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Instrumental Variables and Mendelian Randomization With Invalid
Instruments

Abstract
Instrumental variables (IV) methods have been widely used to determine the causal effect of a treatment,
exposure, policy, or an intervention on an outcome of interest. The IV method relies on having a valid
instrument, a variable that is (A1) associated with the exposure, (A2) has no direct effect on the outcome, and
(A3) is unrelated to the unmeasured confounders associated with the exposure and the outcome. However, in
practice, finding a valid instrument, especially those that satisfy (A2) and (A3), can be challenging. For
example, in Mendelian randomization studies where genetic markers are used as instruments, complete
knowledge about instruments' validity is equivalent to complete knowledge about the involved genes'
functions.

The dissertation explores the theory, methods, and application of IV methods when invalid instruments are
present. First, when we have multiple candidate instruments, we establish a theoretical bound whereby causal
effects are only identified as long as less than 50% of instruments are invalid, without knowing which of the
instruments are invalid. We also propose a fast penalized method, called sisVIVE, to estimate the causal effect.
We find that sisVIVE outperforms traditional IV methods when invalid instruments are present both in
simulation studies as well as in real data analysis.

Second, we propose a robust confidence interval under the multiple invalid IV setting. This work is an
extension of our work on sisVIVE. However, unlike sisVIVE which is robust to violations of (A2) and (A3),
our confidence interval procedure provides honest coverage even if all three assumptions, (A1)-(A3), are
violated.

Third, we study the single IV setting where the one IV we have may actually be invalid. We propose a
nonparametric IV estimation method based on full matching, a technique popular in causal inference for
observational data, that leverages observed covariates to make the instrument more valid. We propose an
estimator along with inferential results that are robust to mis-specifications of the covariate-outcome model.
We also provide a sensitivity analysis should the instrument turn out to be invalid, specifically violate (A3).

Fourth, in application work, we study the causal effect of malaria on stunting among children in Ghana.
Previous studies on the effect of malaria and stunting were observational and contained various unobserved
confounders, most notably nutritional deficiencies. To infer causality, we use the sickle cell genotype, a trait
that confers some protection against malaria and was randomly assigned at birth, as an IV and apply our
nonparametric IV method. We find that the risk of stunting increases by 0.22 (95% CI: 0.044,1) for every
malaria episode and is sensitive to unmeasured confounders.
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ABSTRACT

INSTRUMENTAL VARIABLES AND MENDELIAN RANDOMIZATION WITH

INVALID INSTRUMENTS

Hyunseung Kang

Dylan S. Small

T. Tony Cai

Instrumental variables (IV) methods have been widely used to determine the causal effect

of a treatment, exposure, policy, or an intervention on an outcome of interest. The IV

method relies on having a valid instrument, a variable that is (A1) associated with the ex-

posure, (A2) has no direct effect on the outcome, and (A3) is unrelated to the unmeasured

confounders associated with the exposure and the outcome. However, in practice, finding a

valid instrument, especially those that satisfy (A2) and (A3), can be challenging. For ex-

ample, in Mendelian randomization studies where genetic markers are used as instruments,

complete knowledge about instruments’ validity is equivalent to complete knowledge about

the involved genes’ functions.

The dissertation explores the theory, methods, and application of IV methods when invalid

instruments are present. First, when we have multiple candidate instruments, we establish

a theoretical bound whereby causal effects are only identified as long as less than 50% of

instruments are invalid, without knowing which of the instruments are invalid. We also

propose a fast penalized `1 method, called sisVIVE, to estimate the causal effect. We find

that sisVIVE outperforms traditional IV methods when invalid instruments are present

both in simulation studies as well as in real data analysis.

Second, we propose a robust confidence interval under the multiple invalid IV setting. This

work is an extension of our work on sisVIVE. However, unlike sisVIVE which is robust
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to violations of (A2) and (A3), our confidence interval procedure provides honest coverage

even if all three assumptions, (A1)-(A3), are violated.

Third, we study the single IV setting where the one IV we have may actually be invalid.

We propose a nonparametric IV estimation method based on full matching, a technique

popular in causal inference for observational data, that leverages observed covariates to

make the instrument more valid. We propose an estimator along with inferential results

that are robust to mis-specifications of the covariate-outcome model. We also provide a

sensitivity analysis should the instrument turn out to be invalid, specifically violate (A3).

Fourth, in application work, we study the causal effect of malaria on stunting among children

in Ghana. Previous studies on the effect of malaria and stunting were observational and

contained various unobserved confounders, most notably nutritional deficiencies. To infer

causality, we use the sickle cell genotype, a trait that confers some protection against malaria

and was randomly assigned at birth, as an IV and apply our nonparametric IV method. We

find that the risk of stunting increases by 0.22 (95% CI: 0.044, 1) for every malaria episode

and is sensitive to unmeasured confounders.
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CHAPTER 1 : Introduction

1.1. Association Versus Causation in Observational Studies and the Problem of Un-

measured Confounding

“Association does not imply causation.” It is an old mantra taught in introductory statis-

tical courses, usually accompanied with comical examples from contemporary news articles

such as the “causal” relationship between global average temperatures and the number of

pirates (Anderson, 2012) or more serious issues such as the “causal” relationship between

childhood vaccinations and autism in children based on a methodologically flawed asso-

ciation analysis (Institute of Medicine of the National Academies: Immunization Safety

Review Committee, 2004). With the latter, the deadly mistake of equating association with

causation and the fear the study generated have led to a resurgence in preventable childhood

diseases in the United States during the 21st century (Omer et al., 2009) along with count-

less and wasteful public resources dedicated to debunking this myth (Institute of Medicine

of the National Academies: Immunization Safety Review Committee, 2004). In fact, often

the goal in a scientific inquiry is causal. But, scientists, for costs or other reasons, are left

with associational (observational) data to draw causal conclusions. Since association does

not imply causation, is all hope of drawing causal conclusions from associational data lost?

Are we bound to make the same faulty causal conclusions like the ones discussed above?

The statistical theory of observational studies seeks to provide principles and methods for

designing and analyzing associational studies with the aim of connecting association and

causation (see Rosenbaum (2002) and Rubin (2005) for an overview). Using the tools

developed in observational studies, associational data has often contributed to important

findings such as the finding of the 1964 Surgeon’s General report that “cigarette smoking

is causally related to lung cancer in men,” which was based on observational studies with

associational data and had a huge impact on public health (United States Surgeon Gen-

eral, 1988). A central problem in observational studies is how to deal with unmeasured
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confounding. To illustrate, consider a study where we were given observational data about

children in sub-Saharan Africa, specifically their malarial infections and height. The goal

of the study was to determine whether malarial infections caused a child to have stunted

height, i.e. abnormally short height. The problem was that there were other potential

explanations for stunted height besides malaria that were unmeasured for in the data, such

as the child’s daily diet, which can impact his/her growth as well as his/her immune sys-

tem, making him/her more susceptible to malarial infections. In short, the child’s diet was

an unmeasured confounder that confounded the causal relationship between malaria and

stunted height. Successfully dealing with unmeasured confounding is a central goal in the

theory of observational studies.

1.2. A Potential Solution for Unmeasured Confounding: Instrumental Variables and

Mendelian Randomization

One method, instrumental variables (IV), has remained a popular tool in statistics for

overcoming the problem of unmeasured confounding. IV methods have been widely used in

many fields outside of statistics, including economics (Angrist and Krueger, 2001), genomics

and epidemiology (Davey Smith and Ebrahim, 2003), sociology (Bollen, 2012), psychology

(Gennetian et al., 2008), political science (Sovey and Green, 2011), and countless others.

For example, the malaria study mentioned above used one of our proposed IV matching

methods in Chapter 4 to conclude, from observational data, that there is a causal effect

between repeated malarial episodes and stunting where the risk of stunting increases by 0.22

for every malaria episode (p-value: 0.011, 95% confidence interval: 0.04, 1, see Chapter 5

for more details on this study).

The popularity of IV methods can be attributed to the fact that they alleviate the re-

quirement to conduct a randomized experiment to determine a causal effect. Randomized

experiments are the gold standard in determining causal effects. But, they are often expen-

sive and sometimes unethical. For example, with our malarial study, a randomized clinical

trial would involve randomly assigning children to receive the malarial parasite at the whim
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of a coin flip, a highly unethical task. IV methods avoid the need for a traditional ran-

domized experiment by finding an instrument where the instrument is (A1) related to the

exposure, (A2) has no direct pathway to the outcome, and (A3) is not related to unmeasured

confounders that affect the exposure and the outcome. Recently, IV methods have been

applied to genetic data where instruments are genes and the field is known as Mendelian

randomization (MR)(Davey Smith and Ebrahim, 2003, 2004). For example, in our malaria

study to be discussed in Chapter 5, we used the sickle cell trait, one of the genotypes that

determines the shape of a red blood cell, as an instrument (see Figure 1). The sickle cell

genotype has been shown to provide protection against malaria, satisfying (A1) (Friedman,

1978; Hill et al., 1991). For satisfying (A2) and (A3), prior studies (Ashcroft et al., 1978;

Rehan, 1981) from non-malaria endemic areas, but where the sickle cell trait was present,

provided support for the two assumptions (see Chapter 5 for more details).

Sickle 
Cell Trait

Repeated 
Malaria 

Episodes

Stunted 
Height

Unmeasured
Confounders(A3)

(A2)

(A1)

Figure 1: Diagram of instrumental variables assumptions in the malaria study. Arrows rep-
resent associations between variables. Absence of arrows indicates no relationship. Numbers
(A1), (A2), and (A3) indicate different instrumental variables assumptions.

1.3. A Major Challenge in Instrumental Variables: Finding Valid Instruments

One of the biggest challenges in IV methods is finding an instrument that satisfies the

conditions (A1)-(A3). Specifically, satisfying assumption (A2), also known as the no direct

effect assumption, has been problematic in many IV studies. For example, if the instruments
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are genes, as is the case in Mendelian randomization, satisfying (A2) would imply that the

gene/instrument’s only biological function is to affect the exposure only, i.e. the gene is not

pleiotropic. However, this assumption is unreasonable for many genetic markers as they

often have multiple functions (Solovieff et al., 2013); in fact, our malaria study explained

in Section 1.2 is no exception to this problem.

Many epidemiologists who use genetic instruments are aware of this problem (Davey Smith

and Ebrahim, 2003; Lawlor et al., 2008); Lawlor et al. (2008) also describes other types of

biological phenomena such as linkage disequilibrium and population stratification, which

are unique to IV studies where instruments are genetic, and may violate (A2) and (A3).

Unfortunately, without complete biological knowledge of the gene and its plethora of func-

tions or effects by linkage disequilibrium, all IV methods in Mendelian randomization are

plagued by possible violations of (A2) and (A3). Also, economists who use IV methods

face similar problems, specifically concerning whether their candidate instruments violate

(A2) and (A3) (Murray, 2006). Previous IV methods have assumed that there is at least

one known valid instrument satisfying (A1)-(A3). However, in many applications, one may

have many candidate instruments, but is not sure about the validity of any of them.

Also, in some cases, we may not have many candidate instruments and we may end up with

only one candidate instrument. With the one instrument, we have to do our best to make

sure that this instrument is valid and to assess the impact on our statistical analysis should

this instrument turn out to be invalid despite our best efforts. For example, in our malaria

example, the data only provided one instrument, the sickle cell genotype, for us to infer the

causal effect of malaria and stunting.

In short, all IV analysis, to varying degree, suffer from the “invalid instrument problem.”

For example, if we are given multiple candidate instruments, we are never certain whether

all of them are valid, that is satisfy (A2) and (A3); it is probably the case that some of them

are invalid. As another example, if we are left with only a single candidate instrument, we

have to find ways to make the instrument “more valid” and, more importantly, to assess
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the sensitivity of the statistical analysis should the instrument fail to be valid, despite our

best efforts.

1.4. Our Contributions and Outline of Dissertation

Broadly speaking, the thesis tackles the invalid instrument problem into two cases, the case

with multiple instruments and the case with one instrument. In Chapter 2, we consider the

multiple instrument case where we aren’t sure whether these instruments satisfy conditions

(A2) and (A3). We show that key parameters in the data generating model can still be

identified even without knowing which candidate instruments are valid or invalid by pro-

viding both a necessary and sufficient condition for identification. In particular, the causal

effect of the treatment on the outcome can always be identified if the number of invalid

instruments (denoted by s) is strictly less than 50% of the total candidate instruments L

(i.e. s < L/2), even if one does not know which of the L instruments are valid and invalid,

a priori. If more than 50% of the total candidate instruments may be invalid, then the

scientist can check the necessary and sufficient conditions to see whether the parameters in

the model are identified.

In line with the identification result, Chapter 2 also proposes a method to estimate the causal

effect of the treatment on the outcome if some instruments are invalid, without knowing

which instruments are invalid. Our proposed estimator, sisVIVE, is a penalized `1 estimator,

which has theoretical guarantees on performance under certain regularity conditions. Also,

in simulation studies and a real data analysis, we show that sisVIVE dominates the most

popular IV method, the two stage least squares, whenever invalid instruments are present.

Chapter 3 extends the work in Chapter 2 by providing a robust confidence interval under the

settings described in Chapter 2. In particular, we propose a simple and general method to

construct confidence intervals that are theoretically guaranteed to provide honest coverage

in the presence of invalid instruments.

In Chapter 4, we consider the case where we are only given one candidate instrument.
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In this work, we attempt to make the IV assumptions more plausible, specifically (A3), by

controlling for measured covariates. Conditional on these covariates, the instrument behaves

as if it was a result of random assignment and hence, is unassociated with the unmeasured

confounders. We incorporate this idea of conditioning by full matching, which has been

shown to have some advantages compared to other methods that condition on covariates

(Stuart, 2010). A matching algorithm generates matched sets by grouping individuals in

the data who are similar to each other, except for the value of the instrument. For example,

if the instrument is binary and is denoted by Z, the matching algorithm may generate I

matched sets with each set containing nk individuals of which mk have Zs equal to 1 and

nk −mk have Zs equal to 0.

Once we obtain matched sets, we propose a nonparametric estimator of the causal effect

of the exposure on the outcome where we do not assume a parametric model between the

outcome Yi and the covariates Xi. We prove some desirable theoretical properties concerning

our nonparametric estimator. We also derive a general formula for computing efficiency of

any IV matching-based estimators. Finally, we propose sensitivity analysis if the instrument

does violate (A3) even after controlling for the covariates using our nonparametric matching

method.

In Chapter 5, we apply the nonparametric full matching technique developed in Chapter

4 by analyzing the malaria example mentioned in Section 1.2. Specifically, the goal in the

data analysis is to provide an estimate of the causal effect of malaria episodes on stunted

growth in children from Ghana. The novel idea in this work is the use of the sickle cell

trait as an instrument. The trait has been known to confer some level of protection against

malaria, thereby satisfying (A1). But, it’s possible that (A2) and (A3) may be violated. We

use the method in Chapter 4 to alleviate some of these concerns and provide an estimate

of the causal effect.
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CHAPTER 2 : Instrumental Variables With Possibly Invalid Instruments: Theory

and Point Estimation

This is joint work with Anru Zhang, Tony Cai, and Dylan Small.

2.1. Motivating Examples of Invalid Instruments in Mendelian Randomization

As mentioned before, the goal in Mendelian randomization (MR) is to estimate the causal

effect of an exposure on an outcome by using genetic markers, specifically single nucleotide

polymorphisms (SNPs), as instruments (Davey Smith and Ebrahim, 2003, 2004; Lawlor

et al., 2008; Wehby et al., 2008). However, there is always concern as to whether these

SNPs satisfy the IV assumptions. For example, Timpson et al. (2005) studied the causal

effect of C-reactive protein (CRP), the exposure, on various metabolic outcomes, such as

body mass index (BMI) and cholesterol biomarkers (e.g. tryglycerides), using four hap-

lotypes constructed from three SNPs (rs1800947, rs1130864, rs1205) as instruments. The

instruments have been previously associated with plasma CRP levels, thereby agreeing

with (A1). However, agreement with (A2) and (A3) is less certain. As the authors of the

study noted, it is plausible that one or more of the genes that contain the SNPs, rs1800947,

rs1130864, and rs1205, may have multiple functions, known as pleiotropy, where, in addition

to changing CRP levels (the exposure), the gene containing one of these SNPs would change

triglyceride levels or BMI (the outcome) and (A2) would not hold. Indeed, recent work by

Mart́ınez-Calleja et al. (2012) suggested that one of the instruments used, rs1130864, is

directly linked to BMI, one of the outcomes, raising doubts about causal estimates when

this SNP is assumed to be a valid instrument.

As another example, Katan (1986), in one of the first discussions of MR, proposed to

estimate the causal effect of serum cholesterol level on cancer by using the apolipoprotein

E polymorphism (APOE)’s effect on serum cholesterol levels. However, as Davey Smith

and Ebrahim (2004) argued, the current knowledge about the APOE gene and its multiple

pleiotropic effects on longevity, cholesterol biomarkers, and several other variables, would
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invalidate the APOE gene as a valid instrument, specifically due to its violation of (A2),

and make an IV analysis based on it biased.

Both examples highlight a fundamental limitation with MR studies. For one, pleiotropy and

its impact on (A2) is a concern in most MR studies (Little and Khoury, 2003; Davey Smith

and Ebrahim, 2003, 2004; Thomas and Conti, 2004; Brennan, 2004; Lawlor et al., 2008).

Lawlor et al. (2008) also list other biological phenomena associated with genetic instru-

ments such as linkage disequilibrium and population stratification that may violate (A2)

and (A3). Unfortunately, verifying genetic instruments as valid IVs requires having com-

plete knowledge of the instruments’ biological function and pleoitropic effects. As both

examples highlight, the biological understanding of many genetic markers and their poten-

tial pleiotropic effects are typically incomplete at the time of the study (Solovieff et al.,

2013). In the face of incomplete biological knowledge and possible instrument invalidity,

can valid causal estimates be derived?

Previous work in IV estimation in the presence of possibly invalid instruments is limited.

Traditional instrumental variables literature has stated that to estimate the causal effect of

an exposure on an outcome when there are unmeasured confounders, one needs to have at

least one instrument that one knows is valid (Wooldridge, 2010). Andrews (1999) considered

the invalid instrument case in the general context of generalized method of moments (GMM)

estimation common in econometrics and arrived at an identification result that is similar to

our identification result in Theorem 2.1. The author also proposed an estimation strategy,

called the moment selection criteria (MSC), to correctly select the valid instruments, which

is similar to equation (2.10) in Section 2.3.3. Unfortunately, as we discuss in Section 2.3.3,

MSC is computationally infeasible when the number of instruments is large. Kolesár et al.

(2013) considered the possibility of identifying causal effects when all the instruments are

invalid because of direct effects on the outcome. The authors showed that if the direct

effects are orthogonal to the instruments’ effects on the treatment, then the causal effect

can be identified. Kolesár et al. (2013) describes conditions under which this orthogonality
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is plausible. But, for MR, this stringent structure on the instruments would not hold in

most cases as it would mean that the pleiotropic effects of the IVs are orthogonal to the

effects of the IVs on the treatment. Gautier and Tsybakov (2011) analyzed instrumental

variables regression in the presence of possibly invalid instruments. However, for their

procedure to work, one must have a pre-defined set of known valid instruments. Finally,

Mealli and Pacini (2013) explored how using an auxiliary outcome can tighten bounds or

provide identification of the effect of a treatment on a primary outcome when there is only

one binary instrument that may violate (A2) by using an using auxiliary outcome. However,

their work is different to our problem where we consider multiple candidate instruments.

We add to the prior literature as follows. First, we show that it is indeed possible to identify

and estimate the causal effect without a known pre-defined set of valid instruments. In

particular, under a weaker condition where the proportion of invalid instruments is strictly

less than 50% of the total instruments, we show that identification and estimation are

possible. For example, given four possible haplotypes/instruments in the previous example

by Timpson et al. (2005), estimation of the causal effect of CRP on metabolic phenotypes

is still possible if no more than one instrument is invalid, without knowing exactly which of

the four is invalid. We also show conditions for identification when the 50% threshold may

not hold.

Second, we develop a fast `1 estimation procedure to estimate the causal effect of the

exposure on the outcome in the presence of possibly invalid instruments. The procedure

has provable theoretical guarantees on estimation performance and is computationally as

fast as ordinary least squares. The procedure is implemented and available on CRAN as an

R package sisVIVE, which stands for Some Invalid Some Valid IV Estimator.

Third, we conduct a simulation study that compares our method to two stage least squares

(TSLS), the most popular IV estimation procedure. We show that our procedure dominates

TSLS when the instruments may be invalid. We also conduct a real MR study concerning

the effect of BMI on a health-related quality of life (HRQL) measure using our new method.
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2.2. Causal Model for Instrumental Variables With Invalid Instruments

2.2.1. Notation

To define valid instruments, the potential outcomes approach (Neyman, 1923; Rubin, 1974)

for instruments laid out in Holland (1988) is used. For each individual i ∈ {1, . . . , n},

let Y
(d,z)
i ∈ R be the potential outcome if the individual were to have exposure d ∈ R

and instruments z ∈ RL. Let D
(z)
i ∈ R be the potential exposure if the individual had

instruments z ∈ RL. For each individual, only one possible realization of Y
(d,z)
i and D

(z)
i

is observed, denoted as Yi and Di, respectively, based on his observed instrument values

Zi. ∈ RL and exposure Di. In total, n sets of outcome, exposure, and instruments, denoted

as (Yi, Di,Zi.), are observed in an i.i.d. fashion.

We denote Y = (Y1, . . . , Yn) to be an n-dimensional vector of observed outcomes, D =

(D1, . . . , Dn) to be an n-dimensional vector of observed exposures, and Z to be a n by L

matrix of instruments where row i consists of Zi..

For any vector α ∈ RL, let αj denote the jth element of α. Let ‖α‖1, ‖α‖2, and ‖α‖∞

be the usual 1, 2 and ∞-norms, respectively. Let ‖α‖0 denote the 0-norm, i.e. the number

of non-zero elements in α. The support of α, denoted as supp(α) ⊆ {1, . . . , L}, is defined

as the set containing the non-zero elements of the vector α, i.e. j ∈ supp(α) if and only if

αj 6= 0. A vector α is called s-sparse if it has no more than s non-zero entries. Also, for a

vector α ∈ RL and a set A ⊆ {1, . . . , L}, we denote αA ∈ RL to be the vector where all the

elements except whose indices are in A are zero.

For any n by L matrix M ∈ Rn×L, we denote the (i, j) element of matrix M as Mij ,

the ith row as Mi., and the jth column as M.j . Let MT be the transpose of M. Let

PM be the n by n orthogonal projection matrix onto the column space of M, specifically

PM = M(MTM)−1MT ; it is assumed that MTM has a proper inverse, unless otherwise

noted. Let PM⊥ be the residual projection matrix, specifically PM⊥ = I−PM where I is

an n by n identity matrix.
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For any set A ⊆ {1, . . . , L}, we denote AC to be the complement of set A. Also, we denote

|A| to be the cardinality of set A.

2.2.2. Model

We consider the Additive LInear, Constant Effects (ALICE) model of Holland (1988) and

extend it to allow for multiple valid and possibly invalid instruments as in Small (2007).

Let d′, d ∈ R be possible values of the exposure and z′, z ∈ RL be possible values of

the instruments. Let εi = Y
(0,0)
i − E[Y

(0,0)
i |Zi.] and the collection of εi be denoted as

ε = (ε1, . . . , εn). Suppose we have the following potential outcomes model for the outcome

Y
(d′,z′)
i − Y (d,z)

i = (z′ − z)Tφ∗ + (d′ − d)β∗ (2.1)

E(Y
(0,0)
i |Zi.) = ZTi.ψ

∗ (2.2)

where φ∗,ψ∗ ∈ RL, and β∗ ∈ R are unknown parameters. In equation (2.1), the parameter

β∗ represents the causal parameter of interest, the causal effect of changing the exposure

by one unit on the outcome. Also in equation (2.1), the parameter φ∗ represents the direct

effect of the instruments on the outcome; changing instruments from z′ to z results in a

direct effect on the outcome of (z′− z)Tφ∗. In equation (2.2), the parameter ψ∗ represents

the confounders that affect the instrument and the outcome. In particular, without any

confounders, there should not be any relationship between the instruments Zi. and the

potential outcome Y
(0,0)
i . Instead, in equation (2.2), they are related via ψ∗.

Let α∗ = φ∗ + ψ∗. When we combine equations (2.1) and (2.2) along with the definition

of εi, we have the observed data model

Yi = ZTi.α
∗ +Diβ

∗ + εi, E(εi|Zi.) = 0 (2.3)

We make the following remarks regarding the model (2.3). First, the model can include

exogenous measured covariates, say Xi. ∈ Rp which may include the intercept term, and
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we can replace the variables Yi, Di, and Zi. with the residuals after regressing them on X,

where X is the n by p matrix of covariates, e.g. replace Y by (I−PX)Y (Wang and Zivot,

1998). The results in this paper will hold generally when working with such data that is

transformed by regressing out the effect of X. In the same spirit, the model can be extended

to non-linear models by including appropriate basis transformations of Zi.. However, for

simplicity of exposition, we will focus on a model without any measured covariates or non-

linear terms. We will also assume that Y, D, and the columns of Z are centered, which can

also result from a residual transformation with X containing only the intercept term.

Second, following Heckman and Robb Jr. (1985), Björklund and Moffitt (1987), and Small

(2007), we can incorporate heterogeneous effects as follows. Suppose, instead of equation

(2.1), the potential outcomes model for the outcome is

Y
(d′,z′)
i − Y (d,z)

i = (z′ − z)Tφ∗ + (d′ − d)β∗i (2.4)

where β∗ = E(β∗i ) is the average effect of the exposure for everyone in the population.

Then, the observed data model can be derived from (2.4) as follows.

Yi = ZTi.α
∗ +Diβ

∗ + (β∗i − β∗)Di + εi, E(εi|Zi.) = 0 (2.5)

If (β∗i − β∗) is independent of Di given Zi., the heterogeneous model in (2.5) is identical to

model (2.3) and our result for Theorem 2.1 in Section 2.3.1 hold. Also, as Small (2007) notes

in page 1055, the assumption that (β∗i − β∗) is independent of Di given Zi. is equivalent

to that “units do not select their treatment levels Di given Zi. based on the gains they

would experience from treatment Di given Zi..” If this assumption is violated, different

groups of people will have different treatment effects, which in turn would lead to possibly

non-zero α∗ (see Angrist and Imbens (1995) and Small (2007) for details). For simplicity

of exposition, we will focus on a model with a constant linear effect β∗.
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2.2.3. Definition of Valid Instruments

Based on the observed model in (2.3), the parameter α∗ combines both the direct effect,

represented by φ∗, and the effect of confounders on the Zi. and Y
(0,0)
i relationship, repre-

sented by ψ∗. If there is no direct effect and no effect of the confounders, then α∗ = 0.

Hence, the value of α∗ captures the notion of valid and invalid instruments. The definition

below formalizes this idea:

Definition 2.1. Suppose we have the models in (2.1) -(2.3) with L instruments. We say

instrument j ∈ {1, . . . , L} is valid if α∗j = 0 and invalid if α∗j 6= 0.

Definition 2.1 distinguishes valid and invalid instruments based on supp(α∗), the support

of α∗. If instrument j = 1, . . . , L is not in the support, it is valid. If the instrument is in

the support of α∗, it is invalid. Consequently, not knowing which instruments are valid and

invalid directly translates to not knowing the support of α∗ in model (2.3).

In the case of only one instrument (i.e. L = 1), Definition 2.1 of a valid instrument matches

with the informal definition (A2) and (A3) in Section 1.2 and the formal definition in Holland

(1988). Specifically, the notion of exclusion restriction (A2), Y
(d,z)
i = Y

(d,z′)
i for all z, z′ ∈ R

is equivalent to the parameter φ∗ in equation (2.1) being zero. Also, the assumption of

no unmeasured confounding of the IV-outcome relationship (A3) where Y
(d,z)
i and D

(z)
i are

independent of Zi for all d, z ∈ R, is encoded by ψ∗ in (2.2) being zero. Hence, φ∗ = ψ∗ = 0,

which implies α∗ = 0 and a valid IV in Holland (1988) is also a valid IV in our definition.

Also, for one instrument, our model and definition is a special case of the definition of a

valid instrument discussed in Angrist et al. (1996) where our model assumes an additive,

linear, and constant treatment effect β∗.

For more than one instruments (i.e. L > 1), our model (2.1)-(2.3) and definition of valid

IVs can be viewed as a generalization of Holland (1988). It is important to note that in this

generalization, Definition 2.1 defines the validity of an instrument j in the context of the

set of instruments {1, . . . , L} being considered. Specifically, an instrument j could be valid
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in the context of the set {1, . . . , L} (i.e. α∗j = 0), but invalid if considered alone because Z.j

may be associated with or causally affect another IV Z.j′ , j 6= j′ where α∗j′ 6= 0.

2.3. Estimation of Causal Effect With Invalid Instruments

2.3.1. Identifiability of Model

We first address whether the model in equation (2.3) is identifiable, that is whether we can

estimate the unknown parameters if we were given infinite data, even without any knowledge

about which instruments are valid and invalid. We begin by making the assumptions.

(a) E(ZTZ) is full rank;

(b) For E(ZTD) = E(ZTZ)γ∗, the components of γ∗ are all not equal to zero, i.e. γ∗j 6= 0

for j = 1, . . . , L.

Assumption (a) states that the matrix of instruments Z is full rank, a common assump-

tion in the instrumental variables literature (Wooldridge, 2010). Assumption (b) states

that the instruments are associated with the exposure, akin to assumption (A1), that the

instruments are relevant to the exposure; note that there does not need to be a causal re-

lationship between the instrument Z and the exposure D, just an association (Hernán and

Robins, 2006; Didelez and Sheehan, 2007; Glymour et al., 2012). As one reviewer remarked,

assumption (b) requires that all L instruments are related to the exposure, γ∗j 6= 0 for all j.

If we have instruments that are not relevant to the exposure, γ∗j = 0, we can exclude them

from further analysis and concentrate only on those instruments that affect the exposure.

Now, the model in (2.3) implies the following moment condition.

E(ZT (Y − Zα∗ −Dβ∗)) = 0 (2.6)
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Suppose assumptions (a) and (b) hold. Then, the moment equation in equation (2.6)

simplifies to

Γ∗ = α∗ + γ∗β∗ (2.7)

where Γ∗ = E(ZTZ)−1E(ZTY). Since both Γ∗ and γ∗ can be identified by their moments

based on observed data E(ZTZ)−1E(ZTY) and E(ZTZ)−1E(ZTD), respectively, α∗ and

β∗ are identified if we can find a bijective mapping between α∗, β∗ and Γ∗,γ∗, i.e. a unique

solution of α∗, β∗ given Γ∗,γ∗.

If we know exactly which instruments are invalid A∗ = supp(α∗) = {j : α∗j 6= 0} and hence,

know the set of valid instruments (A∗)C = {j : α∗j = 0}, equation (2.7) becomes

α(A∗)C + γ∗(A∗)Cβ
∗ = γ∗(A∗)Cβ

∗ = Γ∗(A∗)C

There is a unique β∗ so long as |(A∗)C | > 0, or there is at least one known valid instrument.

This is a special case of the classic identification result for linear simultaneous equation

models (Koopmans et al., 1950) and is commonly used in the traditional IV literature.

If we know that there is a valid instrument, but are not sure of the identity of the valid

instrument(s), then a unique solution to (2.7) and hence, identification, is not guaranteed.

For example, let there be four instruments, L = 4 with γ∗ = (1, 2, 3, 4) and Γ∗ = (1, 2, 3, 8).

Then, depending on the set of valid instruments (A∗)C , which is unknown, we have two

different β∗ that satisfy equation (2.7). If the set of valid instruments (A∗)C is (A∗)C =

{1, 2, 3}, we have γ∗
(A∗)C

β∗ = Γ∗
(A∗)C

and β∗ = 1. However, if the set of valid instruments

is (A∗)C = {4}, β∗ = 2. Without knowing exactly which (A∗)C is the true set of valid

instruments, we cannot choose between the two β∗s and hence, there is not a unique solution

to (2.7).

But, suppose we impose constraints on A∗. Specifically, suppose the number of invalid

instruments, s = |A∗|, has to be less than some number U , s < U , without knowing which

instruments are invalid or knowing exactly the number of invalid instruments. For example,
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geneticists may have a rough idea on the maximum number of invalid instruments, U , but

not know exactly the number of invalid instruments nor do know exactly which instruments

are invalid. Note that this condition of knowing the maximum number of invalid instruments

is a much weaker requirement than what is traditionally required in IV and MR literature

where one must know exactly which instruments are invalid, i.e. know exactly the set A∗;

here, we only need an upper bound on the cardinality of A∗. Under the weaker condition

s < U , a unique solution to (2.7) can exist and this is stated in Theorem 2.1.

Theorem 2.1 (Uniqueness of Solution). Suppose we assume assumptions (a) and (b) and

the modeling assumption (2.3). Let s ∈ {0, 1, . . . , L} with s < U where U = 1, . . . , L.

Consider all sets Cm ⊆ {1, . . . , L},m = 1, . . . ,M of size |Cm| = L−U + 1 with the property

γ∗j qm = Γ∗j j ∈ Cm

where qm is a constant. There is a unique solution α∗ and β∗ to (2.7) if and only if qm = qm′

for all m,m′ ∈ {1, . . . ,M}.

To understand Theorem 2.1, note that if the valid instruments are those in the set Cm, then

the causal effect β∗ = qm. More specifically, Theorem 2.1 says that β∗ is identified as long

as there are not two subsets of the instruments of cardinality L−U + 1 that give internally

consistent estimates of β∗ (i.e. all instruments in each subset give the same estimate of β∗),

but are externally inconsistent (i.e. the estimates of β∗ from the two subsets are different).

We call the property in Theorem 2.1 that there is a unique solution to α∗ and β∗ to (2.7) if

and only if qm = qm′ for all m,m′ ∈ {1, . . . ,M} the consistency criterion. We thank Jack

Bowden for his insight and suggestions on terminology for interpreting Theorem 2.1.

Checking the consistency criterion can be computationally difficult, especially if U is large;

it requires looking at
(

L
L−U+1

)
possible subsets of {1, . . . , L} and the constants qm associated

with Γ∗ and γ∗. Corollary 2.1 says that the consistency criterion is automatically satisfied

if U ≤ L/2 (i.e. if 50% of the total candidate of L instruments are invalid) regardless of the

values of γ∗ and Γ∗.

16



Corollary 2.1. If U ≤ L/2, there is always a unique solution to (2.7)

In addition to the computational benefits, compared to Theorem 2.1, Corollary 2.1 is simpler

to interpret. For example, for a geneticist, without knowing the entire biology of genetic

instruments, specifically knowing which instruments are valid and invalid, as long as the

number of invalid instruments is less than 50% of the total instruments, then the geneticist

can rest assured that the parameters can always be identified. If this is not the case, the

geneticist can always check the consistency criterion stated in Theorem 2.1.

We would like to mention two final points about Theorem 2.1. First, Theorem 2.1 is a

statement about uniqueness of solutions for the parameters α∗, and β∗ in equation (2.7).

A natural question to ask is whether the uniqueness is guaranteed for just β∗, the causal

effect of interest, at the expense of non-uniqueness of α∗. In the proof of Theorem 2.1 in the

Appendix, we show that this cannot be the case. Specifically, regardless of the condition

on s, the parameter β∗ is a unique solution to (2.7) if and only if the parameter α∗ is a

unique solution to (2.7). Second, Theorem 2.1 supposes the existences of the sets Cm and

proceeds to compare their corresponding qm. However, one may ask whether these sets Cm

even exist in the first place. In the proof of Theorem 2.1 in the Appendix, we provide a

rigorous argument that, indeed, under model (2.3) and s < U , at least one set Cm has to

exist.

2.3.2. Some Examples of Identified Models Using Theorem 2.1

To illustrate the nature of identified models with invalid instruments, specifically in relation

to Theorem 2.1, we consider a couple of examples. First, let us revisit the earlier numerical

example in Section 2.3.1 with γ∗ = (1, 2, 3, 4) and Γ∗ = (1, 2, 3, 8). Suppose our prior

knowledge on the upper bound on s is 3, i.e. U = 3. Then, by Theorem 2.1 we have

3 sets C1 = {1, 2}, C2 = {1, 3}, C3 = {2, 3} with q1 = q2 = q3 = 1. Hence, γ∗ and Γ∗

satisfy the consistency criterion of Theorem 2.1 and we have a unique solution α∗ and

β∗ to (2.7). In contrast, if γ∗ = (1, 2, 3, 4) and Γ∗ = (1, 2, 6, 8), we would have two sets
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C1 = {1, 2}, C2 = {3, 4} with q1 = 1 and q2 = 2, respectively. These γ∗ and Γ∗ do not

satisfy the consistency criterion of Theorem 2.1 because q1 6= q2 and there are no unique

solutions α∗ and β∗ to (2.7).

One of the reviewers, however, mentioned an extension of this numerical example where

the setup is identical except Γ∗ is perturbed by ε > 0 such that Γ̃∗ = (1, 2, 6, 8 + ε). With

Γ̃∗, there is only one set C1 = {1, 2} where q1 = 1 and we have identification for any ε.

However, we can shrink ε to be arbitrary small such that Γ∗ and Γ̃∗ = (1, 2, 6, 8 + ε), are

arbitrarily close to each other.

However, consider the identical setup as before, except Γ∗ = (1, 2, 7, 9). Then, there is only

one subset C1 = {1, 2} where q1 = 1 and identification is achieved. Furthermore, any small

perturbation of Γ∗ by δ > 0 and ε > 0, i.e. Γ̃∗ = (1, 2, 7 + δ, 9 + ε), will still produce only

subset C1 = {1, 2} and identification is maintained.

The two numerical examples with Γ∗ = (1, 2, 6, 8) and Γ∗ = (1, 2, 7, 9) illustrate what we

call the identification boundary. The vector Γ∗ = (1, 2, 6, 8) lies just at the identification

boundary where any small perturbation can render the model unidentified or identified. In

contrast, for Γ∗ = (1, 2, 7, 9), the vector Γ∗ lies far from the identification boundary and any

small perturbation can still make the model identifiable. Exploration of the identification

boundary for different values of Γ∗ and γ∗ is a topic for future research.

As a second example of identification using Theorem 2.1, we consider the classical linear

simultaneous/structural equations model in econometrics (Koopmans et al., 1950). To do

so, we impose two additional modeling assumptions which are not needed for identification,

but are part of the classical ecnoometrics model, and discuss the identification result in

2.3.1 under this context. The first additional modeling assumption is that the relationship

between Di and Zi. is linear

Di = ZTi.γ
∗ + ξi, E(ξi|Zi.) = 0 (2.8)
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where γ∗ relates the instruments to the exposure. The second additional assumption is that

the error terms are bivariate Normal

(εi, ξi)
iid∼ N(0,Σ) (2.9)

Under these assumptions in (2.8) and (2.9), the distributions of Yi and Di conditional on

Zi. are fully characterized by finite-dimensional parameters α∗, β∗,γ∗, and Σ known as

“structural” parameters in econometrics (Wooldridge, 2010). Let ε′i = β∗ξi + εi. Then, we

have the “reduced forms” (Wooldridge, 2010)

Yi = ZTi.Γ
∗ + ε′i

Di = ZTi.γ
∗ + ξi

where Γ∗ = α∗ + β∗γ∗ and the covariance matrix of (ε′i, ξi) is Σ′ = MΣMT with

M =

1 β∗

0 1


We see that the distributions of Yi and Di are also fully characterized by the reduced form

parameters Γ∗,γ∗ and Σ′. By Rothenberg (1971), the reduced form parameters, Γ∗,γ∗, and

Σ′, are globally identified. Also, by Rothenberg (1971), the structural parameters, α∗, β∗,

γ∗, and Σ, are identified if and only if the mapping between the reduced form parameters,

Γ∗,γ∗,Σ′, and the structural parameters, α∗, β∗, γ∗,Σ, represented by equations Σ′ =

MΣMT , γ∗ = γ∗, and Γ∗ = α∗+ β∗γ∗, is bijective. We see that M is an invertible matrix

for any β∗ and hence there is a bijective map between Σ and Σ′. For γ∗, it maps onto

itself between the structural and reduced form parameters. Consequently, whether there is

a bijection between the structural parameters and reduced form parameters is determined

only by whether there is a unique solution α∗ and β∗ to equation 2.7 given γ∗ and Γ∗.

Theorem 2.1 states that a unique solution α∗ and β∗ of (2.7) exists if and only if the

consistency criterion holds, that qm = qm′ for all m,m′ ∈ {1, . . . ,M}. Hence, with the
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modeling assumptions (2.8) and (2.9), we have identification of the structural parameters

if and only if the consistency criterion in Theorem 2.1 holds.

2.3.3. Estimation of the Causal Effect of Exposure on Outcome

Given the model (2.3) and s < U , Theorem 2.1 lays out the sufficient and necessary condition

for finding a unique solution to the moment equation (2.6). Specifically, if the model is

identified, the moment equation (2.6) is zero at exactly one value, the true value of α∗ and

β∗. Naturally then, a method to estimate the one true value is to find the values of α∗ and

β∗ that minimize (2.6) subject to the parameter constraint that s < U . Formally, we can

write this estimation strategy as

argmin
α,β

1

2
‖PZ(Y − Zα−Dβ)‖22, s.t. ||α||0 < U (2.10)

where ||α||0 is the number of non-zero entries of α and by Definition 2.1, s = ||α||0. Equa-

tion (2.10) is similar to the moment selection criterion (MSC) in Andrews (1999). However,

both the moment selection criterion in Andrews (1999) and (2.10) are computationally in-

feasible in the sense that both require going through all subsets of size less than U and

this type of problem has been shown to be NP-hard (Natarajan, 1995). Instead, a com-

putationally tractable version of estimation strategies like (2.10) has been proposed in the

literature using a convex surrogate of the `0 norm (Candes and Tao, 2005; Tropp, 2006;

Donoho, 2006). Specifically, the computationally feasible version of the estimation strategy

in (2.10) can be written as

argmin
α,β

1

2
‖PZ(Y − Zα−Dβ)‖22, s.t. ||α||1 ≤ t (2.11)

where the `0 norm is replaced by the convex norm `1 and U is replaced by a user-specified

tuning parameter t > 0. In this paper, we propose the equivalent Lagrangian form as our

estimator of the causal effect, called some invalid some valid IV estimator, or sisVIVE, as
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follows

(α̂λ, β̂λ) ∈ argmin
α,β

1

2
‖PZ(Y − Zα−Dβ)‖22 + λ‖α‖1 (2.12)

for some tuning parameter λ > 0 and λ corresponds to t in (2.11). If λ = 0 in (2.12),

then (2.12) is the popular two stage least squares (TSLS) estimator, which is equivalent to

the generalized method of moments (GMM) estimator when ε in Section 2.2.2 are assumed

to be homoscedastic (Hansen, 1982). Hence, sisVIVE can be viewed as a generalization of

TSLS or GMM.

sisVIVE also bears some resemblance to the traditional `1 penalization procedure, in par-

ticular the Lasso (Tibshirani, 1996) or the recent `1 penalty procedures in IV estimation by

Gautier and Tsybakov (2011) and Belloni et al. (2012). However, there are a few important

differences. First, with regards to the traditional Lasso and the procedure proposed by

Gautier and Tsybakov (2011), our procedure in (2.12) only penalizes α∗. The estimator

(2.12) does not penalize β∗, the causal effect of the exposure on the outcome, because the

causal effect may be far from zero. In contrast, the prior works we mentioned penalize all

the parameters in the model. Second, the traditional Lasso only considers regression with

all exogenous regressors, which are regressors that are assumed to be independent of the

error term or assumed to be fixed. The regressors in our model (2.3) are not all exogenous;

specifically, model (2.3) contains one random endogenous variable, Di, which is dependent

on the error term. Third, Gautier and Tsybakov (2011) and Belloni et al. (2012) assume

that either all the L instruments are valid or we know exactly which subset of them are

valid. In contrast, our procedure does not assume this.

Finally, a careful reader may have recognized that there may be multiple minimizers to

equation (2.12), specifically β̂λ, because ||α||1 is not strictly convex and hence, we use the

set notation instead of the equality sign in (2.12). This might seem to be a concern as

there are multiple estimates of β∗. However, as we will show in Section 2.3.5, all minimizers

of (2.12) are close to the true values β∗. Also, if the entries of the matrix PD̂⊥Z where

D̂ = PZD (i.e. the predicted value of the exposure given the instruments) are drawn from
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a continuous distribution, then the solution to (2.12) is unique (Tibshirani, 2013).

Without loss of generality, we assume that the columns of Z are scaled to unit length. This

allows all L instruments to have identical units so no columns of Z gets unfairly penalized

by the penalty term in (2.12) simply due to their original units.

2.3.4. Choice of λ

Like many penalization procedures, the choice of the tuning parameter λ affects the perfor-

mance of the estimation procedure and this is certainly the case with sisVIVE. High values

of λ force heavy penalization on α, which will put most elements of α̂λ to zero and most

instruments will be estimated as valid instruments. In contrast, low values of λ will put

few elements of α̂λ to zero and most instruments will be estimated as invalid instruments.

In short, the optimal choice of λ depends on knowing the exact number of invalid and valid

instruments, something not implied by the condition s < U .

In practice, cross validation is a popular data-driven method to choose λ. In the same spirit,

we use a K-fold cross validation where we minimize the estimating equation ||PZ(Y−Zα−

Dβ)||2 instead of the predictive error ||(Y − Zα − Dβ)||2. We minimize the estimating

equation instead of the predictive error since the parameter of interest is the causal effect

β∗ that sets the expected value of the estimating equation to zero (see equation (2.6),

Sections 2.3.1 and 2.3.3). We use the “one standard error” rule used in most cross-validation

procedures (Hastie et al., 2009) and choose the smallest λ that is no more than one standard

error above the minimum of the estimating equation. In Section 2.4.1, we discuss the

performance of β̂λcv , where λcv is the cross-validated λ based on the estimating equation

through various simulation studies. Also, in Kang et al. (2015), we discuss another method

of choosing λ, in particular, choosing λ based on the theoretical guidance from Theorem

2.2 and Corollary 2.2. In short, we show that for better estimation performance of β̂λ, it is

important not to incorrectly set invalid IVs to be valid (i.e. let α̂j be zero when the true

α∗j is not zero), while the reverse is not as important. This observation argues for choosing
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λ that tends to set relatively few elements of α̂λ to be zero and we demonstrate that cross

validation achieves this goal in a wide variety of settings.

2.3.5. Estimation Performance

How well does sisVIVE estimate the causal effect β∗? In order to analyze the performance

of sisVIVE, we first introduce some basic notations and definitions.

Definition 2.2. For any matrix M, the upper and lower restricted isometry property (RIP)

constants of order k, denoted as δ+
k (M) and δ−k (M) respectively, are the smallest δ+

k (M)

and largest δ−k (M) such that

δ−k (M)‖α‖22 ≤ ‖Mα‖22 ≤ δ+
k (M)‖α‖22 (2.13)

holds for all k-sparse vectors α.

RIP conditions have been widely used in the literature on compressed sensing and high-

dimensional linear regression. See Cai and Zhang (2013a) and the references therein. The

following theorem characterizes the performance of sisVIVE in finite samples using the RIP

conditions. Note that this characterizes all the minimizers β̂λ from sisVIVE in (2.12).

Theorem 2.2 (Estimation performance of sisVIVE under RIP). Suppose we have the

model given in (2.3). Let D̂ = PZD. Let the restricted isometry constants δ+
2s(Z), δ−2s(Z),

δ+
2s(PD̂Z) be defined as in (2.13), where s is the number of invalid instruments. Suppose

2δ−2s(Z) > δ+
2s(Z) + 2δ+

2s(PD̂Z) (2.14)

holds. Then, the estimate β̂λ given by (2.12) with tuning parameter λ ≥ 3‖ZTPD̂⊥ε‖∞ has

the following performance guarantee

|β̂λ − β∗| ≤
|D̂T ε|
‖D̂‖22

+
1

‖D̂‖2

 (4/3
√

5)λ
√
sδ+

2s(PD̂Z)

2δ−2s(Z)− δ+
2s(Z)− 2δ+

2s(PD̂Z)

 . (2.15)
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Condition (2.14) includes the RIP constants, δ−2s(Z), δ+
2s(Z), and δ+

2s(PD̂Z). Unfortunately,

these RIP constants in (2.14) are difficult to evaluate. Hence, in some applications, it is

more convenient to use a slightly stronger but much simpler and interpretable condition

called the “mutual incoherence property” (MIP). Specifically, let D̂ = PZD and ‖Z.j‖2 = 1

for all j = 1, . . . , L. Define the constants µ and ρ as

µ = max
i 6=j
|ZT.iZ.j | and ρ = max

j
|D̂TZ.j |/‖D̂‖2. (2.16)

First, the constant µ measures the maximum correlation between any two columns of the

matrix of instruments Z. This is related to Assumption (a) in Section 2.3.1 where a full rank

Z means the columns of Z are linearly independent. In fact, if µ < 1/(L−1), Z is full rank.

Second, the constant ρ measures the maximum strength of individual instruments. A high

ρ doesn’t necessarily imply that all L instruments are individually strong; it just implies

that one of the L instruments is strong (i.e. has a high correlation to D); it’s possible

that the rest of the L − 1 instruments are weak. This notion of strength by ρ is slightly

different than the concentration parameter, which measures the overall strength of all the L

instruments (see Section 2.4.1 for more discussion). Also, ρ stands in contrast to Condition

(b) in Theorem 2.1 which looks at the individual values of γj , j = 1, . . . , L, instead of the

maximum of γjs.

Given the two MIP constants µ and ρ, we have the following result on estimation perfor-

mance. Like Theorem 2.2, Corollary 2.2 characterizes all the minimizers β̂λ from sisVIVE

in (2.12).

Corollary 2.2 (Estimation performance of sisVIVE under MIP). Let the MIP constants µ

and ρ be given in (2.16). If the number of invalid instruments, s, satisfies

s < min(
1

12µ
,

1

10ρ2
) (2.17)

the estimate β̂λ given by (2.12) with tuning parameter λ ≥ 3‖ZTPD̂⊥ε‖∞ has the following
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performance guarantee

|β̂λ − β∗| ≤
|D̂T ε|
‖D̂‖22

+
1

‖D̂‖2

(
4
√

105/9λsρ

1− s(5ρ2 + 6µ)

)
. (2.18)

We make the following remarks. First, in the Appendix, we show the condition in equation

(2.17) directly implies the condition in equation (2.13). Note that the converse is not true.

For example, suppose the matrix of instruments Z is an n by L matrix where each entry

Zij are from i.i.d. standard Normal. Based on Theorem 5.2 in Baraniuk et al. (2008), when

n ≥ Cs log(L/s) for some C not dependent on L and s, we are able to ensure the RIP

condition 2δ−2s(Z) > 3δ+
3s(Z) with high probability. Here, 2δ−2s(Z) > 3δ+

3s(Z) is a stronger

condition than 2δ−2s(Z) > δ+
3s(Z) + 2δ+

2s(PD̂Z), the RIP condition we need for Theorem 2.2.

However, based on Theorem 8 in Cai et al. (2013), to guarantee our MIP condition µ < 1
12s ,

we need n ≥ Cs2 logL for some C not dependent on L and s. In short, when the order of

n is between s log(L/s) and s2 logL, Z meet the RIP condition but not the MIP condition,

with high probability.

Second, the constraint on the number of invalid instruments, s, in Corollary 2.2 is strict, but

is required to precisely characterize the bound on estimation performance. As two reviewers

pointed out, if the instruments are even slightly correlated at µ = 0.1, s < 10/12, no invalid

instruments are allowed, and Corollary 2.2 is not useful in characterizing the performance of

sisVIVE. In Section 2.4.2, we study the behavior of sisVIVE when this constraint in (2.17)

may not hold.

Third, in the case where all the instruments are uncorrelated with each other so that

µ = 0, a small ρ provides a less restrictive upper bound on s. At first glance, this may be

counterintuitive since a small ρ implies that all the instruments’ individual correlation to

the exposure is weak and, therefore, having weak instruments allow one to have more invalid

instruments. However, we note that the denominator of the bound (2.18), specifically ‖D̂‖22
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is a function of the correlation of the instruments, and having a small ρ would translate

to having a small ‖D̂‖22. Hence, even though the condition (2.17) allows for more invalid

instruments, the upper bound (2.18) becomes worse and our estimator β̂λ will be far from

β∗.

Finally, we emphasize that the conditions in both Theorem 2.2 and Corollary 2.2 are suf-

ficient, but not necessary conditions for the performance bounds to hold. In particular, a

violation of these conditions does not imply that sisVIVE will perform badly (see Section

2.4.2).

2.3.6. Fast Numerical Algorithm

In addition to the theoretical guarantees on estimation performance, in practice, a fast,

scalable numerical algorithm for estimation is desirable, especially for MR where genetic

data can be large. Theorem 2.3 outlines a two-step numerical method whose solution is

identical to sisVIVE in (2.12), but is as fast as ordinary least squares.

Theorem 2.3 (Fast two-step numerical algorithm). Let PD̂ be the projection matrix onto

the vector D̂ and PD̂⊥ = I−PD̂. We propose the two-step algorithm as follows.

Step 1: For a given λ > 0, solve:

α̂λ ∈ argmin
α

1

2
||PD̂⊥PZY −PD̂⊥Zα||22 + λ||α||1

Step 2: Use α̂λ from Step 1 to estimate β̂λ by

β̂λ =
D̂T (Y − Zα̂λ)

||D̂||22

The solution to the two-step algorithm is identical to the solution to sisVIVE in (2.12)

In the two-step algorithm, step 1 is the standard Lasso problem with outcome PD̂⊥PZY

and design matrix PD̂⊥Z; remember, sisVIVE in (2.12) is not the standard Lasso problem
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as discussed in Section 2.3.3. Fast algorithms for the Lasso exist, most notably LARS

(Efron et al., 2004). In fact, LARS is able to solve α̂λ for all values of λ > 0 at the

same computational efficiency as ordinary least squares. Step 2 is also numerically efficient,

requiring a simple dot product operation between D̂ and Y − Zα̂λ. Thus, the proposed

two-step algorithm is, practically speaking, as fast as ordinary least squares. Best of all,

the estimate from this two-step algorithm is identical to sisVIVE.

2.4. Simulation

2.4.1. General Setup

We conduct various simulation studies to study the estimation performance between sis-

VIVE,two stage least squares (TSLS), the most popular estimator in IV and MR, and ordi-

nary least squares (OLS) under various settings that vary the instruments’ absolute/overall

and relative strength, their validity and correlation among each other, and endogeneity.

Let there be n = 2000 individuals and L potential candidate instruments. The observations

(Yi, Di,Zi.), i = 1, . . . , n are generated by

Yi = π∗ + ZTi.α
∗ +Diβ

∗ + εi

Di = γ∗0 + ZTi.γ
∗ + ξi

,

εi
ξi

 iid∼ N


0

0

 ,
 1 σ∗εξ

σ∗εξ 1




where Zi. is drawn from a multivariate normal with mean 0 and covariance matrix where

the diagonals are all one. Throughout the simulation, the parameters π∗, β∗, and γ∗0 are

fixed. However, we vary the following parameters

(i) the number of invalid instruments (L)

(ii) the endogeneity parameter (σ∗εξ)

(iii) the direct effect parameter α∗ = (1, 1, . . . , 0, 0) (s in ‖α∗‖0 = s )

(iv) the pairwise correlation between instruments (µ in equation (2.16))
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(v) the correlation structure between instruments (covariance matrix of Zi.)

(vi) the absolute/overall strength of instruments (concentration parameter)

(vii) the relative strength of all instruments (individual elements of γ∗)

(viii) the relative strength between invalid and valid instruments (γ∗A∗ and γ∗
(A∗)C

where

A∗ =supp(α∗))

In particular, for (i), we let L = 10 and L = 100. For (ii), we vary σ∗εξ from 0 to 0.9. For

(iii), we vary s from 0 to 9. For (iv), we set µ at four different values, 0, 0.25, 0.5, and

0.75. For (v), we consider three types of correlation structures between instruments. The

first case is where all the pairwise correlation between instruments is set to µ, i.e. the off-

diagonal elements of the covariance matrix for Zi. is set to µ. The second case is where only

the pairwise correlation between valid instruments is set to µ and the pairwise correlation

between invalid instruments is set to µ. However, there is no correlation between any pair

consisting of one valid and one invalid instrument. The third case is where the pairwise

correlation between a valid instrument and an invalid instrument is set to µ. However,

there is no pairwise correlation between any pair of valid instruments or any pair of invalid

instruments.

For (vi), we vary the absolute/overall instrument strength by the concentration parameter.

The concentration parameter is a popular measure for instrument strength; high values of

the concentration parameter indicate the overall strength of all L instruments is strong and

vice versa. The concentration parameter is also the population value of the first stage F

statistic for the instruments when the exposure is regressed on them; this first stage F statis-

tic is often used to check instrument strength (Stock et al., 2002). Based on Table 1 in Stock

et al. (2002), a set of instruments with a concentration parameter (scaled by the number of

valid instruments) of around 10 is considered weak in the absolute/overall sense and a set of

instruments with a concentration parameter (scaled by the number of valid instruments) of

around 100 is considered strong in the absolute/overall sense. We use these concentration
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parameters, 10 and 1000, to var the absolute, overall strength of the instruments. For (vii),

we vary the relative instrument strength by changing the individual entries of the vector γ∗

while keeping the concentration parameter fixed. Specifically, for a particular concentration

parameter, say 10, we consider instruments to have equal relative strength if γ∗j = γ∗k for

all j 6= k and variable relative strength if γ∗j = 2 ∗ γ∗k for various values of j 6= k. For

(viii), we look at two cases, the case where the invalid instruments are “stronger” than the

valid instruments and the case where the valid instruments are “stronger” than the invalid

instruments. To simulate these two new cases, we first fix the concentration parameter

from the setup in (vi). Then, for the case when the invalid instruments are “stronger” than

the valid instruments, we find γ∗ where γ∗j = 2 ∗ γ∗k for j ∈supp(α∗) (i.e. set of invalid

instruments) and k ∈supp(α∗)C (i.e. set of invalid instruments). In other words, the γ∗j s

associated with invalid instruments have twice the magnitude of the γ∗j s associated with the

valid instruments. For the case when the valid instruments are “stronger” than the invalid

instruments, we flip the roles of j and k where j now belongs to supp(α∗)C and k belongs

to supp(α∗).

For each simulation setting, we repeat the simulation either 500 or 1000 times. For each

repetition, we compute sisVIVE’s estimate of the causal effect, β̂λ, where λ is chosen by

10-fold cross validation outlined in Section 2.3.4. We also compute estimates from TSLS

and OLS. For TSLS, we run two types of TSLS. First, we run the “naive” TSLS as if all

the instruments are valid. This is quite common in MR studies where all the instruments

are assumed to be valid and the causal estimate is computed using TSLS. When some

of the instruments are in fact invalid, naive TSLS should give biased estimates. Second,

we run TSLS as if we knew exactly which instruments are valid, i.e. the “oracle” TSLS.

Specifically, we use the knowledge of the support of α∗ and run TSLS controlling for the

invalid instruments that are in the support of α∗ as covariates. Finally, we run OLS with

Z and D as our regressors and Y as our outcome. We expect OLS to perform poorly when

there is substantial endogeneity by D since OLS cannot control for endogenous variables.

But, OLS should be more efficient than IV methods if there is no endogeneity (Richardson
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and Wu, 1971).

2.4.2. Simulation Setup 1: L = 10, Pairwise Correlation Between All IVs and Uniform IV

Strength Between Valid and Invalid IVs

This setup has 10 candidate instruments (i.e. L = 10 in (i)), there is pairwise correlation

between all instruments (i.e. the first case in (v)), and there is no distinction between

invalid and valid IVs with regards to strength (i.e. we ignore (viii)). All other parameters

described in the previous section are varied.

Figure 2 shows the estimation error for β∗ when endogeneity is varied (i.e. vary (ii)). The

number of invalid instruments is fixed at s = 3 and we consider 16 different sets of instru-

ments based on their absolute and relative strength as well as their pairwise correlations.

For example, the top lefthand plot of Figure 2 corresponds to instruments whose over-

all strength is strong (i.e. scaled concentration parameter is around 100) , their relative

strength is equal (i.e. γ∗j are identical for all j = 1, . . . , L), and their pairwise correlations

are 0. In contrast, the bottom right plot of Figure 2 corresponds to instruments whose

their overall strength is weak (i.e. scaled concentration parameter is around 10), their rel-

ative strength is variable (i.e. γ∗j = 2 ∗ γ∗k for various values of j 6= k) and their pairwise

correlations are equal to 0.75.

As expected, OLS dominates naive TSLS, oracle TSLS, and sisVIVE when the endogeneity

is small and close to zero, with the dominance being greater for weak instruments. Once

there is a sufficient amount of endogeneity, oracle TSLS, which knows exactly which instru-

ments are valid and invalid, does best. However, sisVIVE, which is a feasible rather than

an infeasible oracle estimator, is close to the oracle TSLS; the gap between oracle TSLS

and sisVIVE gets larger as the instruments’ absolute strength gets weaker. Regardless of

instrument strength, naive TSLS, which assumes all the L instruments are valid, has a high

error since it cannot take into account the bias introduced by invalid instruments.

Figure 3 shows the estimation error for β∗ when the number of invalid instruments is
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Figure 2: sisVIVE Simulation Study of β∗ With Different Endogeneity and Where Corre-
lation Exists Between All IVs (Setup 1). There are ten (L = 10) instruments. Each line
represents median absolute estimation error (|β∗ − β̂|) after 1000 simulations. We fix the
number of invalid instruments to s = 3. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are two
types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while holding
the absolute strength (i.e. concentration parameter) fixed. Each row corresponds to the
maximum correlation between instruments.
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Instrument
Corr. (µ)

Strong Instru-
ment, Equal
Strength

Strong Instru-
ment, Variable
Strength

Weak Instru-
ment, Equal
Strength

Weak Instru-
ment, Variable
Strength

0 0.31 0.39 0.20 0.22
0.25 0.54 0.58 0.36 0.37
0.5 0.72 0.73 0.53 0.53
0.75 0.87 0.87 0.73 0.73

Table 1: Values of ρ in Corollary 2.2 for sisVIVE Simulation Study (Setup 1)

varied. The endogeneity, σ∗εξ, is fixed at 0.8. Like Figure 2, we consider the same 16 sets

of instruments. We first see that at s = 0, i.e. when there are no invalid instruments,

sisVIVE’s performance is nearly identical to naive and oracle TSLS. However, sisVIVE

does not use the knowledge that one knows exactly which instruments are valid while the

two TSLS estimators do. Also, sisVIVE’s performance degrades slightly for instruments

with weak absolute strength when the correlation between instruments increases.

When s < L/2 = 5, sisVIVE’s performance is comparable to oracle TSLS and better than

naive TSLS. However, for instruments with weak absolute strength, sisVIVE does slightly

worse compared to the oracle TSLS than for instruments with strong absolute strength.

Once we reach the identification boundary in Corollary 2.1, s < L/2 = 5, sisVIVE’s per-

formance becomes similar to naive TSLS. This is the case regardless of the instruments’

absolute and relative strength. Finally, for any s, oracle TSLS performs much better than

all the other estimators.

Also, in all 16 sets of instruments, we compute ρ and µ found in the condition for Corollary

2.2 from the simulated data. Specifically, we computed ρ from each simulated data set and

take the median value of it after 1000 simulations. For µ, we use the true values of the

correlation of Zi., specifically µ = 0, 0.25, 0.5, and 0.75. Table 1 shows the results.

Using Table 1, we see that the top lefthand plot of Figure 2 in our simulation study has ρ

of approximately 0.31 and µ = 0. Based on this, the upper bound on s in Corollary 2.2 is

1.04. However, since s = 3 for the simulations in Figure 2, the condition (2.17) in Corollary
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Figure 3: sisVIVE Simulation Study of β∗ With Different Number of Invalid IVs and Where
Correlation Exists Between All IVs (Setup 1). There are ten (L = 10) instruments. Each
line represents median absolute estimation error (|β∗ − β̂|) after 1000 simulations. We
fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are
two types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while
holding the absolute strength fixed. Each row corresponds to maximum correlation between
instruments.
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2.2 is violated and cannot be used to characterize the behavior of sisVIVE.

Table 2 shows the condition required by Corollary 2.2, specifically the upper bound on s in

(2.17), for all values of ρ and µ in Table 1. Based on Table 2, the condition for Corollary 2.2

is only satisfied when s = 0, i.e. when there are no invalid instruments, for vast majority

of cases. For example, when instrument are correlated and µ > 0, Corollary 2.2 cannot be

used to characterize the performance of sisVIVE if invalid instruments are present. Table

2 also re-illustrates the point in Section 2.3.5 that the condition for Corollary 2.2, even

though it’s interpretable, are strict and that Theorem 2.2 is a generalization of Corollary

2.2 at the expense of interpretability.

Instrument
Corr. (µ)

Strong Instru-
ment, Equal
Strength

Strong Instru-
ment, Variable
Strength

Weak Instru-
ment, Equal
Strength

Weak Instru-
ment, Variable
Strength

0 1.04 0.66 2.50 2.07
0.25 0.33 0.33 0.33 0.33
0.5 0.17 0.17 0.17 0.17
0.75 0.11 0.11 0.11 0.11

Table 2: Condition on s in Corollary 2.2 for sisVIVE Simulation Study (Setup 1)

Overall, in this setting, we find that in terms of absolute estimation error, |β∗ − β̂λ|, sis-

VIVE dominates TSLS whenever there are invalid IVs and its performance is similar to the

oracle. Also, we find that Corollary 2.2, while interpretable, provides a poor theoretical

characterization of sisVIVE’s performance.

2.4.3. Simulation Setup 2: L = 10, Pairwise Correlation Between Subsets of IVs and

Uniform IV strength Between Valid and Invalid IVs

This simulation setup is identical to Section 2.4.2, except we have two different types of

pairwise correlation between subsets of instruments instead of having pairwise correlation

between all instruments. Specifically, Figures 4 and 5 represent the setting where the

pairwise correlation between valid instruments is set to µ and the pairwise correlation

between invalid instruments is also set to µ. However, there is no correlation between any
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pair consisting of one valid and one invalid instrument. Figures 6 and 7 represent the setting

where the pairwise correlation between a valid instrument and an invalid instrument is set

to µ. However, there is no pairwise correlation between any pair of valid instruments or

any pair of invalid instruments.

Figures 4 and 6 vary endogeneity, but the number of invalid instruments is fixed at s = 3.

The behavior of all the estimators are similar to each other and to those in Section 2.4.2,

specifically Figure 2. OLS dominates naive TSLS, oracle TSLS, and sisVIVE when endo-

geneity is small and close to zero, with the dominance being greater for weaker instruments.

Once there is a sufficient amount of endogeneity, oracle TSLS, which knows exactly which

instruments are valid and invalid, does best. sisVIVE also resembles the oracle in terms of

performance. Naive TSLS, which assumes all the L instruments are valid, does worst since

it assumes that all the L instruments are valid.

Similarly, Figures 5 and 7 vary the number of invalid instruments, s, but fix the endogeneity

to 0.8. The estimators behave similarly across the two figures and to those in Section 2.4.2,

specifically Figure 3. We first see that at s = 0, i.e. when there are no invalid instruments,

sisVIVE’s performance is nearly identical to naive and oracle TSLS, although it degrades

slightly for instruments with weak absolute strength. Also, when s < L/2 = 5, sisVIVE’s

performance is comparable to oracle TSLS and better than naive TSLS. Once we reach

the identification boundary, s < L/2 = 5, sisVIVE’s performance becomes similar to naive

TSLS. This is the case regardless of the instruments’ absolute and relative strength.

Overall, in this setting, we find that the three correlation structures produce similar simu-

lation results with regards to the estimation error |β∗ − β̂λ|.

2.4.4. Simulation Setup 3: L = 10, Pairwise Correlation Between All IVs and Non-Uniform

IV Strength Between Valid and Invalid IVs

This simulation setup is identical to Section 2.4.2, except we consider two other types of

instrument strength, specifically the case where the invalid instruments are “stronger” than
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Figure 4: sisVIVE Simulation Study of β∗ With Different Endogeneity and Where Cor-
relation Only Exists Within Valid and Invalid IVs (Setup 2). There are ten (L = 10)
instruments. Each line represents the median absolute estimation error (|β∗ − β̂|) after
500 simulations. We fix the number of invalid instruments to s = 3. Each column in the
plot corresponds to different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of relative strengths, “Equal” and “Variable”, measured by
varying γ∗ while holding the absolute strength (i.e. concentration parameter) fixed. Each
row corresponds to the maximum correlation between instruments, but correlation only
exists within valid and invalid instruments.
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Figure 5: sisVIVE Simulation Study of β∗ With Different Number of Invalid IVs and Where
Correlation Only Exists Within Valid and and Invalid IVs (Setup 2). There are ten (L = 10)
instruments. Each line represents the median absolute estimation error (|β∗− β̂|) after 500
simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds
to a different variation of instruments’ absolute and relative strength. There are two types of
absolute strengths, “Strong” and “Weak”, measured by the concentration parameter. There
are two types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while
holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments, but correlation only exists within valid and invalid instruments.
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Figure 6: sisVIVE Simulation Study of β∗ With Different Endogeneity and Where Cor-
relation Only Exists Between Valid and Invalid IVs (Setup 2). Each line represents the
median absolute estimation error (|β∗ − β̂|) after 500 simulations. We fix the number of
invalid instruments to s = 3. Each column in the plot corresponds to a different variation
of instruments’ absolute and relative strength. There are two types of absolute strengths,
“Strong” and “Weak”, measured by the concentration parameter. There are two types
of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while holding the
absolute strength (i.e. concentration parameter) fixed. Each row corresponds to the maxi-
mum correlation between instruments, but correlation only exists between valid and invalid
instruments.
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Figure 7: sisVIVE Simulation Study of β∗ With Different Number of Invalid IVs and Where
Correlation Only Exists Between Valid and and Invalid IVs (Setup 2). There are ten
(L = 10) instruments. Each line represents the median absolute estimation error (|β∗− β̂|)
after 500 simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of relative strengths, “Equal” and “Variable”, measured
by varying γ∗ while holding the absolute strength fixed. Each row corresponds to the
maximum correlation between instruments, but correlation only exists between valid and
invalid instruments.
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the valid instruments and the case where the valid instruments are “stronger” than the

invalid instruments, i.e. where the strength of IVs are non-uniform between valid and

invalid IVs.

Figure 8 varies endogeneity, but fixes s = 3. In this case, sisVIVE performs as well as the

oracle for strong instruments. For weak instruments, sisVIVE does better when the valid

instruments are stronger than the invalid instruments (i.e. “Stronger Valid”) than when

the invalid instruments are stronger than the valid instruments (i.e. “Stronger Invalid”).

Under any strength, sisVIVE does much better than the next best alternative, naive two

stage least squares.

Figure 9 varies s, but fixes endogeneity to 0.8. In this case, sisVIVE deviates from the oracle

at s = 4 for the case when the invalid instruments are stronger than the valid instruments

(i.e. “Stronger Invalid”) and at s = 7 for the case when the valid instruments are stronger

than the invalid instruments (i.e. “Stronger Valid”). When sisVIVE deviates from oracle

TSLS, sisVIVE’s performance is no worse than naive TSLS.

In addition, for each of the simulation setups in this section (16 in total, each corresponding

to 16 subfigures in Figures 8 and 9), we compute ρ and µ that appear in Corollary 2.2,

similar to what we did in Section 2.4.2. Table 3 and 4 show the results. The column and

row labels in the two tables are identical to those found in Section 2.4.2, except the new

headings “Stronger Invalid” and “Stronger Valid.”

Instrument
Corr. (µ)

Strong Instru-
ment, Stronger
Invalid

Strong Instru-
ment, Stronger
Valid

Weak Instru-
ment, Stronger
Invalid

Weak Instru-
ment, Stronger
Valid

0 0.41 0.33 0.28 0.18
0.25 0.60 0.54 0.47 0.33
0.5 0.75 0.71 0.64 0.49
0.75 0.88 0.86 0.81 0.70

Table 3: Values of ρ in Corollary 2.2 for sisVIVE Simulation Study (Setup 3)

The simulation study in this section showed that in vast majority of cases, sisVIVE estimates
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Figure 8: sisVIVE Simulation Study of β∗ With Different Endogeneity and Where Corre-
lation Exists Between All IVs (Setup 3). We also vary the instrument strength of valid
and invalid instruments. There are ten (L = 10) instruments. Each line represents the
median absolute estimation error (|β∗ − β̂|) after 500 simulations. We fix the number of
invalid instruments to s = 3. Each column in the plot corresponds to a different variation
of instruments’ absolute and relative strength. There are two types of absolute strengths,
“Strong” and “Weak”, measured by the concentration parameter. There are two types of
strengths for valid and invalid instruments, “Stronger Invalid” and “Stronger Valid”, deter-
mined by varying γ∗ while holding the absolute strength fixed. Each row corresponds to
the maximum correlation between instruments.
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Figure 9: sisVIVE Simulation Study of β∗ With Different Number of Invalid IVs and Where
Correlation Exists Between All IVs (Setup 3). We also vary the instrument strength of valid
and invalid instruments. There are ten (L = 10) instruments. Each line represents the
median absolute estimation error (|β∗ − β̂|) after 500 simulations. We fix the endogeneity
σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different variation of instruments’
absolute and relative strength. There are two types of absolute strengths, “Strong” and
“Weak”, measured by the concentration parameter. There are two types of strengths for
valid and invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by
varying γ∗ while holding the absolute strength fixed. Each row corresponds to the maximum
correlation between instruments.
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Instrument
Corr. (µ)

Strong Instru-
ment, Stronger
Invalid

Strong Instru-
ment, Stronger
Valid

Weak Instru-
ment, Stronger
Invalid

Weak Instru-
ment, Stronger
Valid

0 0.60 0.90 1.27 3.02
0.25 0.28 0.33 0.33 0.33
0.5 0.17 0.17 0.17 0.17
0.75 0.11 0.11 0.11 0.11

Table 4: Condition on s in Corollary 2.2 for sisVIVE Simulation Study (Setup 3)

the causal effect of interest better than the next best alternative, naive TSLS, and in many

cases, sisSIVE’s performance is similar to the oracle. However, when the invalid instruments

are stronger than the valid instruments (i.e. “Stronger Invalid”), sisVIVE’s performance

does not do as well as the oracle, even though by the identification result in Corollary 2.1,

at s = 4, identification is guaranteed. The degradation in performance of sisVIVE may be

due to a number of reasons. It may follow from the fact that the condition in Corollary 2.2

are not met since Table 4 shows that in the “Stronger Invalid” case, s has to be less than 1

or 2. It may be that we chose a bad tuning parameter λ (see Sections 2.4.7 and 2.4.8). A

closer analysis of this particular case is a topic for future research. Regardless, even when

sisVIVE’s performance degrades compared to the oracle, sisVIVE does no worse than the

next best alternative, naive TSLS.

2.4.5. Simulation Setup 4: L = 10, Pairwise Correlation Between Subsets of IVs and Non-

Uniform IV Strength Between Valid and Invalid IVs

The simulation setup is identical to Section 2.4.3, except we consider the two types of

strengths considered in Section 2.4.4.

Figures 10 and 11 vary endogeneity, but fix s = 3. Figure 10 is the case where there is no

correlation between an invalid instrument and valid instrument and Figure 11 is the case

where there is no correlation among invalid instruments and among valid instruments. In

both scenarios, the behavior of the simulation is similar to Section 2.4.4. sisVIVE performs

as well as the oracle for strong instruments. For weak instruments, sisVIVE does better
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Figure 10: sisVIVE Simulation Study of β∗ With Different Endogeneity and Where Corre-
lation Only Exists Within Valid and Invalid IVs (Setup 4). We also vary the instrument
strength of valid and invalid instruments. There are ten (L = 10) instruments. Each line
represents the median absolute estimation error (|β∗− β̂|) after 500 simulations. We fix the
number of invalid instruments to s = 3. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are
two types of strengths for valid and invalid instruments, “Stronger Invalid” and “Stronger
Valid”, determined by varying γ∗ while holding the absolute strength fixed. Each row
corresponds to the maximum correlation between instruments, but correlation only exists
within valid and invalid instruments.
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Figure 11: sisVIVE Simulation Study of β∗ With Different Endogeneity and Where Corre-
lation Only Exists Between Valid and Invalid IVs (Setup 4). We also vary the instrument
strength of valid and invalid instruments. There are ten (L = 10) instruments. Each line
represents the median absolute estimation error (|β∗− β̂|) after 500 simulations. We fix the
number of invalid instruments to s = 3. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are
two types of strengths for valid and invalid instruments, “Stronger Invalid” and “Stronger
Valid”, determined by varying γ∗ while holding the absolute strength fixed. Each row
corresponds to the maximum correlation between instruments, but correlation only exists
between valid and invalid instruments.
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when the valid instruments are stronger than the invalid instruments (i.e. “Stronger Valid”)

than when the invalid instruments are stronger than the valid instruments (i.e. “Stronger

Invalid”). In both the strong and weak cases, sisVIVE does much better than the next best

alternative, naive TSLS.

Figures 12 and 13 vary s, but fix endogeneity to 0.8. Figure 12 is the case where there is no

correlation between an invalid instrument and valid instrument and Figure 13 is the case

where there is no correlation among invalid instruments and among valid instruments. In

both scenarios, the behavior of the simulation is similar to Section 2.4.4, sisVIVE deviates

from the oracle at s = 4 for the case when the invalid instruments are stronger than the valid

instruments (i.e. “Stronger Invalid”) and at s = 7 for the case when the valid instruments

are stronger than the invalid instruments (i.e. “Stronger Valid”). When sisVIVE deviates

from oracle TSLS, sisVIVE’s performance is no worse than naive TSLS.

Overall, similar to what we saw in Section 2.4.3, the three correlation structures produce

similar results with respect to estimation error, |β∗ − β̂λ|.

2.4.6. Simulation Setup 5: L = 100, Pairwise Correlation Between All IVs and Uniform

IV Strength Between Valid and Invalid IVs

The simulation setup is identical to Section 2.4.2, except we increase the number of instru-

ments to L = 100. We only consider instruments where all the pairwise correlation is set to

µ since results from Sections 2.4.3 and 2.4.5 showed the three different structures of instru-

mental correlation produced similar results in terms of sisVIVE’s estimation performance.

We note that in Mendelian randomization settings, it is rare to have 100 potential genetic

instruments since all 100 of the genetic instruments must affect the exposure (see Sections

2.1 and 2.3.1 for more details). Usually, the number of potential instruments is far less

than 100 (see Section 2.1 for some example MR studies). However, for completeness, we

demonstrate sisVIVE’s performance when L = 100 potential instruments are present.
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Figure 12: sisVIVE Simulation Study of β∗ With Different Number of Invalid IVs and Where
Correlation Only Exists Within Valid and and Invalid IVs (Setup 4). We also vary the
instrument strength of valid and invalid instruments. There are ten (L = 10) instruments.
Each line represents the median absolute estimation error (|β∗ − β̂|) after 500 simulations.
We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are
two types of strengths for valid and invalid instruments, “Stronger Invalid” and “Stronger
Valid”, determined by varying γ∗ while holding the absolute strength fixed. Each row
corresponds to the maximum correlation between instruments, but correlation only exists
within valid and invalid instruments.
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Figure 13: sisVIVE Simulation Study of β∗ With Different Number of Invalid IVs and
Where Correlation Only Exists Between Valid and Invalid IVs (Setup 4). We also vary the
instrument strength of valid and invalid instruments. There are ten (L = 10) instruments.
Each line represents median absolute estimation error (|β∗ − β̂|) after 500 simulations. We
fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are
two types of strengths for valid and invalid instruments, “Stronger Invalid” and “Stronger
Valid”, determined by varying γ∗ while holding the absolute strength fixed. Each row
corresponds to the maximum correlation between instruments, but correlation only exists
between valid and invalid instruments.
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Figure 14: sisVIVE Simulation Study of β∗ With Different Endogeneity and Where Corre-
lation Exists Between All IVs (Setup 5). There are 100 (L = 100) instruments. Each line
represents the median absolute estimation error (|β∗− β̂|) after 500 simulations. We fix the
number of invalid instruments to s = 30. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are two
types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while holding
the absolute strength (i.e. concentration parameter) fixed. Each row corresponds to the
maximum correlation between instruments.
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Figure 15: sisVIVE Simulation Study of β∗ With Different Number of Invalid IVs and
Where Correlation Exists Between All IVs (Setup 5). There are 100 (L = 100) instruments.
Each line represents the median absolute estimation error (|β∗ − β̂|) after 500 simulations.
We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are
two types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while
holding the absolute strength fixed. Each row corresponds to maximum correlation between
instruments.
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Figures 14 and 15 represent the results of estimation performance of β∗ over 500 simulations.

The behavior of all four estimators is similar to Figures 2 and 3 in Section 2.4.2. For example,

when we vary endogeneity (Figure 14), sisVIVE tends to perform slightly worse when the

overall strength of the instruments is weak. Also, when the number of invalid instruments,

s, is varied (Figure 15), sisVIVE has a sharp peak at s = 50, similar to the sharp peak at

s = 5 in Figure 3.

We also compute the ρ and µ resulting from this simulation study. Tables 5 and 6 show the

results. Notice that again, Corollary 2.2, while interpretable, tends to give very stringent

conditions on s in Table 6.

Instrument
Corr. (µ)

Strong Instru-
ment, Equal
Strength

Strong Instru-
ment, Variable
Strength

Weak Instru-
ment, Equal
Strength

Weak Instru-
ment, Variable
Strength

0 0.15 0.17 0.16 0.17
0.25 0.54 0.54 0.53 0.53
0.5 0.73 0.73 0.53 0.73
0.75 0.87 0.87 0.88 0.87

Table 5: Values of ρ in Corollary 2.2 for sisVIVE Simulation Study (Setup 5)

Instrument
Corr. (µ)

Strong Instru-
ment, Equal
Strength

Strong Instru-
ment, Variable
Strength

Weak Instru-
ment, Equal
Strength

Weak Instru-
ment, Variable
Strength

0 4.2 3.3 4.0 3.4
0.25 0.33 0.33 0.33 0.33
0.5 0.17 0.17 0.17 0.17
0.75 0.11 0.11 0.11 0.11

Table 6: Condition on s in Corollary 2.2 for sisVIVE Simulation Study (Setup 5)

Overall, the simulation study suggests that sisVIVE does scale as L increases and that its

performance at large values of L is similar to its performance at smaller values of L, such

as L = 10.
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2.4.7. Measuring the Performance of sisVIVE’s Estimation of α∗

This simulation setup is identical to Sections 2.4.2, 2.4.3, 2.4.4, 2.4.5, and 2.4.6, except we

examine sisVIVE’s estimation performance of α∗ instead of the estimation performance on

β∗. As we noted before, in Mendelian randomization, the target of estimation is β∗, the

causal effect of the exposure on the outcome, and our procedure, sisVIVE, was designed to

estimate β∗. However, in the process of estimating β∗, sisVIVE does produce an estimate

for α∗ and we explore the relationship between this intermediate estimate for α∗, α̂λ, and

our desired estimate for β∗, β̂λ.

To evaluate the estimate α̂λ, we consider two metrics of error, (a) the proportion of correctly

selected valid instruments and (b) the proportion of correctly selected invalid instruments.

To illustrate the two proportion-based error metrics, consider the following numerical ex-

ample. Suppose there are L = 10 instruments of which the first three instruments are

invalid, i.e. α∗j 6= 0 for j = 1, 2, 3, and the last seven instruments are valid, i.e. α∗j = 0 for

j = 4, 5, . . . , 10. If sisVIVE estimates the first two instruments to be invalid, i.e. α̂j 6= 0

for j = 1, 2, and the last eight to be valid, i.e. α̂j = 0 for j = 3, 4, . . . , 10, the proportion of

correctly selected valid instruments is 7/7 = 1 and sisVIVE makes no error in choosing the

valid instruments. However, the proportion of correctly selected invalid instruments is 2/3

and sisVIVE makes an error in choosing the invalid instruments.

First, we look at simulation setups in Sections 2.4.2 and 2.4.3. When we vary endogeneity

but fix the number of invalid instruments to s = 3 (Figures 16, 18, and 20, each figure

representing different correlation structures between IVs), the proportion of correctly se-

lected invalid instruments is 1 and sisVIVE never makes a mistake in selecting the invalid

instruments. However, sisVIVE does make mistakes in selecting the valid instruments as

the proportion of correctly selected valid instruments is mostly below 1. Also, depending on

the correlation structure between instruments, we get different behaviors for the proportion

of correctly selected valid instruments. For example, when every pair of instruments has

non-zero pairwise correlation (Figure 16), the proportion of correctly selected valid instru-
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ments remains roughly the same for different values of endogeneity. When there is only

pairwise correlation within valid and invalid instruments (Figure 18), the proportion of cor-

rectly selected valid instruments decreases as endogeneity increases, most notably among

weak instruments. Finally, when there is only pairwise correlation between valid and invalid

instruments (Figure 20), the proportion of correctly selected valid instruments increases as

endogeneity increases. Despite these differences in the proportion of correctly selected valid

instruments between different correlation structures, as the simulations in Sections 2.4.3

and 2.4.5, sisVIVE’s median absolute deviation from the truth, |β̂λ−β∗|, remains relatively

small and constant for all values of the endogeneity, irrespective of the different correlation

structures. Note that this constant behavior is also present in the proportion of correctly

selected invalid instruments, which remains at 1 for all correlation structures. This suggests

that there is a strong relationship between correctly selecting the invalid instruments and

sisVIVE’s median absolute deviation from β∗ while there is at most a weak relationship be-

tween correctly selecting valid instruments and sisVIVE’s median absolute deviation from

β∗. In fact, it appears that correctly selecting invalid instruments is more important than

valid instruments if a small median absolute deviation is desired.

When we vary the number of invalid instruments s, but fix the endogeneity (Figures 17, 19,

and 21, each figure representing different correlation structures between IVs), the propor-

tion of correctly selected invalid instrument decreases significantly at the s = 5 boundary,

regardless of the correlation structure between instruments. For example, for strong in-

struments in the three figures, when s < 5, the proportion of correctly selected invalid

instruments remain at 1. However, when s ≥ 5, the proportion of correctly selected invalid

instruments moves sharply away from 1. For weak instruments in the three figures, when

s < 5, the proportion of correctly selected invalid instruments remains close to 1, although

there is a slightly decrease in the proportion when s moves from s = 3 to s = 4 and when

µ is away from zero. But, similar to the strong instruments, when s ≥ 5, the proportion of

correctly selected invalid instruments moves away from 1.
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Figure 16: sisVIVE Simulation Study of α∗ With Different Endogeneity and Where Corre-
lation Exists Between All IVs (Setup 1). There are ten (L = 10) instruments. Each line rep-
resents the average proportions of correctly selected valid instruments and correctly selected
invalid instruments after 500 simulations. We fix the number of invalid instruments to s = 3.
Each column in the plot corresponds to a different variation of instruments’ absolute and
relative strength. There are two types of absolute strengths, “Strong” and “Weak”, mea-
sured by the concentration parameter. There are two types of relative strengths, “Equal”
and “Variable”, measured by varying γ∗ while holding the absolute strength (i.e. concen-
tration parameter) fixed. Each row corresponds to the maximum correlation between all
instruments.
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Figure 17: sisVIVE Simulation Study of α∗ With Different Number of Invalid IVs and
Where Correlation Exists Between All IVs (Setup 1). There are ten (L = 10) instru-
ments. Each line represents the average proportions of correctly selected valid instruments
and correctly selected invalid instruments after 500 simulations. We fix the endogeneity
σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different variation of instru-
ments’ absolute and relative strength. There are two types of absolute strengths, “Strong”
and “Weak”, measured by the concentration parameter. There are two types of relative
strengths, “Equal” and “Variable”, measured by varying γ∗ while holding the absolute
strength fixed. Each row corresponds to the maximum correlation between all instruments.
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The proportion of correctly selected valid instruments decreases steadily as s increases, re-

gardless of the type of correlation structure between instruments. For strong instruments

in the three figures, the decrease in the proportion of correctly selected valid instruments

begins immediately after s = 1. For weak instruments in the three figures, there is consid-

erable fluctuation of the proportion of correctly selected valid instruments. For example,

for Figures 17 and Figures 19 under weak IVs, the proportion of correctly selected valid

instruments generally decreases as s increase, with the notable exception in the first row,

third column of both figures. But, for Figure 21 under weak IVs, the proportion of correctly

selected valid instruments decreases when s < 5, but increases again after s ≥ 5.

The behaviors of the proportions of correctly selected invalid and valid instruments from

Figures 17, 19, and 21 reaffirm our observation that there is a strong association between

the proportion of correctly selected invalid instruments and the median absolute deviation

of β̂λ, |β̂λ − β∗|. In particular, from Figures 3, 5 and 7, when s < 5, sisVIVE’s median

absolute deviation is just as small as the oracle TSLS. However, when s ≥ 5, sisVIVE’s

median absolute deviation is just as large as the naive TSLS. The proportion of correctly

selected invalid instruments in Figures 17, 19, and 21 closely corresponds to this sharp

change in behavior between s < 5 and s ≥ 5. In contrast, the proportion of correctly

selected valid instruments does not have this sharp behavior at s = 5 across all the figures.

Overall, in simulation setups in Sections 2.4.2 and 2.4.3, we find that for any type of

correlation structure between instruments and different variations on endogeneity and s,

sisVIVE deviates far from the truth if we incorrectly select the invalid instruments. Hence, it

is much more important to correctly select invalid instruments at the expense of incorrectly

selecting valid instruments for better estimation of β∗. This relationship makes sense since

using invalid instruments creates bias whereas using at least one valid instrument and

not using other valid instruments does not create bias, but just reduces efficiency. The

relationship also suggests that when we choose the tuning parameter λ, which controls the

number of non-zero α̂λ and consequently, controls the proportion of correctly selected valid
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Figure 18: sisVIVE Simulation Study of α∗ with Different Endogeneity and Where Cor-
relation Only Exists Within Valid and Invalid IVs (Setup 2). There are ten (L = 10)
instruments. Each line represents the average proportions of correctly selected valid instru-
ments and correctly selected invalid instruments after 500 simulations. We fix the number
of invalid instruments to s = 3. Each column in the plot corresponds to a different variation
of instruments’ absolute and relative strength. There are two types of absolute strengths,
“Strong” and “Weak”, measured by the concentration parameter. There are two types
of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while holding the
absolute strength (i.e. concentration parameter) fixed. Each row corresponds to the maxi-
mum correlation between instruments, but correlation only exists within valid and invalid
instruments.
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Figure 19: sisVIVE Simulation Study of α∗ with Different Number of Invalid IVs and
Where Correlation Only Exists Within Valid and and Invalid IVs (Setup 2). There are ten
(L = 10) instruments. Each line represents the average proportions of correctly selected
valid instruments and correctly selected invalid instruments after 500 simulations. We fix
the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are two
types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while holding
the absolute strength fixed. Each row corresponds to the maximum correlation between
instruments, but correlation only exists within valid and invalid instruments.
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Figure 20: sisVIVE Simulation Study With Different Endogeneity and Where Correlation
Only Exists Between Valid and Invalid IVs (Setup 2). Each line represents the average pro-
portions of correctly selected valid instruments and correctly selected invalid instruments
after 500 simulations. We fix the number of invalid instruments to s = 3. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of relative strengths, “Equal” and “Variable”,
measured by varying γ∗ while holding the absolute strength (i.e. concentration parame-
ter) fixed. Each row corresponds to the maximum correlation between instruments, but
correlation only exists between valid and invalid instruments.

59



Strong IVs

Equal Strength

Strong IVs

Variable Strength

Weak IVs

Equal Strength

Weak IVs

Variable Strength

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Instrum
ent corr. = 0

Instrum
ent corr. = 0.25

Instrum
ent corr. = 0.5

Instrum
ent corr. = 0.75

1 3 4 5 7 9 1 3 4 5 7 9 1 3 4 5 7 9 1 3 4 5 7 9
s

Er
ro

r Metric

Correctly Selected Invalid IVs

Correctly Selected Valid IVs

Figure 21: sisVIVE Simulation Study of α∗ With Different Number of Invalid IVs and
Where Correlation Only Exists Between Valid and and Invalid IVs (Setup 2). There are
ten (L = 10) instruments. Each line represents the average proportions of correctly selected
valid instruments and correctly selected invalid instruments after 500 simulations. We fix
the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are two
types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while holding
the absolute strength fixed. Each row corresponds to the maximum correlation between
instruments, but correlation only exists between valid and invalid instruments.
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and invalid instruments, we should choose λ that correctly selects the invalid instruments,

even if some valid instruments are selected as invalid. In particular, λ should generally be

small so that there is less `1 penalty on ‖α‖1, but not too small so that the penalty has no

effect. As a result, few elements of α̂λ will be zero and more instruments will be selected

as invalid. We discuss the choice of λ in more detail in Section 2.4.8.

Second, we look at simulation setups in Section 2.4.4. Figures 22 and 23 represent the case

where we vary endogeneity and s, respectively. The behavior of the two curves are similar

to what we observed before. That is, whenever sisVIVE performs badly in estimating β∗,

there is a large decrease in the proportion of correctly selected invalid instruments. Also,

there is no relationship between sisVIVE’s median absolute bias of β̂λ and the proportion of

correctly selected valid instruments. For example, when we vary endogeneity (Figure 22),

the proportion of correctly selected invalid instruments remain at 1 except when the overall

strength of the instruments is weak and the invalid instruments are stronger than the valid

instruments (i.e. “Stronger Invalid”). Regardless, in all cases, a smaller median absolute

deviation in Figure 8 corresponds with having a high proportion of correctly selected invalid

instruments in Figure 22. In contrast, the proportion of correctly selected valid instruments

remains below 1 if the invalid instruments are stronger than the valid instruments (i.e.

“Stronger Invalid”) and close to 1 if the valid instruments are stronger than the invalid

instruments (i.e. “Stronger Valid”). Furthermore, there does not seem to be any relationship

between the proportion of correctly selected valid instruments and the estimation error of

β∗ in Figure 8.

Similarly, when we vary s (Figure 23) and we are under the case where the invalid instru-

ments are stronger than the valid instruments (i.e. “Stronger Invalid”), the proportion of

correctly selected invalid instruments move away from 1 at s = 4 when the overall strength

of the instruments is strong and at s = 3 when the overall strength of the instruments is

weak. When the valid instruments are stronger than the invalid instruments (i.e. “Stronger

Valid”), the proportion of correctly selected invalid instruments move away from 1 at s = 7
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Figure 22: sisVIVE Simulation Study of α∗ with Different Endogeneity and Wher Corre-
lation Exists Between All IVs (Setup 3). We also vary the instrument strength of valid
and invalid instruments. There are ten (L = 10) instruments. Each line represents the
average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the number of invalid instruments to s = 3. Each
column in the plot corresponds to a different variation of instruments’ absolute and relative
strength. There are two types of absolute strengths, “Strong” and “Weak”, measured by
the concentration parameter. There are two types of strengths for valid and invalid instru-
ments, “Stronger Invalid” and “Stronger Valid”, determined by varying γ∗ while holding
the absolute strength fixed. Each row corresponds to the maximum correlation between
instruments.
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for strong instruments and s = 6 for weak instruments. Again, similar to what we observed

before, these points of s correspond to sisVIVE’s deviation from the oracle in Figure 9. In

contrast, the proportion of correctly selected valid instruments vary widely in Figure 23

and there does not seem to be any relationship between it and sisVIVE’s deviation from

the oracle in Figure 9.

Third, we look at the simulation setup in Section 2.4.5. Similar to our observations in Sec-

tion 2.4.5, the pattern of simulations when we have different correlation structure between

instruments is similar to the pattern of simulation when we have equi-correlation between

all instruments in Section 2.4.4 when examining the performance of sisVIVE on α∗ (Figures

24, 25, 26, and 27)

Fourth, we look at the simulation setup in Section 2.4.6. Figures 28 and 29 represent cases

where we vary endogeneity and the number of invalid instruments, respectively. Similar

to what we observed with L = 10 and where all IVs have same pairwise correlation, when

we vary endogeneity (Figure 28), but fix s to 30, we see that the proportion of correctly

selected invalid instruments is 1. When we vary s (Figure 29), we again notice a sharp

decrease in the proportion of correctly selected valid invalid instruments around s = 50 for

all instrument strengths and magnitudes of the correlation.

In summary, measuring sisVIVE’s performance on α∗ shows that a good estimate of β∗ de-

pends strongly on correctly selecting the invalid instruments more than correctly selecting

the valid instruments. This observation remains true regardless of instrument correlation

structure, types of instrument strength, levels of endogeneity, degree of instrument correla-

tion, or the number of invalid instruments.

2.4.8. Choice of λ

In this section, we look at different ways to select λ. As discussed in Section 2.3.4, the

choice of λ impacts the performance of sisVIVE where a high value of λ will push most

elements of α̂λ to zero while a low value of λ will do the opposite. In Section 2.3.4, we

63



Strong IVs

Stronger Invalid

Strong IVs

Stronger Valid

Weak IVs

Stronger Invalid

Weak IVs

Stronger Valid

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Instrum
ent corr. = 0

Instrum
ent corr. = 0.25

Instrum
ent corr. = 0.5

Instrum
ent corr. = 0.75

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
s

Er
ro

r Metric

Correctly Selected Invalid IVs

Correctly Selected Valid IVs

Figure 23: sisVIVE Simulation Study of α∗ With Different Number of Invalid IVs and
Where Correlation Exists Between All IVs (Setup 3). We also vary the instrument strength
of valid and invalid instruments. There are ten (L = 10) instruments. Each line repre-
sents the average proportions of correctly selected valid instruments and correctly selected
invalid instruments after 500 simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each
column in the plot corresponds to a different variation of instruments’ absolute and relative
strength. There are two types of absolute strengths, “Strong” and “Weak”, measured by
the concentration parameter. There are two types of strengths for valid and invalid instru-
ments, “Stronger Invalid” and “Stronger Valid”, determined by varying γ∗ while holding
the absolute strength fixed. Each row corresponds to the maximum correlation between
instruments.
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Figure 24: sisVIVE Simulation Study of α∗ With Different Endogeneity and Where Cor-
relation Only Exists Within Valid and Invalid IVs (Setup 4). We also vary the instrument
strength of valid and invalid instruments. There are ten (L = 10) instruments. Each line
represents the average proportions of correctly selected valid instruments and correctly se-
lected invalid instruments after 500 simulations. We fix the number of invalid instruments to
s = 3. Each column in the plot corresponds to a different variation of instruments’ absolute
and relative strength. There are two types of absolute strengths, “Strong” and “Weak”,
measured by the concentration parameter. There are two types of strengths for valid and
invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying γ∗

while holding the absolute strength fixed. Each row corresponds to the maximum correla-
tion between instruments, but correlation only exists within valid and invalid instruments.
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Figure 25: sisVIVE Simulation Study of α∗ With Different Number of Invalid IVs and
Where Correlation Only Exists Within Valid and and Invalid IVs (Setup 4). We also vary
the instrument strength of valid and invalid instruments. There are ten (L = 10) instru-
ments. Each line represents the average proportions of correctly selected valid instruments
and correctly selected invalid instruments after 500 simulations. We fix the endogeneity
σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different variation of instru-
ments’ absolute and relative strength. There are two types of absolute strengths, “Strong”
and “Weak”, measured by the concentration parameter. There are two types of strengths
for valid and invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by
varying γ∗ while holding the absolute strength fixed. Each row corresponds to the maxi-
mum correlation between instruments, but correlation only exists within valid and invalid
instruments.
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Figure 26: sisVIVE Simulation Study of α∗ With Different Endogeneity and Where Corre-
lation Only Exists Between Valid and Invalid IVs (Setup 4). We also vary the instrument
strength of valid and invalid instruments. There are ten (L = 10) instruments. Each line
represents the average proportions of correctly selected valid instruments and correctly se-
lected invalid instruments after 500 simulations. We fix the number of invalid instruments to
s = 3. Each column in the plot corresponds to a different variation of instruments’ absolute
and relative strength. There are two types of absolute strengths, “Strong” and “Weak”,
measured by the concentration parameter. There are two types of strengths for valid and
invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying γ∗

while holding the absolute strength fixed. Each row corresponds to maximum correlation
between instruments, but correlation only exists between valid and invalid instruments.
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Figure 27: sisVIVE Simulation Study of α∗ With Different Number of Invalid IVs and
Where Correlation Only Exists Between Valid and and Invalid IVs (Setup 4). We also vary
the instrument strength of valid and invalid instruments. There are ten (L = 10) instru-
ments. Each line represents the average proportions of correctly selected valid instruments
and correctly selected invalid instruments after 500 simulations. We fix the endogeneity
σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different variation of instru-
ments’ absolute and relative strength. There are two types of absolute strengths, “Strong”
and “Weak”, measured by the concentration parameter. There are two types of strengths
for valid and invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by
varying γ∗ while holding the absolute strength fixed. Each row corresponds to maximum
correlation between instruments, but correlation only exists between valid and invalid in-
struments.
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Figure 28: sisVIVE Simulation Study of α∗ With Different Endogeneity and Where Cor-
relation Exists Between All IVs (Setup 5). There are ten (L = 100) instruments. Each
line represents the average proportions of correctly selected valid instruments and cor-
rectly selected invalid instruments after 500 simulations. We fix the number of invalid
instruments to s = 30. Each column in the plot corresponds to a different variation of
instruments’ absolute and relative strength. There are two types of absolute strengths,
“Strong” and “Weak”, measured by the concentration parameter. There are two types of
relative strengths, “Equal” and “Variable”, measured by varying γ∗ while holding the abso-
lute strength (i.e. concentration parameter) fixed. Each row corresponds to the maximum
correlation between all instruments.
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Figure 29: sisVIVE Simulation Study of α∗ With Different Number of Invalid IVs and
Where Correlation Exists Between All IVs (Setup 5). There are 100 (L = 100) instru-
ments. Each line represents the average proportions of correctly selected valid instruments
and correctly selected invalid instruments after 500 simulations. We fix the endogeneity
σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different variation of instru-
ments’ absolute and relative strength. There are two types of absolute strengths, “Strong”
and “Weak”, measured by the concentration parameter. There are two types of relative
strengths, “Equal” and “Variable”, measured by varying γ∗ while holding the absolute
strength fixed. Each row corresponds to maximum correlation between all instruments.
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suggested cross-validation with the “one standard error” rule as a data-driven method to

choose the tuning parameter. In addition, in Section 2.3.5, we provided theoretical results

which suggested choosing a λ that is greater than 3‖ZTPD̂⊥ε‖∞. We explore these two

possible choices of λ and their impact on estimation.

We begin with a simulation study similar to Sections 2.4.2 and 2.4.4. In particular, we

have L = 10 instruments of which the pairwise correlation between all instruments is 0.75

and the endogeneity is fixed at 0.8. We vary s, the number of invalid instruments and

vary instruments’ absolute strength, relative strength, and other strengths considered in

Section 2.4.4. In short, the simulation setups we consider correspond to the last row of

Figures 3 and 9. We do not simulate other correlation structures or different Ls because

the simulation results in Sections 2.4.3 and 2.4.6 showed sisVIVE behaves similarly as the

cases we consider in this section.

Table 7 shows the different values of λ averaged across 500 simulations where the overall,

absolute instrument strength is strong (see Section 2.4.1 for details on the definition of

absolute instrument strength). The column labeled “CV” denotes the average λs based on

cross validation laid out in Section 2.3.4. The column labeled “Theory” denotes the average

λs based on Theorem 2.2, specifically the average of 3‖ZTPD̂⊥ε‖∞ over 500 simulations. We

use the same column heading labels in Figures 3 and 9. In almost all cases, cross validation

tends to choose a smaller λ than one prescribed by Theorem 2.2, with the exception of s = 9

in the “Equal” column and s = 7, 8, and 9 in the “Stronger Valid” column. Except for these

cases, cross validation tends to prefer a small λ, thereby preferring α̂λ to have more non-

zero entries than zero entries and more instruments selected as invalid instruments than

valid instruments.

Table 8 shows the estimation performance of sisVIVE, the median of |β∗ − β̂λ| over 500

simulations, based on two different λs, one based on cross validation and one based on

Theorem 2.2. In most cases, sisVIVE with a cross validated λ performs better than sis-

VIVE with a theory-based λ. For the “Equal” and ”Variable” case, when s < 5, sisVIVE
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Equal Variable Stronger Invalid Stronger Valid
s CV Theory CV Theory CV Theory CV Theory

1 1.88 2.70 2.04 2.71 1.53 2.70 2.06 2.72
2 1.36 2.66 1.39 2.67 0.95 2.65 1.58 2.68
3 1.06 2.64 1.12 2.66 0.84 2.64 1.33 2.68
4 0.84 2.64 0.86 2.65 1.08 2.63 1.16 2.68
5 1.70 2.63 1.33 2.64 0.87 2.62 0.99 2.67
6 1.78 2.62 1.10 2.63 0.85 2.61 0.96 2.67
7 2.02 2.62 0.79 2.64 0.91 2.61 3.40 2.68
8 2.41 2.62 0.86 2.62 1.01 2.61 3.74 2.67
9 3.19 2.62 0.45 2.62 1.31 2.60 6.03 2.67

Table 7: Average λ From Cross Validation (CV) and Theorem 2.2 (Theory) for Strong IVs.
Averages are taken after 500 simulations.

with a cross-validated λ performs better than sisVIVE with a theory-based λ. For the

“Stronger Invalid” case, when s < 3, sisVIVE with a cross validated λ performs better than

sisVIVE with a theory-based λ. However, when s ≥ 3, sisVIVE with a cross validated λ

performs worse than sisVIVE with a theory-based λ, although the differences between the

two decrease as s increases. For the “Stronger Valid” case, sisVIVE with a cross validated

λ always dominates sisVIVE with a theory-based λ, although the differences between the

two are slight when s ≥ 7.

Equal Variable Stronger Invalid Stronger Valid
s CV Theory CV Theory CV Theory CV Theory

1 0.13 0.17 0.14 0.16 0.13 0.19 0.14 0.16
2 0.16 0.27 0.16 0.27 0.16 0.34 0.16 0.24
3 0.18 0.39 0.18 0.37 0.24 0.54 0.18 0.32
4 0.21 0.53 0.22 0.53 1.57 1.34 0.20 0.41
5 0.71 1.15 0.76 1.43 1.43 1.25 0.23 0.55
6 2.43 2.34 2.05 1.93 1.35 1.23 0.28 0.71
7 2.42 2.37 1.83 1.95 1.28 1.21 3.83 3.95
8 2.35 2.34 1.98 2.05 1.22 1.18 4.24 4.39
9 2.29 3.01 1.23 1.37 1.17 1.16 4.34 4.51

Table 8: sisVIVE Estimation Performance of β∗ Between λ by Cross Validation (CV) and
from Theorem 2.2 (Theory) for Strong IVs. Averages are taken after 500 simulations.

Table 9 considers the same setup as Table 7, except we now look at instruments where

their overall, absolute strength is weak. Under this case, we see drastic differences between
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cross validation and Theorem 2.2. For example, for the “Equal” and “Variable” cases, when

s < 5, λ chosen based on cross validation is, on average, smaller than λ chosen based on

Theorem 2.2. When s ≥ 5, λ chosen based on cross validation is, on average, bigger than

λ chosen based on Theorem 2.2. For the “Stronger Invalid” case, when s < 3, λ based on

cross validation is, on average, smaller than λ based on Theorem 2.2. But, when s ≥ 3,

the opposite is the case. Finally, for the “Stronger Valid” case, this transition phenomena

occurs at s = 6.

Equal Variable Stronger Invalid Stronger Valid
s CV Theory CV Theory CV Theory CV Theory

1 1.36 3.20 1.56 3.23 1.05 3.13 1.52 3.24
2 1.25 3.00 1.22 3.01 0.93 2.92 1.47 3.07
3 1.12 2.91 1.11 2.94 3.67 2.81 1.26 3.00
4 2.06 2.86 1.83 2.89 9.47 2.75 1.13 2.97
5 6.30 2.80 4.34 2.84 10.52 2.71 1.20 2.92
6 11.99 2.78 7.48 2.80 10.74 2.69 3.36 2.93
7 14.14 2.76 5.92 2.77 10.58 2.67 7.79 2.93
8 14.04 2.75 5.94 2.75 9.92 2.66 9.70 2.93
9 13.16 2.74 2.02 2.68 9.47 2.64 7.09 2.96

Table 9: Average λ From Cross Validation (CV) and Theorem 2.2 (Theory) for Weak IVs.
Averages are taken after 500 simulations.

Table 10 considers the same setup as Table 8, except we now look at instruments where

their overall, absolute strength is weak. Similar to Table 8, sisVIVE with a cross validated λ

performs better than sisVIVE with a theory-based λ, with the only exception at s = 5 under

the “Equal” column. In fact, sisVIVE with a cross validated λ performs drastically better

than sisVIVE with a λ based on Theorem 2.2 in the following cases: s < 5 (for “Equal”

and “Variable” cases), s < 3 (for “Stronger Invalid” case), and s < 7 (for “Stronger Valid”

case).

Based on these simulations, sisVIVE based on cross validation generally performs better

than sisVIVE based on Theorem 2.2, especially when the overall instrument strength is

weak. We also note that cross validation tends to choose a smaller λ than the one based on

Theorem 2.2, suggesting that for better estimation, it is preferable to set only a few elements
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Equal Variable Stronger Invalid Stronger Valid
s CV Theory CV Theory CV Theory CV Theory

1 0.44 0.63 0.44 0.60 0.43 0.69 0.44 0.61
2 0.51 0.96 0.50 0.94 0.50 1.13 0.52 0.88
3 0.55 1.30 0.55 1.26 0.70 1.86 0.56 1.13
4 0.61 1.74 0.61 1.75 3.19 3.77 0.58 1.43
5 4.10 3.80 3.98 3.93 3.25 3.78 0.62 1.83
6 5.28 6.03 5.28 5.54 3.36 3.79 0.73 2.52
7 5.84 6.55 5.58 5.63 3.47 3.77 7.51 7.68
8 6.29 6.75 6.19 6.19 3.52 3.70 9.69 9.77
9 6.72 6.90 4.18 4.34 3.56 3.64 10.86 10.91

Table 10: sisVIVE Estimation Performance of β∗ Between λ by Cross Validation (CV) and
from Theorem 2.2 (Theory) for Weak IVs. Averages are taken after 500 simulations.

of α̂λ to zero and declare more instruments to be invalid than valid. This observation was

also seen in our simulation in Section 2.4.7 where low median absolute error, |β∗− β̂λ|, was

tied to high proportion of correctly chosen invalid instruments. As an aside, this observation

is in contrast with estimating sparse vectors in typical high dimensional regression settings

where many zeroed elements are desirable in the estimated sparse vector.

Despite the simulation evidence suggesting the use of cross validation to choose λ over

Theorem 2.2 to choose λ, unfortunately, there is little theory to justify the use of cross

validation in `1 penalization settings (Hastie et al., 2009; Bühlmann and van der Geer,

2011). However, Section 2.5.1 of Bühlmann and van der Geer (2011) does provide limited

theoretical results suggesting that λ based on cross validation tends to set few elements of

α̂λ to zero, a desirable property in our setting where we want to select more instruments

to be invalid than valid for better estimation performance of β̂λ.

Besides cross validation and Theorem 2.2, there is another way to choose λ if we assume

Corollary 2.1 holds for our data. Specifically, if we are in the always identified region where

s < U ≤ L/2, one possible method of choosing λ would be to find the λ where exactly

U = L/2, say λL/2. From there, we grid the values of potential λs between 0 and λL/2 and

choose the λ that minimizes the estimating equation ||PZ(Y − Zα −Dβ)||2. It would be

interesting to investigate this method in future research.

74



2.4.9. Summary of Simulation Studies

The simulation studies above covered different types of instrument strength, correlation

structure between instruments, and total number of potential instruments. We also explored

different metrics of error, such as the proportion of correctly selected valid instruments and

invalid instruments, to analyze the relationship between estimating β∗ and α∗. In addition,

we also computed the conditions for Corollary 2.2, specifically ρ, µ, and λ required to achieve

the performance bound. In every setting considered, sisVIVE performs no worse than the

next best alternative, naive TSLS. In fact, in most cases, sisVIVE beats naive TSLS and

performs similarly to the oracle TSLS. The only case where sisVIVE’s performance deviated

greatly from the oracle TSLS was when the invalid instruments were stronger than the

valid instruments and s = 4. In addition, we showed that a good estimate of β∗ depends

strongly on correctly selecting the invalid instruments more than correctly selecting the

valid instruments and choosing λ based on cross validation seems to favor this situation.

We also find that choosing λ based on Theorem 2.2 leads to a higher λ than one based on

cross validation. Finally, we find that sisVIVE based on λ chosen by cross validation always

performed at least as well as sisVIVE based on λ chosen by Theorem 2.2. In fact, in most

cases, sisVIVE with a cross-validated λ performs better than sisVIVE with a λ chosen by

Theorem 2.2.

Overall, sisVIVE using a cross-validated λ does much better than naive TSLS, the most

frequently used estimator in MR and IV. In many cases, sisVIVE beats the naive TSLS

and is comparable to oracle TSLS. The promising simulation results suggest that sisVIVE

should be used whenever there is concern about invalid instruments.

2.5. Data Analysis: The Effect of Obesity on Quality of Life

2.5.1. Background

We demonstrate the potential benefit of using sisVIVE in MR by analyzing the effect of

obesity, the exposure, on health-related quality of life, the outcome. An individual’s quality
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of life is the general well-being of the individual; an individual’s health quality of life is the

subset of quality of life related to the individual’s health (Torrance, 1987). Previous non-MR

studies by Trakas et al. (2001) and Sach et al. (2006) have shown that there is a negative

association between obesity and health-related quality of life. However, a fundamental

difficulty with these studies is that the outcome, health-related quality of life, encompasses

various factors about the individual, making it difficult to control for all possible confounders

that may affect obesity and health-related quality of life (Cawley and Meyerhoefer, 2012).

An MR approach offers the potential of controlling for unmeasured confounders.

For the analysis, we use the data from the Wisconsin Longitudinal Study (WLS), a well-

known longitudinal study that has kept track of American high school graduates from

Wisconsin since 1957. We look at graduates that were reinterviewed in 2003-2005 (Hauser,

2005) and who have been genotyped. Similar to another analysis with the WLS genetic

data, we remove individuals with more than 10% missing genotype data (Roetker et al.,

2012). Our analysis of the data set contains n = 3712 individuals with 1913 females and

1799 males born mostly between 1938 to 1940.

To measure health-related quality of life, we use the Health Utility Index Mark 3 (HUI-3)

which was also used in Trakas et al. (2001). HUI-3 is a composite score of utility between

0 and 1, with 1 indicating highest health state and 0 indicating a health state equivalent

to death; negative utility is possible and indicates that the person is alive, but in a state

worse than death.

To measure obesity, we use the body mass index (BMI) and the US National Institute

of Health clinical guidelines (National Institute of Health, 1998) that were also used in

Trakas et al. (2001) and Sach et al. (2006) in their analysis. Specifically, we follow Trakas

et al. (2001) and define the exposure by assigning individuals with BMI less than 30 (i.e.

not obese) to be 0, individuals with BMI between 30 and 35 (i.e. obese class I) to be

1, individuals with BMI between 35 and 40 (i.e. obese class II) to be 2, and individuals

with BMI greater than 40 (i.e. obese class III) to be 3 so that each value of the exposure
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corresponds to the increasing obese classes used in Trakas et al. (2001) and the US National

Institute of Health clinical guidelines (National Institute of Health, 1998). For instance,

exposure value of zero corresponds to non-obese individuals while exposure value of two

corresponds to individuals in obese class II. Hence, the causal effect of interest is the effect

of moving up in the obese class; specifically β∗ in model (2.1) will correspond to the effect

of moving up one obese class on the HUI-3 index of health-related quality of life. In Section

2.5.3, we explore different definitions to quantify obesity and the resulting estimates from

different definitions.

For potential candidate instruments, we use the following single nucleotide polymorphisms

(SNPs) in the WLS that have been previously shown to be associated with obesity: rs1421085,

rs1501299, and rs2241766 (see Table 11). rs1421085 is in the FTO gene and it has been

shown to be strongly associated with obesity (Dina et al., 2007; Price et al., 2008). rs1501299

(i.e. +276G>T) is in the ADIPOQ gene that encodes adiponectin, a protein encoding for

lipid metabolism, and has been associated with obesity (Bouatia-Naji et al., 2006; Yang

et al., 2007). Finally, rs2241766 is also in the ADIPOQ gene that has been associated with

obesity (Ukkola et al., 2003; Yang et al., 2003; Beckers et al., 2009). For all the SNPs, we

follow an MR study done by Timpson et al. (2005) and assume an additive model. Although

we have no particular reason to think any of the SNPs is an invalid IV, we are uncertain due

to the lack of complete knowledge about the biological functions of the SNPs, a common

scenario in MR studies. Our sisVIVE estimator will provide a good estimate as long as

least two of the three SNPs are valid IVs.

Instruments Major alleles Heterozygote Minor alleles MAF (SE)

rs1421085 1281 (34.5%; TT) 1818 (49.0%; CT) 613 (16.5%; CC) 0.39 (0.0057)
rs1501299 1950 (52.5%; CC) 1502 (40.5%; AC) 260 (7.0%; AA) 0.24 (0.0049)
rs2241766 2956 (79.6%; TT) 719 (19.4%; TG) 37 (1.0%; GG) 0.10 (0.0036)
rs6265 2437 (65.7%; GG) 1112 (30.0%; AG) 163 (4.4%; AA) 0.19 (0.0046)

Table 11: Summary of Instruments in the Data Analysis. MAF stands for minor allele
frequency
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2.5.2. Analysis

A simple ordinary least squares analysis estimates that an increase in one obese class is

associated with a 0.052 (SE: 0.0040) decrease in HUI-3 score, which is consistent with prior

literature (Trakas et al., 2001; Sach et al., 2006). If we use TSLS, under the operating

assumption that all the instruments are valid, the estimated causal effect is −0.00094 (SE:

0.081), i.e. climbing up one obese class reduces your health utility quality of life by 0.00094.

Our estimator, sisVIVE, which operates only under the assumption that a proportion of

instruments are invalid, estimates −0.00094 as the causal effect, which is identical to the

estimate by TSLS. Also, sisVIVE does not select any SNPs as an invalid IV.

To further validate our method, we include another instrument, rs6265 (i.e. Val66Met).

rs6265 is in the brain-derived neurotrophic factor BDNF gene and has been shown to not

only be associated with BMI (Thorleifsson et al., 2008; Shugart et al., 2009), but also

neurological and cognitive function (Hwang et al., 2006; Rybakowski et al., 2006). Hence,

there is some reason to believe that rs6265 may be pleiotropic; rs6265 may impact obesity,

but also affect health-related quality of life through mechanisms other than obesity. sisVIVE

should be able to pick up on this instrument being invalid in contrast to TSLS, which will

always assume that all the instruments used are valid.

If we use TSLS under the operating assumption that all the four instruments are valid, the

estimated effect is −0.0086 (SE:0.080). sisVIVE, on the other hand, estimates the causal

effect to be −0.0037, which is closer to the estimates when we used three instruments.

sisVIVE also throws out the instrument, rs6265, which we suspect to be invalid.

The reduced form estimates for both analysis are summarized in Tables 12 and 13. The

reduced form estimates are computed by using ordinary least squares (OLS) where the

genetic instruments are the explanatory variables and the dependent variables are BMI and

Health Utility Index Mark 3 (HUI-3).

Also, for the data analysis with three SNPs, the Sargan overidentification test (Sargan,
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Instruments BMI (SE) HUI-3 (SE)

rs1421085 -0.05 (0.02) 0.0003 (0.004)
rs1501299 0.01 (0.02) 0.002 (0.005)
rs2241766 -0.0007 (0.03) -0.0001 (0.007)

Table 12: Reduced Form Estimates for HUI-3 and BMI for Three SNPs

Instruments BMI (SE) HUI-3 (SE)

rs1421085 -0.05 (0.02) 0.0004 (0.004)
rs1501299 0.01 (0.02) 0.002 (0.005)
rs2241766 -0.0006 (0.03) -0.0004 (0.007)
rs6265 -0.004 (0.02) -0.008 (0.005)

Table 13: Reduced Form Estimates for HUI-3 and BMI for Four SNPs

1958), which tests assumptions (A2) and (A3) in the presence of multiple instruments,

gives a Chi-squared value of 0.12 (p-value: 0.94), retaining the null hypothesis that the

instruments are all valid under the 0.05 significance level. For the data analysis with four

SNPs, the Sargan overidentification test gives a Chi-squared value of 2.53 (p-value: 0.47).

The first stage F statistic with three instruments is 3.16. The first stage F statistic with

four instruments is 2.38. Based on the two F statistics, the instruments are generally weak.

We also estimate the implied structural correlation from our model, specifically the corre-

lation between Di, the exposure, and εi. We estimate εi by taking the residual from the

estimates of β∗ and α∗, ε̂i = Yi −Diβ̂λ − ZTi. α̂λ where λ is chosen by cross-validation de-

scribed in Section 2.3.4. We find that our estimate of this correlation is −0.2, suggesting a

mild form of endogeneity.

In both data analyses, sisVIVE operates under the assumption that there may be invalid

instruments, which are typical in MR studies, while TSLS operates under the assumption

that all instruments are valid. In the first data analysis where there was no reason to

believe that the instruments were invalid, sisVIVE provides the same answer as TSLS, but

without assuming that all the instruments were valid. In the second data analysis where

one instrument was suspect, sisVIVE removed the suspected instrument. In both cases,

sisVIVE was robust to possibly invalid instruments compared to TSLS.
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2.5.3. A Digression: Defining Obesity Using BMI

In this section, we carefully look at different methods to quantify obesity, our exposure

in the data set, using BMI. First, we looked at BMI across several categories of obesity.

The categories were based on US National Institute of Health clinical guidelines (National

Institute of Health, 1998) and were also used in Trakas et al. (2001) and Sach et al. (2006) in

their analysis. Table 14 summarizes the relationship between obesity categories and HUI-3

in our data.

Health Utility Index Mark 3
Obesity Categories N 1st quartile Median 3rd quartile

Not obese (BMI < 30) 2581 0.84 0.92 0.97
Obese class I (30 ≤ BMI < 35) 777 0.73 0.91 0.97
Obese class II (35 ≤ BMI < 40) 246 0.66 0.85 0.97
Obese class III (40 ≤ BMI ) 108 0.51 0.72 0.91
All categories 3712 0.78 0.92 0.97

Table 14: Relationship Between Obesity and Health Utility Index Mark 3 (HUI-3)

We notice that among different obese classes, the median HUI-3 scores are different. Hence,

simply classifying individuals as obese vs. not obese ignores the variation of HUI-3 scores

among different obese classes. This led us to explore different ways of quantifying obesity

through BMI as follows.

1. The binary BMI takes a value of one if BMI is greater than or equal to 30 (i.e. obese)

and zero otherwise.

2. BMI A is what we use in the main analysis.

3. BMI B is defined to be similar to Trakas et al. (2001), except the magnitude of the

BMIs is taken into consideration. Specifically, if an individual’s BMI is less than 30,

the individual’s exposure is assigned a value of zero. If an individual’s BMI is between

30 and 35 (i.e. Obese Class I), the individual’s exposure is assigned a value of one.

If an individual’s BMI is between 35 and 40 (i.e. Obese Class II), the individual’s

exposure is assigned a value of three. If an individual’s BMI is above 40 (i.e. Obese
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Class III), the individual’s exposure is assigned a value of six.

4. The censored BMI takes into account the actual value of BMI at the obese range

so that it not only indicates obesity, but also measures its severity. Specifically, the

censored BMI is defined as the maximum of (BMI −30) and 0 (i.e. max(BMI−30, 0)).

For each method of quantifying obesity, we estimate β∗ by using ordinary least squares

(OLS), two stage least squares (TSLS) under the assumption that all the instruments are

valid, and sisVIVE. These results are reported in Tables 15 and 16 for the cases of three and

four instruments used in our main analysis. Overall, we notice that the estimates of OLS,

TSLS, and sisVIVE tend to be similar across different definitions of obesity. Granted, it is

difficult to compare the estimates since each exposure variable measures slightly different

aspects about obesity and its impact on HUI-3. We also note that in the case of four

instruments where one of the instrument, rs6265, was suspect, sisVIVE correctly picks

rs6265 to be an invalid instrument in every method of quantifying obesity.

Exposure OLS (SE) TSLS (SE) sisVIVE, Invalid Instrument

Binary BMI -0.074 (SE: 0.0070) -0.012 (SE: 0.18) -0.012, None
BMI A -0.052 (SE: 0.0040) -0.00094 (SE: 0.081) -0.00094, None
BMI B -0.031 (SE: 0.0024) -0.0011 (SE: 0.051) -0.0011, None
Censored BMI -0.013 (SE: 0.0010) -0.00019 (SE: 0.022) -0.00019, None

Table 15: Different Definitions of Obesity and The Resulting Estimates With Three Instru-
ments

Exposure OLS (SE) TSLS (SE) sisVIVE, Invalid Instrument

Binary BMI -0.074 (SE: 0.0070) -0.097 (SE: 0.17) -0.039, rs6265
BMI A -0.052 (SE: 0.0040) -0.0086 (SE: 0.080) -0.0037, rs6265
BMI B -0.031 (SE: 0.0024) -0.0012 (SE: 0.051) -0.0017, rs6265
Censored BMI -0.013 (SE: 0.0010) 0.00091 (SE: 0.022) -0.00011, rs6265

Table 16: Different Definitions of Obesity and The Resulting Estimates With Four Instru-
ments

2.6. Discussion

This paper demonstrates that proper estimation of causal effects using the IV method is

possible without knowledge of all the instruments’ validity. Our results show that simply
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knowing a proportion of the instrument is valid, without knowing which are valid, is suf-

ficient and we construct the sisVIVE estimator that dominates the naive TSLS in almost

every aspect while performing similarly to the oracle TSLS. Both the simulation result and

data analysis show that sisVIVE is a robust alternative to TSLS in the presence of possibly

invalid instruments.

Future work could involve generalizing the model considered. In particular, the current

paper discusses a model in which treatment effects are constant. Angrist et al. (1996)

discusses the setting in which the treatment effects are not constant and individuals may

select into treatment based on expected gains from treatment. Then, qm and qm′ in Theorem

2.1 might not be equal to each other for different sets of valid instruments and Theorem 2.1

does not apply. It would be useful to understand what sisVIVE is estimating under this

setting of treatment effect heterogeneity. Other useful directions for future work are relaxing

the conditions on Corollary 2.2 to encompass more invalid instruments s and deriving tests

for identification. Also, we have focused on the applications of our method to Mendelian

randomization. In economic applications, it is also common to have multiple candidate

instruments and be concerned that some proportion of the instruments are invalid (Murray,

2006). Our current work demonstrates that instrumental variable estimation is definitely

possible even in the presence of possibly invalid instruments.
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CHAPTER 3 : Robust Confidence Interval Estimation of Causal Effects With

Possibly Invalid Instruments

This is joint work with Tony Cai and Dylan Small

3.1. Introduction

In the previous chapter, we considered violations of (A2) and (A3) and proposed identi-

fication results based on imposing an upper bound on the number of invalid instruments

among the candidate instruments, without knowing exactly which instruments are valid or

knowing the exact number of invalid instruments, or imposing any structure on the instru-

ments. The previous chapter also proposed a point estimator, called sisVIVE, to estimate

the causal effect when invalid instruments are present.

This chapter focuses on the same setting, but we develop robust confidence intervals when

candidate instruments might violate (A2) and (A3). Like before, we only assume that

we know an upper bound on the number of invalid instruments, without knowing exactly

which instruments are invalid. In this setting, we propose a simple and general confidence

interval procedure that theoretically guarantees the correct coverage rate and is robust to

possibly invalid instruments. The confidence interval is based on inverting statistical tests

over a range of subsets of instruments that are potentially valid. We also propose various

ways to obtain short and informative confidence intervals with our procedure by exploring

various tests common in instrumental variables and conducting pretests. The simulation

study shows that our method is robust when invalid instruments are present compared to

other popular methods in the instrumental variables literature. We also demonstrate that

our method can produce valid, short, and informative confidence intervals by analyzing a

data set concerning the causal effect of income on food expenditure.
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3.2. Robust Confidence Intervals by Inverting Tests

3.2.1. Review of Notation

We use the potential outcomes notation (Rubin, 1974) for instruments laid out in Holland

(1988), Small (2007) and Chapter 2. Specifically, let there be L potential candidate instru-

ments and n individuals in the sample. Let Y
(d,z)
i be the potential outcome that individual

i would have if the individual were to have exposure d, a scalar value, and instruments z, an

L dimensional vector. Let Dz
i be the potential exposure if the individual had instruments z.

For each individual, only one possible realization of Y
(d,z)
i and D

(z)
i is observed, denoted as

Yi and Di, respectively, based on his/her observed instrument values Zi., an L dimensional

vector, and observed exposure Di. In total, we have n observations of (Yi, Di, Zi.). We

denote Y = (Y1, . . . , Yn), D = (D1, . . . , Dn) and Z to be the n by L matrix where row i

consists of Zi..

For any subset A ⊆ {1, . . . , L} with cardinality c(A), let ZA be an n by c(A) matrix of

instruments where the columns of ZA are from the set A, PZA
= ZA(ZTAZA)−1ZTA be the

orthogonal projection matrix onto the column space of ZA and RZA
= I − PZA

be the

residual projection matrix where I is an n by n identity matrix. We assume that ZTAZA has

a proper inverse unless otherwise stated. Also, for any L dimensional vector π, let πA only

consist of elements of the vector π determined by the set A.

3.2.2. Review of Model and Definition of Valid Instruments

For two possible values of the exposure d′, d and instruments z′, z, we assume the following

potential outcomes model

Y
(d′,z′)
i − Y (d,z)

i = (z′ − z)Tφ∗ + (d′ − d)β∗, E{Y (0,0)
i | Zi.} = ZTi. ψ

∗ (3.1)

where φ∗, ψ∗, and β∗ are unknown parameters. The parameter β∗ represents the causal

parameter of interest, the causal effect (divided by d′ − d) of changing the exposure from
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d′ to d on the outcome. The parameter φ∗ represents violation of (A2), the direct effect of

the instruments on the outcome. If (A2) holds, then φ∗ = 0. The parameter ψ∗ represents

violation of (A3), the presence of unmeasured confounding between the instrument and the

outcome. If (A3) holds, then ψ∗ = 0.

Let π∗ = φ∗+ψ∗ and εi = Y
(0,0)
i −E{Y (0,0)

i | Zi.}. When we combine equations (3.1) along

with the definition of εi, the observed data model becomes

Yi = ZTi. π
∗ +Diβ

∗ + εi, E(εi | Zi.) = 0 (3.2)

The observed model is also known as the under-identified single-equation linear model in

econometrics (page 83 of Wooldridge (2010)). Note that (3.2) is not a usual regression model

because Di might be correlated with εi. In particular, the parameter β∗ measures the causal

effect of changing D on Y rather than an association. As mentioned in Chapter 2, we discuss

extensions of the model (3.2) to include heterogeneous causal effects and non-linear effects.

Also, the model can incorporate exogenous covariates, say Xi. and we can project them

out by using Frisch-Waugh-Lovell Theorem to reduce the model to (3.2) (Davidson and

MacKinnon, 1993). The parameter π∗ in the observed data model (3.2) combines both the

violation of (A2), represented by φ∗, and the violation of (A3), represented by ψ∗. If both

(A2) and (A3) are satisfied, then φ∗ = ψ∗ = 0 and π∗ = 0. Hence, the value of π∗ captures

whether instruments are valid versus invalid. Definition 3.1 formalizes this idea.

Definition 3.1. Suppose we have L candidate instruments along with the models (3.1)–

(3.2). We say that instrument j = 1, . . . , L is valid if π∗j = 0 and invalid if π∗j 6= 0.

When there is only one instrument, L = 1, Definition 3.1 of a valid instrument is identical

to the definition of a valid instrument in Holland (1988). Specifically, assumption (A2), the

exclusion restriction, which means Y
(d,z)
i = Y

(d,z′)
i for all d, z, z′, is equivalent to φ∗ = 0 and

assumption (A3), no unmeasured confounding, which means Y
(d,z)
i andD

(z)
i are independent

of Zi. for all d and z, is equivalent to ψ∗ = 0, implying π∗ = φ∗ + ψ∗ = 0. Definition 3.1 is

also a special case of the definition of a valid instrument in Angrist et al. (1996) where here
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we assume the model is additive, linear, and has a constant treatment effect β∗. Hence,

when multiple instruments, L > 1, are present, our models (3.1)–(3.2) and Definition 3.1

can be viewed as a generalization of the definition of valid instruments in Holland (1988).

Let s = 0, . . . , L−1 to be the number of invalid instruments and U be an upper bound on s

plus 1, i.e. the number of invalid instruments is assumed to be less than U . We assume that

there is at least one valid IV, even if we don’t know which among the L IV is valid, since

if all L IVs are invalid (i.e. s = L), identification would not be possible. This is the setup

considered in Chapter 2 as a relaxation to traditional instrumental variables setups where

one knows exactly which instruments are valid and invalid. For simplicity, we consider the

case where at less than half of the candidate instruments are invalid, U ≤ L/2, because all

the parameters in the model (3.2) are always identified under this setup (see Chapter 2 for

details). However, the proposed procedures will work for any upper bound U , exceeding

L/2.

3.2.3. A General Procedure for Robust Confidence Intervals

Let I = {1, . . . , L} be the L candidate instruments and B∗ ⊆ {1, . . . , L} be the true set

of valid instruments. Given B∗, consider a test statistic T (β0, B
∗) of the null hypothesis

H0 : β∗ = β0 versus the alternative Ha : β∗ 6= β0. It is well known that inverting a test

based on T (β0, B
∗) that has level α provides a 1− α confidence interval for β∗, denoted as

C1−α(Y,D,Z,B∗).

C1−α(Y,D,Z,B∗) = {β0 | T (β0, B
∗) ≤ ν1−α} (3.3)

where ν1−α is the 1− α quantile of the null distribution of T (β0, B
∗).

Unfortunately, in our problem, we do not know the true set B∗ of valid instruments, so we

cannot directly use (3.3). However, in our model description in Section 3.2.2, we have an

upper bound on the number of invalid instruments, s, by U where s < U and consequently,

a lower bound for the number of valid instruments, L − s > L − U and thus a lower
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bound on the cardinality of the set B∗, c(B∗), c(B∗) > L − U . Using this lower bound,

we can take unions of C1−α(Y,D,Z,B) over possible sets of valid instruments B ⊆ I where

c(B) > L− U ; the confidence interval using the true set of instruments C(Y,D,Z,B∗) will

be in this union since c(B∗) > L− U . Our proposal is exactly this, except that we restrict

the subsets B to be of size c(B) = L− U + 1.

C1−α(Y,D,Z) = ∪B{C1−α(Y,D,Z,B) | B ⊆ I, c(B) = L− U + 1} (3.4)

The proposed confidence interval C1−α(Y,D,Z) is simple and general; for any test statistic

T (β0, B) with a valid size for B ⊆ B∗, one simply takes unions of confidence intervals of

T (β0, B) over subsets of instruments B where c(B) = L−U + 1. In addition, a key feature

of our procedure is that it is not necessary to go through all the subsets of possible valid

instruments larger than c(B) > L−U ; simply looking at the smallest possible subsets of valid

instruments, i.e. those subsets that are at the lower boundary of L−U , c(B) = L−U + 1,

is sufficient to provide the 1− α coverage.

Theorem 3.1 states that the procedure in (3.4) produces a valid confidence interval since

c(B∗) > L− U , there is some subset of valid instruments with cardinality L− U + 1.

Theorem 3.1. Suppose model (3.2) holds and s < U . Given α, consider any test statistic

T (β0, B) with the property that for any B ⊆ B∗, T (β0, B) has size at most α under the null

hypothesis H0 : β∗ = β0. Then, C1−α(Y,D,Z) in (3.4) always has at least 1− α coverage.

Proof of Theorem 3.1. By s < U , we have c(B∗) > L− U . Consequently, there is a subset

B̃ ⊆ B∗ where c(B̃) = L−U + 1 and B̃ only contains only valid instruments. Since B̃ only

contains valid instruments, pr{β∗ ∈ C1−α(Y,D,Z, B̃)} ≥ 1 − α for all π∗, β∗. Hence, we

have

pr{β∗ ∈ C1−α(Y,D,Z)} ≥ pr{β∗ ∈ C1−α(Y,D,Z, B̃)} ≥ 1− α

for all values of π∗, β∗.
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A potential caveat to our procedure is computational feasibility. Even though we restrict the

union to subsets of exactly size c(B) = L−U+1, if the number of candidate instruments, L,

grows, C(Y,D,Z) becomes computationally burdensome. However, in many instrumental

variables studies, it is difficult to find good candidate instruments and rarely the number of

these candidates instruments exceed L = 20, which modern computing can handle. Hence,

our procedure in (3.4) is computationally tractable for most practical applications.

3.2.4. Choice of Test Statistics

In the instrumental variables literature, there are many tests of causal effects T (β0, B) that

can be used with Theorem 3.1 to construct valid 1−α confidence interval C1−α(Y,D,Z) in

the presence of invalid instruments. A natural question to ask, then, is among these tests,

which test statistic, when used with Theorem 3.1, provides the smallest length confidence

interval and thus, from a practical standpoint, provides the most informative confidence

interval?

The most popular test is the t-test based on based on the asymptotic normal distribution of

the two stage least squares estimator. The two stage least squares estimator of β∗ for a given

B, denoted as β̂B,TSLS , is the solution to the minimization problem ‖PZ̃B
RZA

(Y −Dβ)‖22

where A is the complement of the set B, A = I \ B, and Z̃B = RZA
ZB. If û(B) is the

residuals from the fitted model, û(B) = RZA
(Y −Dβ̂B,TSLS) and D̂(B) is the projection of

D on to the column space of Z̃B, D̂(B) = PZ̃B
D, then the t-test is defined as

TSLS(β0, B) =
√
n− c(A)− 1

 β̂B,TSLS − β∗0√
‖û(B)‖22/‖D̂(B)‖22

 (3.5)

If B ⊆ B∗, standard econometrics arguments show that (3.5) converges to an asymptotic

Normal distribution (Wooldridge, 2010). In practice, the test (3.5) is approximately valid

when all the subset of instruments B among the candidate instruments I are strong, or

in other words, strongly associated with the exposure. Unfortunately, instruments can be

weak in practice and the nominal size of tests based on two stage least squares can be
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misleading (Staiger and Stock, 1997).

Stock et al. (2002) presents a survey of tests that are robust to weak instruments. Specifi-

cally, for a given B, let W (B) be an n by 2 matrix where the first column contains RZA
Y and

the second column contains RZA
D. Let a0 = (β0, 1) and b0 = (1,−β0) to be two-dimensional

vectors and Σ̂ = W (B)TMZ̃B
W (B)/(n−L). Let Ŝ(B) and T̂ (B) be two-dimensional vectors

Ŝ(B) =
(Z̃TBZ̃B)−1/2Z̃TBW (B)b0√

bT0 Σ̂b0

, T̂ (B) =
(Z̃TBZ̃B)−1/2Z̃TBW (B)Σ̂−1a0√

aT0 Σ̂−1a0

along with the following scalar values

Q̂11(B) = Ŝ(B)T Ŝ(B), Q̂12(B) = Ŝ(B)T T̂ (B)

Q̂22(B) = T̂ (B)T T̂ (B)

Based on Q̂11(B), Q̂12(B), and Q̂22(B), we define the following tests, the Anderson-Rubin

test (Anderson and Rubin, 1949), the Lagrangian multiplier test (Kleibergen, 2002), and

the conditional likelihood test (Moreira, 2003).

AR(β0, B) = Q̂11(B)/c(B) (3.6)

LM(β0, B) = Q̂2
12(B)/Q̂22(B) (3.7)

CLR(β0, B) =
1

2

{
Q̂11(B)− Q̂22(B)

}
(3.8)

+
1

2

√
{Q̂11(B) + Q̂22(B)}2 − 4{Q̂11(B)Q̂22 − Q̂2

12(B)}

Each of the three tests have their unique robustness characteristics and properties, but all

of them have been shown to be robust to weak instruments(Staiger and Stock, 1997; Stock

et al., 2002; Kleibergen, 2002; Moreira, 2003; Dufour, 2003; Andrews et al., 2006). There

is no uniformly most powerful test among the three tests, but Andrews et al. (2006) and

Mikusheva (2010) have suggested using (3.8) due to its generally favorable power compared

to (3.6) and (3.7) in most cases when weak instruments are present. However, the La-
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grangian multiplier test (3.7) and the Anderson-Rubin test (3.6) have the unique feature

where both tests (or derivatives of) can be used as a pretest to check whether the candi-

date subset of instruments B contain only valid instruments. This feature is particularly

useful for our problem where we have possibly invalid instruments (see Section 3.2.6). Also,

among the three tests, the Anderson-Rubin test is the simplest in that it can be written

as a standard F -test in regression where the outcome is RZA
(Y −Dβ0), the regressors are

Z̃B, and we are testing whether the coefficients associated with Z̃B are zero or not with the

standard F-test. Finally, the Lagrangian multiplier test and the conditional likelihood ratio

test require an assumption that the exposure, D, is linearly related to the exposure Z by

Di = ZTi. γ
∗ + ξi where γ∗ is an L dimensional vector and ξi is a random error term with

mean zero, homoscedastic variance, and is independent of Z; the Anderson-Rubin test does

not require this linearity assumption.

3.2.5. Empty Confidence Intervals and the Anderson-Rubin test

Our procedure C1−α(Y,D,Z) involves taking the union of confidence intervals, at least

one of which is based on valid instruments, but some of which may be based on invalid

instruments. For instance, if we have a subset B with c(B) = L−U + 1, but it is not a the

subset of B∗, B contains at least one true invalid instruments from A∗ = I \B∗ and we may

end up with confidence intervals C1−α(Y,D,Z,B) that are biased. Such a potentially biased

interval is included in the interval for C1−α(Y,D,Z). Even though C1−α(Y,D,Z) will have

correct coverage regardless of this inclusion, the unnecessary inclusion of the biased interval

may elongate the interval C1−α(Y,D,Z) and produce an uninformative interval.

One method to deal with this problem is to choose a test statistic where for B 6⊆ B∗,

C1−α(Y,D,Z,B) will usually produce an empty interval. For example, the Anderson-Rubin

test statistic in (3.6) has this feature. To illustrate, suppose we assume Di = ZTi γ
∗+ξi where

εi, ξi are independent and bivariate Normal with mean 0 and covariance Σ. If we subtract

Dβ0 and multiply by RZA
from both sides of (3.2) and substitute Di with Di = ZTi γ

∗+ ξi,
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we obtain

RZA
(Y −Dβ0) = Z̃Bκ

∗ +RZA
ε, κ = π∗B + γB(β∗ − β0) (3.9)

where γ∗B and π∗B are the components of γ∗ and α∗ vectors for the indices that belong to the

subset B. As explained in Section 3.2.4, the Anderson–Rubin test can also be written as

an F test where the null is H0 : κ∗ = 0. This null corresponds to testing both whether the

instruments are valid, π∗B = 0, and whether the treatment effect is β0, β∗ = β0. Rejecting

H0 : κ∗ = 0 in favor of the alternative would imply that one is rejecting the null because the

treatment effect is not β0 or because the instruments in set B are not valid. Thus, when a

candidate set of instruments B contains an invalid instrument, the Anderson–Rubin test will

likely reject when β∗ = β0, and so the inversion of the Anderson–Rubin test will produce an

empty confidence interval or a short confidence interval (see Kadane and Anderson (1977)

and Small (2007) for the exact circumstances under which the Anderson–Rubin test will

have this property).

3.2.6. Pretest for Invalid Instruments

Another method to avoid taking unions of unnecessary intervals is by conducting a prelim-

inary test that checks whether each of the subsets B where c(B) = L−U + 1 contains any

invalid instruments before proceeding to construct a confidence interval with B. Specifi-

cally, for a desired confidence interval 1 − α, consider the null hypothesis that B contains

only valid instruments, π∗B = 0, and the corresponding test statistic S(B), which serve as a

pretest for the validity of the instruments in B. For any α1 < α, suppose the test based on

S(B) has level α1 under the null hypothesis that B only contains valid instruments with

q1−α1 as the 1 − α1 quantile of S(B) under the null hypothesis. Then, a 1 − α confidence

interval can be constructed based on S(B) as follows.

P1−α(Y,D,Z) = ∪B{C1−α2(Y,D,Z,B) | B ⊆ I, c(B) = L− U + 1, S(B) ≤ q1−α1} (3.10)
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where α = α1 +α2. For example, if the desired confidence level is 95% where α = 0 · 05, we

can set α1 = 0.01 and α2 = 0.04.

Given α, α1, and α2 where α = α1 +α2, Theorem 3.2 shows that C̃1−α achieves the desired

1− α coverage in the presence of possibly invalid instruments.

Theorem 3.2. Suppose we have the same assumptions about the model and the test statistic

T (β0, B) as in Theorem 3.1. For any pretest S(B) that has the correct size under the null

hypothesis that B contains only valid instruments, P1−α(Y,D,Z) always has at least 1− α

coverage.

Proof of Theorem 3.2. Consider B̃ ⊆ B∗ where c(B̃) = L − U + 1. Since S(B) has the

correct size, under the null hypothesis, pr{S(B̃) ≥ q1−α1} ≤ α1. Then, for S(B) and

T (β0, B), we can use Bonferroni’s inequality to obtain

pr{β∗ ∈ P1−α(Y,D,Z)} ≥ pr{β∗ ∈ C1−α2(Y,D,Z, B̃) ∩ S(B̃) ≤ q1−α1}

≥ 1− pr{β∗ /∈ C1−α2(Y,D,Z, B̃)} − pr{S(B̃) ≥ q1−α1}

= 1− α1 − α2 = 1− α

thereby guaranteeing the correct coverage.

Similar to Theorem 3.1, the procedure in (3.10) is general in the sense that any pretest

S(B) with the correct size under the null hypothesis that B contains only valid instruments

will guarantee that the pretest confidence interval P1−α(Y,D,Z) will have the desired level

of coverage. For example, the test statistic proposed by Kleibergen (2007), which is simply

the difference between the Anderson-Rubin test in (3.6) and the Lagrangian multiplier test

in (3.7)

JLM(β0, B) = AR(β0, B)− LM(β0, B) (3.11)

satisfies the size criterion in Theorem 3.2 under some assumptions, most notably the linear

modeling assumption between Di and Zi.. Furthermore, Kleibergen (2007) proved that un-
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der the null hypothesis for H0 : β∗ = β0, (3.11) is independent of the Lagrangian multiplier

test and converges to a χ2
c(B)−1. Hence, we can use the two tests, JLM(β0, B) and LM(β0, B),

to construct P1−α(Y,D,Z) in (3.10) by first conducting a pretest with JLM(β0, B) at α1

level where q1−α1 would be the 1 − α1 quantile of χ2
c(B)−1. If the test fails to reject the

null hypothesis that B contains only valid instruments, we can then proceed to construct a

1− α2 confidence interval using this B and the Lagrangian multiplier test of LM(β0, B).

Another pretest that can be used is the Sargan test for overidentification (Sargan, 1958),

which tests, among other things, whether the instruments B contain only valid instruments

(Dufour, 2003). The Sargan test is

SAR(B) =
‖PZ̃B

û(B)‖22
‖û(B)‖22/n

(3.12)

where the û(B) corresponds to the residual from the two stage least squares estimator in

(3.5). Under model (3.2) and the null hypothesis that ZB is independent of εi, SAR(B)

converges to a χ2
c(B)−1 distribution. In other words, as long as B contains a set of valid

instruments, S(B) converges to a χ2
c(B)−1. Thus, if we use the Sargan test as a pretest for

P1−α(Y,D,Z), then q1−α1 in (3.10) would be the 1 − α1 quantile of a χ2
c(B)−1 distribution

and we would only proceed to construct a confidence interval with the test statistic T (β0, B)

at 1− α2 if the null hypothesis is retained.

3.2.7. Prior Information About s and U

Throughout our discussion, we used the U = L/2 upper bound, that is given L candidates,

less than 50% are invalid, out of simplicity along with the fact that at U ≤ L/2, the

parameters in our model (3.2) are always identifiable (see Chapter 2). However, in practice,

practitioners may be able to use their subject matter knowledge to assume a smaller upper

bound on the number of invalid instruments and we want to be able to incorporate this

information into our confidence interval procedures. By having a tighter upper bound on s

by U than U = L/2, our methods in (3.4) and (3.10) are only left with smaller number of
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subsets of possibly valid instruments to go through. Specifically, in (3.4), we take less unions

over possibly unnecessary intervals and this provides more informative intervals. In (3.10),

having a tighter bound on s translates to doing fewer pretests and having less subsets to

take unions of, leading to more informative intervals. In Section 3.3.2, we examine the effect

of having more prior information about s via U on our methods producing more informative

intervals through a simulation study.

3.3. Simulation

3.3.1. Robustness With Invalid Instruments

We first compare in the simulation study the robustness of our method compared to popular

methods for confidence intervals in the instrumental variables literature when there are

concerns for invalid instruments.

The simulation setup is similar to the traditional single-equation linear models. We have

n = 5000 individuals with L = 10 candidate instruments where each pair of instruments

are correlated with correlation 0.6. For the data generating model, we assume the model

in (3.2) and a linear model between Di and Zi., specifically Di = ZTi γ
∗ + ξi where εi, ξi

are either (i) independent and bivariate Normal with mean 0, marginal variance 1, and

correlation 0.99, (ii) bivariate t with 3 degrees of freedom with the same moments as (i) and

(iii) where the log of the error terms is bivariate Normal with the same moments as (i) so

that the error distributions are skewed. The individuals i = 1, . . . , n are independent. We

vary the number of invalid instruments, s, from 0 to 5. We consider the setting where less

than 50% of the instruments are invalid since β∗ is always identified under this case (see

Chapter 2). We set γ∗ based on the concentration parameter, which is the expected value

of the F statistic for the coefficients ZB∗ in the regression of D and Z and is a measure

of instrument strength (Stock et al., 2002). Specifically, γ∗ is set so that either (i) the

instruments are strong with a concentration parameter above 1000 or (ii) the instruments

are weak with a concentration parameter below 10.
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We compare our methods in (3.4) and (3.10) to “naive” and “oracles” methods. Naive

methods are methods that assume all candidate instruments are valid, which is typically

done in practice; we use the four tests described in Section 3.2.4, specifically the two-stage

least squares test in (3.5), the Anderson-Rubin test in (3.6), the Lagrange multiplier test

in (3.7), and the conditional likelihood ratio test in (3.8), all with B = {1, . . . , L} (Murray,

2006). Oracles correspond to knowing exactly which instruments are valid and invalid,

specifically using the four procedures with B = B∗; these methods typically cannot be

used in practice because of the incomplete knowledge about exactly which instruments are

invalid versus valid. Also, for our methods involving pretests in (3.10), we use the Sargan

test as the pretests for the two stage least squares test and the conditional likelihood ratio

test, both at level α1 = 0.01 for the pretest, and α2 = 0.04 for the subsequent tests. For the

Lagrange multiplier test, we use the pretest in (3.11) at level α1 = 0.01 and construct the

confidence interval with α2 = 0.04. We do not use the pretesting method for the Anderson-

Rubin test since the test produces informative intervals by encouraging empty intervals for

subsets B that contain invalid instruments (see Section 3.2.5). We repeat the simulation

1000 times for each setting. For interpretability, among all our methods, we take the convex

hull of the union of confidence intervals to obtain non-disjoint intervals.

Tables 17, 18, and 19 show the coverage proportion of the four procedures when we vary

s and assume that at most 50% of the instruments are invalid, U = L/2 = 5, for the

bivariate Normal, the bivariate t, and the skewed errors, respectively. When there are no

invalid instruments, s = 0 and the instruments are strong, the naive procedures have the

desired 95% coverage. Our methods have higher than 95% coverage because they need to

overcompensate to allow for the possibility that not all candidate instruments are valid.

When the instruments are weak and there are no invalid instruments, s = 0, any procedure

using two stage least squares undercovers, which is to be expected from the literature

on two stage least squares’ poor performance in the presence of weak instruments (see

references in Section 3.2.4). As the number of invalid instruments, s, increases, regardless

of the strength of the instruments, the naive methods fail to have any coverage. The oracle
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Strength Case Test s = 0 s = 1 s = 2 s = 3 s = 4

Strong Naive TSLS 94 0 0 0 0
AR 95 0 0 0 0
LM 98 0 0 0 0
CLR 95 0 0 0 0

Our method TSLS 100 100 100 100 96
AR 100 100 100 100 95
LM 100 100 100 100 97
CLR 100 100 100 100 97
SAR + TSLS 100 100 100 100 94
JLM + LM 100 100 100 100 92
SAR + CLR 100 100 100 100 95

Oracle TSLS 94 95 94 95 94
AR 95 96 95 95 95
LM 98 98 97 97 97
CLR 95 95 94 95 94

Weak Naive TSLS 5 0 0 0 0
AR 96 0 0 0 0
LM 98 0 0 0 0
CLR 98 0 0 0 0

Our method TSLS 30 43 39 30 17
AR 100 100 100 100 96
LM 100 100 100 100 97
CLR 100 100 100 100 97
SAR + TSLS 31 44 41 32 18
JLM + LM 99 96 92 77 42
SAR + CLR 100 100 98 91 56

Oracle TSLS 5 7 10 13 17
AR 96 96 96 96 96
LM 98 97 97 97 97
CLR 98 97 97 97 97

Table 17: Comparison of Coverage Between 95% IV Confidence Intervals Under Normal
Errors. TSLS, two stage least squares; AR, Anderson–Rubin test ; LM, Lagrange multiplier
test; CLR, conditional likelihood ratio test; SAR, Sargan test; JLM, pretest in (3.11). There
are L = 10 candidate instruments and U is set to L/2 = 5. Strong instruments correspond
to concentration parameter exceeding 100. Weak instruments correspond to concentration
parameter value around 2. The standard error for all the coverage proportions do not exceed
2%.
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methods have proper coverage, except two stage least squares when the instruments are

weak. Our methods have the desired level of coverage, with the coverage level reaching

nominal levels when s is at the boundary of s < U , i.e. s = 4. The only notable exceptions

to our methods having correct coverage are in the presence of weak instruments when the

two stage least squares t-test is used as test statistics or when pretests are used. This

is not surprising because the two stage least squares t-test and Sargan test are known to

have actual Type I error rate that can differ greatly from the nominal Type I error rate

in the presence of weak instruments (Staiger and Stock, 1997). The simulations suggest

that methods with pretests are only useful when the instruments are sufficiently strong. By

contrast, our method using the Anderson-Rubin’s test is valid regardless of the strength of

the instruments.

In short, in the presence of possibly invalid instruments, the naive, popular approach of sim-

ply assuming all the instruments are valid would lead to misleading inference. In contrast,

our methods, especially the method in (3.4), provide honest coverage regardless of whether

instruments are invalid or valid (as long as the number of invalid instruments is less than

the assumed upper bound U) and should be used whenever there is concern for possibly

invalid instruments. In particular, (3.4) works regardless of the strength of the instruments

while our method in (3.10) provides a desired level of coverage so long as the instruments

are strong.

3.3.2. Informative Intervals and Median Length

While our methods provide the desired level of coverage, both theoretically and in simula-

tion, it is unclear whether the resulting robust intervals would be informative in terms of

not being too long. It is expected that our methods will produce longer confidence intervals

than the oracles since the oracles know more about instrument validity than our methods

assumes. In this section, we quantify this difference through a simulation study.

The first simulation setup is identical to Section 3.3.1 and we look at the median length
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Strength Case Test s = 0 s = 1 s = 2 s = 3 s = 4

Strong Naive TSLS 95 0 0 0 0
AR 95 0 0 0 0
LM 98 0 0 0 0
CLR 95 0 0 0 0

Our method TSLS 100 100 100 100 97
AR 100 100 100 100 96
LM 100 100 100 100 98
CLR 100 100 100 100 98
SAR + TSLS 100 100 100 100 96
JLM + LM 100 100 100 100 94
SAR + CLR 100 100 100 100 96

Oracle TSLS 95 95 95 96 96
AR 95 96 95 96 96
LM 98 98 97 98 98
CLR 95 95 96 96 95

Weak Naive TSLS 5 0 0 0 0
AR 96 0 0 0 0
LM 98 0 0 0 0
CLR 98 0 0 0 0

Our method TSLS 30 45 41 32 16
AR 100 100 100 100 97
LM 100 100 100 100 98
CLR 100 100 100 100 98
SAR + TSLS 31 47 45 34 17
JLM + LM 99 95 94 79 45
SAR + CLR 100 100 98 90 58

Oracle TSLS 5 6 8 12 15
AR 96 96 96 96 96
LM 98 97 98 97 98
CLR 98 97 98 97 98

Table 18: Comparison of Coverage Between 95% IV Confidence Intervals Under Bivariate t
Errors. TSLS, two stage least squares; AR, Anderson–Rubin test ; LM, Lagrange multiplier
test; CLR, conditional likelihood ratio test; SAR, Sargan test; JLM, pretest in (3.11). There
are L = 10 candidate instruments and U is set to L/2 = 5. Strong instruments correspond
to concentration parameter exceeding 100. Weak instruments correspond to concentration
parameter value around 2. The standard error for all the coverage proportions do not exceed
1%.
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Strength Case Test s = 0 s = 1 s = 2 s = 3 s = 4

Strong Naive TSLS 94 0 0 0 0
AR 95 0 0 0 0
LM 98 0 0 0 0
CLR 95 0 0 0 0

Our method TSLS 100 100 100 100 95
AR 100 100 100 100 95
LM 100 100 100 100 97
CLR 100 100 100 100 97
SAR + TSLS 100 100 100 100 94
JLM + LM 100 100 100 100 92
SAR + CLR 100 100 100 100 94

Oracle TSLS 94 94 94 93 94
AR 95 95 94 94 95
LM 98 97 97 97 97
CLR 95 94 94 94 94

Weak Naive TSLS 0 0 0 0 0
AR 96 45 1 0 0
LM 98 15 0 0 0
CLR 97 15 0 0 0

Our method TSLS 17 60 60 48 26
AR 100 100 100 100 99
LM 100 100 100 100 100
CLR 100 100 100 100 100
SAR + TSLS 18 55 56 48 25
JLM + LM 100 100 99 97 87
SAR + CLR 100 100 100 100 89

Oracle TSLS 0 0 0 1 2
AR 96 96 96 95 96
LM 98 97 96 96 96
CLR 97 97 96 96 96

Table 19: Comparison of Coverage Between 95% IV Confidence Intervals Under Skewed
Errors. TSLS, two stage least squares; AR, Anderson–Rubin test ; LM, Lagrange multiplier
test; CLR, conditional likelihood ratio test; SAR, Sargan test; JLM, pretest in (3.11). There
are L = 10 candidate instruments and U is set to L/2 = 5. Strong instruments correspond
to concentration parameter exceeding 100. Weak instruments correspond to concentration
parameter value around 2. The standard error for all the coverage proportions do not exceed
2%.
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Strength Case Test s = 0 s = 1 s = 2 s = 3 s = 4

Strong Our method TSLS 0 · 28 0 · 73 0 · 59 0 · 51 0 · 44
AR 0 · 38 0 · 22 0 · 15 0 · 11 0 · 07
LM 1 · 18 1 · 13 1 · 09 1 · 07 1 · 05
CLR 0 · 29 0 · 67 0 · 58 0 · 50 0 · 44
SAR + TSLS 0 · 29 0 · 17 0 · 12 0 · 08 0 · 05
JLM + LM 0 · 28 0 · 16 0 · 11 0 · 08 0 · 05
SAR + CLR 0 · 29 0 · 17 0 · 12 0 · 08 0 · 05

Oracle TSLS 0 · 04 0 · 04 0 · 04 0 · 05 0 · 05
AR 0 · 06 0 · 06 0 · 06 0 · 07 0 · 07
LM 1 · 03 1 · 03 1 · 03 1 · 03 1 · 04
CLR 0 · 04 0 · 04 0 · 04 0 · 05 0 · 05

Weak Our method AR ∞ ∞ ∞ ∞ ∞
LM ∞ ∞ ∞ ∞ ∞
CLR ∞ ∞ ∞ ∞ ∞
JLM + LM ∞ 300 · 12 160 · 80 115 · 12 101 · 89
SAR + CLR ∞ ∞ ∞ ∞ 46 · 12

Oracle AR ∞ ∞ ∞ ∞ ∞
LM 10 · 22 18 · 79 ∞ ∞ ∞
CLR 9 · 45 17 · 97 ∞ ∞ ∞

Table 20: Comparison of Median Lengths Between Different 95% IV Confidence Intervals
Under Normal Errors. TSLS, two stage least squares; AR, Anderson–Rubin test ; LM,
Lagrange multiplier test; CLR, conditional likelihood ratio test; SAR, Sargan test; JLM,
pretest in (3.11). There are L = 10 candidate instruments and U is set to L/2 = 5. Strong
instruments correspond to concentration parameter exceeding 100. Weak instruments cor-
respond to concentration parameter value around 2. The interquartile range of our intervals
and strong oracle intervals do not exceed 0 · 05 and 0 · 02, respectively. The interquartile
range of all weak intervals are infinite except for JLM + LM, which range from 1774 · 62
(s = 0) to 55 · 73 (s = 4).
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Strength Case Test s = 0 s = 1 s = 2 s = 3 s = 4

Strong Our method TSLS 0 · 28 0 · 73 0 · 58 0 · 50 0 · 44
AR 0 · 37 0 · 22 0 · 15 0 · 11 0 · 07
LM 1 · 17 1 · 13 1 · 09 1 · 07 1 · 05
CLR 0 · 28 0 · 67 0 · 58 0 · 50 0 · 44
SAR + TSLS 0 · 28 0 · 17 0 · 12 0 · 08 0 · 05
JLM + LM 0 · 28 0 · 16 0 · 11 0 · 08 0 · 05
SAR + CLR 0 · 29 0 · 17 0 · 12 0 · 08 0 · 05

Oracle TSLS 0 · 04 0 · 04 0 · 04 0 · 05 0 · 05
AR 0 · 06 0 · 06 0 · 07 0 · 07 0 · 07
LM 1 · 03 1 · 03 1 · 03 1 · 03 1 · 04
CLR 0 · 04 0 · 04 0 · 04 0 · 05 0 · 05

Weak Our method AR ∞ ∞ ∞ ∞ ∞
LM ∞ ∞ ∞ ∞ ∞
CLR ∞ ∞ ∞ ∞ ∞
JLM + LM ∞ 282 · 38 163 · 28 113 · 81 101 · 88
SAR + CLR ∞ ∞ ∞ ∞ 46 · 53

Oracle AR ∞ ∞ ∞ ∞ ∞
LM 9 · 40 15 · 34 130 · 38 ∞ ∞
CLR 8 · 98 14 · 11 167 · 52 ∞ ∞

Table 21: Comparison of Median Lengths Between Different 95% IV Confidence Intervals
Under Bivarate t errors. TSLS, two stage least squares; AR, Anderson–Rubin test ; LM,
Lagrange multiplier test; CLR, conditional likelihood ratio test; SAR, Sargan test; JLM,
pretest in (3.11). There are L = 10 candidate instruments and U is set to L/2 = 5. Strong
instruments correspond to concentration parameter exceeding 100. Weak instruments cor-
respond to concentration parameter value around 2. The interquartile range of our intervals
and strong oracle intervals do not exceed 0 · 05 and 0 · 02, respectively. The interquartile
range of all weak intervals are infinite except for JLM + LM, which range from 2684 · 6
(s = 1) to 58 · 48 (s = 4).
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of the confidence intervals in Table 17. We exclude the naive methods since they do not

provide the desired level of coverage. Also, for weak instruments, we exclude two stage least

squares since it is not robust to weak instruments and does not provide correct coverage.

In Tables 20 and 21, for both bivariate Normal errors and bivariate t errors, we see that the

discrepancy between our method and the oracles shrinks as s grows for strong instruments,

especially when s = 3 and s = 4. The one notable exception is our method using two stage

least squares, which still has wide intervals as s increases. We also find that our method

using pretests tends to provide the shortest intervals among the various versions of our

method under the strong instrument case. This is to be expected since the motivation for

the pretesting was to remove taking unnecessary unions of intervals in (3.10). For weak

instruments, our method and the oracles are generally in agreement by providing infinite

length intervals, with our method almost always producing infinite length intervals. This

agreement is to be expected since using tests that are robust to weak instruments must

produce infinite intervals (Dufour, 1997).

Table 22 presents the same simulation results as Tables 20 and 21, except the errors are

skewed. While the patterns of simulations are mostly the same as the two preceding tables,

one notable exception is when the instruments are strong and s = 0. In this case, two

stage least squares dominates our pretesting method as well as the Anderson and Rubin

confidence intervals. Otherwise, the patterns of the simulations are similar across the three

tables.

The second simulation study examines the strategy in Section 3.2.7 where prior information

on s and U are available and whether the prior information provides informative intervals.

The simulation setup is, again, identical as above, except we fix s = 2 and vary U from

3, 4 and 5; if U were to be less than s where U ≤ s, our methods cannot produce the right

coverage since U was mis-specified. We compare our methods to the oracle intervals in

Table 20, specifically the column corresponding to s = 2.
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Strength Case Test s = 0 s = 1 s = 2 s = 3 s = 4

Strong Our method TSLS 0 · 62 0 · 84 0 · 66 0 · 56 0 · 47
AR 0 · 94 0 · 50 0 · 34 0 · 24 0 · 16
LM 1 · 46 1 · 28 1 · 19 1 · 14 1 · 10
CLR 0 · 67 0 · 81 0 · 66 0 · 56 0 · 48
SAR + TSLS 0 · 64 0 · 37 0 · 25 0 · 18 0 · 11
JLM + LM 0 · 66 0 · 36 0 · 24 0 · 17 0 · 10
SAR + CLR 0 · 69 0 · 38 0 · 26 0 · 18 0 · 11

Oracle TSLS 0 · 08 0 · 09 0 · 09 0 · 10 0 · 11
AR 0 · 14 0 · 14 0 · 15 0 · 15 0 · 16
LM 1 · 06 1 · 06 1 · 07 1 · 07 1 · 07
CLR 0 · 08 0 · 09 0 · 09 0 · 10 0 · 11

Weak Our method AR ∞ ∞ ∞ ∞ ∞
LM ∞ ∞ ∞ ∞ ∞
CLR ∞ ∞ ∞ ∞ ∞
JLM + LM ∞ ∞ ∞ ∞ 2220 · 55
SAR + CLR ∞ ∞ ∞ ∞ ∞

Oracle AR ∞ ∞ ∞ ∞ ∞
LM ∞ ∞ ∞ ∞ ∞
CLR ∞ ∞ ∞ ∞ ∞

Table 22: Comparison of Median Lengths Between Different 95% IV Confidence Intervals
Under Skewed Errors. TSLS, two stage least squares; AR, Anderson–Rubin test ; LM,
Lagrange multiplier test; CLR, conditional likelihood ratio test; SAR, Sargan test; JLM,
pretest in (3.11). There are L = 10 candidate instruments and U is set to L/2 = 5. Strong
instruments correspond to concentration parameter exceeding 100. Weak instruments cor-
respond to concentration parameter value around 2. The interquartile range of our intervals
and strong oracle intervals do not exceed 0 · 20 and 0 · 05, respectively. The interquartile
range of all weak intervals are infinite except for JLM + LM when s = 4 which is 9349 · 87.
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Strength Case Test U = 3 U = 4 U = 5

Strong Our method TSLS 0 · 51 0 · 55 0 · 59
AR 0 · 07 0 · 11 0 · 15
LM 1 · 05 1 · 07 1 · 09
CLR 0 · 50 0 · 54 0 · 58
SAR + TSLS 0 · 05 0 · 08 0 · 12
JLM + LM 0 · 04 0 · 08 0 · 11
SAR + CLR 0 · 04 0 · 08 0 · 12

Weak Our method AR ∞ ∞ ∞
LM ∞ ∞ ∞
CLR ∞ ∞ ∞
JLM + LM 102 · 22 124 · 24 160 · 80
SAR + CLR 59 · 73 ∞ ∞

Table 23: Comparison of Median Lengths Between Different 95% IV Confidence Intervals
With Prior Information on s and U . TSLS, two stage least squares; AR, Anderson–Rubin
test ; LM, Lagrange multiplier test; CLR, conditional likelihood ratio test; SAR, Sargan
test; JLM, pretest in (3.11). There are L = 10 candidate instruments and U is set to
L/2 = 5. Strong instruments correspond to concentration parameter exceeding 100. Weak
instruments correspond to concentration parameter value around 2. The interquartile range
of our intervals do not exceed 0 ·02. The interquartile range of all weak intervals are infinite
except for JLM + LM (for all U) and SAR + CLR (U = 3), which range from 160 · 55
(U = 3) to 42 · 75 (U = 5).
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Table 23 shows the result from the simulation. We see that if U is close to the true s = 2,

our interval lengths are very close to the oracle intervals in Table 20 for strong instruments.

Again, the notable exception is our method using two stage least squares which produces

wide intervals. As U increases, our methods tend to produce longer intervals, which is

expected since our prior information about s at U = 5 is not as accurate as when U = 3.

Also, similar to Table 20, our method with pretesting seems to produce the most informative

interval compared to our method without pretesting. For weak instruments, our intervals

produce the same type of non-informative intervals as the oracle intervals in Table 20. Prior

information does not help, perhaps because the instruments are already weak and no extra

information can be gained by having more accurate ideas about s.

3.4. Data Analysis

We reanalyze the instrumental variables analysis done in Bouis and Haddad (1990), Bouis

and Haddad (1992), and Small (2007) to demonstrate our method in a practical setting.

The goal is to study the causal effect of income on food expenditures among Philippine

farm households from a survey of n = 406 Philippine farm households. The exposure is the

household’s log income, Di and the outcome is the household’s food expenditures, Yi. We

have four candidate instruments, cultivated area per capita, Zi1, worth of assets, Zi2, a bi-

nary dummy variable on presence of electricity at the household, Zi3, and quality of flooring

at the house, Zi4. Page 82 of Bouis and Haddad (1990) states that the reasoning behind

proposing these variables as instrumental variables is that “land availability is assumed to

be a constraint in the short run, and therefore exogenous to the household decision making

process”. We also control for the measured covariates, which are mother’s education, fa-

ther’s education, mother’s age, father’s age, mother’s nutritional knowledge, price of corn,

price of rice, population density of the municipality, and number of household members in

adult equivalents; see Bouis and Haddad (1990) and Bouis and Haddad (1992) for further

details on the data.

The F-statistic for instrument strength is 103·77, indicating reasonably strong instruments.
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Case Test 95% Confidence Interval

Naive TSLS ( 0 · 043, 0 · 053)
AR ( 0 · 044, 0 · 054)
LM (−0 · 031, 0 · 055)
CLR ( 0 · 043, 0 · 055)

Our Method TSLS ( 0 · 031, 0 · 059)
AR ( 0 · 037, 0 · 058)
LM (−0 · 037, 0 · 067)
CLR ( 0 · 034, 0 · 066)
SAR + TSLS ( 0 · 031, 0 · 058)
JLM + LM ( 0 · 034, 0 · 067)
SAR + CLR ( 0 · 034, 0 · 066)

Table 24: Comparison of Median Lengths Between Different 95% IV Confidence Intervals
for the Agricultural Data. TSLS, two stage least squares; AR, Anderson–Rubin test ; LM,
Lagrange multiplier test; CLR, conditional likelihood ratio test; SAR, Sargan test; JLM,
pretest in (3.11). There are four candidate instruments and we assume that at most one is
invalid.

The Sargan test for overidentification, which tests assumptions (A2) and (A3), produces a

p-value of 0·079. Even though the p-value is low, usually practitioners of the instrumental

variables method would naively assume (A2) and (A3) are true since the p-value is above

0·0.5, the typical threshold for significance level and use one of the four procedures in (3.5)–

(3.8) to obtain confidence intervals. In contrast, our methods do not take for granted that

the four instruments are valid. Instead, we assume there may be invalid instruments, specif-

ically we consider that there may be at most one invalid instruments, which corresponds to

U = L/2 = 2. The results from both the naive method and our methods are in Table 23.

For tests that produced multiple, disjoint intervals, we took the lowermost and uppermost

values of all the confidence intervals (i.e. the convex hull) to obtain a non-disjoint confidence

interval. Also, for procedures with pretests, we used the same α1 and α2 thresholds as we

did in Section 3.3.1.

As long as the modeling assumption is true and that no more than one instruments is

invalid, we have a theoretical guarantee that our methods provide the correct 95% confidence

interval, which cannot be said for the four naive intervals in Table 23. Also, even though
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our confidence interval is longer than the the naive intervals, it is still informative in the

sense that most of our intervals do not contain β∗ = 0 and therefore, the null hypothesis of

no causal effect can be rejected at the usual 5% significance level. The notable exception

is the confidence interval based on the Lagrange multiplier test without any pretests. For

this test, both the naive method and the method based on (3.4) contain zero. Among the

intervals that are theoretically guaranteed to have 1−α coverage, our method in (3.4) using

the Anderson–Rubin provides the shortest interval.

The data example illustrates the usefulness of our procedure whenever there is a concern for

invalid instruments in practice. Our procedures yield confidence intervals that are honest

with respect to coverage and can be informative.

3.5. Discussion

This paper proposes a simple and general method to construct robust confidence intervals

for causal effects using instrumental variables estimates when the instruments are possibly

invalid, with theoretical guarantees with respect to coverage. We propose two methods in

(3.4) and (3.10), with the latter using pretests tending to produce informative intervals

when the instruments are strong. Our data analysis example illustrates that our method

can be a robust alternative to confidence interval estimation that has the proper coverage

whenever there is concern for possibly invalid instruments.
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CHAPTER 4 : A Nonparametric, Full Matching Approach to Instrumental

Variables Estimation

This is joint work with Benno Kreuels, Jürgen May, and Dylan Small.

4.1. Instrumental Variables With Measured Covariates

4.1.1. Two Stage Least Squares (TSLS)

As mentioned before, instrumental variables (IVs) is a popular method to estimate the

causal effect of an exposure on the outcome when there is unmeasured confounding, provided

that a valid instrument is available (Angrist, Imbens, and Rubin, 1996; Hernán and Robins,

2006; Brookhart and Schneeweiss, 2007; Cheng, Qin, and Zhang, 2009; Swanson and Hernán,

2013; Baiocchi, Cheng, and Small, 2014). The core assumptions for a variable to be a

valid instrumental variable are that the variable (A1) is associated with the exposure, (A2)

has no direct pathways to the outcome, and (A3) is not associated with any unmeasured

confounders. If measured covariates are available, which is frequently the case in many

IV studies, the plausibility of the instrument satisfying the three core assumptions can be

improved, especially (A3), by conditioning on the covariates.

The most popular and well-studied method that use an IV and measured covariates to

estimate causal effects is two stage least squares (TSLS) (Angrist and Krueger, 1991; Card,

1995; Wooldridge, 2010). For example, in Card (1995), which studied the effect of education

on wages, TSLS with proximity to a 4-year college as an IV was used to control for measured

covariates such as race and parents’ education. Specifically, TSLS first estimates, via least

squares, the predicted exposure (education) given the instrument, (proximity to 4-year

college) and the measured covariates, and second, regresses the outcome (earnings) on this

predicted exposure and the measured covariates; the TSLS estimate of the causal effect

is the coefficient on the predicted exposure in the second regression. Standard results in

econometrics show TSLS estimator is consistent and efficient under linear single-variable
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structural equation models with a constant treatment effect (Wooldridge, 2010). When

treatment effects are not constant, Angrist and Imbens (1995) showed that under certain

monotonicity assumptions, TSLS converges to a weighted average of the covariate-specific

treatment effects with the weights proportional to the average conditional variance of the

expected value of the treatment given the covariates and the instrument. Other IV methods

to estimate causal effects in the presence of measured covariates include Bayesian methods

(Imbens and Rubin, 1997), semiparametric methods (Abadie, 2003; Tan, 2006; Ogburn

et al., 2015), and nonparametric methods (Frölich, 2007).

Despite its attractive estimation properties, TSLS has some drawbacks, specifically in (i)

lack of transparency of the population to which the estimate applies, (ii) lack of blinding

of the analyst/researcher and (iii) dependence on parametric assumptions. First, with

regards to transparency, suppose that there are some values of the covariates for which the

instrument is almost always low, some values for which the instrument is almost always

high and some values of the covariates for which the instrument takes on both low and

high values. Then, the TSLS estimate will put most of its weight on the causal effect for

subjects with the values of the covariates for which the instrument takes on both low and

high values, and little weight on subjects with the values of the covariates for which the

instrument usually takes on low (or high) values. For example, in the case of education on

earnings, this would mean that there might be some states (a measured covariate) that are

receiving little weight in the TSLS estimate; consequently, the TSLS estimate might not be

helpful for understanding the effect of education on earnings in some states even though

these states might have contributed many subjects to the analysis. Although the weighting

function in TSLS can be studied, there is nothing in the TSLS estimation procedure itself

that warns us when some values of the covariates are receiving little weight and it is rare

to see discussion of the weighting function for TSLS in empirical papers.

Second, TSLS lacks blinding with respect to the outcome data when adjusting for covariates.

Cochran (1965), Rubin (2007) and Rosenbaum (2010) argue that the best observational
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studies resemble randomized experiments. An important feature of the design of randomized

experiments is that when designing the study and planning the analysis, the researcher is

blinded to the outcome data. However, in regression based procedures for adjusting for

covariates like TSLS, there is often judgment that needs to be exercised in choosing covariate

adjustment models and this requires one to look at the outcome data along with estimates

of causal effects. It is difficult even for the most honest researcher to be completely objective

in comparing models when the researcher has an a priori hypothesis or expectation about

the direction of the causal effect (Rubin and Waterman, 2006).

Third, TSLS relies on proper specification of how the measured covariates affect the out-

come. Often, parametric modeling assumptions are made for how the measured confounders

affect the outcome. In particular, TSLS, as usually implemented, relies on the measured

confounders having a linear effect on the expected outcome.

4.1.2. Instrumental Variables With Full Matching

Matching is an alternative method to adjust for measured covariates. A matching algorithm

groups individuals in the data with different values of the instrument but similar values of

the observed covariates, so that within each group, the only difference between the individ-

uals is their values of the instrument (Haviland, Nagin, and Rosenbaum, 2007; Rosenbaum,

2010; Stuart, 2010). We can then compare the outcome between individuals with high and

low values of the instrument within a matched set to assess the causal effect of the exposure

on the outcome (Baiocchi et al., 2010).

Matching addresses the drawbacks of TSLS discussed in the previous section. First, if there

are values of covariates for which almost all subjects have a high (or low) value of the

IV, then the matching algorithm and associated diagnostics will tell us that matched sets

cannot be formed when subjects in the matched sets have certain values of the covariates but

different levels of the IV; thus, it will be transparent that for these values of the covariates,

the causal effect cannot be estimated without extrapolation. Relatedly, matching allows
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us to control the weighting of subjects with different values of the covariates to make the

weighting transparent, such as weighting the covariates in proportion to their population

frequency. Second, matching is blind to the outcome data; a matching algorithm only

requires the measured covariates and the instrument values for each individual in the data.

Diagnostics can be done and the matching can be adjusted until it is adequate, all without

looking at the outcome data. Finally, when estimating the causal effect, matching makes

non-parametric inference; it does not use any parametric modeling assumptions such as

linearity.

Previous work using matching in studying causality is abundant in non-IV settings; see

Stuart (2010) for a complete overview. In contrast, work on using matching methods on IV

estimation is limited to pair matching (Baiocchi et al., 2010) and fixed control matching,

i.e. each unit with level 1 of the IV is matched to a fixed number of units with level 0 of the

IV (Kang et al. (2013)). A drawback to these matching methods is that they do not use the

full data (Keele and Morgan, 2013; Zubizarreta et al., 2013). In particular, the method in

Kang et al. (2013) was limited to matching with fixed controls and the method had to drop

roughly 25% of individuals in the final statistical inference from a total of 884 individuals.

In this paper, we develop an IV full matching approach that uses the full data. Full

matching is the most general, flexible, and optimal type of matching (Rosenbaum, 1991;

Hansen, 2004; Rosenbaum, 2010). Specifically, full matching is the generalization of any

type of matching, such as pair matching, matching with fixed controls, or matching with

variable controls. Full matching is also flexible in that it can incorporate constraints on

matched set structures, such as limiting the number of individuals in each matched set, to

improve statistical efficiency. Finally, full matching is optimal in the sense that it produces

matched sets where within each set, measured covariates between individuals with different

instrument values are most similar (Rosenbaum, 1991).

Under IV estimation with full matching, we derive a randomization-based testing procedure

and sensitivity analysis based on the proposed test statistic. We conduct simulation studies
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to study the performance of TSLS versus full matching IV estimation, specifically analyzing

the robustness of both methods to non-linearity (see Section 4.3.1).

4.2. Method

4.2.1. Notation

To introduce the idea of matching in IV estimation, we introduce the following notation.

Let i = 1, . . . , I index the I total matched sets that individuals are matched into. Each

matched set i contains ni ≥ 2 subjects who are indexed by j = 1, . . . , ni and there are

a total of N =
∑I

i=1 ni individuals in the data. Let Zij denote a binary instrument for

subject j in matched set i. In each matched set i, there are mi subjects with Zij = 1 and

ni −mi subjects with Zij = 0. Let Z be a random variable that consists of the collection

of Zij ’s, Z = (Z11, Z12, ...., ZI,nI
). Define Ω as the set that contains all possible values z of

Z, so z ∈ Ω if zij is binary and
∑ni

j=1 zij = mi for all I matched sets. Thus, the cardinality

of Ω, denoted as |Ω|, is |Ω| =
∏I
i=1

(
ni
mi

)
. Denote Z to be the event that Z ∈ Ω. Also define

χ(·) to be an indicator function.

For individual j in matched set i, define d1ij and d0ij to be the potential exposure values

under Zij = 1 or Zij = 0, respectively. Also, define r
(k)
1ij to be the outcome individual j

would have if she were assigned instrument value 1 and level k of the exposure, and r
(k)
0ij to

be the outcome individual j would have if she were assigned instrumental value 0 and level

k of the exposure. Then, r
(d1ij)
1ij and r

(d0ij)
0ij are the potential outcomes if the individual were

assigned levels 1 and 0 of the instrument, respectively, and the exposure took its natural

levels given the instrument resulting in d1ij and d0ij , respectively. The potential outcome

notations assume the Stable Unit Treatment Value Assumption that an individual’s outcome

and exposure depend only on her own value of the instrument and not on other people’s

instrument values (Rubin, 1980).

For individual j in matched set i, let Rij be the binary observed outcome and Dij be the

observed exposure. The potential outcomes r
(d1ij)
1ij , r

(d0ij)
0ij , d1ij , and d0ij and the observed
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values Rij , Dij , and Zij are related by the following equation:

Rij = r
(d1ij)
1ij Zij + r

(d0ij)
0ij (1− Zij) Dij = d1ijZij + d0ij(1− Zij) (4.1)

For individual j in matched set i, let Xij be a vector of observed covariates and uij be

the unobserved covariates. We define the set F = {(r(d1ij)
1ij , r

(d0ij)
0ij , d1ij , d0ij ,Xij , uij), i =

1, ..., I, j = 1, ..., ni} to be the collection of potential outcomes and all covariates/confounders,

observed and unobserved.

4.2.2. Full Matching Algorithm

A matching algorithm controls the bias resulting from different observed covariates by

creating I matched sets indexed by i, i = 1, . . . , I such that individuals within each matched

set have similar covariate values xij and the only difference between individuals in each

matched set is their instrument values, Zij . In a full matching algorithm, each matched set

i either contains mi = 1 individual with Zij = 1 and ni − 1 individuals with Zij = 0 or

mi = ni − 1 individuals with Zij = 1 and 1 individual with Zij = 0.

Rosenbaum (2002, 2010), Hansen (2004), and Stuart (2010) provide an overview of matching

and a discussion on various distance metrics and tools to measure similarity for observed

and missing covariates. Once we have obtained the distance matrix, we use an R package

available on CRAN called optmatch developed by Hansen and Klopfer (2006) to find the

optimal full matching.

4.2.3. Definition of a Valid Instrument

Using the notation in 4.2.1, we formalize the core assumptions of an instrumental variable

below (Holland, 1988; Angrist et al., 1996; Yang et al., 2014).

(A1) The instrument must be associated with the exposure, or in F ,
∑I

i=1

∑ni
j=1(d1ij −

d0ij) 6= 0
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(A2) The instrument can only affect the outcome if it affects the exposure, or in F , r
(k)
1ij =

r
(k)
0ij ≡ r

(k)
ij for all k, where the last equality drops the r’s dependence on Zij (exclusion

restriction)

(A3) The instrument is effectively randomly assigned within a matched set, P (Zij =

1|F ,Z) = mi/ni for each i.

One assumption worth mentioning within the context of observed covariates is assumption

(A3). Assumption (A3) is more plausible if we control for observed variables. Specifically,

within the framework of full matching, for each matched set i, if the observed variables xij

are similar among all ni individuals, it may be more plausible that the unobserved variable

uij plays no role in the distribution of Zij among the ni individuals. If (A3) exactly holds

and subjects are exactly matched for Xij , then within each matched set i, Zij is simply

a result of random assignment where Zij = 1 with probability mi/ni and Zij = 0 with

probability (ni − mi)/ni when we condition on the number of units in the matched sets

with Zij = 1 being mi. In Section 4.2.7, we discuss a sensitivity analysis that allows for the

possibility that even after matching for observed variables, an unobserved variable uij may

still influence the assignment of Zij in each matched set i, meaning that assumption (A3)

is violated.

There are also other assumptions associated with instrumental variables, most notably the

Stable Unit Treatment Value Assumption (SUTVA) in Section 4.2.1 and the monotonicity

assumption in Angrist et al. (1996). SUTVA, within the framework of MR, states that

one’s individual potential outcomes are not affected by the genotype assignment of another

individual. This is fairly reasonable in MR since the instrument was determined at the

conception of the child and a child’s genotype only affects his exposure and outcome, and

not the exposures and outcomes of other children.

Monotonicity, within the framework of MR, states that there are no individuals who would

have an adverse effect on the exposure from inheriting the genotype which is purported to
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bring positive effect on the exposure. In MR where the chosen genetic instruments usually

bring about a positive effect on the exposure, monotonicity is reasonable (see Chapter 5 for

an example with malaria and stunted growth in children).

4.2.4. Effect Ratio and the Local Average Treatment Effect

We define the parameter of interest, called the effect ratio, which is a parameter of the finite

population of N =
∑I

i=1 ni individuals characterized by F .

λ =

∑I
i=1

∑ni
j=1 r

d1ij
1ij − r

d0ij
0ij∑I

i=1

∑ni
j=1 d1ij − d0ij

(4.2)

The effect ratio is the change in the outcome caused by the instrument divided by the

change in the exposure caused by the instrument. The effect ratio can be identified by

taking the ratio of the differences in expected values.

λ =

∑I
i=1

∑ni
j=1E(Rij |Zij = 1,F ,Z)− E(Rij |Zij = 0,F ,Z)∑I

i=1

∑ni
j=1E(Dij |Zij = 1,F ,Z)− E(Dij |Zij = 0,F ,Z)

(4.3)

The effect ratio also admits a well-known interpretation in IV literature if all the IV as-

sumptions, (A1)-(A3), and the monotonicity assumption whereby d1ij ≥ d0ij for every i, j

in F , are satisfied. Specifically, suppose d1ij and d0ij are discrete values from 0 to M . Then

Theorem 4.1 shows that we can identify the effect ratio and interpret it as the weighted

average of the unit causal effect of the exposure on the treatment among individuals whose

exposure was affected by the instrument

Theorem 4.1. Suppose the IV assumptions, (A1)-(A3), in Section 4.2.4 holds and the

exposure ranges from 0, 1, 2, . . . ,M where M is an integer. Further suppose that the mono-
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tonicity assumption where d1ij ≥ d0ij holds for all i, j. Then,

λ =

∑I
i=1

∑ni
j=1E(Rij |Zij = 1,F ,Z)− E(Rij |Zij = 0,F ,Z)∑I

i=1

∑ni
j=1E(Dij |Zij = 1,F ,Z)− E(Dij |Zij = 0,F ,Z)

=

∑I
i=1

∑ni
j=1

∑M
k=1(r

(k)
ij − r

(k−1)
ij )χ(d1ij ≥ k > d0ij)∑I

i=1

∑ni
j=1

∑M
k=1 χ(d1ij ≥ k > d0ij)

=
I∑
i=1

ni∑
j=1

M∑
k=1

(r
(k)
ij − r

(k−1)
ij )wijk

where

wijk =
χ(d1ij ≥ k > d0ij)∑I

i=1

∑ni
j=1

∑M
l=1 χ(d1ij ≥ l > d0ij)

In words, with the IV assumptions and the monotonicity assumption, Theorem 4.1 states

that the effect ratio can be interpreted as the weighted average of the causal effect of a one

unit change in the exposure among the individuals in the study population whose exposure

would be affected by a change in the instrument. Each weight wijk represents whether an

ijth individual exposure would be moved from below k to at or above k by the instrument,

relative to the number of people in the study population whose exposure would be changed

by the instrument. The interpretation of λ is akin to Theorem 1 in Angrist and Imbens

(1995), except that our result is for the finite-sample case and is specific to matching.

Also, with regards to identification, technically speaking, only assumptions (A1) and (A3)

are necessary to identify the ‘bare-bone’ interpretation of λ in (4.2), the ratio of causal

effects of the instrument on the outcome (numerator) and on the exposure (denominator)

since the numerator and the denominator can both be identified by the differences in expec-

tations in (4.3). However, without (A2), i.e. the exclusion restriction, and the monotonicity

assumption, this ratio of differences in expectations in (4.3) cannot identify the weighted

average of effects of the exposure described in the above paragraph.

When full matching is used so that all subjects are used in the matching, the effect ratio (4.2)

and its equivalent expression in Theorem 4.1 are defined for the whole study population.
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Additionally, the effect ratio is invariant to the particular full match it used, e.g. if a different

distance between pairs of subjects were used that resulted in a different full match, the effect

ratio would remain the same. In fact, one of the advantages of using full matching compared

to other matching algorithms that discard some data, such as pair matching, matching

with fixed controls, and matching with variable controls, is that full matching estimates the

effect ratio (4.2) (or equivalently in Theorem 4.1) for the whole study population whereas

for the matching methods that discard data, these methods only estimate (4.2) for the

data that was not discarded, making the estimated parameter dependent on the individuals

that were discarded from the matching algorithm. In contrast, the full matching algorithm

incorporates all the individuals in the data and the effect ratio parameter, specifically the

subscripts i, j are meant to count all the individuals in the data. On a related note, the

effect ratio (4.2) generalizes previous expressions for the effect ratio with pair matching,

ni = 2, by Baiocchi et al. (2010) or matching with fixed controls, ni = k, by Kang et al.

(2013) to accommodate full matching.

4.2.5. Inference for Effect Ratio

We would like to conduct the following hypothesis test for the effect ratio λ.

H0 : λ = λ0, Ha : λ 6= λ0 (4.4)

To test the hypothesis in (4.4), we propose the following test statistic

T (λ0) =
1

I

I∑
i=1

Vi(λ0) (4.5)

where

Vi(λ0) =
ni
mi

ni∑
j=1

Zij(Rij − λ0Dij)−
ni

ni −mi

ni∑
j=1

(1− Zij)(Rij − λ0Dij)
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and S2(λ0), the estimator for the variance of the test statistic, V ar{T (λ0)|F ,Z}

S2(λ0) =
1

I(I − 1)

I∑
i=1

{Vi(λ0)− T (λ0)}2 (4.6)

Each variable Vi(λ0) is the difference in adjusted responses, Rij−λ0Dij , of those individuals

with Zij = 1 and those with Zij = 0. Under the null hypothesis in (4.4), these adjusted

responses have the same expected value for Zij = 1 and Zij = 0 and thus, deviation of

T (λ0) from zero suggests H0 is not true.

Theorem 4.2 states that under regularity conditions, the asymptotic null distribution of

T (λ0)/S(λ0) is standard Normal.

Theorem 4.2. Assume that for every I, (i) ni remains bounded and (ii) 1
I

∑I
i=1

∑ni
j=1 r

(d1ij)
1ij −

r
(d0ij)
0ij and 1

I

∑I
i=1

∑ni
j=1 d1ij−d0ij remains fixed at r̄ and d̄ 6= 0, respectively, so that λ̄ = r̄/d̄.

In addition, we assume the following moment conditions

I∑
i=1

E{V 4
i (λ̄)|F ,Z} = o(I2), lim sup

I→∞

∑I
i=1E|Vi(λ̄)− µi,λ̄|3[∑I
i=1 V ar{Vi(λ̄)}

]3/2
= 0 (4.7)

Then, under the null hypothesis H0 : λ = λ̄, for all t > 0,

lim sup
I→∞

P

{
T (λ̄)

S(λ̄)
≤ −t|F ,Z

}
≤ Φ(−t), lim sup

I→∞
P

{
T (λ̄)

S(λ̄)
≥ t|F ,Z

}
≤ Φ(−t)

where Φ(·) is the standard normal distribution.

Theorem 4.2 provides a point estimate as well as a confidence interval for the effect ratio.

For the point estimate, in the spirit of Hodges and Lehmann (1963), we find the value of λ

that maximizes the p-value, Specifically, setting T (λ)/S(λ) = 0 and solving for λ gives an

estimate for the effect ratio, λ̂

λ̂ =

∑I
i=1

n2
i

mi(ni−mi)

∑ni
j=1(Zij − Z̄i.)(Rij − R̄i.)∑I

i=1
n2
i

mi(ni−mi)

∑ni
j=1(Zij − Z̄i.)(Dij − D̄i.)

(4.8)
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where Z̄i., R̄i., and D̄i. are averages of the instrument, response, and exposure, respectively,

within each matched set. For confidence interval estimation, say 95% confidence interval,

we can solve the equation T (λ)/S(λ) = ±1.96 for λ to get the confidence interval for the

effect ratio. A closed form solution for the confidence interval is provided by Corollary 4.1.

Corollary 4.1. For any value q, the solution to T (λ)/S(λ) = q is a solution to the quadratic

equation A2λ
2 +A1λ+A0 = 0 where

A2 = H̄2
. −

q2

I(I − 1)

I∑
i=1

(Hi − H̄.)
2

A1 = −2Ḡ.H̄. +
2q2

I(I − 1)

{
I∑
i=1

(Gi − Ḡ.)(Hi − H̄.)

}

A0 = Ḡ2
. −

q2

I(I − 1)

I∑
i=1

(Gi − Ḡ.)2

where

Gi =
n2
i

mi(ni −mi)

ni∑
j=1

(Zij − Z̄i.)(Rij − R̄i.)

Hi =
n2
i

mi(ni −mi)

ni∑
j=1

(Zij − Z̄i.)(Dij − D̄i.)

Z̄i. =
1

ni

ni∑
j=1

Zij , D̄i. =
1

ni

ni∑
j=1

Dij , R̄i. =
1

ni

ni∑
j=1

Rij

H̄. =
1

I

I∑
i=1

Hi, Ḡ. =
1

I

I∑
i=1

Gi

4.2.6. Formula for Efficiency in Instrumental Variables With Full Matching

One of the advantages of full matching is its flexibility to accommodate various sizes of

matched sets. All things being equal in terms of covariate balance, we would like an estima-

tor of the effect ratio λ that is as efficient as possible. This is particularly the case with full

matching where an unconstrained full matching can create large matched sets which reduces

efficiency (Hansen, 2004). However, we can constrain full matching to increase efficiency by
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restricting matched sets to have a maximum number of controls and/or treated units per

matched set (Hansen, 2004). This section studies statistical efficiency of the estimator for

λ under different constraints on full matching.

To study the efficiency of the effect ratio estimator for different ni and mi, we study a

simple version of the structural equations model popular in econometrics and widely used

to study the properties of TSLS, the most popular IV estimator (Wooldridge, 2010). Let

(Rij , Dij , Zij) be i.i.d. observations from an infinite population following this model.

Rij = αi + βDij + εij , E(εij |Zij) = 0 (4.9)

Dij = τi + γZij + ξij , E(ξij |Zij) = 0 (4.10)

with the following moment conditions.

V ar(εij |Zij) = σ2
i,R, V ar(ξij |Zij) = σ2

i,D, E(εijξij |Zij) = σi,RD

The parameters αi, i = 1, . . . , I measure the effect on the outcome from being in matched

set i. The parameter β is the effect of interest, the effect of the exposure on the outcome.

Note that the treatment effect in (4.9) is assumed to be homogeneous for everyone, which is

not necessary for the analysis of the effect ratio in general. The parameters τi, i = 1, . . . , I

measure the effect on the exposure from being in matched set i. The parameter γ is the

effect of the instrument on the exposure. By including αi and τi, the models (4.9) and

(4.10) incorporate the matching aspect of IV estimation since each matched set i has effects

on Rij and Dij via αi and τi, respectively, that are unique to that matched set.

The effect ratio, λ, is related to parameters found in standard structural equation models

in (4.9) and (4.10). To illustrate this, note that the potential outcomes notation can be
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rewritten under the models (4.9) and (4.10) as follows.

Rij =


r

(d1ij)
1ij = αi + βτi + βγ + βξij + εij if Zij = 1

r
(d0ij)
0ij = αi + βτi + βξij + εij if Zij = 0

Dij =


d1ij = τi + γ + ξij if Zij = 1

d0ij = τi + ξij if Zij = 0

Then, the effect ratio in (4.2) turns out to be

λ =

∑I
i=1

∑ni
j=1 r

(d1ij)
1ij − r(d0ij)

0ij∑I
i=1

∑ni
j=1 d1ij − d0ij

=

∑I
i=1

∑ni
j=1 βγ∑I

i=1

∑ni
j=1 γ

=
βγ

γ
= β

Hence, λ = β and because of this equivalence, inferences for the effect ratio is equivalent to

inference for β. For example, the parameter β can be estimated by the effect ratio estimator

discussed in Section 4.2.5, specifically equation (4.8)

β̂ =

∑I
i=1

n2
i

mi(ni−mi)

∑ni
j=1(Zij − Z̄i.)(Rij − R̄i.)∑I

i=1
n2
i

mi(ni−mi)

∑ni
j=1(Zij − Z̄i.)(Dij − D̄i.)

Theorem 4.3 computes the asymptotic variance of β̂ to study the efficiency of the effect

ratio estimator under the models (4.9) and (4.10).

Theorem 4.3. Suppose we have models (4.9) and (4.10) with γ 6= 0 and the third moment

of εij is bounded for all i, j. Define the following variables

Ji =

ni∑
j=1

(Zij − Z̄i.)(εij − ε̄i.), Hi =

ni∑
j=1

(Zij − Z̄i.)(Dij − D̄i.), ε̄i. =
1

ni

ni∑
j=1

εij

s2
I =

I∑
i=1

n3
i

mi(ni −mi)
σ2
i,R

Assume that (i) Zij are fixed, (ii) ni remain bounded for all i, and the following moment
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conditions are met for Ji and Hi

lim sup
I→∞

1

s3
I

I∑
i=1

n6
i

m3
i (ni −mi)3

E(|Ji|3) = 0,
I∑
i=1

V ar

(
n2
i

mi(ni −mi)
H2
i

)
= o(I2)

Then, the asymptotic variance of the effect ratio estimator in (4.8) is

√
I(β̂ − β)→ N

0,

(
limI→∞

sI√
I

)2

γ2
(

limI→∞
1
I

∑I
i=1 ni

)2


Theorem 4.3 provides an easy way to compare between different types of full matching

methods and their effect on the estimation of the effect ratio. For example, in the simple

case of homoscedastic variance, the approximate variance of λ̂ is

V ar(λ̂) ≈ K
∑I

i=1
n3
i

ni−1(∑I
i=1 ni

)2

where K is some constant that depends on the variance of Rij and the strength of the

instrument. Since K will be identical for all full matched designs, we can simply look at

the quantities to the right of K to tweak our full matching algorithm to produce the most

efficient estimator. In Section 4.3.3, we examine this strategy more closely with a simulation

study.

4.2.7. Sensitivity Analysis

Sensitivity analysis attempts to measure the influence of unobserved confounders on the

inference on λ. In the case of instrumental variables, a sensitivity analysis quantifies how a

violation of assumption (A3) in Section 4.2.3 would impact the inference on λ (Rosenbaum,

2002). Specifically, under assumption (A3), the instrument is assumed to be free from

unmeasured confounders or free after conditioning on observed confounders via matching.

The latter implies that the instruments are assigned randomly, P (Z = z|F ,Z) = (|Ω|)−1,

i.e. that within each matched set i, P (Zij = 1|F ,Z) = mi/ni.
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However, as discussed in Section 4.2.3, even after matching for observed confounders, un-

measured confounders may influence the viability of assumption (A3). For example, within

a matched set i , two individuals, j and k, may have identical covariates (xij = xik), but

have different probabilities for instrument assignment, P (Zij = 1|F) 6= P (Zik = 1|F) due

to unmeasured confounders, denoted as uij and uik for the jth and kth individuals, respec-

tively. Despite our best efforts to minimize the observed differences in covariates and to

adhere to assumption (A3) after conditioning on the matched sets, unmeasured confounders

could still be different between the jth and kth child, and this difference could make the

instrument Zij depart from randomized assignment, violating assumption (A3).

To model this deviation from randomized assignment due to unmeasured confounders, let

πij = P (Zij = 1|F) and πik = P (Zik = 1|F) for each unit j and k in the ith matched set.

The odds that unit j will receive Zij = 1 instead of Zij = 0 is πij/(1− πij). Similarly, the

odds for unit k is πik/(1− πik). Suppose the ratio of these odds is bounded by Γ ≥ 1

1

Γ
≤ πij(1− πik)
πik(1− πij)

≤ Γ (4.11)

If unmeasured confounders play no role in the assignment of Zij , then πij = πik and Γ = 1.

If there are unmeasured confounders that affect the distribution of Zij , then πij 6= πik

and Γ > 1. For a fixed Γ > 1, we can obtain lower and upper bounds on πij , which can

be used to derive the null distribution of T (0)/S(0) under H0 : λ = 0 in the presence

of unmeasured confounding and be used to compute a range of possible p-values for the

hypothesis H0 : λ = 0 (Rosenbaum, 2002). The range of p-values indicates the effect of

unmeasured confounders on the conclusions reached by the inference on λ. If the range

contains α, the significance value, then we cannot reject the null hypothesis at the α level

when there is an unmeasured confounder with an effect quantified by Γ.

Specifically, consider Fisher’s sharp null hypothesis, H0 : r
(d1ij)
1ij = r

(d0ij)
0ij for all i = 1, . . . , n

and j = 1, . . . , ni. Note that this hypothesis implies the hypothesis H0 : λ = 0. Further-
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more, the test statistic in (4.5) simplifies to

T (0) =
1

I

I∑
i=1

 ni
mi

ni∑
j=1

ZijRij −
ni

ni −mi

ni∑
j=1

(1− Zij)Rij


=

1

I

I∑
i=1

n2
i

mi(ni −mi)

ni∑
j=1

ZijRij −
1

I

I∑
i=1

ni
ni −mi

ni∑
j=1

Rij

Regardless of the distribution of P (Z|F ,Z), 1
I

∑I
i=1 ni/(ni−mi)

∑ni
j=1Rij is constant since

r
(d1ij)
1ij = r

(d0ij)
0ij under Fisher’s sharp null hypothesis. Hence, we can use the simpler statistic,

T̃ (0),

T̃ (0) =
1

I

I∑
i=1

ni
mi(ni −mi)

ni∑
j=1

ZijRij (4.12)

to test the Fisher’s sharp null hypothesis. If the responses are binary, equation (4.12) is

the sign-score test statistic for which exact bounds on p-values exist (Rosenbaum, 2002).

If the responses are continuous, Gastwirth et al. (2000) and Small et al. (2009) provide an

approximate bound on p-values.

In addition, we can amplify the interpretation of Γ using Rosenbaum and Silber (2009) to

get a better understanding of the impact of the unmeasured confounding on the outcome

and the instrument. To do this , consider a binary unmeasured confounder with two values

∆ and Λ where ∆ and Λ have the following property

Γ =
∆Λ + 1

∆ + Λ
, ∆ > 0,Λ > 0 (4.13)

The parameter Λ refers to the odds of having one instrument value over another. The

parameter ∆ refers to the odds of having one outcome over another. For each Γ, we can use

equation (4.13) and translate the interpretation of Γ as the combined effect an unmeasured

confounder must have on the instrument, Λ, and on the outcome, ∆, to change the inference.
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4.3. Simulation

4.3.1. Comparison to TSLS

One of the advantages of matching based IV estimation versus traditional IV estimation,

such as conventional TSLS without matching, is its robustness to parametric assumptions

between the outcome and the covariates. Specifically, for conventional TSLS, in order for

the estimate to be consistent, the covariates must have a linear effect on the expected

outcome. In contrast, matching-based IV estimation puts no constraints on the structure

of the relationship between the outcome and the covariates. In this section, we study this

phenomena in detail through a simulation study.

Let the outcome Rij , the exposure Dij , the observed covariates Xij , and the instrument

Zij be generated based on the following model known as the structural equations model in

econometrics (Wooldridge, 2010).

Rij = α+ βDij + f(Xij) + εij

Dij = κ+ πZij + ρTXij + ξij

,

εij
ξij

 iid∼ N


0

0

 ,
 1 0.8

0.8 1




where the parameters α, β, κ and ρ are all fixed throughout the simulation. The parameters

α and κ are intercepts. The parameter β is the quantity of interest, the effect of the exposure

on the outcome, and is also equal to the effect ratio (see Section 4.2.6). The parameter π

quantifies the strength of the instrument. The function f(·) is a pre-defined function that

takes in a vector of observed covariates Xij and produces a scalar value that affects the

outcome, Rij . In the simulation, Xij , are five-dimensional vectors or Xij = (Xij1, . . . , Xij5).

Also, we consider the following list of functions parametrized by γ ∈ R5

(a) Linear function: f(Xij) =
∑5

k=1 γkXijk

(b) Quadratic function: f(Xij) =
∑5

k=1 γkX
2
ijk

(c) Cubic function: f(Xij) =
∑5

k=1 γkX
3
ijk
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(d) Exponential function: f(Xij) =
∑5

k=1 γk exp(Xijk)

(e) Log function: f(Xij) =
∑5

k=1 γk log(|Xijk|)

(f) Logistic function: f(Xij) = 1
1+exp(−

∑5
k=1Xijkγk)

(g) Truncated function: f(Xij) =
∑5

k=1 γkχ(Xijk ≥ 0) where χ(·) is an indicator function.

(h) Square root function: f(Xij) =
∑5

k=1 γk
√
|Xijk|

To generate Xij , we adopt the following scheme. For individuals with Zij = 0, Xij comes

from a five-dimensional multivariate Normal distribution with mean (0, . . . , 0) and an iden-

tity covariance matrix. For individuals with Zij = 1, Xij comes from a five-dimensional

multivariate Normal with mean (1, 0, . . . , 0) and an identity covariance matrix. The instru-

ments, Zij , are generated randomly with P (Zij = 1) = 1/8 and P (Zij = 0) = 7/8, similar

to the ratio observed in our malaria data (see Chapter 5). For each generated data set, we

compute the estimate of β using TSLS and our procedure. TSLS is based on (i) regressing

Dij on Zij and Xij to obtain the predicted value of Dij , say D̂ij , and (ii) regressing Rij on

D̂ij and Xij . We simulate this process 5000 times and compute the estimates of β produced

by the two procedures. We measure the performance of the two procedures by computing

the median absolute deviation, the absolute bias of the median (i.e. the absolute value of

the bias of the median estimate with respect to β), and the Type 1 error rate over 5000

simulations. For each simulation study, we vary the function f(·) and π.

Figures 30, 31 and 32 compare performances between TSLS and our method when we fix

the sample size, but vary the strength of the instrument (i.e. the strength of the effect

of the instrument on the treatment) via π. Specifically, we evaluate the strength of the

instrument using a popular measure known as the concentration parameter (Bound et al.,

1995). High values of the concentration parameter indicate a strong instrument while low

values of it indicate a weak instrument. The concentration parameter is the population

value of the first stage partial F statistic for the instrument when the treatment is regressed
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Figure 30: Absolute Bias of the Median Between Our Full Matching Method and TSLS
for Different Concentration Parameters. The solid line indicates TSLS and the dashed line
indicates our method.
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on the instrument and the measured covariates Xij ; this first stage F statistic is often used

to check instrument strength where an F below 10 suggests that the instruments are weak

(Stock et al., 2002). The sample size is fixed at 800 where 100 individuals have Zij = 1

and 700 individuals have Zij = 0. We also vary f(·) based on the functions listed in the

previous paragraph.

Figure 30 measures the absolute bias of the median for TSLS and our method. When

f(·) is a linear function of the observed covariates xij , TSLS does slightly better than our

method. TSLS doing well for the linear function is to be expected since TSLS is consistent

when the model is linear. However, if f(·) is non-linear, our matching estimator does better

than TSLS and is never substantially worse for all instrument strengths. For example, for

quadratic, cubic, exponential, log, and square root functions, our method has lower bias

than TSLS for all strengths of the instrument. For logistic and truncated functions, our

method is similar in performance to TSLS for all strengths of the instrument.

Figure 31 measures the median absolute deviation (MAD) of TSLS and our method. Our

method tends to have a slightly higher MAD than TSLS. This higher variability of our

method is to be expected since our method uses a nonparametric approach whereas TSLS

is a parametric approach. However, as the instrument gets stronger (i.e. high concentration

parameter), the gap between the two MADs shrinks quickly.

Finally, Figure 32 measures the Type I error rate of TSLS and our method. Regardless

of the function type and the instrument strength, our method retains the nominal 0.05

rate. In fact, even for the linear case where TSLS is designed to excel, our estimator has

the correct Type I error rate for all instrument strengths while TSLS has higher Type I

error for weak instruments. For all the non-linear functions, the Type I error rate for TSLS

remains above the 0.05 line while our estimator maintains the nominal Type I error rate.

This provides evidence that our estimator will have the correct 95% coverage for confidence

intervals regardless of non-linearity or instrument strength.
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Figure 31: Median Absolute Deviation Between Our Full Matching Method and TSLS for
Different Concentration Parameters. The solid line indicates TSLS and the dotted line
indicates our method.
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Figure 32: Type I Error Rate Between Our Full Matching Method and TSLS for Different
Concentration Parameters. The solid line indicates TSLS and the dashed line indicates our
method.
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In summary, the simulation study shows promise that our method is generally more ro-

bust to assumptions about instrument strength and linearity between the outcome and the

covariates than TSLS at the expense of a small increase in dispersion.

4.3.2. Comparison to Frölich (2007)

In addition to comparing our method against the most popular IV estimator, TSLS, we

also compare our method to the non-parametric IV method of Frölich (2007) implemented

by Frölich and Melly (2010). The simulation setup is identical to Section 4.3.1, except that

we discretize the exposure value Di so that we can compare our method to the method in

Frölich (2007). Specifically, let D∗ij be defined as Dij in Section 4.3.1, i.e. D∗ij = κ+ πZij +

ρTXij + ξij . Then, we define

Dij = χ(D∗ij < −1) + 2χ(−1 ≤ D∗ij < 1) + 3χ(1 ≤ D∗ij)

The response Rij is generated from the same model as in Section 4.3.1, except with a

discretetized Dij . The rest of the data generating process is identical to Section 4.3.1.

For each simulated data, we use the code provided by Frölich and Melly (2010) to generate

an estimate for β∗, the local average treatment effect, with the default settings for the

tuning parameters. We also use our method to estimate β∗. Finally, for comparison, we

run TSLS on the simulate data. As before, we measure the absolute bias of the median and

the median absolute deviation (MAD). For each simulation study, we vary the function f(·)

and π, the strength of the instrument.

Figures 33 and 34 show the absolute bias and median absolute deviation, respectively,

between the three methods. Generally speaking, both our method and method by Frölich

(2007) do better than TSLS when f(·) is non-linear. Between our method and one by Frölich

(2007), in most cases, our method is better or similar to the method of Frölich (2007) when

it comes to bias. With regards to variability, our method and the method of Frölich (2007)

are very similar to each other. For the quadratic, cubic, and exponential functions, our
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Figure 33: Absolute Bias of the Median Between Our Full Matching Method, TSLS, and
Frölich’s Method for Different Concentration Parameters. The solid line indicates 2SLS,
the dashed line indicates our method, and the dotted line indicates Frölich’s method.

simulations show that our method dominates both in bias and variance compared to Frölich

(2007).

Unfortunately, we were not able to produce Type I error results for the method of Frölich

(2007) because of a coding error in the code provided by Frölich and Melly (2010) which

provided negative standard errors on the estimates produced by it. Frölich (personal com-

munication) is aware of the issue and will be releasing a new version in the future.

4.3.3. Approximations of Efficiency

In this section, we assess the accuracy of the efficiency formula provided in Section 4.2.6

by the following simulation study. The variables Rij , Dij and Zij are generated via the
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Figure 34: Median Absolute Deviation Between Our Full Matching Method, TSLS, and
Frölich’s Method for Different Concentration Parameters. The solid line indicates 2SLS,
the dashed line indicates our method, and the dotted line indicates Frölich’s method.
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I Theoretical Variance Simulated Variance
Strong Weak Strong Weak

50 0.024 0.59 0.028 3224.30
100 0.012 0.30 0.012 181.06
110 0.011 0.27 0.012 2506.92
500 0.0024 0.060 0.0025 2.05
1000 0.0012 0.030 0.0012 0.037
5000 0.00024 0.0060 0.00024 0.0063
10000 0.00012 0.0030 0.00012 0.0030

Table 25: Comparison of Simulated Variance and Theoretical Variance for Different
Strength of Instruments and Matched Sets

model in (4.9) and (4.10) with Zij assumed to be fixed. We randomly pick αi, τi, and β.

We pick γ to be 1 for the strong instrument case and −0.2 for the weak instrument case.

We assume a homoscedastic variance for the error terms where all the σ2
i,R, σ

2
i,D, and σi,RD

are the same for every i. We compute the effect ratio estimator, repeat this process 1000

times, and compute the simulated variance. The theoretical variance is calculated based on

the formula provided in Theorem 4.3. Table 25 shows the results.

Table 25 shows us that for strong instruments, the agreement between theoretical formula

in Theorem 4.3 and simulation is quite good for all values of I. On the other hand, for

weak instruments, there is substantial deviation between the theoretical variance and the

simulated variance until I is above 5000.

4.4. Discussion

Overall, in contrast to regression-based IV estimation procedures like TSLS, our full match-

ing IV method provide a clear way to assess the balance of observed covariates and design

the study without looking at the outcome data along with a way to quantify the effect of

unmeasured confounders on our inference of the causal effect. Our method made it ex-

plicitly clear how these covariates were adjusted by stratifying individuals based on similar

covariate values. Finally, like in a randomized experiment, our method only looks at the

outcome data once the balance was acceptable. If the balance was unacceptable, then com-

paring the outcomes between the two groups would not provide reliable causal inference
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since any differences in the outcome can be attributed to the differences in the covariates.

In contrast, conventional TSLS can only analyze the causal relationship in the presence of

outcome data, making the outcome data necessary throughout the entire analysis. Finally,

our method is robust to parametric modeling assumptions between the outcome and the

covariates with respect to Type I error and point estimate, which cannot be said about

TSLS.

At the expense of these benefits, especially blinding and transparency with regards to

covariate balance, unfortunately matching estimators tend to be less efficient than TSLS or

some of the semiparametric methods mentioned in Section 4.1.1 when the semiparametric

methods’ assumptions hold. In practice, our estimator’s blinding and transparency can be

a powerful design and visual tool for applied researchers to assess the validity of the causal

conclusions. However, a more careful exploration of the trade-offs between the efficiency of

our estimator and the efficiency of some of the semiparametric and non-parametric methods

is an interesting direction for future research.
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CHAPTER 5 : An Application: The Causal Effect of Malaria on Stunting in

Children from Ghana

This is joint work with Benno Kreuels, Ohene Adjei, Ralf Krumkamp, Jürgen May, and

Dylan Small.

5.1. Background: Malaria and Childhood Development in sub-Saharan Africa

In 2013 alone, there were 128 million estimated cases of malaria in sub-Saharan Africa,

with most cases occurring in children under the age of 5 (World Health Organization,

2014). In addition to being one of the major causes of death in early childhood, repeated

malaria episodes are a major cause of chronic anemia and may impair child development

(Korenromp et al., 2004). Consequently, it is important to study the impact of malaria on

child development to prioritize public health resources.

Previous epidemiological studies on the association between malaria and child growth have

produced inconsistent results, which is partly rooted in different methodological approaches.

Several studies assessed growth using the mean height-for-age Z-score, while other studies

used the prevalence of stunting (height-for-age Z-score < −2) as an indicator of insuffi-

cient growth. Stunting is a common condition in African children and is one of the main

determinants of childhood morbidity and mortality (Rice et al., 2000). In 1956 a study

from the Gambia first showed a tendency to higher mean Z-scores in infants who received

malaria prophylaxis compared to children who did not (McGregor et al., 1956). Later an

association between malaria and child growth or risk of stunting was also seen in Nigeria

(Bradley-Moore et al., 1985), Kenya (ter Kuile et al., 2003), The Gambia (Deen et al., 2002),

Ghana Ehrhardt et al. (2006), and Uganda Arinaitwe et al. (2012). Other studies, however,

found no association (Snow et al., 1991; Fillol et al., 2009; Deribew et al., 2010; Crookston

et al., 2010) or even a higher risk of malaria in children with better z-scores (Genton et al.,

1998). Finally, one study demonstrated that the association between stunting and malaria

might be strongest in young children (Nyakeriga et al., 2004).
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A major limitation common to all previous studies is the inability to fully adjust for con-

founding. Specifically, nutritional deficiencies are important potential confounders because

they are an important determinant of stunting and they also compromise immune func-

tion, which could result in a higher risk of infection (Fillol et al., 2009). Further potential

confounders are socioeconomic status, living conditions, and other infections. In addition,

reverse causality in the association of stunting and malaria seems possible. Randomized tri-

als recruiting children at birth could account for potential confounders and reverse causality

but are impractical in this context.

In this paper, we seek to control for confounders in estimating the causal effect of malaria

on stunting by using a combination of Mendelian randomization (MR) and matching (in

Chapter 4). The basic idea of MR is to extract variation in an exposure (i.e. malaria) that is

due to a Mendelian gene, which is independent of confounders, and use this confounder-free

variation to estimate the effect of the exposure on the outcome (i.e. stunting) (Davey Smith

and Ebrahim, 2003, 2004; Lawlor et al., 2008). The hemoglobin variant HbS, which is

caused by a point-mutation at the 6th position of the β-Globin gene (β6Glu Val), serves

as the paradigm for balanced polymorphisms; while people homozygote for HbS (HbSS)

have sickle cell disease with an increased mortality, heterozygote carriers (HbAS, sickle cell

trait) are asymptomatic and protected from malaria (May et al., 2007; Kreuels et al., 2010).

A previous analysis of the current data showed a negative association between the HbAS

genotype and stunting in an area of high malaria endemicity and computed the magnitude

of the association (Kreuels et al., 2009). However, the study did not analyze the effect of

malaria on stunting and the magnitude of such an effect. In this analysis, we use HbAS as

a Mendelian gene to expand on this finding and estimate the effect of malaria on stunting.

To control for measured confounders (e.g. birth weight, ethnic group, mosquito protection),

we will use matching laid out in Chapter 4.
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5.2. Methods

5.2.1. Study Population and Design

The study was conducted in the Ashanti region in Ghana. A cohort of 1070 infants was re-

cruited as part of a clinical trial on intermittent preventative treatment with Sulphadoxine-

Pyrimethamine (SP) (Kobbe et al., 2007). Infants were recruited at three months of age

and followed-up monthly until age two with comprehensive examinations including a stan-

dardized medical history, a measurement of body temperature, and a thick-and-thin smear

for microscopic malaria diagnostics. Passive case detection was performed between sched-

uled visits. A child was diagnosed with malaria if he/she had a parasite-density of more

than 500 parasites/µl and a body temperature greater than 38◦C or the mother reported

a fever within the last 48 hours. In three monthly intervals, standardized anthropometric

measurements, including height and weight, were performed. A child was deemed stunted

if her/his length/height-for-age z-score was less than -2 (i.e. moderate or severe stunting)

(WHO Multicentre Growth Reference Study Group, 2006). Further details of the study

population are published in a previous paper (Kobbe et al., 2007).

5.2.2. Definition of Instrument, Exposure, and Outcome

For this analysis only infants with heterozygote HbAS or wildtype HbAA were considered.

Children with homozygote mutation (HbSS) or a different mutation on the same gene

leading to hemoglobin C (HbAC, HbCC, HbSC) were excluded. The instrument was a

binary variable indicating the HbAS or HbAA genotype. The exposure of interest was

the malarial history defined as the total number of malaria episodes during the study. A

malaria episode, as stated before, was defined as having a parasite density of more than

500 parasites/µl and a body temperature greater than 38◦C or the mother reported a fever

within the last 48 hours. The outcome of interest was whether the child was stunted at the

last recorded visit, which took place when the child was approximately two years old.
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5.2.3. Assumptions for Instrumental Variables with the Sickle Cell Trait

We formalize the core assumptions of an instrumental variable below (Holland, 1988; Angrist

et al., 1996; Yang et al., 2014) (see Figure 1)

(A1) The sickle cell is associated with malaria episodes

(A2) All directed pathways from the sickle cell trait to stunting passes through malaria

episodes (i.e. there is no pathway that goes directly from the sickle cell genotype to

stunted growth)

(A3) There are no unmeasured confounders that are associated with the sickle cell trait

and stunted growth

We now assess the validity of (A1)-(A3) for the sickle cell trait, the instrument for our

analysis on the effect of malaria on stunting. For assumption (A1), there is substantial

evidence that the sickle cell trait does provide protection against malaria as compared to

people with two normal copies of the HBB gene (HbAA) (Aidoo et al., 2002; Williams et al.,

2005; May et al., 2007; Cholera et al., 2008; Kreuels et al., 2010). Also, with this data, when

we characterize the effect of the sickle cell trait on malaria based on a Poisson regression,

the difference in episodes of malaria between children with HbAS and HbAA is significant

(Risk ratio: 0.82, p-value: 0.02, 95% CI: (0.70, 0.97)), indicating that the sickle cell trait

instrument satisfies (A1) of being associated with the exposure. This is also in alignment

with previous literature on the relationship between sickle cell genotype and malaria for

this data (Kreuels et al., 2010).

For assumption (A2), this could be violated if the sickle cell trait had effects on stunting

other than through causing malaria, for instance, if the sickle cell trait was pleiotropic

(Davey Smith and Ebrahim, 2003). We can partially test this assumption by examining

individuals who carry the sickle cell trait, but who grew up in a region where malaria is not

present. That is, if assumption (A2) were violated, heights between individuals with HbAS
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and HbAA in such a region would be different since there would be a direct arrow between

the sickle cell trait and height. Studies among African American children and children from

the Dominican Republic and Jamaica for whom the sickle cell trait is common, but there is

no malaria in the area, found no evidence that the sickle cell trait affected a child’s physical

development (Ashcroft et al., 1976; Kramer et al., 1978; Ashcroft et al., 1978; Rehan, 1981).

This supports the validity of assumption (A2). Note, however, that although the results of

this test support the validity of (A2), (A2) could still be violated. For example, the sickle

cell trait could have a direct effect that interacts with the environment in such a way that

the direct effect is only present in Africa, but not in the Dominican Republic or Jamaica.

For assumption (A3), this assumption would be questionable in our data if we did not

control for any population stratification covariates. Population stratification is a condition

where there are subpopulations, some of which are more likely to have the sickle cell trait,

and some of which are more likely to be stunted through mechanisms other than malaria

(Davey Smith and Ebrahim, 2003). For example, in Table 26 which provides the baseline

characteristics for our data, we observed that the village Tano-Odumasi had more children

with HbAA than HbAS. It is possible that there are other variables besides HbAA that

differ between the village Tano-Odumasi and other villages and affect stunting. Hence,

assumption (A3) is more plausible if we control for observed variables, like village of birth,

and we use full matching in Chapter 4 to achieve this. Specifically, within the framework

of matching, for each matched set, if the observed confounders in Table 26 are similar

among all individuals in that matched set, it may be more plausible that the unobserved

variable, say u, plays no role in the distribution of the sickle cell genotype among all the

individuals in the matched set. If (A3) exactly holds and subjects are exactly matched

for their observed confounders, then within each matched set, sickle cell is simply assigned

by a random mechanism. In Section 4.2.7, we discuss a sensitivity analysis that allows for

the possibility that even after matching for observed variables, the unobserved variable u

may still influence the assignment of the sickle cell trait in each matched set, meaning that

assumption (A3) is violated.
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Other notable IV assumptions, such as Stable Unit Treatment Value Assumption (SUTVA)and

monotonicity, are fairly reasonable in this data. SUTVA states that one’s individual poten-

tial outcomes are not affected by the genotype assignment of another individual (Angrist

et al., 1996). Our instrument, the sickle cell genotype, was determined at the conception

of the child and hence, a child’s genotype only affects his exposure and outcome, and not

the exposures and outcomes of other children. Monotonicity, within the framework of MR,

states that there are no individuals who would have an adverse effect on the exposure from

inheriting the genotype which is purported to bring positive effect on the exposure. In MR

where the chosen genetic instruments usually bring about a positive effect on the exposure,

monotonicity is reasonable, especially with our instrument, the sickle cell genotype, where

it is widely believe that inheriting the trait provides individuals protection from malarial

infection compared to not inheriting the trait.

5.2.4. Full Matching on Malaria Data and Efficiency Simulation

We conduct full matching on all observed covariates. In particular, we group children with

HbAS and HbAA based on all the observed characteristics in Table 26 as well as match

for patterns of missingness. To measure similarity of the observed and missing covariates,

we use the rank-based Mahalanobis distance as the distance metric for covariate similarity

(Rosenbaum, 2010). In addition, we compute propensity scores by logistic regression. Here,

the propensity score is an instrumental propensity score, which is the probability of having

the sickle cell trait given the measured confounders (Cheng, 2011). In addition, children

with missing values in their covariates were matched to other children with similar patterns

of missing data (Rosenbaum, 2010). Once covariate similarity was calculated, the matching

algorithm optmatch in R (Hansen and Klopfer, 2006) matched children carrying HbAS with

children carrying HbAA in a way that within each matched set, their covariates are similar.

Hansen (2004) discusses how the size of matched sets in full matching can be restricted to

gain efficiency and Section 4.2.6 provides a method to compute efficiency. Unfortunately,

for us to use the formula in that section, it requires, among other things, a linear model
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between the outcome and the exposure. In our study where stunting, the outcome, is a

binary variable and malaria, the exposure, is a whole number, it is unreasonable to assume

that the binary outcome is a linear function of malaria exposures.

To tackle this, we propose a simulation study to analyze efficiency for different full matching

schemes. For our malaria data, we fix the instruments and the measured covariates, which,

in turn, fixes the matched sets. We assume a Poisson relationship between the number

of malaria episodes and the instrument and a logistic relationship between the number of

episodes and the stunting outcome. In particular, we use the following model

P (Rij = 1) =
1

1 + e−(αi+βDij+uij)
, E(Dij) = eτi+γZij

where Rij is the outcome, Dij is the exposure, and Zij is the instrument. We fix β, the

effect of malaria on stunting, to be 0.32 and γ, the strength of the instrument, to be −0.20

based on the estimates in Kang et al. (2013); the estimate of γ was based on the risk ratio

estimate. We also randomly choose αi and τi, the intercepts, from Normal distributions

with means −1.67 and −0.19, respectively, and variances 0.12 and 0.027, respectively. The

mean and the variance for αi are from the estimated intercept term and its corresponding

standard error of the logistic regression between Rij and Dij . Similarly, the mean and the

variance for τi are from the estimated intercept term and its corresponding standard error

of the Poisson regression between Dij and Zij . Once all the parameters are set, we sample

884 observations of (Rij , Dij) (i.e. the sample size of the malaria data set) and compute

the effect ratio estimator based on the sample of 884. Note that the effect ratio estimator

should be able to estimate β since it doesn’t rely on the functional form between stunting

(i.e. outcome) and malaria episodes (i.e. exposure). We repeat the simulation 5000 times

and compute the median absolute deviation as a robust proxy for variance of the effect ratio

estimator.
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5.2.5. Estimator of the Effect Ratio

After matching, we estimate the effect ratio, as described in Section 4.2.4. In the malaria

data, the effect ratio parameter can be interpreted as the weighted average reduction in

stunting from a one-unit reduction in malaria episodes among individuals who were pro-

tected from malaria by the sickle cell trait. Similarly, each weight represents each individ-

ual’s protection from at least k malaria episodes by carrying the sickle cell trait compared

to the overall number of individuals who are protected from varying degrees of malaria

episodes by carrying the sickle cell trait.

We use the test statistic described in Section 4.2.5 to estimate the effect ratio and obtain

inferential quantities like p-values and 95% confidence intervals. We note that the regularity

conditions, specifically the moment conditions in Theorem 4.2 of Section 4.2.5 (i.e. V 4
i (λ̄) is

uniformly bounded), are automatically met because the responses are binary (i.e. stunted

or not stunted) and the malaria episodes are bounded whole numbers. Hence, Theorem 4.2

and the subsequent Corollary 4.1 are used to compute the point estimate, the p-value, and

the confidence intervals for the casual effect of malaria on stunting.

Also, for comparison, we computed the multiple regression estimate of the effect ratio, an

estimate that only adjusts for measured confounding, but not unmeasured confounding.

This estimate is derived from a multiple linear regression with stunting as the dependent

variable and all measured confounders and the number of malaria episodes as independent

variables. From the regression, we take the estimated slope coefficient for malaria episodes,

which is the reduction in the risk of stunting per malaria episode.

5.2.6. Sensitivity Analysis

Despite our best efforts to minimize the observed differences in covariates and to adhere

to assumption (A3) after conditioning on the matched sets, unmeasured confounders such

as a child’s family’s ancestry could still be different between the jth and kth child, and

this difference could make the inheritance of the sickle cell trait depart from randomized
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assignment, violating assumption (A3). To quantify the effect of unmeasured confounders

on the obtained inference, a sensitivity analysis outlined in Section 4.2.7 was performed.

Specifically, we consider a binary unmeasured confounder that has a specified effect on the

odds of inheriting HbAS over HbAA and specified effect on the odds of stunting (conditional

on measured confounders), and evaluate the effect such an unmeasured confounder would

have on the inference we make. Also following Section 4.2.7, we amplify our sensitivity

analysis to increase interpretability.

5.3. Results

5.3.1. Basic Data

The analysis was conducted on 884 children with HbAA or HbAS genotype. 774 children

were HbAA homozygotes while 110 children were HbAS heterozygotes. 35 children (4.0%)

were already stunted at the beginning of the trial and by the end, 168 children (19.0%) were

stunted. The t-statistic to test the difference in the time of the last recorded visit amongst

HbAA and HbAS did not indicate any variation (p=0.21, 95% CI: (-3.70,16.68)).

Table 26 shows the baseline characteristics of the HbAS and HbAA subjects before match-

ing. Before matching, most characteristics at recruitment were similar between children

with HbAS and HbAA. The notable exception is birth weight. There was evidence that

birth weight of children with HbAA was lower than of children with HbAS (p=0.006, 95%

CI: (-228.27,-39.14)).

5.3.2. Matching and Efficiency

Figure 35 shows covariate balance before and after full matching using absolute standardized

differences. Absolute standardized differences before matching are computed by taking the

difference of the means between children with HbAS and HbAA for each covariate, taking

the absolute value of it, and normalizing it by the within group standard deviation before

matching (the square root of the average of the variances within the groups). Absolute
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                                                 Absolute standardized differences of covariates

Absolute standardized differences

Mosquito protection missing

Mother’s financial status missing

Mother’s education missing

Mother’s occupation missing

Alpha−globin genotype missing

Ethnicity missing

Birth weight missing

Missing Covariates:                                                                

Sulphadoxine pyrimethamine

Other:                                                                

Mosquito protection (Nets)

Mosquito protection (Screen)

Mother’s financial status

Mother’s education

Mother’s occupation

Mother and Household:                                                                

Wiamoase

Tano−Odumasi

Kona

Jamasi

Bipoa

Bedomase

Asamang

Agona

Village of Residence:                                                                

Alpha−globin genotype (Homo)

Alpha−globin genotype (Hetero)

Ethnicity

Birth season

Gender

Birth weight

Birth:                                                                

0.00 0.05 0.10 0.15 0.20

Figure 35: Absolute Standardized Differences Before and After Full Matching for the
Malaria Data. Unfilled circles indicate differences before matching and filled circles indicate
differences after matching.

146



Matching Median absolute deviation Standardized bias

Full matching (max strata size is 9) 0.90 0.23
Full matching (max strata size is 10) 0.96 0.19
Full matching (max strata size is 15) 0.97 0.10
Full matching (unrestricted) 0.98 0.055

Table 27: Trade-off Between Efficiency and Balance for Different Full Matching Schemes in
the Malaria Data

standardized differences after matching are computed by taking the differences of the means

between children with HbAS and HbAA within each strata, averaging this difference across

strata, taking the absolute value of it, and normalizing it by the same within group standard

deviation before matching as before. Before matching, there are differences in birth weight,

mosquito protection, and village of residence between children with HbAS and HbAA.

After matching, these covariates are balanced. Specifically, the standardized differences for

birth weight, village of residence, and mosquito protection, are under 0.1 indicating balance

(Normand et al., 2001). In fact, all the covariates are balanced after matching and the

p-values used to test the differences between HbAS and HbAA in Table 26 are no longer

significant after matching.

Table 27 shows the trade-off between efficiency and covariate balance for different full match-

ing schemes that use all 884 samples of the malaria data. In particular, we restrict the

matched set sizes to different values to see the impact on efficiency and standardized bias.

The standardized bias is the instrumental propensity score (Cheng, 2011) and is calculated

as the difference in propensity scores before and after matching normalized by the within

group standard deviation before matching (the square root of the average of the variances

within the group). We see that unrestricted full matching has the lowest bias among all

other full matching schemes. However, full matching with restricted strata size of 9 has

the lowest median absolute deviation, albeit by a little in comparison to other matching

schemes. Given the large bias reduction by using unrestricted full matching with a small

gain in median absolute deviation, we use unrestricted full matching for our analysis.
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Methods Estimate P-value 95% confidence interval

Our method 0.22 0.011 (0.044, 1)
Two stage least squares 0.21 0.14 (-0.065, 0.47)
Multiple regression 0.018 0.016 (0.0034, 0.033)

Table 28: Estimate of the Effect Ratio in the Malaria Data.

5.3.3. Effect Ratio

Table 28 shows the estimates of the causal effect of malaria on stunting from different

methods, specifically our method, conventional two stage least squares (TSLS), and multiple

regression. Our method computed the estimate by the procedure outlined in Section 4.2.5.

TSLS computed the estimate by regressing all the measured covariates and the instrument

on the exposure and using the prediction from that regression and the measured covariates

to obtain the estimated effect. Inference for TSLS was derived using standard asymptotic

Normality arguments (Wooldridge, 2010). Finally, the multiple regression estimate was

derived by regressing the outcome on the exposure and the covariates and the inference on

the estimate was based on a standard t test.

We see that the full matching method estimates λ to be 0.22. That is, the risk of stunting

among children with the sickle cell trait is estimated to decrease by 0.22 for every malaria

episode prevented by the sickle cell trait. Furthermore, we reject the hypothesis H0 : λ = 0,

that malaria does not cause stunting, at the 0.05 significance level. The confidence interval

for λ is (0.044, 1.0). Even the lower limit of this confidence interval of 0.044 means that

malaria has a substantial effect on stunting; it would mean that the risk of stunting among

children with the sickle cell trait decreases by 0.044 for every malaria episode prevented by

the sickle cell trait.

The estimate based on TSLS is 0.21, similar to our method. However, our method achieves

statistical significance but TSLS does not. Also, multiple regression, which does not control

for unmeasured confounders, estimates a much smaller effect of 0.018.

We also compute the strength of the instrument for our matching method by regressing the
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Γ Range of significance

1.1 (0.0082, 0.041)
1.2 (0.0034, 0.074)
1.3 (0.0015, 0.12)

Table 29: Sensitivity Analysis for the Malaria Data. The range of significance is the range
of p-values over the different possible distributions of the unmeasured confounder given a
particular value of Γ, which represents the effect of unobserved confounders on the inference
of λ.

exposure (malaria episodes) onto the sickle cell trait and dummy variables that indicate

which matched group a child belongs to and evaluating the F statistics from this regression.

For instrument strength for full matching, the F statistic is 4.15 and its R2 is 0.21. For

instrument strength for TSLS, the F statistic is 4.36 and its R2 is 0.22.

5.3.4. Sensitivity Analysis

Table 29 shows the sensitivity analysis due to unmeasured confounders. Specifically, we

measure how sensitive our method in Table 28 is to violation of assumption (A3) in Section

4.2.3, even after matching. We see that our results are somewhat sensitive to unmeasured

confounders at the 0.05 significance level. If there is an unmeasured confounder that in-

creases the odds of inheriting HbAS over HbAA by 10%, i.e. Γ = 1.1, then we would still

have strong evidence that malaria causes stunting. But, if an unmeasured confounder in-

creases the odds of inheriting HbAS over HbAA in a child by 20% (i.e. Γ = 1.2), the range

of possible p-values includes 0.05, the significance level, meaning that we would not reject

the null hypothesis of H0 : λ = 0, that malaria does not cause stunting.

Figure 36 shows the result of applying the amplification of Γ by looking at the effect by

unmeasured confounders on the odds of stunting and odds of inheriting HbAS over HbAA.

Specifically, the different values of Γ in the sensitivity analysis provides us with range of

possible p-values. Also, each Γ is associated with two other sensitivity parameters ∆, odds

of stunting, and Λ, odds of inheriting HbAS over HbAA, and can be presented as a two-

dimensional plot with each axis representing ∆ and Λ. For example, the point (∆ = 1.5,Λ =

1.5) on Figure 36 represents an unmeasured confounder that increases the odds of stunting
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Sensitivity Analysis to Unmeasured Confounders

Change of Odds of Stunting by Unmeasured Confounders
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Figure 36: Amplification of Sensitivity Analysis in the Malaria Data. Each point on the
graph represents an effect by an unmeasured confounder on the instrument (HbAS) and on
the outcome (stunting) to change the inference, specifically the p-value. Points within the
two bold curves correspond to effects by unmeasured confounders that will give us p-values
< 0.05 and points outside the two bold curves correspond to effects that will give us p-values
> 0.05, thereby retaining our null hypothesis.
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and inheriting HbAS over HbAA by a factor of 1.5 and produces a p-value in between 0.025

and 0.05, which does not contain the significance level of 0.05. Hence, the null hypothesis

would still be rejected despite having such an unmeasured confounder. In contrast, if the

unmeasured confounder had an effect of (2.0, 2.0) specified on the plot, the null hypothesis

would be retained since the p-value contains the significance level of 0.05.

5.4. Discussion

By using Mendelian randomization with sickle cell trait as the instrument and matching

techniques to account for potential confounders, we found evidence of a causal effect of

malarial episodes on stunting. Roughly speaking, each increase by one malaria episode

increased the risk of stunting by 0.22 (95% CI: (0.044, 1)), indicating that the effect of

malaria on stunting is substantial in our cohort of infants under two years of age.

Our results confirm findings about an association between malaria and stunting from pre-

vious studies (Deen et al., 2002; Ehrhardt et al., 2006; Arinaitwe et al., 2012) as well

as findings from earlier studies on an association between mean height-for-age z-scores and

malaria (McGregor et al., 1956; Bradley-Moore et al., 1985; ter Kuile et al., 2003). Previous

studies were unable to fully adjust for confounding; a large number of personal characteris-

tics, such as nutritional deficiencies, low socioeconomic status, and poor living conditions,

are likely to be predictors for both malaria and stunting. Differing levels of confounding in

previous studies may have led to findings of no association between malaria and stunting or

mean Z-scores (Snow et al., 1991; Deribew et al., 2010; Crookston et al., 2010) or a negative

correlation (Genton et al., 1998) or false conclusions about associations. In our study the

large difference between the estimate for the effect ratio from the multiple regression and the

estimate derived after matching (0.018 vs. 0.22) indicates a substantial level of confounding

in multiple regression. MR takes into account unmeasured confounders that are frequently

present in observational studies and are not controlled for in standard regression. Under

the assumptions stated in the methods section, MR will control for both unmeasured and

measured confounding and provide an unbiased estimate (Lawlor et al., 2008; Sheehan et al.,
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2008; Glymour et al., 2012). The necessity of these assumptions is a potential limitation

that is inherent to our approach. However, we are convinced that the assumptions of an

association between HbAS and malaria (May et al., 2007; Allison, 1964; Willcox et al., 1983;

Hill et al., 1991; Aidoo et al., 2002) and no association between HbAS and stunting other

than through malaria (Kramer et al., 1978; Rehan, 1981; Ashcroft et al., 1976, 1978) are

valid. Ghansah et al. (2012) have described the HbAS haplotype in a Ghanaian population

as an extended haplotype of 1.5 Mb containing 25 additional genes. Their analysis shows

that this genomic region has a considerable degree of linkage disequilibrium, which poten-

tially could violate our assumption that HbAS is independent of unmeasured confounders.

To identify a potential violation, we searched PubMed for reports on associations between

stunting or malnutrition and any of the other 25 genes on the extended haplotype, including

possible alternative gene names, allelic variants and resulting phenotypes, based on searches

in the National Center for Biotechnology Information (NCBI) gene database and the Online

Mendelian Inheritance in Man database (OMIM) (see Kang et al. (2013) for details). These

searches did not reveal any reports of an association between genes or genetic variants on

the haplotype and stunting.

A further limitation to previous studies is potential reverse causality in the association of

stunting and malaria. As discussed by Arinaitwe et al. it is difficult to distinguish whether

stunting increases the risk of malaria or whether malaria increases the risk of stunting

(Arinaitwe et al., 2012). The Mendelian randomization design of this study solves part

of this limitation. It enables us to see whether an increased frequency of malaria causes

stunting. Specifically, any association between the sickle cell trait and stunting must come

from an effect of malaria on stunting rather than the reverse. The sickle cell trait, which is

determined at conception, only affects stunting through its effect on malaria. If malaria did

not affect stunting, there would be no association between the sickle cell trait and stunting.

However, there are several additional factors that we cannot analyze or adjust for in our

analysis that may have contributed to the differing findings between studies. For example,
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several studies were of cross-sectional design (Ehrhardt et al., 2006; Deribew et al., 2010;

Crookston et al., 2010) and looked at a potential association between current malaria and

stunting prevalence. Malaria at the time point of the study may or may not correlate to

previous exposure. This correlation is likely to differ by transmission intensity of malaria

and this varied from low-seasonal to high-perennial transmission. While the assessment

of malaria incidence in the longitudinal studies was probably a more accurate measure of

exposure, it seems plausible that the effect of malaria on growth is modulated by immunity

and thereby may vary with age (McGregor et al., 1956; Bradley-Moore et al., 1985; ter

Kuile et al., 2003; Deen et al., 2002; Arinaitwe et al., 2012; Snow et al., 1991; Fillol et al.,

2009; Genton et al., 1998). In fact, a study from Tanzania found an effect modification

by age with the strongest effect of malaria on stunting in children less than 1 year of age

(Nyakeriga et al., 2004).

A further potential limitation of our model is the measurement of exposure. We have

assumed that the simple sum of malaria episodes over a child’s life is what affects the child

being stunted at age two. It may be that a more complex function of a child’s malaria history

affects stunting; we plan to investigate this in future work. In addition, the population in

this study was enrolled in a clinical trial and seen by medical personnel at close intervals.

Prompt medical treatment and nutritional interventions were available free of charge during

follow-up. It is possible that the effect of malaria on stunting in this population may differ

from the general population and especially from populations where nutritional deficiencies

are more common.

The interpretation of the effect ratio assumes that the effect HbAS has on stunting is solely

mediated by a reduction of the number of malaria episodes. However, HbAS also reduces

the severity of every malaria episode and the effect on stunting may partly be due to this

(Kreuels et al., 2010). This would lead to an overestimation of the effect that is attributable

to each malaria episode. However, the causality conclusion would not change and even

the lower boundary of the 95% confidence interval for the effect, 0.044, still indicates a
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substantial effect of malaria on stunting.

Our analysis demonstrates the applicability of HbAS as an instrumental variable for the

analysis of conditions related to malaria. As in all observational studies, research on the

association of malaria with other medical conditions is often difficult due to the strong

influence of confounders and randomized trials are almost always impractical. The method

we propose can be applied to reanalyze previous studies in this area, specifically those where

the genotyping of the sickle cell gene has already been performed (ter Kuile et al., 2003;

Nyakeriga et al., 2004). We hope that our findings will encourage the application of MR

to such analyses in the future. A potential further application of MR using HbAS is the

elucidation of associations between malaria and other infections. One such analysis was

performed by Scott et al. (2011) who used MR to analyze an association between malaria

and bacteremia caused by Salmonella spp.

Our analysis provides evidence of a substantial causal effect of malaria episodes on stunting,

at least in children less than 2 years of age in an area of high endemicity. Our findings will

hopefully spur further research on this important epidemiological concern in sub-Saharan

Africa and increase the application of sickle cell trait as an instrumental variable in malaria

research.
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CHAPTER 6 : Discussions

Throughout Chapters 2 to 4, we established results concerning the estimation of causal

effects of the exposure on the outcome when invalid instruments are present. In Chapter

2 and 3, we provided results when we have multiple candidate instruments and proposed

theoretical limits as well as propose an estimator that can consistently estimate the true

causal effect and a confidence interval that has honest coverage. In Chapter 4, we dealt

with the case when we have one single candidate instrument and proposed a nonparametric

matching estimator. In Chapter 5, we applied our new method to a real data set concerning

the causal effect of malaria on stunted growth.

As we seen in our work, there is much room for future work in the area of IV estimation with

invalid instruments. Each chapter laid out some potential future works in each scenarios

and the list below is a summary of those future directions.

1. Further extend our method on estimation with invalid instruments, specifically under

the framework in Chapter 2, to encompass a wider class of models. Our current work

is limited to linear, constant effects model and as such, our problem boils down to a

mathematical problem of solving system of under-determined linear equations with

constraints on the parameter space. We want to explore the theoretical limits and

methods for estimation and identification under more general models that include

arbitrary transformations of the instruments, such as g(Zi.) in some function class G,

heterogeneous effects (i.e. β∗i instead of a global β∗), and nonlinear outcome models

(e.g. binary outcomes or survival outcomes). All these generalizations would be a de-

parture from the usual system of under-determined linear equations and it is unknown

whether estimation is possible. In line with this goal, developing an estimator that is

robust to model mis-specification would be useful for researchers using IV methods.

2. Develop confidence intervals for IV methods that are both robust to weak instruments

and invalid instruments. Weak instruments are, in essence, a near violation of (A1)
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and there is a huge literature on weak instruments (see Stock et al. (2002) for a

survey). However, there is very little literature on estimation in the presence of

invalid instruments, except our work and work by Kolesár et al. (2013). Chapter 3

laid out some preliminary work, but it is currently unknown whether our CIs can be

improved.

3. Explore sensitivity analysis when core IV assumptions are violated. In our work in

Chapter 4, we used matching to controll for covariates to make assumption (A3) more

plausible and we developed sensitivity analysis of our IV estimate should matching

fail to make (A3) plausible. We would like to develop sensitivity analysis for other

types of violations in IV assumptions, such as (A2), or other assumptions that may

arise when we start considering heterogeneous causal effects.

4. Extend our method in Chapter 4 to multiple instruments. Currently, our matching

algorithm in IV estimation can only handle binary instruments. However, non-binary

instruments are also common in IV studies and we want to explore how to extend our

method to this setting.

5. Apply our IV methods to various problems in the social sciences and health-related

disciplines. Our work with the malaria data in Chapter 5 was a collaborative effort

with medical professional where we applied our new IV matching method to solve

a problem of interest in the medical community. We are interested in applying our

methods to other settings in social science.

In conclusion, the current theory and methods behind IV estimation with invalid instru-

ments, specifically instruments that violate (A2) and (A3), are very limited and there are

many unanswered questions. Also, the work in this area has wide applications in fields where

instrumental variables methods are used, which includes economics, biology, epidemiology,

psychology, political science, sociology, and many others. It is our hope that the research

in the area of IV estimation with invalid instruments will further the field of making causal
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conclusions from observational data, especially when one only has imperfect instruments.
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APPENDIX

A.1. Proofs from Chapter 2

We adopt the following notations for the proofs. For any sets A,B ⊆ {1, . . . , L}, denote

A ∩B to be the intersection of sets A and B, A ∪B to be the union of sets A and B, and

AC and BC to be the complement of sets A and B, respectively. If A ⊆ B, denote B \A to

be the set that comprises of all the elements of B except those that are in A. Let |A| and

|B| denote the cardinality of the sets A and B, respectively.

For any vector α ∈ RL and set A ⊆ {1, . . . , L}, denote αA ∈ RL to be the vector where all

the elements except whose indices are in A are zero. Also, denote the jth element as αj . Let

supp(α) ⊆ {1, . . . , L} to be the support of the vector α and supp(α)C be the complement

set. For any matrix M ∈ Rn×L and set A ⊆ {1, . . . , p}, let MA ∈ Rn×L be an n by |A|

matrix where the columns are specified by set A.

A.1.1. Proof of Theorem 2.1

First, we prove that, β∗ is a unique solution if and only if α∗ is a unique solution. Suppose

β∗ has a unique solution; that is, for any two solutions α(1) β(1) and α(2), β(2), in equation

(2.7)

α(1) + γ∗β(1) = Γ∗ (A.1a)

α(2) + γ∗β(2) = Γ∗ (A.1b)

we have β(1) = β(2). Subtracting γ∗β(1) from equations (A.1) gives α(1) = α(2). Now,

suppose α∗ is unique, which implies α(1) = α(2). Again, subtracting α(1) from (A.1)

reveals β(1) = β(2).

Second, we prove the necessary and sufficient conditions for Theorem 2.1. Suppose the con-

ditions on γ∗ and Γ∗ hold, specifically qm = qm′ for any m 6= m′, but there are two distinct
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sets of parameters, α(1), β(1) and α(2), β(2) that solve the moment equation in equation

(A.1). Let A(1) =supp(α(1)) and A(2) =supp(α(2)) be the sets of invalid instruments for

the two distinct parameter sets, not equal to each other; if the supports are equal to each

other, we have the degenerate case whereby from equation (A.1), for any j ∈ A(1) = A(2)

γ∗j β
(1) = Γ∗j and γ∗j β

(2) = Γ∗j , which implies that β(1) = β(2) and α(1) = α(2), a con-

tradiction. Because the number of invalid instruments, s, is less than U , s < U , the

number of valid instruments, L − s, must be greater than L − U , L − s > L − U . Thus,

|(A(1))C |, |(A(2))C | > L− U .

Now, pick any subsets, (A(1′))C and (A(2′))C , of (A(1))C and (A(2))C , respectively, where

|(A(1′))C | = |(A(2′))C | = L−U+1. These subsets (A(1′))C and (A(2′))C inherit the following

property from their larger sets (A(1))C and (A(2))C , respectively.

α
(1)
j + γ∗j β

(1) = γ∗j β
(1) = Γ∗j , j ∈ (A(1′))C ⊆ (A(1))C

α
(2)
k + γ∗kβ

(2) = γ∗kβ
(2) = Γ∗k, k ∈ (A(2′))C ⊆ (A(2))C

The condition on γ∗ and Γ∗ in Theorem 2.1 state that for any sets Cm with size |Cm| =

L − U + 1 and with the property that γjqm = Γj , j ∈ Cm, we have qm = qm′ for any

m,m′. The subsets we constructed, (A(1′))C and (A(2′))C , satisfy these condition with

constants q1′ = β(1) and q2′ = β(2). Hence, β(1) = q1′ = q2′ = β(2), which is a contradiction.

Hence, the two sets of parameters α(1), β(1) and α(2), β(2) are identical to each other and

the solution is unique.

Now, suppose the solution is unique. Then, we show that the conditions on γ∗ and Γ∗

must hold. Pick any two sets A(1), A(2) ⊆ {1, . . . , L} with their complements having the

size |(A(1))C | = |(A(2))C | = L− U + 1 and corresponding constants q1 and q2, respectively,

defined in the theorem. We have to show that q1 = q2 for any pair of two sets.

Note that at least one set of these sets and its corresponding constant q must exist be-

cause at the true parameter values, α∗ and β∗, equation (2.7) is satisfied. Specifically, if
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A∗ =supp(α∗) where, by s < U , |(A∗)C | = |supp(α∗)C | > L − U , we can take any subset

(A(∗′))C ⊆ (A∗)C of size |(A(∗′))C | = L − U + 1. For any j ∈ (A(∗′))C , by equation (2.7),

γ∗j β
∗ = Γ∗j and thus, its corresponding constant q∗′ is q∗′ = β∗. If there is exactly one set

A(1), the condition holds automatically.

Suppose there are two or more sets and let A(1) and (2) be any pair of the sets. Based on the

sets A(1) and A(2) and their corresponding constants q1 and q2, we construct the following

sets of parameters α(1), β(1) and α(2), β(2)

β(1) = q1, α
(1)
j =


0 j ∈ (A(1))C

Γ∗j − q1γ
∗
j j ∈ A(1)

β(2) = q2, α
(2)
j =


0 j ∈ (A(2))C

Γ∗j − q2γ
∗
j j ∈ A(2)

The cardinality of α(1) and α(2) are less than U . In addition, they satisfy the moment

equation in equation (2.7).

α
(1)
j + γ∗j β

(1) =


γ∗j q1 = Γ∗j j ∈ (A(1))C

Γ∗j − q1γ
∗
j + γ∗j q1 = Γ∗j j ∈ A(1)

α
(2)
j + γ∗j β

(2) =


γ∗j q2 = Γ∗j j ∈ (A(2))C

Γ∗j − q2γ
∗
j + γ∗j q2 = Γ∗j j ∈ A(2)

Since the equation has only one unique solution, this implies that β(1) = β(2), or q1 = q2.

Since this holds for any two sets (A(1))C , (A(2))C with constants q1 and q2 and cardinality

L− U + 1, we arrive at the condition qm = qm′ for any m,m′.
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A.1.2. Proof of Corollary 2.1

Consider any two sets Cm and Cm′ with the constants qm and qm′ in Theorem 2.1. Take an

element j from the intersection Cm ∩ Cm′ ; this intersection is non-empty because |Cm| =

|Cm′ | = L − U + 1 ≥ L/2 + 1. At element j ∈ Cm ∩ Cm′ , we have γ∗j qm = Γ∗j and

γ∗j qm′ = Γ∗j , which implies qm = qm′ . Since this holds for any two sets Cm and Cm′ ,

qm = qm′ for m,m′, the condition in Theorem 2.1 always holds whenever U ≥ L/2 and we

have identification.

A.1.3. Proof of Theorem 2.2

We begin by introducing some notations and terminologies. For α ∈ Rp and s ∈ {1, . . . , p},

αmax(s) is defined as the vector where all but the largest s elements set to zero and α−max(s)

is defined as α−αmax(s).

Definition A.1. The restricted orthogonal constant (ROC) of single matrix of order k1

and k2, denoted as θk1,k2(M), is the smallest θk1,k2(M) where for any k1-sparse vector α1

and k2-sparse vector α2 with non-overlapping support, we have

|〈Mα1,Mα2〉| ≤ θk1,k2(M)‖α1‖2‖α2‖2.

Next, we introduce two lemmas. The first lemma relates the RIP and ROC constants.

Lemma A.1. For any matrix M and positive integers s1 and s2,

θs1,s2(M) ≤ 1

2

(
δ+
s1+s2(M)− δ−s1+s2(M)

)
.

Proof. For any vectors x and y with disjoint supports and ‖x‖2 = ‖y‖2 = 1, we must have
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x+ y, x− y are both (s1 + s2)-sparse and ‖x+ y‖22 = ‖x− y‖22 = 2. Hence,

|〈Mx,My〉| =1

4

∣∣‖M(x+ y)‖22 − ‖M(x− y)‖22
∣∣

=
1

4
max

{
‖M(x+ y)‖22 − ‖M(x− y)‖22, ‖M(x− y)‖22 − ‖M(x+ y)‖22

}
≤1

4
max

{
δ+
s1+s2(M)‖x+ y‖22 − δ−s1+s2(M)‖x− y‖22,

δ+
s1+s2(M)‖x− y‖22 − δ−s1+s2(M)‖x+ y‖22

}
≤1

2

(
δ+
s1+s2(M)− δ−s1+s2(M)

)
,

which implies θs1,s2(M) ≤ 1
2

(
δ+
s1+s2(M)− δ−s1+s2(M)

)
.

The second lemma proves a standard property of the Lasso.

Lemma A.2. Suppose we have the model Yi = ZTi.α
∗ + εi where α∗ is s-sparse. Further

suppose that matrix Z has upper and lower RIP constants δ+
s (Z) and δ−s (Z), respectively.

Define α̂ as the Lasso estimator

α̂λ = argmin
α

1

2
‖Y − Zα‖22 + λ‖α‖1 (A.2)

and let h = α̂λ −α∗ measure the errors of the estimator.

If r‖ZT ε‖∞ ≤ λ for some r > 1, we have

‖h−max(s)‖1 ≤
r + 1

r − 1
‖hmax(s)‖1. (A.3)

Furthermore, if (r + 1)δ+
2s(Z) < (3r − 1)δ−2s(Z),

‖hmax(s)‖2 ≤
2λ
√
s(r − 1)(r + 1)/r

(3r − 1)δ−2s(Z)− (r + 1)δ+
2s(Z)

. (A.4)

Proof. Since α̂λ is the minimizer of (A.2) , we have

1

2
‖Y − Zα̂λ‖22 + λ‖α̂λ‖1 ≤

1

2
‖y − Zα∗‖22 + λ‖α∗‖1.
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By the assumed model Yi = ZTi α
∗ + εi, we have

1

2

(
‖ε− Zh‖22 − ‖ε‖22

)
≤ λ(‖α∗‖1 − ‖α̂λ‖1). (A.5)

For the upper bound of (A.5), the fact that α∗ is s-sparse gives a useful bound. Specifically,

‖α∗‖1 − ‖α̂λ‖1 = ‖α∗supp(α∗)‖1 − ‖α̂supp(α∗)‖1 − ‖α̂supp(α∗)c‖1

≤ ‖α∗supp(α∗) − α̂supp(α∗)‖1 − ‖hsupp(α∗)c‖1

≤ ‖hsupp(α∗)‖1 − ‖hsupp(α∗)c‖1

≤ ‖hmax(s)‖1 − ‖h−max(s)‖1.

For the lower bound of (A.5), ‖ε− Zh‖22 − ‖ε‖22, we can simplify as

1

2

(
‖ε− Zh‖22 − ‖ε‖22

)
= −1

2
(Zh)T (2ε− Zh) ≥ −hTZT ε ≥ −‖ZT ε‖∞‖h‖1

= −‖ZT ε‖∞(‖hmax(s)‖1 + ‖h−max(s)‖1).

Hence, by (A.5) and the condition r‖ZT ε‖∞ ≤ λ where r > 1, we have

r(‖hmax(s)‖1 − ‖h−max(s)‖1) ≥ −(‖hmax(s)‖1 + ‖h−max(s)‖1).

which yields (A.3), the first part of the theorem.

For (A.4), the second part of the theorem, suppose (r + 1)δ+
2s(Z) < (3r − 1)δ−2s(Z) holds.

By the Karush-Kuhn-Tucker (KKT) condition of the minimization problem in (A.2), we we

have ‖ZT (y − Zα̂)‖∞ ≤ λ and

‖ZTZh‖∞ ≤ ‖ZT (y − Zα̂)‖∞ + ‖ZT (y − Zα∗)‖∞ ≤ λ+ ‖ZT ε‖∞.
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Lemma 5.1 in Cai and Zhang (2013a) with λ = max(‖h−max(s)‖∞, ‖h−max(s)‖1/s) implies

|〈Zhmax(s),Zh−max(s)〉| ≤ θs,s(Z)‖hmax(s)‖2 ·
√
s ·max(‖h−max(s)‖∞, ‖h−max(s)‖1/s)

≤
√
sθs,s(Z)‖hmax(s)‖2 ·

r + 1

r − 1
‖hmax(s)‖1/s

≤ θs,s(Z)
r + 1

r − 1
‖hmax(s)‖22,

where the last inequality uses (A.3). We then have

√
s(λ+ ‖ZT ε‖∞)‖hmax(s)‖2 ≥ (λ+ ‖ZT ε‖∞)‖hmax(s)‖1 ≥ 〈ZTZh, hmax(s)〉

= 〈Zhmax(s),Zhmax(s)〉+ 〈Zhmax(s),Zh−max(s)〉

≥ ‖Zhmax(s)‖22 − θs,s
r + 1

r − 1
‖hmax(s)‖22

=

(
δ−2s(Z)− θs,s(Z)

r + 1

r − 1

)
‖hmax(s)‖22

≥
(

3r − 1

2(r − 1)
δ−2s(Z)− r + 1

2(r − 1)
δ+

2s

)
‖hmax(s)‖22,

where the last inequality uses Lemma A.1. Moving ‖hmax(s)‖ to the right hand side and

using the condition r‖ZT ε‖∞ ≤ λ where r > 1 yields (A.4).

Now we move on to the proof of Theorem 2.2. Section 2.3.6 in the main paper states that

the original estimation method can be reinterpreted as a two-step method where the first

step is the Lasso step and the second step is a dot product. The proof will first analyze

step 1 using the lemmas about Lasso performance and use it to analyze step 2.

First, in lieu of step 1, the model in equation (2.3) from the original paper can be modified

to

PD̂⊥PZY = PD̂⊥Zα∗ + PD̂⊥PZε. (A.6)

Here, PD̂⊥Z becomes the design matrix, PD̂⊥PZY becomes the outcome, and PD̂⊥PZε is
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the new error term. In addition, from the condition 3‖ZTPD̂⊥ε‖ ≤ λ, we have

λ ≥ 3‖ZT (I−PD̂)ε‖∞ = 3‖ZT (PZ−PD̂)ε‖∞ = 3‖ZT (I−PD̂)PZε‖∞ = 3‖(PD̂⊥Z)TPZε‖∞.

Second, note that (A.9) is in terms of the RIP constants of PD̂⊥Z. To relate the RIP

constants of PD̂⊥Z with that of Z, we see that for any 2s-sparse vector x ∈ RL, ‖PD̂⊥Zx‖22 =

‖Zx‖22 − ‖PD̂Zx‖22 ≤ ‖Zx‖22 ≤ δ
+
2s(Z)‖x‖22. By the definition of δ+

2s(PD̂⊥Z), this implies

δ+
2s(PD̂⊥Z) ≤ δ+

2s(Z). (A.7)

In addition, we have ‖PD̂⊥Zx‖22 = ‖Zx‖22 − ‖PD̂Zx‖22 ≥ δ−2s(Z)‖x‖22 − δ
+
2s(PD̂Z)‖x‖22. By

the definition of δ−2s(PD̂⊥Z), this also implies

δ−2s(PD̂⊥Z) ≥ δ−2s(Z)− δ+
2s(PD̂Z). (A.8)

Combining (A.7), (A.8) with assumption that 2δ−2s(Z) > δ+
2s(Z) + 2δ+

2s(PD̂Z), we know

2δ−2s(PD̂⊥Z) > δ−2s(PD̂⊥Z). By Lemma A.2, where we set r = 3 in assumption r‖ZT ε‖∞ ≤ λ

and the model is rewritten as (A.6),

‖hmax(s)‖2 ≤
4/3λ

√
s

2δ−2s(PD̂⊥Z)− δ+
2s(PD̂⊥Z)

(A.9)

and

‖h−max(s)‖1 ≤ 2‖hmax(s)‖1. (A.10)

Combining the RIP relations established by (A.7) and (A.8), we can rewrite (A.9) as

‖hmax(s)‖2 ≤
4/3λ

√
s

2δ−2s(Z)− δ+
2s(Z)− 2δ+

2s(PD̂Z)
. (A.11)

Third, we establish a bound for ‖PD̂Zh‖2. This bound is needed to bound step 2 in Section
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2.3.5 of the original paper because

β̂λ =
D̂TPD̂(Y − Zα̂λ)

‖D̂‖22
=

D̂TPD̂(Zα∗ + Dβ∗ + ε− Zα̂λ)

‖D̂‖22
= β∗ −

D̂TPD̂Zh

‖D̂‖22
+

D̂TPD̂ε

‖D̂‖22
.

Rearranging terms and taking norms on both sides give

‖β̂λ − β∗‖2 ≤
‖D̂TPD̂Zh‖2
‖D̂‖22

+
‖D̂TPD̂ε‖2
‖D̂‖22

≤
‖PD̂Zh‖2
‖D̂‖2

+
|D̂T ε|
‖D̂‖22

. (A.12)

Hence, a bound on ‖PD̂Zh‖2 is necessary to bound ‖β̂λ−β∗‖2. To start off, we apply Lemma

1.1 in Cai and Zhang (2013b) to represent h−max(s) as a weighted mean of s-sparse vectors.

This lemma allows us to convert the bound for hmax(s) in (A.11) to the bound for ‖PD̂Zh‖2.

Specifically, the lemma states we can find λi ≥ 0 and s-sparse vi ∈ RL where i = 1, . . . , N

such that
∑N

i=1 λi = 1 and h−max(s) =
∑N

i=1 λivi. Hence, h =
∑N

i=1 λi(hmax(s) + vi).

Furthermore, we have

supp(vi) ⊆ supp(h−max(s)), ‖vi‖∞ ≤ max

(
‖h−max(s)‖∞,

‖h−max(s)‖1
s

)

and

‖vi‖1 = ‖h−max(s)‖1,

which yields

‖vi‖∞ ≤ max

(‖hmax(s)‖1
s

,
2‖hmax(s)‖1

s

)
=

2‖hmax(s)‖1
s

, ‖vi‖1 ≤ 2‖hmax(s)‖1

and ‖hmax(s) + vi‖22 = ‖hmax(s)‖22 + ‖vi‖22 ≤ ‖hmax(s)‖22 + ‖vi‖1‖vi‖∞ ≤ 5‖hmax(s)‖22. Com-
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bining all these together with (A.11), we have

‖PD̂Zh‖2 ≤
N∑
i=1

λi‖PD̂Z(hmax(s) + vi)‖2 ≤
N∑
i=1

λi

√
5δ+

2s(PD̂Z)‖hmax(s)‖2

≤
√

5δ+
2s(PD̂Z)

4/3λ
√
s

2δ−2s(Z)− δ+
2s(Z)− 2δ+

2s(PD̂Z)

=
4
√

5/3λ
√
sδ+

2s(PD̂Z)

2δ−2s(Z)− δ+
2s(Z)− 2δ+

2s(PD̂Z)
.

Finally, using the relation (A.12) gives us the desired bound for Theorem 2.2.

Of independent interest is that the proof of Theorem 2.2 can be generalized to a matrix

of D instead of a vector of D. That is, the proof can consider models where there are

more than one endogenous variables in the data-generating model. However, for clarity of

presentation, we don’t explore this route.

A.1.4. Proof of Corollary 2.2

Now, we establish Corollary 2.2 as a corollary to Theorem 2.2. Specifically, the task is to

convert the RIP constants δ+
2s(Z), δ−2s(Z), δ+

2s(PD̂Z) and the constraint of 2δ−2s(Z)−δ+
2s(Z)−

2δ+
2s(PD̂Z) > 0 into µ and a similar constraint on s. To do this, note that for any s-sparse

vector α

‖Zα‖22 =
∑

j∈supp(α)

‖Z.j‖22α2
j +

∑
i<j,i,j∈supp(α)

2αiαj〈Z.i,Z.j〉

≤
∑

j∈supp(α)

α2
j +

∑
i<j,i,j∈supp(α)

(α2
i +α2

j )µ

= (1 + (s− 1)µ)
∑

j∈supp(α)

α2
j = (1 + (s− 1)µ)‖α‖22

167



and

‖Zα‖22 =
∑

j∈supp(α)

‖Z.j‖22α2
j +

∑
i<j,i,j∈supp(α)

2αiαj〈Z.i,Z.j〉

≥
∑

j∈supp(α)

α2
j −

∑
i<j,i,j∈supp(α)

(α2
i +α2

j )µ

= (1− (s− 1)µ)‖α‖22.

The upper and lower bounds on ‖Zα‖22 imply

δ+
s (Z) ≤ (1 + (s− 1)µ), and δ−s (Z) ≥ (1− (s− 1)µ);

For PD̂⊥Z and all 2s-sparse vector x, we have

‖PD̂Zx‖22 ≤

 ∑
j∈supp(x)

‖PD̂Z.jxj‖2

2

≤ 2s
∑

j∈supp(x)

‖PD̂Z.jxj‖22

= 2s
∑

j∈supp(x)

‖PD̂Z.j‖22x2
j = 2s

∑
j∈supp(x)

‖PD̂Z.j‖22
‖Z.j‖22

‖Z.jxj‖22

≤ 2sρ2δ+
1 (Z)

∑
j∈supp(x)

x2
j ≤ 2sρ2δ+

2s(Z)‖x‖22.

Again, by the definition of δ+
2s(PD̂Z), this implies that

δ+
2s(PD̂Z) ≤ 2sρ2δ+

2s(Z). (A.13)

Under the condition s < min
(

1
12µ ,

1
10ρ2

)
, the denominator of the bound in Theorem 2.2
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becomes

2δ−2s(Z)− δ+
2s(Z)− 2δ+

2s(PD̂Z) ≥ 2δ−2s(Z)− (1 + 4sρ2)δ+
2s(Z)

≥ 2(1− (2s− 1)µ)− (1 + 4sρ2)(1 + (2s− 1)µ)

= 1− 6sµ+ 3µ− 4sρ2 − 8s2ρ2µ+ 4sρ2µ

≥ 1− 6sµ− 5sρ2 > 0.

For the numerator of the bound in Theorem 2, we have

4
√

5

3
λ
√
sδ+

2s(PD̂Z) ≤ 4
√

5

3
λ
√

2s2ρ2δ+
2s(Z) ≤ 4

√
10

3
λsρ
√

1 + (2s− 1)µ

≤ 4
√

10

3
λsρ
√

1 + 2sµ ≤ 4
√

10

3
λsρ
√

1 + 1/6 =
4
√

105

9
λsρ.

Combining them together leads to the desired bound. Note that one can improve the

constants in the constraint of s with a bit more care on the above inequalities.

A.1.5. Proof of Theorem 2.3

The original estimation method can be rewritten as follows

α̂λ, β̂λ =argmin
α,β

1

2
‖PZ(Y − Zα−Dβ)‖22 + λ||α||1

=argmin
α,β

1

2
||(PD̂ + PD̂⊥)PZ(Y − Zα−Dβ)||22 + λ||α||1

=argmin
α,β

1

2
||PD̂PZ(Y − Zα−Dβ)||22 +

1

2
||PD̂⊥PZ(Y − Zα−Dβ)||22 + λ||α||1

=argmin
α,β

1

2
||PD̂(Y − Zα)− D̂β||22 +

1

2
||PD̂⊥PZY −PD̂⊥Zα||22 + λ||α||1.

The first term, 1
2 ||PD̂(Y − Zα) − D̂β||22 is always zero for any given α ∈ RL because

PD̂(Y−Zα) lies in the span of D̂ and thus, we can pick β such that the first term is zero.

The second term, 1
2 ||PD̂⊥PZ(Y − Zα)||22 + λ||α||1, is the traditional Lasso problem where

the outcome is PD̂⊥PZY and the design matrix is PD̂⊥Z. Hence, the minimizer for this
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Lasso problem is also the minimizer for the original method.

A.2. Proofs from Chapter 4

A.2.1. Proof of Theorem 4.1

Proof. By (A3), we have

E(Rij |Zij = 1,F ,Z)− E(Rij |Zij = 0,F ,Z)

=r
(d1ij)
1ij − r(d0ij)

0ij

=
M∑
k=0

r
(k)
1ijχ(d1ij = k)−

M∑
k=0

r
(k)
0ijχ(d0ij = k)

=
M∑
k=0

r
(k)
1ij{χ(d1ij ≥ k)− χ(d1ij ≥ k + 1)} −

M∑
k=0

r
(k)
0ij{χ(d0ij ≥ k)− χ(d0ij ≥ k + 1)}

By (A2), r
(k)
1ij = r

(k)
0ij for all k. Then, we have

M∑
k=0

r
(k)
ij {χ(d1ij ≥ k)− χ(d1ij ≥ k + 1)− χ(d0ij ≥ k) + χ(d0ij ≥ k + 1)}

=

M∑
k=0

r
(k)
ij {χ(d1ij ≥ k)− χ(d0ij ≥ k)} −

M∑
k=0

r
(k)
ij {χ(d1ij ≥ k + 1)− χ(d0ij ≥ k + 1)}

=
M∑
k=1

r
(k)
ij {χ(d1ij ≥ k)− χ(d0ij ≥ k)} −

M∑
k=1

r
(k−1)
ij {χ(d1ij ≥ k)− χ(d0ij ≥ k)}

=

M∑
k=1

(r
(k)
ij − r

(k−1)
ij ){χ(d1ij ≥ k)− χ(d0ij ≥ k)}
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By monotonicity, d1ij ≥ d0ij for all i, j. Then,

M∑
k=1

(r
(k)
ij − r

(k−1)
ij ){χ(d1ij ≥ k)− χ(d0ij ≥ k)}

=

M∑
k=1

(r
(k)
ij − r

(k−1)
ij )χ{χ(d1ij ≥ k)− χ(d0ij ≥ k) = 1}

=
M∑
k=1

(r
(k)
ij − r

(k−1)
ij )χ(d1ij ≥ k > d0ij)

Similarly, by (A3), the expected differences between Zij = 1 and Zij = 0 for the exposure

Dij can be written as

E(Dij |Zij = 1,F ,Z)− E(Dij |Zij = 0,F ,Z)

=d1ij − d0ij

=
M∑
k=0

kχ(d1ij = k)−
M∑
k=0

kχ(d0ij = k)

=

M∑
k=0

k{χ(d1ij ≥ k)− χ(d1ij ≥ k + 1)} −
M∑
k=0

k{χ(d0ij ≥ k)− χ(d0ij ≥ k + 1)}

=
M∑
k=0

k{χ(d1ij ≥ k)− χ(d1ij ≥ k + 1)− χ(d0ij ≥ k) + χ(d0ij ≥ k + 1)}

=

M∑
k=0

k{χ(d1ij ≥ k)− χ(d0ij ≥ k)} −
M∑
k=0

k{χ(d1ij ≥ k + 1)− χ(d0ij ≥ k + 1)}

=
M∑
k=1

k{χ(d1ij ≥ k)− χ(d0ij ≥ k)} −
M∑
k=1

(k − 1){χ(d1ij ≥ k)− χ(d0ij ≥ k)}

=
M∑
k=1

{χ(d1ij ≥ k)− χ(d0ij ≥ k)}

By monotonicity, we have

M∑
k=1

{χ(d1ij ≥ k)− χ(d0ij ≥ k)} =

M∑
k=1

χ(d1ij ≥ k > d0ij)

171



Thus, we end up with

∑I
i=1

∑ni
j=1E(Rij |Zij = 1,F ,Z)− E(Rij |Zij = 0,F ,Z)∑I

i=1

∑ni
j=1E(Dij |Zij = 1,F ,Z)− E(Dij |Zij = 0,F ,Z)

=

∑I
i=1

∑ni
j=1 r

(d1ij)
1ij − r(d0ij)

0ij∑I
i=1

∑ni
j=1 d1ij − d0ij

=

∑I
i=1

∑ni
j=1

∑M
k=1(r

(k)
ij − r

(k−1)
ij )χ(d1ij ≥ k > d0ij)∑I

i=1

∑ni
j=1

∑M
k=1 χ(d1ij ≥ k > d0ij)

A.2.2. Proof of Theorem 4.2

We require the following two Lemmas. Lemma A.3 characterizes the moments of the test

statistics in (4.5). Lemma A.4 derives the bias of S2(λ0) in estimating the variance of T (λ0).

Lemma A.3. The expected value and the variance of the test statistic in equation (4.5) are

E{T (λ0)|F ,Z} =
1

I
(λ− λ0)

I∑
i=1

ni∑
j=1

(d1ij − d0ij)

V ar{T (λ0)|F ,Z} =
1

I2

I∑
i=1

1

ni

ni∑
i=1

(aij,λ0 − āi,λ0)2

where

aij,λ0 =
ni
mi
y1ij,λ0 +

ni
ni −mi

y0ij,λ0 , āi,λ0 =
1

ni

ni∑
i=1

aij,λ0

Proof. Let y0ij,λ0 = r
(d0ij)
0ij − λ0d0ij and y1ij,λ0 = r

(d1ij)
1ij − λ0d1ij . Then, Vi(λ0) becomes

Vi(λ0) =
ni
mi

ni∑
j=1

Zij(Rij − λ0Dij)−
ni

ni −mi

ni∑
j=1

(1− Zij)(Rij − λ0Dij)

=
ni
mi

ni∑
j=1

Zijy1ij,λ0 −
ni

ni −mi

ni∑
j=1

(1− Zij)y0ij,λ0

By assumption (A3) of IV in the main manuscript, Zij are independent within each strata.
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Then, for any i = 1, . . . , I and for j, k = 1, ..., ni where j 6= k

E(Zij |F ,Z) =
mi

ni
, E(ZijZik|F ,Z) =

mi(mi − 1)

ni(ni − 1)
=
mi − 1

ni

where the second equality is true because in full matching, mi = 1 and ni = mi − 1 or

mi = ni − 1 and ni = 1. Then, the expectation of Vi(λ0) and the test statistic T (λ0) are

E{Vi(λ0)|F ,Z} =

ni∑
j=1

(r
(d1ij)
1ij − r(d0ij)

0ij )− λ0(d1ij − d0ij)

E{T (λ0)|F ,Z} =
1

D

I∑
i=1

E{Vi(λ0)|F ,Z} =
1

D
(λ− λ0)

I∑
i=1

ni∑
j=1

(d1ij − d0ij)

For variance of Vi(λ0), Proposition 2 in Rosenbaum (2002, Sec. 2.4.4) gives us

V ar{Vi(λ0)|F ,Z}

=V ar


ni∑
j=1

Zij

(
ni
mi
y1ij,λ0 +

ni
ni −mi

y0ij,λ0

)
|F ,Z


=

ni∑
j=1

(
mi

ni
− m2

i

n2
i

)
a2
ij,λ0 +

(
mi − 1

ni
− m2

i

n2
i

)∑
j 6=k

aij,λ0aik,λ0

=

(
mi

ni
− m2

i

n2
i

− mi − 1

ni
+
m2
i

n2
i

) ni∑
j=1

a2
ij,λ0 +

(
mi − 1

ni
− m2

i

n2
i

)∑
j,k

aij,λ0aik,λ0

=
1

ni

ni∑
j=1

a2
ij,λ0 +

ni(mi − 1)−m2
i

n2
i

∑
j,k

aij,λ0aik,λ0

=
1

ni

ni∑
j=1

a2
ij,λ0 −

1

n2
i

∑
j,k

aij,λ0aik,λ0

=
1

ni

ni∑
i=1

(aij,λ0 − āi,λ)2

Finally, the variance of T (λ0) is given by

V ar{T (λ0)|F ,Z} =
1

D2

I∑
i=1

V ar{Vi(λ0)|F ,Z} =
1

D2

I∑
i=1

1

ni

ni∑
j=1

(aij,λ0 − āi,λ)2
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Lemma A.4. Let µi,λ0 = E{Vi(λ0)|F ,Z} and µλ0 = E{T (λ0)|F ,Z}. The bias of (4.6) in

estimating the variance of the test statistic in (4.5) is

E{S2(λ0)|F ,Z} − V ar{T (λ0)|F ,Z} =
1

I(I − 1)

I∑
i=1

(µi,λ0 − µλ0)2 (A.14)

Proof. Let v2
i,λ0

= V ar{Vi(λ0)|F ,Z}. Under the generalized effect ratio, the bias of the

estimator (4.6) is

E{S2(λ0)|F ,Z}

=
1

I(I − 1)

I∑
i=1

E[{Vi(λ0)− T (λ0)}2|F ,Z]

=
1

I(I − 1)

I∑
i=1

E{V 2
i (λ0)|F ,Z}+ E{T 2(λ0)|F ,Z} − 2E{Vi(λ0)T (λ0)|F ,Z}

=
1

I(I − 1)

I∑
i=1

(µ2
i,λ0 + vi,λ0) +

µ2
λ0 +

1

I2

I∑
j=1

vj,λ0


− 2

I

µ2
i,λ0 + vi,λ0 +

∑
j 6=i

µi,λ0µj,λ0


=

1

I(I − 1)

I∑
i=1

vi,λ0 − 2

I
vi,λ0 +

1

I2

I∑
j=1

vj,λ0


+

1

I(I − 1)

I∑
i=1

µ2
i,λ0 + µ2

λ0 −
2

I

I∑
j=1

µi,λ0µj,λ0


=

(
I2 − 2I + I

I(I − 1)

)
1

D2

n∑
i=1

vi,λ0 +
1

I(I − 1)

I∑
i=1

(µi,λ0 − µλ0)2

=
1

I2

I∑
i=1

vi,λ0 +
1

I(I − 1)

I∑
i=1

(µi,λ0 − µλ0)2

Now, we can prove the Theorem as follows. We use the same notation adopted in the
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proof of Lemma A.4, mainly µi,λ̄, µλ̄, and v2
i,λ̄

. In addition, let qi,λ̄ = E{V 2
i (λ̄)|F ,Z}, and

vλ̄ = V ar{T (λ̄)|F ,Z}. First,
∑I

i=1 V
2
i (λ̄)/I is an unbiased estimator for

∑I
i=1 qi,λ̄/I. In

addition,

V ar

{
1

I

I∑
i=1

V 2
i (λ̄)|F ,Z

}
≤ 1

I2

I∑
i=1

E{V 4
i (λ̄)|F ,Z}

By the fourth moment condition in (4.7), we have
∑I

i=1 V
2
i (λ̄)/I −

∑I
i=1 qi,λ̄/I → 0 in

probability. Similarly, the same fourth moment condition in (4.7) and the same reasoning

gives T (λ̄)−µλ̄ → 0 in probability because of the growth of the variance of T (λ̄) is controlled

by the moment condition. Since µλ̄ = 0 for all I under the null hypothesis, we have, by the

continuous mapping theorem, T 2(λ̄) → 0 in probability. Combining all these convergence

results, we get that for ε > 0 and δ > 0, there exists I∗ such that

for I ≥ I∗:P

{
1

I

I∑
i=1

V 2
i (λ̄)− 1

I

I∑
i=1

qi,λ̄ < −
ε

2

}
<
δ

2
, P

{
T 2(λ̄) < − ε

2

}
<
δ

2

and

P
{
IS2(λ̄)− Ivλ̄ < −ε

}
=P

[
I

I − 1

{
1

I

I∑
i=1

V 2
i (λ̄)− T 2(λ̄)

}
− Ivλ̄ < −ε

]

=P

[
I

I − 1

{
1

I

I∑
i=1

V 2
i (λ̄)− 1

I

I∑
i=1

qi,λ̄ +
1

I

I∑
i=1

qi,λ̄ − T 2(λ̄)

}
− Ivλ̄ < −ε

]

=P

[
I

I − 1

{
1

I

I∑
i=1

V 2
i (λ̄)− 1

I

I∑
i=1

qi,λ̄ − T 2(λ̄)

}
− Ivλ̄ +

1

I − 1

I∑
i=1

qi,λ̄ < −ε

]

≤P

[
I

I − 1

{
1

I

I∑
i=1

V 2
i (λ̄)− 1

I

I∑
i=1

qi,λ̄ − T 2(λ̄)

}
< −ε

]

≤δ
2

+
δ

2
= δ

Stated in words, IS2(λ̄) will over-estimate Ivλ̄ with high probability.

Second, under the null hypothesis H0 : λ = λ̄ and from Lemma A.3,
∑I

i=1 µi,λ̄/I = 0.
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Hence, we can rewrite the test statistic as

T (λ̄) =
1

I

I∑
i=1

Vi(λ̄) =
1

I

I∑
i=1

[Vi(λ̄)− µi,λ̄]

where the test statistic becomes a sum of independent random variables Vi(λ̄) − µi,λ̄ with

mean zero and variance vi,λ̄.

Finally, combining the two facts, under the null H0 : λ = λ̄, we have

T (λ̄)

S(λ̄)
=

 1
I

∑I
i=1{Vi(λ̄)− µi,λ̄}√

1
I2
∑I

i=1 vi,λ̄


√

1
I2
∑I

i=1 vi,λ̄√
S2(λ̄)


By conditions specified in Breiman (1992, pg 186) for the central limit theorem with non-

identical distributions, the first parenthesis term converges to the standard Normal distri-

bution. From our result about IS2(λ̄) overestimating Ivλ̄, the second parenthesis term will

be smaller than 1 with high probability. Hence, taking the sup of the entire expression, we

obtain

lim sup
I→∞

P

{
T (λ̄)

S(λ̄)
≤ −t|F ,Z

}
≤ Φ(−t), lim sup

I→∞
P

{
T (λ̄)

S(λ̄)
≥ t|F ,Z

}
≤ Φ(−t)

where Φ() is the standard normal distribution.

A.2.3. Proof of Corollary 4.1

First, we see that T (λ)/S(λ) = q implies T 2(λ) = q2S2(λ). This expression can be rewritten

as

T 2(λ) =
q2

I(I − 1)

I∑
i=1

(Vi(λ)− T (λ))2 =
q2

I(I − 1)

{
I∑
i=1

V 2
i (λ)− IT 2(λ)

}
(A.15)
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Rearranging the terms in (A.15), we get

T 2(λ)

(
1 +

q2

I − 1

)
=

q2

I(I − 1)

I∑
i=1

V 2
i (λ)

Second, we can re-express Vi(λ) as follows.

Vi(λ) =

ni∑
j=1

(
ni
mi

+
ni

ni −mi

)
ZijRij −

ni∑
j=1

ni
ni −mi

Rij

−
ni∑
j=1

(
ni
mi

+
ni

ni −mi

)
λZijDij +

ni∑
j=1

ni
ni −mi

λDij

=

ni∑
j=1

n2
i

mi(ni −mi)
ZijRij −

 ni∑
j=1

ni
ni −mi

Rij

 1

mi

ni∑
j=1

Zij


−

ni∑
j=1

n2
i

mi(ni −mi)
λZijDij +

 ni∑
j=1

ni
ni −mi

λDij

 1

mi

ni∑
j=1

Zij


=

n2
i

mi(ni −mi)

 ni∑
j=1

ZijRij −
1

ni

ni∑
j=1

Rij

ni∑
j=1

Zij


− λ n2

i

mi(ni −mi)

 ni∑
j=1

ZijDij −
1

ni

ni∑
j=1

Dij

ni∑
j=1

Zij


=

n2
i

mi(ni −mi)

ni∑
j=1

(Zij − Z̄i.)(Rij − R̄i.)− λ
n2
i

mi(ni −mi)

ni∑
j=1

(Zij − Z̄i.)(Dij − D̄i.)
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Immediately, we also have Vi(λ) = Gi − λHi. Then, we can rewrite
∑I

i=1 V
2
i (λ) and T 2(λ)

as follows

I∑
i=1

V 2
i (λ) =

I∑
i=1

(Gi − λHi)
2

=
I∑
i=1

G2
i − 2λ

I∑
i=1

GiHi + λ2
I∑
i=1

H2
i

T 2(λ) =
1

I2

{
I∑
i=1

Vi(λ)

}2

=
1

I2

{
I∑
i=1

(Gi − λHi)

}2

=
1

I2


(

I∑
i=1

Gi

)2

− 2λ

I∑
i=1

Gi

I∑
i=1

Hi + λ2

(
I∑
i=1

Hi

)2


Overall, we can rewrite the equation (A.15) as

1

I2


(

I∑
i=1

Gi

)2

− 2λ
I∑
i=1

Gi

I∑
i=1

Hi + λ2

(
I∑
i=1

Hi

)2

(

1 +
q2

I − 1

)

=
q2

I(I − 1)

(
I∑
i=1

G2
i − 2λ

I∑
i=1

GiHi + λ2
I∑
i=1

H2
i

)

Finally, we pull out the coefficients associated with λ2 and λ, denoted as A2 and A1,

respectively. The remaining term are constants and we denote them as A0. All A2, A1, and
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A0 are explicitly written below.

A2 =
1

I2

(
I∑
i=1

Hi

)2

+
q2

I(I − 1)

1

I

(
I∑
i=1

Hi

)2

−
I∑
i=1

H2
i


= H̄2

. −
q2

I(I − 1)

I∑
i=1

(Hi − H̄.)
2

A1 = −2

[
1

I2

I∑
i=1

Gi

I∑
i=1

Hi +
q2

I(I − 1)

{
1

I

I∑
i=1

Gi

I∑
i=1

Hi −
I∑
i=1

GiHi

}]

= −2

[
Ḡ.H̄. −

q2

I(I − 1)

{
I∑
i=1

(Gi − Ḡ.)(Hi − H̄.)

}]

A0 =
1

I2

(
I∑
i=1

Gi

)2

+
q2

I(I − 1)

1

I

(
I∑
i=1

Gi

)2

−
I∑
i=1

G2
i


= Ḡ2

. −
q2

I(I − 1)

I∑
i=1

(Gi − Ḡ.)2

If q = 0 in Corollary 4.1, there is only one solution to the quadratic equation since

A2λ
2 +A1λ+A0 = H̄2

. λ
2 − 2H̄.Ḡ.λ+ Ḡ2

. = (H̄.λ− Ḡ.)2 = 0

This gives us an explicit formula for the estimator of the effect ratio, denoted as λ̂.

λ̂ =
Ḡ.
H̄.

=

∑I
i=1

n2
i

mi(ni−mi)

∑ni
j=1(Rij − R̄i.)(Zij − Z̄i.)∑I

i=1
n2
i

mi(ni−mi)

∑ni
j=1(Dij − D̄i.)(Zij − Z̄i.)

(A.16)
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A.2.4. Proof of Theorem 4.3

First, for all i = 1, . . . , I and j = 1, . . . , ni, we have

Zij − Z̄i. =


1− mi

ni
if Zij = 1

−mi
ni

if Zij = 0

Furthermore,
ni∑
j=1

(Zij − Z̄i.) = 0,

ni∑
j=1

(Zij − Z̄i.)2 =
mi(ni −mi)

ni

Second, for fixed Zij , we have the following expected values for Ji

E(Ji) =0

E(J2
i ) =V ar


ni∑
j=1

(Zij − Z̄i.)(εij − ε̄i.)


=

ni∑
j=1

(Zij − Z̄i.)2V ar(εij − ε̄i.) +
∑
j,k

(Zij − Z̄i.)(Zik − Z̄k.)Cov(εij − ε̄i., εik − ε̄i.)

=(1− 1

ni
)σ2
i,R

ni∑
j=1

(Zij − Z̄i.)2 − 1

ni
σ2
i,R

∑
j,k

(Zij − Z̄i.)(Zik − Z̄k.)

=σ2
i,R

ni∑
j=1

(Zij − Z̄i.)2 − 1

ni
σ2
i,R


ni∑
j=1

(Zij − Z̄i.)


2

=σ2
i,R

mi(ni −mi)

ni

For the third moment, for each i, let k1, . . . , kni be non-negative integers and define the

multinomial coefficient as follows.

(
3

k1, . . . , kni

)
=

3!

k1! · · · kni !
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Then, we have

E(|J3
i |) =E|


ni∑
j=1

(Zij − Z̄i.)(εij − ε̄i.)


3

|

=E|
∑

k1+···+kni=3

(
3

k1, . . . , kni

) ni∏
j=1

{
(Zij − Z̄i.)(εij − ε̄i.)

}kj |
≤

∑
k1+···+kni=3

(
3

k1, . . . , kni

) ni∏
j=1

|Zij − Z̄i.|kjE|εij − ε̄i.|kj <∞

because third moments exist and are bounded for all εij and ni is bounded. Third, based

on these moment calculations, it immediately follows that

E

[
I∑
i=1

{
n2
i

(mi)(ni −mi)
Ji

}2
]

=

I∑
i=1

{
n4
i

(mi)2(ni −mi)2

}{
mi(ni −mi)

ni
σ2
i,R

}
= s2

I

Then, by Theorem 9.2 in Chapter 9, Section 3 of Breiman (1992) (pg 187), the sum of Ji

weighted by n2
i /mi(ni −mi) is a standard Normal distribution

∑I
i=1

n2
i

mi(ni−mi)
Ji

sI
→ N(0, 1)

Fourth, for Hi, we have the following moments

E(Hi) =γmi(1−
mi

ni
)

V ar(Hi) =V ar

 ni∑
j=1

(Zij − Z̄i.)(Dij − D̄i.)


=(1− 1

ni
)σ2
i,D

ni∑
j=1

(Zij − Z̄i.)2 − 1

ni
σ2
i,D

∑
j,k

(Zij − Z̄i.)(Zik − Z̄k.)

=σ2
i,D

ni∑
j=1

(Zij − Z̄i.)2 − 1

ni
σ2
i,D

 ni∑
j=1

(Zij − Z̄i.)

2

=σ2
i,D

mi(ni −mi)

ni
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Fifth, by Theorem C in page 27 of Serfling (1980),

1

I

I∑
i=1

n2
i

mi(ni −mi)
Hi − γ

1

I

I∑
i=1

E

{
n2
i

mi(ni −mi)
Hi

}

=
1

I

I∑
i=1

n2
i

mi(ni −mi)
Hi − γ

1

I

I∑
i=1

ni → 0

Finally, combining all these facts together, we can rewrite the effect ratio estimator as

follows.

β̂ =

∑I
i=1

n2
i

mi(ni−mi)

∑ni
j=1(Zij − Z̄i.)(Rij − R̄i.)∑I

i=1
n2
i

mi(ni−mi)

∑ni
j=1(Zij − Z̄i.)(Dij − D̄i.)

= β +

∑I
i=1

n2
i

mi(ni−mi)

∑ni
j=1(Zij − Z̄i.)(εij − ε̄i.)∑I

i=1
n2
i

mi(ni−mi)
Hi

= β +

∑I
i=1

n2
i

mi(ni−mi)
Ji∑I

i=1
n2
i

mi(ni−mi)
Hi

which leads to

√
I(β̂ − β) =


∑I

i=1
n2
i

mi(ni−mi)
Ji

sI




1√
I
sI

1
I

∑I
i=1

n2
i

mi(ni−mi)
Hi


Finally, using Slutsky’s Theorem,

√
I(β̂−β) converges to a Normal distribution with mean

0 and stated asymptotic variance.
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