-plane polarized domains (in partic-

ular, minimizing the fraction of in-plane polarized domains). Although 90◦ domain walls

have lower domain wall energy than 180◦ domain walls [79], the 90◦ ferroelastic switching

in thin films is generally unfavorable as compared to the 180◦ ferroelectric switching (as we

observed for (001)-/(101)-oriented films in our simulations) under moderate electric fields

because of the large energy penalty associated with the change of volume fractions of in-

plane and out-of-plane polarized domains that must occur to accommodate such switching

events [196]. Said another way, the free-energy change (∆f ) for a ferroelastic 90◦ switch-

ing event is dominated by the contributions from the stress (σ2) and the stress-polarization

coupling (σP 2) terms. These energy terms are high in the (001)-/(101)-oriented films due

to the elastic constraints of the substrate and the drastically different stress states for an

in-plane or out-of-plane polarized domain. On the other hand, the (111)-oriented films

possess three energetically-degenerate polarization variants (in a fully-poled state) all pos-

sessing in-plane and out-of-plane polarization components that are the same and, in effect,

renders the elastic energy costs associated with a ferroelastic 90◦ switching event greatly

reduced. Additionally, our MD simulations reveal that coordinated 90◦ switching events

(i.e., P+
1 → P−2 and P+

2 → P−1 ) occur in essentially equal proportions across the entire
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domain width to accommodate (and maintain) both the elastic and electrostatic energy state

of the system. As a result, the coordinated, multi-step 90◦ switching process will not incur

a large elastic energy cost in agreement with the arguments above. Ultimately the prefer-

ence of the 90◦ switching over the 180◦ switching in the (111)-oriented films is due to the

lower kinetic barrier for 90◦ polarization rotation indicated by the lower energy of the 90◦

domain wall compared to that of the 180◦ domain wall.

The observation of such 90◦ switching mediated domain reversal, in turn, has important

implications for our overall understanding of ferroelectric materials and their utilization in

devices. First, the presence of active intermediate switching states can be correlated to the

differences observed in the dielectric and ferroelectric response of the various orientations

of films. Although all films possess high remnant polarization, the (001)-/(101)-oriented

films show nearly square hysteresis loops with sharp electric field switching (consistent

with 180◦ switching events), while (111)-oriented films exhibit more slanted hysteresis

loops with larger coercive fields, indicative of switching at a broader range of fields and

a multi-step switching process. Furthermore, it is likely that the availability of low-field

intermediate switching can account for the observation of lower threshold fields for the

nucleation of switching events in the Rayleigh studies of the (111)-oriented films. The do-

main reversal process is significantly impacted by changing the orientation of the epitaxial

film and by allowing all possible switching types to be active in the material. Ultimately, if

we can create pathways similar to those demonstrated in the stroboscopic PFM studies by

which to deterministically stabilize or incrementally step the switched polarization from

one state, through a number of intermediate states, before reaching the oppositely poled

state, the possibility for creating new modalities of low-power, multi-state memory or logic

are possible. At the same time, if we can determine ways to promote the 90◦ switching

mediated domain reversal process, this could further accelerate the domain reversal and

reduce the timescale of ferroelectrics thereby increasing their potential for use in advanced
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nanoelectronics.

8.2.5 Conclusion

In conclusion, we have observed both 180◦ and multi-step 90◦ switching domain reversal

processes in PbZr0.2Ti0.8O3 thin films. Using a combination of epitaxial thin-film growth,

macro- and nano-scale characterization, and MD simulations, we have been able to ma-

nipulate the domain structure through the control of film orientations and explore the cou-

pling between the domain structures and properties. Specifically, stark differences between

(001)-/(101)- and (111)-oriented films were observed, with the latter exhibiting complex,

nanotwinned ferroelectric domain structures with high densities of 90◦ domain walls, con-

siderably broadened ferroelectric switching characteristics, and lower threshold fields for

the onset of non-linearity during Rayleigh studies. Subsequent MD simulations and PFM

studies reveal both types of switching mechanisms are possible, but that the switching pro-

cess that ultimately occurs is determined by a combination of factors including domain

wall energy, elastic strain, and domain size. These observations provide insight into a pre-

viously unexplored aspect of ferroelectric switching and highlight the complexity of these

materials. Such studies are crucial for developing precise control of nanoscale ferroelectric

materials and can potentially lead to interesting multi-state devices and accelerated switch-

ing in ferroelectrics.

8.3 Methods

8.3.1 Epitaxial thin film growth

The growth of the PbZr0.2Ti0.8O3 was carried out at an oxygen pressure of 200 mtorr at

635◦C with a laser fluence of 0.9-1.0 J/cm2 and a laser repetition rate of 3 Hz. The growth
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of SrRuO3 and La0.7Sr0.3MnO3 were accomplished at oxygen pressures of 100 mtorr and

200 mtorr, respectively, at 645◦C with laser repetition rates of 12 Hz and 3 Hz, respectively.

After the growth, the samples were cooled at 5◦C/min. in an oxygen pressure of 760 mtorr.

We note that the crystal and domain structure and properties of PbZr0.2Ti0.8O3 films grown

on either SrRuO3 or La0.7Sr0.3MnO3 bottom electrodes are essentially the same and thus

the data from heterostructures with both electrode layers are used interchangeably.

8.3.2 Crystal and domain structure characterization

X-ray θ − 2θ scans were obtained by high-resolution x-ray diffraction (XPert MRD Pro

equipped with a PIXcel detector, Panalytical). The piezoresponse force microscopy stud-

ies were carried out on a Cypher (Asylum Research) AFM using Ir/Pt-coated conductive

tips (Nanosensor, PPP-NCLPt, force constant ≈48 N/m). The detailed polarization maps

were generated under the single frequency vector PFM mode which enables the simul-

taneous imaging of the phase (θ) and amplitude (A) from both the lateral and vertical

piezoresponse signal. To elucidate the PFM contrast, the PFM signals were processed

in the form of a combination (A cos θ) of phase and amplitude. Electrical Measurements.

All the electrical measurements were performed on capacitor structures of PbZr0.2Ti0.8O3

films with symmetric electrodes of SrRuO3 or La0.7Sr0.3MnO3. The patterned circular top

electrodes were fabricated by an MgO hard mask technique40 and the measurement was

conducted on capacitors with the top electrode diameter ranging from 25 µm to 200 µm.

The polarization-electric field hysteresis loops were measured using a Precision Multifer-

roic Tester (Radiant Technologies, Inc.). The room temperature permittivity was measured

using an E4980A LCR meter (Agilent Technologies). All samples were pre-poled prior to

the dielectric measurement. During the measurement, the bottom electrode was driven by

an increasing AC electric field at 1 kHz.

154



8.3.3 Molecular dynamics simulations

Domain reversal in PbTiO3 under applied electric fields was modeled with molecular dy-

namics. We use a bulk, stoichiometric PbTiO3 supercell. We carry out molecular dynam-

ics simulations under periodic boundary conditions with fixed dimensions. The supercell

lengths and angles are slightly adjusted based on the volume fraction (γ) of the minority

domain (green domains shown in Fig. 8.3) to simulate the mechanical clamping effect con-

sistent with the epitaxial thin film in experiments. Although a thin film clamped in the

two in-plane directions in principle can be modeled with a slab geometry, applying such

a model with mixed elastic boundary conditions is technically difficult in MD simulations

and will also complicate the understanding of the switching mechanism after introducing

surface and size (thickness) effects. Our bulk model corresponds to a sample clamped

in all three Cartesian directions. This was done by design to enable us to focus on the

intrinsic response of the material, allowing us to separate the switching behavior due to

domain structure and strain as opposed to that influence by the surface and other extrinsic

effects. The simulations are performed with a bond-valence based interatomic potential

with a timestep of 1.0 fs at 200 K. The domain structure is modeled with a 120a1 × 120a2

× 4a3 supercell, where a1, a2, and a3 are the averaged lattice constants. The electric field

is applied for 10 ps along [1̄01̄] to the supercell with γ= 0.2 and along [1̄1̄1̄] to the supercell

with γ = 0.5, to resemble the actual field orientations experienced by the (101) and (111)

thin films of similar volume fractions in experiments. After the field removal, we allow

the system to evolve freely with supercell dimensions conserved. Since the structure and

polarization of PbZr0.2Ti0.8O3 are similar to those of PbTiO3, we expect that the domain

switching mechanisms modeled with PbTiO3 are applicable to PbZr0.2Ti0.8O3.
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Figure 8.1: Piezoresponse force microscopy studies of PbZr0.2Ti0.8O3 films. Lateral
(A cos θ, combining phase θ and amplitude A) and vertical (A cos θ, inset) piezoresponse
force microscopy images and schematic illustrations of the domain structures are provided
for (001)-oriented heterostructures with majority P−3 (orange) and minority P+

1 and P−2
domains (yellow) (a,b); (101)-oriented heterostructures with majority P+

3 (with polariza-
tion oriented at ≈ 43.6◦ from the plane-of-the-film, orange) and minority, stripe-like P+

2

and P−2 domains (in-plane polarized, purple) and small fractions of P−1 domains (with
polarization oriented at ≈ 43.6◦ from the plane-of-the-film, black) (c,d); (111)-oriented
heterostructures with complex nanotwinned domain structures wherein there are three de-
generate polarization variants P−1 ,P−2 ,and P−3 oriented at an angle of≈ 33.9◦ from the plane
of the film (represented by yellow, blue, and grey, respectively) which are tiled to produce
three degenerate domain bands separated by 120◦ as labeled in the squares 1, 2, and 3 (e,f).
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Figure 8.2: Electrical characterization of PbZr0.2Ti0.8O3 films. (a) Polarization–electric
field hysteresis loops measured at 1 kHz and (b) permittivity as a function of ac electric
field measured at 1 kHz for (001)-, (101)-, and (111)-oriented PbZr0.2Ti0.8O3 thin films.
The arrows demarcate the location of the onset of non-linearity from the Rayleigh studies.
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Figure 8.3: MD simulations of switching in ferroelectrics with 90◦ domain walls. For
all simulations, the electric field is turned-on at 0.0 ps and off at 10 ps and allowed to
relax at zero applied field from that point. (a) Domain evolution in (101)-oriented films
possessing 20 volume % of minority P+

2 domains (green) and 80 volume % of majority P+
1

domains (red) under applied field along the [1̄01̄] (yellow arrow). Direct 180◦ polarization
reversal is observed (P+

2 → P−2 and P+
1 → P−1 ). (b) Domain evolution in (111)-oriented

films possessing 50 volume % P+
2 domains (green) and 50 volume % of P+

1 domains (red)
under applied field along the [1̄1̄1̄] (yellow arrow). Only 90◦ polarization switching events
(P+

2 → P−1 and P+
1 → P−2 ) are observed. The local polarization within each unit cell is

represented by an arrow colored according to the polarization wheel.
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Figure 8.4: PFM switching studies of PbZr0.2Ti0.8O3. Lateral (A cos θ, combining phase
θ and amplitude A) and vertical (phase θ, inset) PFM images of field-dependent domain
structure evolution in (101)-oriented PbZr0.2Ti0.8O3 in the (a) as-grown state and (b) after
applying a tip bias of 3.0 V in the central square region. (c) Schematic illustration of the
observed, unswitched domain structure with the majority P+

3 (orange domains, oriented at
an angle of 43.6◦ from the plane of the film) and the stripe-like P−2 (black domains) and
P+

2 (white domains) domains (in-plane polarized). Upon increasing the applied tip bias
to (d) 3.5 V and (e) 4.0 V, abrupt switching is observed. (f) Schematic illustration of the
switched domain structure in (d) and (e) with the majority P−3 (orange domains), P−2 (black
domains), and P+

2 (white domains) after the 180◦ switching.
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Figure 8.5: PFM switching studies of PbZr0.2Ti0.8O3 (111) thin films. Lateral (A cos θ,
combining phase θ and amplitude A) and vertical (phase θ, inset) PFM images of domain
structure evolution in (111)-oriented PbZr0.2Ti0.8O3 in the (a) initial down-poled state, af-
ter applying a tip bias of (b) -2.5 V (partial switching), (c) -3.5 V (complete out-of-plane,
incomplete in-plane switching), and (d) -6.0 V (complete out-of-plane and in-plane switch-
ing). Schematic illustrations of the (e) projection of the crystallographic axes, (f) six pos-
sible polarization variants (solid and dashed pointing out and into the film plane, respec-
tively), and (g) six possible distinct 90◦ domain boundaries (each given a unique color that
is carried throughout the remaining panels). Additional illustrations of the switching pro-
cess for dark and light domain bands, respectively, for the (h), (i) initial state, (j), (k) a
majority down-poled intermediate state, (l), (m) an up-poled intermediate, and (n), (o) the
final state.
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Chapter 9

Ferroelectric domain wall induced

band-gap reduction and charge

separation in organometal halide

perovskites
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9.1 Introduction

The studies of organometal halide perovskites date back over a century [235, 236]. Their

applications in photovoltaic devices have seen amazing improvements in past five years. In

2006, the device based on methyl ammonium lead tribromide, CH3NH3PbBr3, had a power

conversion efficiency of 2.2% [48]. The methyl ammonium lead triiodide (CH3NH3PbI3)

was later introduced as a light sensitizer in dye-sensitized solar cells by Kojima and co-

workers in 2009, leading to an efficiency of 3.8% [49]. Since then, the power conver-

sion efficiency of photovoltaic devices based on organometal halide perovskites has in-

creased rapidly to nearly 20% [50, 51]. The high efficiency of CH3NH3PbI3 [52] and

its chlorine-doped derivative CH3NH3PbI3−xClx [53, 54] is the result of their near opti-

mal direct band gap (≈1.55 eV) [49, 237], high optical absorption [238, 239], high car-

rier mobility [53, 240–244], and long carrier diffusion length [245]. Some organometal

halide perovskites also exhibit room-temperature ferroelectricity [246]. First-principles

density functional theory (DFT) calculations show a strong bulk polarization (0.38 C/m2)

in CH3NH3PbI3 [247]. Recent DFT calculations demonstrate that the orientational or-

der of the methylammonium (MA) cations will influence the magnitude of bulk polariza-

tion [248, 249]. It is suggested that the spontaneous polarization within these materials

may enhance the charge separation and help achieve above-band-gap open circuit volt-

ages [192, 247, 250].

Ferroelectric materials usually possess complex domain structures, with domain walls

separating regions of homogeneously polarized domains. The domain wall is considered

as a 2D topological defect and has been widely studied in inorganic ferroelectrics [25,

39, 163, 174, 183, 251, 252]. It has been demonstrated that domain walls can exhibit

distinct electronic properties that are different from bulk materials [5, 253]. The presence

of switchable ferroelectric domains in β-CH3NH3PbI3 has been confirmed recently via
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piezoresponse force microscopy [246]. However, the local structure and the electronic

properties of domain walls in organometal halide perovskites remain unknown. In this

letter, we explore the energies and electronic structures of 180◦ and 90◦ domain walls in

MAPbX3(MA=CH3NH3,X=Cl, Br, I) via DFT. Both types of domain walls can be charged

or uncharged, depending on the orientational order of the organic molecules around the

domain boundaries. We find that a domain structure with charged walls will have a lower

band gap than that of a single domain. On the contrary, the presence of uncharged walls

has little impact on the band gap. Our calculations demonstrate the importance of these

2D topological defects and suggest a potential avenue to tune the band gap via domain

engineering.

9.2 Results and discussion

9.2.1 180◦ domain wall in organometal halide perovskites

For our calculations, we have used the plane-wave density functional theory package QUAN

TUM–ESPRESSO [160] with Perdew-Burke-Ernzerhof (PBE) [106] density functional

and norm conserving pseudopotentials generated from the OPIUM package [112, 115].

According to previous computational studies, a plane-wave cutoff energy of 50 Ry is suf-

ficient to obtain well-converged results [249]. We first optimize the geometry of the or-

thorhombic 12-atom unit cell of MAPbX3(X=Cl, Br, I). Figure 9.1 shows the optimized

orthorhombic unit cells for MAPbX3. Using Berry phase calculations, we find that the

polarization, aligning with the molecular dipoles, is mostly along the x axis (Px) with a

value of 0.13 C/m2 for MAPbCl3, 0.12 C/m2 for MAPbBr3, and 0.12 C/m2 for MAPbI3.

The hydrogen bond between the -NH3 group and the halogen atom is critical for the bulk

polarization. Additionally, as the dipoles of the MA cations are not perfectly aligned along
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the x axis, the unit cell has a small component of polarization (≈0.04 C/m2) along the z

direction (Pz) shown in Fig. 9.1. For the simulation of the 180◦ domain wall, we use a

supercell consisting of 1× 1× 6 orthorhombic unit cells stacked along the z direction. The

uncharged domain wall (UCDW) is constructed by rotating the orientations of MA cations

in the right three cells such that the polarization changes from (Px, 0, Pz) to (-Px, 0, Pz)

across the wall. On the other hand, the charged domain wall (CDW) has the polarization

change from (Px, 0, Pz) to (-Px, 0, -Pz) across the domain boundary, with Pz component

being discontinuous at the domain wall. The dimensions of the supercell are fixed to values

based on the optimized lattice constants of the orthorhombic unit cell. The atomic posi-

tions are then fully relaxed using a 3 × 3 × 1 Monkhorst-Pack k-point mesh [137]. We

report in Fig. 9.1 the optimized domain structures with charged and uncharged 180◦ walls

in MAPbI3, MAPbBr3, and MAPbCl3. The domain wall energy (EDW) is calculated by

EDW =
Esupercell − Ebulk

SDW

(9.1)

where Esupercell is the energy of the supercell containing domain walls and Ebulk is the

energy of a single domain supercell of the same size. SDW is the domain wall area, and it

is noted that each supercell includes two domain walls due to the application of periodic

boundary conditions. We find that the uncharged wall has small domain wall energies

(3 mJ/m2 in MAPbCl3 , 1 mJ/m2 in MAPbBr3 , and 8 mJ/m2 in MAPbI3). The energies for

charged 180◦ domain walls in MAPbCl3 , MAPbBr3 , MAPbI3 , are 22 mJ/m2, 28 mJ/m2,

and 33 mJ/m2, respectively. These values are comparable to Ti-centered 180◦ domain

walls in BaTiO3 (17 mJ/m2) [79]. The relatively low domain wall energy suggests that the

formation of charged and uncharged domain walls are both energetically possible in hybrid

perovskites.

164



The band gap is a crucial material factor for photovoltaic applications. We calculate

the band structures for supercells with and without 180◦ domain walls. As shown in Table

1, the calculated PBE band gaps for single domains (Ebulk
g ) are comparable to experimen-

tal [49, 237] and reported theoretical values [242, 243, 254]. Surprisingly, we find that

domain structures with charged 180◦ domain walls have smaller band gaps (E180CDW
g ) than

their single-domain counterparts, while structures with uncharged 180◦ domain walls have

band gaps (E180UCDW
g ) similar to bulk values. Generally, a significant 20% band gap reduc-

tion is observed after introducing charged domain walls spaced by ≈1.5 nm in MAPbX3.

A larger supercell 1 × 1 × 8 is employed to study the charged 180◦ walls in MAPbI3 ,

and a band gap reduction of 0.41 eV is observed. Spin-orbit coupling (SOC) is known to

have a profound effect on the electronic structures of organometal halide perovskites [255–

257], so we also evaluate the band gaps with PBE+SOC (Table 1). It is found that the

band gaps with SOC are reduced by 0.20 eV in MAPbI3, 0.29 eV inMAPbBr3, and 0.43

eV in MAPbCl3 due to charged domain walls. Figure 9.2 shows the band structures of

MAPbI3 with and without charged 180◦ walls. The band gap reduction results from the

upshift of the valence band maximum (VBM) and the downshift of the conduction band

minimum (CBM). Most notably, the presence of 180◦ walls removes the Rashba band

splitting demonstrated in bulk MAPbI3 [258], due to the recovery of symmetry (net zero

polarization) for the whole supercell. The trend in band gap change in MAPbCl3 is also

examined with hybrid functional HSE06 [259, 260] with SOC. The band gap is reduced

from 2.47 eV for the single domain to 2.08 eV for the structure with charged 180◦ domain

walls, confirming the trend we observed with PBE.

In order to understand the origin of the band gap reduction, we analyzed the local

density of states (LDOS) for a structure with charged 180◦ walls in MAPbI3. Shown in

Figure ??a is the layer-resolved LDOS. The states near the band gap are mainly due to

the hybridization between Pb and I atoms. The orbitals from the organic molecules are far
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away from the band gap, in agreement with previous theoretical work [242, 243]. As one

can see from the layer-resolved LDOS, the CBM is located at domain wall A (Fig. 9.3 inset)

which has Pz components meeting with a “head-to-head” configuration and the VBM is at

domain wall B with a “tail-to-tail” configuration. A head-to-head domain wall has positive

bound charges, while a tail-to-tail domain wall has negative bound charges [231]. This

will give rise to an electric field across the domain, which is responsible for the shift of

the CBM and the VBM [261]. The calculated electrostatic potential along the z direction

shown in Fig. 9.3b has a zigzag shape, with domain wall A at the potential minimum and

domain wall B at the potential maximum, revealing a built-in electrostatic field due to

static uncompensated charge at domain walls. For comparison, we plot in-plane averaged

electrostatic potential for the uncharged 180◦ walls in Fig. 9.3c. Since the Pz component

is small and continuous across the uncharged 180◦ walls, a flat averaged potential profile is

found.
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Table 9.1: The band gaps (Eg in eV) for structures with and without 180◦ domain walls in
MAPbX3 calculated with PBE.

PBE Ebulk
g E180UCDW

g E180UCDW
g -Ebulk

g E180CDW
g E180CDW

g -Ebulk
g

MAPbCl3 2.39 2.38 −0.01 1.89 −0.50
MAPbBr3 1.69 1.70 +0.01 1.30 −0.39
MAPbI3 1.58 1.56 −0.02 1.29 −0.29

PBE+SOC Ebulk
g E180UCDW

g E180UCDW
g -Ebulk

g E180CDW
g E180CDW

g -Ebulk
g

MAPbCl3 1.35 1.32 −0.03 0.92 −0.43
MAPbBr3 0.67 0.67 +0.00 0.38 −0.29
MAPbI3 0.45 0.43 −0.02 0.25 −0.20
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Table 9.2: The band gaps for structures with and without 90◦ domain walls in MAPbX3 cal-
culated with PBE.

PBE Ebulk
g E90UCDW

g E90UCDW
g -Ebulk

g E90CDW
g E90CDW

g -Ebulk
g

MAPbCl3 2.43 2.45 +0.02 1.62 −0.81
MAPbBr3 1.80 1.83 +0.03 1.14 −0.66
MAPbI3 1.75 1.70 −0.05 0.96 −0.79

PBE+SOC Ebulk
g E90UCDW

g E90UCDW
g -Ebulk

g E90CDW
g E90CDW

g -Ebulk
g

MAPbCl3 1.39 1.44 +0.05 1.06 −0.34
MAPbBr3 0.78 0.83 +0.05 0.63 −0.15
MAPbI3 0.63 0.59 −0.04 0.40 −0.23
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9.2.2 90◦ domain wall in organometal halide perovskites

Further, we explore the 90◦ domain walls in MAPbX3. Adopting a strategy similar to that

for simulating 180◦ walls, we first relax the
√

2 ×
√

2 × 1 unit cell of MAPbX3. The

structures of optimized unit cells have polarization along [100] (P ′x ≈ P ′y = 1√
2
P[100]) as

shown in Fig. 9.4. The domain structure with 90◦ walls is then constructed by stacking six
√

2×
√

2× 1 cells along x, while rotating the orientations of MA molecules by 90◦ in the

three unit cells on the right. The polarization changes from (P ′x, −P ′y, 0) to (P ′x, P ′y, 0)

across the uncharged 90◦ domain wall (90UCDW) at [011] plane, and from (P ′x,−P ′y, 0) to

(−P ′x, −P ′y, 0) across the charged 90◦ domain wall (90CDW). The atomic positions are re-

laxed with fixed supercell dimensions. It is worth noting that the 90CDW investigated here

has the whole P ′x component being head-to-head.This configuration is generally not stable

in bulk inorganic ferroelectrics due to the large depolarization filed at domain walls [262].

It is possible to construct a charged 90◦ wall by rotating the P ′x component such that only a

small component being head-to-head (similar to the construction of charged 180◦ walls).

Figure 9.4 displays the geometries for the 90◦ domain walls. The energy differences

between structures with and without 90UCDW are small (within 5 meV/formula unit),

indicating negligible domain wall energies for the current setup. The energies for charged

90◦ domain walls in MAPbCl3, MAPbBr3 and MAPbI3, are 66 mJ/m2, 54 mJ/m2, and 56

mJ/m2, respectively. These values, though higher than charged 180◦ domain walls, are

still comparable to 90◦ domain walls in inorganic ferroelectrics such as PbTiO3 [79]. The

results for band structure calculations with PBE and PBE+SOC are summarized in Table

2. It is found that charged 90◦ domain walls will significantly reduce the band gaps, and

uncharged 90◦ domain walls have no impact on the band gaps, consistent with our findings

for 180◦ domain walls. Figure 9.5 presents the computed potential across 90◦ domain walls

in MAPbCl3. For the uncharged 90◦ walls, the potential decreases along the direction of the

Px within each domain. Also noticeable is the potential jump across the domain boundary.
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This is caused by the dipole layer at the domain wall due to the variation of Px across

the boundary (Fig. 9.5a). As for the charged 90◦ walls, similar to charged 180◦ walls, the

head-to-head wall is at the potential minimum and the tail-to-tail wall is at the potential

maximum.

9.2.3 Domain wall induced charge separation

It is hypothesized that the ferroelectric domains in hybrid halide perovskites may aid the

separation of photoexcited electrons and holes, and reduce recombination through the seg-

regation of charge carriers [247]. Here we demonstrate that charged domain walls, both

180◦ and 90◦, can serve as segregated channels for the motion of charge carriers. As il-

lustrated in Fig. 9.6a, electrons prefer to diffuse to head-to-head charged domain walls and

holes prefer to move to tail-to-tail charged domain walls. Then electrons and holes are

likely to move separately along differently-charged domain walls under internal or external

electric fields, reducing the rate of recombination. As for uncharged domain walls, the 180◦

wall may not result in a strong potential step for electron-hole separation, due to the small

polarization component along the domain wall normal (Fig. 9.3c). However, uncharged

90◦ domain walls may act as dipole layers and give rise to significant potential steps, help-

ing the carrier separation and increasing the diffusion lengths in hybrid halide perovskites

(Fig. 9.6b).

9.3 Conclusion

In summary, the structures and electronic properties of ferroelectric 180◦ and 90◦ domain

walls in MAPbCl3, MAPbBr3 and MAPbI3 are studied via first-principles density func-

tional theory. The domain wall energies in these materials are found to be small, suggest-

ing that the formation of domain walls is energetically favorable. Most noticeably, we find

170



that the presence of charged domain walls (“head-to-head” and “tail-to-tail”) will reduce

the band gap significantly, while the “head-to-tail” uncharged domain walls will not induce

such reduction. Both 180◦ and 90◦ charged domain walls can serve as segregated chan-

nels for the diffusion of charge carriers. The presence of uncharged 90◦ domain wall may

increase the diffusion length. It should be noted that the rotations of PbX6 octahedrons

are generally ignored in this investigation, partly due to the associated computational cost.

Future investigations are required to fully understand the interplay between orientational

order of organic molecules, rotations of inorganic octahedra, and the electronic structure

of organometal halide perovskites. Our findings highlight the importance of ferroelectric

domain walls in hybrid perovskites and also suggest a promising approach of device opti-

mization via domain-wall engineering.
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Figure 9.1: Optimized orthorhombic unit cells and domain structures with 180◦ domain
walls in (a) MAPbCl3, (b) MAPbBr3, (c) MAPbI3. The left panel is the relaxed orthorhom-
bic unit cell. The middle panel is the side view of a 1 × 1 × 6 supercell containing un-
charged 180◦ domain walls (UCDW); the polarization changes from (Px, Pz) to (−Px, Pz),
as demonstrated with orange arrows. The right panel is the side view of a supercell with
charged 180◦ domains (CDW); the polarization changes from (Px, Pz) to (−Px, −Pz). The
X· · ·H–N hydrogen bond is displayed explicitly to help the visualization of different do-
mains. Pb: dark grey, I: purple, Br: brown, Cl: green, C: black, N: light blue, H: light
pink.
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Figure 9.2: Calculated band structures for MAPbI3 (a) with PBE, and (b) with PBE and
spin-orbit coupling (SOC). The left panel is for a single domain (SD) and the right panel
is for structures with charged 180◦ domain walls (180 CDW). The Brillouin Zone and the
k-point path for the 1 × 1 × 6 supercell are displayed int the middle. Band gap values are
in eV.
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Figure 9.3: (a) Layer-resolved LDOS and (b) electrostatic potential along the z direction
across charged 180◦ domain walls in MAPbI3. The states near the band gap are mainly
due to the hybridization between Pb and I atoms. The inset shows the domain structure
with charged 180◦ domain walls labeled as A and B respectively. Domain A has a head-to-
head (H-H) configuration. Domain B has a tail-to-tail (T-T) configuration.(c) Electrostatic
potential across uncharged 180◦ domain walls in MAPbI3.
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Figure 9.4: Optimized orthorhombic
√

2 ×
√

2 × 1 unit cells and domain structures with
90◦ domain walls in (a) MAPbCl3, (b) MAPbBr3, (c) MAPbI3. The left panel is the relaxed
20-atom unit cell. The middle panel is the side view of a 6

√
2 ×
√

2 × 1 supercell with
uncharged 90◦ walls. The right panel is the side view of a supercell with charged 90◦ walls.
The orange arrows represent the directions of the polarization. The X· · ·H–N hydrogen
bond is displayed explicitly to help the visualization of different domains. Pb: dark grey, I:
purple, Br: brown, Cl: green, C: black, N: light blue, H: light pink.
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Figure 9.5: Electrostatic potential across (a) uncharged and (b) charged 90◦ domain walls
in MAPbCl3. The black broken lines are guidelines for eyes.
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Figure 9.6: Schematic illustrations of electrostatic potential steps and electron-hole sepa-
rations in a periodic array of (a) charged domain walls and (b) uncharged domain walls. ⊕
and 	 represent bound positive and negative charges.
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Chapter 10

Future Research
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The internal structure and the motion of domain walls in ferroelectric materials can

have a profound influence on the dielectric, piezoelectric, pyroelectric, and electronic prop-

erties of ferroelectrics. Many questions remain unanswered about the microscopic origin

of these domain-wall related properties. It is of great importantance to understand various

structure-property relationships of ferroelectric domain walls, and to discover, develop and

demonstrate new material-design principles and engineering strategies for optimized and

breakthrough applications of ferroelectrics.

10.1 Susceptibility from stationary domain walls

The effect of domain wall motion on the ferroelectric susceptibility has been widely recog-

nized and studied [184, 185, 188]. Recently, the stationary contribution resulting from the

response of the ferroelectric materials within the finite width of the domain walls to an ap-

plied stimulus has received increased attention [187, 263]. It is suggested that non-motional

contributions could be 6-78 times larger than the bulk response [187]. However, the origin

of the stationary contribution is currently unknown. I will use first-principles density func-

tional theory (DFT) calculations to explore the effects of domain walls on the dielectric

and piezoelectric properties of ferroelectric materials with varying domain sizes, domain

wall densities and periodicities. Taking the 180◦ and 90◦ domains walls in the prototypic

ferroelectric PbTiO3 as examples, I will calculate the frequency-dependent dielectric con-

stants and the e33 and d33 piezoelectric coefficients. The key local structural and electronic

features within the domain wall and their connections to the macroscopic susceptibility

will be identified. This work will also be coupled with classical molecular dynamics (MD)

simulations to investigate large supercells (> 200 atoms) that are not accessible via con-

ventional DFT methods. Based on the results from the DFT and MD simulations, I will

seek to develop an analytical model that accurately describes the relationship between the
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domain-wall-related descriptors (e.g., density and thickness) and the susceptibility. This

model will allow us to generalize the findings from PbTiO3 to other materials, enabling

performance optimization through domain patterning.

10.2 Single domain switching driven by an electric field

The polarization reversal in single crystals of ferroelectrics is generally understood by

a nucleation-and-growth mechanism. As shown in Fig. 10.1, under an external electric

field applied in reverse of the direction of bulk polarization, oppositely polarized domains,

preferably at electrode-crystal interfaces or at defects, will emerge, expand, and grow into

the bulk, which eventually will lead to the reversal of the whole domain. However, the

theoretical values for the nucleation activation energy (≈ 106 − 108 kBT ) according to

Landauer’s calculations [264] are several orders of magnitude larger than experimental val-

ues (≈ 10kBT ) [1]. In the past several decades, various studies have been done to resolve

Landauer’s paradox [37, 265, 266]. During my thesis work, I have explored the nucleation-

and-growth mechanism at the 90◦ domain wall and found a diamond-like nucleus exhibiting

a diffusive boundary with a gradual polarization change. However, the nucleation mecha-

nism in single crystals without extrinsic topological defects (e.g., interfaces, domain walls

and point defects) remains unclear. This works aims to resolve the Landauer’s paradox

with atomistic insights from MD simulations and first-principles calculations.

I will carry out MD simulations to examine the nucleation-and-growth mechanism in

a single crystal with a large supercell size ( 320,000 atoms) in PbTiO3 and BiFeO3 using

bond-valence-based force fields. The key processes for the single domain switching will

be identified, and the dependence of the switching speed on external variables (tempera-

tures, electric fields and elastic boundary conditions) will be determined. Comparison of

the switching mechanisms in tetragonal PbTiO3 and rhombohedral BiFeO3 will reveal the
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role of crystal symmetry in electric polarization switching. I will examine the size and the

three-dimensional shape of the critical nucleus in a single crystal. The detailed nucleation

mechanism elucidated from MD simulations can be used to construct an analytical model

based on Landau-Ginzburg-Devonshire (LGD) theory, to relate the nucleation energy to the

fundamental characteristics of the material assessable via DFT calculations. The estimated

nucleation barriers can then be used in a stochastic kinetic Monte Carlo (KMC) calcula-

tion to simulate switching in different types of ferroelectrics that occurs in µm length and

second time scales, comparable to experimental conditions. This multi-scale scheme will

enable a quantitative resolution of Landauer’s paradox and provide atomistic insights into

the ferroelectric switching.
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Figure 10.1: Schematic diagram showing the nucleation-and-growth mechanism for the
polarization reversal in a single crystal. The sample is sandwiched by metal electrodes
and is prepolarized downward under the short circuit condition (left panel); A small spike-
shaped domain of reversed polarization is formed at the electrode-crystal interface under
a upward electric field (middle panel); The nucleus will grow and eventually lead to the
domain reversal (right panel).
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[251] Wojdeł, J. C.; Íñiguez, J. Phys. Rev. Lett. 2014, 112, 247603.

[252] Xu, R.; Liu, S.; Grinberg, I.; Karthik, J.; Damodaran, A. R.; Rappe, A. M.; Martin,

L. W. Nat. Mater. 2015, 14, 79–86.

[253] Farokhipoor, S.; Noheda, B. Phys. Rev. Lett. 2011, 107, 127601–1–4.

[254] Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Graetzel, M.; De Angelis, F. J. Phys.

Chem. C 2013, 117, 13902–13913.

[255] Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.;

Graetzel, M.; De Angelis, F. Nano Letters 2014, 14, 3608–3616.

[256] Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. J. Phys. Chem. Lett. 2013, 4, 2999–

3005.

[257] Egger, D. A.; Kronik, L. J. Phys. Chem. Lett. 2014, 5, 2728–2733.

[258] Kim, M.; Im, J.; Freeman, A. J.; Ihm, J.; Jin, H. Proc. Natl. Acad. Sci. 2014, 111,

6900–6904.

[259] Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207–8215.

[260] Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phy. 2006, 124, 219906–219906.

201



[261] Ma, J.; Wang, L.-W. Nano Lett. 2015, 15, 248–253.

[262] Gureev, M.; Tagantsev, A.; Setter, N. Phys. Rev. B 2011, 83, 184104–1–18.

[263] Morozovska, A. N.; Eliseev, E. A.; Varenyk, O. V.; Kalinin, S. V. J. Appl. Phys.

2013, 113, 187222–1–7.

[264] Landauer, R. J. Appl. Phys. 1957, 28, 227–34.

[265] Jiang, A.-Q.; Lee, H. J.; Hwang, C. S.; Tang, T.-A. Phys. Rev. B 2009, 80, 024119–

1–7.

[266] Ducharme, S.; Fridkin, V. M.; Bune, A. V.; Palto, S. P.; Blinov, L. M.; Petukhova,

N. N.; Yudin, S. G. Phys. Rev. Lett. 2000, 84, 175–178.

202


	University of Pennsylvania
	ScholarlyCommons
	1-1-2015

	Multiscale Simulations of Dynamics of Ferroelectric Domains
	Shi Liu
	Recommended Citation

	Multiscale Simulations of Dynamics of Ferroelectric Domains
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	Preface
	Introduction
	Ferroelectrics and domain walls
	Ferroelectric perovskite oxides
	Ferroelectric domains and domain walls
	Domain wall motion
	Creep and depinning

	Theory and methodology
	Introduction
	Computational quantum mechanics
	The Born-Oppenheimer approximation
	Hartree-Fock method
	Density functional theory
	Bloch's theorem
	Plane wave expansion method
	The pseudopotential approximation

	Molecular dynamics
	Equation of motion
	Interatomic potenital
	Integration algorithms
	Temperature control: thermostat 
	Pressure control: barostat


	Reinterpretation of bond-valence model with bond-order formalism: an improved bond-valence based interatomic potential for PbTiO3
	Introduction
	Methodology
	Results and discussion
	MD simulations of temperature-driven phase transition
	MD simulations of domain walls
	MD simulations of pressure-driven phase transition

	Conclusion
	Appendix

	Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulation
	Introduction
	Methodology
	Results and discussion
	MD simulations of temperature-driven phase transition
	MD simulations of domain walls

	Conclusion

	Exploration of the intrinsic inertial response of ferroelectric domain walls via molecular dynamics simulations 
	Introduction
	Methodology
	Results and discussion
	Domain structures at finit temperature
	Inertial response of 180 DW 
	Inertial response of 90 DW 

	Conclusion

	Universal intrinsic mechanism for ferroelectric switching
	Introduction
	Results and discussion
	Intrinsic creep-depinning transition
	LGD nucleation-and-growth model
	Simulating hysteresis loops and coercive fields

	Conclusions
	Methods
	Molecular dynamics simulations of 90 domain wall
	Model parameters for non-180 domain walls
	LGD model for BiFeO3
	Analytical simulation of P-E hysteresis loop


	Ferroelectric polarization reversal via successive ferroelastic transitions
	Introduction
	Results and discussion
	Characterization of differently oriented heterostructures
	Molecular dynamics simulations of domain switching
	PFM switching in differently oriented films
	Origin of successive ferroelastic switching
	Conclusion

	Methods
	Epitaxial thin film growth
	Crystal and domain structure characterization
	Molecular dynamics simulations


	Ferroelectric domain wall induced band-gap reduction and charge separation in organometal halide perovskites 
	Introduction
	Results and discussion
	180 domain wall in organometal halide perovskites
	90 domain wall in organometal halide perovskites
	Domain wall induced charge separation

	Conclusion

	Future Research
	Susceptibility from stationary domain walls
	Single domain switching driven by an electric field

	Bibliography

