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Sensory History Matters for Visual Representation: Implications for
Autism

Abstract

How does the brain represent the enormous variety of the visual world? An approach to this question
recognizes the types of information that visual representations maintain. The work in this thesis begins by
investigating the neural correlates of perceptual similarity & distinctiveness, using EEG measurements of the
evoked response to faces. In considering our results, we recognized that the effects being measured shared
intrinsic relationships, both in measurement and in their theoretic basis. Using carry-over fMRI designs, we
explored this relationship, ultimately demonstrating a new perspective on stimulus relationships based around
sensory history that best explains the modulation of brain responses being measured. The result of this
collection of experiments is a unified model of neural response modulation based around the integration of
recent sensory history into a continually-updated reference; a "drifting-norm."

With this novel framework for understanding neural dynamics, we tested whether cognitive theories of autism
spectrum disorder (ASD) might have a foundation in altered neural coding for perceptual information. Our
results suggest ASD brain responses depend on a more moment-to-moment understanding of the visual world
relative to neurotypical controls. This application both provides an exciting foothold in the brain for future
investigations into the etiology of ASD, and validates the importance of sensory history as a dimension of
visual representation.
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ABSTRACT

SENSORY HISTORY MATTERS FOR VISUAL REPRESENTATION:
IMPLICATIONS FOR AUTISM
David Alexander Kahn
Robert T. Schultz

Geoffrey Karl Aguirre

How does the brain represent the enormous variety of the visual world? An approach to
this question recognizes the types of information that visual representations maintain. The
work in this thesis begins by investigating the neural correlates of perceptual similarity &
distinctiveness, using EEG measurements of the evoked response to faces. In considering
our results, we recognized that the effects being measured shared intrinsic relationships,
both in measurement and in their theoretic basis. Using carry-over fMRI designs, we
explored this relationship, ultimately demonstrating a new perspective on stimulus
relationships based around sensory history that best explains the modulation of brain
responses being measured. The result of this collection of experiments is a unified model
of neural response modulation based around the integration of recent sensory history into

a continually-updated reference; a “drifting-norm.”

With this novel framework for understanding neural dynamics, we tested whether
cognitive theories of autism spectrum disorder (ASD) might have a foundation in altered

neural coding for perceptual information. Our results suggest ASD brain responses
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depend on a more moment-to-moment understanding of the visual world relative to
neurotypical controls. This application both provides an exciting foothold in the brain for
future investigations into the etiology of ASD, and validates the importance of sensory

history as a dimension of visual representation.
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1 Introduction

Somewhere toward the middle of my PhD work, my younger brother Sam and I were
discussing the visual system over the phone. Having studied film as an undergrad, he
brought up a simple example of how the visual system doesn’t work like a camera. He
noted that when one tries to film a sunset with a manual film camera and a fixed aperture,
the recorded scene on film would rapidly fall to black, whereas the human eye would
experience a longer, gradual fade - continuing after the sun had fallen from view. The
reasons for this are many, but the biggest one is that the eye doesn’t maintain a fixed
aperture; it automatically adjusts to changes in light intensity to maintain sensitivity. This
dynamic adjustment contains one implicit decision of the visual system - opting for
sensitivity over an accurate representation of physical reality.

On a breezy day in early February 2012, my close friend Dorota & I visited an
installation by the artist Doug Wheeler entitled SA MI 75 DZ NY 12 at David Zwirner in
New York. The installation is what Wheeler calls an “infinity environment.” It’s difficult
to report exactly how large the environment is - perhaps 50 feet in diameter and circular
in shape. Inside, the floor and ceiling curve to meet the walls in (what one presumes) are
parabolic curves. The paint is consistent & diffusely reflective, and the whole space is lit
from the edges of the vestibule through which one walks to enter. With no edges or
textures, with one’s back to the entrance there is simply nothing for the eye to fixate on
inside. The effect is something akin to being in a fog, but with a greater (yet ambiguous)

sense of depth. There is simply nothing to see.



...Except that there is. After a few minutes inside the space, Dorota walked over to me &
expressed amazement at how many “floaters” were in her eyes. I too, had never seen so
many of them. The percept is a side effect of anatomy; the vitreous humour of the eye
breaks down over time & the resulting imperfections can cast shadows on the retina.
These shadows are always there. When there’s not much else to see, for instance when
watching the sky on a clear day, it’s hard not to perceive them. But even as I write this
and look around the library where I am siting, I struggle to perceive any. [ would suggest
this is another implicit decision of the visual system: when there is plenty to “see”, the
system ignores some things.

These are just two implicit decisions of the visual system. In the process of perception,
countless such trade-offs occur.

Coming back to the camera’s perspective, the history of computer vision (up until last
year) has demonstrated another issue: making sense of image data is really hard. Consider
the hurdles in creating an algorithm to recognize your car or bicycle using a camera. It
must take into account every color spectra the paint could reflect under different
illuminations and every angle of view. Perhaps with enough work, the algorithm one day
seems pretty good... until you park behind a chain link fence. Or (to make the analogy
even more explicit) a smudge gets on the camera lens. From this example we realize that
ignoring some information can facilitate other functions.

These observations are central to theories of perceptual systems that focus on the nature

of neural information (Barlow, 1961; Olshausen & Field, 2004). The crux of many such



theories is that sensory information is processed into neural codes that manage to exploit
features of the information in adaptive ways. The corner of vision science this thesis finds
itself in is focused on these neural codes. What information is stored in them, and what is
the relationship between different types of information? How do we measure these codes
in the brain? And could we possibly link differences in these brain measurements to
changes in behavior, or to psychiatric disorders? The arc of this thesis reframes two types
of information stored in visual neural codes in terms of one unified model. The final
chapter applies this unified perspective to look for neural coding differences in autism
spectrum disorder.

How does one begin to approach the question of information encoded in the brain? One
of the most useful tools is derived from psychology - the concept of a perceptual space or
stimulus space. A perceptual space is a theoretic multidimensional space in which all
manner of stimuli (in our case, visual objects such as faces and cars etc.) can be placed.
The dimensions of this space allow for mapping and measuring - and thus for
understanding the visual relationships between all elements in the space. For simplicity,
we will reduce the size of the space under discussion to just the space of a special class of
objects: faces. A perceptual space for faces would need to be quite highly dimensioned;
though faces are amazingly similar, there is still a wonder of variety between and within
individuals. Consider what would be necessary to represent just my face and the faces of
my two brothers, Winston and Sam. I’m often told we look quite similar; if one assumes

that each brother is equally similar perceptually to each other, the space of our faces



could be represented as a plane with three points forming an equilateral triangle. Of
course we’re never quite making the same expression; perhaps my smiling face is more
like my younger brother’s smiling face than his frowning face. We will need to add a
dimension to account for this. And of course sometimes we let our beards grow out a bit:
more variation, another dimension. One can see how quickly perceptual spaces can grow!
The useful thing about the perceptual space is that they reduce just as easily - indeed we
started by reducing to just the space of faces, and then just the space of 3 brothers. Most
of the work 1n this thesis starts with very reduced perceptual spaces - a single vector in
“face-space” between two face identities. Having discussed the perceptual space as a tool,
the appeal of this simplicity should be intuitive to the reader. (It is important to keep in
mind while reading that any understanding we derive here will need to be studied
eventually in respect to how it scales).

What does the perceptual space as a tool offer the researcher? Like any map, at its
simplest, it offers distances. These distances in perceptual space can be thought of as
indexes of perceptual similarity. Psychologists have put these maps and distances to great
use for years. To use them to investigate neural codes however, we also require a
yardstick for the brain - some measure of distance in neural space. A few such yardsticks
exist. The one most heavily exploited in this work is called neural adaptation. Adaptation
is a phenomenon by which the repeated presentation of a stimulus will yield an attenuated
neural response. This has been observed using neuroimaging measures such as functional

magnetic resonance imaging (fMRI, Grill-Spector & Malach, 2001) and single-cell



recordings (Leopold et al., 2006), among other methods. Work by one of my advisors,
Geoffrey Aguirre, just prior to the initiation of this thesis sought to extend this work
beyond identical repetitions to investigate where and how this neural yardstick was neatly
notched for distance (Aguirre, 2007; Drucker & Aguirre, 2009). The early work (Kahn et
al., 2010) presented in this thesis uses neural adaptation as a yardstick for perceptual
distance within the evoked response to faces measured by electroencephalography
(EEG).

(During the period during which this these was performed, other yardsticks came into
use. One of the most exciting uses distributed patterns of activity in fMRI to index
similarity. By evaluating the correlations between distributed activity evoked by different
stimuli across a region of cortex in fMRI, it is possible to index the similarity between
neural representations. This representational similarity analysis (RSA, Kriegeskorte et al.,
2009) and other types of multi-voxel pattern analysis (MVPA) share a complex
relationship with neural adaptation (Epstein & Morgan, 2012)).

Returning to our perceptual space: distance, some have argued, is not the only tool the
space offers to us. It has been proposed that a perceptual space, such as that of faces,
must have a center - or norm - that might have unique qualities. The idea of a norm-based
code is that coordinates in neural space are referenced to the norm rather than merely to
each other. By way of analogy, one could locate my hometown of Cleveland, OH by the
coordinates 41°28°56”N 81°40°11”W. These coordinate place particular emphasis on a

norm - the intersection of the equator and the prime meridian. (A separate method of



locating Cleveland would be to offer a collection of distances from other cities; 190 miles
from Toronto, 408 miles from New York City, 311 miles from Chicago). Psychological &
psychometric investigations of perceptual norms suggested some special properties likely
exist. One class of such findings is adaptive after-effects (Leopold et al., 2001), in which
exposure to a particular exemplar to one extreme of a norm could bias the norm in the
opposite (“anti”) direction. Others properties were derived from the observation that
norms were used a reference more often than they were referred to other exemplars. A
classic example (Tversky, 1977) is that 99 is judged as more similar to 100 than 100 is to
99. Yet another is the finding that average stimuli are judged as more familiar than
extreme exemplars. For instance, when a collection of extreme exemplars from a simple
cartoon face space is presented repeatedly, a familiarity bias is induced for the norm even
if it was never seen; viewers will judge the norm as more likely seen relative to an
extreme exemplar that was actually presented (Posner & Keele, 1968).

In a perceptual space, the norm might not offer a ready yardstick but rather something
more like a compass. Just prior to and during the early years of this thesis project,
researchers using fMRI sought to find neural evidence of just such a compass. The
hypothesized neural correlate was a reduced level of bulk neural response for a norm
relative to an extreme exemplar. Studies investigating faces (Loffler ef al. 2005), face
silhouettes (Davidenko et al., 2011), and abstract shapes (Panis et al., 2010) indexed
these responses. In addition to the possibility of a differential amplitude of neural

response, we hypothesized that norms might induce neural biases, similar to



psychological biases of similarity. Just as an ellipse is judged as more like a circle than a
circle is like an ellipse, we suspected our neural yardstick might measure differently
when comparing more average stimuli to more extreme ones.

The first chapter of this thesis began to play with these tools - neural adaptation & norm-
based effects - in a single EEG experiment. Though this experiment, we began to
reconsider some of the seemingly straightforward definitions offered above. What we
discovered was the interactions between effects were hard to disentangle. The following
two chapters continue this reassessment. What coalesces is a new perspective on neural
codes, yardsticks, and visual perception.

The final chapter of this thesis presents recent work applying this new perspective to an
investigation of the neural etiology of autism spectrum disorder (ASD). ASD is a
heterogeneous group of developmental disorders clinical defined by social
communication deficits and a tendency toward restricted interests and repetitive
behaviors (DSM-V - APA, 2013).

One of the oft-cited characteristics of ASD is an acute processing of detail in everyday
experience. Theoretical approaches of ASD have sought to explain this tendency from a
neurocognitive standpoint. One the most enduring theories is the weak central coherence
account (Frith, 1989; Happé & Frith, 2006), which highlighted a difficulty to extract
global meaning from features in ASD, likely driven by a bias for local-level information.
Parallels are often drawn between weak central coherence and the stereotyped ASD

cognitive style of “missing the forest for the trees.” Related theories highlighted other



imbalances: the “enhanced discrimination and reduced generalization” hypothesis
(Plaisted, 2001) focused on a differential manifestation of perceptual ability, as did the
“enhanced perceptual functioning” account (Mottron et al. 2006), which echoed the
local-bias noted by weak central coherence. (I should note these theories form only one
corner of the literature on altered cognitive functioning in ASD. A separate wing focuses
on social-first theories of the disorder (e.g. Chevallier ef al. 2012)).

A collection of findings have lent support to these theories: the demonstration of
enhanced perceptual discrimination (Plaisted et al. 1998; O’Riordan & Plaisted, 2001), a
reduced ability to generalize prototypes (Klinger & Dawson, 2001), and alterations in the
face adaptive after-effects described earlier (Pellicano et al., 2007).

Early in this introduction, the point was raised that one of the trade-offs of sensory
systems is the implicit choice to ignore certain information when there is already
“enough.” From just the briefest description of these theories of ASD, it does not seem a
stretch to speculate that just such a sensory trade-off (for example, implicitly deciding
when to “ignore”) is differently balanced in ASD. This places the locus of dysfunction in
ASD within the perceptual system, and likely within the nature of the neural codes.

The idea of altered neural coding driving the autistic phenotype has been proposed
before. Two neural network theories of ASD were influential in the development of the
final project in this thesis. McClelland (2000) summarizes a framework for cognitive
development in which neural networks optimize neural codes dynamically. Within this

framework, the central trade-off struck by these codes is between preserving generality



(overlap or sharing between codes) or emphasizing the conjunction of features. In
McClelland’s example, the former would encode the visual qualities of ‘red” and ‘square’
separately (and allow thus allow ‘red’ to be used for a fire hydrant as well) while the
latter would encode ‘red square’ in conjunction. This latter style was dubbed
“hyperspecificity” - an increasingly conjunctive, less broadly connected code for all
visual information - and proposed as a neural scheme to explain ASD. A related theory
was that of Gustafsson (1997) who proposed that cortical feature maps (the neural Legos
that assemble perceptual spaces) could be “inadequate” in ASD. He proposed that
columns (the building blocks of feature maps) might be more narrowly tuned for their
preferred stimulus features, and perhaps that the map itself could be more fragmented
(using many columns in place of one broader one).

When developing this final proposal for this thesis, these proposals seemed to raise a
single question: if neural codes are altered in autism, shouldn’t we be able to measure
those differences with our neural yardstick of adaptation? This was exactly the route we
took when designing an investigation of neural codes and autism. However, as the
following three chapters unfold, it will become clear that our understanding of our neural
yardstick & compass shifted and merged. The new tool we end up with is both more

complex and simpler, and proves useful for indexing perceptual differences in autism.



2 Temporally Distinct Neural Coding of Perceptual Similarity and
Prototype Bias

2.1 Abstract

Psychological models suggest that perceptual similarity can be divided into geometric
effects, such as metric distance in stimulus space, and non-geometric effects, such as
stimulus-specific biases. We investigated the neural and temporal separability of these
effects in a carry-over, event-related potential (ERP) study of facial similarity. By testing
this dual effects model against a temporal framework of visual evoked components, we
demonstrate that the behavioral distinction between geometric and non-geometric
similarity effects is consistent with dissociable neural responses across the time course of
face perception. We find an ERP component between the “face-selective” N170 and
N250 responses (the “P200”) that is modulated by transitions of face appearance,
consistent with neural adaptation to the geometric similarity of face transitions. In
contrast, the N170 and N250 reflect non-geometric stimulus bias, with different degrees
of neural adaptation dependent upon the direction of transition within the stimulus space.
These results suggest that the neural coding of perceptual similarity, in terms of both
geometric and non-geometric representation, occurs rapidly and from relatively early in

the perceptual processing stream.

2.2 Introduction
From searching for one’s car in a parking lot to finding a friend in a crowd, we are

confronted daily with varying exemplars from a given visual category. How does the
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visual system represent this variety? Several perceptual models are built around the
notion of a “stimulus space,” a representation of comparative similarity based on
observers’ judgments or their classification of stimuli into groups. Within-class stimulus
variation may be mapped along the dimensions of this space. Rectangles, for instance,
can be described in terms of aspect ratio and area, and color defined by variation in hue,
saturation, and brightness.

A number of psychological models have related stimulus spaces to behavioral measures
of perceptual similarity. So-called “geometric” models postulate a direct correspondence
between the two, defining similarity in terms of the metric distance between two stimuli
within a representational space (Shepard, 1964; Torgerson, 1965). While such geometric
models are successful in explaining a wide range of behavior, certain perceptual
properties of similarity violate these models (Holman, 1979; Krumhansel, 1978; Tversky,
1977). Notable is the violation of symmetry: while the ordering of a pair of stimuli should
not alter their perceptual similarity in geometric models, this violation is frequently seen
in practice. A classic perceptual example is that an ellipse is judged to be more similar to
a circle than a circle is to an ellipse (Tversky, 1977). Often, such asymmetries suggest the
existence of representational “prototypes” which can be interpreted as stimulus-specific
biases producing non-geometric distortions of otherwise geometric similarity spaces.
Prototypes may be the result of long-standing perceptual experience or the local effect of
context induced by stimulus frequency (Polk, Behensky, Gonzalez, & Smith, 2002).

Current models of similarity account for perceptual asymmetries through the inclusion of
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both geometric and non-geometric properties. The “additive similarity and bias” model of
perceptual proximity (Holman, 1979; Nosofsky, 1991), for example, incorporates both
geometric and non-geometric effects by defining the perceptual “proximity” of two
stimuli as the sum of metric stimulus distance and stimulus bias, a term representing the
stimulus-specific effects behind such asymmetries.

Supporting this distinction, studies of the neural representation of stimulus similarity
have identified both geometric and non-geometric neural codes. A single-unit study of
object perception demonstrated a correspondence between neural responsiveness in
monkey inferotemporal cortex and the geometric organization of an abstract shape space,
as derived from both behavioral and pixel-wise evaluations of similarity (Op de Beeck,
Wagemans, & Vogels, 2001). Analogous geometric effects of similarity have been
demonstrated in regions associated with object perception in humans using functional
magnetic resonance imaging (fMRI; Drucker & Aguirre, 2009). Non-geometric similarity
codes, in contrast, have been proposed to explain differential responsiveness to
“prototypical” faces as compared to “distinctive” faces in fMRI (Loffler, Yourganov,
Wilkinson, & Wilson, 2005).

Yet a great deal about the neural representation of perceptual similarity remains poorly
understood. One major question relates to the dissociation of geometric and non-
geometric effects at the neural level. While each of the studies cited above demonstrates
neural correlates of either geometric or non-geometric encoding, no existing study has

examined both types of effects concurrently. A second question is the time course of
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perceptual similarity effects: when in the perceptual processing stream do geometric and
non-geometric coding of stimulus similarity occur? This latter question, extending to the
temporal domain, speaks to the former by providing a non-spatial means of
distinguishing these components of perceptual similarity.

In the present study, we investigated these questions using event-related potentials
(ERPs). We hypothesized that geometric and non-geometric features of similarity would
be evaluated during the time course of visual perception, and focused upon several of the
early perceptual and “face-selective” components of the evoked visual response. In our
analysis we examined four components of the ERP waveform previously associated with
various stages of perceptual and mnemonic processing for faces. These include the P100,
a marker of early visual processing (e.g., Di Russo, Martinez, Sereno, Pitzalis, &
Hillyard, 2001), the N170 (occurring approximately 170 ms after stimulus onset) which is
associated with perceptual encoding of the face (Bentin, Allison, Puce, & Perez, 1996;
Itier & Taylor, 2004; Liu, Higuchi, Marantz, & Kanwisher, 2000; Sams, Hietanen, Hari,
Ilmoniemi, & Lounasmaa, 1997), the P200, the positive component following the N170,
and the N250, thought to reflect consolidation of perceptual representations into memory
(Tanaka, Curran, Porterfield, & Collins, 2006). We used these components as elements of
a temporal framework on which a neural model of geometric and non-geometric
similarity effects could be evaluated.

We examined the sensitivity of this temporal framework to perceptual similarity by

presenting faces varying in identity between two endpoint faces. Sensitivity to perceptual
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similarity was assessed via neural adaptation: a reduction in neural response following
repeated stimulus presentation (Grill-Spector & Malach, 2001; Henson & Rugg, 2003).
Previous work has demonstrated neural adaptation of “face-selective” responses in ERP
(Jacques & Rossion, 2006; Itier & Taylor, 2002; Kovacs et al., 2006) and the related
methodology of magnetoencephalography, or MEG (Furl, van Rijsbergen, Treves,
Friston, & Dolan, 2007; Harris & Nakayama, 2007; Harris & Nakayama, 2008).
However, few of these studies have tested for parametric variation of adaptation effects,
and the measurement of geometric and non-geometric similarity effects are often
confounded. For example, while studies of prototype representation may observe
differential response to centrally located stimuli (e.g., Loffler et al., 2005), these effects
may result from the tendency of prototypical stimuli to be more similar to other stimuli
and thus produce neural adaptation.

To disentangle these effects, we used a “carry-over design” (Aguirre, 2007) in which a
continuous stream of stimuli is presented with first-order counterbalancing. The resulting
data permit measurement of the direct effect of each stimulus upon the amplitude of
neural response, as well as the modulatory effect of one stimulus upon the next (e.g.,
neural adaptation). Geometric neural similarity is revealed in this context as a symmetric,
parametric adaptation of ERP response proportional to the change in perceptual
similarity. Non-geometric neural similarity, suggestive of explicit neural representation of
a prototype or central tendency of the stimulus space, was modeled as an asymmetric

modulation of the ERP response dependent upon the direction of stimulus transition.
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2.3 Materials and Methods

2.3.1 Subjects

Six right-handed subjects (3 women, 3 men) between the ages of 22 and 39 (mean age
29.5) with normal or corrected-to-normal vision participated in the study. All subjects
provided informed consent under the guidelines of the Institutional Review Board of the
University of Pennsylvania and the Declaration of Helsinki.

2.3.2 Stimuli

Two neutral faces (subtending 9.4° x 10.9° of visual angle) adapted from the NimStim
stimulus set (Tottenham et al., 2009), varying in eye and mouth identity, were used to
create a linear morph, yielding five stimuli varying in 25% increments. (Since the actual
images used for experimentation are not publishable, all figures use example morphs
from a different stimulus set.) All faces (Figure 2.1A) were cropped of external facial
features using the same selection boundary shape (ellipse, 3 pixel feathering) and set to
grayscale bitmaps in Adobe® Photoshop®.

The similarity of the resulting face images was analyzed using a biologically motivated,
multi-scale, Gabor-filter model of V1 cortex (Renninger & Malik, 2004). A multi-
dimensional scaling (MDS) analysis of the computational similarity scores revealed that,
as expected, the faces varied along a single dimension and had roughly equal spacing
between the 5 stimuli (spacing between adjacent, nominal 25% morphs: 30%, 24%, 21%,

25%).
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Figure 2.1: Example stimuli and presentation.

Representative example stimuli are presented here as the actual stimuli used were not
approved for publication. (a) The experimental stimuli consisted of five faces morphed in
identity between two endpoint identities (Face A and B) in 25% increments; subjects
were not informed of the stimulus space arrangement. Subjects were instructed to
monitor for the appearance of a target face (far right) whose identity was distinct from the
morph axis. (b) Stimulus presentation. Stimuli were presented for 1000 ms with an ISI of
200, 300 or 400 ms, counterbalanced across trials using a type 1, index 1 sequence
(Aguirre, 2007) with 18 elements.

2.3.3 Behavioral Assessment of Stimulus Similarity

A behavioral, reaction time study was used to confirm the monotonic ordering of the
perceptual similarity of the stimuli along the face morph continuum. All subjects (N = 6)
from the ERP study participated in the behavioral study several days following ERP data
collection.

The 5 faces from the morph continuum were used as stimuli and presented side-by-side

on a computer screen using the PsychToolbox (Brainard, 1997; Pelli, 1997) for MATLAB

(Mathworks, Andover, MA). Subjects were instructed to respond with a button press to
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indicate if the pair of faces were the same or different (buttons indicating same or
different were randomized to right or left across subjects). Each trial consisted of a side-
by-side face presentation lasting until the subjects responded with a button press,
followed by a 250 ms inter-trial interval. Runs consisted of 640 trials, with breaks
occurring every 40 trials. “Same” trials, in which the face identity was the same,
occurred with equal frequency as “different” trials. Within the “different” trials, the
metric distances (A25, A50, A75, A100) along the morph continuum occurred with equal
frequency.

For each different face pair for each subject, the inverse of the median of correct reaction
times was found and entered into a distance matrix for multi-dimensional scaling (MDS)
analysis (Kruskal & Wish, 1978). MDS analysis for each subject was performed for each
subject using the MATLAB cmdscale() function. Coordinates were centered about the
50% face for each subject, and then averaged across subject to yield estimates of stimulus
placement. The first dimension of the MDS estimate was retained.

2.3.4 ERP Stimulus Presentation

Each run consisted of 648 trials; each subject underwent 3 consecutive runs for a total of
1944 stimulus presentations. Each trial consisted of a stimulus presentation for 1000 ms,
followed by an ISI of 200, 300, or 400 ms (counterbalanced across trials). Stimulus order
was determined by a first-order, counter-balanced, n=18, type 1, index 1 sequence
(Aguirre, 2007). An 18-element sequence was required to counterbalance the 6 stimuli (5

morphs and 1 target) crossed with the three durations of ISI that could follow each
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stimulus. During the ISI a central white fixation cross was presented on the same mean
gray background surrounding the stimuli. Subjects were instructed to respond with a
button press to the occurrence of a target face from outside the morph continuum (Figure
2.1A, far right). Subjects were trained on a simplified version of the task immediately
prior to the experiment to ensure accurate identification of the target face. Target trials
and trials immediately following target presentations were excluded from the main
analyses.

Stimuli were presented using EPrime 2 (Psychology Software Tools, Inc.) on a Dell 24
inch LCD display situated 100 cm from the subject at eye level. Task responses were also
collected through EPrime 2. To obtain “sensors of interest” for experimental analysis,
after the main experiment subjects completed a short “localizer” experiment with faces,
houses, and everyday objects (100 exemplars each), randomly interleaved. Stimuli in the
localizer were presented on a white background with a black fixation cross (9.2° x 7.7°
visual angle) for 300 ms (ITT jittered between 900 and 1100 ms); subjects were instructed
to passively view the stimuli.

2.3.5 ERP Data Collection

Data collection was performed on a BioSemi ActiveTwo system (http://

www.biosemi.com/products.htm) with 128 active electrodes with sintered Ag-AgCl tips

in fitted headcaps. Evoked brain potentials were digitized continuously at a sampling rate
of 512 Hz with default low-pass filtering at 1/5 of the sampling rate (http://

www.biosemi.com/fag/adjust_samplerate.htm). Two additional electrodes with a 4mm
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sintered Ag-AgCl pallet were also placed bilaterally on the mastoids as references for
data import (http://www.biosemi.com/fag/cms&drl.htm). Electrical offsets were verified

to be between -20 and 20 pV for every channel prior to data collection.

A B Target vs. Non-Target (N=6)
P100
6 .IJV / = Non-Target
4 | ﬂ
2 |
f‘&.h ey
Y \ 100 ms

N250

Figure 2.2: ERP sensor of interest (SOI) selection and component definition.

(a) Twenty-one face-selective (black dots) SOIs were selected across subjects using an
independent localizer task (Face > House). (b) Component identification. Grand-average
waveforms (N = 6) comparing the response to trials in which the target face was
presented and all non-target trials. The P100 and N170 are the first positive and negative
deflection, respectively. The N250 is functionally defined as having a greater negative
deflection for target recognition (Tanaka et al., 2006).

2.3.6 ERP Pre-Processing and Analysis

Data were processed offline using the EEGLAB toolbox (Delorme & Makeig, 2004) for

MATLAB. Sensors were selected for analysis using a “sensor of interest” (SOI) approach

(Liu, Harris, & Kanwisher, 2002), via a point-to-point t-test comparing face and house

conditions in the “localizer” scan. Significant channels for each subject were identified
19



within the N170 and N250 latency ranges, and group channels (Figure 2.2A) used for
subsequent analysis were selected if they were identified as significant in a majority of
subjects (4 out of 6). Group average waveforms across all non-target trials for each sensor
can be found in Supplementary Figure 1.

All data for each subject were saved from BioSemi ActiView and imported by run
directly into EEGLAB. Mastoid channels were indicated as references to EEGLAB upon
import and excluded; data were re-referenced immediately to the average signal of all
128 cranial channels. Data were epoched to a time window of 700 ms (100 ms pre-
stimulus onset and 600 ms post) and baseline corrected (100 ms pre-stimulus onset).
Trials containing artifacts (e.g., eye blinks) were identified and removed automatically
using a £100 pV threshold (average rejection rate across subjects for trials used in the
main analysis was 16.7%, with a range of 5.3% - 38.8%)).

ERP components of interest were identified for each subject individually using data
averaged over all non-target conditions across the “sensors of interest” defined at the
group level (Figure 2.2B). The previously-described P100 and N170 were defined on the
basis of latency and direction of deflection, while the N250 was defined by the
comparison of target and non-target faces (Tanaka et al., 2006). Inspection of our results
also revealed a meaningful deflection between the N170 and N250, here called the P200.
For each subject’s grand average waveform, the time points of the local minima (for
N170 and N250) and local maxima (for P100 and P200) were identified within search

windows (P100: 125-175 ms; N170: 175-225 ms; P200: 225-275 ms; N250: 300-350 ms)
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and used as centers of the respective components for that subject. For each subject, the
value of each component for each trial in each condition was then determined as a sum of
the seven data points surrounding and including the subject’s component center
(approximating a 13.6 msec integral about the component center).

This area measure was computed for each trial, rather than across the trial-averaged data,
to facilitate modeling of the data using a general linear model (GLM). Though commonly
employed in fMRI analysis, GLM is rarely applied to ERPs. However, the GLM
approach is methodologically superior for studies of similarity space, as it provides
unbiased parameter estimates of both the “direct effect” (Aguirre, 2007) of morph
identity, and of carry-over effects associated with similarity to the preceding face. If
direct effects alone had been measured, the amplitude for (e.g.) the extreme Face A would
be influenced by the tendency of that extreme Face A to be preceded by dissimilar faces,
and thus be subject to less adaptation. Simultaneous estimation of the direct and carry-
over effects in the context of a counterbalanced stimulus order allows the estimates to be
efficient and unbiased. Similarly, as each condition in the non-geometric bias model
represented a different subset of face identities, the simultaneous modeling of this effect
and the direct effects ensures unbiased estimation of each.

For each subject, the data for each component (P100, N170, P200, N250) were entered
into a general linear model composed of 11 covariates. Five covariates coded for the
particular morph identity (Figure 2.1A) presented on any one trial: the “direct effect” of a

given morph identity upon the amplitude of an ERP component. The remaining
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covariates modeled carry-over effects, or the effect of the status of the prior trial upon
response amplitude for a given trial. Five of these covariates modeled the different sizes
of change in stimulus identity between one trial and the next (A0%, A25%, A50%, A75%,
A100%; Figure 2.4A); each covariate modeled those trials which had the given amount of
identity change. A final covariate modeled asymmetric bias, and was set to have a
positive value for trials in which the preceding trial was at the extreme of the morph
continuum (0% or 100%) and the current trial at the center (50%), and a negative value
for transitions in the other direction (from 50% to 0% or 100%). Trials in which the target
face was presented, and the trials that followed target face presentations, were excluded.
The estimates obtained from this first-order analysis were then collected across subjects
into a second-order, random effects ANOVA analysis to test hypotheses of interest.

2.4 Results

In this experiment, we explored the time course of perceptual similarity by recording
ERPs during face perception. Given that behavioral judgment of similarity has been
hypothesized to consist of geometric effects of stimulus similarity and non-geometric
effects of stimulus-specific bias, we tested if graded neural adaptation in the ERP data
was consistent with this dual-effects model.

2.4.1 Behavioral Measure of Perceptual Similarity

To confirm that the stimuli were linearly ordered in perceived similarity, we collected a
behavioral measure of similarity in all subjects. All subjects participated in a paired-

discrimination task using the face stimuli. Accuracy across subjects was sufficient (mean
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d’ 2.15) to allow an analysis of reaction time effects. An MDS analysis was conducted for
each subject on the average reciprocal reaction time for each face pairing, and then
averaged across subjects. Figure 2.3 presents the position of the five faces on the first
MDS dimension, which accounts for 55% of the variance. As can be seen, the first
dimension contained a monotonic ordering of the stimuli, with somewhat greater spacing
of the faces away from the 50% morph. There was substantial agreement across subjects
on the perceptual similarity of the stimuli as demonstrated by the small across-subject
error bars. This ordering of the stimuli confirms that, as expected from the stimulus
design, subjects perceived a monotonic perceptual change in identity across the face

morph continuum.

0 25 50 75 100% Face B
Dimension 1 —o— e ° —e— —e—i

+SEM
-08 -06 -04 -0.2 0 02 04 06 08
Position in MDS space (arbitrary units)

Figure 2.3: Behavioral results.

Inverse reaction times from a paired discrimination task from each of six subjects were
entered into a multi-dimensional scaling analysis, with the resulting coordinates centered
about the 50% face. The first dimension of the resulting model is displayed, which orders
the faces monotonically along the morph continuum. This first dimension accounts for
55% of the variance. Error bars indicate plus/minus standard error of the mean across
subjects.
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2.4.2 Geometric Effect of Stimulus Similarity in ERP responses

ERP data were collected while subjects viewed a continuous stream of stimuli from the
face continuum, presented in a counter-balanced order. ERP responses were assessed in
relation to the identity of the face being presented, as well as the relationship of the
current stimulus to the prior stimulus.

We first tested for a geometric effect of stimulus similarity based on the absolute metric
distance from the preceding stimulus to the current stimulus along the face identity
continuum. Data from each trial were binned depending on the morph distance between
the face shown and the previous image, resulting in five similarity distances (A0, A25,
A50, A75, A100). Thus, a distance of A0 would be a repetition of the identical stimulus,
whereas A100 represented a stimulus at one extreme of the morph continuum following
the face at the opposite extreme (Figure 2.4A).

Because of the monotonic ordering of the perceptual similarity space used here we would
predict that the representation of metric stimulus similarity should change monotonically
as a function of perceptual distance. In particular, given previous findings of neural
adaptation in MEG (Furl et al., 2007; Harris & Nakayama, 2007; Harris & Nakayama,
2008) and ERP (Itier & Taylor, 2002; Jacques & Rossion, 2006; Kovdcs et al., 2006), we
would predict greatest attenuation for A0, the identical repetition condition, with

decreasing adaptation for increasing perceptual distances between stimuli.
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Figure 2.4: Geometric effect of
similarity

(a) Trials were grouped based upon
the metric distance of the preceding
stimulus to the current stimulus
along the morphed face continuum.
Trials in which the target face was
the current or preceding stimulus
were excluded from analysis. (b)
Grand-average waveforms (across
all significant sensors; Figure 2.2)
comparing each distance transition
condition. A significant interaction
of component and distance
condition was observed, and within
the P200 component there was a
significant effect of distance
(asterisk). Y-axis is aligned to
stimulus onset. (¢) Group average
beta-values from the P200 for the
five covariates modeling each
distance condition in the general
linear model. A significant effect of
distance was observed, with a
significant linear contrast. Error bars
correspond to the between-subject
SEM.



Grand average waveforms across all significant ERP channels (Figure 2.2) for each
perceptual distance condition are displayed in Figure 2.4B. While the early perceptual
P100 and N170 components showed no discernible effect of stimulus similarity, a graded
adaptation effect is clearly visible between the N170 and N250 components. The most
positive deflection for this component occurs in the AO condition, with decreasing
amplitudes for greater perceptual distances. Modulation of the P200 component,
therefore, appears to index the earliest stage of processing associated with computations
of metric stimulus similarity. Caution is required in interpreting these average plots,
however. As discussed previously, apparent graded responses in the waveforms could
result not from an adaptation effect, but instead from the unbalanced representation of
particular face identities in a given dissimilarity pair (see Supplementary Table 1).

To test this finding in an unbiased manner, beta values from the general linear model
were obtained for each subject and component, representing the weight on covariates
modeling each absolute distance condition. These measures are independent of any
“direct-effect” of stimulus identity (e.g., a hypothetically larger response to the extreme
Face A or Face B). A repeated-measures ANOVA with component (P100, N170, P200,
N250), and perceptual distance (A0, A25, A50, A75, A100) as factors showed a significant
interaction between component and distance [F(12, 60) = 5.05, p = 0.00001], confirming
that the effect of stimulus similarity is not seen for all components. Follow-up one-way
repeated-measures ANOVAs for each component found a significant main effect of

distance for the P200 [F(4, 20) = 6.01, p = 0.002] (Figure 2.4C), but no other components
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(all F tests < 2.8, ps > 0.05). The adaptation effect at the P200 was well-modeled by a
linear contrast [F(1, 5) =12.9, p=0.016]. While a similar ordering of the adapted
response is visible in the grand average waveform at the later N250 (Figure 2.4B), this
effect was not significant (F(4, 20) = 3.38, p = 0.125).

Therefore, these data suggest that neural sensitivity to perceptual similarity begins within
the first 400 ms of perceptual processing after stimulus onset. While the early perceptual
P100 and N170 components do not show an effect of stimulus similarity, graded neural
adaptation related to symmetric perceptual distance can be seen at the stage of processing
following the N170, the P200 response. Along with its temporal position between the
N170 and N250, this finding could be interpreted as placing the P200 at an intermediate
cognitive stage between perceptual and mnemonic encoding.

2.4.3 Non-Geometric Effect of Asymmetric Bias in ERP Responses

In addition to the geometric representation of stimulus similarity, we also tested for non-
geometric, asymmetric neural representation of the stimulus space. Given behavioral
findings demonstrating a bias for more ‘prototypical’ stimuli (Op de Beeck, Wagemans,
& Vogels, 2003), we hypothesized that the central face in the set, being an average of the
faces at the extremes, would yield a differential effect on neural adaptation depending on

whether it was a prior or current stimulus.
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Figure 2.5: Non-geometric effects of
similarity
B Bias Effect (N=6) (a) Trials were grouped based upon
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We compared the response on trials in which the central face is preceded by either of the
two faces on the extreme of the stimulus space to trials in which the extreme faces are
preceded by the central face (Figure 2.5A). Crucially, both of these conditions represent
the same metric distance transition (A50), but vary in the direction of transition (‘towards
the center’ of the stimulus space, and ‘towards the extremes’). Previous work has
proposed that extreme stimuli preceded by more central or prototypical stimuli are
perceived as more dissimilar than central stimuli preceded by extremes (Tversky, 1977;
Op de Beeck et al., 2003). Therefore, we predicted that neural adaptation would be
sensitive to the direction of stimulus transition, with greater neural adaptation for
transitions towards the center and less adaptation towards the extreme.

A group average of the two bias conditions is plotted in Figure 2.5B. In line with our
predictions, transitions from the center of the stimulus space towards the extremes yield a
greater negative deflection—but only at the N170 and N250 components. In contrast, the
P100 and P200 display equal adaptation for both presentation orders. Again, these
average waveforms confound direct and carry-over effects due to unbalanced
representation of transitions and face identities (see Supplementary Table 2).

To evaluate the statistical significance of this effect, we modeled the stimulus transition
as a covariate in a general linear model analysis. Loading on this covariate indexes the
asymmetric carry-over effect of the transition, independent of other symmetric carry-over
or direct effects. A repeated-measures ANOVA for the single bias covariate with

component (P100, N170, P200, N250) as a factor showed a significant main effect of
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component [F(3,15) = 7.536, p = 0.003]. Follow-up one-sample t-tests across subjects
indicated this asymmetric bias is significant in the N170 [t(5) = 3.36, p = 0.02] and N250
[t(5) =2.65, p = 0.045] components (Figure 2.5C).

Thus, asymmetric bias effects also occur within the first several hundred milliseconds of
visual processing. Interestingly, in contrast to the N170 and N250 responses, the P200
showed no significant asymmetric bias. This suggests, regardless of how geometric and
non-geometric effects of similarity interact psychologically, the earliest neural stages
associated with these computations are temporally separated. The visible asymmetric bias
at the relatively early N170 response may be indicative that such bias effects need not
rely on higher-level conceptual processing, but may be extracted relatively rapidly and
early in the visual processing stream.

2.4.4 Direct Effects of Stimulus Identity on ERP Responses

Finally, we examined the “direct” effect of stimulus identity upon the ERP response.
Studies of “prototype” responses in fMRI to faces, for example, have reported that there
is a larger amplitude of neural response to distinct, as opposed to typical, stimuli (Loftler

et al., 2005).
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Figure 2.6: Direct effects of
stimulus identity

(a) Trials were grouped based upon
the identity along the morph
continuum shown. (b) Grand-
average waveforms (across all
significant sensors; Figure 2.2)
comparing each identity condition.
A significant main effect of identity
was observed, but no significant
interaction of identity and
component. Y-axis is aligned to
stimulus-onset. (c) Group-average
beta values collapsed across
component are shown. As there was
no significant main effect of
component, or interaction of
component with identity condition,
beta-values were mean-centered
within component for each subject,
averaged across component for each
subject, and then averaged across
subject for display. Error bars
correspond to between-subject SEM
of mean-centered, across-
component averages.



A group average of the stimulus identity conditions is presented in Figure 2.6B. Some
separation between the identities is visible in the P200 and N250 components, perhaps
consistent with a differential response to the extreme stimuli from the morph continuum
as compared to the center. As discussed previously, however, these effects may be
confounded by carry-over effects. For instance, a grand average waveform for the
“direct” effect of the 50% morph face is confounded by the fact that the 50% morph is,
on average, more often preceded by similar faces by virtue of its central location; and
thus more subject to adaptation. Similarly, a postulated differential response to the 50%
morph face compared to the extreme faces (a “direct” effect) might confound the non-
geometric bias effects without concurrent modeling.

To examine direct effects in an unbiased manner, we obtained the beta values associated
with the amplitude of the ERP response to each face identity, after accounting for the
adaptation and bias effects. A repeated-measures ANOVA was then performed with each
identity covariate (0%, 25%, 50%, 75%, 100% Face B identities) and component (P100,
N170, P200, N250) as factors. A significant main effect of identity was found [F(4, 20) =
5.444, p = 0.004], but the interaction of identity and component was nonsignificant [F(12,
60) = 1.400, p = 0.191], suggesting this main effect of identity did not differentially
modulate any component in particular. Figure 2.6C presents the average across subjects
and components of the response to each face identity. The pattern of responses does not

correspond readily to a simple model of prototype or geometric effects.
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2.5 Discussion

Psychological models of perceptual proximity, the subjective judgment of “likeness”
between stimuli, have historically drawn a distinction between two factors or processes:
representation of simple metric distance between stimuli, and stimulus-specific bias.
Quantified in models such as the ‘additive similarity and bias’ model (Holman, 1979;
Nosofsky, 1991), this two-part framework separating geometric and non-geometric
effects has guided our understanding of how the visual system represents variation
between stimuli.

What are the neural correlates of these processes? We examined this question using a
continuous carry-over design (Aguirre, 2007) in ERP. Previously used in fMRI,
continuous carry-over designs allow measurement of graded neural adaptation, and
therefore better characterization of the neural representation of perceptual similarity
space. Using this paradigm with a set of ordered, morphed faces in ERP, we tested a dual-
effects model of perceptual similarity against a temporal framework of early visual
evoked components previously associated with face processing.

Modeling transitions between stimulus presentations in terms of absolute metric distance
along our morphed face continuum, we found graded neural adaptation consistent with
metric stimulus similarity at a component between the N170 and N250 responses.
Modulation of the P200 was related to perceptual similarity, with greater positive
deflection for smaller perceptual distances (Figure 2.4). The temporal position of this

component suggests that computation of metric stimulus similarity begins within the first
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several hundred milliseconds of stimulus presentation, although after the earliest stages of
perceptual processing indexed by the P100 and N170 components. Adaptation of a
neuroimaging signal that is proportional to stimulus similarity can result from a cortical
region that codes stimulus identity by a population code (Aguirre, 2007; Drucker, Kerr, &
Aguirre, 2009). This suggests that, at the P200 stage, a neural population code for facial
identity is evoked that reflects geometric effects of similarity. It is also possible that
another neural mechanism apart from adaptation (e.g., a re-entrant masking effect;
Kotsoni, Csibra, Mareschal, & Johnson, 2007) is responsible for this parametric
modulation. In either case, these data are among the first to place a neural signature of
geometric similarity coding within a definite time window, arising as early as 200 ms
after stimulus presentation.

We also modeled the effects of asymmetric bias (Tversky, 1977; Op de Beeck et al.,
2003). Neural markers of such a non-geometric similarity effect were found for the N170
and N250 components (Figure 2.5). While both the N170 and N250 components show
sensitivity to asymmetric transitions positioned about the center of the stimulus space, the
P200 does not. Thus, not only have we found neural correlates of perceptual proximity
processing within relatively early stages of perceptual processing, but we also
demonstrate that the encoding of metric stimulus similarity and asymmetric bias are
temporally distinct.

Our model of non-geometric similarity effects is based upon the notion of a ‘prototype’

effect (Tversky, 1977; Op de Beeck et al., 2003). Two stimuli are perceived as more
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proximal when the more prototypical or average stimulus is presented following another
one less so, and less proximal in the reverse case. There are other non-geometric bias
effects that might be considered. In studies of magnitude estimation, for example, the
response to a stimulus tends to be larger when the preceding stimulus intensity was
greater. This “assimilation” effect is commonly seen for stimuli in which one end of the
continuum is “larger” (DeCarlo & Cross, 1990). The opposite, “contrast” effect is also
observed. A model for this directional bias in neuroimaging data is considered in Aguirre
(2007), and is orthogonal to the ‘prototype’ effect just discussed. While the ‘prototype’
model of bias is symmetric about the center of the stimulus space, directional bias is
inversely symmetric towards each extreme. Directional bias has been observed in
perceptual adaptation effects for face identity (Leopold, O'Toole, Vetter, & Blanz, 2001),
gender (Webster, Kaping, Mizokami, & Duhamel, 2004), and attractiveness (Rhodes,
Jeffery, Watson, Clifford, & Nakayama, 2003). We tested for directional bias effects in
our ERP study but found no significant effect (data not shown). This is not surprising as
our stimuli were a morph between two faces of equal distinctiveness, as opposed to the
stimuli of (e.g.) Leopold et al. (2001) in which one end of the continuum was a
distinctive face and the other a prototypical or average face.

A perceptual prototype may arise from long-term exposure to stimuli of a given class,
from the local context of a set of stimuli in an experiment, or both. Our study did not
distinguish between these two types of prototype. The center point of our stimulus

continuum may have achieved prototype status as it was a more “average” face in
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general, or because it was the central tendency of this particular stimulus set. These
possibilities might be distinguished through the use of an unbalanced face continuum in
which the “middle” face in the local context of the experimental set is not the most
average at the global level.

Related to this point, it is worth noting that while we observed neural prototype effects
for both the N170 and N250 components, it is possible that these distinct components are
related to different prototype effects. For the N170 in particular, we might expect that the
“prototype” effect reflects a local stimulus effect, driven by the experimental stimulus
space alone. Previous work has demonstrated a lack of adaptation in the N170 to within-
class features of faces, including eye-gaze direction (Schweinberger, Kloth, & Jenkins,
2007) and gender (Kloth, Schweinberger, & Kovacs, 2009). These findings suggest that
the N170 adapts in a broad categorical fashion to faces and not to within-category
features, such as global face distinctiveness. Taken together with the apparent role of the
N170 in structural encoding (Bentin et al., 1996; Rossion et al., 2000), we would suggest
that the “prototype” effect observed in the N170 might reflect a rapid, implicit extraction
of local central tendency (i.e., within the experimental stimulus space). In contrast, as the
N250 is thought to reflect access to stored face representations (Tanaka et al., 2000), it is
possible that the non-geometric effect observed in this component indexes transitions
about a stored, global face “prototype”. While these interpretations rely on the

characteristics of the underlying components, future experiments which dissociate local
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and global face prototypes in the manner described above could characterize putatively
separable non-geometric similarity effects in a component-independent manner.

Finally, a notable methodological feature of this study was the concurrent measurement
and separation of the direct effects of each stimulus from carry-over effects of adaptation
and asymmetric bias. Without explicit modeling, these effects are confounded, rendering
it unclear whether effects reflect perceptual proximity per se, or a combination of
adaptation and identity effects. This potential confound exists in several studies of face
representation. For example, Loffler et al. (2005) used a block design in fMRI to
demonstrate increasing BOLD signal in the fusiform face area (FFA) in response to
groups of faces of increasing ‘distinctiveness’. The authors define ‘distinctiveness’ as
distance along putatively orthogonal identity axes extending from a central ‘mean’ face.
This design focuses primarily on non-geometric prototype and identity effects. However,
their observed decrease in BOLD signal for face blocks more proximal to the mean could
represent neural adaptation indexing geometric effects of metric distance, or some
combination of geometric and non-geometric effects.

Likewise, in an fMRI study using a similar facial identity morph continuum to ours, Jiang
et al. (2006) reported non-linear BOLD adaptation in response to increasing metric
distance. The authors interpreted this finding as suggesting that neural adaptation would
asymptote for greater metric stimulus distances, something we do not observe in our data.
In their experimental design, Jiang et al.(2006) use a traditional paired-presentation

paradigm with the adapting stimuli only located at the extreme of the morph continuum,
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and test stimuli at A30, A60 and A90 metric distances. It is possible with this design that
the unbalanced frequency of stimulus presentation introduces a non-geometric similarity
effect such as the ‘relative prominence’ bias presented by Johannesson (2000), or an
asymmetry driven by exposure frequency as presented by Polk et al. (2002). Thus while
Jiang et al. (2006) suggest their data reflects non-linear (asymptotic) encoding of metric
linear distance, our findings suggest their data could reflect a combination of geometric
effects and non-geometric effects.

2.6 Conclusions

Our results provide evidence for the dissociation in neural coding of non-geometric
‘prototype’ effects from the geometric effects of stimulus similarity, supporting
psychological models of the two elements as separate factors in the perception of
proximity. Using a continuous carry-over design in ERP, in conjunction with a principled
GLM approach to distinguish geometric and non-geometric processing, we find that these
different effects occur at discrete temporal stages of face processing. These findings
should expand our understanding of neural similarity, offer new avenues for exploring
global and local prototype effects, and encourage more careful consideration of the

complexity of stimulus space representations in the brain.
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3 Confounding of Norm-Based and Adaptation Effects in Brain
Responses

3.1 Abstract

Separate neuroscience experiments have examined two properties of neural coding for
perceptual stimuli. Adaptation studies seek a graded recovery from neural adaptation with
ever greater dissimilarity between pairs of stimuli. Studies of prototype effects test for a
larger absolute response to a stimulus which is distant from the center of a stimulus
space. While intellectually distinct, these effects are confounded in measurement in
standard neuroscience paradigms and can be mistaken for one another. Stimuli which are
more distinctive are less subject to adaptation from perceptual neighbors. Therefore, a
putative prototype effect may simply result from greater adaptation of prototypical
stimuli by other stimuli in the experiment. Conversely, stimulus pairs which are the most
perceptually distant from one another, and therefore expected to show the greatest
recovery from adaptation, disproportionately draw from the extremes of the stimulus
space. Thus, a putative neural similarity effect may be created by an underlying prototype
representation. We simulate BOLD fMRI results driven by each possible effect and
demonstrate spurious results in support of the complementary effect. We then present an
example fMRI experiment that demonstrates the confound and how it may be minimized.
Finally, we discuss the implications of this intrinsic confound for studies of perceptual

representation, neural coding, and category learning.
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3.2 Introduction

A common target of neuroscience studies is the form of neural coding used to represent
variation in stimulus properties. Very often, such studies use stimuli with linear variation
along a single dimension. Examples of these “morphed” stimuli include facial image
morphs of identity (Freeman et al., 2010, Jiang et al., 2006, Kahn et al., 2010) or
emotional expression (Said et al., 2010a), mathematically defined abstract shapes (Panis
et al., 2010, De Baene & Vogels, 2010), or auditory cues (Latinus et al., 2011).

Within the broad category of distributed neural encoding models (Barlow, 1972,
Edelman, 1998), perceptual variation can be expected to have several neural correlates.
Norm-based encoding models (Leopold et al., 2001, Rhodes and Jeffery, 2006) postulate
that variation relative to a reference point in a stimulus space results in differential
absolute responses to stimuli. These differences may take the form of a “prototype” effect
(Valentine, 1991): a reduction in the neural response to a centrally-oriented prototype
relative to those stimuli that are more extremely positioned. However, other distributed
encoding models are possible, including those in which a stimulus space is represented
using tuning functions that do not depend upon a particular point of space as a reference.
In such a case, as in all distributed encoding models, perceptual variation could be
indexed by the overlap in neural populations constituting two distributed representations.
One manifestation of this form of neural representation is an “adaptation” eftect (Grill-
Spector & Malach, 2001; Henson & Rugg, 2003): a reduction in the neural response to a

stimulus resulting from recent presentation of an identical or related stimulus. As defined,
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these two effects of encoding are intellectually distinct and based upon related and well-
defined schema for neural representation.

Testing for these two effects of perceptual variation is possible via neuroimaging.
Prototype effects, hypothesized to manifest as a larger bulk neural response to extreme
stimuli, have been observed using functional magnetic resonance imaging (fMRI) in
response to faces (Freeman et al., 2010; Loffler et al., 2005; Said et al., 2010a), face
profile silhouettes (Davidenko et al., 2011) and abstract shapes (Panis et al., 2010).
Similar findings have been demonstrated in monkey electrophysiological recordings
(Leopold et al., 2006). Adaptation effects, a form of “carry-over” effect of one stimulus
upon another (Aguirre, 2007), manifest as an increasing reduction in neural response for
the latter stimulus in a sequentially-presented pair as a function of the pair’s dissimilarity
in fMRI (Drucker et al., 2009, Jiang et al., 2006) and ERP (Kahn et al., 2010). Graded
neural adaptation related to stimulus similarity has been demonstrated in MEG (Furl et
al., 2007) and in neuronal firing in monkey electrophysiology studies (De Baene &
Vogels, 2010).

Despite being coherent and distinct predictions of neural models, we show here that these
effects are confounded in measurement, and thus can be mistaken for one another.
Importantly, while counter-balance (Aguirre et al., 2011) in the order of stimulus
presentation is ultimately necessary to address this confound, it is not sufficient to

remove it.
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3.3 An Example Stimulus Space

Consider a simple experiment that presents stimuli in a counter-balanced order from a set
of five, evenly spaced morphed faces (Figure 3.1A; morphs created using Photoshop
CS5.5, Adobe; & JPsychoMorph). We may then ask if different face morphs have

systematically different relationships to the set of stimuli as a whole.
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Figure 3.1: Consequences of a
counterbalanced experimental design
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Faces from the center of the space will, on average, be preceded and followed by faces
which are more similar: on average, there will be a transition of 1.2 positions within the
stimulus space from a center stimulus to the prior or next stimulus in the sequence
(Figure 3.1A). In contrast, faces from the ends of the stimulus space will have transition
sizes of 2.0 positions from sequentially adjacent trials on average. Thus, the position of
the stimulus within the space is related to the size of transitions in which it is involved. If
different neural responses attended stimulus transitions of different sizes, this relationship
would produce different average neural amplitudes to the different faces, even if the
neural responses to the faces themselves were identical. This is a mechanism by which
neural adaptation to stimulus similarity alone might be mistaken for a prototype effect.
This can be appreciated in the complementary analysis as well (Figure 3.1B). Consider
the sizes of transitions that are available between the faces in the experiment. Only
stimuli from the ends of the space can be involved in the largest transitions. Conversely,
small transitions disproportionately involve the faces from the center of the space. If the
faces from the ends of the stimulus space evoked larger neural responses than faces from
the center, this relationship would produce different average neural responses to the
transitions of different sizes, even if there was no effect of transition size itself upon
neural response. This is a mechanism by which prototype effects alone might be
mistaken for neural adaptation to stimulus similarity.

We note that the first of these concerns has been recognized previously (Panis et al.,

2010; Davidenko et al., 2011). We expand upon these previous observations by
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highlighting the reciprocal nature of this confound (which affects more than just studies
of norm-based encoding), describing steps to mitigate the problem, and illustrating the
explanatory potential when this complexity is embraced by experimental designs rather
than eliminated.

3.4 A Simulated Experiment

We conducted a simulation of an experiment that uses a linear morph space. Following
the parameters of a recent study of prototype representation (Panis et al., 2010), we
created a sequence for presentation of five stimuli (along with blank trials) using
OptSeq2 (NMR Center; Massachusetts General Hospital, Boston, MA).! An inter-trial-
interval of 2000 msecs was assumed.

We first simulated the case in which a neural population has norm-based (prototype)
coding for the stimuli, but no neural adaptation takes place. Figure 3.2A (top row) shows
the “carry-over matrix” (Aguirre, 2007) which characterizes the neural response to a
given stimulus as a function of the prior stimulus. As can be seen, the modeled neural
response is entirely determined by the identity of the current stimulus (“direct” effects).
The particular amplitudes of response used were taken from the measure of a behavioral

prototype effect (Upper left panel of Figure 4 of Panis et al., 2010).

' While the optseq program offers “preoptimized first-order counterbalancing”, it does
not actually provide perfect counter-balance of the stimuli (Aguirre et al., 2011). This has
no consequence for the didactic purpose of our simulation, but would complicate

attempts to remedy the confound within a linear model.
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a. Neural response b. Simulated BOLD response and model fit c. Spurious effects
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