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High-dimensional Statistical Inference: from Vector to Matrix

Abstract
Statistical inference for sparse signals or low-rank matrices in high-dimensional settings is of significant
interest in a range of contemporary applications. It has attracted significant recent attention in many fields
including statistics, applied mathematics and electrical engineering. In this thesis, we consider several
problems in including sparse signal recovery (compressed sensing under restricted isometry) and low-rank
matrix recovery (matrix recovery via rank-one projections and structured matrix completion).

The first part of the thesis discusses compressed sensing and affine rank minimization in both noiseless and
noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix
recovery. The analysis relies on a key technical tool which represents points in a polytope by convex
combinations of sparse vectors. The technique is elementary while leads to sharp results. It is shown that, in
compressed sensing, $\delta_k^A<1/3$, $\delta_k^A+\theta_{k,k}^A <1$, or $\delta_{tk}^A <
\sqrt{(t-1)/t}$ for any given constant $t\ge {4/3}$ guarantee the exact recovery of all $k$ sparse signals in
the noiseless case through the constrained $\ell_1$ minimization, and similarly in affine rank minimization
$\delta_r^\mathcal{M}<1/3$, $\delta_r^{\mathcal{M}}+\theta_{r, r}^{\mathcal{M}}<1$, or
$\delta_{tr}^\mathcal{M}< \sqrt{(t-1)/t}$ ensure the exact reconstruction of all matrices with rank at most
$r$ in the noiseless case via the constrained nuclear norm minimization. Moreover, for any $\epsilon>0$,
$\delta_{k}^A < 1/3+\epsilon$, $\delta_k^A+\theta_{k,k}^A<1+\epsilon$, or
$\delta_{tk}^A<\sqrt{\frac{t-1}{t}}+\epsilon$ are not sufficient to guarantee the exact recovery of all $k$-
sparse signals for large $k$. Similar result also holds for matrix recovery. In addition, the conditions
$\delta_k^A<1/3$, $\delta_k^A+\theta_{k,k}^A<1$, $\delta_{tk}^A < \sqrt{(t-1)/t}$ and
$\delta_r^\mathcal{M}<1/3$, $\delta_r^\mathcal{M}+\theta_{r,r}^\mathcal{M}<1$,
$\delta_{tr}^\mathcal{M}< \sqrt{(t-1)/t}$ are also shown to be sufficient respectively for stable recovery of
approximately sparse signals and low-rank matrices in the noisy case.

For the second part of the thesis, we introduce a rank-one projection model for low-rank matrix recovery and
propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the
noisy case. The procedure is adaptive to the rank and robust against small perturbations. Both upper and lower
bounds for the estimation accuracy under the Frobenius norm loss are obtained. The proposed estimator is
shown to be rate-optimal under certain conditions. The estimator is easy to implement via convex
programming and performs well numerically. The techniques and main results developed in the chapter also
have implications to other related statistical problems. An application to estimation of spiked covariance
matrices from one-dimensional random projections is considered. The results demonstrate that it is still
possible to accurately estimate the covariance matrix of a high-dimensional distribution based only on one-
dimensional projections.

For the third part of the thesis, we consider another setting of low-rank matrix completion. Current literature
on matrix completion focuses primarily on independent sampling models under which the individual
observed entries are sampled independently. Motivated by applications in genomic data integration, we
propose a new framework of structured matrix completion (SMC) to treat structured missingness by design.
Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of
an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC
method and derive lower bound for the estimation errors, which together establish the optimal rate of
recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method
performs well in finite sample under a variety of configurations. The method is applied to integrate several
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ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct
more accurate prediction rules for ovarian cancer survival.
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ABSTRACT

HIGH-DIMENSIONAL STATISTICAL INFERENCE: FROM

VECTOR TO MATRIX

Anru Zhang

T. Tony Cai

Statistical inference for sparse signals or low-rank matrices in high-dimensional

settings is of significant interest in a range of contemporary applications. It has at-

tracted significant recent attention in many fields including statistics, applied math-

ematics and electrical engineering. In this thesis, we consider several problems in

including sparse signal recovery (compressed sensing under restricted isometry) and

low-rank matrix recovery (matrix recovery via rank-one projections and structured

matrix completion).

The first part of the thesis discusses compressed sensing and affine rank mini-

mization in both noiseless and noisy cases and establishes sharp restricted isometry

conditions for sparse signal and low-rank matrix recovery. The analysis relies on a

key technical tool which represents points in a polytope by convex combinations of

sparse vectors. The technique is elementary while leads to sharp results. It is shown

that, in compressed sensing, δAk < 1/3, δAk + θAk,k < 1, or δAtk <
√

(t− 1)/t for any

given constant t ≥ 4/3 guarantee the exact recovery of all k sparse signals in the

noiseless case through the constrained `1 minimization, and similarly in affine rank

v



minimization δMr < 1/3, δMr + θMr,r < 1, or δMtr <
√

(t− 1)/t ensure the exact recon-

struction of all matrices with rank at most r in the noiseless case via the constrained

nuclear norm minimization. Moreover, for any ε > 0, δAk < 1/3 + ε, δAk + θAk,k < 1 + ε,

or δAtk <
√

t−1
t

+ ε are not sufficient to guarantee the exact recovery of all k-sparse

signals for large k. Similar result also holds for matrix recovery. In addition, the

conditions δAk < 1/3, δAk + θAk,k < 1, δAtk <
√

(t− 1)/t and δMr < 1/3, δMr + θMr,r < 1,

δMtr <
√

(t− 1)/t are also shown to be sufficient respectively for stable recovery of

approximately sparse signals and low-rank matrices in the noisy case.

For the second part of the thesis, we introduce a rank-one projection model for low-

rank matrix recovery and propose a constrained nuclear norm minimization method

for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive

to the rank and robust against small perturbations. Both upper and lower bounds for

the estimation accuracy under the Frobenius norm loss are obtained. The proposed

estimator is shown to be rate-optimal under certain conditions. The estimator is easy

to implement via convex programming and performs well numerically. The techniques

and main results developed in the chapter also have implications to other related

statistical problems. An application to estimation of spiked covariance matrices from

one-dimensional random projections is considered. The results demonstrate that it

is still possible to accurately estimate the covariance matrix of a high-dimensional

distribution based only on one-dimensional projections.

For the third part of the thesis, we consider another setting of low-rank matrix

completion. Current literature on matrix completion focuses primarily on indepen-

dent sampling models under which the individual observed entries are sampled inde-

pendently. Motivated by applications in genomic data integration, we propose a new

framework of structured matrix completion (SMC) to treat structured missingness

by design. Specifically, our proposed method aims at efficient matrix recovery when

vi



a subset of the rows and columns of an approximately low-rank matrix are observed.

We provide theoretical justification for the proposed SMC method and derive lower

bound for the estimation errors, which together establish the optimal rate of recov-

ery over certain classes of approximately low-rank matrices. Simulation studies show

that the method performs well in finite sample under a variety of configurations. The

method is applied to integrate several ovarian cancer genomic studies with differ-

ent extent of genomic measurements, which enables us to construct more accurate

prediction rules for ovarian cancer survival.
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3.1 Relative spectral norm loss (‖Â22 − A22‖/‖A22‖) and Frobenius norm
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Preface

High-dimensional statistical inference has been a very active area in the recent years.

During my graduate studies, I have been fascinated by a range of interesting problems

in this field. These problems are motivated by important applications in many areas,

from genomics to signal processing to social networks to climate studies, and by

considerations from statistical theory. Some of these problems exhibit new features

that are very different from those in the conventional low-dimensional settings. In

this thesis, we discuss some recent advances on several problems in high-dimensional

statistical inference, including sparse signal recovery (compressed sensing) and low-

rank matrix recovery. Before we elaborate these problems respectively in Chapter 1

– 3, the quick overviews are provided below.

Compressed Sensing under Restricted Isometry1

Efficient recovery of sparse signals, or compressed sensing, has been a very active

area of recent research in applied mathematics, statistics, and machine learning, with

many important applications, ranging from signal processing to medical imaging to

radar systems. A central goal is to develop fast algorithms that can recover sparse

1This part of the thesis is published in Cai and Zhang (2013a,b, 2014b).

1



signals from a relatively small number of linear measurements.

Among different frameworks and methods for compressed sensing, the restricted

isometry property (RIP) and the constrained `1 norm minimization are very well-

known and widely used. To be specific, under the RIP framework, we use the re-

stricted isometry constant, δk, and restricted orthogonal constant, θk1,k2 , to regularize

the sensing matrix. Previous literature has shown that as long as δk and θk1,k2 are

small, the exact recovery of sparse signal in the noiseless case and stable recovery in

the noisy case can be guaranteed by the `1 minimization. However, a fundamental

question for the RIP framework is that of how small it is necessary for δk or θk1,k2 to

be.

In Chapter 1, we show that if any one of the following conditions is met, (1)

δk < 1/3, (2) δk + θk,k < 1, (3) δtk <
√

(t− 1)/t for some t > 4/3, the exact recovery

and stable recovery of all k-sparse signals can be guaranteed by using `1 minimization

in the noiseless case and noisy case, respectively. On the other hand, we further

prove that the bounds δk < 1/3, δk + θk,k < 1 and δtk <
√

(t− 1)/t are sharp in

the sense that there exist sensing matrices such that it is impossible to recover all

k-sparse signals accurately but either (1) δk < 1/3 + ε, or (2) δk + θk,k < 1 + ε or (3)

δtk <
√

(t− 1)/t + ε holds for a small value ε > 0. It is also shown that the same

results hold for low-rank matrix recovery under the trace regression model.

Meanwhile, we also develop a useful technical geometric tool which represents

points in a high-dimensional polytope by convex combinations of sparse vectors

(Lemma 1.1.1) and this is of independent interest.

2



Matrix Recovery via Rank-One Projections2

We introduce a rank-one projection (ROP) model for low-rank matrix recovery and

propose a new convex constrained minimization method for stable recovery of low-

rank matrices in the noisy case. The procedure is adaptive to the rank and robust

against small perturbations. Both upper and lower bounds for the estimation accuracy

under the Frobenius norm loss are obtained. The proposed estimator is shown to

be rate-optimal under certain conditions. The estimator is easy to implement via

convex programming and performs well numerically. Compared to some of the other

frameworks in the literature (e.g. Gaussian ensemble or matrix completion), the

proposed procedure requires only a small amount of storage space and can recover all

low-rank matrices with no additional structural assumptions.

The techniques and main results developed for ROP also have implications to

other related statistical problems. An application to estimation of spiked covariance

matrices from one-dimensional random projections is also considered. The results

demonstrate, somewhat surprisingly, that it is still possible to accurately estimate the

covariance matrix of a high-dimensional distribution based only on one-dimensional

projections.

Structured Matrix Completion3

In some other applications such as genomic data integration and paleoclimate recon-

struction, the model is highly structured in a way that observed entries are all either

in full rows or full columns. In other words, the rows and columns can be permuted

so that the missing part of the matrix becomes a contiguous block. In this case, some

well-studied matrix recovery methods, such as penalized nuclear norm minimization

2This part of thesis is published in Cai and Zhang (2015).
3This part of thesis is published in Cai et al. (2015).

3



or constraint nuclear norm minimization, are shown to be inappropriate.

In Chapter 3, we propose a new framework of structured matrix completion (SMC)

to treat this structured missingness by design. The new SMC method, whose main

idea is based on the Schur Complement, can be easily implemented by a fast algorithm

which only involves basic matrix operations and the singular value decomposition.

We also provide theoretical justification for the proposed SMC method and derive

lower bounds for the estimation errors. These together establish the optimal rate of

recovery over certain classes of approximately low-rank matrices. Both theoretical

and numerical studies show that SMC recovers low-rank matrices accurately and is

robust against small perturbations. This method was also applied to integrate several

ovarian cancer genomic studies with different extent of genomic measurements, which

enables us to construct more accurate prediction rules for ovarian cancer survival.

4



1
Compressed Sensing under Restricted Isometry

1.1 Introduction

Efficient recovery of sparse signals and low-rank matrices has been a very active area

of recent research in applied mathematics, statistics, and machine learning, with many

important applications, ranging from signal processing (Tropp et al. 2010, Davenport

et al. 2012) to medical imaging (Lustig et al., 2008) to radar systems (Baraniuk

and Steeghs 2007, Herman and Strohmer 2009). A central goal is to develop fast

algorithms that can recover sparse signals and low-rank matrices from a relatively

small number of linear measurements. Constrained `1-norm minimization and nuclear

norm minimization are among the most well-known algorithms for the recovery of

sparse signals and low-rank matrices respectively.

In compressed sensing, one observes

y = Aβ + z, (1.1)

where y ∈ Rn, A ∈ Rn×p with n� p, β ∈ Rp is an unknown sparse signal, and z ∈ Rn

is a vector of measurement errors. The goal is to recover the unknown signal β ∈ Rp

based on the measurement matrix A and the observed signal y.

5



For the reconstruction of β, the most intuitive approach is to find the sparsest

signal in the feasible set of possible solutions, i.e.,

minimize ‖β‖0, subject to Aβ − y ∈ B

where ‖β‖0 denote the `0 norm of β, which is defined to be the number of nonzero

coordinates, and B is a bounded set determined by the error structure. However, it

is well-known that this method is NP-hard and thus computationally infeasible in

the high dimensional settings. Convex relaxations of this method has been proposed

and studied in the literature. The constrained `1 minimization method proposed by

Candès and Tao (2005) estimates the signal β by

β̂ = arg min
β∈Rp

{‖β‖1 : subject to Aβ − y ∈ B}, (1.2)

where B is a set determined by the noise structure. In particular, B is taken to be

{0} in the noiseless case. This constrained `1 minimization method has now been

well studied and it is understood that the procedure provides an efficient method for

sparse signal recovery.

A closely related problem to compressed sensing is the affine rank minimization

problem (ARMP) (Recht et al., 2010), which aims to recover an unknown low-rank

matrix based on its affine transformation. In ARMP, one observes

b =M(X) + z, (1.3)

where M : Rm×n → Rq is a known linear map, X ∈ Rm×n is an unknown low-rank

matrix of interest, and z ∈ Rq is measurement error. The goal is to recover the

low-rank matrix X based on the linear map M and the observation b ∈ Rq.

6



To recover X, the most intuitive approach is to find the the lowest-rank matrix

in the feasible set of possible solutions, i.e.,

minimize rank(X), subject to M(X)− y ∈ B,

Similarly to the `0 norm minimization in compressed sensing, the rank minimization

is also NP-hard and thus computationally infeasible in the high dimensional settings.

Constrained nuclear norm minimization (Recht et al., 2010), which is analogous to `1

minimization in compressed sensing, estimates X by

X∗ = arg min
B∈Rm×n

{‖B‖∗ : subject to M(B)− b ∈ B}, (1.4)

where ‖B‖∗ is the nuclear norm of B, which is defined as the sum of all singular

values of B.

One of the most widely used frameworks in compressed sensing is the restrict

isometry property (RIP) introduced in Candès and Tao (2005). A vector β ∈ Rp is

called s-sparse if |supp(β)| ≤ s, where supp(β) = {i : βi 6= 0} is the support of β.

Definition 1.1.1. Let A ∈ Rn×p and let 1 ≤ k, k1, k2 ≤ p be integers. The restricted

isometry constant (RIC) of order k is defined to be the smallest non-negative number

δAk such that

(1− δAk )‖β‖2
2 ≤ ‖Aβ‖2

2 ≤ (1 + δAk )‖β‖2
2 (1.5)

for all k-sparse vectors β. The restricted orthogonality constant (ROC) of order

(k1, k2) is defined to be the smallest non-negative number θAk1,k2
such that

|〈Aβ1, Aβ2〉| ≤ θAk1,k2
‖β1‖2‖β2‖2 (1.6)

for all k1-sparse vector β1 and k2-sparse vector β2 with disjoint supports.
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Similar to the RIP for the measurement matrix A in compressed sensing given

in Definition 1.1.1, a restricted isometry property for a linear map M in ARMP

can be given. For two matrices X and Y in Rm×n, define their inner product as

〈X, Y 〉 =
∑

i,j XijYij and the Frobenius norm as ‖X‖F =
√
〈X,X〉 =

√∑
i,j X

2
ij.

Definition 1.1.2. Let M : Rm×n → Rp be a linear map and let 1 ≤ r, r1, r2 ≤

min(m,n) be integers. The restricted isometry constant (RIC) of order r is defined

to be the smallest non-negative number δMr such that

(1− δMr )‖X‖2
F ≤ ‖M(X)‖2

2 ≤ (1 + δMr )‖X‖2
F (1.7)

for all m×n matrix X of rank at most r. The restricted orthogonality constant (ROC)

of order (r1, r2) is defined to be the smallest non-negative number θMr1,r2 such that

|〈M(X1),M(X2)〉| ≤ θMk1,k2
‖X1‖F‖X2‖F (1.8)

for all matrices X1 and X2 which have rank at most r1 and r2 respectively, and satisfy

XT
1 X2 = 0 and X1X

T
2 = 0.

In addition to RIP, another widely used criterion is the mutual incoherence prop-

erty (MIP) defined in terms of µ = maxi 6=j |〈Ai, Aj〉|. See, for example, Donoho

and Huo (2001) and Cai et al. (2010d). The MIP is a special case of the restricted

orthogonal property as µ = θ1,1 when the columns of A are normalized.

Roughly speaking, the RIC δAk and ROC θAk1,k2
measure how far subsets of cardi-

nality k and k1, k2 of columns of A are to an orthonormal system. It is obvious that δk

and θk1,k2 are increasing in each of their indices. It is noteworthy that our definition

of ROC in the matrix case is different from the one given in Mohan and Fazel (2010).

Different conditions on the RIC and ROC for sparse signal recovery have been

introduced and studied in the literature. For example, sufficient conditions for the
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exact recovery in the noiseless case include δ2k <
√

2−1 in Candès (2008), δ2k < 0.472

in Cai et al. (2010c), δ2k < 0.497 in Mo and Li (2011), δk < 0.307 in Cai et al. (2010b),

δA2k < 4/
√

41 in Andersson and Stromberg (2014), δAk + θAk,k + θAk,2k < 1 Candès and

Tao (2005); δA2k +θAk,2k < 1 Candès and Tao (2007); δA1.5k +θAk,1.5k < 1 Cai et al. (2009),

δA1.25k + θAk,1.25k < 1 Cai et al. (2010c), and θA1,1 <
1

2k−1
when δA1 = 0 (Donoho and

Huo 2001, Fuchs 2004, Cai et al. 2010d). There are also other sufficient conditions

that involve RICs of different orders, e.g. δA3k + 3δA4k < 2 in Candès et al. (2006),

δA2k < 0.5746 jointly with δA8k < 1, δA3k < 0.7731 jointly with δA16k < 1 in Zhou et al.

(2013). As in compressed sensing, there are many sufficient conditions based on

the RIC to guarantee the exact recovery of matrices of rank at most r through the

constrained nuclear norm minimization (1.4). These include δM4r <
√

2− 1 in Candès

and Plan (2011), δM5r < 0.607, δM4r < 0.558, and δM3r < 0.4721 in Mohan and Fazel

(2010), δM2r < 0.4931 and δMr < 0.307 in Wang and Li (2013), δ2r+αr + 1√
β
θ2r+αr,βr < 1

where 2α ≤ β ≤ 4α in Mohan and Fazel (2010). It is however unclear if any of these

conditions can be further improved.

In this chapter, we develop a new elementary technique for the analysis of the

constrained `1-norm minimization and nuclear norm minimization procedures and

establish sharp RIP conditions on RICs and ROCs for sparse signal and low-rank

matrix recovery. The analysis is surprisingly simple, while leads to sharp results.

The key technical tool we develop states an elementary geometric fact: Any point

in a polytope can be represented as a convex combination of sparse vectors. The

following lemma may be of independent interest.

Lemma 1.1.1 (Sparse Representation of a Polytope). For a positive number α and

a positive integer s, define the polytope T (α, s) ⊂ Rp by

T (α, s) = {v ∈ Rp : ‖v‖∞ ≤ α, ‖v‖1 ≤ sα}.
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For any v ∈ Rp, define the set of sparse vectors U(α, s, v) ⊂ Rp by

U(α, s, v) ={u ∈ Rp : supp(u) ⊆ supp(v), ‖u‖0 ≤ s,

‖u‖1 = ‖v‖1, ‖u‖∞ ≤ α}.
(1.9)

Then v ∈ T (α, s) if and only if v is in the convex hull of U(α, s, v). In particular,

any v ∈ T (α, s) can be expressed as

v =
N∑
i=1

λiui, and 0 ≤ λi ≤ 1,
N∑
i=1

λi = 1, and ui ∈ U(α, s, v).

Lemma 1.1.1 shows that any point v ∈ Rp with ‖v‖∞ ≤ α and ‖v‖1 ≤ sα must lie

in a convex polytope whose extremal points are s-sparse vectors u with ‖u‖1 = ‖v‖1

and ‖u‖∞ ≤ α, and vice versa. This geometric fact turns out to be a powerful tool

in analyzing constrained `1-norm minimization for compressed sensing and nuclear

norm minimization for ARMP, since it represents a non-sparse vector by the sparse

ones, which provides a bridge between general vectors and the RIP conditions. A

graphical illustration of Lemma 1.1.1 is given in Figure 1.1.

Combining the results developed in Sections 1.2 and 1.3, we establish the following

sharp sufficient RIP conditions for the exact recovery of all k-sparse signals and low-

rank matrices in the noiseless case. We focus here on the exact sparse (low-rank)

and noiseless case; the general approximately sparse (low-rank) and noisy case is

considered in Sections 1.2 and 1.3.

Theorem 1.1.1. Let y = Aβ where β ∈ Rp is a k-sparse vector. If any of the

following conditions hold

1. δAk < 1/3,

2. δAk + θAk,k < 1,
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Figure 1.1: A graphical illustration of sparse representation of a polytope in one

orthant with p = 3 and s = 2. All the points in the colored area can be expressed

as convex combinations of the sparse vectors represented by the three pointed black

line segments on the edges.
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3. δAtk <
√

t−1
t

for some t ≥ 4/3,

then the `1 norm minimizer β̂ of (1.2) with B = {0} recovers β exactly.

Similarly, suppose b = M(X) where the matrix X ∈ Rm×n is of rank at most r.

If any of the following conditions hold

1. δMr < 1/3,

2. δMr + θMr,r < 1,

3. δMtr <
√

t−1
t

for some t ≥ 4/3,

then the nuclear norm minimizer X∗ of (1.4) with B = {0} recovers X exactly.

Moreover, it will be shown that for any ε > 0, δAk < 1
3

+ ε, δAk + θAk,k < 1 + ε,

or δAtk <
√

t−1
t

+ ε are not sufficient to guarantee the exact recovery of all k-sparse

signals for large k. Similar results also hold for matrix recovery. For the more general

approximately sparse (low-rank) and noisy cases considered in Sections 1.2 and 1.3, it

is shown that the conditions in Theorem 1.1.1 are also sufficient respectively for stable

recovery of (approximately) k-sparse signals and (approximately) rank-r matrices in

the noisy case. An oracle inequality is also given in the case of compressed sensing

with Gaussian noise under the conditions δAk < 1/3, δAk +θAk,k < 1 and δAtk <
√

(t− 1)/t

when t ≥ 4/3.

The rest of the chapter is organized as follows. Section 1.2 considers sparse signal

recovery and Section 1.3 focuses on low-rank matrix recovery. Discussions on the

case t < 4/3 and some related issues are given in Section 1.4. The proofs of the key

technical result Lemma 1.1.1 and the main theorems are contained in the Appendix

A.1.
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1.2 Compressed Sensing

We consider compressed sensing in this section and establish the sufficient RIP con-

dition δAk < 1/3, δAk + θAk,k < 1 and δAtk <
√

(t− 1)/t in the noisy case which implies

immediately the results in the noiseless case given in Theorem 1.1.1. For v ∈ Rp, we

denote vmax(k) as v with all but the largest k entries in absolute value set to zero, and

v−max(k) = v − vmax(k).

Let us consider the signal recovery model (1.1) in the setting where the obser-

vations contain noise and the signal is not exactly k-sparse. This is of significant

interest for many applications. Two types of bounded noise settings,

z ∈ B`2(ε) , {z : ‖z‖2 ≤ ε} and z ∈ BDS(ε) , {z : ‖Az‖∞ ≤ ε},

are of particular interest. The first bounded noise case was considered for example in

Donoho et al. (2006). The second case is motivated by the Dantzig Selector procedure

proposed in Candès and Tao (2007). Results on the Gaussian noise case, which is

commonly studied in statistics, follow immediately. For notational convenience, we

write δ and θ for RICs and ROCs of orders varying according to the scenarios.

Theorem 1.2.1. Consider the signal recovery model (1.1) with ‖z‖2 ≤ ε. Suppose

β̂`2 is the minimizer of (1.2) with B = B`2(η) = {z : ‖z‖2 ≤ η} for some η ≥ ε.

1. If δ = δAk < 1/3 for some k ≥ 2, then

‖β̂`2−β‖2 ≤
√

2(1 + δ)

1− 3δ
(ε+η)+

√
2(2δ +

√
(1− 3δ)δ) + (1− 3δ)

1− 3δ

2‖β−max(k)‖1√
k

.

(1.10)
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2. If δ + θ = δAk + θAk,k < 1 for some k ≥ 1, then

‖β̂`2 − β‖2 ≤
√

2(1 + δ)

1− δ − θ
(ε+ η) +

( √
2θ

1− δ − θ
+ 1

)
2‖β−max(k)‖1√

k
. (1.11)

3. If δ = δAtk <
√

(t− 1)/t for some t ≥ 4/3, then

‖β̂`2 − β‖2 ≤
√

2(1 + δ)

1−
√
t/(t− 1)δ

(ε+ η)

+

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

.

(1.12)

Now consider the signal recovery model (1.1) with ‖AT z‖∞ ≤ ε. Suppose β̂DS is the

minimizer of (1.2) with B = BDS(η) = {z : ‖AT z‖∞ ≤ η} for some η ≥ ε.

1. If δ = δAk < 1/3 with k ≥ 2, then

‖β̂DS − β‖2 ≤
√

2k

1− 3δ
(ε+ η) +

√
2(2δ +

√
(1− 3δ)δ) + (1− 3δ)

1− 3δ

2‖β−max(k)‖1√
k

.

(1.13)

2. If δ + θ = δAk + θAk,k < 1 for some k ≥ 1, then

‖β̂ − β‖2 ≤
√

2k

1− δ − θ
(ε+ η) +

( √
2θ

1− δ − θ
+ 1

)
2‖β−max(k)‖1√

k
. (1.14)

3. If δ = δAtk <
√

(t− 1)/t for some t ≥ 4/3, then

‖β̂DS − β‖2 ≤
√

2tk

1−
√
t/(t− 1)δ

(ε+ η)

+

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

.

(1.15)
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Remark 1.2.1. The result for the noiseless case follows directly from Theorem 1.2.1.

When β is exactly k-sparse and there is no noise, by setting η = ε = 0 and by noting

β−max(k) = 0, we have β̂ = β from (1.12), where β̂ is the minimizer of (1.2) with

B = {0}.

Remark 1.2.2. In the Part 1 of Theorems 1.1.1 and 1.2.1 (on δAk < 1/3), the case

k = 1 is excluded because the RIC of order 1 cannot provide any sufficient condition

for the exact recovery via the constrained `1 minimization in this case. Take, for

example, n = p − 1 ≥ 1. Let A ∈ Rn×p with Aβ = (β1 − β2, β3, β4, · · · , βp)T for any

β = (β1, β2, β3, · · · , βp)T ∈ Rp. Then for all 1-sparse vectors β,

‖Aβ‖2
2 =

p∑
i=1

β2
i − 2β1β2 = ‖β‖2

2,

which implies the restricted isometry constant δA1 = 0. However, b = Aγ = Aη

where γ = (1, 0, · · · , 0) and η = (0,−1, 0, · · · , 0) are both 1-sparse signals. Thus it is

impossible to recover both of them exactly relying only on the information of (A, b).

In particular, the `1 minimization (1.2) with B = {0} cannot recover all 1-sparse

signals. Since δA1 = 0, the RIP cannot provide any sufficient condition in this case.

Remark 1.2.3. The condition δAk + θAk,k < 1 in Part 2 of Theorem 1.2.1 can be

extended to a more general form,

δAa + Ca,b,kθ
A
a,b < 1,where Ca,b,k = max

{
2k − a√

ab
,

√
2k − a
a

}
, 1 ≤ a ≤ k. (1.16)

Theorem 1.2.2. Let y = Aβ where β ∈ Rp is a k-sparse vector. If the condition

(1.16) holds, then the `1 norm minimizer β̂ of (1.2) with B = {0} recovers β exactly.

In the noisy case, we have the following theorem parallel to Part 2 of Theorem

1.2.1.
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Theorem 1.2.3. Consider the signal recovery model (1.1) with ‖z‖2 ≤ ε. Let β̂

be the minimizer of (1.2) with B = {z ∈ Rn : ‖z‖2 ≤ η} for some η ≥ ε. If

δ + θ = δAa + Ca,b,kθ
A
a,b < 1 for some positive integers a and b with 1 ≤ a ≤ k, then

‖β̂−β‖2 ≤
√

2(1 + δ)k/a

1− δ − Ca,b,kθ
(ε+ η) + 2‖β−max(k)‖1

( √
2kCa,b,kθ

(1− δ − Ca,b,kθ)(2k − a)
+

1√
k

)
.

(1.17)

Similarly, consider the signal recovery model (1.1) with ‖AT z‖∞ ≤ ε. Let β̂ be the

minimizer of (1.2) with B = {z ∈ Rn : ‖AT z‖∞ ≤ η} for some η ≥ ε. If δ + θ =

δAa + Ca,b,kθ
A
a,b < 1 for some positive integers a and b with 1 ≤ a ≤ k, then

‖β̂−β‖2 ≤
√

2k

1− δ − Ca,b,kθ
(ε+ η) + 2‖β−max(k)‖1

( √
2kCa,b,kθ

(1− δ − Ca,b,kθ)(2k − a)
+

1√
k

)
.

(1.18)

Remark 1.2.4. It should be noted that Part 3 of Theorem 1.2.1 also hold for 1 <

t < 4/3 with exactly the same proof. However the bound
√

(t− 1)/t is not sharp for

1 < t < 4/3. See Section 1.4 for further discussions. The condition t ≥ 4/3 is crucial

for the “sharpness” results given in Theorem 1.2.4 at the end of this section.

The signal recovery model (1.1) with Gaussian noise is of particular interest in

statistics and signal processing. The following results on the i.i.d. Gaussian noise

case are immediate consequences of the above results on the bounded noise cases,

since the Gaussian random variables are essentially bounded.

Proposition 1.2.1. Suppose the error vector z ∼ Nn(0, σ2I) in (1.1). Let β̂`2 be

the minimizer of (1.2) with B = {z : ‖z‖2 ≤ σ
√
n+ 2

√
n log n} and let β̂DS be the

minimizer of (1.2) with B = {z : ‖AT z‖∞ ≤ 2σ
√

log p}.
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� If δAk < 1/3 for some k ≥ 2, then with probability at least 1− 1/n,

‖β`2 − β‖2 ≤
2
√

2(1 + δ)

1− 3δ
σ

√
n+ 2

√
n log n

+

√
2(2δ +

√
(1− 3δ)δ) + (1− 3δ)

1− 3δ

2‖β−max(k)‖1√
k

,

and with probability at least 1− 1/
√
π log p,

‖β̂DS − β‖2 ≤
4
√

2

1− 3δ
σ
√
k log p

+

√
2(2δ +

√
(1− 3δ)δ) + (1− 3δ)

1− 3δ

2‖β−max(k)‖1√
k

.

� If δAk + θAk,k < 1 for some k ≥ 1, then with probability at least 1− 1/n,

‖β`2 − β‖2 ≤
2
√

2(1 + δ)

1− δ − θ
σ

√
n+ 2

√
n log n+

( √
2θ

1− δ − θ
+ 1

)
2‖β−max(k)‖1√

k
,

and with probability at least 1− 1/
√
π log p,

‖β̂DS − β‖2 ≤
4
√

2

1− δ − θ
σ
√
k log p+

( √
2θ

1− δ − θ
+ 1

)
2‖β−max(k)‖1√

k
.

� If δAtk <
√

(t− 1)/t for some t ≥ 4/3, then with probability at least 1− 1/n,

‖β`2 − β‖2 ≤
2
√

2(1 + δ)

1−
√
t/(t− 1)δ

σ

√
n+ 2

√
n log n

+

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

,
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and with probability at least 1− 1/
√
π log p,

‖β̂DS − β‖2 ≤
4
√

2t

1−
√
t/(t− 1)δ

σ
√
k log p

+

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

.

The oracle inequality approach was introduced by Donoho and Johnstone (1994) in

the context of wavelet thresholding for signal denoising. It provides an effective way to

study the performance of an estimation procedure by comparing it to that of an ideal

estimator. In the context of compressed sensing, oracle inequalities have been given in

Cai et al. (2010d), Candès and Tao (2007) and Candès and Plan (2011) under various

settings. Proposition 1.2.2 below provides oracle inequalities for compressed sensing

with Gaussian noise under the conditions δAk < 1/3, δAk + θAk,k < 1 or δAtk <
√

(t− 1)/t

when t ≥ 4/3.

Proposition 1.2.2. Given (1.1), suppose the error vector z ∼ Nn(0, σ2I), β is k-

sparse. Let β̂DS be the minimizer of (1.2) with B = {z : ‖AT z‖∞ ≤ 4σ
√

log p}.

� If δAk < 1/3 for some k ≥ 2, then with probability at least 1− 1/
√
π log p,

‖β̂DS − β‖2
2 ≤

256

(1− 3δAk )2
log p

∑
i

min(β2
i , σ

2). (1.19)

� If δAk + θAk,k < 1/3 for some k ≥ 1, then with probability at least 1− 1/
√
π log p,

‖β̂DS − β‖2
2 ≤

256

(1− δAk − θAk,k)2
log p

∑
i

min(β2
i , σ

2). (1.20)

� If δAtk <
√

(t− 1)/t for some t ≥ 4/3, then with probability at least 1 −
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1/
√
π log p,

‖β̂DS − β‖2
2 ≤

256t

(1−
√
t/(t− 1)δAtk)

2
log p

∑
i

min(β2
i , σ

2). (1.21)

We now turn to show the sharpness of the conditions δAk < 1/3, δAk + θAk,k < 1 and

δAtk <
√

(t− 1)/t for the exact recovery in the noiseless case and stable recovery in

the noisy case. It should be noted that the result in the special case t = 2 was shown

in Davies and Gribonval (2009).

Theorem 1.2.4.

1. For all 2 ≤ k ≤ p/2, there exists a sensing matrix A satisfying δAk = 1/3,

2. For all 2 ≤ k ≤ p/2, there exists a sensing matrix A satisfying δAk + θAk,k = 1,

3. Let t ≥ 4/3. For all ε > 0 and k ≥ 5/ε, there exists a sensing matrix A

satisfying δAtk <
√

t−1
t

+ ε,

and in any of the three scenarios above, there also exists some k-sparse vector β0 such

that

� in the noiseless case, i.e. y = Aβ0, the `1 minimization method (1.2) with

B = {0} fail to exactly recover the k-sparse vector β0, i.e. β̂ 6= β0, where β̂ is

the solution to (1.2).

� in the noisy case, i.e. y = Aβ0 + z, for all constraints Bz (may depends on z),

the `1 minimization method (1.2) fails to stably recover the k-sparse vector β0,

i.e. β̂ 9 β as z → 0, where β̂ is the solution to (1.2).

Remark 1.2.5. Similarly as Theorems 1.1.1 and 1.2.1, there is a more general form

of Part 2 of Theorem 1.2.4 on Condition δAk + θAk,k < 1, which is stated below.
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Theorem 1.2.5. Let 1 ≤ k ≤ p/2, 1 ≤ a ≤ k, and b ≥ 1. Let Ca,b,k be defined as

(1.16). Then there exists a sensing matrix A ∈ Rn×p such that δAa + Ca,b,kθ
A
a,b = 1

and for some k-sparse signals β0 ∈ Rp such that the conclusion in Theorem 1.2.4 still

holds.

1.3 Affine Rank Minimization

We consider the affine rank minimization problem (1.3) in this section. As mentioned

in the introduction, this problem is closely related to compressed sensing. The close

connections between compressed sensing and ARMP have been studied in Oymak, et

al. Oymak et al. (2011). We shall present here the analogous results on affine rank

minimization without detailed proofs.

For a matrix X ∈ Rm×n (without loss of generality, assume that m ≤ n) with

the singular value decomposition X =
∑m

i=1 aiuiv
T
i where the singular values ai are

in descending order, we define Xmax(r) =
∑r

i=1 aiuiv
T
i and X−max(r) =

∑m
i=r+1 aiuiv

T
i .

We should also note that the nuclear norm ‖ · ‖∗ of a matrix equals the sum of the

singular values, and the spectral norm ‖ · ‖ of a matrix equals its largest singular

value. Their roles are similar to those of `1 norm and `∞ norm in the vector case,

respectively. For a linear operator M : Rm×n → Rq, its dual operator is denoted by

M∗ : Rq → Rm×n.

Similarly as in compressed sensing, we first consider the matrix recovery model

(1.3) in the case where the error vector z is in bounded sets: ‖z‖2 ≤ ε and ‖M∗(z)‖ ≤

ε. The corresponding nuclear norm minimization methods are given by (1.4) with

B = B`2(η) and B = BDS(η) respectively, where

B`2(η) = {z : ‖z‖2 ≤ η}, (1.22)

BDS(η) = {z : ‖M∗(z)‖ ≤ η}. (1.23)
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Proposition 1.3.1. Consider ARMP (1.3) with ‖z‖2 ≤ ε. Let X`2
∗ be the minimizer

of (1.4) with B = B`2(η) defined in (1.22) for some η ≥ ε.

1. If δ = δMr < 1/3 for some r ≥ 2, then

‖X`2
∗ −X‖F ≤

√
2(1 + δ)

1− 3δ
(ε+η)+

√
2(2δ +

√
(1− 3δ)δ) + (1− 3δ)

1− 3δ

2‖X−max(r)‖∗√
r

.

(1.24)

2. If δ + θ = δMr + θMr,r < 1 for some r ≥ 1, then

‖X`2
∗ −X‖F ≤

√
2(1 + δ)

1− δ − θ
(ε+ η) +

( √
2θ

1− δ − θ
+ 1

)
2‖X−max(r)‖∗√

r
. (1.25)

3. If δ = δMtr <
√

(t− 1)/t with t ≥ 4/3, then

‖X`2
∗ −X‖F ≤

√
2(1 + δ)

1−
√
t/(t− 1)δ

(ε+ η)

+

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖X−max(r)‖∗√
r

.

(1.26)

Similarly, consider ARMP (1.3) with z satisfying ‖M∗(z)‖ ≤ ε. Let XDS
∗ be the

minimizer of (1.4) with M = BDS(η) defined in (1.23) for some η ≥ ε.

1. If δ = δMr < 1/3 with r ≥ 2, then

‖XDS
∗ −X‖F ≤

√
2r

1− 3δ
(ε+ η) +

√
2(2δ +

√
(1− 3δ)δ) + (1− 3δ)

1− 3δ

2‖X−max(r)‖∗√
r

.

(1.27)

2. If δ + θ = δMr + θMr,r < 1 for some r ≥ 1, then

‖XDS
∗ −X‖F ≤

√
2r

1− δ − θ
(ε+ η) +

( √
2θ

1− δ − θ
+ 1

)
2‖X−max(r)‖∗√

r
. (1.28)
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3. If δ = δMtr <
√

(t− 1)/t with t ≥ 4/3, then

‖XDS
∗ −X‖F ≤

√
2tr

1−
√
t/(t− 1)δ

(ε+ η)

+

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖X−max(r)‖1√
r

.

(1.29)

In the special noiseless case where z = 0, it can be seen from either of these two

inequalities above that all matrices X with rank at most r can be exactly recovered

provided that δMr < 1/3, δMr + θMr,r < 1 or δMtr <
√

(t− 1)/t, for some t ≥ 4/3.

In the matrix recover model (1.3) with Gaussian noise, oracle inequalities can also

be developed under conditions δMr < 1/3, δMr + θMr,r < 1, or δMtr <
√

(t− 1)/t when

t ≥ 4/3.

Proposition 1.3.2. Given ARMP (1.3), suppose the error vector z ∼ Nq(0, σ
2I),

rank(β) ≤ r. Let X̂DS be the minimizer of (1.2) with B = {z : ‖M∗z‖ ≤ λ =

8σ
√

2 log(12) max(m,n)}.

� If δMr < 1/3 for some r ≥ 2, then with probability at least 1− e−cmax(m,n),

‖XDS
∗ −X‖2

F ≤
211 log(12)

(1− 3δMr )2

∑
i

min(σ2
i (X),max(m,n)σ2). (1.30)

� If δMr + θMr,r < 1 for some r ≥ 1, then with probability at least 1− e−cmax(m,n),

‖XDS
∗ −X‖2

F ≤
211 log(12)

(1− δMr − θMr,r)2

∑
i

min(σ2
i (X),max(m,n)σ2). (1.31)

� If δMtr <
√

(t− 1)/t for some t ≥ 4/3, then with probability at least 1 −
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e−cmax(m,n),

‖XDS
∗ −X‖2

F ≤
211 log(12)t

(1−
√
t/(t− 1)δMtr )2

∑
i

min(σ2
i (X),max(m,n)σ2). (1.32)

Here c > 0 is an absolute constant, and σi(X), i = 1, · · · ,min(m,n) are the singular

values of X.

The following result shows that the conditions δMr < 1/3, δMr + θMr,r < 1, δMtr <√
(t− 1)/t with t ≥ 4/3 are sharp. These results together establish the optimal

bounds on δMr , δMr + θMr,r and δMtr (t ≥ 4/3) for the exact recovery in the noiseless

case.

Proposition 1.3.3.

1. For all 2 ≤ r ≤ p/2, there exists a linear map M satisfying δMr = 1/3,

2. For all 2 ≤ k ≤ p/2, there exists a linear map M satisfying δMr + θMr,r = 1,

3. Let t ≥ 4/3. For all ε > 0 and r ≥ 5/ε, there exists a linear map A satisfying

δMtr <
√

t−1
t

+ ε,

and in any of the three scenarios above, there also exists some matrix X0 of rank at

most r such that

� in the noiseless case, i.e. b = M(X0), the nuclear norm minimization method

(1.4) with B = {0} fails to exactly recover X0, i.e. X∗ 6= X0, where X∗ is the

solution to (1.4).

� in the noisy case, i.e. b =M(X0) + z, for all constraints Bz (may depends on

z), the nuclear norm minimization method (1.4) fails to stably recover X0, i.e.

X∗ 9 X0 as z → 0, where X∗ is the solution to (1.4) with B = Bz.
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1.4 Discussions

We shall focus the discussions in this section exclusively on compressed sensing as the

results on affine rank minimization is analogous. In Section 1.2, we have established

the sharp RIP condition on different orders of RICs,

δAk < 1/3

δAtk <

√
t− 1

t
for some t ≥ 4

3
,

for the recovery of k-sparse signals in compressed sensing. For a general t > 0, denote

the sharp bound for δAtk as δ∗(t). Then

δ∗(1) = 1/3 and δ∗(t) =
√

(t− 1)/t, t ≥ 4/3.

A natural question is: What is the value of δ∗(t) for t < 4/3 and t 6= 1? That is, what

is the sharp bound for δAtk when t < 4/3 and t 6= 1? We have the following partial

answer to the question.

Proposition 1.4.1. Let y = Aβ where β ∈ Rp is k-sparse. Suppose 0 < t < 1 and

tk ≥ 0 to be an integer

� When tk is even and δAtk <
t

4−t , the `1 minimization (1.2) with B = {0} recovers

β exactly.

� When tk is odd and δAtk <

√
t2−1/k2

4−2t+
√
t2−1/k2

, the `1 minimization (1.2) with B = {0}

recovers β exactly.

In addition, the following result shows that δ∗(t) ≤ t
4−t for all 0 < t < 4/3. In

particular, when t = 1, the upper bound t/(4−t) coincides with the true sharp bound

1/3.
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Figure 1.2: Plot of δ∗ as a function of t. The dotted line is t = 4/3.

Proposition 1.4.2. For 0 < t < 4/3, ε > 0 and any integer k ≥ 1, δAtk <
t

4−t+ε is not

sufficient for the exact recovery. Specifically, there exists a matrix A with δAtk = t
4−t

and a k-sparse vector β0 such that β̂ 6= β0, where β̂ is the minimizer of (1.2) with

B = {0}.

Propositions 1.4.1 and 1.4.2 together show that δ∗(t) = t
4−t when tk is even and

0 < t < 1. We are not able to provide a complete answer for δ∗(t) when 0 < t < 4/3.

We conjecture that δ∗(t) = t
4−t for all 0 < t < 4/3. Figure 1.2 plots δ∗(t) as a function

of t based on this conjecture for the interval (0, 4/3).

Our results show that exact recovery of k-sparse signals in the noiseless case is

guaranteed if δAtk <
√

(t− 1)/t for some t ≥ 4/3. It is then natural to ask the question:

Among all these RIP conditions δAtk < δ∗(t), which one is easiest to be satisfied? There

is no general answer to this question as no condition is strictly weaker or stronger

than the others. It is however interesting to consider special random measurement

matrices A = (Aij)n×p where

Aij ∼ N (0, 1/n), Aij ∼

 1/
√
n w.p.1/2

−1/
√
n w.p.1/2

, or Aij ∼


√

3/n w.p.1/6

0 w.p.1/2

−
√

3/n w.p.1/6

.

Baraniuk et al. (2008) provides a bound on RICs for a set of random matrices from
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concentration of measure. For these random measurement matrices, Theorem 5.2 of

Baraniuk et al. (2008) shows that for positive integer m < n and 0 < λ < 1,

P (δAm < λ) ≥ 1− 2

(
12ep

mλ

)m
exp

(
−n(λ2/16− λ3/48)

)
. (1.33)

Hence, for t ≥ 4/3,

P (δAtk <
√

(t− 1)/t) ≥1− 2 exp
(
tk
(

log(12e/
√
t(t− 1)) + log(p/k)

)
− n

(
t− 1

16t
− (t− 1)3/2

48t3/2

))
.

For 0 < t < 4/3, using the conjectured value δ∗(t) = t
4−t , we have

P (δAtk < t/(4− t)) ≥1− 2 exp
(
tk(log(12(4− t)e/t2) + log(p/k))

− n
(

t2

16(4− t)2
− t3

48(4− t)3

))
.

It is easy to see when p, k, and p/k →∞, the lower bound of n to ensure δAtk < t/(4−t)

or δAtk <
√

(t− 1)/t to hold in high probability is n ≥ k log(p/k)n∗(t), where

n∗ ,

 t/
(

t2

16(4−t)2 − t3

48(4−t)3

)
t < 4/3;

t/
(
t−1
16t
− (t−1)3/2

48t3/2

)
, t ≥ 4/3.

For the plot of n∗(t), see Figure 1.3. n∗(t) has minimum 83.2 when t = 1.85. Moreover,

among integer t, t = 2 can also provide a near-optimal minimum: n∗(2) = 83.7.

We should note that the above analysis is based on the bound given in (1.33)

which itself can be possibly improved.
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Figure 1.3: Plot of n∗ as a function of t.
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2
ROP: Matrix Recovery via Rank-one Projections

2.1 Introduction

Accurate recovery of low-rank matrices has a wide range of applications, including

quantum state tomography (Alquier et al. 2013, Gross et al. 2010), face recognition

(Basri and Jacobs 2003, Candès et al. 2011), recommender systems (Koren et al.,

2009), and linear system identification and control (Recht et al., 2010). For example,

a key step in reconstructing the quantum states in low-rank quantum tomography is

the estimation of a low-rank matrix based on Pauli measurements (Gross et al. 2010,

Wang 2013). And phase retrieval, a problem which arises in a range of signal and

image processing applications including X-ray crystallography, astronomical imaging,

and diffraction imaging, can be reformulated as a low-rank matrix recovery problem

Candès et al. (2013); Candès et al. (2011). See Recht et al. (2010) and Candès and

Plan (2011) for further references and discussions.

Motivated by these applications, low-rank matrix estimation based on a small

number of measurements has drawn much recent attention in several fields, includ-

ing statistics, electrical engineering, applied mathematics, and computer science. For

example, Candès and Recht (2009), Candès and Tao (2010) and Recht Recht (2011)

considered the exact recovery of a low-rank matrix based on a subset of uniformly
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sampled entries. Negahban and Wainwright (2011) investigated matrix completion

under a row/column weighted random sampling scheme. Recht et al. (2010), Candès

and Plan (2011), and Cai and Zhang (2013b,a, 2014b) studied matrix recovery based

on a small number of linear measurements in the framework of restricted isometry

property (RIP), and Koltchinskii et al. (2011) proposed the penalized nuclear norm

minimization method and derived a general sharp oracle inequality under the condi-

tion of restrict isometry in expectation.

The basic model for low-rank matrix recovery can be written as

y = X (A) + z, (2.1)

where X : Rp1×p2 → Rn is a linear map, A ∈ Rp1×p2 is an unknown low-rank matrix,

and z is a noise vector. The goal is to recover the low-rank matrix A based on the

measurements (X , y). The linear map X can be equivalently specified by n p1 × p2

measurement matrices X1, · · · , Xn with

X (A) = (〈X1, A〉, 〈X2, A〉, · · · , 〈Xn, A〉)ᵀ, (2.2)

where the inner product of two matrices of the same dimensions is defined as 〈X, Y 〉 =∑
i,j XijYij. Since 〈X, Y 〉 = Trace(XᵀY ), (2.1) is also known as trace regression.

A common approach to low-rank matrix recovery is the constrained nuclear norm

minimization method which estimates A by

Â = arg min
M
{‖M‖∗ : y −X (M) ∈ Z}. (2.3)

Here ‖X‖∗ is the nuclear norm of the matrix X which is defined to be the sum of

its singular values, and Z is a bounded set determined by the noise structure. For
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example, Z = {0} in the noiseless case and Z is the feasible set of the error vector

z in the case of bounded noise. This constrained nuclear norm minimization method

has been well studied. See, for example, (Recht et al. 2010, Candès and Plan 2011,

Oymak and Hassibi 2010, Cai and Zhang 2013b,a, 2014b).

Two random design models for low-rank matrix recovery have been particularly

well studied in the literature. One is the so-called “Gaussian ensemble” (Recht et al.

2010, Candès and Plan 2011), where the measurement matrices X1, · · · , Xn are ran-

dom matrices with i.i.d. Gaussian entries. By exploiting the low-dimensional struc-

ture, the number of linear measurements can be far smaller than the number of entries

in the matrix to ensure stable recovery. It has been shown that a matrix A of rank r

can be stably recovered by nuclear norm minimization with high probability, provided

that n & r(p1 + p2) (Candès and Plan, 2011). One major disadvantage of the Gaus-

sian ensemble design is that it requires O(np1p2) bytes of storage space for X , which

can be excessively large for the recovery of large matrices. For example, at least 45

TB of space is need to store the measurement matrices Mi in order to ensure accurate

reconstruction of 10000× 10000 matrices of rank 10. (See more discussion in Section

2.5.) Another popular design is the “matrix completion” model (Candès and Recht

2009, Candès and Tao 2010, Recht 2011), under which the individual entries of the

matrix A are observed at randomly selected positions. In terms of the measurement

matrices Xi in (2.2), this can be interpreted as

X (A) = (〈ei1e
ᵀ
j1
, A〉, 〈ei2e

ᵀ
j2
, A〉, · · · , 〈eine

ᵀ
jn
, A〉)ᵀ (2.4)

where ei = (0, · · · , 0,
ith︷︸︸︷
1 , 0, · · · , 0) is the ith standard basis vector, and i1, · · · , in

and j1, · · · , jn are randomly and uniformly drawn with replacement from {1, · · · , p1}

and {1, · · · , p2}, respectively. However, as pointed out in Candès and Recht (2009),
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Recht (2011), additional structural assumptions, which are not intuitive and difficult

to check, on the unknown matrix A are needed in order to ensure stable recovery

under the matrix completion model. For example, it is impossible to recover spiked

matrices under the matrix completion model. This can be easily seen from a simple

example where the matrix A has only one non-zero row. In this case, although the

matrix is only of rank one, it is not recoverable under the matrix completion model

unless all the elements on the non-zero row are observed.

In this chapter we introduce a “Rank-One Projection” (ROP) model for low-rank

matrix recovery and propose a constrained nuclear norm minimization method for

this model. Under the ROP model, we observe

yi = (β(i))ᵀAγ(i) + zi, i = 1, ..., n (2.5)

where β(i) and γ(i) are random vectors with entries independently drawn from some

distribution P , and zi are random errors. In terms of the linear map X : Rp1×p2 → Rn

in (2.1), it can be defined as

[X (A)]i = (β(i))ᵀAγ(i), i = 1, · · · , n. (2.6)

Since the measurement matrices Xi = β(i)(γ(i))ᵀ are of rank-one, we call the model

(2.5) a “Rank-One Projection” (ROP) model. It is easy to see that the storage for

the measurement vectors in the ROP model (2.5) is O(n(p1 + p2)) bytes which is

significantly smaller than O(np1p2) bytes required for the Gaussian ensemble.

We first establish a sufficient identifiability condition in Section 2.2 by considering

the problem of exact recovery of low-rank matrices in the noiseless case. It is shown

that, with high probability, ROP with n & r(p1 + p2) random projections is sufficient

to ensure exact recovery of all rank r matrices through the constrained nuclear norm
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minimization. The required number of measurements O(r(p1 + p2)) is rate optimal

for any linear measurement model since a rank r matrix A ∈ Rp1+p2 has the degree of

freedom r(p1 + p2 − r). The Gaussian noise case is of particular interest in statistics.

We propose a new constrained nuclear norm minimization estimator and investigate

its theoretical and numerical properties in the Gaussian noise case. Both upper and

lower bounds for the estimation accuracy under the Frobenius norm loss are obtained.

The estimator is shown to be rate-optimal when the number of rank-one projections

satisfies either n & (p1 + p2) log(p1 + p2) or n ∼ r(p1 + p2). The lower bound also

shows that if the number of measurements n < rmax(p1, p2), then no estimator

can recover rank-r matrices consistently. The general case where the matrix A is

only approximately low-rank is also considered. The results show that the proposed

estimator is adaptive to the rank r and robust against small perturbations. Extensions

to the sub-Gaussian design and sub-Gaussian noise distribution are also considered.

The ROP model can be further simplified by taking β(i) = γ(i) if the low-rank

matrix A is known to be symmetric. This is the case in many applications, includ-

ing low-dimensional Euclidean embedding (Trosset 2000, Recht et al. 2010), phase

retrieval (Candès et al. 2013, Candès et al. 2011), and covariance matrix estimation

(Chen et al. 2013, Cai et al. 2013b,a). In such a setting, the ROP design can be

simplified to symmetric rank-one projections (SROP)

[X (A)]i = (β(i))ᵀAβ(i).

We will show that the results for the general ROP model continue to hold for the

SROP model when A is known to be symmetric. Recovery of symmetric positive def-

inite matrices in the noiseless and `1-bounded noise settings has also been considered

in a recent paper by Chen et al. (2013) which was posted on arXiv at the time of the

writing of the present chapter. Their results and techniques for symmetric positive
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definite matrices are not applicable to the recovery of general low-rank matrices. See

Section 2.6 for more discussions.

The techniques and main results developed in the chapter also have implications to

other related statistical problems. In particular, the results imply that it is possible

to accurately estimate a spiked covariance matrix based only on one-dimensional

projections. Spiked covariance matrix model has been well studied in the context

of principal component analysis (PCA) based on i.i.d. data where one observes p-

dimensional vectors X(1), · · · , X(n) iid∼ N(0,Σ) with Σ = Ip+Σ0 and Σ0 being low-rank

(Johnstone 2001, Birnbaum et al. 2013, Cai et al. 2013b,a). This covariance structure

and its variations have been used in many applications including signal processing,

financial econometrics, chemometrics, and population genetics. See, for example, Fan

et al. (2008), Nadler (2010), Patterson and Reich (2006), Price et al. (2006), Wax

and Kailath (1985). Suppose that the random vectors X(1), · · · , X(n) are not directly

observable. Instead, we observe only one-dimensional random projections of X(i),

ξi = 〈β(i), X(i)〉, i = 1, ..., n,

where β(i) iid∼ N(0, Ip). It is somewhat surprising that it is still possible to accurately

estimate the spiked covariance matrix Σ based only on the one-dimensional projec-

tions {ξi : i = 1, ..., n}. This covariance matrix recovery problem is also related to

the recent literature on covariance sketching (Dasarathy et al., 2012, 2013), which

aims to recover a symmetric matrix A (or a general rectangular matrix B) from low-

dimensional projections of the form XᵀAX (or XᵀBY ). See Section 2.4 for further

discussions.

The proposed methods can be efficiently implemented via convex programming.

A simulation study is carried out to investigate the numerical performance of the

proposed nuclear norm minimization estimators. The numerical results indicate that
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ROP with n ≥ 5rmax(p1, p2) random projections is sufficient to ensure the exact re-

covery of rank r matrices through constrained nuclear norm minimization and show

that the procedure is robust against small perturbations, which confirm the theo-

retical results developed in the chapter. The proposed estimator outperforms two

other alternative procedures numerically in the noisy case. In addition, the proposed

method is illustrated through an image compression example.

The rest of this chapter is organized as follows. In Section 2.2, after introducing

basic notation and definitions, we consider exact recovery of low-rank matrices in the

noiseless case and establish a sufficient identifiability condition. A constrained nuclear

norm minimization estimator is introduced for the Gaussian noise case. Both upper

and lower bounds are obtained for estimation under the Frobenius norm loss. Section

2.3 considers extensions to sub-Gaussian design and sub-Gaussian noise distributions.

An application to estimation of spiked covariance matrices based on one-dimensional

projections is discussed in detail in Section 2.4. Section 2.5 investigates the numerical

performance of the proposed procedure through a simulation study and an image

compression example. A brief discussion is given in Section 2.6. The main results are

proved in the Appendix (Chapter A.2).

2.2 Matrix Recovery under Gaussian Noise

In this section, we first establish an identifiability condition for the ROP model by

considering exact recovery in the noiseless case, and then focus on low-rank matrix

recovery in the Gaussian noise case.

We begin with the basic notation and definitions. For a vector β ∈ Rn, we use

‖β‖q = q
√∑n

i=1 |βi|q to define its vector q-norm. For a matrix X ∈ Rp1×p2 , the

Frobenius norm is ‖X‖F =
√∑p1

i=1

∑p2

j=1 X
2
ij and the spectral norm ‖ · ‖ is ‖X‖ =

sup‖β‖2≤1 ‖Xβ‖2. For a linear map X = (X1, ..., Xn) from Rp1×p2 to Rn given by
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(2.2), its dual operator X ∗ : Rn → Rp1×p2 is defined as X ∗(z) =
∑n

i=1 ziXi. For a

matrix X ∈ Rp1×p2 , let X =
∑

i aiuiv
ᵀ
i be the singular value decomposition of X

with the singular values a1 ≥ a2 ≥ · · · ≥ 0. We define Xmax(r) =
∑r

i=1 aiuiv
ᵀ
i and

X−max(r) = X − Xmax(r) =
∑

i≥r+1 aiuiv
ᵀ
i . For any two sequences {an} and {bn} of

positive numbers, denote by an & bn when an ≥ Cbn for some uniform constant C

and denote by an ∼ bn if an & bn and bn & an.

We use the phrase “rank-r matrices” to refer to matrices of rank at most r and

denote by Sp the set of all p× p symmetric matrices. A linear map X : Rp1×p2 → Rn

is called ROP from distribution P if X is defined as in (2.6) with all the entries of

β(i) and γ(i) independently drawn from the distribution P .

2.2.1 RUB, Identifiability, and Exact Recovery in the Noise-

less Case

An important step towards understanding the constrained nuclear norm minimization

is the study of exact recovery of low-rank matrices in the noiseless case which also

leads to a sufficient identifiability condition. A widely used framework in the low-rank

matrix recovery literature is the Restricted Isometry Property (RIP) in the matrix

setting. See Recht et al. (2010), Candès and Plan (2011), Rohde and Tsybakov (2011),

Cai and Zhang (2013b,a, 2014b). However, the RIP framework is not well suited for

the ROP model and would lead to sub-optimal results. See Section 2.2.2 for more

discussions on the RIP and other conditions used in the literature. See also Candès

et al. (2013). In this section, we introduce a Restricted Uniform Boundedness (RUB)

condition which will be shown to guarantee the exact recovery of low-rank matrices

in the noiseless case and stable recovery in the noisy case through the constrained

nuclear norm minimization. It will also be shown that the RUB condition are satisfied

by a range of random linear maps with high probability.
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Definition 2.2.1 (Restricted Uniform Boundedness). For a linear map X : Rp1×p2 →

Rn, if there exist uniform constants C1 and C2 such that for all nonzero rank-r ma-

trices A ∈ Rp1×p2

C1 ≤
‖X (A)‖1/n

‖A‖F
≤ C2,

where ‖ · ‖1 means the vector `1 norm, then we say that X satisfies the restricted

uniform boundedness (RUB) condition of order r and constants C1 and C2.

In the noiseless case, we observe y = X (A) and estimate the matrix A through

the constrained nuclear norm minimization

A∗ = arg min
M
{‖M‖∗ : X (M) = y}. (2.7)

The following theorem shows that the RUB condition guarantees the exact recovery

of all rank-r matrices.

Theorem 2.2.1. Let k ≥ 2 be an integer. Suppose X satisfies RUB of order kr

with C2/C1 <
√
k, then the nuclear norm minimization method recovers all rank-r

matrices. That is, for all rank-r matrices A and y = X (A), we have A∗ = A, where

A∗ is given by (2.7).

Theorem 2.2.1 shows that RUB of order kr with C2/C1 <
√
k is a sufficient

identifiability condition for the low-rank matrix recovery model (2.1) in the noisy case.

The following result shows that the RUB condition is satisfied with high probability

under the ROP model with a sufficient number of measurements.

Theorem 2.2.2. Suppose X : Rp1×p2 → Rn is ROP from the standard normal distri-

bution. For integer k ≥ 2, positive numbers C1 <
1
3

and C2 > 1, there exist constants

C and δ, not depending on p1, p2, and r, such that if

n ≥ Cr(p1 + p2), (2.8)
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then with probability at least 1− e−nδ, X satisfies RUB of order kr and constants C1

and C2.

Remark 2.2.1. The condition n ≥ O(r(p1 + p2)) on the number of measurements

is indeed necessary for X to satisfy non-trivial RUB with C1 > 0. Note that the

degree of freedom of all rank-r matrices of Rp1×p2 is r(p1 + p2 − r) ≥ 1
2
r(p1 + p2).

If n < 1
2
r(p1 + p2), there must exist a non-zero rank-r matrix A ∈ Rp1×p2 such that

X (A) = 0, which leads to the failure of any non-trivial RUB for X .

As a direct consequence of Theorems 2.2.1 and 2.2.2, ROP with the number of

measurements n ≥ Cr(p1 + p2) guarantees the exact recovery of all rank-r matrices

with high probability.

Corollary 2.2.1. Suppose X : Rp1×p2 → Rn is ROP from the standard normal

distribution. There exist uniform constants C and δ such that, whenever n ≥ Cr(p1 +

p2), the nuclear norm minimization estimator A∗ given in (2.7) recovers all rank-r

matrices A ∈ Rp1×p2 exactly with probability at least 1− e−nδ.

Note that the required number of measurements O(r(p1 + p2)) above is rate opti-

mal, since the degree of freedom for a matrix A ∈ Rp1+p2 of rank r is r(p1 + p2 − r),

and thus at least r(p1 +p2−r) measurements are needed in order to recover A exactly

using any method.

2.2.2 RUB, RIP and Other Conditions

We have shown that RUB implies exact recovery in the noiseless and proved that

the random rank-one projections satisfy RUB with high probability whenever the

number of measurements n ≥ Cr(p1 + p2). As mentioned earlier, other conditions,

including the restricted isometry property (RIP), RIP in expectation, and spherical

section property (SSP), have been introduced for low-rank matrix recovery based on
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linear measurements. Among them, RIP is perhaps the most widely used. A linear

map X : Rp1×p2 → Rn is said to satisfy RIP of order r with positive constants C1 and

C2 if

C1 ≤
‖X (A)‖2/

√
n

‖A‖F
≤ C2

for all rank-r matrices A. Many results have been given for low-rank matrices under

the RIP framework. For example, Recht et al. (2010) showed that Gaussian ensem-

bles satisfy RIP with high probability under certain conditions on the dimensions.

Candès and Plan (2011) provided a lower bound and oracle inequality under the RIP

condition. Cai and Zhang (2013b,a, 2014b) established the sharp bounds for the RIP

conditions that guarantee accurate recovery of low-rank matrices.

However, the RIP framework is not suitable for the ROP model considered in the

present chapter. The following lemma is proved in the Supplement.

Lemma 2.2.1. Suppose X : Rp1×p2 → Rn is ROP from the standard normal distri-

bution. Let

C1 = min
A:rank(A)=1

‖X (A)‖2/
√
n

‖A‖F
and C2 = max

A:rank(A)=1

‖X (A)‖2/
√
n

‖A‖F
.

Then for all t > 1, C2/C1 ≥
√
p1p2/(4tn) with probability at least 1−e−p1/4−e−p2/4−

8
n(t−1)2 .

Lemma 2.2.1 implies that at least O(p1p2) number of measurements are needed in

order to ensure that X satisfies the RIP condition that guarantees the recovery of only

rank-one matrices. Since O(p1p2) is the degree of freedom for all matrices A ∈ Rp1×p2

and it is the number of measurements needed to recover all p1× p2 matrices (not just

the low-rank matrices), Lemma 2.1 shows that the RIP framework is not suitable for

the ROP model. In comparison, Theorem 2.2.2 shows that if n ≥ O(r(p1 + p2)), then

with high probability X satisfies the RUB condition of order r with bounded C2/C1
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, which ensures the exact recovery of all rank-r matrices.

The main technical reason for the failure of RIP under the ROP model is that

RIP requires an upper bound for

max
A∈C
‖X (A)‖2

2/n = max
A∈C

(
n∑
j=1

(
(β(j))ᵀAγ(j)

)2

)
/n (2.9)

where C is a set containing low-rank matrices. The right-hand side of (2.9) involves

the 4th power of the Gaussian (or sub-Gaussian) variables β(j) and γ(j). A much

larger n than the bound given in (2.8) is needed in order for the linear map X to

satisfy the required RIP condition, which would lead to sub-optimal result.

Koltchinskii et al. (2011) uses RIP in expectation, which is a weaker condition than

RIP. A random linear map X : Rp1×p2 → Rn is said to satisfy RIP in expectation of

order r with parameters 0 < µ <∞ and 0 ≤ δr < 1 if

(1− δr)‖A‖2
F ≤ µ

1

n
E‖X (A)‖2

2 ≤ (1 + δr)‖A‖2
F

for all rank-r matrices A ∈ Rp1×p2 . This condition was originally introduced by

Koltchinskii et al. (2011) to prove an oracle inequality for the estimator they pro-

posed and a minimax lower bound. The condition is not sufficiently strong to

guarantee the exact recovery of rank-r matrices in the noiseless case. To be more

specific, the bounds in Theorems 1 and 2 in Koltchinskii et al. (2011) depend on

M =
∥∥ 1
n

∑n
i=1 (yiXi − E(yiXi))

∥∥, which might be non-zero even in the noiseless case.

In fact, in the ROP model considered in the present chapter, we have

1

n
E‖X‖2

2 =
1

n

n∑
i=1

E
(
β(i)TAγ(i)

)2
= E(βᵀAγγᵀAᵀβ)

=Etr(AγγᵀAᵀββᵀ) = tr(AAᵀ) = ‖A‖2
F
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which means RIP in expectation is met for µ = 1 and δr = 0 for any number of

measurements n. However, as we discussed earlier in this section that at least O(r(p1+

p2)) measurements are needed to guarantee the model identifiability for recovery of

all rank-r matrices, we can see that RIP in expectation cannot ensure recovery.

Dvijotham and Fazel (2010) and Oymak et al. (2011) used a condition called the

spherical section property (SSP) which focuses on the null space of X . Null(X )

is said to satisfy ∆-SSP if for all Z ∈ Null(X )\{0}, ‖Z‖∗/‖Z‖F ≥
√

∆. Dvi-

jotham and Fazel (2010) showed that if X satisfies ∆-SSP, p1 ≤ p2 and rank(A) <

min
(

3p1/4−
√

9p2
1/16− p1∆/4, p1/2

)
, the nuclear norm minimization (2.7) recovers

A exactly in the noiseless case. However, the SSP condition is difficult to utilize in

the ROP framework since it is hard to characterize the matrices Z ∈ Null(X ) when

X is rank-one projections.

2.2.3 Gaussian Noise Case

We now turn to the Gaussian noise case where zi
iid∼ N(0, σ2) in (2.5). We begin by

introducing a constrained nuclear norm minimization estimator. Define two sets

Z1 = {z : ‖z‖1/n ≤ σ} and Z2 = {z : ‖X ∗(z)‖ ≤ η} (2.10)

where η = σ
(

12
√

log n(p1 + p2) + 6
√

2n(p1 + p2)
)

, and let

ZG = Z1 ∩ Z2. (2.11)

Note that both Z1 and Z2 are convex sets and so is ZG. Our estimator of A is given

by

Â = arg min
M
{‖M‖∗ : y −X (M) ∈ ZG}. (2.12)
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The following theorem gives the rate of convergence for the estimator Â under the

squared Frobenius norm loss.

Theorem 2.2.3 (Upper Bound). Let X be ROP from the standard normal distribu-

tion and let z1, · · · , zn
iid∼ N(0, σ2). Then there exist uniform constants C, W and δ

such that, whenever n ≥ Cr(p1 + p2), the estimator Â given in (2.12) satisfies

‖Â− A‖2
F ≤ Wσ2 min

(
r log n(p1 + p2)2

n2
+
r(p1 + p2)

n
, 1

)
(2.13)

for all rank-r matrices A, with probability at least 1− 11/n− 3 exp(−δ(p1 + p2)).

Moreover, we have the following lower bound result for ROP.

Theorem 2.2.4 (Lower Bound). Assume that X is ROP from the standard normal

distribution and that z1, · · · , zn
iid∼ N(0, σ2). There exists a uniform constant C such

that, when n > Crmax(p1, p2), with probability at least 1− 26n−1,

inf
Â

sup
A∈Rp1×p2 :rank(A)=r

Pz

(
‖Â− A‖2

F ≥
σ2r(p1 + p2)

32n

)
≥ 1− e−(p1+p2)r/64 (2.14)

inf
Â

sup
A∈Rp1×p2 :rank(A)=r

Ez‖Â− A‖2
F ≥

σ2r(p1 + p2)

4n
(2.15)

where Ez, and Pz are the expectation and probability with respect to the distribution

of z.

When n < rmax(p1, p2), then

inf
Â

sup
A∈Rp1×p2 :rank(A)=r

Ez‖Â− A‖2
F =∞. (2.16)

Comparing Theorem 2.2.3 and Theorem 3.3.3, our proposed estimator is rate

optimal in the Gaussian noise case when n & log n(p1 + p2) (which is equivalent to

n & (p1 + p2) log(p1 + p2)) or n ∼ r(p1 + p2). Since n & r(p1 + p2), this condition
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is also implied by r & log(p1 + p2). Theorem 3.3.3 also shows that no method can

recover matrices of rank r consistently if the number of measurements n is smaller

than rmax(p1, p2).

The result in Theorem 2.2.3 can also be extended to the more general case where

the matrix of interest A is only approximately low-rank. Let A = Amax(r) +A−max(r).

Proposition 2.2.1. Under the assumptions of Theorem 2.2.3, there exist uniform

constants C, W1, W2 and δ such that, whenever n ≥ Cr(p1 + p2), the estimator Â

given in (2.12) satisfies

‖Â−A‖2
F ≤ W1σ

2 min

(
r log n(p1 + p2)2

n2
+
r(p1 + p2)

n
, 1

)
+W2

‖A−max(r)‖2
∗

r
(2.17)

for all matrices A ∈ Rp1×p2, with probability at least 1− 11/n− 3 exp(−δ(p1 + p2)).

If the matrix A is approximately of rank r, then ‖A−max(r)‖∗ is small, and the es-

timator Â continues to perform well. This result shows that the constrained nuclear

norm minimization estimator is adaptive to the rank r and robust against perturba-

tions of small amplitude.

Remark 2.2.2. All the results remain true if the Gaussian design is replaced by the

Rademacher design where entries of β(i) and γ(i) are i.i.d. ±1 with probability 1
2
.

More general sub-Gaussian design case will be discussed in Section 2.3.

Remark 2.2.3. The estimator Â we propose here is the minimizer of the nuclear

norm under the constraint of the intersection of two convex sets Z1 and Z2. Nuclear

norm minimization under either one of the two constraints, called “`1 constraint

nuclear norm minimization” (Z = Z1) and “matrix Dantzig Selector” (Z = Z2), has

been studied before in various settings (Candès and Plan 2011, Recht et al. 2010, Cai

and Zhang 2013b,a, 2014b, Chen et al. 2013). Our analysis indicates the following.
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1. The `1 constraint minimization performs better than the matrix Dantzig Selec-

tor for small n (n ∼ r(p1 + p2)) when r � log n;

2. The matrix Dantzig Selector outperforms the `1 constraint minimization for

large n as the loss of the matrix Dantzig Selector decays at the rate O(n−1);

3. The proposed estimator Â combines the advantages of the two estimators.

See Section 2.5 for a comparison of numerical performances of the three methods.

2.2.4 Recovery of Symmetric Matrices

For applications such as low-dimensional Euclidean embedding (Trosset 2000, Recht

et al. 2010), phase retrieval (Candès et al. 2013, Candès et al. 2011), and covariance

matrix estimation (Chen et al. 2013, Cai et al. 2013b,a), the low-rank matrix A

of interest is known to be symmetric. Examples of such matrices include distance

matrices, Gram matrices, and covariance matrices. When the matrix A is known to

be symmetric, the ROP design can be further simplified by taking β(i) = γ(i).

Denote by Sp the set of all p×p symmetric matrices in Rp×p. Let β(1), β(2), · · · , β(n)

be independent p-dimensional random vectors with i.i.d. entries generated from some

distribution P . Define a linear map X : Sp → Rn by

[X (A)]i = (β(i))ᵀAβ(i), i = 1, · · · , n.

We call such a linear map X “Symmetric Rank-One Projections” (SROP) from the

distribution P .

Suppose we observe

yi = (β(i))ᵀAβ(i) + zi, i = 1, ..., n (2.18)
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and wish to recover the symmetric matrix A. As for the ROP model, in the noiseless

case we estimate A under the SROP model by

A∗ = arg min
M∈Sp

{‖M‖∗ : y = X (M)}. (2.19)

Proposition 2.2.2. Let X be SROP from the standard normal distribution. Similar

to Corollary 2.2.1, there exist uniform constants C and δ such that, whenever n ≥

Crp, the nuclear norm minimization estimator A∗ given by (2.19) recovers exactly all

rank-r symmetric matrices A ∈ Sp with probability at least 1− e−nδ.

For the noisy case, we propose a constraint nuclear norm minimization estimator

similar to (2.12). Define the linear map X̃ : Rp1×p2 → Rbn2 c by

[X̃ (A)]i = [X (A)]2i−1 − [X (A)]2i, i = 1, · · · , bn
2
c (2.20)

and define ỹ ∈ Rbn/2c by

ỹi = y2i−1 − y2i, i = 1, · · · , bn
2
c. (2.21)

Based on the definition of X̃ , the dual map X̃ ∗ : Rbn2 c → Sp is

X̃ ∗(z) =

bn
2
c∑

i=1

zi
(
β(2i−1)β(2i−1)ᵀ − β(2i)β(2i)ᵀ

)
(2.22)

Let η = 24σ
(√

pn+ 2p
√

2 log n
)
. The estimator Â of the matrix A is given by

Â = arg min
M∈Sp

{
‖M‖∗ : ‖y −X (M)‖1/n ≤ σ, ‖X̃ ∗(ỹ − X̃ (M))‖ ≤ η

}
. (2.23)

Remark 2.2.4. An important property in the ROP model considered in Section 2.2.3

is that EX = 0, i.e., EXi = 0 for all the measurement matrices Xi. However, under
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the SROP model Xi = β(i)(β(i))ᵀ and so EX 6= 0. The step of taking the pairwise

differences in (2.20) and (2.21) is to ensure that EX̃ = 0.

The following result is similar to the upper bound given in Proposition 2.2.1 for

ROP.

Proposition 2.2.3. Let X be SROP from the standard normal distribution and let

z1, · · · , zn
iid∼ N(0, σ2). There exist constants C,W1,W2 and δ such that, whenever

n ≥ Crp, the estimator Â given in (2.23) satisfies

‖Â− A‖2
F ≤ W1σ

2 min

(
rp2 log n

n2
+
rp

n
, 1

)
+W2

‖A−max(r)‖2
∗

r
(2.24)

for all matrices A ∈ Sp, with probability at least 1− 15/n− 5 exp(−pδ).

In addition, we also have lower bounds for SROP, which show that the proposed

estimator is rate-optimal when n & p log n or n ∼ rp, and no estimator can recover a

rank-r matrix consistently if the number of measurements n < b r
2
c · bp

2
c.

Proposition 2.2.4 (Lower Bound). Assume that X is SROP from the standard nor-

mal distribution and that z1, · · · , zn
iid∼ N(0, σ2). Then there exists a uniform constant

C such that, when n > Crp and p, r ≥ 2, with probability at least 1− 26n−1,

inf
Â

sup
A∈Sp:rank(A)=r

Pz

(
‖Â− A‖2

F ≥
σ2rp

192n

)
≥ 1− e−pr/192

inf
Â

sup
A∈Sp:rank(A)=r

Ez‖Â− A‖2
F ≥

σ2rp

24n

where Â is any estimator of A, Ez, Pz are the expectation and probability with respect

to z.
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When n < b r
2
c · bp

2
c and p, r ≥ 2, then

inf
Â

sup
A∈Sp:rank(A)=r

Ez‖Â− A‖2
F =∞.

2.3 Sub-Gaussian Design and Sub-Gaussian Noise

We have focused on the Gaussian design and Gaussian noise distribution in Section

2.2. These results can be further extended to more general distributions. In this

section we consider the case where the ROP design is from a symmetric sub-Gaussian

distribution P and the errors zi are also from a sub-Gaussian distribution. We say

the distribution of a random variable Z is sub-Gaussian with parameter τ if

P (|Z| ≥ t) ≤ 2 exp(−t2/(2τ 2)), for all t > 0. (2.25)

The following lemma provides a necessary and sufficient condition for symmetric sub-

Gaussian distributions.

Lemma 2.3.1. Let P be a symmetric distribution and let the random variable X ∼ P.

Define

αP = sup
k≥1

(
EX2k

(2k − 1)!!

) 1
2k

. (2.26)

Then the distribution P is sub-Gaussian if and only if αP is finite.

For the sub-Gaussian ROP design and sub-Gaussian noise, we estimate the low-

rank matrix A by the estimator Â given in (3.3) with

ZG ={z : ‖z‖1/n ≤ 6τ}

∩
{
z : ‖X ∗(z)‖ ≤ 6α2

Pτ
(√

6n(p1 + p2) + 2
√

log n(p1 + p2)
)} (2.27)

where αP is given in (2.26).
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Theorem 2.3.1. Suppose X : Rp1×p2 → Rn is ROP from a symmetric and variance 1

sub-Gaussian distribution P. Assume that zi are i.i.d. sub-Gaussian with parameter

τ and Â is given by (3.3) with Z = ZG defined in (2.27). Then there exist constants

C,W1,W2, δ which only depend on P, such that if n ≥ Cr(p1 + p2), we have

‖Â− A‖2
F ≤ W1τ

2 min

(
r log n(p1 + p2)2

n2
+
r(p1 + p2)

n
, 1

)
+W2

‖A−max(r)‖2
∗

r
(2.28)

with probability at least 1− 2/n− 5e−δ(p1+p2).

An exact recovery result in the noiseless case for the sub-Gaussian design follows

directly from Theorem 2.3.1. If z = 0, then, with high probability, all rank-r matrices

A can be recovered exactly via the constrained nuclear minimization (2.7) whenever

n ≥ CPr(p1 + p2) for some constant CP > 0.

Remark 2.3.1. For the SROP model considered in Section 2.2.4, we can similarly

extend the results to the case of sub-Gaussian design and sub-Gaussian noise. Suppose

X is SROP from a symmetric variance 1 sub-Gaussian distribution P (other than the

Rademacher ±1 distribution) and z satisfies (2.25). Define the estimator of the low-

rank matrix A by

Â = arg min
M∈Sp

{
‖M‖∗ : ‖y −X (M)‖1/n ≤ 6τ, ‖X̃ ∗(ỹ − X̃ (M))‖ ≤ η

}
(2.29)

where η = CP
(√

np+
√

log np
)

with CP some constant depending on P .

Proposition 2.3.1. Suppose X : Rp×p → Rn is SROP from a symmetric sub-

Gaussian distribution P with variance 1. Also, assume that Var(P2) > 0 (i.e.

Var(w2) > 0 where w ∼ P). Let Â be given by (2.29). Then there exist constants
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C,CP ,W1,W2, and δ which only depend on P, such that for n ≥ Crp,

‖Â− A‖2
F ≤ W1τ

2 min

(
rp2 log n

n2
+
rp

n
, 1

)
+W2

‖A−max(r)‖2
∗

r
(2.30)

with probability at least 1− 2/n− 5e−δp.

By restricting Var(P2) > 0, Rademacher ±1 is the only symmetric and variance 1

distribution that has been excluded. The reason why the Rademacher ±1 distribution

is an exception for the SROP design is as follows. If β(i) are i.i.d. Rademacher ±1

distributed, then

[X (A)]i = (β(i))ᵀAβ(i) =

p∑
j=1

ajj +
∑
j 6=k

β
(i)
j β

(i)
k ajk, i = 1, · · · , n.

So the only information contained in X (A) about diag(A) is trace(A), which makes

it impossible to recover the whole matrix A.

2.4 Application to Estimation of Spiked Covari-

ance Matrix

In this section, we consider an interesting application of the methods and results de-

veloped in the previous sections to estimation of a spiked covariance matrix based on

one-dimensional projections. As mentioned in the introduction, spiked covariance ma-

trix model has been used in a wide range of applications and it has been well studied

in the context of PCA based on i.i.d. data where one observes i.i.d. p-dimensional ran-

dom vectors X(1), · · · , X(n) with mean 0 and covariance matrix Σ, where Σ = Ip+ Σ0

and Σ0 being low-rank. See, for example, (Johnstone 2001, Birnbaum et al. 2013,

Cai et al. 2013b,a). Here we consider estimation of Σ0 (or equivalently Σ) based only

on one-dimensional random projections of X(i). More specifically, suppose that the
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random vectors X(1), · · · , X(n) are not directly observable and instead we observe

ξi = 〈β(i), X(i)〉 =

p∑
j=1

β
(i)
j X

(i)
j , i = 1, ..., n, (2.31)

where β(i) iid∼ N(0, Ip). The goal is to recover Σ0 from the projections {ξi, i =

1, · · · , n}.

Let y = (y1, ..., yn)ᵀ with yi = ξ2
i − β(i)ᵀβ(i). Note that

E(ξ2|β) = E

(∑
i,j

βiβjXiXj|β

)
=
∑
i,j

βiβjσi,j = βᵀΣβ

and so E(ξ2 − βᵀβ|β) = βᵀΣ0β. Define a linear map X : Sp → Rn by

[X (A)]i = β(i)ᵀAβ(i). (2.32)

Then y can be formally written as

y = X (Σ0) + z (2.33)

where z = y − X (Σ0). We define the corresponding X̃ and ỹ as in (2.20) and (2.21)

respectively, and apply the constraint nuclear norm minimization to recover the low-

rank matrix Σ0 by

Σ̂0 = arg min
M

{
‖M‖∗ : ‖y −X (M)‖ ≤ η1, ‖X̃ ∗(ỹ − X̃ (M))‖ ≤ η2

}
. (2.34)

The tuning parameters η1 and η2 are chosen as

η1 = c1

n∑
i=1

ξ2
i and η2 = 24c2

√√√√p
n∑
i=1

ξ4
i + 48c3p log n max

1≤i≤n
ξ2
i (2.35)
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where c1 >
√

2, c2, c3 > 1 are constants.

We have the following result on the estimator (2.34) for spiked covariance matrix

estimation.

Theorem 2.4.1. Suppose n ≥ 3, we observe ξi, i = 1, · · · , n, as in (2.31), where

β(i) iid∼ N(0, Ip) and X(1), · · · , X(n) iid∼ N(0,Σ) with Σ = Ip + Σ0 and Σ0 positive

semidefinite and rank(Σ0) ≤ r. Let Σ̂0 be given by (2.34). Then there exist uniform

constants C, D, δ such that when n ≥ Drp,

‖Σ̂0 − Σ0‖2
F ≤ C min

(
rp

n
‖Σ‖2

∗ +
rp2 log4 n

n2
(‖Σ‖2

∗ + log2 n‖Σ‖2), ‖Σ‖2
∗

)
(2.36)

with probability at least 1−O(1/n)− 4 exp(−pδ)− 2√
2π logn

.

Remark 2.4.1. We have focused estimation of spiked covariance matrices on the

setting where the random vectors X(i) are Gaussian. Similar to the discussion in

Section 2.3, the results given here can be extended to more general distributions

under certain moment conditions.

Remark 2.4.2. The problem considered in this section is related to the so-called

covariance sketching problem considered in Dasarathy et al. (2012). In covariance

sketching, the goal is to estimate the covariance matrix of high-dimensional random

vectors X(1), · · · , X(n) based on the low dimensional projections

y(i) = QX(i), i = 1, ...n,

where Q is a fixed m×p projection matrix with m < p. The main differences between

the two settings are that the projection matrix in covariance sketch is the same for

all X(i) and the dimension m is still relatively large with m ≥ C
√
p log3 p for some

C > 0. In our setting, m = 1 and Q is random and varies with i. The techniques for
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solving the two problems are very different. Comparing to Dasarathy et al. (2012), the

results in this section indicate that there is a significant advantage to have different

random projections for different random vectors X(i) as opposed to having the same

projection for all X(i).

2.5 Simulation Results

The constrained nuclear norm minimization methods can be efficiently implemented.

The estimator Â proposed in Section 2.2.3 can be implemented by the following

convex programming:

minimize Tr(B1) + Tr(B2)

subject to

B1 A

Aᵀ B2

 � 0, ‖y −X (A)‖1 ≤ λ1, ‖X ∗(y −X (A))‖ ≤ λ2,
(2.37)

with optimization variables B1 ∈ Sp1 , B2 ∈ Sp2 , A ∈ Rp1×p2 . We use the CVX package

(Grant and Boyd, 2012, 2008) to implement the proposed procedures. In this section,

a simulation study is carried out to investigate the numerical performance of the

proposed procedures for low-rank matrix recovery in various settings.

We begin with the noiseless case. In this setting, Theorem 2.2.2 and Corollary

2.2.1 show that the nuclear norm minimization recovers a rank r matrix exactly

whenever

n ≥ Crmax(p1, p2). (2.38)

A similar result holds for the Gaussian ensemble (Candès and Plan, 2011). However,

the minimum constant C that guarantees the exact recovery with high probability is

not specified in either case. It is of practical interest to find the minimum constant

C. For this purpose, we randomly generate p1 × p2 rank r matrices A as A =
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XᵀY , where X ∈ Rr×p1 , Y ∈ Rr×p2 are i.i.d. Gaussian matrices. We compare

ROP from the standard Gaussian distribution and the Gaussian ensemble, with the

number of measurements n = Crmax(p1, p2) from a range of values of C using the

constrained nuclear norm minimization (2.7). A recovery is considered successful

if ‖Â − A‖F/‖A‖F ≤ 10−4. Figure 2.1 shows the rate of successful recovery when

p1 = p2 = 100 and r = 5.
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Figure 2.1: Rates of successful recovery for the ROP and Gaussian ensemble with

p1 = p2 = 100, r = 5, and n = Crmax(p1, p2) for C ranging from 3 to 6.

The numerical results show that for ROP from the Gaussian distribution, the

minimum constant C to ensure exact recovery with high probability is slightly less

than 5 in the small scale problems (p1, p2 ≤ 100) we tested. The corresponding mini-

mum constant C for the Gaussian ensemble is about 4.5. Matrix completion requires

much larger number of measurements. Based on the theoretical analyses given in

Candès and Recht (2009), Recht (2011), the required number of measurements for

matrix completion is O(µr(p1 + p2) log2(p1 + p2)), where µ ≥ 1 is some coherence

constant describing the “spikedness” of the matrix A. Hence for matrix completion,

the factor C in (2.38) needs to grow with the dimensions p1 and p2 and it requires

C & µ log2(p1 + p2), which is much larger than what is needed for the ROP or Gaus-
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sian ensemble. The required storage space for the Gaussian ensemble is much greater

than that for the ROP. In order to ensure accurate recovery of p× p matrices of rank

r, one needs at least 4.5rp3 bytes of space to store the measurement matrices, which

could be prohibitively large for the recovery of high-dimensional matrices. In con-

trast, the storage space for the projection vectors in ROP is only 10rp2 bytes, which

is far smaller than what is required by the Gaussian ensemble in the high-dimensional

case.

We then consider the recovery of approximately low-rank matrices to investigate

the robustness of the method against small perturbations. To this end, we randomly

draw 100× 100 matrix A as A = U · diag(1, 2−1/2, · · · , r−1/2) · V ᵀ, where U ∈ R100×r

and V ∈ R100×r are random matrices with orthonormal columns. We then observe

n = 2000 random rank-one projections with the measurement vectors being i.i.d.

Gaussian. Based on the observations, the nuclear minimization procedure (2.7) is

applied to estimate A. The results for different values of r are shown in Figure 2.2. It

can be seen from the plot that in this setting one can exactly recover a matrix of rank

at most 4 with 2000 measurements. However, when the rank r of the true matrix

A exceeds 4, the estimate is still stable. The theoretical result in Proposition 2.2.1

bounds the loss (solid line) at O(‖A−max(4)‖2
∗/4) (shown in the dashed line) with high

probability, which corresponds to Figure 2.2.

We now turn to the noisy case. The low-rank matrices A are generated by A =

XᵀY , where X ∈ Rr×p1 and Y ∈ Rr×p2 are i.i.d. Gaussian matrices. The ROP X is

from the standard Gaussian distribution and the noise vector z ∼ Nn(0, σ2). Based

on (X , y) with y = X (A) + z, we compare our proposed estimator Â with the `1

constraint minimization estimator Â`1 (Chen et al., 2013) and the matrix Dantzig
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Figure 2.2: Recovery accuracy (solid line) for approximately low-rank matrices with

different values of r, where p1 = p2 = 100, n = 2000, σ(A) = (1, 1/
√

2, · · · , 1/
√
r).

The dashed line is the theoretical upper bound.

Selector ÂDS (Candès and Plan, 2011), where

Â = arg min
M
{‖M‖∗ : y −X (M) ∈ Z1 ∩ Z2},

Â`1 = arg min
M
{‖M‖∗ : y −X (M) ∈ Z1},

ÂDS = arg min
M
{‖M‖∗ : y −X (M) ∈ Z2},

with Z1 = {z : ‖z‖1/n ≤ σ} and Z2 = {z : ‖X (z)‖ ≤ σ(
√

log n(p1 + p2) +√
n(p1 + p2))}. Note that Â`1 is similar to the estimator proposed in Chen et al.

(2013), except their estimator is for symmetric matrices under the SROP but ours is

for general low-rank matrices under the ROP. Figure 2.3 compares the performance

of the three estimators. It can be seen from the left panel that for small n, `1 con-

strained minimization outperforms the matrix Dantzig Selector, while our estimator

outperforms both Â`1 and ÂDS. When n is large, our estimator and ÂDS are essen-

tially the same and both outperforms Â`1 . The right panel of Figure 2.3 plots the
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ratio of the squared Frobenius norm loss of Â`1 to that of our estimator. The ratio

increases with n. These numerical results are consistent with the observations made

in Remark 2.2.3.
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Figure 2.3: Left Panel: Comparison of the proposed estimator with Â`1 and ÂDS

for p1 = p2 = 50, r = 4, σ = 0.01, and n ranging from 850 to 1200. Right Panel:

Ratio of the squared Frobenius norm loss of Â`1 to that of the proposed estimator for

p1 = p2 = 50, r = 4, and n varying from 2000 to 15000.

We now turn to the recovery of symmetric low-rank matrices under the SROP

model (2.18). Let X be SROP from the standard normal distribution. We consider the

setting where p = 40, n varies from 50 to 600, zi ∼ σ ·U [−1, 1] with σ = .1, .01, .001 or

.0001, and A is randomly generated as rank-5 matrix by the same procedure discussed

above. The setting is identical to the one considered in Section 5.1 of Chen et al.

(2013). Although we cannot exactly repeat the simulation study in Chen et al. (2013)

as they did not specify the choice of the tuning parameter, we can implement both
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our procedure

Â = arg min
M

{
‖M‖∗ : ‖y −X (M)‖1 ≤

nσ

2
,

‖X̃ ∗(ỹ − X̃ (M))‖ ≤
σ(
√

log np+
√
np)

3

}
and the estimator Â`1 with only the `1 constraint which was proposed by Chen et al.

(2013)

Â`1 = arg min
M

{
‖M‖∗ : ‖y −X (M)‖1 ≤

nσ

2

}
.

The results are given in Figure 2.4. It can be seen that our estimator Â outperforms

the estimator Â`1 .
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Figure 2.4: Comparison of the proposed estimator Â with the Â`1 . Here p = 40,

r = 5, σ = 0.1, 0.01, 0.001, 0.0001, and n ranges from 50 to 800.
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2.5.1 Data Driven Selection of Tuning Parameters

We have so far considered the estimators

Â = arg min
B
{‖B‖∗ : ‖y −X (B)‖1/n ≤ λ, ‖X ∗(y −X (B))‖ ≤ η}, (2.39)

Â = arg min
M
{‖M‖∗ : ‖y −X (M)‖1/n ≤ λ, ‖X̃ ∗(ỹ − X̃ (M))‖ ≤ η} (2.40)

for the ROP and SROP, respectively. The theoretical choice of the tuning parameters

λ and η depends on the knowledge of the error distribution such as the variance. In

real applications, such information may not be available and/or the theoretical choice

may not be the best. It is thus desirable to have a data driven choice of the tuning

parameters. We now introduce a practical method for selecting the tuning parameters

using K-fold cross-validation.

Let (X , y) = {(Xi, yi), i = 1, · · · , n} be the observed sample and let T be a grid

of positive real values. For each t ∈ T , set

(λ, η) = (λ(t), η(t)) =


(
t, t
(√

log n(p1 + p2) +
√
n(p1 + p2)

))
for ROP;(

t, t
(√

log np+
√
np
))

for SROP.

(2.41)

Randomly split the n samples (Xi, yi), i = 1, · · · , n into two groups of sizes n1 ∼
(K−1)n

K
and n2 ∼ n

K
for I times. Denote by J i1, J

i
2 ⊆ {1, · · · , n} the index sets for

Group 1 and Group 2 respectively for the i-th split. Apply our procedure ((2.39) for

ROP and(2.40) for SROP, respectively) to the sub-samples in Group 1 with the tuning

parameters (λ(t), η(t)) and denote the estimators by Âi(t), i = 1, · · · , I. Evaluate

the prediction error of Âi(t) over the sub-sample in Group 2 and set

R̂(t) =
I∑
i=1

∑
j∈Ji2

|yj − 〈Ai(t), Xj〉|2, t ∈ T.
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We select

t∗ = arg min
T

R̂(t)

and choose the tuning parameters (λ(t∗), η(t∗)) as in (2.41) with t = t∗ and the final

estimator Â based on (2.39) or (2.40) with the chosen tuning parameters.

We compare the numerical result by 5-fold cross-validation with the result based on

the known σ by simulation in Figure 2.5. Both the ROP and SROP are considered.

It can be seen that the estimator with the tuning parameters chosen through 5-

fold cross-validation has the same performance as or outperforms the one with the

theoretical choice of the tuning parameters.
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Figure 2.5: Comparison of the performance with cross validation and without cross-

validation in both ROP and SROP. Left panel: ROP, p1 = p2 = 30, r = 4, n varies

from 750 to 1400. Right panel: SROP, p = 40, r = 5, n varies from 50 to 800.

2.5.2 Image Compression

Since a two-dimensional image can be considered as a matrix, one approach to im-

age compression is by using low-rank matrix approximation via the singular value
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decomposition. See, for example, Andrews and Patterson (1976), Recht et al. (2010),

Wakin et al. (2006). Here we use an image recovery example to further illustrate the

nuclear norm minimization method under the ROP model.

For a grayscale image, let A = (ai,j) ∈ Rm×n be the intensity matrix associated

with the image, where aij is the grayscale intensity of the (i, j) pixel. When the

matrix A is approximately low-rank, the ROP model and nuclear norm minimization

method can be used for image compression and recovery. To illustrate this point, let

us consider the following grayscale MIT Logo image (Figure 2.6).

Figure 2.6: Original grayscale MIT logo

The matrix associated with MIT logo is of the size 50×80 and of rank 6. We take

rank-one random projections X (A) as the observed sample, with various sample sizes.

Then the constrained nuclear norm minimization method is applied to reconstruct

the original low-rank matrix. The recovery results are shown in Figure 2.7. The

results show that the original image can be compressed and recovered well via the

ROP model and the nuclear norm minimization.

2.6 Discussions

This chapter introduces the ROP model for the recovery of general low-rank matrices.

A constrained nuclear norm minimization method is proposed and its theoretical

and numerical properties are studied. The proposed estimator is shown to be rate-
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Figure 2.7: recovery of MIT logo based on different number of measurements. Left:

900; Middle: 1000; Right: 1080.

optimal when the number of rank-one projections n & log n(p1 + p2) or n ∼ r(p1 +

p2). It is also shown that the procedure is adaptive to the rank and robust against

small perturbations. The method and results are applied to estimation of a spiked

covariance matrix. It is somewhat unexpected that it is possible to accurately recover

a spiked covariance matrix from only one-dimensional projections. An interesting

open problem is to estimate the principal components/subspace based on the one-

dimensional random projections. We leave this as future work.

In a recent paper, Chen et al. (2013) considered quadratic measurements for the

recovery of symmetric positive definite matrices, which is similar to the special case

of SROP that we studied here. The paper was posted on arXiv as we finish writing

the present chapter. They considered the noiseless and `1 bounded noise cases and

introduced the so-called “RIP-`2/`1” condition. The “RIP-`2/`1” condition is similar

to RUB in our work. But these two conditions are not identical as the RIP-`2/`1

condition can only be applied to symmetric low-rank matrices as only symmetric

operators are considered in the paper. In contrast, RUB applies to all low-rank

matrices.

Chen et al. (2013) (version 4) considered `1-bounded noise case under the SROP

model and gave an upper bound in their Theorem 3 (after a slight change of notation)

‖Σ̂− Σ‖F ≤ C1
‖Σ− ΣΩ‖∗√

r
+ C2

ε

n
. (2.42)
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This result for `1 bounded noise case is not applicable to the i.i.d. random noise

setting. When the entries of the noise term η ∈ Rn are of constant order, which is

the typical case for i.i.d. noise with constant variance, one has ‖η‖1 ∼ Cn with high

probability. In such a case, the term C2
ε1
n

on the right hand side of (2.42) does not

even converge to 0 as the sample size n→∞.

In comparison, the bound (2.30) in Proposition 2.3.1 can be equivalently rewritten

as

‖Â− A‖F ≤ W2

‖A−max(r)‖∗√
r

+W1τ min

(√
r log n p

n
+

√
rp

n
, 1

)
(2.43)

where the first term W2
‖A−max(r)‖∗√

r
is of the same order as C1

‖Σ−ΣΩ‖∗√
r

in (2.42) while

the second term decays to 0 as n→∞. Hence, for the recovery of rank-r matrices, as

the sample size n increases our bound decays to 0 but the bound (2.42) given in Chen

et al. (2013) does not. The main reason of this phenomenon lies in the difference in

the two methods: we use nuclear norm minimization under two convex constraints

(See Remark 2.3), but Chen et al. (2013) used only the `1 constraint. Both theoretical

results (see Remark 2.2.3) and numerical results (Figure 2.3 in Section 2.5) show that

the additional constraint Z2 improves the performance of the estimator.

Moreover, the results and techniques in Chen et al. (2013) for symmetric positive

definite matrices are not applicable to the recovery of general non-symmetric matrices.

This is due to the fact that for a non-symmetric square matrix A = (aij), the quadratic

measurements (β(i))ᵀAβ(i) satisfy

(β(i))ᵀAβ(i) = (β(i))ᵀAsβ(i),

where As = 1
2
(A + Aᵀ). Hence, for a non-symmetric matrix A, only its symmetrized

version As can be possibly identified and estimated based on the quadratic measure-

ments, the matrix A itself is neither identifiable nor estimable.
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3
Structured Matrix Completion

3.1 Introduction

Motivated by an array of applications, matrix completion has attracted significant re-

cent attention in different fields including statistics, applied mathematics and electri-

cal engineering. The central goal of matrix completion is to recover a high-dimensional

low-rank matrix based on a subset of its entries. Applications include recommender

systems (Koren et al., 2009), genomics (Chi et al., 2013), multi-task learning (Ar-

gyriou et al., 2008), sensor localization (Biswas et al., 2006; Singer and Cucuringu,

2010), and computer vision (Chen and Suter, 2004; Tomasi and Kanade, 1992), among

many others.

Matrix completion has been well studied under the uniform sampling model, where

observed entries are assumed to be sampled uniformly at random. The best known

approach is perhaps the constrained nuclear norm minimization (NNM), which has

been shown to yield near-optimal results when the sampling distribution of the ob-

served entries is uniform (Candès and Recht, 2009; Candès and Tao, 2010; Gross,

2011; Recht, 2011; Candès and Plan, 2011). For estimating approximately low-rank

matrices from uniformly sampled noisy observations, several penalized or constrained

NNM estimators, which are based on the same principle as the well-known Lasso and
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Dantzig selector for sparse signal recovery, were proposed and analyzed (Keshavan

et al., 2010; Mazumder et al., 2010; Koltchinskii, 2011; Koltchinskii et al., 2011; Rohde

and Tsybakov, 2011). In many applications, the entries are sampled independently

but not uniformly. In such a setting, Salakhutdinov and Srebro (2010) showed that

the standard NNM methods do not perform well, and proposed a weighted NNM

method, which depends on the true sampling distribution. In the case of unknown

sampling distribution, Foygel et al. (2011) introduced an empirically-weighted NNM

method. Cai and Zhou (2013) studied a max-norm constrained minimization method

for the recovery of a low-rank matrix based on the noisy observations under the non-

uniform sampling model. It was shown that the max-norm constrained least squares

estimator is rate-optimal under the Frobenius norm loss and yields a more stable

approximate recovery guarantee with respect to the sampling distributions.

The focus of matrix completion has so far been on the recovery of a low-rank

matrix based on independently sampled entries. Motivated by applications in genomic

data integration, we introduce in this chapter a new framework of matrix completion

called structured matrix completion (SMC), where a subset of the rows and a subset

of the columns of an approximately low-rank matrix are observed and the goal is

to reconstruct the whole matrix based on the observed rows and columns. We first

discuss the genomic data integration problem before introducing the SMC model.

3.1.1 Genomic Data Integration

When analyzing genome-wide studies (GWS) of association, expression profiling or

methylation, ensuring adequate power of the analysis is one of the most crucial goals

due to the high dimensionality of the genomic markers under consideration. Because

of cost constraints, GWS typically have small to moderate sample sizes and hence

limited power. One approach to increase the power is to integrate information from
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multiple GWS of the same phenotype. However, some practical complications may

hamper the feasibility of such integrative analysis. Different GWS often involve dif-

ferent platforms with distinct genomic coverage. For example, whole genome next

generation sequencing (NGS) studies would provide mutation information on all loci

while older technologies for genome-wide association studies (GWAS) would only

provide information on a small subset of loci. In some settings, certain studies may

provide a wider range of genomic data than others. For example, one study may pro-

vide extensive genomic measurements including gene expression, miRNA and DNA

methylation while other studies may only measure gene expression.

To perform integrative analysis of studies with different extent of genomic mea-

surements, the naive complete observation only approach may suffer from low power.

For the GWAS setting with a small fraction of loci missing, many imputation methods

have been proposed in recent years to improve the power of the studies. Examples of

useful methods include haplotype reconstruction, k-nearest neighbor, regression and

singular value decomposition methods (Scheet and Stephens, 2006; Li and Abecasis,

2006; Browning and Browning, 2009; Troyanskaya et al., 2001; Kim et al., 2005; Wang

et al., 2006). Many of the haplotype phasing methods are considered to be highly

effective in recovering missing genotype information (Yu and Schaid, 2007). These

methods, while useful, are often computationally intensive. In addition, when one

study has a much denser coverage than the other, the fraction of missingness could

be high and an exceedingly large number of observation would need to be imputed.

It is unclear whether it is statistically or computationally feasible to extend these

methods to such settings. Moreover, haplotype based methods cannot be extended

to incorporate other types of genomic data such as gene expression and miRNA data.

When integrating multiple studies with different extent of genomic measurements,

the observed data can be viewed as complete rows and columns of a large matrix
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A and the missing components can be arranged as a submatrix of A. As such,

the missingness in A is structured by design. In this chapter, we propose a novel

SMC method for imputing the missing submatrix of A. As shown in Section 3.5, by

imputing the missing miRNA measurements and constructing prediction rules based

on the imputed data, it is possible to significantly improve the prediction performance.

3.1.2 Structured Matrix Completion Model

Motivated by the applications mentioned above, this chapter considers SMC where

a subset of rows and columns are observed. Specifically, we observe m1 < p1 rows

and m2 < p2 columns of a matrix A ∈ Rp1×p2 and the goal is to recover the whole

matrix. Since the singular values are invariant under row/column permutations, it

can be assumed without loss of generality that we observe the first m1 rows and m2

columns of A which can be written in a block form:

A =

m2 p2 −m2 A11 A12 m1

A21 A22 p1 −m1

(3.1)

where A11, A12, and A21 are observed and the goal is to recover the missing block

A22. See Figure 3.1(a) in Section 3.2 for a graphical display of the data. Clearly there

is no way to recover A22 if A is an arbitrary matrix. However, in many applications

such as genomic data integration discussed earlier, A is approximately low-rank, which

makes it possible to recover A22 with accuracy. In this chapter, we introduce a method

based on the singular value decomposition (SVD) for the recovery of A22 when A is

approximately low-rank.

It is important to note that the observations here are much more “structured”

comparing to the previous settings of matrix completion. As the observed entries are
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in full rows or full columns, the existing methods based on NNM are not suitable. As

mentioned earlier, constrained NNM methods have been widely used in matrix com-

pletion problems based on independently observed entries. However, for the problem

considered in the present chapter, these methods do not utilize the structure of the

observations and do not guarantee precise recovery even for exactly low-rank matrix

A (See Remark 3.2.1 in Section 3.2). Numerical results in Section 3.4 show that NNM

methods do not perform well in SMC.

In this chapter we propose a new SMC method that can be easily implemented

by a fast algorithm which only involves basic matrix operations and the SVD. The

main idea of our recovery procedure is based on the Schur Complement. In the

ideal case when A is exactly low rank, the Schur complement of the missing block,

A22−A21A
†
11A12, is zero and thus A21A

†
11A12 can be used to recover A22 exactly. When

A is approximately low rank, A21A
†
11A12 cannot be used directly to estimate A22. For

this case, we transform the observed blocks using SVD; remove some unimportant

rows and columns based on thresholding rules; and subsequently apply a similar

procedure to recover A22.

Both its theoretical and numerical properties are studied. It is shown that the

estimator recovers low-rank matrices accurately and is robust against small pertur-

bations. A lower bound result shows that the estimator is rate optimal for a class of

approximately low-rank matrices. Although it is required for the theoretical analysis

that there is a significant gap between the singular values of the true low-rank matrix

and those of the perturbation, simulation results indicate that this gap is not really

necessary in practice and the estimator recovers A accurately whenever the singular

values of A decay sufficiently fast.
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3.1.3 Organization of the Paper

The rest of the chapter is organized as follows. In Section 3.2, we introduce in

detail the proposed SMC methods when A is exactly or approximately low-rank. The

theoretical properties of the estimators are analyzed in Section 3.3. Both upper and

lower bounds for the recovery accuracy under the Schatten-q norm loss are established.

Simulation results are shown in Section 3.4 to investigate the numerical performance

of the proposed methods. A real data application to genomic data integration is

given in Section 3.5. Section 3.6 discusses a few practical issues related to real data

applications. For reasons of space, the proofs of the main results and additional

simulation results are given in the Appendix. Some key technical tools used in the

proofs of the main theorems are also developed and proved in the Appendix.

3.2 Structured Matrix Completion: Methodology

In this section, we propose procedures to recover the submatrix A22 based on the

observed blocks A11, A12, and A21. We begin with basic notation and definitions that

will be used in the rest of the chapter.

For a matrix U , we use U[Ω1,Ω2] to represent its sub-matrix with row indices Ω1

and column indices Ω2. We also use the Matlab syntax to represent index sets.

Specifically for integers a ≤ b, “a : b” represents {a, a + 1, · · · , b}; and “:” alone

represents the entire index set. Therefore, U[:,1:r] stands for the first r columns of

U while U[(m1+1):p1,:] stands for the {m1 + 1, ..., p1}th rows of U . For the matrix A

given in (3.1), we use the notation A•1 and A1• to denote [Aᵀ11, A
ᵀ
21]ᵀ and [A11, A12],

respectively. For a matrix B ∈ Rm×n, let B = UΣV ᵀ =
∑

i σi(B)uiv
ᵀ
i be the SVD,

where Σ = diag{σ1(B), σ2(B), ...} with σ1(B) ≥ σ2(B) ≥ · · · ≥ 0 being the singular

values of B in decreasing order. The smallest singular value σmin(m,n), which will
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be denoted by σmin(B), plays an important role in our analysis. We also define

Bmax(r) =
∑r

i=1 σi(B)uiv
ᵀ
i and B−max(r) = B − Bmax(r) =

∑
i≥r+1 σi(B)uiv

ᵀ
i . For

1 ≤ q ≤ ∞, the Schatten-q norm ‖B‖q is defined to be the vector q-norm of the

singular values of B, i.e. ‖B‖q = (
∑

i σ
q
i (B))1/q. Three special cases are of particular

interest: when q = 1, ‖B‖1 =
∑

i σi(B) is the nuclear (or trace) norm of B and

will be denoted as ‖B‖∗; when q = 2, ‖B‖2 =
√∑

i,j B
2
ij is the Frobenius norm

of B and will be denoted as ‖B‖F ; when q = ∞, ‖B‖∞ = σ1(B) is the spectral

norm of B that we simply denote as ‖B‖. For any matrix U ∈ Rp×n, we use PU ≡

U (UᵀU)† Uᵀ ∈ Rp×p to denote the projection operator onto the column space of

U . Throughout, we assume that A is approximately rank r in that for some integer

0 < r ≤ min(m1,m2), there is a significant gap between σr(A) and σr+1(A) and the

tail ‖A−max(r)‖q =
(∑

k≥r+1 σ
q
k(A)

)1/q
is small. The gap assumption enables us to

provide a theoretical upper bound on the accuracy of the estimator, while it is not

necessary in practice (see Section 3.4 for more details).

3.2.1 Exact Low-rank Matrix Recovery

We begin with the relatively easy case where A is exactly of rank r. In this case, a

simple analysis indicates that A can be perfectly recovered as shown in the following

proposition.

Proposition 3.2.1. Suppose A is of rank r, the SVD of A11 is A11 = UΣV ᵀ, where

U ∈ Rp1×r,Σ ∈ Rr×r, and V ∈ Rp2×r. If

rank([A11 A12]) = rank


A11

A21


 = rank(A) = r,
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then rank(A11) = r and A22 is exactly given by

A22 = A21(A11)†A12 = A21V (Σ)−1UᵀA12. (3.2)

Remark 3.2.1. Under the same conditions as Proposition 3.2.1, the NNM

Â22 = arg min
B

∥∥∥∥∥∥∥
A11 A12

A21 B


∥∥∥∥∥∥∥
∗

(3.3)

fails to guarantee the exact recovery of A22. Consider the case where A is a p1 ×

p2 matrix with all entries being 1. Suppose we observe arbitrary m1 rows and

m2 columns, the NNM would yield Â22 ∈ R(p1−m1)×(p2−m2) with all entries being(
1 ∧

√
m1m2

(p1−m1)(p2−m2)

)
(See Lemma A.3.4 in the Appendix). Hence when m1m2 <

(p1 −m1)(p2 −m2), i.e., when the size of the observed blocks are much smaller than

that of A, the NNM fails to recover exactly the missing block A22. See also the

numerical comparison in Section 3.4. The NNM (3.3) also fails to recover A22 with

high probability in a random matrix setting where A = B1B
T
2 with B1 ∈ Rp1×r and

B2 ∈ Rp2×r being i.i.d. standard Gaussian matrices. See Lemma A.3.3 in the Ap-

pendix for further details. In addition to (3.3), other variations of NNM have been

proposed in the literature, including penalized NNM (Toh and Yun, 2010; Mazumder

et al., 2010),

ÂPN = arg min
Z

1

2

∑
(ik,jk)∈Ω

(Zik,jk − Aik,jk)2 + t‖Z‖∗

 ; (3.4)

and constrained NNM with relaxation (Cai et al., 2010a),

ÂCN = arg min
Z

{‖Z‖∗ : |Zik,jk − Aik,jk | ≤ t for (ik, jk) ∈ Ω} , (3.5)
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where Ω = {(ik, jk) : Aik,jk observed, 1 ≤ ik ≤ p1, 1 ≤ jk ≤ p2} and t is the tun-

ning parameter. However, these NNM methods may not be suitable for SMC espe-

cially when only a small number of rows and columns are observed. In particular,

when m1 � p1,m2 � p2, A is well spread in each block A11, A12, A21, A22, we have

‖[A11 A12]‖∗ � ‖A‖∗, [A12]∗ � ‖A‖∗. Thus,

∥∥∥∥∥∥∥
A11 A12

A21 0


∥∥∥∥∥∥∥
∗

≤

∥∥∥∥∥∥∥
A11

A21


∥∥∥∥∥∥∥
∗

+

∥∥∥∥[A12

]∥∥∥∥
∗
�

∥∥∥∥∥∥∥
A11 A12

A21 A22


∥∥∥∥∥∥∥
∗

.

In the other words, imputing A22 with all zero yields a much smaller nuclear norm

than imputing with the true A22 and hence NNM methods would generally fail to

recover A22 under such settings.

Proposition 3.2.1 shows that, when A is exactly low-rank, A22 can be recovered

precisely by A21(A11)†A12. Unfortunately, this result heavily relies on the exactly low-

rank assumption that cannot be directly used for approximately low-rank matrices.

In fact, even with a small perturbation to A, the inverse of A11 makes the formula

A21(A11)†A12 unstable, which may lead to the failure of recovery. In practice, A is

often not exactly low rank but approximately low rank. Thus for the rest of the

chapter, we focus on the latter setting.
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3.2.2 Approximate Low-rank Matrix Recovery

Let A = UΣV ᵀ be the SVD of an approximately low rank matrix A and partition

U ∈ Rp1×p1 , V ∈ Rp2×p2 and Σ ∈ Rp1×p2 into blocks as

U =

r p1 − r U11 U12 m1

U21 U22 p1 −m1

, V =

r p2 − r V11 V12 m2

V21 V22 p2 −m2

, Σ =

r p2 − r Σ1 0 r

0 Σ2 p1 − r

(3.6)

Then A can be decomposed as A = Amax(r) + A−max(r) where Amax(r) is of rank r

with the largest r singular values of A and A−max(r) is general but with small singular

values. Then

Amax(r) = U•1Σ1V
ᵀ
•1 =

m2 p2 −m2 U11Σ1V
ᵀ

11 U11Σ1V
ᵀ

21 m1

U21Σ1V
ᵀ

11 U21Σ1V
ᵀ

21 p1 −m1

, and A−max(r) = U•2Σ2V
ᵀ
•2.

(3.7)

Here and in the sequel, we use the notation U•k and Uk• to denote [Uᵀ1k, U
ᵀ
2k]
ᵀ and

[Uk1, Uk2], respectively. Thus, Amax(r) can be viewed as a rank-r approximation to A

and obviously

U21Σ1V
ᵀ

21 = {U21Σ1V
ᵀ

11}{U11Σ1Vᵀ11}−1{U11Σ1V
ᵀ

21}.

We will use the observed A11, A12 and A21 to obtain estimates of U•1, V•1 and Σ1 and

subsequently recover A22 using an estimated U21Σ1V
ᵀ

21.

When r is known, i.e., we know where the gap is located in the singular values of

A, a simple procedure can be implemented to estimate A22 as described in Algorithm
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1 below by estimating U•1 and V•1 using the principal components of A•1 and A1•.

Algorithm 1 Algorithm for Structured Matrix Completion with a given r

1: Input: A11 ∈ Rm1×m2 , A12 ∈ R(p1−m1)×m2 , A21 ∈ Rm1×(p2−m2).
2: Calculate the SVD of A•1 and A1• to obtain A•1 = U (1)Σ(1)V (1)ᵀ, A1• =
U (2)Σ(2)V (2)ᵀ.

3: Suppose M,N are orthonormal basis of U11, V11. We estimate the column space
of U11 and V11 by M̂ = U

(2)
[:,1:r], N̂ = V

(1)
[:,1:r].

4: Finally we estimate A22 as

Â22 = A21N̂(M̂ᵀA11N̂)−1M̂ᵀA12. (3.8)

However, Algorithm 1 has several major limitations. First, it relies on a given

r which is typically unknown in practice. Second, the algorithm need to calculate

the matrix divisions, which may cause serious precision issues when the matrix is

near-singular or the rank r is mis-specified. To overcome these difficulties, we propose

another Algorithm which essentially first estimates r with r̂ and then apply Algorithm

1 to recover A22. Before introducing the algorithm of recovery without knowing r, it

is helpful to illustrate the idea with heat maps in Figures 3.1 and 3.2.

(a) heatmap of block-wise A (b) images/SMC/heatmap of block-wise Z
after rotation

Figure 3.1: Illustrative example with A ∈ R30×30, m1 = m2 = 10. (A darker block

corresponds to larger magnitude.)
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(a) Intermediate step when r̂ = 9 (b) Identify the position to truncate at r̂ = 4

Figure 3.2: Searching for the appropriate position to truncate from r̂ = 10 to 1.

Our procedure has three steps.

1. First, we move the significant factors of A•1 and A1• to the front by rotating

the columns of A•1 and the rows of A1• based on the SVD,

A•1 = U (1)Σ(1)V (1)ᵀ, A1• = U (2)Σ(2)V (2)ᵀ.

After the transformation, we have Z11, Z12, Z21,

Z11 = U (2)ᵀA11V
(1), Z12 = U (2)ᵀA12, Z21 = A21V

(1), Z22 = A22.

Clearly A and Z have the same singular values since the transformation is

orthogonal. As shown in Figure 3.1(b), the amplitudes of the columns of Z•1 =

[Zᵀ11, Z
ᵀ
21]ᵀ and the rows of Z1• = [Z11, Z12] are decaying.

2. When A is exactly of rank r, the {r + 1, · · · ,m1}th rows and {r + 1, · · · ,m2}th

columns of Z are zero. Due to the small perturbation term A−max(r), the back

columns of Z•1 and rows of Z1• are small but non-zero. In order to recover

Amax(r), the best rank r approximation to A, a natural idea is to first delete
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these back rows of Z1• and columns of Z•1, i.e. the {r + 1, · · · ,m1}th rows and

{r + 1, · · · ,m2}th columns of Z.

However, since r is unknown, it is unclear how many back rows and columns

should be removed. It will be helpful to have an estimate for r, r̂, and then use

Z21,[:,1:r̂], Z11,[1:r̂,1:r̂] and Z12[1:r̂,:] to recover A22. It will be shown that a good

choice of r̂ would satisfy that Z11,[1:r̂,1:r̂] is non-singular and ‖Z21,[1:r̂,1:r̂]Z
−1
11,[1:r̂,1:r̂]‖ ≤

TR, where TR is some constant to be specified later. Our final estimator for r

would be the largest r̂ that satisfies this condition, which can be identified

recursively from min(m1,m2) to 1 (See Figure 3.2).

3. Finally, similar to (3.2), A22 can be estimated by

Â22 = Z21,[:,1:r̂]Z
−1
11,[1:r̂,1:r̂]Z12,[1:r̂,:], (3.9)

The method we propose can be summarized as the following algorithm.
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Algorithm 2 Algorithm of Structured Matrix Completion with unknown r

1: Input: A11 ∈ Rm1×m2 , A
m1×(p2−m2)
12 , A

(p1−m1)×m2

21 . Thresholding level: TR, (or TC).
2: Calculate the SVD A•1 = U (1)Σ(1)V (1)ᵀ, A1• = U (2)Σ(2)V (2)ᵀ.
3: Calculate Z11 ∈ Rm1×m2 , Z12 ∈ Rm1×(p2−m2), Z21 ∈ R(p1−m1)×m2

Z11 = U (2)ᵀA11V
(1), Z12 = U (2)ᵀA12, Z21 = A21V

(1).

4: for s = min(m1,m2) : -1: 1 do (Use iteration to find r̂)
5: Calculate DR,s ∈ R(p1−m1)×s (or DC,s ∈ Rs×(p2−m2)) by solving linear equation

system,

DR,s = Z21,[:,1:s]Z
−1
11,[1:s,1:s] (or DC,s = Z−1

11,[1:s,1:s]Z12,[1:s,:])

6: if Z11,[1:s,1:s] is not singular and ‖DR,s‖ ≤ TR ( or ‖DC,s‖ ≤ TC) then
7: r̂ = s; break from the loop;
8: end if
9: end for

10: if (r̂ is not valued) then r̂ = 0.
11: end if
12: Finally we calculate the estimate as

Â22 = Z21,[:,1:r̂]Z
−1
11,[1:r̂,1:r̂]Z12,[1:r̂,:]

It can also be seen from Algorithm 2 that the estimator r̂ is constructed based

on either the row thresholding rule ‖DR,s‖ ≤ TR or the column thresholding rule

‖DC,s‖ ≤ TC . Discussions on the choice between DR,s and DC,s are given in the next

section. Let us focus for now on the row thresholding based onDR,s = Z21,[:,1:s]Z
−1
11,[1:s,1:s].

It is important to note that Z21[:,1:r] and Z11,[1:r,1:r] approximate U21Σ1 and Σ1, respec-

tively. The idea behind the proposed r̂ is that when s > r, Z21[:,1:s] and Z11,[1:s,1:s] are

nearly singular and hence DR,s may either be deemed singular or with unbounded

norm. When s = r, Z11,[1:s,1:s] is non-singular with ‖DR,s‖ bounded by some constant,

as we show in Theorem 3.3.2. Thus, we estimate r̂ as the largest r such that Z11,[1:s,1:s]

is non-singular with ‖DR,s‖ < TR.
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3.3 Theoretical Analysis

In this section, we investigate the theoretical properties of the algorithms introduced

in Section 3.2. Upper bounds for the estimation errors of Algorithms 1 and 2 are

presented in Theorems 3.3.1 and 3.3.2, respectively, and the lower-bound results are

given in Theorem 3.3.3. These bounds together establish the optimal rate of recov-

ery over certain classes of approximately low-rank matrices. The choices of tuning

parameters TR and TC are discussed in Corollaries 3.3.1 and 3.3.2.

Theorem 3.3.1. Suppose Â is given by the procedure of Algorithm 1. Assume

σr+1(A) ≤ 1

2
σr(A) · σmin(U11) · σmin(V11), (3.10)

Then for any 1 ≤ q ≤ ∞,

∥∥∥Â22 − A22

∥∥∥
q
≤ 3‖A−max(r)‖q

(
1 +

1

σmin(U11)

)(
1 +

1

σmin(V11)

)
(3.11)

Remark 3.3.1. It is helpful to explain intuitively why Condition (3.10) is needed.

When A is approximately low-rank, the dominant low-rank component of A, Amax(r),

serves as a good approximation to A, while the residual A−max(r) is “small”. The

goal is to recover Amax(r) well. Among the three observed blocks, A11 is the most

important and it is necessary to have Amax(r) dominating A−max(r) in A11. Note that

A11 = Amax(r),[1:m1,1:m2] + A−max(r),[1:m1,1:m2],

σr(Amax(r),[1:m1,1:m2]) = σr(U11Σ1V
ᵀ

11) ≥ σmin(U11)σr(A)σmin(V11),

‖A−max(r),[1:m1,1:m2]‖ = ‖U12Σ2V
ᵀ

12‖ ≤ σr+1(A).

We thus require Condition (3.10) in Theorem 3.3.1 for the theoretical analysis.
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Theorem 3.3.1 gives an upper bound for the estimation accuracy of Algorithm

1 under the assumption that there is a significant gap between σr(A) and σr+1(A)

for some known r. It is noteworthy that there are possibly multiple values of r that

satisfy Condition (3.10). In such a case, the bound (3.11) applies to all such r and

the largest r yields the strongest result.

We now turn to Algorithm 2, where the knowledge of r is not assumed. Theorem

3.3.2 below shows that for properly chosen TR or TC , Algorithm 2 can lead to accurate

recovery of A22.

Theorem 3.3.2. Assume that there exists r ∈ [1,min(m1,m2)] such that

σr+1(A) ≤ 1

4
σr(A) · σmin(U11)σmin(V11). (3.12)

Let TR and TC be two constants satisfying

TR ≥
1.36

σmin(U11)
+ 0.35 and TC ≥

1.36

σmin(V11)
+ 0.35.

Then for 1 ≤ q ≤ ∞, Â22 given by Algorithm 2 satisfies

∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5TR

(
1

σmin(V11)
+ 1

)
‖A−max(r)‖q (3.13)

or
∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5TC

(
1

σmin(U11)
+ 1

)
‖A−max(r)‖q

when r̂ is estimated based on the thresholding rule ‖DR,s‖ ≤ TR or ‖DC,s‖ ≤ TC,

respectively.

Besides σr(A) and σr+1(A), Theorems 3.3.1 and 3.3.2 involve σmin(U11) and σmin(V11),

two important quantities that reflect how much the low-rank matrixAmax(r) = U•1Σ1V
ᵀ
•1

is concentrated on the first m1 rows and m2 columns. We should note that σmin(U11)

and σmin(V11) depend on the singular vectors of A and σr(A) and σr+1(A) are the sin-
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gular values of A. The lower bound in Theorem 3.3.3 below indicates that σmin(U11),

σmin(V11), and the singular values of A together quantify the difficulty of the prob-

lem: recovery of A22 gets harder as σmin(U11) and σmin(V11) become smaller or the

{r + 1, · · · ,min(p1, p2)}th singular values become larger. Define the class of approxi-

mately rank-r matrices Fr(M1,M2) by

Fr(M1,M2) =

A ∈ Rp1×p2 :
σmin(U11) ≥M1, σmin(V11) ≥M2,

σr+1(A) ≤ 1
2
σr(A)σmin(U11)σmin(V11)

 . (3.14)

Theorem 3.3.3 (Lower Bound). Suppose r ≤ min(m1,m2, p1 − m1, p2 − m2) and

0 < M1,M2 < 1, then for all 1 ≤ q ≤ ∞,

inf
Â22

sup
A∈Fr(M1,M2)

‖Â22 − A22‖q
‖A−max(r)‖q

≥ 1

4

(
1

M1

+ 1

)(
1

M2

+ 1

)
. (3.15)

Remark 3.3.2. Theorems 3.3.1, 3.3.2 and 3.3.3 together immediately yield the op-

timal rate of recovery over the class Fr(M1M2),

inf
Â22

sup
A∈Fr(M1,M2)

‖Â22 − A22‖q
‖A−max(r)‖q

�
(

1

M1

+ 1

)(
1

M2

+ 1

)
for 0 ≤M1,M2 < 1, 1 ≤ q ≤ ∞.

(3.16)

Since U11 and V11 are determined by the SVD of A and σmin(U11) and σmin(V11)

are unknown based only on A11, A12, and A21, it is thus not straightforward to choose

the tuning parameters TR and TC in a principled way. Theorem 3.3.2 also does not

provide information on the choice between row and column thresholding. Such a

choice generally depends on the problem setting. We consider below two settings

where either the row/columns of A are randomly sampled or A is itself a random low-

rank matrix. In such settings, when A is approximately rank r and at least O(r log r)
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number of rows and columns are observed, Algorithm 2 gives accurate recovery of

A with fully specified tuning parameter. We first consider in Corollary 3.3.1 a fixed

matrix A with the observed m1 rows and m2 columns selected uniformly randomly.

Corollary 3.3.1 (Random Rows/Columns). Let A = UΣV ᵀ be the SVD of A ∈

Rp1×p2. Set

W (1)
r =

p1

r
max

1≤i≤p1

r∑
j=1

U2
ij and W (2)

r =
p2

r
max

1≤i≤p2

r∑
j=1

V 2
ij . (3.17)

Let Ω1 ⊂ {1, · · · , p1} and Ω2 ⊂ {1, · · · , p2} be respectively the index set of the observed

m1 rows and m2 columns. Then A can be decomposed as

A11 = A[Ω1,Ω2], A21 = A[Ωc1,Ω2], A12 = A[Ω1,Ωc2], A22 = A[Ωc1,Ω
c
2]. (3.18)

1. Let Ω1 and Ω2 be independently and uniformly selected from {1, · · · , p1} and

{1, · · · , p2} with or without replacement, respectively. Suppose there exists r ≤

min(m1,m2) such that

σr+1(A) ≤ 1

6
σr(A)

√
m1m2

p1p2

.

and the number of rows and number of columns we observed satisfy

m1 ≥ 12.5rW (1)
r (log(r) + c), m2 ≥ 12.5rW (2)

r (log(r) + c),

for some constant c > 1. Algorithm 2 with either column thresholding with the

break condition ‖DR,s‖ ≤ TR where TR = 2
√

p1

m1
or row thresholding with the
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break condition ‖DC,s‖ ≤ TC where TC = 2
√

p2

m2
satisfies, for all 1 ≤ q ≤ ∞,

‖Â22 − A22‖q ≤ 29‖A−max(r)‖q
√

p1p2

m1m2

with probability ≥ 1− 4 exp(−c).

2. If Ω1 is uniformly randomly selected from {1, · · · , p1} with or without replace-

ment (Ω2 is not necessarily random), and there exists r ≤ m2 such that

σr+1(A) ≤ 1

5
σr(A)σmin(V11)

√
m1

p1

and the number of observed rows satisfies

m1 ≥ 12.5rW (1)
r (log(r) + c) for some constant c > 1, (3.19)

then Algorithm 2 with the break condition ‖DR,s‖ ≤ TR where TR ≥ 2
√

p1

m1

satisfies, for all 1 ≤ q ≤ ∞,

∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5‖A−max(r)‖qTR

(
1

σmin(V11)
+ 1

)

with probability at least 1− 2 exp(−c).

3. Similarly, if Ω2 is uniformly randomly selected from {1, · · · , p2} with or without

replacement (Ω1 is not necessarily random) and there exists r ≤ m2 such that

σr+1(A) ≤ 1

5
σr(A)σmin(U11)

√
m2

p2

,

and the number of observed columns satisfies

m2 ≥ 12.5rW (2)
r (log(r) + c) for some constant c > 1, (3.20)
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then Algorithm 2 with the break condition ‖DC,s‖ ≤ TC where TC ≥ 2
√

p2

m2

satisfies, for all 1 ≤ q ≤ ∞,

∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5‖A−max(r)‖qTC

(
1

σmin(U11)
+ 1

)

with probability at least 1− 2 exp(−c).

Remark 3.3.3. The quantities W
(1)
r and W

(2)
r in Corollary 3.3.1 measure the varia-

tion of amplitude of each row or each column of Amax(r). When W
(1)
r and W

(2)
r become

larger, a small number of rows and columns in Amax(r) would have larger amplitude

than others, while these rows and columns would be missed with large probability

in the sampling of Ω, which means the problem would become harder. Hence, more

observations for the matrix with larger W
(1)
r and W

(2)
r are needed as shown in (3.19).

We now consider the case where A is a random matrix.

Corollary 3.3.2 (Random Matrix). Suppose A ∈ Rp1×p2 is a random matrix gener-

ated by A = UΣV ᵀ, where the singular values Σ and singular space V are fixed, and

U has orthonormal columns that are randomly sampled based on the Haar measure.

Suppose we observe the first m1 rows and first m2 columns of A. Assume there exists

r < 1
2

min(m1,m2) such that

σr+1(A) ≤ 1

5
σr(A)σmin(V11)

√
m1

p1

.

Then there exist uniform constants c, δ > 0 such that if m1 ≥ cr, Â22 is given by

Algorithm 2 with the break condition ‖DR,s‖ ≤ TR, where TR ≥ 2
√

p1

m1
, we have for

all 1 ≤ q ≤ ∞,

∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5‖A−max(r)‖qTR

(
1

σmin(V11)
+ 1

)
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with probability at least 1− e−δm1.

Parallel results hold for the case when U is fixed and V has orthonormal columns

that are randomly sampled based on the Haar measure, and we observe the first m1

rows and first m2 columns of A. Assume there exists r < 1
2

min(m1,m2) such that

σr+1(A) ≤ 1

5
σr(A)σmin(U11)

√
m2

p2

.

Then there exist unifrom constants c, δ > 0 such that if m2 ≥ cr, Â22 is given by

Algorithm 2 with column thresholding with the break condition ‖DC,s‖ ≤ TC, where

TC ≥ 2
√

p2

m2
, we have for all 1 ≤ q ≤ ∞,

∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5‖A−max(r)‖qTC

(
1

σmin(U11)
+ 1

)

with probability at least 1− e−δm2.

3.4 Simulation

In this section, we show results from extensive simulation studies that examine the

numerical performance of Algorithm 2 on randomly generated matrices for various

values of p1, p2, m1 and m2. We first consider settings where a gap between some

adjacent singular values exists, as required by our theoretical analysis. Then we

investigate settings where the singular values decay smoothly with no significant gap

between adjacent singular values. The results show that the proposed procedure

performs well even when there is no significant gap, as long as the singular values

decay at a reasonable rate.

We also examine how sensitive the proposed estimators are to the choice of the

threshold and the choice between row and column thresholding. In addition, we com-

82



pare the performance of the SMC method with that of the NNM method. Finally,

we consider a setting similar to the real data application discussed in the next sec-

tion. Results shown below are based on 200-500 replications for each configuration.

Additional simulation results on the effect of m1, m2 and ratio p1/m1 are provided

in the Appendix. Throughout, we generate the random matrix A from A = UΣV ,

where the singular values of the diagonal matrix Σ are chosen accordingly for dif-

ferent settings. The singular spaces U and V are drawn randomly from the Haar

measure. Specifically, we generate i.i.d. standard Gaussian matrix Ũ ∈ Rp1×min(p1,p2)

and Ṽ ∈ Rp2×min(p1,p2), then apply the QR decomposition to Ũ and Ṽ and assign U

and V with the Q part of the result.

We first consider the performance of Algorithm 2 when a significant gap between

the rth and (r + 1)th singular values of A. We fixed p1 = p2 = 1000,m1 = m2 = 50

and choose the singular values as

{1, · · · , 1︸ ︷︷ ︸
r

, g−11−1, g−12−1, · · · }, g = 1, 2, · · · , 10, r = 4, 12 and 20. (3.21)

Here r is the rank of the major low-rank part Amax(r), g = σr(A)
σr+1(A)

is the gap ratio

between the rth and (r + 1)th singular values of A. The average loss of Â22 from

Algorithm 2 with the row thresholding and TR = 2
√
p1/m1 under both the spectral

norm and Frobenius norm losses are given in Figure 3.3. The results suggest that our

algorithm performs better when r gets smaller and gap ratio g = σr(A)/σr+1(A) gets

larger. Moreover, even when g = 1, namely there is no significant gap between any

adjacent singular values, our algorithm still works well for small r. As will be seen

in the following simulation studies, this is generally the case as long as the singular

values of A decay sufficiently fast.

We now turn to the settings with the singular values being {j−α}min(p1,p2)
j=1 and
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Figure 3.3: Spectral norm loss (left panel) and Frobenius norm loss (right panel)

when there is a gap between σr(A) and σr+1(A). The singular value values of A are

given by (3.21), p1 = p2 = 1000, and m1 = m2 = 50.

various choices of α, p1 and p2. Hence, no significant gap between adjacent singu-

lar values exists under these settings and we aim to demonstrate that our method

continues to work well. We first consider p1 = p2 = 1000, m1 = m2 = 50 and let α

range from 0.3 to 2. Under this setting, we also study how the choice of thresholds

affect the performance of our algorithm. For simplicity, we report results only for

row thresholding as results for column thresholding are similar. The average loss of

Â22 from Algorithm 2 with TR ∈ {c
√
m1/p1, c ∈ [1, 6]} under both the spectral norm

and Frobenius norm are given in Figure 3.4. In general, the algorithm performs well

provided that α is not too small and as expected, the average loss decreases with a

higher decay rate in the singular values. This indicates that the existence of a sig-

nificant gap between adjacent singular values is not necessary in practice, provided

that the singular values decay sufficiently fast. When comparing the results across

different choices of the threshold, c = 2 as suggested in our theoretical analysis is

indeed the optimal choice. Thus, in all subsequent numerical analysis, we fix c = 2.

To investigate the impact of row versus column thresholding, we let the singular

value decay rate be α = 1, p1 = 300, p2 = 3000, and m1 and m2 varying from 10
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Figure 3.4: Spectral norm loss (left panel) and Frobenius norm loss (right panel) as

the thresholding constant c varies. The singular values of A are {j−α, j = 1, 2, ...}

with α varying from 0.3 to 2, p1 = p2 = 1000, and m1 = m2 = 50.
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to 150. The original matrix A is generated the same way as before. We apply row

and column thresholding with TR = 2
√
p1/m1 and TC = 2

√
p2/m2. It can be seen

from Figure 3.5 that when the observed rows and columns are selected randomly, the

results are not sensitive to the choice between row and column thresholding.
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(a) Spectral norm loss; column thresholding
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(b) Frobenius norm loss; column thresholding
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(c) Spectral norm loss; row thresholding
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(d) Frobenius norm loss; row thresholding

Figure 3.5: Spectral and Frobenius norm losses with column/row thresholding. The

singular values of A are {j−1, j = 1, 2, ...}, p1 = 300, p2 = 3000, and m1, m2 =

10, ..., 150.

We next turn to the comparison between our proposed SMC algorithm and the

penalized NNM method which recovers A by (3.4). The solution to (3.4) can be

solved by the spectral regularization algorithm by Mazumder et al. (2010) or the

accelerated proximal gradient algorithm by Toh and Yun (2010), where these two
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methods provide similar results. We use 5-fold cross-validation to select the tuning

parameter t. Details on the implementation can be found in the Appendix.

We consider the setting where p1 = p2 = 500, m1 = m2 = 50, 100 and the singular

value decay rate α ranges from 0.6 to 2. As shown in Figure 3.6, the proposed SMC

method substantially outperform the penalized NNM method with respect to both

the spectral and Frobenius norm loss, especially as α increases.
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(b) Frobenious norm loss

Figure 3.6: Comparison of the proposed SMC method with the NNM method with

5-cross-validation for the settings with singular values of A being {j−α, j = 1, 2, ...}

for α ranging from 0.6 to 2, p1 = p2 = 500, and m1 = m2 = 50 or 100.

Finally, we consider a simulation setting that mimics the ovarian cancer data

application considered in the next section, where p1 = 1148, p2 = 1225, m1 = 230,

m2 = 426 and the singular values of A decay at a polynomial rate α. Although the

singular values of the full matrix are unknown, we estimate the decay rate based

on the singular values of the fully observed 552 rows of the matrix from the TCGA

study, denoted by {σj, j = 1, ..., 522}. A simple linear regression of {log(σj), j =

1, ..., 522} on {log(j), j = 1, ..., 522} estimates α as 0.8777. In the simulation, we

randomly generate A ∈ Rp1×p2 such that the singular values are fixed as {j−.8777, j =

1, 2, · · · }. For comparison, we also obtained results for α = 1 as well as those based
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on the penalized NNM method with 5-cross-validation. As shown in Table 3.1, the

relative spectral norm loss and relative Frobenius norm loss of the proposed method

are reasonably small and substantially smaller than those from the penalized NNM

method.

Relative spectral norm loss Relative Frobenius norm loss

SMC NNM SMC NNM
α = 0.8777 0.1253 0.4614 0.2879 0.6122
α = 1 0.0732 0.4543 0.1794 0.5671

Table 3.1: Relative spectral norm loss (‖Â22 −A22‖/‖A22‖) and Frobenius norm loss

(‖Â22 − A22‖F/‖A22‖F ) for p1 = 1148, p2 = 1225, m1 = 230, m2 = 426 and singular

values of A being {j−α : j = 1, 2, · · · }.

3.5 Application in Genomic Data Integration

In this section, we apply our proposed procedures to integrate multiple genomic stud-

ies of ovarian cancer (OC). OC is the fifth leading cause of cancer mortality among

women, attributing to 14,000 deaths annually (Siegel et al., 2013). OC is a relatively

heterogeneous disease with 5-year survival rate varying substantially among differ-

ent subgroups. The overall 5-year survival rate is near 90% for stage I cancer. But

the majority of the OC patients are diagnosed as stage III/IV diseases and tend to

develop resistance to chemotherapy, resulting a 5-year survival rate only about 30%

(Holschneider and Berek, 2000). On the other hand, a small minority of advanced

cancers are sensitive to chemotherapy and do not replapse after treatment comple-

tion. Such a heterogeneity in disease progression is likely to be in part attributable

to variations in underlying biological characteristics of OC (Berchuck et al., 2005).

This heterogeneity and the lack of successful treatment strategies motivated multi-
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ple genomic studies of OC to identify molecular signatures that can distinguish OC

subtypes, and in turn help to optimize and personalize treatment. For example, the

Cancer Genome Atlas (TCGA) comprehensively measured genomic and epigenetic

abnormalities on high grade OC samples (Cancer Genome Atlas Research Network,

2011). A gene expression risk score based on 193 genes, G, was trained on 230 training

samples, denoted by TCGA(t), and shown as highly predictive of OC survival when

validated on the TCGA independent validation set of size 322, denoted by TCGA(v),

as well as on several independent OC gene expression studies including those from

Bonome et al. (2005) (BONO), Dressman et al. (2007) (DRES) and Tothill et al.

(2008) (TOTH).

The TCGA study also showed that clustering of miRNA levels overlaps with

gene-expression based clusters and is predictive of survival. It would be interesting to

examine whether combining miRNA with G could improve survival prediction when

compared to G alone. One may use TCGA(v) to evaluate the added value of miRNA.

However, TCGA(v) is of limited sample size. Furthermore, since miRNA was only

measured for the TCGA study, its utility in prediction cannot be directly validated

using these independent studies. Here, we apply our proposed SMC method to impute

the missing miRNA values and subsequently construct prediction rules based on both

G and the imputed miRNA, denoted by m̂iRNA, for these independent validation sets.

To facilitate the comparison with the analysis based on TCGA(v) alone where miRNA

measurements are observed, we only used the miRNA from TCGA(t) for imputation

and reserved the miRNA data from TCGA(v) for validation purposes. To improve

the imputation, we also included additional 300 genes that were previously used in a

prognostic gene expression signature for predicting ovarian cancer survival (Denkert

et al., 2009). This results in a total of m1 = 426 unique gene expression variables

available for imputation. Detailed information on the data used for imputation is
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shown in Figure 3.7. Prior to imputation, all gene expression and miRNA levels are

log transformed and centered to have mean zero within each study to remove potential

platform or batch effects. Since the observable rows (indexing subjects) can be viewed

as random whereas the observable columns (indexing genes and miRNAs) are not

random, we used row thresholding with threshold TR = 2
√
p1/m1 as suggested in the

theoretical and simulation results. For comparison, we also imputed data using the

penalized NNM method with tuning parameter t selected via 5-fold cross-validation.

Figure 3.7: Imputation scheme for integrating multiple OC genomic studies.
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Gene	  Expression	  Markers	  

Gene	  Expression	  Markers	  
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?	  
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We first compared m̂iRNA to the observed miRNA on TCGA(v). Our imputation

yielded a rank 2 matrix for m̂iRNA and the correlations between the two right and

left singular vectors m̂iRNA to that of the observed miRNA variables are .90, .71,

.34, .14, substantially higher than that of those from the NNM method, with the

corresponding values 0.45, 0.06, 0.10, 0.05. This suggests that the SMC imputation

does a good job in recovering the leading projections of the miRNA measurements

and outperforms the NNM method.

To evaluate the utility of m̂iRNA for predicting OC survival, we used the TCGA(t)

to select 117 miRNA markers that are marginally associated with survival with a

nominal p-value threshold of .05. We use the two leading principal components (PCs)

of the 117 miRNA markers, miRNAPC = (miRNAPC

1 ,miRNAPC

2 )T , as predictors for the

survival outcome in addition to G. The imputation enables us to integrate information

from 4 studies including TCGA(t), which could substantially improve efficiency and
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prediction performance. We first assessed the association between {miRNAPC,G} and

OC survival by fitting a stratified Cox model (Kalbfleisch and Prentice, 2011) to the

integrated data that combines TCGA(v) and the three additional studies via either the

SMC or NNM methods. In addition, we fit the Cox model to (i) TCGA(v) set alone

with miRNAPC obtained from the observed miRNA; and (ii) each individual study

separately with imputed miRNAPC. As shown in Table 3.2(a), the log hazard ratio

(logHR) estimates for miRNAPC from the integrated analysis, based on both SMC

and NNM methods, are similar in magnitude to those obtained based on the observed

miRNA values with TCGA(v). However, the integrated analysis has substantially

smaller standard error (SE) estimates due the increased sample sizes. The estimated

logHRs are also reasonably consistent across studies when separate models were fit

to individual studies.

We also compared the prediction performance of the model based on G alone to

the model that includes both G and the imputed miRNAPC. Combining information

from all 4 studies via standard meta analysis, the average improvement in C-statistic

was 0.032 (SE = 0.013) for the SMC method and 0.001 (SE = 0.009) for the NNM

method, suggesting that the imputed miRNAPC from the SMC method has much

higher predictive value compared to those obtained from the NNM method.

In summary, the results shown above suggest that our SMC procedure accurately

recovers the leading PCs of the miRNA variables. In addition, adding miRNAPC ob-

tained from imputation using the proposed SMC method could significantly improve

the prediction performance, which confirms the value of our method for integrative

genomic analysis. When comparing to the NNM method, the proposed SMC method

produces summaries of miRNA that is more correlated with the truth and yields

leading PCs that are more predictive of OC survival.
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Table 3.2: Shown in (a) are the estimates of the log hazard ratio (logHR) along with

their corresponding standard errors (SE) and p-values by fitting stratified Cox model

integrating information from 4 independent studies with imputed miRNA based on

the SMC method and the nuclear norm minimization (NNM); and Cox model to the

TCGA test data with original observed miRNA (Ori.). Shown also are the estimates

for each individual studies by fitting separate Cox models with imputed miRNA.

(a) Integrated Analysis with Imputed miRNA vs Single study with observed miRNA

logHR SE p-value
Ori. SMC NNM Ori. SMC NNM Ori. SMC NNM

G .067 .143 .168 .041 .034 .028 .104 .000 .000
miRNAPC

1 -.012 -.019 -.013 .009 .006 .012 .218 .001 .283
miRNAPC

2 .023 .018 -.005 .014 .009 .014 .092 .039 .725

(b) Estimates for Individual Studies with Imputed miRNA from the SMC method

logHR SE p-value
TCGA TOTH DRES BONO TCGA TOTH DRES BONO TCGA TOTH DRES BONO

G .051 .377 .174 .311 .048 .069 .132 .117 .286 .000 .187 .008
miRNAPC

1 -.014 -.021 -.031 -.010 .011 .012 .014 .014 .207 .082 .030 .484
miRNAPC

2 .014 .045 -.021 .036 .016 .018 .022 .019 .391 .009 .336 .054

(c) Estimates for Individual Studies with Imputed miRNA from the NNM method

logHR SE p-value
TCGA TOTH DRES BONO TCGA TOTH DRES BONO TCGA TOTH DRES BONO

G .082 .405 .361 .258 .037 .066 .114 .088 .028 .000 .002 .003
miRNAPC

1 -.045 .016 .055 -.008 .021 .026 .031 .023 .034 .544 .076 .721
miRNAPC

2 .008 -.086 -.043 .019 .026 .027 .034 .029 .758 .002 .201 .496
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3.6 Discussions

The present chapter introduced a new framework of SMC where a subset of the

rows and columns of an approximately low-rank matrix are observed. We proposed

an SMC method for the recovery of the whole matrix with theoretical guarantees.

The proposed procedure significantly outperforms the conventional NNM method

for matrix completion, which does not take into account the special structure of the

observations. As shown by our theoretical and numerical analyses, the widely adopted

NNM methods for matrix completion are not suitable for the SMC setting. These

NNM methods perform particularly poorly when a small number of rows and columns

are observed.

The key assumption in matrix completion is the matrix being approximately low

rank. This is reasonable in the ovarian cancer application since as indicated in the

results from the TCGA study (Cancer Genome Atlas Research Network, 2011), the

patterns observed in the miRNA signature are highly correlated with the patterns

observed in the gene expression signature. This suggests the high correlation among

the selected gene expression and miRNA variables. Results from the imputation based

on the approximate low rank assumption given in Section 3.5 are also encouraging

with promising correlations with true signals and good prediction performance from

the imputed miRNA signatures. We expect that this imputation method will also

work well in genotyping and sequencing applications, particularly for regions with

reasonably high linkage disequilibrium.

Another main assumption that is needed in the theoretical analysis is that there is

a significant gap between the rth and (r+ 1)th singular values of A. This assumption

may not be valid in real practice. In particular, the singular values of the ovarian

dataset analyzed in Section 3.5 is decreasing smoothly without a significant gap.
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However, it has been shown in the simulation studies presented in Section 3.4 that,

although there is no significant gap between any adjacent singular values of the matrix

to be recovered, the proposed SMC method works well as long as the singular values

decay sufficiently fast. Theoretical analysis for the proposed SMC method under more

general patterns of singular value decay warrants future research.

To implement the proposed Algorithm 2, major decisions include the choice of

threshold values and choosing between column thresholding and row thresholding.

Based on both theoretical and numerical studies, optimal threshold values can be set

as TC = 2
√
p2/m2 for column thresholding and TR = 2

√
p1/m1 for row thresholding.

Simulation results in Section 3.4 show that when both rows and columns are randomly

chosen, the results are very similar. In the real data applications, the choice between

row thresholding and column thresholding depends on whether the rows or columns

are more “homogeneous”, or closer to being randomly sampled. For example, in the

ovarian cancer dataset analyzed in Section 3.5, the rows correspond to the patients

and the columns correspond to the gene expression levels and miRNA levels. Thus the

rows are closer to random sample than the columns, consequently it is more natural

to use the row thresholding in this case.

We have shown both theoretically and numerically in Sections 3.3 and 3.4 that Al-

gorithm 2 provides a good recovery of A22. However, the naive implementation of this

algorithm requires min(m1,m2) matrix inversions and multiplication operations in the

for loop that calculates ‖DR,s‖ (or ‖DC,s‖), s ∈ {r̂, r̂ + 1, · · · ,min(m1,m2)}. Taking

into account the relationship among DR,s (or DC,s) for different s’s, it is possible to

simultaneously calculate all ‖DR,s‖ (or ‖DC,s‖) and accelerate the computations. For

reasons of space, we leave optimal implementation of Algorithm 2 as future work.
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4
Future Problems

My future research will be continuation of my current work. Beyond that, I also have

some newer problems in mind. I am hoping to expand my statistical interests and get

into more collaborative work with people in different fields. The following are some

projects that I am interested in working on in the future.

4.1 Inference for Large Gaussian Graphical Model

with Missing Data

The Gaussian graphical model is a powerful tool in modern statistics for analyzing

relationship networks. In the era of high-dimensional statistics, missing data also

occurs so that the traditional statistical inference methods often no longer apply.

Therefore, it would be very interesting if one can develop a set of methods which

make statistical inference on large Gaussian graphical model with missing data.

Within this direction, so far we have preliminary results on estimating a large

sparse precision matrix with incomplete data by constraint `1-norm minimization.

However, more fundamental problems in this area still remain unclear, such as how

to recover the support or make inference on the Gaussian graph. I think such problems

are important and I shall make future efforts.
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4.2 High-dimensional Sparsity Test

In modern high-dimensional statistics, different kinds of structural assumptions have

been imposed on the model. Among those assumptions, sparsity of the object is

one of the most widely used and becomes the foundation of many methodologies and

theories. However, it is sometimes unclear whether this assumption is valid or not. For

example, gene transcription networks often contain the so-called “hub nodes” where

the corresponding gene expressions are correlated with many other gene expressions,

and may thus yield a non-sparse network. It would be a very interesting result if

we can develop a set of methodologies to test if the object is sparse or not. The

object here can range from linear regression coefficient to the covariance structure or

network, e.g. detection of the hub node. Up to now we have preliminary results in

high-dimensional regression showing that a certain Chi-squared test is powerful for a

sparse null against a non-sparse alternative. I would like to make much more efforts

towards solving this problem.

4.3 Noisy Structured Matrix Completion

Same as the structured matrix completion setting (Chapter 3), when the observations

are with i.i.d. noise, the original algorithm proposed in Chapter 3 may be sub-optimal.

The main reason is that, by random matrix theory, the i.i.d. noise perturbation is

proportionally spread into each block with high probability and a better denoising rule

should be applied. A possible path to improvement is to combine matrix denoising

via SVD with our proposed SMC. The analysis of the detailed algorithm is an ongoing

work.
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Appendices
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A.1 Supplement for Chapter 1

We shall prove the main results for Chapter 1 in this Appendix section.

A.1.1 Proof of Lemma 1.1.1.

First, suppose v ∈ T (α, s). We can prove v is in the convex hull of U(α, s, v) by

induction. If v is s-sparse, v itself is in U(α, s, v).

Suppose the statement is true for all (l − 1)-sparse vectors v (l − 1 ≥ s). Then

for any l-sparse vector v such that ‖v‖∞ ≤ α, ‖v‖1 ≤ sα, without loss of generality

we assume that v is not (l − 1)-sparse (otherwise the result holds by assumption of

l − 1). Hence we can express v as v =
∑l

i=1 aiei, where ei’s are different unit vectors

with one entry of ±1 and other entries of zeros; a1 ≥ a2 ≥ · · · ≥ al > 0. Since∑l
i=1 ai = ‖v‖1 ≤ sα, so

1 ∈ D , {1 ≤ j ≤ l − 1 : aj + aj+1 + · · ·+ al ≤ (l − j)α},

which means D is not empty. Take the largest element in D as j, which implies

aj + aj+1 + · · ·+ al ≤ (l − j)α,

aj+1 + aj+2 + · · ·+ al > (l − j − 1)α.

(A.1)

(It is noteworthy that even if the largest j in D is l − 1, (A.1) still holds). Define

bw ,

∑l
i=j ai

l − j
− aw, j ≤ w ≤ l, (A.2)
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which satisfies
∑l

i=j ai = (l − j)
∑l

i=j bi. By (A.1), for all j ≤ w ≤ l,

bw ≥ bj =

∑l
i=j+1 ai

l − j
− l − j − 1

l − j
aj ≥

∑l
i=j+1 ai − (l − j − 1)α

l − j
> 0.

In addition, we define

vw ,
j−1∑
i=1

aiei + (
l∑
i=j

bi)
l∑

i=j,i6=w

ei ∈ Rp,

λw ,
bw∑l
i=j bi

, j ≤ w ≤ l,

(A.3)

then 0 ≤ λw ≤ 1,
∑l

w=j λw = 1,
∑l

w=j λwvw = v, supp(vw) ⊆ supp(v). We also have

‖vw‖1 =

j−1∑
i=1

ai + (l − j)
l∑

w=j

bw =

j−1∑
i=1

ai +
l∑
i=j

ai = ‖v‖1,

‖vw‖∞ = max{a1, · · · , aj−1,
l∑
i=j

bi} ≤ max{α,
∑l

i=j ai

l − j
} ≤ α.

The last inequality is due to the first part of (A.1). Finally, note that vw is (l − 1)-

sparse, we can use the induction assumption to find {ui,w ∈ Rp, λi,w ∈ R : 1 ≤ i ≤

Nw, j ≤ w ≤ l} such that

ui,w is s-sparse, supp(ui,w) ⊆ supp(vi) ⊆ supp(v),

‖ui,w‖1 = ‖vi‖1 = ‖v‖1, ‖ui,w‖∞ ≤ α;

In addition, vi =
∑Nw

i=1 λi,wui,w, so v =
∑l

w=j

∑Nw
i=1 λwλi,wui,w, which proves the result

for l.

The proof of the other part of the lemma is easier. When v is in the convex hull
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of U(α, s, v), then we have

‖v‖∞ = ‖
N∑
i=1

λiui‖∞ ≤
N∑
i=1

λi‖ui‖∞ ≤ α,

‖v‖1 = ‖
N∑
i=1

λiui‖1 ≤
N∑
i=1

λi‖ui‖1 ≤
N∑
i=1

λi‖ui‖0‖ui‖∞ ≤ sα,

which finished the proof of the lemma. �

A.1.2 Proof of Theorems 1.1.1 and 1.2.2

We first state two lemmas. One important technical tool we will use is the following

Division Lemma. In order to relate the general vectors and matrices with the RIP

condition whose constraint is on the sparse vectors and low-rank matrices, a natural

approach is to divide these elements into sums of sparse or low-rank components.

Consequently, we introduce the Division Lemma below, which is a key technical tool

for the proof of sufficiency of δAk < 1/3 and δMr < 1/3.

Lemma A.1.1 (Division Lemma). Let r and m be positive integers with m ≥ 2r. Let

a1 ≥ a2 ≥ a3 ≥ · · · ≥ am ≥ 0 be a sequence of non-increasing real numbers satisfying

r∑
w=1

aw ≥
m∑

w=r+1

aw. (A.4)

Then there exist non-negative real numbers {sij}1≤i≤r,2r+1≤j≤m such that

r∑
i=1

sij = aj, ∀ 2r + 1 ≤ j ≤ m, (A.5)

and

1

r

r∑
w=1

aw ≥ ar+i +
m∑

j=2r+1

sij, ∀ 1 ≤ i ≤ r. (A.6)
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The proof of Lemma A.1.1 is simply by induction on m. The Division Lemma can

be illustrated as in the following table. Each row is an inequality; every element in

the first row equals the sum of remaining elements in the same column:

a1 a2 · · · ar ≥ ar+1 ar+2 · · · a2r + a2r+1 · · · am

a1/r a2/r · · · ar/r ≥ ar+1 + s1,2r+1 · · · s1,m

a1/r a2/r · · · ar/r ≥ ar+2 + s2,2r+1 · · · s2,m

...
...

. . .
... ≥

. . . +
...

...

a1/r a2/r · · · ar/r ≥ a2r + sr,2r+1 · · · sr,m

Lemma A.1.2, which characterizes the null space properties, is from Stojnic et al.

(2008) and Oymak and Hassibi (2010).

Lemma A.1.2. In the noiseless case, using (1.2) with B = {0} one can recover all

k-sparse signals β if and only if for all h ∈ N (A)\{0},

2‖hmax(k)‖1 < ‖h‖1.

Similarly in the noiseless case, using (1.4) with B = {0} one can recover all

matrices X of rank at most r if and only if for all R ∈ N (M)\{0},

2‖Rmax(r)‖∗ < ‖R‖∗.

The key to the proof of this theorem is parallelogram identity, since it provides

equality rather than inequality in the estimation in `2 norm as we shall see later.

The proof of Theorems 1.1.1 and 1.2.2 shall be divided into three parts: δAk < 1/3,

δAk + θAk,k < 1 (or δAa + Ca,b,kθ
A
a,b < 1) and δAtk <

√
(t− 1)/t.

Part 1. If δAk < 1/3 for some k ≥ 2.
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By Lemma A.1.2, we only need to show for all β ∈ N (A) \ {0}, it satisfies

‖βmax(k)‖1 < ‖β−max(k)‖1.

For the convenience of presentation, we call a vector with 1 or -1 in only one entry

and zeros elsewhere as the indicator vector.

Suppose there exists h ∈ N (A) \ {0} such that ‖hmax(k)‖1 < ‖h−max(k)‖1. Then h

can be written as

h =

p∑
i=1

aiui

where {ui}pi=1 are indicator vectors with different support in Rp; {ai}pi=1 is a non-

negative and decreasing sequence. Since we can set ai = 0 if i ≥ p, without loss of

generality we can assume that p ≥ k.

By Lemma A.1.1, we can find {sij}1≤i≤k,2k+1≤j≤p satisfying (A.5) and (A.6) with

a modification of notations.

1. When k is even, suppose

h11 =

k/2∑
i=1

aiui, h12 =
k∑

i=k/2+1

aiui, h21 =

3k/2∑
i=k+1

aiui, h22 =
2k∑

i=3k/2+1

aiui

h31 =

p∑
j=2k+1

(

k/2∑
i=1

sijuj), h32 =

p∑
j=2k+1

(
k∑

i=k/2+1

sijuj)

(A.7)

then A(h11 + h12 + h21 + h22 + h31 + h32) = Ah = 0. By the parallelogram
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identity,

‖A(−h11 + h22 + h32)‖2 + ‖A(−h12 + h21 + h31)‖2

=
1

2
‖A(−h11 − h12 + h21 + h22 + h31 + h32)‖2

+
1

2
‖A(−h11 + h12 − h21 + h22 − h31 + h32)‖2

=
1

2
‖A(2h11 + 2h12)‖2 +

1

4
‖A(−2h11 − 2h21 − 2h31)‖2

+
1

4
‖A(2h12 + 2h22 + 2h32)‖

=2‖A(h11 + h12)‖2 + ‖A(h11 + h21 + h31)‖2 + ‖A(h12 + h22 + h32)‖2

(A.8)

Similarly as the matrix case, we use Lemma A.1.4 and get

‖A(h11 + h21 + h31)‖2 − ‖A(−h12 + h21 + h31)‖2

≥(1− δAk )(

k/2∑
i=1

a2
i +

3k/2∑
i=k+1

(ai +

p∑
j=2k+1

sij)
2)

− (1 + δAk )(
k∑

i=k/2+1

a2
i +

3k/2∑
i=k+1

(ai +

p∑
j=2k+1

sij)
2)

(A.9)

Similarly,

‖A(h12 + h22 + h32)‖2 − ‖A(−h11 + h22 + h32)‖2

≥(1− δAk )(
k∑

i=k/2+1

a2
i +

2k∑
i=3k/2+1

(ai +

p∑
j=2k+1

sij)
2)

− (1 + δAk )(

k/2∑
i=1

a2
i +

2k∑
i=3k/2+1

(ai +

p∑
j=2k+1

sij)
2)

(A.10)

Let the right hand side of (A.8) minus the left hand side. Along with (A.9),
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(A.10), we get

0 = RHS − LHS

≥ 2(1− δAk )(
k∑
i=1

a2
i )− 2δAk

k∑
i=1

a2
i − 2δAk (

2k∑
i=k+1

(ai +

p∑
j=2k+1

sij)
2)

≥ 2(1− 2δAk )
k∑
i=1

a2
i − 2δAk k

(∑k
i=1 ai
k

)2

≥ 2(1− 3δAk )
k∑
i=1

a2
i

The last two inequalities are due to (A.6) and Cauchy-Schwarz inequality. It

contradicts the fact that h 6= 0 and δAk < 1/3.

2. When k is odd, k ≥ 3, note

h11 = a1u1, h12 =

(k+1)/2∑
i=2

aiui, h13 =
k∑

i=(k+3)/2

aiui

h21 = ak+1uk+1, h22 =

(3k+1)/2∑
i=k+2

aiui, h23 =
2k∑

i=(3k+3)/2

aiui

h31 =

p∑
j=2k+1

s1juj, h32 =

p∑
j=2k+1

(

(k+1)/2∑
i=2

sij)uj, h33 =

p∑
j=2k+1

(
2k∑

i=(k+3)/2

sij)uj

(A.11)

Note γ1 = −h11 + h21 + h31, γ2 = −h12 + h22 + h23, γ3 = −h13 + h23 + h33, we

can easily show the following equality

4‖Aγ1‖2 + 4‖Aγ2‖2 + 4‖Aγ3‖2

=‖A(γ1 + γ2 − γ3)‖2 + ‖A(−γ1 + γ2 + γ3)‖2

+ ‖A(γ1 − γ2 + γ3)‖2 + ‖A(γ1 + γ2 + γ3)‖2

(A.12)
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By the fact that Ah = 0, (A.12) means

‖A(−h11 + h21 + h31)‖2 + ‖A(−h12 + h22 + h32)‖2 + ‖A(−h13 + h23 + h33)‖2

=‖A(h12 + h13 + h21 + h31)‖2 + ‖A(h11 + h13 + h22 + h32)‖2

+ ‖A(h11 + h12 + h23 + h33)‖2 + ‖A(h11 + h12 + h13)‖2

(A.13)

Similarly as the even case, by Lemma A.1.4 we have

‖A(h12 + h13 + h21 + h31)‖2 − ‖A(−h11 + h21 + h31)‖2

≥(1− δAk )

[
k∑
i=2

a2
i + (ak+1 +

p∑
j=2k+1

s1,j)
2

]
− (1 + δAk )

[
a2

1 + (ak+1 +

p∑
j=2k+1

s1,j)
2

]
(A.14)

‖A(h11 + h13 + h22 + h32)‖2 − ‖A(−h12 + h22 + h32)‖2

≥(1− δAk )

a2
1 +

k∑
i=(k+3)/2

a2
i +

(k+1)/2∑
i=2

(ai +

p∑
j=2k+1

sij)
2


− (1 + δAk )

(k+1)/2∑
i=2

a2
i +

(k+1)/2∑
i=2

(ai +

p∑
j=2k+1

sij)
2


(A.15)

‖A(h11 + h12 + h23 + h33)‖2 − ‖A(−h13 + h23 + h33)‖2

≥(1− δAk )

(k+1)/2∑
i=1

a2
i +

k∑
i=(k+3)/2

(ai +

p∑
j=2k+1

sij)
2


− (1 + δAk )

 k∑
i=(k+3)/2

a2
i +

k∑
i=(k+3)/2

(ai +

p∑
j=2k+1

sij)
2


(A.16)
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Let the right hand side of (A.13) minus the left hand side, we can get

0 ≥ (1− δAk )

[
3

k∑
i=1

a2
i +

k∑
i=1

(ak+i +

p∑
j=2k+1

sij)
2

]

−(1 + δAk )

[
k∑
i=1

a2
i +

k∑
i=1

(ak+i +

p∑
j=2k+1

sij)
2

]

= 2

[
(1− 2δAk )

k∑
i=1

a2
i − δAk

k∑
i=1

(ak+i +

p∑
j=2k+1

sij)
2

]

≥ 2(1− 2δAk )
k∑
i=1

a2
i − 2δAk k

(∑k
i=1 ai
k

)2

≥ 2(1− 3δAk )
k∑
i=1

a2
i

The last two inequalities are due to (A.6) and Cauchy Schwarz inequality. It

contradicts the fact that h 6= 0 and δAk < 1/3.

Part 2. If δAk + θAk,k < 1 for some k ≥ 1. In this scenario, it suffices to prove

Theorem 1.2.2 as Theorem 1.1.1 is a special case of Theorem 1.2.2.

As mentioned before, by Oymak et al. (2011), the results for the sparse signal

recovery imply the corresponding results for the low-rank matrix recovery. So we will

only prove the signal case. By Lemma A.1.2, it suffices to show that for all vectors

h ∈ N (A) \ {0}, ‖hmax(k)‖1 < ‖h−max(k)‖1.

Suppose there exists h ∈ N (A) \ {0} such that ‖hmax(k)‖1 ≥ ‖h−max(k)‖1. Let

h =
∑p

i=1 ciui, where {ci}pi=1 is a non-negative and non-increasing sequence; {ui}pi=1

are indicator vectors (defined at the beginning of this section) with different supports

in Rp. Then we have
∑k

i=1 ci ≥
∑p

i=k+1 ci. Hence, ‖h−max(a)‖∞ = ca+1 ≤
∑a
i=1 ci
a

=
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‖hmax(a)‖1
a

and

‖h−max(a)‖1 =
k∑

i=a+1

ci +

p∑
i=k+1

ci ≤
k − a
k

k∑
i=1

ci +
k∑
i=1

ci ≤
k − a
a

a∑
i=1

ci +
k

a

a∑
i=1

ci

=
2k − a
a
‖hmax(a)‖1.

We set α =
‖hmax(a)‖1

a
, k1 = a, k2 = 2k − a, It then follows from Lemma 1.1.1 that

there exist {ui}Ni=1, {λi}Ni=1 such that

h−max(a) =
N∑
i=1

λiui, ‖ui‖0 ≤ 2k − a, 0 ≤ λi ≤ 1,
N∑
i=1

λi = 1,

‖h−max(a)‖1 = ‖ui‖1, ‖u‖∞ ≤
‖hmax(a)‖1

a
.

Thus,

|〈A(hmax(a)), A(h−max(a))〉| ≤
N∑
i=1

λi|〈A(hmax(a)), A(ui)〉|

≤
N∑
i=1

λiθ
A
a,2k−a‖hmax(a)‖2‖ui‖2

≤θAa,2k−a
√

2k − a‖hmax(a)‖2 ·
‖hmax(a)‖1

a

≤θAa,2k−a

√
2k − a
a
‖hmax(a)‖2

2.

(A.17)

On the other hand, Lemma A.1.7 yields

θa,2k−a ≤

√
2k − a

min{b, 2k − a}
θa,min{b,2k−a} ≤ max

{√
2k − a
b

, 1

}
θa,b.
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Hence,

0 = |〈A(hmax(a)), A(h)〉| ≥ |〈A(hmax(a)), A(hmax(a))〉| − |〈A(hmax(a)), A(h−max(a))〉|

≥ (1− δAa )‖hmax(a)‖2
2 − θAa,2k−a

√
2k − a
a
‖hmax(a)‖2

2

≥ (1− δAa −max

{
2k − a√

ab
,

√
2k − a
a

}
θAa,b)‖hmax(a)‖2

2

= (1− δAa − Ca,b,kθAa,b)‖hmax(a)‖2
2

which contradicts the fact that h 6= 0 and δAa + Ca,b,kθ
A
a,b < 1 and finished the proof

of Theorem 1.2.2 and Part 2 of Theorem 1.1.1.

Part 3. If δAtk <
√

(t− 1)/t.

First, we assume that tk is an integer. By the Null Space Property (Lemma A.1.2),

we only need to check for all h ∈ N (A)\{0}, ‖hmax(k)‖1 < ‖h−max(k)‖1. Suppose there

exists h ∈ N (A)\{0}, such that ‖hmax(k)‖1 ≥ ‖h−max(k)‖1. Set α = ‖hmax(k)‖1/k. We

divide h−max(k) into two parts, h−max(k) = h(1) + h(2), where

h(1) = h−max(k) · 1{i||h−max(k)(i)|>α/(t−1)},

h(2) = h−max(k) · 1{i||h−max(k)(i)|≤α/(t−1)}.

Then ‖h(1)‖1 ≤ ‖h−max(k)‖1 ≤ αk. Denote |supp(h(1))| = ‖h(1)‖0 = m. Since all

non-zero entries of h(1) have magnitude larger than α/(t− 1), we have

αk ≥ ‖h(1)‖1 =
∑

i∈supp(h(1))

|h(1)(i)| ≥
∑

i∈supp(h(1))

α/(t− 1) = mα/(t− 1).
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Namely m ≤ k(t− 1). In addition we have

‖h(2)‖1 =‖h−max(k)‖1 − ‖h(1)‖1 ≤ kα− mα

t− 1
= (k(t− 1)−m) · α

t− 1
,

‖h(2)‖∞ ≤
α

t− 1
.

(A.18)

We now apply Lemma 1.1.1 with s = k(t− 1)−m. Then h(2) can be expressed as a

convex combination of sparse vectors: h(2) =
∑N

i=1 λiui, where ui is (k(t − 1) −m)-

sparse and

‖ui‖1 =‖h(2)‖1, ‖ui‖∞ ≤
α

(t− 1)
, supp(ui) ⊆ supp(h(2)). (A.19)

Hence,

‖ui‖2 ≤
√
‖ui‖0‖ui‖∞ ≤

√
k(t− 1)−m‖ui‖∞

≤
√
k(t− 1)‖ui‖∞ ≤

√
k/(t− 1)α.

(A.20)

Now we suppose µ ≥ 0, c ≥ 0 are to be determined. Denote βi = hmax(k) + h(1) + µui,

then

N∑
j=1

λjβj − cβi = hmax(k) + h(1) + µh(2) − cβi

=(1− µ− c)(hmax(k) + h(1))− cµui + µh.

(A.21)

Since hmax(k), h
(1), ui are k-, m-, (k(t − 1) − m)-sparse respectively, βi = hmax(k) +

h(1) + µui,
∑N

j=1 λjβj − cβi − µh = (1− µ− c)(hmax(k) + h(1))− cµui are all tk-sparse

vectors.
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We can check the following identity in `2 norm,

N∑
i=1

λi‖A(
N∑
j=1

λjβj − cβi)‖2
2 + (1− 2c)

∑
1≤i<j≤N

λiλj‖A(βi − βj)‖2
2

=
N∑
i=1

λi(1− c)2‖Aβi‖2
2.

(A.22)

Since Ah = 0 and (A.21), we have A(
∑N

j=1 λjβj − cβi) = A((1 − µ − c)(hmax(k) +

h(1)) − cµui). Set c = 1/2, µ =
√
t(t− 1) − (t − 1), let the left hand side of (A.22)

minus the right hand side, we get

0 ≤(1 + δAtk) ·
N∑
i=1

λi
(
(1− µ− c)2‖hmax(k) + h(1)‖2

2 + c2µ2‖ui‖2
2

)
− (1− δAtk) ·

N∑
i=1

λi(1− c)2
(
‖hmax(k) + h(1)‖2

2 + µ2‖ui‖2
2

)
=

N∑
i=1

λi

[(
(1 + δAtk)(

1

2
− µ)2 − (1− δAtk) ·

1

4

)
· ‖hmax(k) + h(1)‖2

2 +
1

2
δAtkµ

2‖ui‖2
2

]
≤

N∑
i=1

λi‖hmax(k) + h(1)‖2
2 ·
[
(µ2 − µ) + δAtk

(
1

2
− µ+ (1 +

1

2(t− 1)
)µ2

)]
=‖hmax(k) + h(1)‖2

2 ·
[
δAtk

(
(2t− 1)t− 2t

√
t(t− 1)

)
−
(

(2t− 1)
√
t(t− 1)− 2t(t− 1)

) ]
< 0.

We used the fact that

δAtk <
√

(t− 1)/t,

‖ui‖2 ≤
√
k/(t− 1)α ≤

‖hmax(k)‖2√
(t− 1)

≤
‖hmax(k) + h(1)‖2√

t− 1

above. This is a contradiction.

When tk is not an integer, note t′ = dtke/k, then t′ > t, t′k is an integer,

δt′k = δtk <

√
t− 1

t
<

√
t′k − 1

t′k
,
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which can be deduced to the former case. Hence we finished the proof. �

A.1.3 Proof of Theorems 1.2.1 and 1.2.3.

Suppose h = β̂ − β, where β̂ may be β̂`2 or β̂DS depending on specific scenarios. For

all the proofs, we will need a widely used fact. The readers may see Cai et al. (2009),

Candès and Tao (2007), Candès et al. (2006), Donoho and Huo (2001) for details:

‖h−max(k)‖1 ≤ ‖hmax(k)‖1 + 2‖β−max(k)‖1. (A.23)

Again, the proof of Theorems 1.2.1 and 1.2.3 shall be divided into three parts:

δAk < 1/3, δAk + θAk,k < 1 (or δAa + Ca,b,kθ
A
a,b < 1) and δAtk <

√
(t− 1)/t.

Part 1. If δAk < 1/3 for some k ≥ 2.

We first prove the inequality for β`2 (1.10). Denote h = β̂`2 − β, then h can be

written as h =
∑m

i=1 aiui, where {ui}pi=1 are indicator vectors with different support

in Rp; {ai}pi=1 is a non-negative and decreasing sequence. Then by (A.23) we have

k∑
i=1

ai + 2‖β−max(k)‖1 ≥
m∑

i=k+1

ai (A.24)

Apply Division Lemma A.1.1 by setting a′i = ai + 2‖β−max(k)‖1/k, i = 1, · · · , k and

a′j = aj, j > k + 1, we can find {sij}1≤i≤k,2k+1≤j≤m satisfying

k∑
i=1

sij = aj, ∀ 2k + 1 ≤ j ≤ m, (A.25)

1

k

k∑
w=1

aw +
2‖β−max(k)‖1

k
≥ ak+i +

m∑
j=2k+1

sij, ∀ 1 ≤ i ≤ k. (A.26)

We also know

‖Ah‖ ≤ ‖Aβ − y‖+ ‖y − Aβ̂‖ ≤ ε+ η. (A.27)
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Similarly as Part 1 of Theorem 1.1.1, we finish the remaining part of proof for even

or odd k separately.

1. When k is even, we define h11, · · · , h32 as (A.7), similarly as (A.8) and by

parallelogram equality, we get

‖A(−h11 + h22 + h32)‖2 + ‖A(−h12 + h21 + h31)‖2

=
1

2

[
‖A(−h11 − h12 + h21 + h22 + h31 + h32)‖2

+ ‖A(−h11 + h12 − h21 + h22 − h31 + h32)‖2
]

=
1

2
‖A(2h11 + 2h12)− Ah‖2 +

1

4
‖A(−2h11 − 2h21 − 2h31)‖2

+
1

4
‖A(2h12 + 2h22 + 2h32)‖2 − 1

8
‖A(2h)‖2

=2‖A(h11 + h12)‖2 + ‖A(h11 + h21 + h31)‖2

+ ‖A(h12 + h22 + h32)‖2 − 2〈Ah,A(h11 + h12)〉

(A.28)

Let the right hand side of (A.28) minus the left hand side. Along with (A.9),
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(A.10), one get

0 =RHS − LHS

≥2(1− δAk )
k∑
i=1

a2
i − 2δAk

k∑
i=1

a2
i − 2δAk (

2k∑
i=k+1

(ai +
m∑

j=2k+1

sij)
2)

− 2〈Ah,A(h11 + h12)〉

≥2(1− 2δAk )
k∑
i=1

a2
i − 2δAk k(

∑k
i=1 ai
k

+
2‖β−max(k)‖1

k
)2

− 2(ε+ η)

√√√√(1 + δAk )
k∑
i=1

a2
i

≥2(1− 2δAk )
k∑
i=1

a2
i − 2δAk (

√√√√ k∑
i=1

a2
i +

2‖β−max(k)‖1√
k

)2

− 2(ε+ η)

√√√√(1 + δAk )
k∑
i=1

a2
i

(A.29)

By (A.29) we can get an inequality of
√∑k

i=1 a
2
i :

√√√√ k∑
i=1

a2
i ≤

δ
2‖β−max(k)‖1√

k
+ ε+η

2

√
1 + δ

1− 3δ

+

√
(δ

2‖β−max(k)‖1√
k

+ ε+η
2

√
1 + δ)2 + (1− 3δ)δ‖2β−max(k)‖2

1/k

1− 3δ

≤
√

1 + δ(ε+ η) + 2(2δ +
√

(1− 3δ)δ)‖β−max(k)‖1/
√
k

1− 3δ

(A.30)

Finally, by Lemma A.1.5,

m∑
i=k+1

a2
i ≤ (

√√√√ k∑
i=1

a2
i +

2‖β−max(k)‖1√
k

)2
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Then

‖h‖2 =

√√√√ m∑
i=1

a2
i

≤

√√√√√ k∑
i=1

a2
i + (

√√√√ k∑
i=1

a2
i +

2‖β−max(k)‖1√
k

)2 ≤

√√√√2
k∑
i=1

a2
i +

2‖β−max(k)‖√
k

≤
√

2(1 + δ)

1− 3δ
(ε+ η) +

2
√

2(2δ +
√

(1− 3δ)δ) + 2(1− 3δ)

1− 3δ

‖β−max(k)‖1√
k

(A.31)

2. When k is odd, we use the definitions in (A.11). Similar equality as (A.28)

holds as follows,

‖A(−h11 + h21 + h31)‖2 + ‖A(−h12 + h22 + h32)‖2 + ‖A(−h13 + h23 + h33)‖2

=‖A(h12 + h13 + h21 + h31)‖2 + ‖A(h11 + h13 + h22 + h32)‖2

+ ‖A(h11 + h12 + h23 + h33)‖2 + ‖A(h11 + h12 + h13)‖2

− 2〈A(h11 + h12 + h13), Ah〉

By the method in the even case, we can still get the inequality (A.29). Hence

we have the same estimation that finished the proof of (1.10). �

The proof of the inequality for β̂DS (1.13) is essentially the same. In this case, we

shall use the inequalities

‖ATAh‖∞ ≤ ‖AT (Aβ − y)‖∞ + ‖AT (y − Aβ̂)‖∞ ≤ ε+ η

and

|〈Ah,Ahmax(k)〉| = |hTmax(k)A
TAh| ≤ ‖hmax(k)‖1‖ATAh‖∞ ≤

√
k‖hmax(k)‖2(ε+ η)

114



in the calculation of (A.29).

Part 2. If δAk +θAk,k < 1 for some k ≥ 1, or δAa +Ca,b,kθ
A
a,b < 1 for some 1 ≤ a ≤ k, b ≥ 1.

Again, it suffices to prove Theorem 1.2.3 as Part 2 of Theorem 1.2.1 is a special

case of Theorem 1.2.3.

We first prove the inequality for β̂`2 (1.11). Set h = β̂`2 − β. By the boundedness

of z and the definition of the feasible set for β̂,

‖Ah‖2 ≤ ‖Ah− y‖2 + ‖y − Aβ̂‖2 ≤ ε+ η. (A.32)

On the other hand, suppose h =
∑p

i=1 ciui, where {ci}pi=1 are non-negative and non-

decreasing, {ui}pi=1 are indicator vectors with different supports. Then by (A.23) we

have
m∑

i=k+1

ci ≤
k∑
i=1

ci + 2‖β−max(k)‖1. (A.33)

Hence, ‖h−max(a)‖∞ = ca+1 ≤
∑a
i=1 ci
a

=
‖hmax(a)‖1

a
≤ ‖hmax(a)‖1

a
+

2‖β−max(k)‖1
2k−a and

‖h−max(a)‖1 =
k∑

i=a+1

ci +

p∑
i=k+1

ci ≤
k − a
k

k∑
i=1

ci +
k∑
i=1

ci + 2‖β−max(k)‖1

≤ k − a
a

a∑
i=1

ci +
k

a

a∑
i=1

ci + 2‖β−max(k)‖1

=
2k − a
a
‖hmax(a)‖1 + 2‖β−max(k)‖1.

Now set λ =
‖hmax(a)‖1

a
+

2‖β−max(k)‖1
2k−a , k1 = a, and k2 = 2k − a. Lemma 1.1.1 then

yields that there exist {ui}Ni=1, {λi}Ni=1 such that

h−max(a) =
N∑
i=1

λiui, ‖ui‖0 ≤ 2k − a, 0 ≤ λi ≤ 1,
N∑
i=1

λi = 1,

‖h−max(a)‖1 = ‖ui‖1, ‖ui‖∞ ≤
‖hmax‖1

a
+

2‖β−max(k)‖1

2k − a
.
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Thus,

|〈A(hmax(a)), A(h−max(a))〉| ≤
N∑
i=1

λi|〈A(hmax(a)), Aui〉| ≤
N∑
i=1

λiθ
A
a,2k−a‖hmax(a)‖2‖ui‖2

≤θAa,2k−a
√

2k − a‖hmax(a)‖2 ·
(
‖hmax(a)‖1

a
+

2‖β−max(k)‖1

2k − a

)
.

On the other hand,

|〈Ah,Ahmax(a)〉| ≤ ‖Ah‖2‖Ahmax(a)‖2 ≤ (ε+ η)
√

1 + δ‖hmax(a)‖2. (A.34)

Now we denote θa,2k−a as θ̃, then

(ε+ η)
√

1 + δ‖hmax(a)‖2

≥ |〈Ah,Ahmax(a)〉| ≥ ‖Ahmax(a)‖2
2 − |〈Ah−max(a), Ahmax(a)〉|

≥ (1− δ)‖hmax(a)‖2
2 − θ̃‖hmax(a)‖2 ·

√
2k − a

(
‖hmax(a)‖1

a
+

2‖β−max(k)‖1

2k − a

)
≥ (1− δ −

√
2k − a
a

θ̃)‖hmax(a)‖2
2 − θ̃‖hmax(a)‖2

2‖β−max(k)‖1√
2k − a

.

Hence

‖hmax(a)‖2 ≤
√

1 + δ(ε+ η)

1− δ −
√

(2k − a)/aθ̃
+

θ̃

1− δ −
√

(2k − a)/aθ̃

2‖β−max(k)‖1√
2k − a

. (A.35)
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Applying Lemma A.1.5 with α = 2 and λ = 2‖h−max(k)‖1 yields

‖h‖2 =

√√√√ k∑
i=1

c2
i +

p∑
i=k+1

c2
i ≤

√√√√√ k∑
i=1

c2
i + (

√√√√ k∑
i=1

c2
i +

2‖β−max(k)‖1√
k

)2

≤

√√√√2
k∑
i=1

c2
i +

2‖β−max(k)‖1√
k

≤

√√√√2k

a

a∑
i=1

c2
i +

2‖β−max(k)‖1√
k

≤
√

2(1 + δ)k/a(ε+ η)

1− δ −
√

(2k − a)/aθ̃

+

( √
2k/aθ̃

1− δ −
√

(2k − a)/aθ̃

2√
2k − a

+
2√
k

)
‖β−max(k)‖1.

Finally, it follows from Lemma A.1.7 that

θ̃ = θa,2k−a ≤

√
2k − a

min{b, 2k − a}
θa,min{b,2k−a} ≤ max

{√
2k − a
b

, 1

}
θa,b

=

√
a

2k − a
Ca,b,kθa,b.

So ‖h‖2 ≤
√

2(1+δ)k/a(ε+η)

1−δ−Ca,b,kθ
+ 2‖β−max(k)‖1

( √
2kCa,b,kθ

(1−δ−Ca,b,kθ)(2k−a)
+ 1√

k

)
, which finishes the

proof of 1.2.1.

The proof for β̂DS is basically the same, where we only need to use the inequalities

‖ATAh‖∞ ≤ ‖AT (Aβ − y)‖∞ + ‖AT (y − Aβ̂)‖∞ ≤ (ε+ η) and

|〈Ah,Ahmax(a)〉| = |hTmax(a)A
TAh| ≤ ‖hmax(a)‖1‖ATAh‖∞ ≤

√
a‖hmax(a)‖2(ε+ η)

instead of (A.32) and (A.34).

Part 3. If δAtk <
√

(t− 1)/t for some t ≥ 4/3.

We first prove the inequality on β̂`2 (1.12). Similarly to the proof of Theorem
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1.1.1, we assume that tk is an integer at first. Besides,

‖Ah‖2 ≤ ‖y − Aβ‖2 + ‖Aβ̂`2 − y‖2 ≤ ε+ η. (A.36)

Define α = (‖hmax(k)‖1 + 2‖β−max(k)‖1)/k. Similarly as the proof of Theorem 1.1.1,

we divide h−max(k) into two parts, h−max(k) = h(1) + h(2), where

h(1) = h−max(k) · 1{i||h−max(k)(i)|>α/(t−1)}, h(2) = h−max(k) · 1{i||h−max(k)(i)|≤α/(t−1)}.

Then ‖h(1)‖1 ≤ ‖h−max(k)‖1

(A.23)

≤ αk. Denote |supp(h(1))| = ‖h(1)‖0 = m. Since all

non-zero entries of h(1) have magnitude larger than α/(t− 1), we have

αk ≥ ‖h(1)‖1 =
∑

i∈supp(h(1))

|h(1)(i)| ≥
∑

i∈supp(h(1))

α/(t− 1) = mα/(t− 1).

Namely m ≤ k(t− 1). Hence, (A.18) still holds. Besides, ‖hmax(k) +h(1)‖0 = k+m ≤

tk, we have

〈A(hmax(k) + h(1)), Ah〉 ≤‖A(hmax(k) + h(1))‖2‖Ah‖2

≤
√

1 + δ‖hmax(k) + h(1)‖2(ε+ η).

(A.37)

Again by (A.18), we apply Lemma 1.1.1 by setting s = k(t− 1)−m, we can express

h(2) as a weighted mean: h(2) =
∑N

i=1 λiui, where ui is (k(t − 1) − m)-sparse and

(A.19) still holds. Hence,

‖ui‖2 ≤
√
‖ui‖0‖ui‖∞ ≤

√
k(t− 1)−m‖ui‖∞ ≤

√
k(t− 1)‖ui‖∞ ≤

√
k/(t− 1)α.

Now we suppose 1 ≥ µ ≥ 0, c ≥ 0 are to be determined. Denote βi = hmax(k) +

h(1) + µui, then we still have (A.21). Similarly to the proof of Theorem 1.1.1, since
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hmax(k), h
(1), ui are k-, m-, (k(t − 1) −m)-sparse vectors, respectively, we know βi =

hmax(k) + h(1) + µui,
∑N

j=1 λjβj − cβi − µh = (1− µ− c)(hmax(k) + h(1))− cµui are all

tk sparse vectors.

Suppose x = ‖hmax(k) + h(1)‖2, P =
2‖β−max(k)‖1√

k
, then

‖ui‖2 ≤
√
k/(t− 1)α ≤

‖hmax(k)‖2√
(t− 1)

+
2‖β−max(k)‖1√

k(t− 1)

≤
‖hmax(k) + h(1)‖2√

t− 1
+

2‖β−max(k)‖1√
k(t− 1)

=
x+ P√
t− 1

.

We still use the `2 identity (A.22). Set c = 1/2, µ =
√
t(t− 1)− (t− 1) and take the

difference of the left- and right-hand sides of (A.22), we get

0 =
N∑
i=1

λi

∥∥∥A((hmax(k) + h(1) + µh(2))− 1

2
(hmax(k) + h(1) + µui)

)∥∥∥2

2
−

N∑
i=1

λi
4
‖Aβi‖2

2

=
N∑
i=1

λi

∥∥∥∥A((
1

2
− µ)(hmax(k) + h(1))− µ

2
ui + µh

)∥∥∥∥2

2

−
N∑
i=1

λi
4
‖Aβi‖2

2

=
N∑
i=1

λi

∥∥∥∥A((
1

2
− µ)(hmax(k) + h(1))− µ

2
ui

)∥∥∥∥2

2

+ 2

〈
A

(
(
1

2
− µ)(hmax(k) + h(1))− µ

2
h(2)

)
, µAh

〉
+ µ2‖Ah‖2

2 −
N∑
i=1

λi
4
‖Aβi‖2

2

=
N∑
i=1

λi

∥∥∥∥A((
1

2
− µ)(hmax(k) + h(1))− µ

2
ui

)∥∥∥∥2

2

+ µ(1− µ)
〈
A(hmax(k) + h(1)), Ah

〉
−

N∑
i=1

λi
4
‖Aβi‖2

2.

Now since βi, (1
2
− µ)(hmax(k) + h(1)) − µ

2
ui are all tk-sparse vectors, we apply the
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definition of δAtk and also (A.37) to get

0 ≤(1 + δ)
N∑
i=1

λi

(
(
1

2
− µ)2‖hmax(k) + h(1)‖2

2 +
µ2

4
‖ui‖2

2

)
+ µ(1− µ)

√
1 + δ‖hmax(k) + h(1)‖2(ε+ η)

− (1− δ)
N∑
i=1

λi
4

(
‖hmax(k) + h(1)‖2

2 + µ2‖ui‖2
2

)
=

N∑
i=1

λi

{(
(1 + δ)(

1

2
− µ)2 − (1− δ) · 1

4

)
·
∥∥hmax(k) + h(1)

∥∥2

2
+

1

2
δµ2‖ui‖2

2

}
+ µ(1− µ)

√
1 + δ

∥∥hmax(k) + h(1)
∥∥

2
(ε+ η)

≤
[
(µ2 − µ) + δ

(
1

2
− µ+ (1 +

1

2(t− 1)
)µ2

)]
x2

+

[
µ(1− µ)

√
1 + δ(ε+ η) +

δµ2P

t− 1

]
x+

δµ2P 2

2(t− 1)

=− t
(

(2t− 1)− 2
√
t(t− 1)

)(√t− 1

t
− δ

)
x2

+

[
µ2

√
t

t− 1
·
√

1 + δ(ε+ η) +
δµ2P

t− 1

]
x+

δµ2P 2

2(t− 1)

=
µ2

t− 1

[
− t

(√
t− 1

t
− δ

)
x2 +

(√
t(t− 1)(1 + δ)(ε+ η) + δP

)
x+

δP 2

2

]
,

(A.38)

which is an second-order inequality for x. By solving this inequality we get

x ≤

{(√
t(t− 1)(1 + δ)(ε+ η) + δP

)
+
[ (√

t(t− 1)(1 + δ)(ε+ η) + δP
)2

+ 2t(
√

(t− 1)/t− δ)δP 2
]1/2
}
·
(

2t(
√

(t− 1)/t− δ)
)−1

≤
√
t(t− 1)(1 + δ)

t(
√

(t− 1)/t− δ)
(ε+ η) +

2δ +
√

2t(
√

(t− 1)/t− δ)δ

2t(
√

(t− 1)/t− δ)
P.

Finally, note that ‖h−max(k)‖1 ≤ ‖hmax(k)‖1 + P
√
k, by Lemma A.1.5, we obtain
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‖h−max(k)‖2 ≤ ‖hmax(k)‖2 + P , so

‖h‖2 =
√
‖hmax(k)‖2

2 + ‖h−max(k)‖2
2 ≤

√
‖hmax(k)‖2

2 + (‖hmax(k)‖2 + P )2

≤
√

2‖hmax(k)‖2
2 + P ≤

√
2x+ P

≤
√

2t(t− 1)(1 + δ)

t(
√

(t− 1)/t− δ)
(ε+ η) +

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

=

√
2(1 + δ)

1−
√
t/(t− 1)δ

(ε+ η) +

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

,

which finished the proof.

When tk is not an integer, again we define t′ = dtke/k, then t′ > t and δAt′k =

δAtk <
√

t−1
t
<
√

t′−1
t′

. We can prove the result by working on δAt′k.

For the inequality on β̂DS (1.15), the proof is similar. Define h = β̂DS − β. We

have the following inequalities

‖ATAh‖∞ ≤ ‖AT (Aβ̂`2 − y)‖∞ + ‖AT (y − Aβ)‖∞ ≤ η + ε,

〈A(hmax(k) + h(1)), Ah〉 = 〈hmax(k) + h(1), ATAh〉

≤‖hmax(k) + h(1)‖1(ε+ η) ≤
√
tk(ε+ η)‖hmax(k)+h(1)‖2,

(A.39)

instead of (A.36) and (A.37). We can prove (1.15) basically the same as the proof

above except that we use (A.39) instead of (A.37) when we go from the third term

to the fourth term in (A.38). �

A.1.4 Proof of Proposition 1.2.1.

By a small extension of Lemma 5.1 in Cai et al. (2009), we have ‖z‖2 ≤ σ
√
n+ 2

√
n log n

with probability at least 1 − 1/n; ‖AT z‖∞ ≤ σ
√

2(1 + δA1 ) log p ≤ 2σ
√

log p with

probability at least 1− 1/
√
π log p. Then the Proposition is immediately implied by
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Theorem 1.2.1. �

A.1.5 Proof of Proposition 1.2.2.

The proof of Proposition (1.2.2) is similar to that of Theorem 2.7 in Candès and Plan

(2011).

First, as in the proof of Proposition 1.2.1, we have ‖AT z‖∞ ≤ λ/2 with probability

at least 1/
√
π log n. In the rest proof, we will prove (1.19), (1.20) and (1.21) under

different RIP conditions in the event that ‖AT z‖∞ ≤ λ/2. Define

K(ξ, β) = γ‖ξ‖0 + ‖Aβ − Aξ‖2
2, γ =

λ2

8
= 2σ2 log p.

Let β̄ = arg minξK(ξ, β). Since K(β̄, β) ≤ K(β, β), we have γ‖β̄‖0 ≤ γ‖β‖0, which

means β̄ is k-sparse.

With a small edition on Lemma 3.5 in Candès and Plan (2011), we can prove

‖ATA(β̄ − β)‖∞ ≤ λ/2 (A.40)

In fact, if (A.40) does not hold. Suppose
∣∣(ATA(β̄ − β)

)
i

∣∣ > λ/2, i.e. the absolute

value of the i-th entry is greater than λ/2. We construct

β̄′ = β̄ − αei, α =

(
ATA(β̄ − β)

)
i

‖Aei‖2
2

.

Then

‖A(β̄′−β)‖2
2 = ‖A(β̄−β)‖2

2−2α〈Aei, A(β̄−β)〉+α2‖Aei‖2
2 = ‖A(β̄−β)‖2

2−α2‖Aei‖2
2
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which yields

K(β̄′, β) ≤ γ(‖β̄‖0 + 1) + ‖A(β̄ − β)‖2
2 − α2‖Aei‖2

2

≤ K(β̄, β) + γ − α2‖Aei‖2
2

≤ K(β̄, β) +
λ2

8
−
(
ATA(β̄ − β)

)2

i
/‖Aei‖2

2

< K(β̄, β) +
λ2

8
− (λ/2)2/(1 + δA1 ) ≤ K(β̄, β),

This is a contradiction to the assumption that β̄ is the minimizer of K(ξ, β), namely

(A.40) holds. So we have

‖AT (y − Aβ̄)‖∞ ≤ ‖AT (y − Aβ)‖∞ + ‖ATA(β − β̄)‖∞ ≤ λ. (A.41)

So β̄ is feasible in (1.2). Since ‖β̄‖0 ≤ k, we can apply Theorem 1.2.1 by plugging β

by β̄ and get

‖β̂ − β̄‖2 ≤



√
2‖β̄‖0

1−3δAk
2λ, δAk < 1/3;

√
2‖β̄‖0

1−δAk −θ
A
k,k

2λ, δAk + θAk,k < 1;
√

2t‖β̄‖0
1−
√
t/(t−1)δAtk

2λ, δAtk <
√

(t− 1)/t.

(A.42)

Next, we prove δA2k < 1 under any of the three RIP conditions.

1. When δAk < 1/3, by Lemma A.1.6, we have

δ2k ≤ 3δAk < 1.

2. When δAk + θAk,k < 1/3, by Lemma 1.1 in Candès and Tao (2005), we have

δ2k ≤ δAk + θAk,k < 1.
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3. When δAtk <
√

(t− 1)/t, by Lemma A.1.6, we can see when 1 < t < 2,

δA2k ≤ (2
2k

dtke
− 1)δAdtke ≤ (4/t− 1)δAtk ≤

√
t/(t− 1)δAtk.

When t ≥ 2, δA2k ≤ δAtk, which means

δA2k ≤
√
t/(t− 1)δAtk < 1, (A.43)

whenever t ≥ 4/3.

Finally, we finish the proof for the case where δAtk <
√

(t− 1)/t. The other two

cases can follow with small editions.

‖β̄ − β‖2
2 ≤

1

1− δA2k
‖Aβ̄ − Aβ‖2

2 ≤
1

1−
√
t/(t− 1)δAtk

‖Aβ̄ − Aβ‖2
2.

Hence,

‖β̂ − β‖2
2 ≤ 2‖β̂ − β̄‖2

2 + 2‖β̄ − β‖2
2

≤ 16t‖β̄‖0λ
2

(1−
√
t/(t− 1)δAtk)

2
+

2

1−
√
t/(t− 1)δAtk

‖Aβ̄ − Aβ‖2
2

≤ 128t

(1−
√
t/(t− 1)δAtk)

2
K(β̄, β).

Suppose β′ =
∑p

i=1 β · 1{|βi|>µ}, where µ =
√

γ
1+δAk

. Then

K(β̄, β) ≤ K(β′, β) ≤ γ

p∑
i=1

1{|βi|>µ} + ‖Aβ′ − Aβ‖2
2

≤ γ

p∑
i=1

1{|βi|>µ} + (1 + δAk )

p∑
i=1

1{|βi|≤µ}|βi|2

≤
p∑
i=1

min(γ, (1 + δAk )|βi|2) ≤ 2 log p

p∑
i=1

min(σ2, |βi|2).
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Therefore, we have proved (1.21) in the event that ‖AT z‖∞ ≤ λ/2. �

A.1.6 Proof of Theorem 1.2.4.

Again, we divide the proof of Theorem 1.2.4 into three parts.

Part 1. “δAk < 1/3” is sharp.

Note

β1 = diag(

2k︷ ︸︸ ︷
1√
2k
, · · · , 1√

2k
, 0, · · · , 0) ∈ Rp

Suppose H = (Rp, ‖β‖2) is the Hilbert with inner product 〈·, ·〉. Since ‖β1‖2 = 1, we

can extend β1 into a basis {β1, · · · , βp}. Define A : Rp → Rp as

Aγ =

√
4

3

p∑
i=2

aiβi (A.44)

for all γ =
∑p

i=1 aiβi.

Then by Cauchy-Schwarz inequality, for all k-sparse vector γ, we have

|〈γ, β1〉| = |〈γ, β1 · 1supp(γ)〉| ≤ ‖γmax(k)‖2‖β‖2 ≤
√
k · 1

2k
‖β‖2 =

√
1

2
‖β‖2

‖Aγ‖2
2 =

4

3

p∑
i=2

a2
i =

4

3
(‖γ‖2

2 − a2
1) =

4

3
(‖γ‖2

2 − |〈γ, β1〉|2)

Thus,

2

3
‖γ‖2

2 ≤ ‖Aγ‖2
2 ≤

4

3
‖γ‖2

2, δAk ≤ 1/3

Notice that

‖A(

k︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0)‖2

2 =
2

3
k =

2

3
‖(

k︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0)‖2

F

‖A(1,−1, 0, · · · , 0)‖2
2 =

8

3
=

4

3
‖(1,−1, 0, · · · , 0)‖2

2
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we can conclude that δAk = 1/3. Finally, suppose

u = (

k︷ ︸︸ ︷
1, 1 · · · , 1, 0, · · · , 0) ∈ Rp, v = (

k︷ ︸︸ ︷
0, · · · , 0,

k︷ ︸︸ ︷
−1,−1 · · · ,−1, 0, · · · , 0) ∈ Rp

Then u, v are both matrices of rank k such that Au = Av. Therefore, it is impossible

to recover both u and v only given (y, A) in both the noiseless and noisy case, which

finishes the proof of Part 1 of Theorem 1.2.4.

Part 2. “δAtk + θAk,k < 1” and “δAa + Ca,b,kθ
A
a,b < 1” are sharp.

Again, it suffices to prove Theorem 1.2.5 as Part 2 of Theorem 1.2.4 is a special

case of Theorem 1.2.5.

Still, we define A as (A.44). The Cauchy-Schwarz Inequality yields that |〈γ, β1〉| ≤

‖β1·1supp(γ)‖2‖γ‖2 ≤
√

a
2k
‖γ‖2 for all a-sparse vector γ. Note that ‖Aγ‖2

2 =
∑p

i=2 c
2
i =

2
2−a/(2k)

(‖γ‖2
2 − c2

1) = 2
2−a/(2k)

(‖γ‖2
2 − |〈γ, β1〉|2) . So

(
1− a/(2k)

2− a/(2k)

)
‖γ‖2

2 ≤ ‖Aγ‖2
2 ≤

(
1 +

a/(2k)

2− a/(2k)

)
‖γ‖2

2 and δAa ≤
a/(2k)

2− a/(2k)
.

Now we estimate θAa,b. For any a-sparse vector γ1 and b-sparse vector γ2 ∈ Rp with dis-

joint supports, write γ1 =
∑p

i=1 ciβi and γ2 =
∑p

i=1 diβi, we have a/(2k)
2−a/(2k)

∑p
i=1 cidi =

〈γ1, γ2〉 = 0.

1. When b ≤ 2k−a, The Cauchy-Schwarz Inequality yields that |c1| = |〈β1, γ1〉| ≤√
a
2k
‖γ1‖2 and |d1| = |〈β1, γ2〉| ≤

√
b

2k
‖γ1‖2. So

2− a/(2k)

2
|〈Aγ1, Aγ2〉| = |

p∑
i=2

cidi| = | − c1d1| ≤
√
ab

2k
‖γ1‖2‖γ2‖2

126



and consequently θa,b ≤ 2
2−a/(2k)

·
√
ab

2k
. Hence

δAa + Ca,b,kθ
A
a,b ≤

a/(2k)

2− a/(2k)
+ max

{
2k − a√

ab
,

√
2k − a
a

}
· 2

2− a/(2k)

√
ab

2k
≤ 1.

2. When b > 2k − a, if γ1 = 0 or γ2 = 0, it is clear that 〈Aγ1, Aγ2〉 = 0 ≤

C‖γ1‖2‖γ2‖2 for any C ≥ 0. Without loss of generality, we assume that γ1 and

γ2 are non-zero and are normalized so that ‖γ1‖2 = ‖γ2‖2 = 1. Since γ1 and

γ2 are a, b-sparse respectively and γ1 and γ2 have disjoint supports, it follows

from the Cauchy-Schwarz Inequality that for all λ ≥ 0, |c1| = |〈β1, γ1〉| ≤√
a
2k
‖γ1‖2 =

√
a
2k

and

∣∣∣∣d1 ±
√

a

2k − a
c1

∣∣∣∣ =

∣∣∣∣〈β1, γ2 ±
√

a

2k − a
γ1〉
∣∣∣∣ ≤ ∥∥∥∥γ2 ±

√
a

2k − a
γ1

∥∥∥∥
2

=

√
2k

2k − a
.

Hence,

2− a/(2k)

2
|〈Aγ1, Aγ2〉| = |

mn∑
i=2

cidi| = | − c1d1|

= |c1| ·
(

max{|d1 +

√
a

2k − a
c1|, |d1 −

√
a

2k − a
c1|} − |

√
a

2k − a
c1|
)

≤ |c1| ·

(√
2k

2k − a
−
√

a

2k − a
|c1|

)

= −
√

a

2k − a

(√
k

2a
− |c1|

)2

+
k

2
√
a(2k − a)

≤
√
a(2k − a)

2k

where the last inequality follows from the facts that |c1| ≤
√
a/(2k) and a ≤ k.
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So θAa,b ≤ 2
2−a/(2k)

·
√
a(2k−a)

2k
and

δAa + Ca,b,kθ
A
a,b

≤ a/(2k)

2− a/(2k)
+ max

{
2k − a√

ab
,

√
2k − a
a

}
· 2

2− a/(2k)

√
a(2k − a)

2k
≤ 1.

To sum up, we have shown δAa + Ca,b,kθ
A
a,b ≤ 1. Furthermore, let

u = (

k︷ ︸︸ ︷
1, · · · , 1, 0, · · · ) and v = (

k︷ ︸︸ ︷
0, · · · , 0,

k︷ ︸︸ ︷
−1, · · · ,−1, 0, · · · ),

so u and v are both k-sparse and Au = Av, since A(u − v) = 0. Suppose y =

Au = Av, then the k-sparse signals u and v are not distinguishable based on (y, A).

Thus, the general recovery cannot be done in both noiseless and noisy case. Finally,

δAa +Ca,b,kθ
A
a,b < 1 is impossible by Theorem 1.2.2, so we must have δAa +Ca,b,kθ

A
a,b = 1.

Part 3. “δAtk <
√

(t− 1)/t” is sharp.

For any ε > 0 and k ≥ 5/ε, suppose p ≥ 2tk, m′ = ((t − 1) +
√
t(t− 1))k, m is

the largest integer strictly smaller than m′. Then m < m′ and m′ − m ≤ 1. Since

t ≥ 4/3, we have m′ ≥ k. Define

β1 =

√
k +

mk2

m′2

−1

(

k︷ ︸︸ ︷
1, · · · , 1,

m︷ ︸︸ ︷
− k

m′
, · · · ,− k

m′
, 0, · · · , 0) ∈ Rp,

then ‖β1‖2 = 1. We define linear map A : Rp → Rp, such that for all β ∈ Rp,

Aβ =

√
1 +

√
t− 1

t
(β − 〈β1, β〉β1) .
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Now for all dtke-sparse vector β,

‖Aβ‖2
2 =

(
1 +

√
t− 1

t

)
(β − 〈β1, β〉β1)T (β − 〈β1, β〉β1)

=

(
1 +

√
t− 1

t

)(
‖β‖2

2 − |〈β1, β〉|2
)
.

Since β is dtke-sparse, by Cauchy-Schwarz Inequality,

0 ≤ |〈β1, β〉|2 ≤ ‖β‖2
2 · ‖β1 · 1supp(β)‖2

2 ≤ ‖β‖2
2‖β1,max(dtke)‖2

2

=‖β‖2
2 ·
m′2 + k(dtke − k)

m′2 +mk
≤ m′2 + k2(t− 1) + k

m′2 +m′k
· 1

1− k(m′−m)
m′2+m′k

‖β‖2
2

=
m′2 + k2(t− 1)

m′2 +m′k
· m

′2 + k2(t− 1) + k

m′2 + k2(t− 1)
· 1

1− k(m′−m)
m′2+m′k

‖β‖2
2

=2
√
t− 1(

√
t−
√
t− 1) · (1 +

1

tk
) · 1

1− 1
2k

‖β‖2
2

≤
(

2
√
t(t− 1)− 2(t− 1)

)
· (1 +

5

2k
)‖β‖2

2 ≤
(

2
√
t(t− 1)− 2(t− 1) +

5

2k

)
‖β‖2

2.

We used the fact that m′ ≥ k, 0 < m′ −m ≤ 1 and

m′2 + k2(t− 1)

m′2 +m′k
=

(
(t− 1) +

√
t(t− 1)

)2

+ t− 1(
(t− 1) +

√
t(t− 1)

)2

+
(

(t− 1) +
√
t(t− 1)

)
=

(t− 1)
(
t− 1 + t+ 2

√
t(t− 1) + 1

)
√
t(t− 1)

(√
t+
√

(t− 1)
)2 =

2
√
t− 1√

t+
√
t− 1

= 2
√
t− 1

(√
t−
√
t− 1

)

above. Hence,

(
1 +

√
t− 1

t

)
‖β‖2

2 ≥ ‖Aβ‖2
2 ≥

(
1−

√
t− 1

t
−

(
1 +

√
t− 1

t

)
5

2k

)
‖β‖2

2

≥

(
1−

√
t− 1

t
− ε

)
‖β‖2

2,
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which implies δAtk ≤
√

(t− 1)/t+ ε.

Now we consider

β0 = (

k︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0) ∈ Rp,

γ0 = (

k︷ ︸︸ ︷
0, · · · , 0,

m︷ ︸︸ ︷
k

m′
, · · · , k

m′
, 0, · · · , 0).

Note that Aβ1 = 0, so Aβ0 = Aγ0. Besides, β0 is k-sparse and ‖γ0‖1 < ‖β0‖1.

� In the noiseless case, i.e. y = Aβ0, the `1 minimization method (1.2) fails to

exactly recover β0 through y since y = Aγ0, but ‖γ0‖1 < ‖β0‖1.

� In the noisy case, i.e. y = Aβ0 + z, assume that `1 minimization method

(1.2) can stably recover β0 with constraint Bz. Suppose β̂z is the solution of `1

minimization, then limz→0 β̂z = β0. Note that y−A(β̂z−β0+γ0) = y−Aβ̂z ∈ Bz,

by the definition of β̂z, we have ‖β̂z−β0+γ0‖1 ≥ ‖β̂z‖1. Let z → 0, it contradicts

that ‖γ0‖1 < ‖β0‖1. Therefore, `1 minimization method (1.2) fails to stably

recover β0. �

A.1.7 Proof of Proposition 1.4.1.

Based on Theorem 1.2.2,

δAtk +
2k − tk
tk

θAtk,tk < 1 (A.45)

is a sufficient condition for exact recovery of all k-sparse vectors. By Lemma A.1.8,

θAtk,tk ≤ 2δAtk when tk is even; θAtk,tk ≤ 2tk√
(tk)2−1

δAtk when tk is odd. Hence,

δAtk +
2k − tk
tk

θAtk,tk ≤
4− t
t

δAtk, tk is even;

δAtk +
2k − tk
tk

θAtk,tk ≤

(
1 +

4k − 2tk√
(tk)2 − 1

)
δAtk, tk is odd.
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The proposition is implied by the inequalities above and (A.45). �

A.1.8 Proof of Proposition 1.4.2.

The idea of the proof is quite similar to Theorems 1.2.4 and 1.2.5. Define

γ =
1√
2k

(

2k︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0),

A : Rp → Rp

β 7→ 2√
4− t

(β − 〈β, γ〉γ) .

Now for all non-zero dtke-sparse vector β ∈ Rp,

‖Aβ‖2
2 =

4

4− t
〈β − 〈β, γ〉γ, β − 〈β, γ〉γ〉 =

4

4− t
(‖β‖2

2 − 〈β, γ〉2).

We can immediately see ‖Aβ‖2
2 ≤ (1 + t/(4− t))‖β‖2

2. On the other hand by Cauchy-

Schwarz’s inequality,

〈β, γ〉2 = 〈β, γ · 1{supp(β)}〉2 ≤ ‖β‖2
2(

∑
i∈supp(β)

γ2
i ) ≤ ‖β‖2

2 ·
dtke
2k

.

For k > 1/ε, we have

‖Aβ‖2
2 ≥

4

4− t
(1− dtke

2k
)‖β‖2

2 ≥
4

4− t
(1− tk

2k
− ε/2)‖β‖2

2 > (1− t

4− t
− ε)‖β‖2

2.

Therefore, we must have δAtk = δAdtke < t/(4− t) + ε.

Finally, we define

β0 = (

k︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0), β′0 = (

k︷ ︸︸ ︷
0, · · · , 0,

k︷ ︸︸ ︷
−1, · · · ,−1, 0, · · · , 0).
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Then β0, β
′
0 are both k-sparse, and y = Aβ0 = Aβ′0. There’s no way to recover both

β0, β
′
0 only from (y, A). �

A.1.9 Technical Lemmas

In this section, we collect all technical tools for the proof of main theorems in Chapter

1.

It is well known that for matrices X, B with the same size, |〈X,B〉| ≤ ‖X‖F‖B‖F .

The following lemma provides a stronger result given further constraint on matrix

rank.

Lemma A.1.3. Let X ∈ Rm×n(m ≤ n) be a matrix with singular values λ1 ≥ λ2 ≥

· · · ≥ λm, then for all B ∈ Rm×n such that rank(B) ≤ r, we have

|〈B,X〉| ≤ ‖B‖F

√√√√ r∑
i=1

λ2
i .

Proof of Lemma A.1.3 Since the rank of B is at most r, we can suppose B,X have

singular value decomposition B = UΣV ,X = WΛZ, where U,W ∈ Rm×m,Σ,Λ ∈

Rm×n, V, Z ∈ Rn×n. Then

〈B,X〉 =tr(BTX) = tr(V TΣTUTWΛZ) = tr(ΣTUTWΛZV T )

=diag(Σ) · diag(UTWΛZV T )

Since the rank of B is at most r, diag(Σ) is supported on the first r entries,

|〈B,X〉| ≤

√√√√ r∑
i=1

Σ2
ii ·

√√√√ r∑
i=1

(UTWΛZV T )2
ii

≤‖B‖F

√√√√ r∑
i=1

n∑
j=1

(UTWΛZV T )2
ij = ‖B‖F‖KΛZV T‖F
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where we note K ∈ Rr×n as the first r rows of UTW . In addition,

‖KΛZV T‖2
F = tr(V ZTΛTKTKΛZV T ) = tr(ΛZV TV ZTΛTKTK) = tr(Λ2KTK)

By K is the first r row of an n×n orthogonal matrix, we have tr(KTK) = tr(KKT ) =

tr(Ir) = r and all diagonal elements of KTK are in [0, 1], then

tr(Λ2KTK) =
n∑
i=1

λ2
i (K

TK)ii ≤
r∑
i=1

λ2
i

In summary,

|〈B,X〉| ≤ ‖B‖F‖KΛZV T‖F ≤ ‖B‖F

√√√√ r∑
i=1

λ2
i . �

It is noteworthy that the signal version of this lemma simply holds by Cauchy-

Schwarz inequality.

As seen in the proofs of Theorems 1.1.1 and 1.2.1, it is necessary to estimate the

left hand side of (A.9), (A.10), (A.14), (A.15) and (A.16). Notice that these terms

are of the similar type – they are all the differences of the squared Frobenius norm of

two matrices which only differ on a few leading terms in their SVD decompositions,

we have the following lemma for the general estimation of this type of differences.

Before we present the lemma, recall that we have defined the concept of indicator

vector in the proof of Part 1 in Theorem 1.1.1.

Lemma A.1.4. For the vector case, suppose g, h ≥ 0, g + h ≤ k,

{di}gi=1, {ej}lj=1, {tij}1≤i≤g,1≤j≤l
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are non-negative real numbers satisfying

min
1≤i≤g

di ≥ max
1≤i≤l

ei, (A.46)

g∑
i=1

tij = ej, ∀1 ≤ j ≤ l (A.47)

{bi}hi=1, {ci}hi=1 are real numbers. {u11, · · · , u1h;u31, · · · , u3g;u41, · · · , u4l} is a set of

indicator vectors with different support in Rp; {u21, · · · , u2h;u31, · · · , u3g;u41, · · · , u4l}

is also a set of indicator vectors with different support. Define

β1 =
h∑
i=1

biu1i +

g∑
i=1

diu3i +
l∑

j=1

eju4j ∈ Rp

β2 =
h∑
i=1

ciu2i +

g∑
i=1

diu3i +
l∑

j=1

eju4j ∈ Rp

Then we have

‖Aβ1‖2
2 − ‖Aβ2‖2

2 ≥(1− δAk )(
h∑
i=1

b2
i +

g∑
i=1

(di +
l∑

j=1

tij)
2)

− (1 + δAk )(
h∑
i=1

c2
i +

g∑
i=1

(di +
l∑

j=1

tij)
2)

(A.48)

For the matrix case, suppose g, h ≥ 0, g + h ≤ r, {di}gi=1, {ej}lj=1, {tij}1≤i≤g,1≤j≤l

are non-negative real numbers satisfying

min
1≤i≤g

di ≥ max
1≤i≤l

ei, (A.49)

g∑
i=1

tij = ej, ∀1 ≤ j ≤ l (A.50)

{bi}hi=1, {ci}hi=1 are real numbers. {u31, · · · , u3g;u41, · · · , u4l} is a set of orthogo-
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nal unit vectors in Rm, {u11, · · · , u1h} and {u21, · · · , u2h} are two sets of orthogo-

nal unit vectors lying in the perpendicular space of span{u31, · · · , u3g;u41, · · · , u4l};

{v31, · · · , v3g; v41, · · · , v4l} is a set of orthogonal unit vectors in Rn, {v11, · · · , v1h} and

{v21, · · · , v2h} are two sets of orthogonal unit vectors lying in the perpendicular space

of span{v31, · · · , v3g; v41, · · · , v4l}. Define

X1 =
h∑
i=1

biu1iv
T
1i +

g∑
i=1

diu3iv
T
3i +

l∑
j=1

eju4jv
T
4j ∈ Rm×n

X2 =
h∑
i=1

ciu2iv
T
2i +

g∑
i=1

diu3iv
T
3i +

l∑
j=1

eju4jv
T
4j ∈ Rm×n

Then we have

‖M(X1)‖2
2 − ‖M(X2)‖2

2 ≥(1− δMr )(
h∑
i=1

b2
i +

g∑
i=1

(di +
l∑

j=1

tij)
2)

− (1 + δMr )(
h∑
i=1

c2
i +

g∑
i=1

(di +
l∑

j=1

tij)
2)

(A.51)

Proof of Lemma A.1.4. We prove the Lemma by induction on l. We prove matrix

case only as the signal case is essentially the same.

When l = 0, (A.51) is clear to hold by the definition of δMr and the fact that

g + h ≤ r. Suppose (A.51) holds for l − 1, (l ≥ 1), we note

Yi = −u3iv
T
3i + u4lv

T
4l, 1 ≤ i ≤ g (A.52)

Pz = Xz −
g∑
i=1

tilYi, z = 1, 2 (A.53)

Qiz = Xz −
g∑

w=1

twlYw + (til + di)Yi z = 1, 2, 1 ≤ i ≤ g (A.54)
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We can show the following equality in l2-space:

µ‖M(Xz −
g∑
i=1

tilYi)‖2
2 +

g∑
i=1

νi‖M(Xz −
g∑

w=1

twlYw + (til + di)Yi)‖2
2

=‖M(Xz)‖2
2 + µ‖M(

g∑
i=1

tilYi)‖2
2 +

g∑
i=1

νi‖M(−
g∑

w=1

twlYw + (til + di)Yi)‖2
2

(A.55)

where z = 1, 2, νi = til
di+til

, µ = 1−
∑g

i=1
til

di+til
. By (A.49), (A.50) we have

µ ≥ 1−
g∑
i=1

til
di

= 1− el
di
≥ 0

Thus, νi, µ are all non-negative numbers satisfying µ +
∑g

i=1 νi = 1. Consider the

difference of these two equalities (A.55) (z = 1, 2), we get

‖M(X1)‖2
2 − ‖M(X2)‖2

2

=µ
[
‖M(P1)‖2

2 − ‖M(P2)‖2
2

]
+

g∑
i=1

νi
[
‖M(Qi1)‖2

2 − ‖M(Qi2)‖2
2

] (A.56)

By computing directly we can get

P1 =
h∑
i=1

biu1iv
T
1i +

g∑
i=1

(di + til)u3iv
T
3i +

l−1∑
j=1

eju4jv
T
4j

P2 =
h∑
i=1

ciu2iv
T
2i +

g∑
i=1

(di + til)u3iv
T
3i +

l−1∑
j=1

eju4jv
T
4j

Qi1 =
h∑

w=1

bwu1wv
T
1w +

[
g∑

w=1,w 6=i

(dw + twl)u3wv
T
3w + (di + til)u4lv

T
4l

]
+

l−1∑
j=1

eju4jv
T
4j

Qi2 =
h∑

w=1

cwu2wv
T
2w +

[
g∑

w=1,w 6=i

(dw + twl)u3wv
T
3w + (di + til)u4lv

T
4l

]
+

l−1∑
j=1

eju4jv
T
4j

which corresponds with the assumption of l − 1. Now by induction assumption of
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l − 1, for all 1 ≤ w ≤ g we have

‖M(P1)‖2
2 − ‖M(P2)‖2

2 ≥ (1− δMr )(
h∑
i=1

b2
i +

g∑
i=1

(di +
l∑

j=1

tij)
2)

− (1 + δMr )(
h∑
i=1

c2
i +

g∑
i=1

(di +
l∑

j=1

tij)
2)

‖M(Qw1)‖2
2 − ‖M(Qw2)‖2

2 ≥ (1− δMr )(
h∑
i=1

b2
i +

g∑
i=1

(di +
l∑

j=1

tij)
2)

− (1 + δMr )(
h∑
i=1

c2
i +

g∑
i=1

(di +
l∑

j=1

tij)
2)

(A.57)

Together (A.57) with (A.56), we can get (A.51) for the case l. �

Lemma A.1.5. Suppose m ≥ r, a1 ≥ a2 ≥ · · · ≥ am ≥ 0,
∑r

i=1 ai ≥
∑m

i=r+1 ai, then

for all α ≥ 1,
m∑

j=r+1

aαj ≤
r∑
i=1

aαi . (A.58)

More generally, suppose a1 ≥ a2 ≥ · · · ≥ am ≥ 0, λ ≥ 0 and
∑r

i=1 ai+λ ≥
∑m

i=r+1 ai,

then for all α ≥ 1,
m∑

j=r+1

aαj ≤ r

(
α

√∑r
i=1 a

α
i

r
+
λ

r

)α

(A.59)

Proof of Lemma A.1.5. It is sufficient to show the general part only. Since we can

set aj = 0 when j > m, we assume m ≥ 2r without loss of generality. By Lemma

A.1.1, we can find {sij}1≤i≤r,2r+1≤j≤m satisfying (A.25), (A.26). Hence,

m∑
j=r+1

aαj =
m∑

j=2r+1

aα−1
j (

r∑
i=1

sij) +
2r∑

j=r+1

aαj =
r∑
i=1

(
aαr+i +

m∑
j=2r+1

aα−1
j sij

)

≤
r∑
i=1

aα−1
r+i

(
ar+i +

m∑
j=2r+1

sij

)
≤

r∑
i=1

(
ar+i +

m∑
j=2r+1

sij

)α

≤ r

(∑r
i=1 ai
r

+
λ

r

)α
≤ r

(
α

√∑r
i=1 a

α
i

r
+
λ

r

)α

. �

137



It is also interesting to consider conditions on δAsk and δMsr for some real number

s > 1. The following result provides convenient bounds on δAsk and δMsr in terms of δAk

and δMr respectively. It is also useful for the proof of Proposition 1.2.2.

Lemma A.1.6. For all matrix A ∈ Rn×p and k ≥ 2 is an integer, s > 1 is real

and sk is integer. Then we have δAsk ≤ (2s − 1)δAk . Similarly, for all linear map

M : Rm×n → Rq and r ≥ 2, s > 2 and sr is integer. Then we have δMsr ≤ (2s−1)δMr .

Proof of Lemma A.1.6 We only show the matrix case. For all X ∈ Rm×n such

that rank(X) ≤ sr, suppose X has singular value decomposition X =
∑l

i=1 aiuiv
T
i ,

l ≤ sr. Without loss of generality we can assume l = sr as we can set ai = 0 if

l < i ≤ sr. Note

wi =M(aiuiv
T
i ) ∈ Rq, 1 ≤ i ≤ sr

We can verify the following identity

‖
sr∑
i=1

wi‖2
2 +

s− 1

sr − 1

∑
1≤i<j≤sr

‖wi − wj‖2
2

= (1 + (s− 1))
sr∑
i=1

‖wi‖2
2 + 2(1− s− 1

sr − 1
)
∑

1≤i<j≤sr

〈wi, wj〉

=
s2(
sr
r

) ∑
1≤i1<···<ir≤sr

‖wi1 + wi2 + · · ·+ wir‖2
2
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which implies

‖M(X)‖2
2 = ‖

sr∑
i=1

wi‖2
2

≤ s2(1 + δMr )(
sr
r

) ∑
1≤i1<···<ir≤sr

(a2
i1

+ · · ·+ a2
ir)

−(s− 1)(1− δMr )

sr − 1

∑
1≤i<j≤sr

(a2
i + a2

j)

= (s(1 + δMr )− (s− 1)(1− δMr ))
rs∑
i=1

a2
i

= (1 + (2s− 1)δMr )‖X‖2
F

‖M(X)‖2
2 = ‖

sr∑
i=1

wi‖2
2

≥ s2(1− δMr )(
sr
r

) ∑
1≤i1<···<ir≤sr

(a2
i1

+ · · ·+ a2
ir)

−(s− 1)(1 + δMr )

sr − 1

∑
1≤i<j≤sr

(a2
i + a2

j)

= (s(1− δMr )− (s− 1)(1 + δMr ))
rs∑
i=1

a2
i

= (1− (2s− 1)δMr )‖X‖2
F

Hence, δMsr ≤ (2s− 1)δMr . �

Lemma A.1.7, which reveals the relationship between ROC’s of different orders,

is from Cai et al. (2010c).

Lemma A.1.7. For any µ ≥ 1 and positive integers k1, k2 such that µk2 is an integer,

then

θk1,µk2 ≤
√
µθk1,k2

The following Lemma A.1.8 provides a bound for the ROC θ in terms of the RIC
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δ and can be used to compare different RIP conditions.

Lemma A.1.8. Let A ∈ Rn×p. Then we have

θAk,k ≤

 2δAk , when k is even, k ≥ 2;

2k√
k2−1

δAk , when k is odd, k ≥ 3.
(A.60)

In addition, both coefficients, 2 in the even case and 2k√
k2−1

in the odd case, cannot be

further improved.

Similarly, in the matrix case, for a linear map M : Rm×n → Rq,

θMr,r ≤

 2δMr , when r is even, r ≥ 2;

2r√
r2−1

δMr , when r is odd, r ≥ 3.
(A.61)

In addition, the coefficient 2 in the even case cannot be further improved.

Proof of Lemma A.1.8. For k-sparse vectors β, γ ∈ Rp with disjoint supports, we

can write them as β =
∑

i∈T1
aiei and γ =

∑
i∈T2

biei where ai > 0, bi > 0, T1 is

the support of β, T2 is the support of γ, and ei is the vector with ith entry equals

to ±1 and all other entries equal to zero. Correspondingly, suppose X, Y ∈ Rm×n

with rank at most r, which satisfies XTY = XY T = 0. Lemma 2.3 in Recht et al.

(2010) shows that they have singular value decompositions X =
∑

i∈T1
aiuiv

T
i and

Y =
∑

i∈T2
biuiv

T
i , where the disjoint subsets T1 and T2 satisfy |T1|, |T2| ≤ r. We now

consider the even and odd cases separately.

Case 1. k, r ≥ 2 is even. We focus on the matrix case. The proof of the signal

case is similar. Without loss of generality, suppose X and Y are normalized so

‖X‖F = ‖Y ‖F = 1. Divide T1 and T2 into two parts, T1 = T11 ∪ T12, T2 = T21 ∪ T22,

such that T11, T12, T21, T22 are disjoint and |Tij| ≤ r/2 for i, j ∈ {1, 2}. Denote
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Xi =
∑

i∈T1i
aiuiv

T
i and Yi =

∑
i∈T2i

biuiv
T
i ,, i = 1, 2. Then

|〈M(X),M(Y )〉| ≤
2∑

i,j=1

|〈M(Xi),M(Yj)〉|

=
1

4

2∑
i,j=1

∣∣‖M(Xi + Yj)‖2
F − ‖M(Xi − Yj)‖2

F

∣∣
≤ 1

4

2∑
i,j=1

(1 + δMr )
∑

i∈Tij∪Tij

a2
i − (1− δMr )

∑
i∈Tij∪Tij

a2
i


= δMr (‖X‖2

F + ‖Y ‖2
F ) = 2δMr

and consequently θMr,r ≤ 2δMr . Now in the example provided in the proof of Theorem

1.2.4, if a = b = k, we have δAr = 1/3, θMr,r = 2/3, which means the coefficient “2” in

the inequalities of the even case in (A.61) cannot be improved.

Case 2. k, r ≥ 3 is odd. For the proof of (A.60) and (A.61), we only show the

matrix case as the signal case is similar. Since we can set ai = 0 or bi = 0 for i /∈ T1

or i /∈ T2, Without loss of generality, we assume that |T1| = r, |T2| = r, ai, bi might

be 0 for i ∈ T1 ∪ T2. Also without loss of generality, we can assume X and Y are
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normalized so ‖X‖2
F =

∑
i∈T1

a2
i =

√
r−1
r+1

and ‖Y ‖2
F =

∑
i∈T2

b2
i =

√
r+1
r−1

. Then

∣∣∣∣4( r − 1

(r − 1)/2

)(
r − 1

(r − 3)/2

)
〈M(X),M(Y )〉

∣∣∣∣
=

∣∣∣∣∣4
(

r − 1

(r − 1)/2

)(
r − 1

(r − 3)/2

)
〈M(

∑
i∈T1

aiuiv
T
i ),M(

∑
i∈T2

biuiv
T
i )〉

∣∣∣∣∣
=

∣∣∣∣∣ ∑
A⊆T1,|A|=(r+1)/2,
B⊆T2,|B|=(r−1)/2

[
‖M(

∑
i∈A

aiuiv
T
i +

∑
i∈B

biuiv
T
i )‖2

−‖M(
∑
i∈A

aiuiv
T
i −

∑
i∈B

biuiv
T
i )‖2

]∣∣∣∣∣
≤

∑
A⊆T1,|A|=(r+1)/2,
B⊆T2,|B|=(r−1)/2

((1 + δMr )− (1− δMr ))

[∑
i∈A

a2
i +

∑
i∈B

b2
i

]

= 2δMr

[(
r − 1

(r − 1)/2

)(
r

(r − 1)/2

)∑
i∈T1

a2
i +

(
r − 1

(r − 3)/2

)(
r

(r + 1)/2

)∑
i∈T2

b2
i

]

= 2δMr

(
r − 1

(r − 1)/2

)(
r − 1

(r − 3)/2

)[
r

(r − 1)/2

∑
i∈T1

a2
i +

r

(r + 1)/2

∑
i∈T2

b2
i

]

= 8δMr

(
r − 1

(r − 1)/2

)(
r − 1

(r − 3)/2

)
r√

r2 − 1

= 4

(
r − 1

(r − 1)/2

)(
r − 1

(r − 3)/2

)
2r√
r2 − 1

δMr ‖X‖F‖Y ‖F

which implies θMr,r ≤ 2r√
r2−1

δMr .

Next we will construct an example for the signal recovery in the odd case where

θAk,k = 2k√
k2−1

δAk 6= 0. Suppose k ≥ 3 is odd and 2k ≤ p, denote

β1 =
1√
2k

(

2k︷ ︸︸ ︷
1, 1, · · · , 1, 0, · · · ) ∈ Rp β2 =

1√
2k

(

k︷ ︸︸ ︷
1, 1, · · · , 1,

k︷ ︸︸ ︷
−1, · · · ,−1, 0, · · · ) ∈ Rp.

(A.62)

Similarly as in the proof of Theorem 1.2.4, we can extend β1 and β2 to an orthonormal
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basis of Rp as {β1, β2, · · · , βp}. Then for 0 < λ < 1, we define A : Rp → Rp by

Aβ =
√

1 + λa1β1 +
√

1− λa2β2 +

p∑
i=3

aiβi

for β =
∑p

i=1 aiβi. It is clear that for all β ∈ Rp, (1−λ)‖β‖2
2 ≤ ‖Aβ‖2

2 ≤ (1+λ)‖β‖2
2.

Let β and γ be k-sparse vectors with disjoint supports and ‖β‖2 = ‖γ‖2 = 1. Then

|〈Aβ,Aγ〉|

=
1

4

∣∣‖A(β + γ)‖2
2 − ‖A(β − γ)‖2

2

∣∣
≤ max

{
1 + λ

4
‖β + γ‖2

2 −
1− λ

4
‖β − γ‖2

2,
1 + λ

4
‖β − γ‖2

2 −
1− λ

4
‖β + γ‖2

2

}
=

2λ

4
(‖β‖2

2 + ‖γ‖2
2) = λ‖β‖2‖γ‖2

which implies θAk,k ≤ λ. It can be easily verified that when

β = (

k︷ ︸︸ ︷
1, 1 · · · , 1, 0, · · · ) and γ = (

k︷ ︸︸ ︷
0, 0, · · · , 0,

k︷ ︸︸ ︷
1, 1, · · · , 1, 0, · · · ),

we have |〈Aβ,Aγ〉| = λ‖β‖2‖γ‖2. These together imply θAk,k = λ.

Denote β(i) as the ith entry of β. Now let us estimate δAk . For all k-sparse β ∈ Rp,

suppose β =
∑p

i=1 ciβi, then

‖Aβ‖2
2 = (1 + λ)|〈β, β1〉|2 + (1− λ)|〈β, β2〉|2 +

p∑
i=3

|〈β, βi〉|2

= ‖β‖2
2 + λ(|〈β, β1〉|2 − |〈β, β2〉|2)

= ‖β‖2
2 + λ((

2k∑
i=1

β(i))2 − (
k∑
i=1

β(i)−
2k∑

i=k+1

β(i))2)/2k

= ‖β‖2
2 +

4

2k
λ(

k∑
i=1

β(i))(
2k∑

i=j+1

β(i)).
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Suppose T1 = supp(β) ∩ {1, · · · , k} and T2 = supp(β) ∩ {k + 1, · · · , 2k}, then |T1|+

|T2| ≤ k and

∣∣∣∣∣(
k∑
i=1

β(i))(
2k∑

i=k+1

β(i))

∣∣∣∣∣
= |(

∑
i∈T1

β(i))(
∑
i∈T2

β(i))| ≤
√
|T1|

∑
i∈T1

β(i)2 · |T2|
∑
i∈T2

β(i)2

≤
√
|T1| · |T2|

2

∑
i∈T1∪T2

β(i)2 ≤
√
|T1|(k − |T1|)

2
‖β‖2

2 ≤

√
k−1

2
k+1

2

2
‖β‖2

2,

where the last inequality is due to the facts that |T1| is a non-negative integer and k

is odd. It then follows that for all k-sparse vector β ∈ Rp,

(1−
√
k2 − 1

2k
λ)‖β‖2

2 ≤ ‖Aβ‖2
2 ≤ (1 +

√
k2 − 1

2k
λ)‖β‖2

2.

It can also be easily verified that the equality above can be achieved for

β = (

(k+1)/2︷ ︸︸ ︷
1, · · · , 1,

(k−1)/2︷ ︸︸ ︷
0, · · · , 0,

(k−1)/2︷ ︸︸ ︷
1, · · · , 1, 0, · · · )

Hence δAk = λ
√
k2−1
2k

. In summary, θAk,k = 2k√
k2−1

δAk in our setting, which implies that

the constant 2k√
k2−1

in (A.60) is not improvable. �
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A.2 Supplement for Chapter 2

We prove the main results of Chapter 2 in this Appendix. We begin by collecting a

few important technical lemmas that will be used in the proofs of the main results.

The proofs of some of these technical lemmas are involved and are postponed to

Section A.2.11.

A.2.1 Technical Tools

Lemmas A.2.1 and A.2.2 below are used for deriving the RUB condition (see Definition

2.2.1) from the ROP design.

Lemma A.2.1. Suppose A ∈ Rp1×p2 is a fixed matrix and X is ROP from a symmetric

sub-Gaussian distribution P, i.e.

[X (A)]j = β(j)TAγ(j), j = 1, · · · , n

where β(j) = (β
(j)
1 , · · · , β(j)

p1 )ᵀ, γ(j) = (γ
(j)
1 , · · · , γ(j)

p2 )ᵀ are random vectors with entries

i.i.d. generated from P. Then for δ > 0, we have

(
1

3α4
P
− 2α2

Pδ − α2
Pδ

2

)
‖A‖F ≤ ‖X (A)‖1/n ≤

(
1 + 2α2

Pδ + α2
Pδ

2
)
‖A‖F

with probability at least 1− 2 exp(−δ2n). Here αP is defined by (2.26).

Lemma A.2.2. Suppose A ∈ Rp1×p2 is a fixed matrix. β = (β1, · · · , βp1)ᵀ, γ =

(γ1, · · · , γp2)ᵀ are random vectors such that β1, · · · , βp1 , γ1, · · · , γp2

iid∼ P, where P is

some symmetric variance 1 sub-Gaussian distribution, then we have

‖A‖F
3α4
P
≤ E |βᵀAγ| ≤ ‖A‖F
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where αP is given by (2.26).

Let z ∈ Rn be i.i.d sub-Gaussian distributed. By measure concentration theory,

‖z‖pp/n, 1 ≤ p ≤ ∞, are essentially bounded; Specifically, we have the following

lemma.

Lemma A.2.3. Suppose z ∈ Rn and zi
iid∼ N(0, σ2), we have

P (‖z‖1 ≥ σn) ≤ 9

n

P

(
‖z‖2 ≥ σ

√
n+ 2

√
n log n

)
≤ 1

n

P (‖z‖∞ ≥ 2σ
√

log n) ≤ 1

n
√

2π log n
.

More general, when zi are i.i.d. sub-Gaussian distributed such that (2.25) holds, then

P (‖z‖1 ≥ Cn) ≤ exp

(
−n(C − 2

√
2πγ)2

2γ2

)
, ∀C > 2

√
2πγ

P (‖z‖2 ≥
√
Cn) ≤ exp

(
−n(C − 4γ2)2

8γ2C

)
, ∀C > 4γ2

P (‖z‖∞ ≥ Cγ
√

log n) ≤ 2n−C
2/2−1, ∀C > 0

Lemma A.2.4 below presents an upper bound for the spectral norm of X (z) for a

fixed vector z.

Lemma A.2.4. Suppose X is ROP from some symmetric sub-Gaussian distribution

P and z ∈ Rn is some fixed vector, then for C > log 7, we have

‖X ∗(z)‖ ≤ 3α2
P

(
C(p1 + p2)‖z‖∞ +

√
2C(p1 + p2)‖z‖2

)

with probability at least 1−2 exp (−(C − log 7)(p1 + p2)). Here αP is defined by (2.26).
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We are now ready to prove the main results of Chapter 2.

A.2.2 Proof of Theorem 2.2.1.

For the proof of Theorem 2.2.1, by null space property (Lemma A.1.2), we only need

to show for all non-zero R with X (R) = 0, we must have ‖Rmax(r)‖∗ < ‖R−max(r)‖∗.

If this does not hold, suppose there exists non-zero R with X (R) = 0 and

‖Rmax(r)‖∗ ≥ ‖R−max(r)‖∗. We denote p = min(p1, p2) and assume the singular value

decomposition of R is

R =

p∑
i=1

σiuiv
ᵀ
i = Udiag(~σ)V ᵀ,

where ui, vi are orthogonal basis in Rp1 , Rp2 , respectively and ~σ is the singular value

vector such that σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. Without loss of generality, we can assume

p ≥ kr, otherwise we can set the undefined entries of σ as 0.

Consider the singular value vector ~σ = (σ1, σ2, · · · , σp), we note that ~σ−max(kr)

satisfies

‖~σ−max(kr)‖∞ ≤ σkr,

‖~σ−max(kr)‖1 =‖~σ−max(r)‖1 − (σr+1 + · · ·+ σkr)

≤‖~σ−max(r)‖1 − (k − 1)rσkr ≤ ‖~σmax(r)‖1 − (k − 1)rσkr.

Denote θ = max
{
σkr, (‖~σmax(r)‖1 − r(k − 1)σkr)/(kr)

}
, by the two inequalities above

we have ‖~σ−max(kr)‖∞ ≤ θ and ‖~σ−max(kr)‖1 ≤ krθ. Now apply Lemma 1.1.1 in

Chapter 1, we can get b(i) ∈ Rp, λi ≥ 0, i = 1, · · · , N such that
∑N

i=1 λi = 1,

~σ−max(kr) =
∑N

i=1 λib
(i) and

supp(b(i)) ⊆ supp(~σ−max(kr)), ‖b(i)‖0 ≤ kr,

‖b(i)‖1 = ‖~σ−max(kr)‖1, ‖b(i)‖∞ ≤ θ.

(A.63)
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which leads to

‖b(i)‖2 ≤
√
‖b(i)‖1 · ‖b(i)‖∞ ≤

√
(‖~σmax(r)‖1 − r(k − 1)σkr) · θ

If θ = σkr, we have

‖b(i)‖2 ≤
√

(‖~σmax(r)‖1 − r(k − 1)σkr)σkr

≤

√(
‖~σmax(r)‖1 − r(k − 1)

‖~σmax(r)‖1

2r(k − 1)

)
‖~σmax(r)‖1

2r(k − 1)

≤
‖~σmax(r)‖1√

4r(k − 1)
≤
‖~σmax(r)‖2√

4(k − 1)

If θ = (‖~σmax(r)‖1 − r(k − 1)σkr)/(kr), we have

‖b(i)‖2 ≤
√

1

kr
(‖~σmax(r)‖1 − r(k − 1)σkr) ≤

√
1

kr
‖~σmax(r)‖1 ≤

‖~σmax(r)‖2√
k

Since k ≥ 2, we always have ‖b(i)‖2 ≤ ‖~σmax(r)‖2/
√
k. Finally, we define Bi =

Udiag(b(i))V ᵀ, then the rank of Bi are all at most kr and
∑N

i=1 λiBi = R−max(kr) and

‖Bi‖F = ‖b(i)‖2 ≤ ‖~σmax(r)‖2/
√
k = ‖Rmax(r)‖F/

√
k

Hence,

0 = ‖X (R)‖1 ≥ ‖X (Rmax(kr))‖1 − ‖X (R−max(kr))‖1

≥ C1‖Rmax(kr)‖F −
N∑
i=1

‖X (λiBi)‖1

≥ C1‖Rmax(r)‖F −
N∑
i=1

λiC2‖Bi‖F

≥ C1‖Rmax(r)‖F − C2‖Rmax(r)‖F/
√
k > 0
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Here we used the RUB condition. The last inequality is due to C2/C1 <
√
k and

R 6= 0 (so Rmax(r) 6= 0). This is a contradiction, which finishes the proof of the

theorem.

A.2.3 Proof of Theorem 2.2.2.

Notice that for P as standard Gaussian distribution, the constant αP (defined as

(2.26)) equals 1. We will prove the following more general result than Theorem 2.2.2

instead.

Proposition A.2.1. Suppose X : Rp1×p2 → Rn is ROP from some variance 1 sym-

metric sub-Gaussian distribution P. For integer k ≥ 2, positive C1 <
1

3α4
P

(αP is

defined as (2.26)) and C2 > 1, there exists constants C and δ, only depending on

P , C1, C2 but not on p1, p2, r, such that if n ≥ Cr(p1 + p2), then with probability at

least 1− e−nδ, X satisfies RUB of order kr and constants C1 and C2.

Proof of Proposition A.2.1.

In the proof, we will use α to represent αP without any confusion. The ideas of the

proof of Proposition A.2.1 follows from Recht et al. (2010), Candès and Plan (2011).

Denote Skr = {X ∈ Rp1×p2 : rank(X) ≤ kr, ‖X‖F = 1}. By Lemma 3.1 in Candès

and Plan (2011), for any ε > 0, there exists ε-net S ′kr such that |S ′kr| ≤ (9/ε)(p1+p2+1)kr.

For given C1, C2 such that C1 < 1/(3α4), C2 > 1, we set C ′1 = C1+1/(3α4)
2

, C ′2 =

C2+1
2

. We can choose δ0 small enough such that

α2
(
2δ0 + δ2

0

)
≤ min

(
1/(3α4)− C1

2
,
C2 − 1

2

)

then by Lemma A.2.1, for any given A ∈ Rp1×p2 , we have C ′1 ≤ ‖X (A)‖1/n ≤ C ′2
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with probability at least 1− 2 exp(−δ2
0n). Hence,

P (C ′1 ≤ ‖X (A)‖1/n ≤ C ′2, for all A ∈ S ′r) ≥ 1− 2(9/ε)kr(p1+p2+1) · exp(−δ2
0n)

Next, we’ll estimate the bound of ‖X (A)‖1/n on the whole set Skr provided that

C ′1 ≤ ‖X (A)‖1/n ≤ C ′2 for all A ∈ S ′kr. Define

κ1 = inf
A∈Skr

‖X (A)‖1/n and κ2 = sup
A∈Skr

‖X (A)‖1/n.

For any A ∈ Skr, there exists A′ ∈ S ′kr such that ‖A− A′‖F ≤ ε. So

‖X (A)‖1/n ≤ ‖X (A′)‖1/n+ ‖X (A− A′)‖1/n ≤ C ′2‖A‖+ κ2‖A− A′‖F ≤ C ′2 + κ2ε

‖X (A)‖1/n ≥ ‖X (A′)‖1/n− ‖X (A− A′)‖1/n ≥ C ′1‖A‖ − κ2‖A− A′‖F ≥ C ′1 − κ2ε

which mean

κ2 = sup
A∈Skr

‖X (A)‖F ≤ C ′2 + εκ2, κ1 = inf
A∈Skr

‖X (A)‖F ≥ C ′1 − εκ2

namely, κ2 ≤ C ′2/(1− ε), κ1 ≥ C ′1 − εκ2. We choose

ε ≤ min

(
C2 − 1

2C2

,
1/(3α4)− C1

2C2

)
,

by some calculations we can see κ1 ≥ C1, κ2 ≤ C2.

To sum up, we can choose δ0, ε only depending on C1, C2, α, to ensure

C1 ≤ κ1 = inf
A∈Skr

‖X (A)‖1/n ≤ sup
A∈Skr

‖X (A)‖1/n = κ2 ≤ C2

with probability at least 1− 2(9/ε)kr(p1+p2+1) exp(−δ2
0n). The last step is to estimate
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the probability above. We choose D ≥ 8k log(9/ε)/δ2
0, then for n ≥ Dr(p1 + p2), we

have

δ2
0n/2 ≥ 4 log(9/ε)kr(p1 + p2) ≥ log 2 + 2 log(9/ε)kr(p1 + p2 + 1),

1− 2(9/ε)kr(p1+p2+1)e−δ
2
0n = 1− exp(−δ2

0n+ log 2 + kr(p1 + p2 + 1) log(9/ε))

≥1− exp(−δ2
0n/2).

Finally, we finish the proof of the Theorem by choosing δ ≤ δ2
0/2. �

A.2.4 Proof of Theorem 2.2.3, Proposition 2.2.1 and Theo-

rem 2.3.1.

In order to prove the result, we introduce the following technical lemma as an exten-

sion of Null Space Property (Lemma A.1.2) from exact low-rank into the approximate

low-rank setting.

Lemma A.2.5. Suppose A∗, A ∈ Rp1×p2, R = A∗ − A. If ‖A∗‖∗ ≤ ‖A‖∗, we have

‖R−max(r)‖∗ ≤ ‖Rmax(r)‖∗ + 2‖A−max(r)‖∗ (A.64)

The following two lemmas described the separate effect of constraint Z1 = {z :

‖z‖1/n ≤ λ1} and Z2 = {z : ‖X ∗(z)‖ ≤ λ2} on the estimator.

Lemma A.2.6. Suppose X satisfies RUB condition of order kr with constants C1, C2

such that C1 > C2/
√
k. Assume that A∗, A ∈ Rp1×p2 satisfy ‖A∗‖∗ ≤ ‖A‖∗, ‖X (A∗ −

A)‖1/n ≤ λ1. Then we have

‖A∗ − A‖F ≤
2

C1 − C2/
√
k
λ1 +

(
3√

kC1/C2 − 1
+

1√
k − 1

)
‖A−max(r)‖∗√

r

Lemma A.2.7. Suppose X satisfies RUB condition of order kr with constants C1, C2

such that C1 > C2/
√
k. Assume that ÂDS satisfies ‖X ∗X (A∗ − A)‖ ≤ λ2. Then we
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have

‖A∗ − A‖F ≤
4

(C1 − C2/
√
k)2
·
√
rλ2

n
+

(
5√

kC1/C2 − 1
+

1√
k − 1

+ 1

)
‖A−max(r)‖∗√

r

The proof of Lemma A.2.5, A.2.6 and A.2.7 are listed in the Supplement. Now

we prove Theorem 2.2.3 and Proposition 2.2.1. We only need to prove Proposition

2.2.1 since Theorem 2.2.3 is a special case of Proposition 2.2.1. By Lemma A.2.3 and

Lemma A.2.4, we have

Pz(‖z‖1 ≤ σn) ≤ 9

n
,

PX ,z

(
‖X ∗(z)‖ ≥ σ

(
12(p1 + p2)

√
log n+ 6

√
2(p1 + p2)n

))
≤PX

(
‖X ∗(z)‖ ≥

(
6(p1 + p2)‖z‖∞ + 6

√
p1 + p2‖z‖2

))
+ Pz

(
‖z‖∞ ≥ 2σ

√
log n

)
+ Pz

(
‖z‖2 ≥ σ

√
2n
)

≤2 exp(−(2− log 7)(p1 + p2)) +
1

n
√

2π log n
+

1

n

Here PX (Pz or PX ,z) means the probability with respect to X (z or (X , z)). Hence,

we have

P (z ∈ Z1 ∩ Z2) ≥ 1− 2 exp(−(2− log 7)(p1 + p2))− 11

n
.

Under the event that z ∈ Z1 ∩Z2, A is in the feasible set of the programming (2.12),

which implies ‖Â‖∗ ≤ ‖A‖∗ by the definition of Â. Moreover, we have

‖X (Â− A)‖1/n ≤‖y −X (A)‖1/n+ ‖y −X (Â)‖1/n

≤‖z‖1/n+ ‖y −X (Â)‖1/n ≤ 2σ

‖X ∗X (Â− A)‖ ≤‖X ∗(y −X (Â))‖+ ‖X ∗(y −X (A))‖

≤‖X ∗(y −X (Â))‖+ ‖X ∗(z)‖ ≤ 2η

On the other hand, suppose k = 10, by Theorem 2.2.2, we can have find a uniform
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constant C and δ such that if n ≥ Crk(p1 + p2), X satisfies RUB of order 10r and

constants C1 = 0.32, C2 = 1.02 with probability at least 1 − e−nδ′ . Hence, we have

D(= Ck) and δ′ such that if n ≥ Dr(p1 + p2), X satisfies RUB of order 10r and

constants C1, C2 satisfying C2/C1 <
√

10 with probability at least 1− e−nδ′ .

Now under the event that

1. X satisfies RUB of order 10r and constants C1, C2 satisfying C2/C1 <
√

10,

2. z ∈ Z1 ∩ Z2,

Apply Lemma A.2.6 and Lemma A.2.7 with A∗ = Â, we can get (2.17). The proba-

bility that these two events both happen is at least 1− 2 exp(−(2− log 7)(p1 + p2))−
11
n
− exp(−δ′n). Set δ = min(2− log 7, δ′), we finished the proof of Proposition 2.2.1.

For Theorem 2.3.1, the proof is similar. We apply the latter part of Lemma A.2.3

and Lemma A.2.4 and get

P (z /∈ Z1 ∩ Z2)

≤P (‖z‖1/n > 6τ) + P
(
‖X (z)‖ > τα2

P

(
6
√

6n(p1 + p2) + 12
√

log n(p1 + p2)
))

≤P (‖z‖/n > 6τ) + P (‖z‖2 >
√

6nτ) + P (‖z‖∞ > 2
√

log nτ)

+ PX (‖X (z)‖ > α2
P(6(p1 + p2)‖z‖∞ + 6

√
p1 + p2‖z‖2))

≤ exp
(
−n(6− 2

√
2π)2/2

)
+ exp(−n/12) +

2

n
+ 2 exp(−(2− log 7)(p1 + p2))

Besides, we choose k > (3α4
P)2, then we can find C1 < 1/(3α4

P) and C2 > 1 such that

C2/C1 <
√
k. Apply Proposition A.2.1, there exists C, δ′ only depending on P , C1, C2

such that if n ≥ Ckr(p1 + p2), X satisfies RUB of order kr with constants C1 and

C2 with probability at least 1− exp(−δ′(p1 + p2)). Note that C1, C2 only depends on

P , we can conclude that there exist constants D(= Ck), δ′ only depending on P such
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that if n ≥ Dr(p1 + p2), X satisfies RUB of order kr with constants C1, C2 satisfying

C2/C1 ≤
√
k.

Similarly to the proof of Proposition 2.2.1, under the event that

1. X satisfies RUB of order kr and constants C1, C2 satisfying C2/C1 <
√
k;

2. z ∈ Z1 ∩ Z2;

we can get (2.28) (we shall note that W1 depends on P , so its value can also depend on

αP). The probability that those events happen is at least 1−2/n−5 exp(−δ(p1 +p2))

for δ ≤ min((6− 2
√

2π)2/2, 1/12, 2− log 7, δ′). �

A.2.5 Proof of Theorem 3.3.3.

Without loss of generality, we assume that p1 ≤ p2. We consider the class of rank-r

matrices

Fc = {A ∈ Rp1×p2 : Aij = 0, whenever i ≥ r + 1}

namely the matrices with all non-zeros entries in the first r rows. The model (2.1)

become

yi = β
(i)T
1:r Arγ

(i) + zi, i = 1, · · · , n

where β
(i)
1:r is the vector of the first to the r-th entries of β(i). Note that this is a

linear regression model with variable Ar ∈ Rr×p2 , by Lemma 3.11 in Candès and Plan

(2011), we have

inf
Â

sup
A∈Fc

E‖Â(y)− A‖2
F = σ2trace

[
(X ∗r Xr)−1

]
(A.65)

inf
Â

sup
A∈Fc

E‖Â(y)− A‖2
F =∞, when X ∗r Xr is singular, (A.66)
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where Xr : Rr×p2 → Rn is the X constrained on Fc, Then Xr sends Ar to

(
β

(1)
1:rArγ

(1), · · · , β(n)
1:rArγ

(n)
)ᵀ
.

When n < p2r, Xr is singular, hence we have (2.16).

When n ≥ p2r, we can see in order to show (2.15), we only need to show

trace(X ∗r Xr) ≥
p2r
2n

with probablity at least 1− 26n−1. Suppose the singular value of

Xr are σi(Xr), i = 1, · · · , rp2, then trace(X ∗r Xr) =
∑p2r

i=1 σ
−2(Xr).

Suppose X is ROP while B ∈ Rr×p2 is i.i.d. standard Gaussian random matrix

(both X and Br are random). Then by some calculation we can see

EB,Xr‖Xr(B)‖2
2 = nEB,β,γ (βᵀ1:rBγ)2 = n

r∑
j=1

p2∑
k=1

E (βjBjkγk)
2 = np2r

Note (0.20) in the proof of Lemma A.2.1 in the Supplement, we know

E
(
β

(i)T
1:r Bγ

(i)‖4
2

∣∣∣B) ≤ 9‖B‖4
F .

Hence,

E‖Xr(B)‖4
2

=
n∑
i=1

E
(
β

(i)T
1:r Bγ

(i)
)4

+ 2
∑

1≤i<l≤n

E
n∑
j=1

(
β

(i)T
1:r Bγ

(i)
)2

· E
n∑
j=1

(
β

(l)T
1:r Bγ

(l)
)2

=n · 9E‖B‖4
F + n(n− 1)(p2r)

2 = 9nE
(
χ2(p2r)

)2
+ n(n− 1)p2

2r
2

=9n(p2
2r

2 + 2p2r) + n(n− 1)p2
2r

2

=n2p2
2r

2 + 2np2r(4p2r + 9) ≤ n2p2
2r

2 + 26np2
2r

2
2

Besides,

E‖Xr(Br)‖2
2 = E

(
E
(
‖Xr(Br)‖2

2

∣∣∣Xr)) = E

(
rp2∑
i=1

σ2
i (Xr)

)
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E‖Xr(Br)‖4
2 = E

(
E
(
‖Xr(Br)‖4

2|Xr
))

=E

(
rp2∑
i=1

3σ4
i (Xr) + 2

∑
1≤i<j≤rp2

σ2
i (Xr)σ2

j (Xr)

)
≥ E

(
rp2∑
i=1

σ2
i (Xr)2

)2

Hence,

E

(
rp2∑
i=1

σ2
i (Xr)2

)
= np2r

Var

(
rp2∑
i=1

σ2
i (Xr)2

)
= E

(
rp2∑
i=1

σ2
i (Xr)2

)2

−

(
E

rp2∑
i=1

σ2
i (Xr)2

)2

≤ 26np2
2r

2

Then by Chebyshev’s inequality, we have

rp2∑
i=1

σ2
i (Xr) ≤ 2np2r (A.67)

with probability at least 1 − 26np2
2r

2

(npr)2 = 1 − 26
n

. By Cauchy-Schwarz’s inequality, we

have

trace
(
(X ∗r Xr)−1

)
=

rp2∑
i=1

σ−2
i (Xr) ≥

(p2r)
2∑rp2

i=1 σ
2
i (Xr)

Therefore, we have

trace
(
(X ∗r Xr)−1

)
≥ p2r

2n

with probability at least 1− 26/n, which shows (2.15).

Finally we consider (2.14). Suppose inequality (A.67) holds, then

∣∣{i : σ2
i (Xr) ≥ 4n}

∣∣ ≤ p2r

2

⇒
∣∣∣∣{i : σ−2

i (Xr) ≤
1

4n
}
∣∣∣∣ ≥ p2r

2

⇒
∣∣∣∣{i : σ−2

i (Xr) ≥
1

4n
}
∣∣∣∣ ≥ p2r

2
(A.68)
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By Lemma 3.12 in Candès and Plan (2011), we know

inf
Â

sup
A∈Fc

Pz

(
‖Â− A‖2

F ≥
p2rσ

2

16n

)
= inf

Â
sup
A∈Fc

Ez1{x≥ p2rσ
2

16n
}
(‖Â− A‖2

F )

=Ez1{x≥ p2rσ
2

16n
}
(‖(X ∗r Xr)−1X ∗r (z)‖2

F )

=Pz

(
‖(X ∗r Xr)−1X ∗r (z)‖2

F ≥
p2rσ

2

16n

)

where 1
{x≥ p2rσ

2

16n
}
(·) is the indicator function. Note that when z

iid∼ N(0, σ2),

‖(X ∗r Xr)−1X ∗r (z)‖2
F

is identical distributed as
∑rp2

i=1
y2
i

σ2
i (Xr) , where y1, · · · , yrp2

iid∼ N(0, σ2), hence,

P

(
‖(X ∗r Xr)−1X ∗r (z)‖2

F ≤
p2rσ

2

16n

)
=P

(
rp2∑
i=1

y2
i

σ2
i (Xr)

≤ p2rσ
2

16n

)

≤P

 ∑
i:σ−2

i (Xr)≥1/(4n)

y2
i σ
−2
i (Xr) ≤

p2rσ
2

16n


≤P

 ∑
i:σ−2

i (Xr)≥1/(4n)

y2
i

4n
≤ p2rσ

2

16n

 ≤ P
(
χ2(drp2

2
e) ≤ p2r

4

)
≤ exp

(
−rp2

32

)
.

The last inequality is due to the tail bound of χ2 distribution given by Lemma 1 in

Laurent and Massart (2000); the second last inequality is due to (A.68). In summary,
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when (A.67) holds, we have

inf
Â

sup
A∈Fc

Pz

(
‖Â− A‖2

F ≥
p2rσ

2

16n

)
≤ exp(−rp2

32
)

Finally since p2 ≥ (p1 + p2)/2, we showed that with probability at least 1− 26n−1, X

satisfies (2.14). �

A.2.6 Proof of Theorem 2.4.1.

We first introduce the following lemma about the upper bound of ‖z‖1, ‖z‖2, ‖z‖∞.

Lemma A.2.8. Suppose z is defined as (2.33), then for constants C1 >
√

2, M1 > 1,

we have

P

(
‖z‖1/n ≤

C1

n

n∑
i=1

ξ2
i

)
≥ 1− 9C2

1 + 6

n(C1 −
√

2)2
,

P

(
C1

n

n∑
i=1

ξ2
i ≤M1C1‖Σ‖∗

)
≥ 1− 9

n(M1 − 1)2
;

(A.69)

for constants C2 > 1, M2 > 9,

P

(
‖z‖2

2/n ≤
C2

2

∑n
i=1 ξ

4
i

n

)
≥ 1− 105 (105C4

2 + 60)

n(3C2
2 − 2)2

,

P

(
C2

2

∑n
i=1 ξ

4
i

n
≤M2C

2
2‖Σ‖2

∗

)
≥ 1− 1052

n(M1 − 9)2
;

(A.70)

for constants C3 > 1, M3 > 1,

P

(
‖z‖∞ ≤ C3 log n max

1≤i≤n
ξ2
i

)
≥ 1− 2√

2πC3 log n
,

P

(
C3 log n max

1≤i≤n
ξ2
i ≤ 2C3M3 log2 n

(√
‖Σ‖∗ +

√
2M3 log n‖Σ‖

)2
)

≥1− 2n−M3+1.

(A.71)
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The proof of Lemma A.2.8 is listed in the Supplement. The rest of the proof is

basically the same as Proposition 2.2.3. Suppose X1,X2 and z̃ are given by (0.36),

(0.37) and (0.39) in the Supplement, then X1, X2 are ROP. By Lemma A.2.4,

‖X ∗1 (z̃)‖ ≤ 6
(

2p‖z̃‖∞ +
√

2p‖z̃‖2

)
(A.72)

‖X ∗2 (z̃)‖ ≤ 6
(

2p‖z̃‖∞ +
√

2p‖z̃‖2

)
(A.73)

with probability at least 1 − 4 exp (−2(2− log 7)p). Hence there exists δ > 0 such

that,

P (Σ0 is NOT in the feasible set of (2.34)) = P
(
‖z‖1/n > η1, or ‖X̃ ∗(z̃)‖ > η2

)
≤P

(
‖z‖1/n >

c1

n

n∑
i=1

ξ2
i

)
+ P

(
‖z̃‖∞ > 2c3 log n max

1≤i≤n
ξ2
i

)
+ P

‖z̃‖2 > c2

√√√√2
n∑
i=1

ξ4
i


+ P

(
‖X̃ ∗(z)‖ > 24p‖z̃‖∞ + 12

√
2p‖z̃‖2

)
≤P

(
‖z‖1/n >

c1

n

n∑
i=1

ξ2
i

)
+ P

(
‖z‖∞ > c3 log n max

1≤i≤n
ξ2
i

)
+ P

‖z‖2 > c2

√√√√ n∑
i=1

ξ4
i


+ P

(
‖X ∗1 (z̃)‖ > 12p‖z̃‖∞ + 6

√
2p‖z̃‖2

)
+ P

(
‖X ∗2 (z)‖ > 12p‖z̃‖∞ + 6

√
2p‖z̃‖2

)
≤O(1/n) + 4 exp (−2(2− log 7)p) +

2√
2πc3 log n

.

Here we used the fact that X̃ ∗ = X ∗1 + X ∗2 ,

‖z̃‖2 =

√√√√bn/2c∑
i=1

(z2i−1 − z2i)2 ≤

√√√√bn/2c∑
i=1

2(z2
2i−1 + z2

2i) ≤
√

2‖z‖2,

‖z̃‖∞ = max
i
|z2i−1 − z2i| ≤ 2 max

i
|zi| ≤ 2‖z‖∞.

Similarly to the proof of Proposition 2.2.3, since X1 is ROP, there exists constants

D and δ′ such that if n ≥ Drp, X1 satisfies RUB of order 10k with constants C1, C2
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satisfying C2/C1 <
√

10 with probability at least 1− e−nδ′ .

Now under the event that

1. A is feasible in (2.34),

2. X1 satisfies RUB of order 10k with constants C1, C2 satisfying C2/C1 <
√

10,

3. The latter part of (A.69), (A.70) and (A.71) hold for some M1 > 1,M2 >

9,M3 > 2,

we can prove (2.36) similarly as the proof of Proposition 2.2.3, which we omit the

proof here. �

A.2.7 Proof of Lemma 2.2.1.

Suppose X : Rp1×p2 → Rn is given by (2.6), we consider rank-1 matrices:

A1 = e
(p1)
1 e

(p2)T
1 , A2 =

β(1)γ(1)

‖β(1)‖2‖γ(1)T‖2

Here e
(p1)
1 , e

(p2)
2 are the p1- and p2- dimensional vectors with first entry 1 and others

0, respectively. Then we have ‖A1‖F = ‖A2‖F = 1.

E‖X (A1)‖2
2 = E

n∑
i=1

(β
(i)
1 )2(γ

(i)
1 )2 = n

Var‖X (A1)‖2
2 = Var

n∑
i=1

(β
(i)
1 )2(γ

(i)
1 )2 = nVar

(
β2

1γ
2
1

)
= 8n.

By Chebyshev’s inequality, we have for all t > 1,

P
(
‖X (A1)‖2

2 ≥ tn
)
≤ 8

n(t− 1)2
(A.74)
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On the other hand,

‖X (A2)‖2
2 =‖β(1)‖2

2‖γ(1)‖2
2 +

n∑
i=2

(
β(i)Tβ(1)

‖β(1)‖2

)2(
γ(i)Tγ(1)

‖γ(1)‖2

)2

≥‖β(1)‖2
2‖γ(1)‖2

2 ∼ χ2(p1) · χ2(p2)

By Lemma 1 in Laurent and Massart (2000), we know

P
(
χ2(p1) ≥ p1/2

)
≤ exp(−p1/4), P

(
χ2(p2) ≥ p2/2

)
≤ exp(−p2/4)

Hence,

P
(
‖X (A2)‖2

2 ≥ p1p2/4
)
≤ exp(−p1/4) + exp(−p2/4). (A.75)

Combining (A.74) and (A.75), we can see

C2/C1 ≥
‖X (A2)‖2/(

√
n‖A2‖F )

‖X (A1)‖2/(
√
n‖A1‖F )

=

√
‖X (A2)‖2

2

‖X (A1)‖2
2

≥
√
p1p2/4

tn
(A.76)

holds with probability at least 1− e−p1/4 − e−p2/4 − 8
n(t−1)2 . �

A.2.8 Proof of Lemma 2.3.1

First, the common used definition for sub-Gaussian distribution of random variable

X include the following two.

∃c, C > 0, such that P (|X| ≥ t) ≤ C exp(−ct2) (A.77)

∃c > 0, such that EetX ≤ exp(c2t2/2) (A.78)
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Suppose αP is finite, then we have

EetX =
∞∑
k=0

t2k

(2k)!
EX2k ≤

∞∑
k=0

t2k

(2k)!
α2k(2k − 1)!! =

∞∑
k=0

(tα)2k

2kk!
= exp((αt)2/2)

namely X is sub-Gaussian. Now suppose X is sub-Gaussian, then

EX2k = (2k)

∫ ∞
0

P (|X| > t)t2k−1dt ≤ 2kC

∫ ∞
0

t2k−1e−ct
2

dt

=
kC

ck

∫ ∞
0

(ct2)k−1e−ct
2

d(ct2) =
k!C

ck
≤
(

max(C, 1)

c

)k
(2k − 1)!!

which implies that αP ≤
√

max(C, 1)/c is finite.

A.2.9 Proof of Propositions 2.2.2, 2.2.3 and 2.2.4.

We first show Proposition 2.2.2. Denote X1, X2 : Rp×p → Rbn2 c such that

[X1]i(B) = (
β(2i−1) + β(2i)

√
2

)TB(
β(2i−1) − β(2i)

√
2

), i = 1, · · · , bn
2
c (A.79)

[X2](B) = (
β(2i−1) − β(2i)

√
2

)TB(
β(2i−1) + β(2i)

√
2

), i = 1, · · · , bn
2
c (A.80)

Note that 1√
2

(
β(2i−1) + β(2i)

)
and 1√

2

(
β(2i−1) − β(2i)

)
are independent i.i.d. standard

normal samples, so both X1 and X2 are ROP design (see (2.6)). By Corollary 2.2.1, we

know there exists uniform constant C such that whenever bn
2
c ≥ Cr · 2p, X1 satisfies

the following property with probability at least 1− exp(−nδ),

∀A ∈ {A ∈ Rp×p : rank(A) ≤ r}, A = arg min
B∈Rp×p

‖B‖∗ subject to X1(B) = X1(A).

(A.81)
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Now we consider the event that (A.81) holds. We note that for any symmetric matrix

B,

[X1]i(B) =
1

2
β(2i−1)TBβ(2i−1) − 1

2
β(2i)TBβ(2i) =

1

2
([X ]2i−1(B)− [X ]2i(B))

So X (B) = X (A) implies X1(B) = X1(A) for symmetric A and B. Also, since A is

feasible in programming (2.19), we have

‖A‖∗ ≥min
B∈Sp
‖B‖∗ subject to X (B) = X (A)

≥ min
B∈Rp×p

‖B‖∗ subject to X1(B) = X1(A)

=‖A‖∗,

So we can conclude that A can be exactly recovered by (2.19) given (A.81) holds. In

summary, for n ≥ 6Crp, with probability at least 1 − exp(−nδ), X satisfies (A.81),

then programming (2.19) can recover all A ∈ Sp of rank at most r. �

Next, we consider Proposition 2.2.3. The idea of the proof is similar to Proposition

2.2.1. Define z̃ ∈ Rbn2 c such that

z̃i = z2i−1 − z2i, i = 1, · · · , bn
2
c. (A.82)

Then z̃
iid∼ N(0, 2). We shall also point out two facts, z̃ = ỹ−X̃ (A) and X ∗ = X ∗1 +X ∗2

(defined as (A.79), (A.80)). By Lemma A.2.3, we know

P (‖z‖1/n > σ) ≤ 9

n

P (‖z̃‖2 > σ
√

2n) ≤ 1

bn/2c
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P (‖z̃‖∞ > 2σ
√

2 log n) ≤ 1

bn/2c

Hence,

P (A is NOT in the feasible set of programming (2.23))

=P
(
‖z‖1/n > σ, or ‖X̃ ∗(z̃)‖ > η

)
=P

(
‖z‖1/n > σ, or ‖X̃ ∗(z̃)‖ > 24σ

√
pn+ 48σp

√
2 log n

)
≤P (‖z‖1/n > σ) + PX (‖z̃‖2 > σ

√
2n) + P (‖z̃‖∞ > 2σ

√
2 log n)

+ PX

(
‖X̃ ∗(z̃)‖ > 24p‖z̃‖∞ + 12

√
2p‖z̃‖2

)
≤ 9

n
+

2

bn/2c
+ PX

(
‖X1(z̃)‖ > 12p‖z̃‖∞ + 6

√
2p‖z̃‖2

)
+ PX

(
‖X2(z̃)‖ > 12p‖z̃‖∞ + 6

√
2p‖z̃‖2

)
≤15

n
+ 4 exp(−2p(2− log 7))

When A is in the feasible set of programming (2.23), we have ‖Â‖∗ ≤ ‖A‖∗ and

‖X̃ (Â− A)‖1 =

bn
2
c∑

i=1

∣∣∣[X ]2i−1(Â− A)− [X ]2i(Â− A)
∣∣∣

≤ ‖X (Â− A)‖1 ≤ ‖y −X (Â)‖1 + ‖X (A)− y‖1

≤ ‖y −X (Â)‖1 + ‖z‖1 ≤ 2nσ

(A.83)

‖X̃ ∗X̃ (Â− A)‖ ≤ ‖X̃ ∗(ỹ − X̃ (Â))‖+ ‖X̃ ∗(X̃ (A)− ỹ)‖

=‖X̃ ∗(ỹ − X̃ (Â))‖+ ‖X̃ ∗(z̃)‖ ≤ 2η

(A.84)

Similarly as the proof to Proposition 2.2.1, by Theorem 2.2.2, there exists constant

D, δ′ such that if n ≥ Drp, X1 satisfies RUB of order 10r with constants C1, C2 such

that C2/C1 <
√

10 with probability at least 1 − exp(−nδ′). Now we suppose the

following two events happen,
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1. X1 satisfies RUB of order 10r and constants C1, C2 satisfying C2/C1 <
√

10,

2. A is feasible in the programming (2.23).

Since X̃ (B) = 2X1(B) for any symmetric matrix B, by X1 satisfies RUB condition,

we have X̃ satisfies RUB for symmetric matrices of order 10r and constants 2C1, 2C2

satisfying (2C2)/(2C1) <
√

10. We note that the proof of Lemmas A.2.6 and A.2.7

still apply for X̃ in the symmetric matrices class, so we can get (2.24) based on (A.83)

and (A.84) under those two events happen. Finally the probability that these events

happen is at least 1 − 15/n − 4 exp(−pδ) − exp(−nδ) for δ < min(2(2 − log 7), δ′),

which finished the proof of Proposition 2.2.3. �

Finally we consider Proposition 2.2.4. Denote p′ = bp/2c, r′ = br/2c. By r, p ≥ 2,

we have r′ ≥ r/3, p′ ≥ p/3. Define a sub-class of the class rank-r symmetric matrices,

G =


A ∈ Sp : A =

p′ p− p′ 0 B p′

BT 0 p− p′
, B ∈ Rp′×(p−p′), rank(B) ≤ r′


we can see ∀A ∈ G,

[X (A)]i = β(i)TAβ(i) = 2(β
(i)
1 , · · · , β(i)

p′ )B(β
(i)
p′+1, · · · , β

(i)
p )T ,

so in G the SROP model becomes

yi
2

= (β
(i)
1 , · · · , β(i)

p′ )B(β
(i)
p′+1, · · · , β

(i)
p )T +

zi
2
,

z

2

iid∼ N(0, σ2/4)

which is an ROP model which we already discussed in section 2.2. We omit the rest

of the proof as it can be followed by the proof of Theorem 3.3.3. �
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A.2.10 Proof of Proposition 2.3.1.

The proof can follow from the proof of Proposition 2.2.3 and Theorem 2.3.1 once we

can prove that in high probability, X1 (defined in (A.79)) satisfies RUB condition

with C1, C2 such that C2/C1 is bounded. This can be proved similarly as Proposition

A.2.1, where we only need to edit the proof that we use the following Lemma A.2.9

instead of Lemma A.2.1.

Lemma A.2.9. Suppose A ∈ Rp×p is a fixed matrix (not necessarily symmetric) and

X1 is given by (A.79). β(i) is a set of p-dimensional vectors such that
iid∼ P, where

P is some symmetric variance 1 sub-Gaussian distribution except Rademacher ±1

distribution. Then for δ > 0, we have

(
min3/2(Var(P2)/2, 1)

3(2αP)4
− 8α2

Pδ − 4α2
Pδ

2

)
‖A‖F ≤

‖X1(A)‖1

bn/2c

≤
(√

3/2α2
P + 8α2

Pδ + 4α2
Pδ

2
)
‖A‖F .

(A.85)

with probability at least 1− 2 exp(−δ2bn/2c).

The proof of Lemma A.2.9 is in the Appendix right after this paragraph. Note

that provided P is symmetric and with variance 1, Var(P2) = 0 if and only P is

Rademacher ±1 and A is diagonal, in which the lower bound of (A.85) becomes

meaningless. So we only exclude Rademacher ±1 distribution from the result. �

Proof of Lemma A.2.9.

The proof of Lemma A.2.9 is basically the same to Lemma A.2.1. We only need to

redo two parts of the proof, where there are major differences.

1. Part 1. “Step 1. Even moments of |1
2
(β(1) + β(2))TA(β(1) − β(2))|.”.
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First, based on P is symmetric and with variance 1, we have EP2k+1 = 0,

EP2k ≤ α2kEx2k = α2k(2k − 1)!!.Then we can calculate that

E(β
(1)
i + β

(2)
i )2k+1 = E(β

(1)
i − β

(2)
i )2k+1 = 0

E(β
(1)
i + β

(2)
i )2k

=
k∑
l=0

(
2k

2l

)
E(β

(1)
i )2lE(β

(2)
i )2(k−l) ≤ α2k

k∑
l=0

(
2k

2l

)
(2l − 1)!!(2(k − l)− 1)!!

=α2k

k∑
l=0

(2k − 1)!!2kk!

2ll!2k−l(k − l)!
= α2k(2k − 1)!!

k∑
l=0

(
k

l

)
= 2kα2k(2k − 1)!!

Similarly, E(β
(1)
i − β

(2)
i )2k ≤ 2kα2k(2k − 1)!!. Next, we can similarly consider

the expansion of E
(

1
2
(β(1) + β(2))A(β(1) − β(2))

)2k
, where the non-zero terms

can be written as

1

22k

2k∏
l=1

Ail,jl

p∏
i=1

E(β
(1)
i + β

(2)
i )2si

p∏
j=1

E(β
(1)
j − β

(2)
j )2tj

Here s1 + · · ·+ sp = t1 + · · ·+ tp = k. This term can be bounded as
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∣∣∣∣∣ 1

22k

2k∏
l=1

Ail,jl

p∏
i=1

E(β
(1)
i + β

(2)
i )2si(β

(1)
i − β

(2)
i )2ti

∣∣∣∣∣
≤ 1

22k

2k∏
l=1

|Ail,jl | ·
p∏
i=1

(
si

si + ti
E
(
β

(1)
i + β

(2)
i

)2si+2ti
+

ti
si + ti

E
(
β

(1)
i − β

(2)
i

)2si+2ti
)

≤ 1

22k

2k∏
l=1

|Ail,jl |
p∏
i=1

2si+tiα2(si+ti)(2(si + ti)− 1)!!

=α4k

2k∏
l=1

|Ail,jl |
p∏
i=1

(2(si + ti))!

2si+ti(si + ti)!
≤ α4k

2k∏
l=1

|Ail,jl |
p∏
i=1

((2si + 2ti)!!)
2

2si+tisi!ti!

≤α4k

2k∏
l=1

|Ail,jl |
p∏
i=1

22(si+ti) ((si + ti)!)
2

2si+tisi!ti!
≤ α4k24p

2k∏
l=1

|Ail,jl |
p∏
i=1

(2si)!(2ti)!

(2si)!!(2ti)!!

=α4k24p

2k∏
l=1

|Ail,jl |
p∏
i=1

Ex2si
i ·

p∏
i=1

Ey2ti
i

Here we assume that xi, yi
iid∼ N(0, 1). The right hand side of the inequality

above is exactly the term in the expansion of (2α)4kE(xTAabsy)2k, where Aabs

is the element-wise absolute value of A. Therefore, we have

E

(
1

2

(
β(1) + β(2)

)T
A
(
β(1) − β(2)

))2k

≤ (2α)4kE[xTAabsy]2k

Now we follow the same argument of the rest part of Step 1 in the proof of

Lemma A.2.1, we can prove that

E

(
1

2

(
β(1) + β(2)

)T
A
(
β(1) − β(2)

))2k

≤ (2α)4k((2k − 1)!!)2‖A‖2k
F (A.86)

2. Part 2. The upper and lower bound of µ = E
∣∣∣12 (β(1) + β(2)

)T
A
(
β(1) − β(2)

)∣∣∣.
To follow the argument of the proof of Step 3 in Lemma A.2.1, we need to

derive a new bound for µ = E|1
2

(
β(1) + β(2)

)T
A
(
β(1) − β(2)

)
|. First, we denote
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M = |1
2

(
β(1) + β(2)

)T
A
(
β(1) − β(2)

)
|, then

µ =EM ≤
√
EM2

=

√
E

(
1

2
(β(1) + β(2))TA(β(1) − β(2))

)2

=

√
1

4

∑
i,j

E(β
(1)
i + β

(2)
i )2A2

ij(β
(1)
j − β

(2)
j )2

=

√∑
i 6=j

A2
ij +

1

2
Var(P2)

∑
i

A2
ii ≤

√∑
i 6=j

A2
ij +

3

2
α4
P

∑
i

A2
ii

≤
√

3

2
α2
P‖A‖F

On the other hand,

EM2 =E

(
1

2
(β(1) + β(2))TA(β(1) − β(2))

)2

=
∑
i 6=j

A2
ij +

1

2
Var(P2)

∑
i

A2
ii ≥ min(

1

2
Var(P2), 1)‖A‖2

F ,

By (A.86), we also have EM4 ≤ 9(2α)8‖A‖2k
F . By Hölder’s inequality, EM2 ≤

(EM)2/3(EM4)1/3. Hence,

µ ≥
√

(EM2)3

EM4
≥ min3/2(Var(P2)/2, 1)‖A‖F

3(2α)4

To sum up, instead of Lemma A.2.2, we have the bound of µ as follows,

min3/2(Var(P2)/2, 1)‖A‖F
3(2αP)4

≤ µ ≤
√

3/2α2
P‖A‖F (A.87)

The rest of the proof follows the proof of Lemma A.2.1 with modifications of

constants, which we do not go into details. �
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A.2.11 Proofs of Technical Tools

We collect the proofs of technical tools used in the theoretical analysis of Chapter 2

in this section.

Proof of Lemma A.2.1

Without confusion, we simply use α to represent αP in the proof. Note that we can

multiply A by a scale without loss of generality. So we assume throughout the proof

that ‖A‖F = 1. We’ll prove this lemma by steps. First, we show an inequality on the

even moments of |βTAγ|; next, we give a bound on the moment generation function

of |βTAγ|. Finally, we give the desired tail bound.

1. Step 1: Even moments of |βTAγ|.

Assume that x = (x1, · · · , xp1), y = (y1, · · · , yp2) are two random i.i.d. standard

normal distributed vectors. Based on the definition of αP in (2.26), we know

Eβ2k
i = Eγ2k

j ≤ α2kEx2k
i = α2kEy2k

j ;

Eβ2k−1
i = Eγ2k−1

j = Ex2k−1
i = Ey2k−1

j = 0

(A.88)

Consider the expansion of E(βTAγ)2k, where the non-zero terms can be written

as
2k∏
l=1

Ail,jl ·
p1∏
i=1

Eβ2si
i ·

p2∏
j=1

Eγ
2tj
j .

Here s1 + · · ·+ sp1 = t1 + · · · tp2 = k. By (A.88), this term can be bounded as

∣∣∣∣∣
2k∏
l=1

Ail,jl ·
p1∏
i=1

Eβ2si
i ·

p2∏
j=1

Eγ
2tj
j

∣∣∣∣∣ ≤
2k∏
l=1

|Ail,jl | · α4k ·
p1∏
i=1

Ex2si
i ·

p2∏
j=1

Ey
2tj
j

The right hand side is exact the term in the expansion of α4kE(xTAabsy)2k,
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where Aabs is the the element-wise absolute value of A. Therefore, we have

E[βTAγ]2k ≤ α4kE[xTAabsy]2k. (A.89)

Now we suppose Aabs has singular value decomposition

Aabs =

p∑
i=1

aiuiv
T
i = Udiag(a)V T

where U, V are orthogonal and a = (a1, · · · , ap) is the singular value vector

of Aabs. A well-known fact is that
∑

i a
2
i = ‖Aabs‖2

F = ‖A‖2
F . Since x, y are

standard normal distributed, we can see that xTAabsy and xTdiag(a)y has the

same distribution. So

E[xTAabsy]2k = E[

p∑
i=1

aixiyi]
2k

Next, we note

z =

p∑
i=1

xi
aiyi√∑p
j=1 a

2
jy

2
j

,

then z is standard normal distributed and independent of
√∑p

j=1 a
2
jy

2
j since

p∑
i=1

 aiyi√∑p
j=1 a

2
jy

2
j

2

= 1.

and z given y1, · · · , yp is always standard normal distributed.
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For integer k ≥ 1,

E[xTAabsy]2k =E

∣∣∣∣∣∣z ·
√√√√ p∑

j=1

a2
jy

2
j

∣∣∣∣∣∣
2k

= E|z|2k · E(

p∑
j=1

a2
jy

2
j )
k

=(2k − 1)!! ·
∑

k1,k2,··· ,kp≥0,
k1+···+kp=k

k!∏p
j=1 kj!

p∏
i=1

E(a2
i y

2
i )
ki

=
∑

k1,k2,··· ,kp≥0,
k1+···+kp=k

k!∏p
j=1(kj)!

p∏
i=1

a2ki
i ·

p∏
i=1

(2ki − 1)!!

≤
∑

k1,k2,··· ,kp≥0,
k1+···+kp=k

k!∏p
j=1 kj!

p∏
i=1

a2ki
i · (2(k1 + k2 + · · · kp)− 1)!!

=((2k − 1)!!)2 ·
∑

k1,k2,··· ,kp≥0,
k1+···+kp=k

k!∏p
j=1 kj!

p∏
i=1

(a2
i )
ki

=((2k − 1)!!)2(

p∑
i=1

a2
i )
k = ((2k − 1)!!)2‖A‖2k

F

Together with (A.89), we have

E[βTAγ]2k ≤ α4k((2k − 1)!!)2‖A‖2k
F (A.90)

2. Log-moment generation function of |βTAγ|.

By the bound of the even moments of |βTAγ|, we can also give the estimate of

odd moments, for integer k ≥ 1,

0 ≤ E
∣∣βTAγ∣∣2k+1 ≤

√
E[βTAγ]2k · E[βTAγ]2k+2

≤ α4k+2(2k − 1)!! · (2k + 1)!! ≤ α4k+2(2k + 1)!

Also,

E
[
βTAγ

]2k ≤ α4k((2k − 1)!!)2 ≤ α4k(2k)!
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So for all k ≥ 2, E|βTAγ|k ≤ α2kk!. Denote µ = E|βTAγ|, then for 0 ≤ t < 1
α2 ,

Eet|β
TAγ| = 1 +

∞∑
k=1

tk

k!
E|βTAγ|k ≤ 1 + tµ+

∞∑
k=2

tkα2k = 1 + tµ+
t2α4

1− tα2

For − 1
α2 < t < 0, we have

Eet|β
TAγ| =1 + tµ+

∞∑
k=1

t2kα4k −
∞∑
k=1

|t|2k+1

(2k + 1)!
E|βTAγ|2k+1

≤1 + tµ+
t2α4

1− |t|2α4
≤ 1 + tµ+

t2α4

1− |t|α2

Hence, we have for all −1/α2 < t < 1/α2,

Eet|β
TAγ| ≤ 1 + tµ+

t2α4

1− |t|α2
.

Note that log(1 + x) ≤ 1 + x for all −1 < x <∞, we have

logE exp(t(|βTAγ| − µ)) = logE exp(t|βTAγ|)− tµ ≤ t2α4

1− |t|α2
. (A.91)

for all −1/α2 < t < 1/α2.

3. The tail bound of ‖X (A)‖1/n.

Finally, we estimate the tail bound of ‖X (A)‖1/n. Note that

‖X (A)‖1/n =

(
n∑
j=1

∣∣β(j)TAγ(j)
∣∣) /n,

based on (A.91), the logarithm of moment generating function of ‖X (A)‖1/n

satisfies

logE exp (t(‖X (A)‖1/n− µ)) = n logE exp

(
t

n
(|βTAγ| − µ)

)
≤ t2α4/n

1− |t|α2/n
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By the proof of Lemma 1 in Laurent and Massart (2000), we know ‖X (A)‖1/n−

µ has the tail bound,

P (‖X (A)‖1/n− µ ≥ α2(x/n+ 2
√
x/n)) ≤ exp(−x)

P (‖X (A)‖1/n− µ ≤ α2(x/n+ 2
√
x/n)) ≤ exp(−x)

Finally we set δ =
√
x/n, by Lemma A.2.2, 1/(3α4) ≤ µ ≤ 1, we finish the

proof of Lemma.

Proof of Lemma A.2.2

Since P is symmetric and of variance 1, we have Eβi = Eγj = 0, Eβ2
i = Eγ2

j = 1,

Eβ4
i = Eγ4

j ≤ 3α4
P for all i, j. Then by some expansions and calculations,

E
(
βTAγ

)2
= E

(∑
i,j

βiAijγj

)2

=
∑
i,j

Eβ2
iA

2
ijγ

2
j =

∑
i,j

A2
ij = ‖A‖2

F

By the first part in the proof of Lemma A.2.1, we have

E|βTAγ|4 ≤ 9α8
P‖A‖4

F

By Hölder’s inequality,

E|βTAγ| ≤
√
E|βTAγ|2 = ‖A‖F

which gives the right of the original inequality. For the left, note that

E|βTAγ|2 ≤
(
E|βTAγ|

)2/3 ·
(
E|βTAγ|4

)1/3
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So

E|βTAγ| ≥

√
(E|βTAγ|2)3

E|βTAγ|4
≥ ‖A‖F

3α4
P
.

Proof of Lemma A.2.3

� We first prove the sub-Gaussian part of the lemma. The moment generating

function of |zi| (t ≥ 0) and z2
i (0 ≤ t < 1/(2γ)) satisfy

Eet|zi| = −
∫ ∞

0

exp(tλ)dP (|X| ≥ λ) = 1 +

∫ ∞
0

P (|X| ≥ λ)d exp(tλ)

≤ 1 +

∫ ∞
0

2t exp(tλ− λ2/(2γ2))dλ

≤ 1 + 2t exp(t2γ2/2)

∫ ∞
0

exp(−(λ− γ2)2/(2γ2))dλ

≤ 1 + 2t exp
(
t2γ2/2

)√
2πγ

≤ exp(t2γ2/2)
(

1 + 2t
√

2πγ
)

≤ exp
(
t2γ2/2 + 2

√
2πγt

)

Eetz
2
i = −

∫ ∞
0

exp(tλ2)dP (|X| ≥ λ) = 1 +

∫ ∞
0

P (|X| ≥ λ)d exp(tλ2)

≤ 1 +

∫ ∞
0

4tλ exp
(
−λ2(1/(2γ2)− t)

)
dλ

= 1 +
2t

1/(2γ2)− t

Then the moment generating function of ‖z‖1/n and ‖z‖2
2/n satisfies

Eet‖z‖1/n =
(
Eet‖zi‖/n

)n ≤ exp
(
t2γ2/(2n) + 2

√
2πtγ

)

Eet‖z‖
2
2/n =

(
1 +

2t/n

1/(2γ2)− t/n

)n
≤ exp

(
2t

1/(2γ2)− t/n

)
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Hence for C ≥ 0,

P (‖z‖1/n ≥ C) ≤ E exp(t‖z‖1/n)

exp (tC)
≤ exp

(
t2γ2/(2n) + t

(
2
√

2πγ − C
))

= exp

 γ2

2n

(
t+

n(2
√

2πγ − C)

γ2

)2

− n(2
√

2πγ − C)2

2γ2


For C > 2

√
2πγ, we can set t = γ2

n(C−2
√

2πγ)
, then

P (‖z‖1/n ≥ C) ≤ exp

(
−n(C − 2

√
2πγ)2

2γ2

)

Now we consider the tail bound of ‖z‖2
2/n. For C > 4γ2,

P (‖z‖2
2/n ≥ C) =

E exp(t‖z‖2
2/n)

exp(tC)
= exp

(
2t2γ2C/n− t(C − 4γ2)

1− 2γ2t/n

)
.

We set t = C−4γ2

4Cγ2/n
,

P
(
‖z‖2

2/n ≥ C
)
≤ exp

(
− n(C − 4γ2)2

8γ2C(1− 2γ2t/n)

)
≤ exp

(
−n(C − 4γ2)2

8γ2C

)

Finally we consider ‖z‖∞,

P (‖z‖∞ ≤ C
√

log nγ) ≤ 2n exp(−C2 log nγ2/(2γ2)) = 2n−(C2/2−1)

� Next, we consider the Gaussian part of the lemma. The bound of ‖z‖2 is already

given by Lemma 5.1 in Cai et al. (2009). For ‖z‖1, we can see E|zi|2 = σ2,

E|zi| =
σ√
2π

∫ ∞
0

xe−x
2/(2)dx = σ

√
2/π

Hence, E(‖z‖1/n) = σ
√

2/π, Var(‖z‖1/n) = Var(|zi|)/n = (1 − 2/π)σ2/n. By
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Chebyshev’ inequality,

P (‖z‖1/n ≥ σ) ≤ P
(∣∣∣‖z‖1/n− σ

√
2/π
∣∣∣ ≥ σ(1−

√
2/π)

)
≤ Var(‖z‖1/n)

σ2(1−
√

2/π)2
=

1 +
√

2/π

(1−
√

2/π)n

For the bound of ‖z‖∞, we have

P (‖z‖∞ ≥ 2
√

log nσ) ≤
n∑
i=1

P (|zi| ≤ 2
√

log nσ)

≤ n · 2

2
√

2π log n
exp(−1

2
· 4 log n) =

1

n
√

2π log n

Proof of Lemma A.2.4

Again without confusion, we simply use α to represent αP in the proof. The proof

also requires some knowledge of moment generation function and ε-net method. We’ll

prove by steps.

� Moment Generation Function of aTX ∗(z)b. Suppose a ∈ Rp1 , b ∈ Rp2

are fixed unit vectors. In order to handle the operator norm of X ∗(z), we first

consider aTX ∗(z)b. Note that

aTX ∗(z)b =
n∑
i=1

zia
Tβ(i)γ(i)T b (A.92)

Denote Xi = aTβ(i), Yi = bTγ(i), then {Xi}p1

i=1, {Yi}
p2

i=1 are two independent sets

of i.i.d. sub-Gaussian samples. Moreover by β(i), γ(i) are i.i.d. from symmetric

distribution P , one can show

E(Xi)
2k−1 = E(

∑
j

ajβj)
2k−1 = 0,
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E(Xi)
2k = E(

p1∑
j=1

ajβj)
2k =

∑
k1+···kp1=k

k!

k1! · · · kp1 !

(
p1∏
i=1

a2ki
i E(β2ki

i )

)

≤
∑

k1+···kp1=k

k!

k1! · · · kp1 !

(
p1∏
i=1

a2ki
i E(x2ki

i )α2k

)

= α2kE(

p1∑
i=1

aixi)
2k ≤ α2k(2k − 1)!!

Here xi
iid∼ N(0, 1). Similarly, E(Yi)

2k−1 = 0, E(Yi)
2k ≤ α2k(2k − 1)!!. Then for

|t| < 1/α2,

E exp(tXiYi) =
∞∑
k=0

tkE(XiYi)
k

k!
≤

∞∑
k=0

t2k(α2k(2k − 1)!!)2

(2k)!

=
∞∑
k=0

(tα2)2k(2k − 1)!!

2kk!
=
∞∑
k=0

(tα2)2k · (−1)k
(
−1/2

k

)
=

1√
1− t2α4

(A.93)

Now for fixed z ∈ Rn, the logarithm of the moment generating function of

aTX ∗(z)b satisfies

logE exp(taTX ∗(z)b) =
n∑
i=1

logE exp(tziXiYi) ≤
n∑
i=1

−1

2
log(1− t2z2

i α
4)

≤
n∑
i=1

t2z2
i α

4

2(1− t2z2
i α

4)
≤ t2‖z‖2

2α
4

2(1− t2‖z‖2
∞α

4)

≤ t2‖z‖2
2α

4

2(1− |t|‖z‖∞α2)

for any |t| < 1/(‖z‖∞α2). Here we used the fact that

− log(1− x) =
∞∑
i=1

xi

i
≤

∞∑
i=1

xi =
x

1− x

for 0 ≤ x < 1.

� Tail Bound of aTX ∗(z)b
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By the proof of Lemma 1 in Laurent and Massart (2000), we know for fixed

z ∈ Rn, aTX ∗(z)b has tail bound: for x > 0 and fixed a, b, we have

P
(
aTX ∗(z)b ≥ α2

(
‖z‖∞ x+ ‖z‖2

√
2x
))
≤ exp(−x);

P
(
aTX ∗(z)b ≤ −α2

(
‖z‖∞ x+ ‖z‖2

√
2x
))
≤ exp(−x).

Set x = C(p1 + p2), we have

P
(
|aTX ∗(z)b| ≥ α2

(
‖z‖∞C(p1 + p2) + ‖z‖2

√
2C(p1 + p2)

))
≤2 exp(−C(p1 + p2)).

(A.94)

For convenience, We denote

T = α2
(
‖z‖∞(C(p1 + p2)) + ‖z‖2

√
2C(p1 + p2)

)
. (A.95)

� ε-net and the upper bound of ‖X ∗(z)‖.

In this step, we still fix z. We use the ε-net method to derive the upper bound

of ‖X ∗(z)‖2, which is given by

‖X ∗(z)‖2 = sup
a∈Rp1 ,b∈Rp2

aTX ∗(z)b

From Lemma 2.5 in Vershynin (2011), we can find an ε-net A in the unit sphere

of Rp1 , i.e. for all a in the unit sphere of Rp1 , there exists a′ ∈ A such that

‖a′ − a‖2 ≤ ε. Besides, |A| ≤ (1 + 2/ε)p1 . Similarly, there exists ε-net B of the

unit ball of Rp2 such that |B| ≤ (1 + 2/ε)p2 .
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By (A.94), we have

P
(∣∣aTX ∗(z)b

∣∣ ≥ T,∃a ∈ A, b ∈ B
)
≤ 2(1 + 2/ε)p1+p2 exp(−C(p1 +p2)) (A.96)

Now we consider under the event that
∣∣aTX ∗(z)b

∣∣ ≤ T,∀a ∈ A, b ∈ B. Suppose

µ = ‖X ∗(z)‖2 = max‖a‖2=‖b‖2=1 a
TX ∗(z)b, (a∗, b∗) = arg maxa,b a

TX ∗(z)b, then

we can find a′ ∈ A, b′ ∈ B such that ‖a′ − a∗‖ ≤ ε, ‖b′ − b∗‖ ≤ ε. Then,

µ =
∣∣a∗TX ∗(z)b∗

∣∣
=
∣∣a′TX ∗(z)b′

∣∣+
∣∣(a′ − a∗)TX ∗(z)b′

∣∣+
∣∣a∗TX ∗(z)(b∗ − b′)

∣∣
≤T + (‖a′ − a∗‖2 + ‖b′ − b∗‖2) · ‖X ∗(z)‖ ≤ T + 2εµ

This means µ ≤ T/(1 − 2ε). Therefore, when
∣∣aTX ∗(z)b

∣∣ ≤ T,∀a ∈ A, b ∈ B,

we have ‖X ∗(z)‖ ≤ T/(1− 2ε).

� Finally, we set ε = 1/3, under the event that

∣∣aTX ∗(z)b
∣∣ ≤ T

=α2
(
‖z‖∞(C(p1 + p2)) + ‖z‖2

√
2C(p1 + p2)

)
, ∀a ∈ A, b ∈ B

we have

‖X ∗(z)‖ ≤ T/(1− 2ε) ≤ 3α2
(
‖z‖∞C(p1 + p2) + ‖z‖2

√
2C(p1 + p2)

)

By (A.96), the probability that all the event happen is at least

1− 2 exp (−(C − log 7)(p1 + p2))

This finished the proof of the lemma.
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Proof of Lemma A.2.5.

The idea of the proof is originated from Wang and Li (2013), Oymak and Hassibi

(2010). We provide the proof here for the completeness of discussion. Note p =

min(p1, p2), suppose for any matrix B, σi(B) is the i-th largest singular value of B.

By Lemma 2 in Oymak and Hassibi (2010), we have

‖Amax(r)‖∗ + ‖A−max(r)‖∗

=‖A‖∗ ≥ ‖A∗‖∗ = ‖A− (−R)‖∗ ≥
p∑
i=1

|σi(A)− σi(−R)|

≥
r∑
i=1

(σi(A)− σi(R)) +

p∑
i=r+1

(σi(R)− σi(A))

=‖Amax(r)‖∗ − ‖A−max(r)‖∗ + ‖R−max(r)‖∗ − ‖Rmax(r)‖∗

which implies (A.64). �

Proof of Lemma A.2.6.

Suppose R = A∗ − A, then we have

‖X (R)‖1/n ≤ λ1 (A.97)

Since ‖A∗‖∗ ≤ ‖A‖∗. By Lemma A.2.5, we must have (A.64). Suppose p = min(p1, p2)

and R has the singular value decomposition, R =
∑p

i=1 σiuiv
T
i = Udiag(~σ)V T , then

~σ−max(kr) satisfies

‖~σ−max(kr)‖∞ ≤ σkr,

‖~σ−max(kr)‖1 =‖~σ−max(r)‖1 − (σr+1 + · · ·+ σkr)

≤‖~σmax(r)‖1 + 2‖A−max(r)‖∗ − (k − 1)rσkr
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Set

θ = max
(
σkr, (‖~σmax(r)‖1 + 2‖A−max(r)‖∗ − (k − 1)rσkr)/(kr)

)
,

then ‖~σ−max(kr)‖∞ ≤ θ, ‖~σ−max(kr)‖1 ≤ krθ. Similarly to the proof of Theorem 2.2.1,

apply Lemma 1.1.1 in Chapter 1, we can get b(i) ∈ Rn, λi ≥ 0, i = 1, · · · , N such

that ~σ−max(kr) =
∑N

i=1 λub
(i) and (A.63). Hence,

‖b(i)‖2 ≤
√
‖b(i)‖1 · ‖b(i)‖∞ ≤

√
θ(‖~σmax(r)‖1 + 2‖A−max(r)‖∗ − (k − 1)rσkr)

If θ = σkr, we can optimize over σkr in the inequality,

‖b(i)‖2 ≤
√
σkr(‖~σmax(r)‖1 + 2‖A−max(r)‖∗ − (k − 1)rσkr)

≤
‖~σmax(r)‖1 + 2‖A−max(r)‖∗

2
√
r(k − 1)

;

if θ = (‖~σmax(r)‖1 + 2‖A−max(r)‖∗ − (k − 1)rσkr)/(kr), we have

‖b(i)‖2 ≤
‖~σmax(r)‖1 + 2‖A−max(r)‖∗ − (k − 1)rσkr√

kr

≤
‖~σmax(r)‖1 + 2‖A−max(r)‖∗√

kr
.

(A.98)
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Since k ≥ 2, we always have (A.98). Next, we define Bi = Udiag(b(i))V T , then the

rank of Bi are at most kr,
∑N

i=1 λiBi = R−max(kr) and ‖Bi‖F = ‖b(i)‖2. Then

λ1 ≥‖X (R)‖1/n ≥ ‖X (Rmax(kr))‖1/n− ‖X (R−max(kr))‖1/n

≥C1‖Rmax(kr)‖F −
N∑
i=1

‖X (λiBi)‖1/n

≥C1‖Rmax(kr)‖F −
N∑
i=1

λiC2‖Bi‖F

≥C1‖Rmax(kr)‖F − C2

‖Rmax(r)‖∗ + 2‖A−max(r)‖∗√
kr

≥C1‖Rmax(kr)‖F −
C2√
k
‖Rmax(kr)‖F −

2C2‖A−max(r)‖∗√
kr

,

(A.99)

where the last inequality is due to ‖Rmax(kr)‖F ≥ ‖Rmax(r)‖F ≥
√
r‖Rmax(r)‖∗. There-

fore,

‖Rmax(kr)‖F ≤
λ1

C1 − C2/
√
k

+
2‖A−max(r)‖∗√
r(
√
kC1/C2 − 1)

(A.100)

Finally,

‖R−max(kr)‖F =‖~σ−max(kr)‖2 ≤
√
‖~σ−max(kr)‖1 · ‖~σ−max(kr)‖∞

≤
√
σkr · (‖~σ−max(r)‖1 − r(k − 1)σkr)

≤
‖~σ−max(r)‖1

2
√
r(k − 1)

≤
‖~σmax(r)‖1 + 2‖A−max(r)‖∗

2
√
r(k − 1)

≤
‖Rmax(r)‖F
2
√
k − 1

+
‖A−max(r)‖∗√

r(k − 1)
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Therefore,

‖R‖F =
√
‖Rmax(kr)‖2

F + ‖R−max(kr)‖2
F

≤

√√√√‖Rmax(kr)‖2
F +

(
‖Rmax(r)‖F
2
√
k − 1

+
‖A−max(r)‖∗√

r(k − 1)

)2

≤

√
1 +

1

4(k − 1)
‖Rmax(kr)‖F +

‖A−max(r)‖∗√
r(k − 1)

≤
(

1 +
1

8(k − 1)

)
‖Rmax(kr)‖F +

‖A−max(r)‖∗√
r(k − 1)

≤ 2

C1 − C2/
√
k
λ1 +

(
3√

kC1/C2 − 1
+

1√
k − 1

)
‖A−max(r)‖∗√

r

(A.101)

Proof of Lemma A.2.7.

The proof of this theorem is similar to the proof of Lemma A.2.6. Suppose R = A∗−A.

In this case we have

‖X ∗X (R)‖ ≤ λ2 (A.102)

instead of (A.97). Besides, since ‖A∗‖∗ ≤ ‖A‖∗ and Lemma A.2.5, we still have

(A.64). With the similar argument as (A.99), we have

λ2‖R‖∗ ≥ 〈R,X ∗X (R)〉 = ‖X (R)‖2
2 ≥ ‖X (R)‖2

1 /n

≥ n

(
C1‖Rmax(kr)‖F −

C2√
k
‖Rmax(kr)‖F −

2C2‖A−max(r)‖∗√
kr

)2

+

(A.103)

Here (x)+ means max(x, 0). Besides,

λ2 ‖R‖∗ ≤ λ2

(
‖Rmax(r)‖∗ + (‖Rmax(r)‖∗ + 2‖A−max(r)‖∗)

)
≤ 2λ2

(√
r‖Rmax(r)‖F + ‖A−max(r)‖∗

)
≤ 2λ2

(√
r‖Rmax(kr)‖F + ‖A−max(r)‖∗

)
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Suppose x = ‖Rmax(kr)‖F , y = ‖A−max(r)‖∗/
√
r. Based on the previous two inequali-

ties, we have

n

(
(C1 − C2/

√
k)x− 2C2√

k
y

)2

+

≤ 2
√
r(x+ y)λ2

When x ≥ 2C2y√
k(C1−C2/

√
k)

, the inequality above leads to

n(C1 − C2/
√
k)2x2 −

(
2n(C1 − C2/

√
k)

2C2√
k
y + 2

√
rλ2

)
x− 2

√
rλ2y ≤ 0. (A.104)

Note that for second order inequality ax2 − bx − c ≤ 0, a > 0, b, c ≥ 0, we have

x ≤ b+
√
b2+4ac
2a

≤ b/a+
√
c/a. Hence we can get an upper bound of x from (A.104).

x ≤ 2
√
rλ2

n(C1 − C2/
√
k)2

+
4C2/

√
ky

(C1 − C2/
√
k)

+

√
2
√
rλ2y√

n(C1 − C2/
√
k)

≤ 2
√
rλ2

n(C1 − C2/
√
k)2

+
4C2/

√
ky

(C1 − C2/
√
k)

+

√
rλ2

n(C1 − C2/
√
k)2

+
1

2
y.

Hence whenever x ≥ 2C2y√
k(C1−C2/

√
k)

or not,

‖Rmax(kr)‖F = x

≤max

{
2C2y√

k(C1 − C2/
√
k)
,

3
√
rλ2

n(C1 − C2/
√
k)2

+

(
4C2/

√
k

(C1 − C2/
√
k)

+
1

2

)
y

}

≤ 3
√
rλ2

n(C1 − C2/
√
k)2

+

(
4C2/

√
k

(C1 − C2/
√
k)

+
1

2

)
‖A−max(r)‖∗√

r
.

(A.105)

Finally, similarly to (A.101) in Lemma A.2.6, we can get the upper bound of ‖R‖F ,

‖R‖F ≤
(

1 +
1

8k − 8

)
‖Rmax(kr)‖F +

‖A−max(r)‖∗√
r(k − 1)

≤ 4

(C1 − C2/
√
k)2
·
√
r(ε+ η)

n
+

(
5√

kC1/C2 − 1
+

1√
k − 1

+ 1

)
‖A−max(r)‖∗√

r

which finished the proof of lemma A.2.7. �
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Proof of Lemma A.2.8.

Note that ξi

∣∣∣β(i) ∼ N(0, β(i)TΣβ(i)), we can assume that

ξ2
i = β(i)TΣβ(i) · Zi, (A.106)

where Zi
iid∼ (N(0, 1))2 and Zi, β

(i) are independent. Based on the definition of z in

(2.33), we have

zi = yi − [X (Σ0)]i = ξ2
i − β(i)ᵀΣβ(i) = β(i)TΣβ(i) (Zi − 1) , i = 1, · · · , n. (A.107)

We also denote

Q1 =
C1

n

n∑
i=1

ξ2
i , Q2 =

C2
2

n

n∑
i=1

ξ4
i , Q3 = C3 · log n max

1≤i≤n
ξ2
i .

� We’ll first consider the former part of (A.69), (A.70) and (A.71). Suppose

Z ∼ (N(0, 1))2. It is well known that the non-central m-th moment of Z is

(2m− 1)!!, so we have

E (C1Z − |Z − 1|) ≥ C1 −
√
E |Z − 1|2 = C1 −

√
2 (A.108)

E (C1Z − |Z − 1|)2 ≤ E (C1Z)2 + E (Z − 1)2 = 3C2
1 + 2 (A.109)

E
(
C2

2Z
2 − (Z − 1)2) = 3C2

2 − 2 (A.110)

E
(
C2

2Z
2 − (Z − 1)2)2 ≤ C4

2E (Z)4 + E (Z − 1)4 = 105C4
2 + 60 (A.111)

Next we consider the random quadratic form of Σ. Suppose β = (β1, · · · , βp)
iid∼

N(0, 1), X1, · · ·
iid∼ N(0, 1), λ1(Σ), · · · , λp(Σ) are the eigenvalues of Σ. Since Σ
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is positive definite, we have

EβTΣβ = tr(Σ) = ‖Σ‖∗ (A.112)

E(βTΣβ)2 =E(
∑
i

β2
i Σii + 2

∑
i<j

Σijβiβj)
2

=
∑
i

Σ2
iiEβ

4
i + 2

∑
i<j

ΣiiΣjjEβ
2
i β

2
j +

∑
i<j

4Σ2
ijEβ

2
i β

2
j

=2(
∑
i,j

Σ2
ij) + (

∑
ii

Σi)
2 = 2‖Σ‖2

F + ‖Σ‖2
∗

Hence,

‖Σ‖2
∗ ≤ E(βTΣβ)2 ≤ 3‖Σ‖2

∗ (A.113)

E(βTΣβ)4 = E(

p∑
i=1

λi(Σ)X2
i )4

=
∑

1≤i,j,s,t≤p

λi(Σ)λj(Σ)λs(Σ)λt(Σ)EX2
iX

2
jX

2
sX

2
t

≤
∑

1≤i,j,s,t≤p

λi(Σ)λj(Σ)λs(Σ)λt(Σ)7!! = 105‖Σ‖4
∗

(A.114)

Then we consider C1ξ
2
i − |zi| and C2

2ξ
4
i − z2

i . By (A.106) and (A.107), we have

C1ξ
2
i − |zi| = β(i)TΣβ(i) · (C1Zi − |Zi − 1|) ,

C2
2ξ

4
i − z2

i =
(
β(i)TΣβ(i)

)2 (
C2

2Z
2 − (Z − 1)2) ,

while β(i) and Zi are independent in the equation above. By (A.108)-(A.114),

we obtain an estimation of the first and second moment of these two quantities

as

E
(
C1ξ

2
i − |zi|

)
≥ (C1 −

√
2)‖Σ‖∗ (A.115)
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Var
(
C1ξ

2
i − |zi|

)
≤ E

(
C1ξ

2
i − |zi|

)2

=E (C1Zi − |Zi − 1|)2E
(
β(i)TΣβ(i)

)2 ≤
(
9C2

1 + 6
)
‖Σ‖2

∗

(A.116)

E
(
C2

2ξ
4
i − z2

i

)
≥
(
3C2

2 − 2
)
· ‖Σ‖2

∗ (A.117)

Var
(
C2

2ξ
4
i − z2

i

)
≤ E

(
C2

2ξ
4
i − z2

i

)2 ≤ 105(105C4
2 + 60)‖Σ‖4

∗ (A.118)

We note that Q1 − ‖z‖1/n and Q2 − ‖z‖2
2/n are the average of n i.i.d. copy

of C1ξ
2
i − |zi| and C2

2ξ
4
i − z2

i . We can immediately get an estimation of the

mean and variance of Q1 − ‖z‖1/n and Q2 − ‖z‖2
2/n based on (A.115)-(A.118).

Finally, by Chebyshev’s inequality,

P (Q1 ≤ ‖z‖1/n) ≤ Var(Q1 − ‖z‖1/n)

(E (Q1 − ‖z‖1/n))2 ≤
9C2

1 + 6

n(C1 −
√

2)2

P

(
Q2 ≤

‖z‖2
2

n

)
≤ Var (Q2 − ‖z‖2

2/n)

(E (Q2 − ‖z‖2
2/n))

2 ≤
105 (105C4

2 + 60)

n(3C2
2 − 2)2

Since C3 > 1 and n ≥ 3, we know C3 log nZ ≥ Z−1 with probability 1. Suppose

i0 = arg maxi β
(i)TΣβ(i), then

P (Q3 ≤ ‖z‖∞)

≤P
(

max
i

(
C3 log n(β(i)TΣβ(i))Zi

)
≤ max

i

(
(β(i)TΣβ(i))(Zi − 1)

))
+ P

(
max
i

(
C3 log n(β(i)TΣβ(i))Zi

)
≤ max

i

(
(β(i)TΣβ(i))(1− Zi)

))
≤0 + P

(
max
i

(
C3 log n(β(i)TΣβ(i))Zi

)
≤ max

i

(
β(i)TΣβ(i)

))
≤P

(
C3 log nβ(i0)TΣβ(i0)Zi0 ≤ β(i0)TΣβ(i0)

)
≤P

(
Zi0 ≤

1

C3 log n

)
= P

(
|N(0, 1)| ≤ 1√

C3 log n

)
≤ 2√

2πC3 log n

� Then we consider the latter part of (A.69)-(A.71). We can do similar calcula-
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tions as the first part of the proof and get

EQ1 = C1Eξ
2
i = C1E(β(i)TΣβ(i)) = C1‖Σ‖∗

Var(Q1) =
C2

1

n
Varξ2

i ≤
C2

1

n
Eξ4

i =
C2

1

n
E
(
β(i)TΣβ(i)

)2
EZ2 ≤ 9C2

1

n
‖Σ‖2

∗

EQ2 = C2
2EZ

2 · E
(
β(i)TΣβ(i)

)2 ≤ 9C2
2‖Σ‖2

∗

Var(Q2) =
1

n
Var

(
C2

2ξ
4
i

)
≤ C4

2

n
Eξ8

i

=
C4

2

n
EZ4 · E

(
β(i)TΣβ(i)

)4 ≤ 1052C4
2

n
‖Σ‖4

∗

So by Chebyshev’s inequality,

P (Q1 ≥M1C1‖Σ‖∗) ≤ P (Q1 − EQ1 ≥ (M1 − 1)C1‖Σ‖∗) ≤
9

(M1 − 1)2n

P
(
Q2 ≥M2C

2
2‖Σ‖2

∗
)
≤ P

(
Q2 − EQ2 ≥ (M2 − 9)C2

2‖Σ‖2
∗
)

≤ Var(Q2)

(M2 − 9)2C4
2‖Σ‖4

∗
≤ 1052

n(M1 − 9)2

which provide the latter part of (A.69) and (A.70). Finally we note that

ξ2
i = (β(i)TΣβ(i))Zi. By Lemma 1 in Laurent and Massart (2000) and the

fact that ‖Σ‖∗ =
∑

i λi(Σ), ‖Σ‖ = maxi λi(Σ), ‖Σ‖F =
√∑

i λ
2
i (Σ), ‖Σ‖F ≤
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√
‖Σ‖∗ · ‖Σ‖, we have

P

(
βTΣβ ≥

(√
‖Σ‖∗ +

√
2M3 log n‖Σ‖

)2
)

=P

(
n∑
i=1

λi(Σ)X2
i ≥ ‖Σ‖∗ + 2

√
2M3 log n‖Σ‖∗‖Σ‖+ 2M3 log n‖Σ‖

)

≤P

 n∑
i=1

λi(Σ)(X2
i − 1) ≥ 2

√√√√2M3 log n
n∑
i=1

λ2
i (Σ) + 2M3 log nmax

i
λi(Σ)


≤n−M3

(A.119)

and

P (Z ≥ 2M3 log n) ≤ exp(−2M3 log n/2) = n−M3 .

Hence,

P

(
C3 log nξ2

i ≥ 2C3M3 log2 n
(√
‖Σ‖∗ +

√
2M3 log n‖Σ‖

)2
)
≤ 2n−M3 ,

and consequently

P

(
C3 log n max

1≤i≤n
ξ2
i ≥ 2C3M3 log2 n

(√
‖Σ‖∗ +

√
2M3 log n‖Σ‖

)2
)
≤ 2n−M3+1,

which gives the right side of (A.71).
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A.3 Supplement for Chapter 3

In this Appendix we provide additional simulation results and the proofs of the main

theorems. Some key technical tools used in the proofs of the main results are also

developed and proved.

A.3.1 Additional Simulation Results

We consider the effect of the number of the observed rows and columns on the estima-

tion accuracy. We let p1 = p2 = 1000, let the singular values of A be {j−1, j = 1, 2, ...}

and let m1 and m2 vary from 10 to 210. The singular spaces U and V are again gener-

ated randomly from the Haar measure. The estimation errors of Â22 from Algorithm

2 with row thresholding and TR = 2
√
p1/m1 over different choices of m1 and m2 are

shown in Figure A.1. As expected, the average loss decreases as m1 or m2 grows.
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(a) Spectral norm loss
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(b) Frobenious norm loss

Figure A.1: Losses for the settings with singular values of A being {j−1, j = 1, 2, ...},

p1 = p2 = 1000, m1,m2 = 10, ..., 210.

Another interesting fact is that the average loss is approximately symmetric with re-

spect to m1 and m2. This implies that even with different numbers of observed rows

and columns, Algorithm 2 has similar performance with row thresholding or column
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thresholding.

We are also interested in the performance of Algorithm 2 as p1 and the ratio m1/p1

vary. To this end, we consider the setting where p2 = 1000, m2 = 50, and the singular

values of A are chosen as {j−1, j = 1, 2, ...}. The results are shown in Figure A.2. It

can be seen that when m1/p1 increases, the recovery is generally more accurate; when

m1/p1 is kept as a constant, the average loss does decrease but not converge to zero

as p1 increases.
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Figure A.2: Losses for settings with singular values of A being {j−1, j = 1, 2, 3...},

p2 = 1000, m2 = 50, m1/p1 = 1/4, 1/12, 1/20, 1/28, 1/36, and p1 = 100, ..., 100, 000.

A.3.2 Technical Tools

We collect important technical tools in this section. The first lemma is about the

inequalities of singular values in the perturbed matrix.

Lemma A.3.1. Suppose X ∈ Rp×n, Y ∈ Rp×n, rank(X) = a, rank(Y ) = b,

1. σa+b+1−r(X + Y ) ≤ min(σa+1−r(X), σb+1−r(Y )) for r ≥ 1;

2. if we further have XᵀY = 0, we must have a+b ≤ n, σr(X+Y ) ≥ max(σr(X), σr(Y ))

for r ≥ 1.
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Lemma A.3.2. Suppose X ∈ Rp×n, Y ∈ Rn×m are two arbitrary matrices, denote

‖ · ‖q, ‖ · ‖ as the Schatten-q norm and spectral norm respectively, then we have

‖XY ‖q ≤ ‖X‖q · ‖Y ‖. (A.120)

The following two lemmas provide examples that illustrate NNM fails to recover

Â22.

Lemma A.3.3. Assume A = B1B
T
2 , where B1 ∈ Rp1×r and B2 ∈ Rp2×r are two i.i.d.

standard Gaussian matrices. Let A is divided into blocks as (3.1). Suppose

r ≤ 1

400
min(p1, p2), m1 ≤

1

25
p1, m2 ≤

1

25
p2, (A.121)

then the NNM (3.3) fails to recover A22 with probability at least 1−12 exp(−min(p1, p2)/400).

Lemma A.3.4. Denote 1p as the p-dimensional vector with all entries 1. Suppose

A = 1p1 · 1ᵀp2
, and A is divided into blocks as (3.1). Then the NNM (3.3) yields

Â22 = min

{√
m1m2

(p1 −m1)(p2 −m2)
, 1

}
1p1−m11ᵀp2−m2

.

The following result is on the norm of a random submatrix of a given orthonormal

matrix.

Lemma A.3.5. Suppose U ∈ Rp×d is a fixed matrix with orthonormal columns (hence

d ≤ p). Denote W = max1≤i≤p
p
d
·
∑d

j=1 u
2
ij. Suppose we uniform randomly draw n

rows (with or without replacement) from U and note the index as Ω and denote

UΩ =


UΩ(1)

...

UΩ(n)

 .
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When n ≥ 4Wd(log d+c)
(1−α)2 for some 0 < α < 1 and c > 1, we have

‖σmin(UΩ)‖ ≥
√
αn

p

with probability 1− 2e−c.

The following results is about the spectral norm of the submatrix of a random

orthonormal matrix.

Lemma A.3.6. Suppose U ∈ Rp×d (d ≤ p) is with random orthonormal columns with

Haar measure. For all 0 < α1 < 1 < α2, there exists constant C, δ > 0 depending

only on α1, α2 such that when p ≥ n ≥ min{Cd, p}, we have

√
α1n

p
≤ σmin(U[1:n,:]) ≤ ‖U[1:n,:]‖ ≤

√
α2n

p
(A.122)

with probability at least 1− exp(−δn).

Proof of the Technical Lemmas

Proof of Lemma A.3.1.

1. First, by a well-known fact about best low-rank approximation,

σa+b+1−r(X + Y ) = min
M∈Rp×n,rank(M)≤a+b−r

‖X + Y −M‖.

Hence,

σa+b+1−r(X + Y ) ≤ ‖X + Y − (Xmax(a−r) + Y )‖ = ‖X−max(a−r)‖ = σa+1−r(X);

similarly σa+b+1−r(X + Y ) ≤ σb+1−r(Y ).
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2. When we further have XᵀY = 0, we know the column space of X and Y are

orthogonal, then we have rank(X + Y ) = rank(X) + rank(Y ) = a + b, which

means a+ b ≤ n. Next, note that

(X + Y )ᵀ(X + Y ) = XᵀX + Y ᵀY +XᵀY + Y ᵀX = XᵀX + Y ᵀY,

if we note λr(·) as the r-th largest eigenvalue of the matrix, then we have

σ2
r(X + Y ) =λr((X + Y )ᵀ(X + Y )) = λr(X

ᵀX + Y ᵀY )

≥max(λr(X
ᵀX), λr(Y

ᵀY )) = max(σ2
r(X), σ2

r(Y )).

�

Proof of Lemma A.3.2. Since

‖XY ‖q = q

√∑
i

σqi (XY ), ‖X‖q = q

√∑
i

σqi (X),

it suffices to show σi(XY ) ≤ σi(X)‖Y ‖. To this end, we have

σi(X) = min
M∈Rp×m,rank(M)≤i−1

‖XY −M‖ ≤ ‖XY −Xmax(i−1)Y ‖

=‖X−max(i−1)Y ‖ ≤ σi(X)‖Y ‖,

which finishes the proof of this lemma. �

Proof of Lemma A.3.3. Since B1 and B2 and their submatrices are all i.i.d.

standard matrices, by the random matrix theory (Corollary 5.35 in Vershynin (2011)),

for t > 0, we have with probability at least 1−12 exp(−t2/2), the following inequalities
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hold,

λr(A) ≥λmin(B1)λmin(B2) ≥ (
√
p1 −

√
r − t)(√p2 −

√
r − t)

(A.121)

≥
(

19

20

√
p1 − t

)(
19

20

√
p2 − t

) (A.123)

‖A1•‖ =‖B1,[1:m1,:]B
T
2 ‖ ≤ (

√
m1 +

√
r + t)(

√
p2 +

√
r + t)

(A.121)

≤
(

1

4

√
p1 + t

)(
21

20

√
p2 + t

) (A.124)

and

‖A21‖ =‖B1,[(m1+1):p1,:]B
T
2,[1:m2,:]

‖ ≤ (
√
p1 +

√
r + t)(

√
m2 +

√
r + t)

(A.121)

≤
(

21

20

√
p1 + t

)(
1

4

√
p2 + t

)
.

(A.125)

Denote

A0 =

A11 A12

A21 0


and set t = 1

20
min(

√
p1,
√
p2). Since ‖A0‖∗ ≤ ‖A1•‖∗ + ‖A21‖∗, , we have

P

(
‖A‖∗ ≥

326

400

√
p1p2

)
≥ 1− 12 exp(−min(p1, p2)/400) (A.126)

and

P

(
‖A0‖∗ ≤

264

400

√
p1p2

)
≥ 1− 12 exp(−min(p1, p2)/400). (A.127)

Hence, with probability at least 1− 12 exp(−min(p1, p2)/400), ‖A0‖∗ < ‖A‖∗, which

implies that the NNM (3.3) fails to recover A22. �

Proof of Lemma A.3.4. For convenience, we denote x ∧ y = min(x, y) for any two

real numbers x, y. First, we can extend the unit vectors 1√
m1

1m1 ,
1√
m2

1m2 , 1√
p1−m1

1p1−m1

and 1√
p2−m2

1p2−m2 into orthogonal matrices, which we denote as Um1 ∈ Rm1×m1 ,
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Um2 ∈ Rm2×m2 , Up1−m1 ∈ R(p1−m1)×(p1−m1), Up2−m2 ∈ R(p2−m2)×(p2−m2). Next, for all

A′22 ∈ R(p1−m1)×(p2−m2), we must have

∥∥∥∥∥∥∥
A11 A12

A21 A′22


∥∥∥∥∥∥∥
∗

=

∥∥∥∥∥∥∥
Uᵀm1

0

0 Uᵀp1−m1

 ·
A11 A12

A21 A′22

 ·
Um2 0

0 Up2−m2


∥∥∥∥∥∥∥
∗

,

∥∥∥∥∥∥∥
E11 E12

E21 Uᵀp1−m1
A′22Up2−m2


∥∥∥∥∥∥∥
∗

,

where E11 ∈ Rm1×m2 , E12 ∈ Rm1×(p2−m2), E21 ∈ R(p1−m1)×m2 are with the first entry

√
m1m2,

√
m1(p2 −m2) and

√
m2(p1 −m1) respectively and other entries 0. There-

fore, we can see

∥∥∥∥∥∥∥
E11 E12

E21 Uᵀp1−m1
A′22Up2−m2


∥∥∥∥∥∥∥
∗

≥

∥∥∥∥∥∥∥
 √

m1m2

√
m1(p2 −m2)√

m2(p1 −m1) [Uᵀp1−m1
A′22Up2−m2 ][1,1]


∥∥∥∥∥∥∥
∗

and the equality holds if and only if Uᵀp1−m1
A′22Up2−m2 is zero except the first entry.

By some calculation, we can see the nuclear norm of 2-by-2 matrix

∥∥∥∥∥∥∥
 √

m1m2

√
m1(p2 −m2)√

m2(p1 −m1) x


∥∥∥∥∥∥∥
∗

achieves its minimum if and only if

x =
√
m1m2 ∧

√
(p1 −m1)(p2 −m2).
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Hence, A′22 achieves the minimum of

∥∥∥∥∥∥∥
A11 A12

A21 A′22


∥∥∥∥∥∥∥
∗

if and only if

Uᵀp1−m1
A′22Up2−m2 =


√
m1m2 ∧

√
(p1 −m1)(p2 −m2) 0 · · ·

0 0

...
. . .

 ,

which means the minimizer A′22 =

(√
m1m2

(p1−m1)(p2−m2)
∧ 1

)
· 1p1−m11ᵀp2−m2

. �

Proof of Lemma A.3.5. The proof of this lemma relies on operator-Bernstein’s

inequality for sampling (Theorem 1 in Gross and Nesme (2010)). For two symmetric

matrices A, B, we say A � B if B−A is positive definite. By assumption, {UΩ(j)•, j =

1, · · · , n} are uniformly random samples (with or without replacement) from {Ui•, i =

1, · · · , n}. Suppose

Xi = Uᵀi•Ui• −
1

p
Id, i = 1, · · · , p, (A.128)

then Xi are symmetric matrices, XΩ(j), j = 1, · · · , n are uniformly random samples

(with or without replacement) from {X1, · · · , Xp}. In addition, we have

EXj =
1

p

p∑
i=1

Uᵀi•Ui• −
1

p
Id =

1

p
UᵀU − 1

p
Id = 0

‖Xj‖ ≤ max
1≤i≤p

∥∥∥∥Uᵀi•Ui• − 1

p
Id

∥∥∥∥ ≤ max
1≤i≤p

max

{
‖Uᵀi•Ui•‖ ,

1

p
‖Id‖

}
≤ Wd

p

EX2
j =

1

p

p∑
i=1

(
Uᵀi•Ui• −

1

p
Id

)2

=
1

p

p∑
i=1

(
Uᵀi•Ui•U

ᵀ
i•Ui• −

2

p
Uᵀi•Ui• +

1

p2
Id

)

=
1

p

p∑
i=1

‖Ui•‖2
2 · U

ᵀ
i•Ui• −

1

p2
Id

�1

p
· Wd

p

p∑
i=1

Uᵀi•Ui• −
1

p2
Id �

Wd− 1

p2
Id
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For all 0 < α < 1, by Theorem 1 in Gross and Nesme (2010),

P

(
‖UΩ‖ ≤

√
αn

p

)
= P

(
UᵀΩUΩ �

αn

p
Id

)
= P

(
n∑
j=1

UᵀΩ(j)•UΩ(j)• �
αn

p
Id

)

= P

(
n∑
j=1

Xj � −
(1− α)n

p
Id

)
≤ P

(∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥ ≥ (1− α)n

p

)

≤ 2d exp

(
−min

(
((1− α)n/p)2

4n(Wd− 1)/p2
,
(1− α)n/p

2Wd/p

))

≤ 2d exp

(
−n(1− α)2

4Wd

)
≤ 2 exp(−c).

The last inequality is due to the assumption that

n ≥ 4Wd(log d+ c)

(1− α)2
.

�

Proof of Lemma A.3.6. By the assumption on n, we have n ≥ p or n ≥ Cd. When

n ≥ p, we know n = p and U[1:n,:] = U is an orthogonal matrix, which means (A.122)

is clearly true. Hence, we only need to prove the theorem under the assumption that

p ≥ n is true. In this case, we must have n ≥ Cd.

Since U has random orthonormal columns with Haar measure, for any fixed vector

v ∈ Rd, Uv is identitical distributed as

‖x‖−1
2 (x1, x2, · · · , xp) , where x1, · · · , xp

iid∼ N(0, 1)

Hence, U[1:n,:]v is identical distributed with ‖x‖−1
2 (x1, · · · , xn) and

‖U[1:n,:]v‖2 is identical distributed as

√√√√(
n∑
i=1

x2
i )(

p∑
i=1

x2
i )
−1, (A.129)
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which is the also the square root of Beta distribution. Denote

α′1 =
1 + α1

2
, α′2 =

1 + α2

2
. (A.130)

By Lemma 1 in Laurent and Massart (2000), when x1, · · · , xp are i.i.d. standard

normal, we have

1− 2
√
C ′ ≤

∑n
i=1 x

2
i

n
≤ 1 + 2

√
C ′ + 2C ′

1− 2

√
C ′n

p
≤
∑p

i=1 x
2
i

p
≤ 1 + 2

√
C ′n

p
+

2C ′n

p

both hold with probability at least 1 − 4 exp(−C ′n). Here we let C ′ > 0 be small

enough and only depending on α1, α2 such that

α′1 ≤
1− 2

√
C ′

1 + 2
√
C ′ + 2C ′

,
1 + 2

√
C ′ + 2C ′

1− 2
√
C ′

≤ α′2.

Combining the previous inequalities and (A.129), we have for any fixed unit vector

v ∈ Rd,

α′1n

p
≤ ‖U[1:n,:]v‖2

2 ≤
α′2n

p
(A.131)

with probability at least 1 − 4 exp(−C ′n), where C ′ only depends on α′1, α
′
2. Next,

based on Lemma 2.5 in Vershynin (2011), we can construct an ε-net on the unit

sphere of Rd as B, such that |B| ≤ (1 + 2/ε)d, where ε > 0 is to be determined later.

Under the event that {∀v ∈ B, (A.131) holds}, we suppose

κ1 = min
‖v‖2=1

‖U[1:n,:]v‖2
2, κ2 = max

‖v‖2=1
‖U[1:n,:]v‖2

2.

For any v in the unit sphere of Rd, there must exists v′ ∈ B such that ‖v − v′‖2 ≤ ε,

200



which yields,

‖U[1:n,:]v‖2 ≤ ‖U[1:n,:]v
′‖2 + ‖U[1:n,:](v − v′)‖2 ≤

√
α′2n/p+ κ2ε

‖U[1:n,:]v‖2 ≥ ‖U[1:n,:]v
′‖2 − ‖U[1:n,:](v − v′)‖2 ≥

√
α′1n/p− εκ2

These implies that κ2 ≤
√
α′2n/p/(1−ε), κ1 ≥

√
α′1n/p−εκ2 ≥

√
α′1n/p−

√
α′2n/p ·

ε/(1 − ε). Hence, we can take ε depending on α1, α2 such that κ2 ≤
√
α2n/p,

κ1 ≥
√
α1n/p, which implies (A.122).

Finally we estimate the probability that the event {∀v ∈ B, (A.131) holds} hap-

pens. We choose C ≥ 4d log(1 + 2/ε)/C ′ that only depends on α1 and α2. If n ≥ Cd,

C ′n/2 ≥ d log(1 + 2/ε) + log 4.

so

1− (1+2/ε)d ·4 exp(−C ′n) = 1−exp(d log(1+2/ε)+log 4−C ′n) ≥ 1−exp(−nC ′/2)

Finally, we finish the proof of the lemma by setting δ = C ′/2. �

A.3.3 Proofs of the Results in the Main Paper

We prove Proposition 3.2.1, Theorems 3.3.1 and 3.3.2, Lemma A.3.7, Lemma A.3.8,

Theorem 3.3.3, Corollary 3.3.1 and Corollary 3.3.2 in this section.

Proof of Proposition 3.2.1

Since A1• is of rank r, which is the same as A, all rows of A must be linear combina-

tions of the rows of A1•. This implies all rows of A•1 is a linear combination of A11.

Since rank(A•1)= r, we must have rank(A11) ≥ r. Besides, rank(A11) ≤ rank(A) = r
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since A11 is a submatrix of A. So rank(A11) = r. Simiarly, rows of A•1 is the linear

combination of A11, so we have

A21 = A21PA11 = A21A
ᵀ
11(A11A

ᵀ
11)†A11 = A21V ΣUᵀ(UΣ2Uᵀ)†A11 =

(
A21V Σ−1Uᵀ

)
A11,

namely rows of A21 is a linear combination of A11. By the argument before, we know

A22 can be represented as the same linear combination of A12 as A21 by A11, so we

have A22 = (A21V Σ−1Uᵀ)A12 = A21V Σ−1UᵀA12 = A21A
†
11A12, which concludes the

proof. �

Proof of Theorem 3.3.1

Suppose M ∈ Rm1×r, N ∈ Rm2×r are column orthonormalized matrices of U11 and

V11. M̂ ∈ Rm1×r and N̂ ∈ Rm2×r are the first r left singular vectors of A1• and A•1,

respectively. Also, recall that we use PU = U(UᵀU)†Uᵀ to represent the projection

onto the column space of U .

1. We first give the lower bound for σmin(M̂ᵀM), σmin(N̂ᵀN) by the unilateral

perturbation bound result in Cai and Zhang (2014a). Since,

PU11A1• = PU11U1•ΣV
ᵀ = [U11Σ1, PU11U12Σ2]V ᵀ,

PU⊥11
A1• = PU⊥11

U1•ΣV
ᵀ = [0, PU⊥11

U12Σ2]V ᵀ,

by V is an orthogonal matrix, we can see

σr(PU11A1•) = σr([U11Σ1 PU11U12Σ2]) ≥ σr(U11Σ1) ≥ σr(A)σmin(U11),

‖PU⊥11
A1•‖ = ‖PU⊥11

U12Σ2‖ ≤ ‖PU⊥11
U12‖‖Σ2‖ ≤ σr+1(A).
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So σr(PU11A1•) ≥ ‖PU⊥11
A1•‖. Besides, rank(PU11A1•) ≤ r. Apply the unilateral

perturbation bound result in Cai and Zhang (2014a) by setting X = PU11A1•,

Y = PU⊥11
A1•, we have

σ2
min(M̂ᵀM) ≤ 1−

(
‖Y · PXᵀ‖ · σr+1(A)

σ2
r(A)σ2

min(U11)− σ2
r+1(A)

)2

. (A.132)

Moreover, A1• = [U11 U12]diag(Σ1,Σ2)V ᵀ = [U11Σ1 U12Σ2]V ᵀ, and hence,

‖Y PXᵀ‖ =
∥∥∥PU⊥11

A1• · P(PU11
A1•)ᵀ

∥∥∥ =
∥∥∥[0 PU⊥11

U12Σ2]V ᵀ · PV ·[U11Σ1 PU11
U12Σ2]ᵀ

∥∥∥
=
∥∥∥[0 PU⊥11

U12Σ2] · P[U11Σ1 PU11
U12Σ2]ᵀ

∥∥∥
= sup

x∈Rp2 ,‖x‖2=1

[0 PU⊥11
U12Σ2] · P[U11Σ1 PU11

U12Σ2]ᵀx.

When ‖x‖2 = 1, let y denote the projection of x onto the column space

of [U11Σ1 PU11U12Σ2]ᵀ. Then ‖y‖2 ≤ 1 and y is in the column space of

[U11Σ1 PU11U12Σ2]ᵀ. Hence,

‖y[1:m1]‖2

‖y[(m1+1):p1]‖2

≥ σmin(U11Σ1)

‖PU11U12Σ2‖
≥ σmin(U11)σr(A)

σr+1(A)
,

and ‖y[(m1+1):p1]‖2
2 + ‖y[1:m1]‖2

2 ≤ 1,

which implies ‖y[(m1+1):p1]‖2
2 ≤ σ2

r+1(A)/σ2
min(U11)σ2

r(A) + σ2
r+1(A). Hence for

all x ∈ Rp2 such that ‖x‖2 = 1,

∥∥∥[0 PU⊥11
U12Σ2] · P[U11Σ1 PU11

U12Σ2]ᵀx
∥∥∥ ≤‖PU⊥11

U12Σ2‖ · ‖y[m1+1:p1]‖2

≤σr+1(A)
σr+1(A)√

σ2
r+1(A) + σ2

min(U11)σ2
r(A)

.
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This yields

‖Y PXᵀ‖ = ‖PU⊥11
A1• · P(PU11

A1•)‖ ≤ σ2
r+1(A)/

√
σ2
r+1(A) + σ2

min(U11)σ2
r(A).

Combining (A.132), we have

σ2
min(M̂ᵀM)

≥1−

(
σ3
r+1(A)√

σ2
r+1(A) + σ2

min(U11)σ2
r(A)

(
σ2
r(A)σ2

min(U11)− σ2
r+1(A)

))2

.
(A.133)

Since σmin(U11)σr(A) ≥ 2σr+1(A), we have

σ2
min(M̂ᵀM) ≥ 1−

(
1√
5 · 3

)2

≥ 44

45
.

Similarly, we also have σ2
min(N̂ᵀN) ≥ 44

45
.

2. Following by (3.8),

Â22 = U2•ΣV
ᵀ

1•N̂
(
M̂ᵀ(U1•ΣV

ᵀ
1•)N̂

)−1

M̂ᵀU1•ΣV
ᵀ

2•

=
(
U21Σ1V

ᵀ
11N̂ + U22Σ2V

ᵀ
12N̂

)(
M̂ᵀU11Σ1V

ᵀ
11N̂ + M̂ᵀU12Σ2V

ᵀ
12N̂

)−1

·
(
M̂ᵀU11Σ1V

ᵀ
21 + M̂ᵀU12Σ2V

ᵀ
22

)
.

Let “L”, “M”, “R” stand for “Left”, “Middle” and “Right”,

BL = U21Σ1V
ᵀ

11N̂ , EL = U22Σ2V
ᵀ

12N̂ ; (A.134)

BM = M̂ᵀU11Σ1V
ᵀ

11N̂ , EM = M̂ᵀU12Σ2V
ᵀ

12N̂ ; (A.135)

BR = M̂ᵀU11Σ1V
ᵀ

21, ER = M̂ᵀU12Σ2V
ᵀ

22. (A.136)

By Lemma A.3.2 in the Supplement, we can see the following properties of these
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matrices,

‖EL‖ ≤ σr+1(A), ‖EM‖ ≤ σr+1(A), ‖ER‖ ≤ σr+1(A), (A.137)

‖EL‖q ≤ ‖Σ2‖q, ‖EM‖q ≤ ‖Σ2‖q, ‖ER‖q ≤ ‖Σ2‖q, (A.138)

σmin(BM) = σmin

(
M̂ᵀ(PMU11)Σ1(V ᵀ11PN)N̂

)
=σmin

(
(M̂ᵀM)(MᵀU11)Σ1(V ᵀ11N)(NᵀN̂)

)
≥σmin(Σ1)σmin(U11)σmin(V11)σmin(M̂ᵀM)σmin(N̂ᵀN)

≥44

45
σr(A)σmin(U11)σmin(V11), (A.139)

‖B−1
M ‖ = σ−1

min(BM) ≤ 45

44σr(A)σmin(U11)σmin(V11)
, (A.140)

Â22 = (BL + EL)(BM + EM)−1(BR + ER), BLB
−1
M BR = U21Σ1V

ᵀ
21, (A.141)

‖BLB
−1
M ‖ =‖U21Σ1(V ᵀ11N̂)(V ᵀ11N̂)−1Σ−1(M̂ᵀU11)−1‖ = ‖U21(M̂ᵀU11)−1‖

≤‖(M̂ᵀMMᵀU11)−1‖ ≤ 1

σmin(MᵀU11)σmin(M̂ᵀM)
≤
√

45/44

σmin(U11)
,

(A.142)

‖B−1
M BR‖ = ‖(V11N̂)−1V ᵀ21‖ ≤

√
45/44

σmin(V11)
. (A.143)

By (A.137), (A.139) and the assumption (3.10), we can see σmin(BM) > ‖EM‖,

so

Â22
(A.141)

= (BL +EL)(B−1
M −B

−1
M EMB

−1
M +B−1

M EMB
−1
M EMB

−1
M −· · · )(BR +ER);
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‖Â22 −BLB
−1
M BR‖q

≤
∥∥BLB

−1
M EM

∞∑
i=0

(−B−1
M EM)iB−1

M BR

∥∥
q

+
∥∥EL ∞∑

i=0

(−B−1
M EM)iB−1

M BR

∥∥
q

+
∥∥BLB

−1
M

∞∑
i=0

(−EMB−1
M )iER

∥∥
q

+
∥∥ELB−1

M

∞∑
i=0

(−EMB−1
M )iER

∥∥
q

≤‖BLB
−1
M ‖‖EM‖q

∞∑
i=0

‖EM‖i‖B−1
M ‖

i‖B−1
M BR‖

+ ‖EL‖q
∞∑
i=0

‖B−1
M ‖

i‖EM‖i‖B−1
M BR‖

+ ‖BLB
−1
M ‖

∞∑
i=0

‖EM‖i‖B−1
M ‖

i‖ER‖q

+ ‖EL‖
∞∑
i=0

‖B−1
M ‖

i+1‖EM‖i‖ER‖q

(A.137)(A.138)

≤ ‖BLB
−1
M ‖‖B

−1
M BR‖+ ‖B−1

M BR‖+ ‖BLB
−1
M ‖+ ‖B−1

M ‖σr+1(A)

1− σr+1(A)‖B−1
M ‖

‖Σ2‖q

(A.142)(A.143)

≤ 1

1− σr+1(A)‖B−1
M ‖

·

(
45/44

σmin(U11)σmin(V11)
+

√
45/44

σmin(U11)
+

√
45/44

σmin(V11)
+

45

88

)
‖Σ2‖q

≤
‖A−max(r)‖q

1− 45σr+1(A)
44σr(A)σmin(U11)σmin(V11)

·

(
45/44

σmin(U11)σmin(V11)
+

√
45/44

σmin(U11)
+

√
45/44

σmin(V11)
+

45

88

)

≤88

43
‖A−max(r)‖q

(
45/44

σmin(U11)σmin(V11)
+

√
45/44

σmin(U11)
+

√
45/44

σmin(V11)
+

45

88

)
.
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Finally, since A22 = U21Σ1V
ᵀ

21 +U22Σ2V
ᵀ

22

(A.141)
= BLB

−1
M BR +U22Σ2V

ᵀ
22, we have

‖Â22 − A22‖q ≤‖Â22 −BLB
−1
M BR‖q + ‖U22Σ2V

ᵀ
22‖q

≤3‖A−max(r)‖q
(

1 +
1

σmin(U11)

)(
1 +

1

σmin(V11)

)
. �

Proof of Theorem 3.3.2

We only present proof for row thresholding as the column thresholding is essentially

the same by working with AT . Suppose M,N are orthonormal basis of column vectors

of U11, V11. We denote U
(1)
[:,1:r] = M̂ , V

(2)
[:,1:r] = N̂ , which are exactly the same as the

M̂ and N̂ in Algorithm 1. Similarly to the proof of Theorem 3.3.1, we have (A.133).

Due to the assumption that σr(A)σmin(U11)σmin(V11) ≥ 4σr+1(A), (A.133) yields

σ2
min(M̂ᵀM) ≥ 3824/3825, σ2

min(N̂ᵀN) ≥ 3824/3825. (A.144)

As shown in the Supplementary material, we have

Lemma A.3.7. Under the assumption of Theorem 3.3.2, we have r̂ ≥ r.

We next show (3.13) with the condition that r̂ ≥ r in steps.

1. Note that A11 = U11Σ1V
ᵀ

11 +U12Σ2V
ᵀ

12, we consider the decompositions of Z and

let

Z11 = U (2)ᵀU11Σ1V
ᵀ

11V
(1) + U (2)ᵀU12Σ2V

ᵀ
12V

(1),

Z11,[1:r̂,1:r̂] = U
(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
11V

(1)
[:,1:r̂] + U

(2)ᵀ
[:,1:r̂]U12Σ2V

ᵀ
12V

(1)
[:,1:r̂] , BM,r̂ + EM,r̂,

(A.145)

Z21,[:,1:r̂] = U21Σ1V
ᵀ

11V
(1)

[:,1:r̂] + U22Σ2V
ᵀ

12V
(1)

[:,1:r̂] , BL,r̂ + EL,r̂, (A.146)

Z12,[1:r̂,:] = U
(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
21 + U

(2)ᵀ
[:,1:r̂]U12Σ2V

ᵀ
22 , BR,r̂ + ER,r̂. (A.147)
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Note that the square matrix U
(2)ᵀ
[:,1:r]M ∈ Rr×r is a submatrix of U

(2)ᵀ
[:,1:r̂]M ∈ Rr̂×r,

we know

σmin(U
(2)ᵀ
[:,1:r̂]M) ≥ σmin(U

(2)ᵀ
[:,1:r]M) = σmin(M̂M)

(A.144)

≥
√

3824

3825
. (A.148)

Similarly, σmin(V
(1)ᵀ

[:,1:r̂]N) ≥
√

3824
3825

. By M,N are the orthonormal basis of column

vectors of U11, V11, we have PM = MMᵀ, PN = NNᵀ, and

σmin(U
(2)ᵀ
[:,1:r̂]U11) ≥σmin(U

(2)ᵀ
[:,1:r̂]M)σmin(MᵀU11) ≥

√
3824

3825
σmin(U11); (A.149)

similarly, we also have

σmin(V
(1)ᵀ

[:,1:r̂]V11) ≥
√

3824

3825
σmin(V11). (A.150)

(A.149) and (A.150) immediately yield

σr(BM,r̂) ≥
3824

3825
σmin(U11)σmin(Σ1)σmin(V11) =

3824

3825
σr(A)σmin(U11)σmin(V11).

(A.151)

Besides, we also have

‖EM,r̂‖
(A.145)

≤ ‖Σ2‖ = σr+1(A) (A.152)

2. Next, we consider the SVD of Z11,[1:r̂,1:r̂]

Z11,[1:r̂,1:r̂] = JΛKᵀ, J,Λ, K ∈ Rr̂×r̂. (A.153)
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For convenience, we denote Λ1 = Λ[1:r,1:r],Λ2 = Λ[(r+1):r̂,(r+1):r̂],

J1 = J[:,1:r], J2 = J[:,(r+1):r̂], K1 = K[:,1:r], K2 = K[:,(r+1):r̂], (A.154)

Suppose MZ ∈ Rr̂×r is an orthonormal basis of the column space of BM,r̂;

NZ ∈ Rr̂×r is an orthonormal basis of the column space of BᵀM,r̂. Denote span(·)

as the linear span of the column space of the matrix. We want to show span(MZ)

is close to span(J1); while span(NZ) is close to span(K1). So in the rest of this

step, we try to establish bounds for σmin(Jᵀ1MZ) and σmin(Kᵀ1NZ). Actually,

Z11,[1:r̂,1:r̂] = BM,r̂ + EM,r̂ = (BM,r̂ + PMZ
EM,r̂) + PM⊥ZEM,r̂.

Now we set X = (BM,r̂ + PMZ
EM,r̂), Y = PM⊥ZEM,r̂, then we have

σr(X) ≥σr(BM,r̂)− ‖PMZ
EM,r̂‖

(A.151)

≥ 3824

3825
σr(A)σmin(U11)σmin(V11)− σr+1(A),

(3.12)

≥ σr+1(A)
(A.152)

≥ ‖EM,r̂‖ ≥ ‖Y ‖.

Besides, by the definition of BM,r̂ and MZ we know rank(X) ≤ r. Also based

on the definition of Y , we know PXY = 0. Now the unilateral perturbation

bound in Cai and Zhang (2014a) yields

σ2
min(Mᵀ

ZJ1) ≥ 1−
(

σr(X) · ‖Y ‖
σ2
r(X)− ‖Y ‖2

)2

. (A.155)

The right hand side of the inequality above is an increasing function of σr(X).

Since σr(X) ≥ 3824
3825

σr(A)σmin(U11)σmin(V11) − σr+1(A) ≥ (3 − 4
3825

)σr+1(A) ≥

(3− 4
3825

)‖Y ‖,

σ2
min(Jᵀ1MZ) ≥ 1−

(
3− 4/3825

(3− 4/3825)2 − 1

)2

≥ 0.859. (A.156)
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Similarly, we also have

σ2
min(Kᵀ1NZ) ≥ 0.859. (A.157)

3. We next derive useful expressions of A22 and Â22. First we introduce the fol-

lowing quantities,

Jᵀ1Z11,[1:r̂,1:r̂]K1
(A.145)

= Jᵀ1BM,r̂K1 + Jᵀ1EM,r̂K1 , BM1 + EM1, (A.158)

Jᵀ2Z11,[1:r̂,1:r̂]K2
(A.145)

= Jᵀ2BM,r̂K2 + Jᵀ2EM,r̂K2 , BM2 + EM2, (A.159)

Z21,[:,1:r̂]K1
(A.146)

= BL,r̂K1 + EL,r̂K1 , BL1 + EL1, (A.160)

Z21,[:,1:r̂]K2
(A.146)

= BL,r̂K2 + EL,r̂K2 , BL2 + EL2, (A.161)

Jᵀ1Z12,[1:r̂,:]
(A.147)

= Jᵀ1BR,r̂ + Jᵀ1ER,r̂ , BR1 + ER1, (A.162)

Jᵀ2Z11,[1:r̂,:]
(A.147)

= Jᵀ2BR,r̂ + Jᵀ2ER,r̂ , BR2 + ER2. (A.163)

Since

BL1B
−1
M1BR1 = BL,r̂K1 (Jᵀ1BM,r̂K1)−1 Jᵀ1BR,r̂

=U21Σ1V
ᵀ

11V
(1)

[:,1:r̂]K1

(
Jᵀ1U

(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
11V

(1)
[:,1:r̂]K1

)−1

Jᵀ1U
(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
21

=U21Σ1V
ᵀ

21,

(A.164)

we can characterize A22, Â22 by these new notations as

A22 = U21Σ1V
ᵀ

21 + U22Σ2V
ᵀ

22

(A.164)
= BL1B

−1
M1BR1 + U22Σ2V

ᵀ
22, (A.165)
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Â22 =Z21,[:,1:r̂]Z
−1
11,[1:r̂,1:r̂]Z12,[1:r̂,:] (A.166)

(A.153)
= Z21,[:,1:r̂]K

(
JᵀZ11,[1:r̂,1:r̂]K

)−1
JᵀZ12,[1:r̂,:]

=
(
Z21,[1:r̂]K1 + Z21,[1:r̂]K2

) (
Jᵀ1Z11,[1:r̂,1:r̂]K1 + Jᵀ2Z11,[1:r̂,1:r̂]K2

)−1

(A.167)

·
(
Jᵀ1Z12,[1:r̂] + Jᵀ2Z12,[1:r̂]

)
(A.158)−(A.163)

=
2∑

k=1

(BLk + ELk)(BMk + EMk)
−1(BRk + ERk) (A.168)

4. We now establish a number of bounds for the terms on the right hand side of

(A.158)-(A.163).

Lemma A.3.8. Based on the assumptions above, we have

σmin(BM1) ≥ 3.43σr+1(A); (A.169)

‖BL1B
−1
M1‖ ≤

√
3825/3824√

0.859σmin(U11)
, ‖B−1

M1BR1‖ ≤
√

3825/3824√
0.859σmin(V11)

, (A.170)

‖EMt‖q ≤ ‖A−max(r)‖q, ‖ELt‖q ≤ ‖A−max(r)‖q, ‖ERt‖q ≤ ‖A−max(r)‖q, t = 1, 2,

(A.171)

‖(BL2 +EL2)(BM2 +EM2)−1‖ ≤ TR +
1

1− 1/3.43

( √
3825/3824√

0.859σmin(U11)
+

1

3.43

)
,

(A.172)

‖BR2‖q ≤
2
√

3825/3824√
0.859σmin(V11)

‖A−max(r)‖q. (A.173)

The proof of Lemma A.3.8 is given in the Supplement.

5. We finally give the upper bound of ‖Â22 − A22‖q. By (A.165) and (A.168), we
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can split the loss as,

Â22 − A22 =
(
(BL1 + EL1) (BM1 + EM1)−1 (BR1 + ER1)−BL1B

−1
M1BR1

)
+ (BL2 + EL2) (BM2 + EM2)−1 (BR2 + ER2)− U22Σ2V

ᵀ
22.

(A.174)

We will analyze them separately. First, ‖U22Σ2V
ᵀ

22‖q ≤ ‖A−max(r)‖q; second,

‖(BL2 + EL2)(BM2 + EM2)−1(BR2 + EM2)‖q

≤‖(BL2 + EL2)(BM2 + EM2)−1‖ · (‖BR2‖q + ‖EM2‖q)

(A.172)(A.173)

≤

(
TR +

3.43

2.43

( √
3825/3824√

0.859σmin(U11)
+

1

3.43

))

·

(
2
√

3825/3824√
0.859σmin(V11)

+ 1

)
‖A−max(r)‖q

≤
(
TR +

1.524

σmin(U11)
+ 0.412

)(
2.16

σmin(V11)
+ 1

)
‖A−max(r)‖q. (A.175)

The analysis of
(
(BL1 + EL1) (BM1 + EM1)−1 (BR1 + ER1)−BL1B

−1
M1BR1

)
is sim-
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ilar to the proof of Theorem 3.3.1. We have

∥∥(BL1 + EL1)(BM1 + EM1)−1(BR1 + ER1)−BL1B
−1
M1BR1

∥∥
q

≤

∥∥∥∥∥BL1(B−1
M1EM1

∞∑
i=0

(−B−1
M1EM1)iB−1

M1)BR1

∥∥∥∥∥
q

+

∥∥∥∥∥EL1

(
∞∑
i=0

(−B−1
M1EM1)iB−1

M1

)
BR1

∥∥∥∥∥
q

+

∥∥∥∥∥BL1

(
B−1
M1

∞∑
i=0

(−EM1B
−1
M1)i

)
ER1

∥∥∥∥∥
q

+

∥∥∥∥∥EL1

(
B−1
M1

∞∑
i=0

(−EM1B
−1
M1)i

)
ER1

∥∥∥∥∥
q

≤‖BL1B
−1
M1‖‖EM1‖q

∞∑
i=0

‖EM1‖i‖B−1
M1‖

i‖B−1
M1BR1‖

+ ‖EL1‖q
∞∑
i=0

‖B−1
M1‖

i‖EM1‖i‖B−1
M1BR1‖

+ ‖BL1B
−1
M1‖

∞∑
i=0

‖EM1‖i‖B−1
M1‖

i‖ER1‖q

+ ‖EL1‖
∞∑
i=0

‖B−1
M1‖

i+1‖EM1‖i‖ER1‖q

(A.171)

≤ ‖Σ2‖q
1− σr+1(A)‖B−1

M1‖(
‖BL1B

−1
M1‖‖B

−1
M1BR1‖+ ‖B−1

M1BR1‖+ ‖BL1B
−1
M1‖+ ‖B−1

M1‖σr+1(A)
)

(A.170)(A.169)

≤
(

1.65

σmin(U11)σmin(V11)
+

1.53

σmin(V11)
+

1.53

σmin(V11)
+ 0.42

)
‖A−max(r)‖q.

(A.176)

From (A.175), (A.176), (A.174), and the fact that σmin(U11) ≤ 1 and TR ≥
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1.36
σmin(U11)

+ 0.35,

‖Â22 − A22‖q

≤
(

2.16TR +

(
4.95

σmin(U11)
+ 2.42

))(
1

σmin(V11)
+ 1

)
‖A−max(r)‖q

≤
(

2.16TR + 4.31

(
1.36

σmin(U11)
+ 0.35

))(
1

σmin(V11)
+ 1

)
‖A−max(r)‖q

≤6.5TR

(
1

σmin(V11)
+ 1

)
‖A−max(r)‖q.

(A.177)

This concludes the proof. �

Proof of Lemma A.3.7.

In order to prove this lemma, we just need to prove that the for-loop in Algorithm 2

will break for some s ≥ r. This can be shown by proving the break condition

‖DR,s‖ = ‖Z21,[1:s]Z
−1
11,[1:s,1:s]‖ ≤ TR, (A.178)

hold for s = r.

We adopt the definitions in (A.134), (A.135), (A.136), then we have

Z11,[1:r,1:r] = U
(2)ᵀ
[:,1:r]A11V

(1)
[:,1:r] = M̂ᵀA11N̂

= M̂ᵀU11Σ1V
ᵀ

11N̂ + M̂ᵀU12Σ2V
ᵀ

12N̂

= BM + EM ,

Z21,[:,1:r] = A21V
(1)

[:,1:r] = (U21Σ1V
ᵀ

11 + U22Σ2V
ᵀ

12) N̂ = BL + EL.
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Hence,

∥∥∥Z21,[:,1:r]Z
−1
11,[1:r,1:r]

∥∥∥ =‖(BL + EL)(BM + EM)−1‖

≤

∥∥∥∥∥BLB
−1
M

∞∑
i=0

(−EMB−1
M )i

∥∥∥∥∥+

∥∥∥∥∥ELB−1
M

∞∑
i=0

(−EMB−1
M )i

∥∥∥∥∥
≤
(
‖BLB

−1
M ‖+ ‖EL‖‖B−1

M ‖
) 1

1− ‖EMB−1
M ‖

(A.139),(A.170)

≤

( √
45/44

σmin(U11)
+

45σr+1(A)

44σr(A)σmin(U11)σmin(V11)

)

· 1

1− 45σr+1(A)
44σr(A)σmin(U11)σmin(V11)

≤ 1.36

σmin(U11)
+ 0.35 ≤ TR,

which finished the proof of the lemma. �

Proof of Lemma A.3.8.

First, since MZ ∈ Rr̂×r and NZ ∈ Rr̂×r are an orthonormal basis of BM,r̂ and BᵀM,r̂,

we have PMZ
= MZM

ᵀ
Z and PNZ = NZN

ᵀ
Z and

σmin(BM1) =σmin(Jᵀ1BM,r̂K1) = σmin(Jᵀ1MZM
ᵀ
ZBM,r̂NZN

ᵀ
ZK1)

≥σmin(Jᵀ1MZ)σmin(Mᵀ
ZBM,r̂NZ)σmin(NᵀZK1)

(A.156)(A.157)

≥ 0.859σr(BM,r̂)
(A.151)

≥ 0.859 · 3824

3825
σr(A)σmin(U11)σmin(V11)

(3.12)

≥ 3.43σr+1(A).

(A.179)
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which gives (A.169).

‖BL1B
−1
M1‖ =

∥∥∥BL,r̂K1 (Jᵀ1BM,r̂K1)−1
∥∥∥

=

∥∥∥∥U21Σ1V
ᵀ

11V
(1)

[:,1:r̂]K1

(
Jᵀ1U

(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
11V

(1)
[:,1:r̂]K1

)−1
∥∥∥∥ =

∥∥∥∥U21

(
Jᵀ1U

(2)ᵀ
[:,1:r̂]U11

)−1
∥∥∥∥

≤ 1

σmin(Jᵀ1U
(2)ᵀ
[:,1:r̂]U11)

=
1

σmin(Jᵀ1PMZ
(U

(2)ᵀ
[:,1:r̂]U11))

=
1

σmin((Jᵀ1MZ)(Mᵀ
ZU

(2)ᵀ
[:,1:r̂]U11))

≤ 1

σmin(Jᵀ1MZ)
· 1

σmin(U
(2)ᵀ
[:,1:r̂]U11)

(A.149)(A.156)

≤
√

3825/3824√
0.859σmin(U11)

,

(A.180)

which gives the first part of (A.170). Here we used the fact that Σ1V
ᵀ

11V
(1)

[:,1:r̂]K1 is

a square matrix; MZ is the orthonormal basis of the column space of Z11,[1:r̂,1:r̂] =

U
(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
11V

(1)
[:,1:r̂]. Similarly we have the later part of (A.170),

‖B−1
M1BR1‖ ≤

√
3825/3824√

0.859σmin(V11)
. (A.181)

Based on the definitions, we have the bound for all “ E” terms in (A.158)-(A.163),

i.e. (A.171). Now we move on to (A.172). By the SVD of Z11,[1:r̂,1:r̂] (A.153) and the

partition (A.154), we know

(
[J1 J2]ᵀZ11,[1:r̂,1:r̂][K1 K2]

)−1
=

Λ1 0

0 Λ2


−1

=

(Jᵀ1Z11,[1:r̂,1:r̂]K1

)−1
0

0
(
Jᵀ2Z11,[1:r̂,1:r̂]K2

)−1

 .
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Hence, we have

∥∥(BL2 + EL2)(BM2 + EM2)−1
∥∥ =

∥∥∥Z21,[:,1:r̂]K2

(
Jᵀ2Z11,[1:r̂,1:r̂]K2

)−1
∥∥∥

=
∥∥∥Z21,[:,1:r̂][K1 K2]

(
[J1 J2]ᵀZ11,[1:r̂,1:r̂][K1 K2]

)−1

− Z21,[1:r̂]K1

(
Jᵀ1Z11,[1:r̂,1:r̂]K1

)−1
∥∥∥

≤
∥∥∥Z21,[:,1:r̂]

(
Z11,[1:r̂,1:r̂]

)−1
∥∥∥+

∥∥(BL1 + EL1)(BM1 + EM1)−1
∥∥

≤TR +

∥∥∥∥∥BL1 ·B−1
M1

∞∑
i=0

(−EM1B
−1
M1)i

∥∥∥∥∥+

∥∥∥∥∥EL1 ·B−1
M1

∞∑
i=0

(−EM1B
−1
M1)i

∥∥∥∥∥
≤TR +

(
‖BL1B

−1
M1‖+ ‖EL1‖‖B−1

M1‖
) 1

1− ‖EM1‖‖B−1
M1‖

(A.169)(A.170)(A.171)

≤ TR +

( √
3825/3824√

0.859σmin(U11)
+

1

3.43

)
· 1

1− 1/3.43
,

(A.182)

which proves (A.172). Since Z11,[1:r̂,1:r̂] = BM,r̂+EM,r̂ and by definition, rank(BM,r̂) ≤

r, by Lemma A.3.1, we know

σr+i(Z11,[1:r̂,1:r̂]) ≤ σi(EM,r̂), ∀i ≥ 1. (A.183)

Then

‖BM2‖q ≤‖BM2 + EM2‖q + ‖EM2‖q ≤ ‖Jᵀ2Z11,[1:r̂,1:r̂]K2‖q + ‖EM2‖q

= q

√√√√ r̂∑
i=r+1

σqi (Z11,[1:r̂,1:r̂]) + ‖EM2‖q ≤ q

√√√√ r̂−r∑
i=1

σqi (EM,r̂) + ‖EM2‖q

≤‖EM,r̂‖q + ‖EM2‖q
(A.171)

≤ 2‖A−max(r)‖q.

(A.184)

Same to the process of (A.180), we know

1

σmin(V ᵀ11V
(1)

[:,1:r̂]K1)
≤

√
3825/3824√

0.859σmin(V11)
. (A.185)
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Also, ‖V ᵀ21‖ ≤ 1. Hence,

‖BR2‖q
(A.163)

= ‖Jᵀ2BR,r̂‖q = ‖Jᵀ2U
(2)ᵀ
[:,1:r̂]U11Σ1V

ᵀ
21‖q

=‖Jᵀ2U
(2)ᵀ
[:,1:r̂]U11Σ1(V ᵀ11V

(1)
[:,1:r̂]K1)(V ᵀ11V

(1)
[:,1:r̂]K1)−1V ᵀ21‖q

≤‖BM2‖q · ‖(V ᵀ11V
(1)

[:,1:r̂]K1)−1‖ · ‖V ᵀ21‖
(A.184)(A.185)

≤
2
√

3825/3824√
0.859σmin(V11)

‖A−max(r)‖q.

(A.186)

which proves (A.173). �

Proof of Theorem 3.3.3.

The idea of proof is to construct two matrices A(1), A(2) both in Fc(M1,M2) such

that they have the identical first m1 rows and m2 columns, but differ much in the

remaining block. Suppose a, b, c > 0 are fixed numbers, ε is a small real number. We

first consider the following 2-by-2 matrix

B(ε) =

a c

b bc
a

+ ε

 . (A.187)

Suppose the larger and smaller singular value of B(ε) are λmax(ε) and λmin(ε), then

we have

λmax(ε)→ ‖B(0)‖ =

√
(a2 + b2)(a2 + c2)

a
(A.188)

as ε→ 0; since λmax(ε) · λmin(ε) = |det(B)| = a|ε|, we also have

λmin(ε)/|ε| → a2√
(a2 + b2)(a2 + c2)

(A.189)
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as ε→ 0. If B(ε) defined in (A.187) has SVD

B(ε) =

u11 u12

u21 u21

 ·
λmax(ε) 0

0 λmin(ε)

 ·
v11 v12

v21 v21


ᵀ

(A.190)

then we also have

u11 →
a√

a2 + b2
, u21 →

b√
a2 + b2

, v11 →
a√

a2 + c2
, v21 →

c√
a2 + c2

. (A.191)

as ε→ 0.

Now we set a = 1, b =
√

1−M2
1/M1− η, c =

√
1−M2

2/M2− η, d = bc/a, where

η is some small positive number to be specify later. We construct A11, A12, A21, A
(1)
22

and A
(2)
22 such that,

A11 =

aIr 0

0 0


m1×m2

, A12 =

cIr 0

0 0


m1×(p2−m2)

, A21 =

bIr 0

0 0


(p1−m1)×m2

;

(A.192)

A
(1)
22 =

(d+ ε)Ir 0

0 0


(p1−m1)×(p2−m2)

, A
(2)
22 =

(d− ε)Ir 0

0 0


(p1−m1)×(p2−m2)

.

(A.193)

Here we use Ir to note the identity matrix of dimension r. Then we construct A(1)

and A(2) as

A(1) =

A11 A12

A21 A
(1)
22

 , A(2) =

A11 A12

A21 A
(2)
22

 , (A.194)

where A(1) and A(2) are with identical first m1 rows and m2 columns. Since the SVD
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of B(ε) is given as (A.190), the SVD of A(1) can be written as

A(1) =

U (1)
11 U

(1)
12

U
(1)
21 U

(1)
22

 ·
Σ

(1)
1 0

0 Σ
(1)
2

 ·
V (1)

11 V
(1)

12

V
(1)

21 V
(1)

22


ᵀ

,

where

U11 =

u11Ir

0


m1×r

, U12 =

u12Ir

0


m1×r

,

U21 =

u21Ir

0


(p1−m1)×r

, U22 =

u22Ir

0


(p1−m1)×r

;

V11 =

v11Ir

0


m2×r

, V12 =

v12Ir

0


m2×r

,

V21 =

v21Ir

0


(p2−m2)×r

, V22 =

v22Ir

0


(p2−m2)×r

;

Σ1 = λmax(ε)Ir, Σ2 = λmin(ε)Ir.

Hence,

σmin(U11) = u11 =
a√

a2 + b2
→ 1

1 +

(√
1−M2

1

M1
− η
)2 > M1, as ε→ 0

σmin(V11) = v11 =
a√

a2 + c2
→ 1

1 +

(√
1−M2

2

M2
− η
)2 > M2, as ε→ 0.

Also, ‖Σ(1)
2 ‖ → 0 as ε → 0. So we have A(1) ∈ Fr(M1,M2) when ε is small enough.

Similarly A(2) ∈ Fr(M1,M2) when ε is small enough. Now we also have ‖A(1)
−max(r)‖q =

(qλmin(ε)q)1/q = q1/qλmin(ε), ‖A(2)
−max(r)‖q = (qλmin(−ε)q)1/q = q1/qλmin(−ε). ‖A(1)

22 −
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A
(2)
22 ‖q = (q(2|ε|)q)1/q = 2|ε|q1/q.

Finally for any estimate Â22, we must have

max

{
‖Â22 − A(1)

22 ‖q
‖A(1)
−max(r)‖q

,
‖Â22 − A(2)

22 ‖q
‖A(2)
−max(r)‖q

}
≥

1
2

∥∥∥(Â22 − A(1)
22

)
−
(
Â22 − A(2)

22

)∥∥∥
q

min
{
‖A(1)
−max(r)‖q, ‖A

(2)
−max(r)‖q

}
≥ 2|ε|

2 min {λmin(ε), λmin(−ε)}
(A.189)→

√
(a2 + b2)(a2 + c2)

a2

=

√√√√(1 + (

√
1−M2

1

M1

− η)2

)(
1 + (

√
1−M2

2

M2

− η)2

)
(A.195)

as ε→ 0. Since A(1), A(2) ∈ Fr(M1,M2) and are with identical first m1 rows and m2

columns, we must have

inf
Â22

sup
A∈Fr(M1,M2)

‖Â22 − A22‖q
‖A−max(r)‖q

≥

√√√√(1 + (

√
1−M2

1

M1

− η)2

)(
1 + (

√
1−M2

2

M2

− η)2

)
.

Let η → 0, since M1,M2 < 1, we have

inf
Â22

sup
A∈Fr(M1,M2)

‖Â22 − A22‖q
‖A−max(r)‖q

≥ 1

M1M2

≥ 1

4

(
1

M1

+ 1

)(
1

M2

+ 1

)
, (A.196)

which finished the proof of theorem. �

Proof of Corollary 3.3.1.

We first prove the second part of the corollary. We set α = (136/165)2. Since

U[:,1:r] ∈ Rp1×r is with orthonormal columns, by Lemma A.3.5 and

m1 ≥ 12.5W (1)
r r(log r + c) ≥ 4

(1− α)2
·W (1)

r r(log r + c),
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we have

σmin(U11) = σmin(U[Ω1,1:r]) ≥
√
αm1

p1

(A.197)

with probability at least 1 − 2 exp(−c). When (A.197) holds, by the condition, we

know

σr+1(A) ≤σr(A)σmin(V11)
1

5

√
m1

p1

≤ σr(A)σmin(V11)
1

5
√
α
· σmin(U11)

≤1

4
σr(A)σmin(V11)σmin(U11).

When TR ≥ 2
√
p1/m1, we have

1.36

σmin(U11)
+ 0.35 ≤ 1.36

√
p1

αm1

+ 0.35 ≤ 2

√
p1

m1

≤ TR

Hence we can apply Theorem 3.3.2, for 1 ≤ q ≤ ∞ we must have

∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5TR

∥∥A−max(r)

∥∥
q

(
1

σmin(V11)
+ 1

)
, (A.198)

which finishes the proof of the second part of Corollary 3.3.1. Besides, the proof for

the third part is the same as the second part after we take the transpose of the matrix.

For the first part, the proof is also similar. Again we set α = (136/165)2. Then

we have

m1 ≥
4

(1− α)2
W (1)
r r(log r + c), m2 ≥

4

(1− α)2
W (2)
r r(log r + c),

so

σmin(U11) = σmin(U[Ω1,1:r]) ≥
√
αm1

p1

, σmin(V11) = σmin(V[Ω2,1:r]) ≥
√
αm2

p2

(A.199)
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with probability at least 1− 4 exp(−c). When (A.199) holds, we have

σr+1(A) ≤ σr(A)
1

6

√
m1m2

p1p2

≤ σr(A)
1

6α
σmin(U11)σmin(V11) ≤ 1

4
σr(A)σmin(V11)σmin(U11).

When TR = 2
√
p1/m1 or TC = 2

√
p2/m2, similarly to the first part we have

1.36

σmin(U11)
+ 0.35 ≤ TR, or

1.36

σmin(V11)
+ 0.35 ≤ TC .

Hence we can apply Theorem 3.3.2 and get

∥∥∥Â22 − A22

∥∥∥
q
≤6.5TR‖A−max(r)‖q

(
1

σmin(V11)
+ 1

)
≤6.5 · 2

√
p1

m1

·
(√

p2

αm2

+ 1

)
‖A−max(r)‖q

≤29‖A−max(r)‖q
√

p1p2

m1m2

.

�

Proof of Corollary 3.3.2.

Suppose 0 < α1 < 1, since U[:,1:r] ∈ R is with random orthonormal columns of Haar

measure, we can apply Lemma A.3.6 and find some c > 0 and δ > 0 such that when

p1 ≥ m1 ≥ cr,

σmin(U11) = σmin(U[1:m1,1:r]) ≥
136

165

√
m1

p1

(A.200)

with probability at least 1− exp(−δm1). When (A.200) happen, we have

σr+1(A) ≤ σr(A)σmin(V11)
1

5

√
m1

p1

≤ σr(A)σmin(V11)σmin(U11),

1.36

σmin(U11)
+ 0.35 ≤ 1.36 · 165

136

√
p1

m1

+ 0.35 ≤ 2

√
p1

m1

.
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Hence we can apply Theorem 3.3.2, for 1 ≤ q ≤ ∞, we have

∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5TR

∥∥A−max(r)

∥∥
q

(
1

σmin(V11)
+ 1

)
, (A.201)

which finishes the proof of the corollary. �

Description of Cross-Validation

In this section, we describe the cross-validation used in penalized nuclear norm min-

imization (3.4) in the numerical comparison in Sections 3.4 and 3.5.

First, we construct a grid T of non-negative numbers based on a pre-selected

positive integer N . Denote

tPNmax =

∥∥∥∥∥∥∥
A11 A12

A21 0


∥∥∥∥∥∥∥ ,

i.e. the largest singular value of the observed blocks. For penalized nuclear norm

minimization, we let T =
{
tPNmax, t

PN
max · 10−3(1/N), · · · , tPNmax · 10−3(N/N)

}
.

Next, for a given positive integerK, we randomly divide the integer set {1, · · · ,m1}

into two groups of size m(1) ≈ (K−1)n
K

, m(2) ≈ n
K

for H times. For h = 1, · · · , H, we

denote by Jh1 and Jh2 ⊆ {1, 2, · · · ,m1} the index sets of the two groups for the h-

th split. Then the penalized nuclear norm minimization estimator (3.4) is applied

to the first group of data: A11, A21, (A12)[Jh1 ,:]
, i.e. the data of the observation set

Ω = {(i, j) : 1 ≤ j ≤ m2, or i ∈ Jh1 ,m2 + 1 ≤ j ≤ p2}, with each value of the tuning

parameter t ∈ T and denote the result by ÂPNh (t). Note that we did not use the

observed block A[Jh2 ,(m2+1):p2] in calculating ÂPNh (t). Instead, A[Jh2 ,(m2+1):p2] is used to

224



evaluate the performance of the tunning parameter t ∈ T . Set

R̂(t) =
1

H

H∑
h=1

∥∥∥∥[ÂPNh (t)
]

[Jh2 ,(m2+1):p2]
− A[Jh2 ,(m2+1):p2]

∥∥∥∥2

F

. (A.202)

Finally, the tuning parameter is chosen as

t∗ = arg min
t∈T

R̂(t)

and the final estimator ÂPN is calculated using this choice of the tuning parameter

t∗.

In all the numerical studies with penalized nuclear norm minimization in Sections

3.4 and 3.5, we use 5-cross-validation (i.e., K = 5), N = 10 to select the tuning

parameter.
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