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ABSTRACT 

CONTROLLING THERMOGENESIS: UNDERSTANDING THE ROLE 

OF PRDM16 IN THE DEVELOPMENT AND FUNCTION OF BROWN 

FAT 

Matthew J. Harms 

Patrick Seale, P.hD. 

The alarming rise in the incidence of obesity found throughout the world has 

precipitated a need to look for novel methods to increase energy expenditure to counter 

weight gain. Recently it was discovered that adult humans possess a substantial mass 

of brown adipose tissue (BAT), a tissue that consumes stored lipid to produce heat. 

Although the primary physiologic role for BAT is to protect mammals from the cold, it is 

currently thought that enhancing BAT mass or activating BAT in humans is a novel way 

to decrease adiposity. However, before BAT can be effectively utilized for therapeutic 

purposes a better understanding of the transcriptional regulation underlying BAT function 

is required. Here, we investigated the role of the transcription factor PRDM16 in BAT. 

We found that PRDM16 is not required for BAT development, however it is required to 

maintain BAT identity in adult mice. The loss of PRDM16 in adult mice led to a loss of 

BAT functionality and an inability to produce heat. We found that PRDM16s ability to 

drive a thermogenic program is due to its recruitment of Med1/the Mediator Complex to 

BAT-selective genes. Without PRDM16 in BAT a loss of higher order chromatin structure 

and a corresponding loss of transcription takes place at genes required for BAT identity 

and function.  
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 Sedentary living and calorie dense food has precipitated a dramatic rise in 

obesity throughout the developed world.  This is particularly alarming due to the vast 

array of associated diseases, including type 2 diabetes, heart disease, insulin 

resistance, hyperglycemia, dyslipidemia, hypertension and many types of cancer1,2.  The 

result is an expanding population of chronically sick people, staggering health care 

expenses and a prediction that for the first time, the current generation will have a 

shorter life span than previous generations3-5. There is thus an urgent need for new 

weight loss-treatments. Brown adipose tissue (BAT) is a key site of heat production 

(thermogenesis) in mammals that has been considered for many decades as an 

attractive target to promote weight loss.  The heat produced by BAT is essential for the 

survival of small mammals in cold environments and for arousal in hibernators. Brown 

adipocytes in BAT are packed with mitochondria that contain Uncoupling Protein-1 

(Ucp1). Ucp1, when activated, short circuits the electrochemical gradient that drives ATP 

synthesis and thereby stimulates respiratory chain activity.  Heat is generated from the 

combustion of available substrates6 and is distributed to the rest of the body via the 

circulation. 

 Clusters of Ucp1-expressing adipocytes with thermogenic capacity also develop 

in white adipose tissue (WAT) in response to various stimuli7. These have been named 

beige, “brite” (brown in white), iBAT (induced BAT), recruitable BAT, and wBAT (white 

adipose BAT). Like adipocytes in BAT, the beige cells in murine WAT are defined by 
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their multilocular lipid droplet morphology, high mitochondrial content, and expression of 

a core set of brown vs. white fat-specific genes (e.g. Ucp1, Cidea, Pgc-1α).  Despite a 

common ability to undergo thermogenesis, brown and beige cells have many 

distinguishing characteristics and should be considered as distinct cell types (Figure 1).  

 

Figure 1.  Differences between Brown and Beige Adipocytes 

Brown adipocytes express high levels of Ucp1 under basal conditions, whereas clusters of beige adipocytes can only be 
easily recognized in WAT after cold/β-adrenergic stimulation. Enriched markers of brown versus beige adipocytes have 
recently been identified, including: brown markers, Zic1, Lhx88,9, Eva110, Epsti111; and beige markers, CD137, TMEM2610, 
Tbx18,10, Cited111, Shox212.  Among the activators that have been studied in both compartments, Irisin is the only one that 
has selective actions in beige but not brown adipocytes. 

 

 Firstly, beige cells, at least those in the mouse subcutaneous depot, do not 

derive from the same embryonic (Myf5-expressing [see later]) precursors that give rise 

to brown adipocytes13.   Secondly, a number of quantitative trait loci are associated with 

the induced development of beige but not brown adipocytes14, suggesting that these cell 

types are differentially regulated.  Thirdly, brown and beige adipocytes express distinct 

and distinguishing gene signatures10,11.  Finally, a striking difference is that brown 

adipocytes express high levels of Ucp1 and other thermogenic genes under basal 

(unstimulated) conditions, whereas beige adipocytes only express these genes in 

response to activators, like β-adrenergic receptor or Pparγ agonists8,15.  Importantly, this 

trait is fat cell-autonomous because brown fat cells turn on high levels of thermogenic 
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genes (e.g. Ucp1) during adipogenesis in culture from preadipocytes without addition of 

classical activators.  

 An obvious question is whether brown and beige fat cells have different 

functions.  The answer to this is still unknown and has not been well studied.   However, 

a recent study suggests that fully stimulated brown and beige adipocytes contain 

comparable levels of Ucp1, suggesting that their thermogenic capacities are similar10.  

Based on this, the name “beige” might be misleading and is more applicable to describe 

the tissue that has undergone “browning” rather than the Ucp1+ adipocytes themselves.  

Aside from thermogenesis, it seems highly likely that beige and brown adipocytes have 

other cell type-specific actions that have yet to be studied. For example, beige 

adipocytes may secrete certain factors that affect WAT function and/or systemic 

metabolism.   

 The biomedical interest in brown and beige adipocytes is centered on the 

capacity of these cell types to counteract metabolic disease, including obesity and type 2 

diabetes.  Indeed, increased brown and/or beige adipose activity is linked to obesity 

resistance in many mouse models (Table 1).  In humans, it was assumed for many years 

that there was too little brown fat in adults to affect body weight.  However, in 2009, 

imaging studies revealed the presence of substantial deposits of Ucp1-expressing 

adipocytes whose mass and/or activity are lower in obese and older subjects16-20.  The 

key question now is whether reduced thermogenic activity in fat cells is a cause or 

consequence of weight gain in people.  Regardless of its “natural” role, increasing 

brown/beige fat activity through drugs other methods holds tremendous promise for the 

treatment of metabolic disease. 
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Mitochondrial uncoupling has already been tried as a weight loss therapy. The chemical 

uncoupler, 2, 4-Dinitrophenol (DNP) allows protons to leak across the mitochondrial 

membrane, mimicking the effect of activated Ucp121.  In the 1930s, DNP was widely 

used as an effective diet pill to treat obesity, providing proof-of-concept for mitochondrial 

uncoupling as an approach for weight loss.  However, at high doses (variable in different 

people), unregulated respiratory uncoupling in all cells causes dangerous side-effects 

including hyperthermia and death.   Thus, the goal is to develop strategies that enhance 

respiratory uncoupling selectively in adipose tissue by exploiting the mechanisms that 

naturally evolved to do this in brown and/or beige fat cells. 

Figure 2. Genetic Models Resistant to Weight Gain Through Enhanced Brown and 
Beige Fat Development 

Gene 
Induce 
Beige 

Increase 
Brown 

Gain of function models 

Cox222 X  
Cox2 over-expressing mice have increased beige fat and are resistant to 
weight gain, demonstrating the role of prostaglandins in the recruitment of 
beige fat 

FoxC223-25 X X 
Overexpression of FoxC2 in adipose increases the expression of the R1α 
regulatory subunit of PKA, making the cells more sensitive to catecholamines 

Prdm1626 X  Fat-selective Prdm16 transgenic mice have increased beige fat.   

Pten27 X X Increases in Pten inhibits PI3K, which drives a thermogenic program 

Ucp128,29 X  
Transgenic expression of Ucp1 increases thermogenesis in WAT and 
prevents weight gain 

Loss of function models 

4E-BP130 X  
4E-BP1 KO mice have an increased metabolic rate,  an induction of 
thermogenic genes in WAT depots, and an increases in eIF4F 
phosphorylation  

4E-BP231  X 
Treatment with a antisense oligo. caused weight loss and an increase of the 
β3-adrenergic receptor in both WAT and BAT.  BAT showed a PGC-1α 
independent increase in Ucp1 

ActRIIB32,33  X 
Neutralizing antibodies show an increase in BAT mass without affecting 
WAT.  Loss of ActRIIB activates Smad3 signaling to  increase thermogenic 
genes 

Aldh1a134 X  
KO results in a buildup of Retinaldehyde. This activated the retinoic acid 
receptor – which recruited PGC-1α to the Ucp1 promoter  

Arrdc335 X X 
Arrdc3 interacts directly with β-adrenergic receptors.  Loss of Arrdc3 
sensitized adipocytes to catecholamines and thus increased thermogenic 
programs  in BAT and WAT  

ATG736 X X 
BAT from KO mice showed an increase in thermogenic proteins, and WAT 
had an increase in thermogenic signatures.  Studies demonstrate role of 
autophagy in adipose development 

ATF437 X X 
WAT showed an increase of PGC-1α and Ucp2, while BAT was enriched for 
Ucp1 and Ucp3 

Bace138  X An increase in Ucp1 in BAT and Ucp2/3 in skeletal muscle 

Cidea39  X 
KO mice are lean, have increased oxygen consumption, and defend core 
temperature against a cold challenge.  Direct interactions with Ucp1 could 
explain Cidea’s repressive effect 

Cnr140  X  
Mice are lean.  In vitro, Cannaboid receptor type 1m antagonists are able to 
induce Ucp1 transcription in white adipocytes 
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Crfr241  X An increase in glucose tolerance and a further increase of Ucp1 in BAT 

Ffar242   X Mice resist weight gain and have increased core temperature 

FoxO143  X 
Adipose specific dominant negative mice had increased oxygen consumption 
and a BAT specific increase in thermogenesis 

Fsp2744 X  
Mice have increased BAT specific genes and mitochondrial in WAT.  The 
mechanism is thought to involve a loss of pRb and RIP140. 

Ghsr45  X Mice are protected from the age-associated decline of thermogenesis 

Grk246 X  
Knockout mice have an increased core temperature and thermogenic 
program in BAT and WAT. Interestingly, the phenotype appears to be age 
related.  

Id147  X 
Increased oxygen consumption and an increase in thermogenic genes in 
BAT 

Ikbke48  X  WAT has increased Ucp1 transcript and protein 

Lipe49 X  The Increase in Ucp1 is attributed to a decrease in RIP140 and pRb  

LPR650 X  
KO animals gain less weight and a diminished mTORC1 activity in BAT 
causes an increase in thermogenic proteins 

LXRα51 X  Recruitment of RIP140 to displace PPARγ/PGC-1α 

Mstn52  X  Increase of thermogenic program in WAT 

Nprc53  
 

X 
X 

Loss of the natriuretic peptide (NP) clearance receptor causes increased 
circulating NPs which increase thermogenic activity 

Oprd154   X Mice are resistant to weight gain and have enhanced thermogenesis in BAT 

p10755 X  Loss of p107 causes a loss of pRb and increased browning of WAT.   

Pctp56  X BAT showed enlarged mitochondrial and an increase thermogenic genes  

pRb57 X  pRB binds to and represses the PGC-1a promoter. 

Pref-158  X 
BAT has increased PGC-1α and Ucp1.  C/EBPδ binds and activates the Pref-
1 promoter 

Prkar2b59 X  
The loss causes a compensatory increase in RIα, which binds cAMP with 
higher affinity, causing increased basal PKA activity –increasing 
thermogenesis 

Prkcb60 
 

X  
WAT had increased β1 and β3 adrenergic receptors.  This resulted in a 
p38/MAPK mediated increase of PGC-1α and Ucp1 

Prlr61 X  
Prolactin receptor KO mice have increased thermogenic genes and altered 
pRb/Foxc2 levels in WAT. This indicates a novel paracrine or endocrine role 
of prolactin 

Rip14062-64 X  
RIP140 directly interacts with PGC-1a to inhibit its transcriptional activity ; 
Recruits DNMTs and HMTs to silence Ucp1 

Scd165  X X 
Skin-specific KO mice result in increased thermogenesis in BAT and WAT, 
indicating cross talk between the different tissues  

Sfrp566 X  
KO mice are resistant to weight gain and isolated KO adipocytes have 
increased oxidative respiration 

Smad367 X  
Smad3 represses PGC-1α expression.  Loss of Smad3 induces transcripts 
that correspond to increased thermogenesis   

Them152  X 
An increase in thermogenic genes in brown fat and a decrease in markers of 
inflammation in white adipose 

Tif268  X  
Tif2 competes with the activator Src2 for PGC-1a binding.  Tif2 binding 
prevents PGC-1α from interacting with PPARγ 

Tnrf169  X 
Knockout of tumor necrosis factor-alpha receptor 1  results in increased Ucp1 
in BAT and Ucp3 in muscle resulting in increased O2 consumption 

Trpv470 X  
KO mice are resistant to weight gain and have increased thermogenic gene 
expression in WAT, mediated by a loss of ERK1/2 effects on Pgc-1α 

Twist-171  X Twist-1 binds to and inhibits PGC-1α activity at target genes. 

Vegfa72 X  
An induction of the thermogenic program in WAT with associated resistance 
to weight gain 

Vgf73  X 
Knockout of secreted protein VGF caused increased Ucp1 expression in 
BAT.  Unclear if the effect is cell autonomous. 
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The Development of Brown/Beige Adipocytes  
 

Brown adipocytes 

BAT forms during embryonic development, before other fat depots, and is assumed to 

contain a uniform population of adipocytes.  The major BAT depots in rodents are in the 

interscapular region (interscapular, axillary and cervical pads), embedded in and around 

deep back muscles. An interscapular BAT depot has also been noted in human infants, 

which regresses and is absent in adults12,74.  Most brown fat cells originate from 

precursor cells in the embryonic mesoderm that also give rise to skeletal muscle cells 

and a subpopulation of white adipocytes13,75,76.  These precursors transiently express 

Myf5 and Pax7, two genes that were previously thought to selectively mark skeletal 

myogenic cells in the mesoderm (Figure 2A)13,76.  Consistent with a developmental 

relationship between brown fat and muscle, brown fat precursor cells express a muscle-

like gene signature77, and brown fat and muscle have related mitochondrial proteomes78. 

However, whether Myf5+ cells are multipotent or whether there are separate pools of 

Myf5+ precursors that contribute to muscle, brown fat and white fat remains to be tested.   

Beige Adipocytes 

 The embryonic origin and cell hierarchy of beige adipocytes is less clear. Beige 

and brown adipocytes likely come from distinct cell lineages, given that beige cells, at 

least in the subcutaneous  depot, do not have a history of Myf5 expression13,75.  In 

formed WAT, an important question is whether beige adipocytes come from white 

adipocytes via “transdifferentiation” or arise through de novo differentiation/maturation of 

precursors.  Over a decade ago, Himms-Hagen et al. found that most beige adipocytes 

arise from pre-existing (non-dividing) cells that they presumed were mature adipocytes79.  
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Since then, Cinti and others have provided substantial evidence in support of the idea 

that large unilocular “white” adipocytes transform into beige adipocytes in response to 

cold/β3-adrenergic agonists7.    

 A new study from the Scherer lab used a pulse-chase fate-mapping technique in 

mice to revisit this issue.    Wang et al. pulse labeled the mature adipocytes in WAT with 

LacZ expression80.  This labeling is indelible and heritable such that LacZ is 

constitutively expressed in the pulsed adipocytes and any of their descendents.  After 

being “pulsed”, the mice were exposed to cold or treated with β3-adrenergic agonists to 

induce the formation of beige adipocytes.  The results were clear- the large majority of 

newly acquired Ucp1+ adipocytes in the subcutaneous inguinal depot are not marked by 

LacZ.  This proves that most, if not all, beige adipocytes, at least in this subcutaneous 

depot, arise from a precursor population rather than from pre-existing adipocytes (Figure 

2B).  

 The thermogenic profile of beige adipocytes is reversible.   Beige adipocytes 

acquired in WAT during cold-exposure lose Ucp1 and are retained after mice are moved 

back to warmer conditions (Figure 2B)80,81.  When these animals are re-exposed to cold, 

the same (marked) cells again induce Ucp181.  Interestingly though, the cells marked by 

prior Ucp1 expression were not the only source of beige adipocytes during the second 

round of cold exposure.  This suggests that beige adipocytes are retained, and may 

function like white fat cells, for a certain period of time in animals that were previously 

cold.  These beige adipocytes are presumably depleted via the normal mechanisms that 

control tissue turnover.  
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 Another important question is whether beige and white adipocytes arise from 

different types of precursors. Petrovic et al., found that a subset of adipocytes 

differentiated in vitro from the stromal vascular fraction (SVF, an enriched source of 

preadipocytes) of WAT activate Ucp1 expression in response to treatment with Pparγ 

activators8; this suggests that some but not all preadipose cells are thermogenically 

competent. Recently, the Spiegelman lab used limited dilution to clone preadipocyte cell 

lines from the stromal vascular fraction of subcutaneous (inguinal) WAT10.  Through 

global gene profiling and differentiation analyses, two types of preadipocytes were 

identified - white and beige.  Both types of committed precursors differentiate into lipid-

laden adipocytes that lack thermogenic characteristics under standard adipogenic 

conditions.  However, only beige cells induce a thermogenic gene program when treated 

with β-adrenergic agonists.  Notably, Cd137 and Tmem26 were identified as cell surface 

markers for native beige precursors, thus enabling the direct purification of these cells 

from fat tissues. In considering the studies discussed above, the data suggest that cold 

(via β-adrenergic agonists) triggers the differentiation of Cd137+:Tmem26+ precursor 

cells into Ucp1+ beige adipocytes and that beige cells require constant stimulation to 

maintain their thermogenic programming.  In light of these recent studies, there does not 

seem to be much/any direct transformation of white into beige adipocytes, at least under 

physiological conditions.   
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Figure 3.  Transcriptional Regulation of Brown and Beige Adipocyte development 

(A) Brown adipocytes are derived from a Myf5-expressing progenitor population.  Ebf2 cooperates with Pparγ to promote 

the expression of Prdm16, which drives a brown fat cell fate.  Thermogenesis in mature brown adipocytes is activated by 

norepinephrine (NE) released from sympathetic neurons.  NE signals through β-adrenoreceptors to increase the 

expression and activity of Pgc-1α, a transcriptional co-activator that coordinates gene programming in response to 

activation.  (B) In inguinal fat, β-adrenergic stimulation predominately triggers de novo differentiation of precursor cells 

(large arrow).  We leave open the possibility that under some conditions, mature white fat cells can transdifferentiate into 

beige cells (small dashed arrow).  In epididymal WAT, caloric excess causes bi-potent progenitors to differentiate into 

white adipocytes, while β-adrenergic activators stimulate beige adipocyte development.  TZD agonists of Pparγ promote 

beiging by both increasing the stability of Prdm16, and through the Sirt1-dependent deacetylation of Pparγ, which recruits 

Prdm16 to Pparγ target genes.  β-adrenergic signaling drives the expression and activity of Pgc-1α in beige adipocytes.  

Pgc-1α is targeted by numerous repressors to block beige adipocyte development. 
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Beige adipocytes are most abundant in the inguinal WAT, a major subcutaneous 

depot in rodents7. However, Ucp1-expressing adipocytes are evident in most (if not all) 

WAT depots in response to cold exposure7,79,82. In peri-gonadal (visceral) fat of male 

mice, beige adipocytes develop from a population of precursors that also differentiates 

into white adipocytes (Figure 2B)83. These bi-potent white/beige precursors express 

Platelet-derived growth factor receptor-α (Pdgfrα) and are closely associated with blood 

vessels.  Upon treatment of mice with β3-adrenergic agonists, these precursor cells 

proliferate, then lose Pdgfrα expression and differentiate into Ucp1+ adipocytes.  

Conversely, high fat diet stimulates the differentiation of Pdgfrα+ cells into white 

adipocytes83.  This is consistent with the finding that most/all white adipocytes are 

descendent from Pdgfrα-expressing cells84. Importantly, cell culture analyses shows that 

single Pdgfrα+ cells give rise to both Ucp1- and Ucp1+ (beige) adipocytes.  

 In the mature adipocyte tracing studies of Wang et al. (discussed above), very 

little beige fat recruitment but a surprising amount of white adipogenesis was detected in 

the perigonadal WAT of mice exposed to cold for 1-3 days or treated with β-agonist for 7 

days80.  Why new white fat cells develop during cold exposure is unclear. It is also 

surprising that so few Ucp1+ cells were detected.  Perhaps the exposure was too short 

to elicit a full beige recruitment in the newly developed adipocytes?  It would be 

interesting to examine the effect of chronic cold in these mice, since this is known to 

extensively brown the WAT depots.  

 The prevalence of beige adipocytes within different human WAT depots has not 

been carefully evaluated.  However, it is known that human WAT contains precursor 

cells that are capable of expressing Ucp1 and other brown/beige characteristics, 

particularly in response to Pparγ activation (see section on Pparγ below)85.  Additionally, 
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it was (and still is) unclear whether the deposits of Ucp1-expressing adipocytes identified 

by Fluorodeoxyglucose - Positron Emission Topography (FDG-PET) in adult humans are 

analogous to beige or brown fat.  Wu et al. and Sharp et al., reported that 

supraclavicular tissue, the largest FDG-PET+ depot, expresses selective markers of 

rodent beige versus brown fat cells 10,11.  By contrast, Jesperson et al., found that tissue 

and in vitro differentiated adipocytes from this depot expresses both brown- and beige-

specific markers9.  A different depot in the neck region was shown to possess the 

molecular characteristics of murine brown fat86.  Typing these depots as “brown” or 

“beige” based on the expression levels of a few mouse marker genes that have no 

known function(s) has not been conclusive thus far.  Functional marker genes or assays 

are needed to better categorize the different human (as well as mouse) depots/cell 

types.  The field must continue to study the biology and therapeutic potential of both the 

classic/developmental BAT and (inducible) beige fat. 

 

Developmental regulation of brown and beige adipocytes by Prdm16 
 

 Prdm16 (PRDI-BF1 and RIZ homology domain containing protein-16) is a large 

zinc-finger containing transcriptional factor that is expressed at high levels in murine 

BAT relative to visceral WAT87. Prdm16 expression is also substantially enriched in 

human “BAT” relative to adjacent subcutaneous WAT20,88. Ectopic Prdm16 expression 

converts myoblasts and white fat precursors into thermogenic, Ucp1-containing 

adipocytes.  Mechanistic studies suggest that Prdm16 acts primarily through binding to, 

and modulating the activity of, other transcriptional factors, including c/EBPβ, Pparγ, 

Pparα and Pgc-1α13,87,89,90. Knockdown of Prdm16 ablates the thermogenic 
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characteristics of brown fat cells while also causing an increase in the expression of 

white fat- and muscle-specific genes.  Together, these studies have strongly suggested 

that Prdm16 is a key driver of brown fat cell fate.   

 The importance of Prdm16 in brown fat cell differentiation prompted us to 

examine whether Prdm16 also played a role in the development of beige adipocytes.  

Upon analyzing various murine WAT depots, we noted that Prdm16 was expressed at 

higher levels in the depots that are most prone to beiging, especially the inguinal WAT26.  

Importantly, reduction of Prdm16 blocks the induction of a thermogenic program in 

cultured subcutaneous adipocytes and decreases the recruitment of beige adipocytes in 

WAT in response to β-adrenergic or Pparγ agonists26,91. Conversely, transgenic 

expression of Prdm16 in adipose tissues of mice stimulates beige adipocyte 

development to counteract high fat diet-induced weight gain and improve glucose 

tolerance26.   

 Several factors have been shown to regulate brown/beige adipocyte 

differentiation by modulating Prdm16 expression/activity.  Notable among these is Bone 

morphogenic protein-7 (Bmp7), an essential signal for brown fat development, which 

increases Prdm16 mRNA levels in brown and white fat precursor cells92-94.  Additionally, 

thiazoledinediones (TZDs), which agonize Pparγ, induce thermogenic gene expression 

in fat cells through effects on Prdm16 (see later).  Interestingly, the muscle-enriched 

microRNA, miR-133 directly targets and reduces Prdm16 levels to block both brown and 

beige adipose development95-46.  Notably, cold-exposure suppresses miR-133 

expression in fat cells, which leads to increased levels of Prdm16 and downstream 

thermogenic target genes95.  Mice lacking miR-133 express higher levels of Prdm16 in 

WAT and develop more beige adipocytes96. Intriguingly, miR-133 is also present at high 
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levels in adult muscle stem cells where it suppresses Prdm16 expression97. Reduction of 

miR-133 in regenerating muscle causes the ectopic development of brown adipocytes 

and an associated increase in energy expenditure.  

 

Role of brown/beige fat in regulating weight and metabolism 
 

 BAT has long been viewed as a critical tissue for defending body temperature in 

response to cold. In 1979, Rothwell and Stock first reported that BAT was also activated 

in rodents when they overeat as a mechanism to preserve energy balance and limit 

weight gain- so called diet-induced thermogenesis (DIT)98. Consistent with this, mice 

genetically engineered to have less BAT gain more weight than control animals99.  

However, for many years it was unclear why Ucp1-deficient mice, which are cold 

intolerant (and thus have defective BAT), resisted rather than developed obesity100.   

 An important study by the Cannon and Nedergaard group in 2009 revealed that 

Ucp1-deficient mice gain more weight than wildtype controls, but only when they are 

housed under thermoneutral (28-30ºC) conditions101.  At room temperature (20-22ºC), 

mice are cold and must therefore expend extra energy to defend their body temperature.  

Ucp1-deficient mice, which can’t use BAT, activate alternative thermogenic 

mechanisms102,103.  This is thought to conceal the effect of brown fat/Ucp1 on energy 

balance. Consistent with this, old Ucp1-deficient animals, that are larger and less cold-

sensitive than younger mice, become obese even at ambient temperature104.  The 

dramatic impact of temperature on physiology has been overlooked by much of the 

mouse/rodent research community.  In the area of metabolism, cold stress and its 

effects have undoubtedly confounded many studies.  Since people tend to live at 
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thermoneutrality with the aid of clothing, heating, etc., a compelling argument could be 

made that all/most metabolic studies in mice should be conducted under thermoneutral 

conditions.   

 The obesogenic effect of Ucp1-deficiency in warm mice indicates that BAT/beige 

fat activity can affect energy balance, but the magnitude (and significance) of this effect 

in free-living mice or humans is uncertain.  It should also be noted that previous studies 

in rats housed at thermoneutrality failed to find any significant contribution of BAT activity 

to diet-induced thermogenesis105.  Moreover, Kozak and colleagues did not observe 

changes in adiposity in their studies of Ucp1-knockout animals when housed under 

varying temperature conditions106. Finally, increases in BAT/Ucp1 activity in response to 

high fat feeding are not consistently observed107. These divergent findings may provide 

an opportunity to identify modifying factors that affect BAT/Ucp1 activity and energy 

balance.  Are there specific dietary components that are needed to recruit BAT 

efficiently?  What are the genetic/strain-specific effects?  Does the microbiome or other 

environmental factors in different vivariums play a role?   

 Regardless of whether BAT plays a major physiological role in body weight 

regulation in mice or humans, there is no question that expanding BAT/beige fat activity 

in mice, through genetic manipulation, drugs, or transplantation suppresses metabolic 

disease (Table 2 and 26,28,108,109-112)  This implies that counter-regulatory mechanisms 

(e.g. increased food intake), which might have been predicted to offset the effects of 

expanded BAT activity to preserve energy balance, are not fully effective in mice.  

Notably, in some cases, the beiging of WAT and a highly correlated anti-obesity effect 

happens without evidence of increased BAT function.  For example, the hormone, Irisin 

(see below) raises energy expenditure via selective actions in beige adipocytes108.  
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Similarly, transgenic expression of Prdm16 in all fat tissues promotes beiging of WAT 

and resistance to obesity without increasing BAT mass or Ucp1 mRNA levels26,28.  

Finally, transgenic expression of Ucp1 in adipocytes suppresses obesity in spite of a 

reduction in BAT mass28.  These results raise an obvious question - do beige adipocytes 

play a more important physiological role in fighting obesity?  This seems unlikely, given 

that high fat diet generally decreases the levels of thermogenic genes in WAT, 

coincident with increases in WAT mass107.    

 Mice with increased brown and/or beige fat activity resist weight gain, but also 

display improvements in systemic metabolism, including improved glucose tolerance and 

increased insulin sensitivity.  Along these lines, activated brown fat takes up and 

metabolizes large quantities of lipid from the bloodstream113, which has beneficial effects 

on metabolism. In models where beige fat appears to be selectively increased, such as 

Prdm16 fat transgenics26 and Irisin-treated animals108, the improvement in glucose 

tolerance seems disproportional to the modest effects on body weight.  We speculate 

that the increased proportion of beige to white adipocytes in WAT modulates systemic 

insulin action through non-thermogenic mechanisms, perhaps via altering the secretome 

of adipose tissue.    Additionally, thermogenic fat cells, not yet classified as brown or 

beige, that surround blood vessels (perivascular adipose) have been suggested to 

protect against the development of atherosclerosis114. Thus, the potential therapeutic 

uses of brown/beige fat go beyond obesity and should be considered for various 

metabolic disturbances, including type 2 diabetes, insulin resistance, atherosclerosis, 

lipid disorders, etc.  
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Sympathetic nerve control of brown/beige fat  
 

 Cold is a dominant regulator of many aspects of BAT biology. Mice lacking BAT 

activity are cold intolerant due to defective non-shivering thermogenesis100. Cold, sensed 

by various mechanisms, including through thermoreceptors in the skin, elicits 

sympathetic outflow to BAT through an intricate neural circuitry (reviewed in 115). In 

addition to nerve terminals, alternatively activated macrophages in BAT produce 

catecholamines in response to cold116. Norepinephrine (NE) agonizes adrenergic 

receptors on adipocytes which triggers a signal transduction cascade leading to adaptive 

increases in the expression of thermogenic genes (Figure 3)117.  Prolonged cold 

exposure also stimulates the proliferation and differentiation of brown precursor cells to 

expand BAT mass and increase thermogenic capacity118.   Conversely, at warmer 

housing temperatures or in surgically denervated BAT, Ucp1 and other thermogenic 

factors are dramatically reduced119,120.  

 Sympathetic nerve activity also acutely stimulates heat production by activating 

Ucp1 function. Classic studies showed that fatty acids, rapidly released from lipid 

droplets in response to nerve activity, increase proton leak through Ucp1 (reviewed by 

121).  Fedorenko et al. recently discovered that long chain fatty acids generated in the 

inner mitochondrial membrane by a phospholipase A2 (PLA2) bind directly to Ucp1 and 

are required for proton transport122 (Figure 3).  An important, but often overlooked tenet 

is that Ucp1 does not increase the respiratory activity of cells under basal 

conditions123,124.  Therefore, therapeutic approaches which expand brown and/or beige 

adipocytes without also promoting activation could be unproductive.  Though, in many 
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people, an expanded BAT/beige fat compartment may be sufficiently activated by daily 

“tonic” stimuli (e.g. food, cold, exercise, etc.) to achieve therapeutic effect. 

  

Figure 4.  Catecholamine and Natriuretic induction of Thermogenesis 

Sympathetic neurons exocytose catecholamines (dark green ovals), which bind to β-adrenoreceptors leading to activation 

of Adenylyl Cyclase (AC), increased cAMP (light green ovals) levels and enhanced PKA activity.  Natriuretic Peptides (red 

ovals) bind the NPRA receptor which activates Guanylyl Cyclase to increase cGMP (pink ovals) levels, leading to 

activation of PKG. Activated PKA and PKG use similar mechanisms to drive transcriptional responses in brown 

adipocytes through the activity of phosphorylated CREB and 38MAPK.  Specifically, p38MAPK phsophorylates and 

activates ATF2 and Pgc-1α which induce the transcription of downstream thermogenic genes including Ucp1. Pgc-1α 

binds to DNA through interactions with Pparγ, Pparα, RXR and Thyroid Receptor (TFx).  Additionally, catecholamines 

elevate miR-196a levels, resulting in increased C/EBPβ expression, which helps drive the thermogenic gene program. 

Importantly, PKA and PKG activation also acutely induce lipolysis.  The fatty acids released from lipid droplets are 

oxidized by mitochondria to produce heat.  Proton leak through Ucp1 is activated by long chain fatty acids (LCFA) 

released from the mitochondrial membrane by PLA2. 
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Cold is also the classic activator of beige adipocyte development and function.  

Animals housed in the cold undergo a dramatic remodeling of their WAT, characterized 

by an accumulation of beige adipocytes - this can be mimicked by treating animals with 

β3-adrenergic activators like CL 316,2437,79,109,110,125-128.  Interestingly, the propensity of 

WAT depots to undergo beiging is highly correlated with the density of sympathetic 

nerve fibers129.  However, other adipose cell/tissue autonomous factors must be involved 

because systemic β3-agonist administration (thus bypassing the central nervous system) 

causes certain depots to beige more than others.  Many of the effects of chronic cold on 

adipose tissues are recapitulated in mice that express elevated levels of FoxC2 in 

adipocytes23   Specifically, FoxC2 increases BAT mass, induces beige fat cell 

development, drives mitochondrial biogenesis and promotes angiogenesis in fat 

tissue25,130,131.  FoxC2 functions in fat cells, to a large extent, by driving the expression of 

the R1α regulatory subunit of PKA (Prkar1a)23,24, thus sensitizing adipocytes to the 

effects of catecholamines. These results suggest that the adipocytes instigate most of 

the tissue remodeling that occurs in response to NE. 

 The discovery of the murine β3-adrenergic receptor (β3-AR), which is expressed 

mainly in fat and whose agonism activates thermogenesis, generated tremendous 

excitement for therapeutic possibilities in humans.  However, treatment of humans with 

β3-AR agonists never lived up to the forecasted predictions132.  Difficulties appear to be 

due to receptor differences between mice and humans - leading to off-target effects in 

humans, as well as poor pharmacokinetic properties and oral bioavailability133.  These 

problems, compounded with the previously held tenet that adults had very little BAT 

caused many companies to abandon their development of β3-AR agonists for obesity.   

Future studies should consider whether β3-ARs could be used in combination with 
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BAT/beige fat recruiters.  Alternatively, it would be worth considering whether prescribed 

cold exposure could be used to activate BAT/beige fat after augmentation via other 

pathways.   

 Cold exposure, which induces thermogenic features in adipose cells, also affects 

the developmental programs of other cell types in adipose tissue to coordinate and 

optimize heat production. For example, and as noted above, cold activates alternatively 

activated macrophages in BAT to produce catecholamines116.  Cold also stimulates 

sympathetic nerve branching/recruitment during the browning response of WAT129.  

Finally, cold exposure induces the sprouting and growth of blood vessels in adipose to 

facilitate oxygen delivery and heat exchange118,120,134.  This angiogenic effect is regulated 

through increased production of Vascular endothelial growth factor (Vegf), through a 

mechanism that does not involve hypoxia135-137.  Interestingly, Vegf secreted by adipose 

tissue also enhances the recruitment of brown and beige adipocytes via an unknown 

mechanism (Figure 4).  In cultured brown adipocytes, Vegf enhanced cell survival and 

proliferation whereas Vegf neutralizing antibodies caused apoptosis138. Strikingly, 

overexpression of Vegf in adipose tissues of mice increases BAT mass, stimulates 

beiging and promotes a healthy metabolic profile139,140.  Curiously, Vegf-inhibition has 

also been shown to reduce metabolic disease in mice, though this is in the context of 

already dysfunctional obese WAT72,140.  Further studies are needed to elucidate the 

mechanism(s) by which Vegf manipulates the fate of adipose tissue under different 

metabolic states. 
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Pparγ Coactivator-1α (Pgc-1α) controls the thermogenic activation of adipocytes  

 Pgc-1α was discovered as a cold-induced interacting partner of Pparγ in brown 

fat141.  Based on hundreds of studies, Pgc-1α is now recognized as a master regulator of 

mitochondrial biogenesis and oxidative metabolism in many cell types. In adipocytes, 

Pgc-1α also induces the expression of Ucp1 and other thermogenic components141,142. 

Surprisingly however, BAT develops normally without Pgc-1α143, probably due to 

compensation by the related family member, Pgc-1β.   Although not required for tissue 

development, Pgc-1α is essential for the cold/β-agonist-induced thermogenic activation 

of brown adipocytes144,145 and for the expression of thermogenic genes in WAT146 

(Figure 2).   Thus, Pgc-1α is a central transcriptional effecter of adrenergic activation in 

thermogenic adipocytes.  

 Pgc-1α expression levels and activity are directly regulated by the β-adrenergic 

signaling pathway147, providing a link between the physiological activator of brown fat 

thermogenesis and the transcriptional machinery in brown adipocytes (Figure 3).  

Specifically, Pgc-1α is phosphorylated and thereby activated by p38 MAPK in response 

to sympathetic stimulation147,148. Activated Pgc-1α1regulates thermogenic gene levels 

through its interaction with Pparγ, Pparα, Thyroid Receptor and other factors, though a 

detailed mechanism to account for its selective effects at brown fat-specific genes is 

lacking. Pgc-1α transcription also rises in response to β-adrenergic agonists through 

increases in the function of Activating transcription factor-2 (Atf2)147.   

 Several transcription factors suppress thermogenesis by interfering with Pgc-1α 

activity (Figure 2).  For example, Retinoblastoma (Rb) family members, pRb and p107 

repress Pgc-1α transcription to block the expression of brown genes in white 
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adipose55,57. Notably, pRb activity declines during the β-adrenergic-induced beige 

conversion of WAT57.  The nuclear co-repressor, RIP140 binds to Pgc-1α and blocks its 

transcriptional activity at certain target genes149.  The nuclear receptor, LXRα also blocks 

Ucp1 expression by recruiting RIP140 and displacing Pgc-1α at an LXR binding site51.   

 

Brown/beige-specific functions for the general adipogenic machinery 

 Pparγ and members of the C/EBP protein family orchestrate the general 

differentiation program in all adipose lineages150, but are also deployed to activate 

specific thermogenic genes in brown/beige adipocytes. For example, C/EBPβ is present 

at higher levels in BAT relative to WAT and protein levels increase further in response to 

cold 90. In WAT, β-adrenergic agonists increase C/EBPβ levels through miRNA-mediated 

degradation of Hoxc8, a repressor of C/EBPβ transcription (Figure 3)151. Loss of C/EBPβ 

is associated with defective thermogenesis, whereas increasing the levels of C/EBPβ in 

white fat cells triggers a brown fat transcriptional profile90,152-154.  

 The master adipogenic factor, Pparγ also controls the expression of brown fat-

specific genes, including Ucp1, particularly in response to β-adrenergic activators 

147,148,155. Genome-wide analyses demonstrate that Pparγ binds and regulates distinct 

target genes in brown and white fat cells156,157. We recently discovered that Ebf2, a helix-

loop-helix transcription factor, regulates Pparγ activity to drive the expression of Prdm16 

and a brown fat fate156,157 (Figure 2).  Ebf2 appears to function, at least in part, by 

facilitating the recruitment of Pparγ (and likely other factors) to brown fat-specific genes.   

Ebf2-deficient mice develop fatty tissue with the molecular and morphological 

characteristics of white fat in the areas where brown fat normally forms.   
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 Activation of Pparγ by synthetic Thiazolidinedione (TZD) agonists enhances 

thermogenic gene expression in both white and brown adipocytes8,158-162.  TZDs induce 

Ucp1 expression and increase mitochondrial biogenesis in adipocytes from mice and 

humans8,85,163.   This enables TZD-treated adipocytes to undergo Ucp1-mediated 

increases in respiration in response to β3-adrenergic activators8,85,91. Mechanistically, 

TZDs appear to act, in large part, through Prdm16 to activate a thermogenic program.  In 

particular, TZD treatment stabilizes Prdm16 protein to increase its levels in fat cells91 

and also enhances the interaction of Prdm16 with Pparγ (Figure 2).  SirT1 plays a role in 

this TZD-driven process by deacetylating Pparγ to facilitate the docking of Prdm16.  In 

vivo, activation of SirT1 promotes browning of WAT and resistance to obesity112, 

suggesting that SirT1 activators might have a use as weight loss agents. 

 In the clinic, TZDs, though associated with unwanted side effects, are highly 

effective in the treatment of type 2 diabetes through enhancing insulin action.  Given that 

beige adipocytes improve insulin sensitivity, it is reasonable to speculate that TZDs may 

act, at least in part, by inducing beige fat development.  However, non-TZD Pparγ 

modulators, like MRL24, promote insulin sensitivity but have little effect on Ucp1 

expression91,164.  Moreover, TZDs are associated with weight gain and increased 

adipocyte development in rodents and humans rather than weight loss.  This may be 

due to a blunting effect that TZDs have on the sympathetic activation of adipocytes165,166 

which would block Ucp1 function.  As mentioned earlier, it would be worth exploring 

treatments that combine TZDs with Ucp1-activators, like β3-selective adrenergic 

agonists. 
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Novel BAT/beige fat recruiters/activators 
 

 Sympathetic nerve activity was widely believed to be the primary or only 

physiological signal which activates BAT thermogenesis and induces beige adipocyte 

development.  Though β-AR signaling is undoubtedly a central regulator of these 

processes, several other hormones and factors have now been shown to regulate 

energy expenditure in adipose tissue (Figure 3); these have been discussed 

comprehensively in recent reviews 15,167,168. Here, we comment on secreted/systemic 

factors that affect brown/beige fat and appear particularly promising for therapeutic 

development.   

 

 
Figure 5.  Secreted factors that recruit brown/beige adipocytes 

In rodents, a number of tissues and cell types have been found to secrete factors that regulate brown and beige adipose 

activity through systemic, autocrine and paracrine mechanisms.  Neurons and alternatively activated macrophages 

secrete norepinephrine (NE); cardiac tissue – natriuretic peptides; liver and BAT – Fgf21; muscle- Irisin, thyroid hormone-

T4.  BAT also produces Bmp8b, and Vegf which increase thermogenic function in an autocrine manner.  Additionally, 

Orexin and Bmp7 promote brown fat development but their cellular source is unknown.  
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Irisin 

 In skeletal muscle, Pgc-1α orchestrates the adaptive response to exercise, 

including increased mitochondrial biogenesis, fast to slow muscle fiber switching, and 

angiogenesis169. Unexpectedly however, raising Pgc-1α levels in muscle protects 

sedentary animals against obesity 170.  In a search for effectors of the enhanced energy 

expenditure in these animals, Spiegelman and colleagues discovered that the WAT of 

Pgc-1α transgenic mice contained more beige adipocytes108.  They identified FNDC5 

(Fibronectin type III domain containing 5) as a Pgc-1α target gene that was secreted 

from myocytes in the form of a novel hormone, named Irisin. Irisin stimulates the 

browning of WAT through specific actions on the beige preadipocyte population10(Figure 

4). Circulating Irisin levels increase in rodents and humans by exercise training. 

Remarkably, a modest increase in the serum levels of Irisin in mice stimulates beige fat 

development leading to enhanced glucose tolerance and suppressed weight gain108.  

Irisin is thus a very compelling hormone for clinical development since it has marked 

beneficial effects when used at near-physiological levels in mice.  

 Of course, as with any new hormone, there are many outstanding questions.  

What is the Irisin receptor(s) in beige fat precursors and how does it signal to the 

transcriptional machinery?  Is the cleavage of FNDC5 into Irisin a regulated process? 

And, what effects does Irisin have on other tissues?   

Fibroblast Growth Factor 21 (Fgf21) 

 Fgf21 is a circulating hormone that regulates systemic energy levels and has 

become a focus of clinical trials for obesity, diabetes and cardiovascular disease.  In 

BAT, Fgf21 expression is increased by cold exposure and plays an important role in 
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thermogenesis171,172.  Interestingly, there is a dramatic burst of Fgf21 production from the 

neonate liver in response to suckling- this is likely to be critical for activating BAT 

thermogenesis, at a time when animals are especially vulnerable to hypothermia173.  

Consistent with this, administration of Fgf21 to fasted neonates augments the 

thermogenic gene program in BAT.  In WAT, Fgf21 increases Pgc-1α protein levels to 

drive beige adipocyte recruitment in response to cold174,175. 

 Fgf21 has many desirable effects on metabolism in fed animals, including 

increased glucose uptake into peripheral tissues, improved insulin sensitivity and weight 

reduction174,176,177.  Some of these actions may be mediated, at least in part, by 

stimulating fatty acid oxidation and energy dissipation pathways in adipocytes.  

Unfortunately however, Fgf21 has also been shown to cause bone loss, which will need 

to be overcome for clinical applications in obesity178. 

Natriuretic Peptides (NPs) 

 The natriuretic peptides, atrial NP (ANP) and brain-type NP (BNP) are released 

by the heart in response to heart failure or pressure overload.  These factors reduce 

blood volume, blood pressure and cardiac output by dilating blood vessels and by 

promoting salt and fluid excretion from the kidneys. ANP was also known to promote 

lipolysis in adipocytes. Notably, high circulating levels of NPs had also been associated 

with weight loss in humans179,180.  

 Bordicchia et al. recently discovered that increased levels of NPs in mice 

promotes beige adipocyte development in WAT and increases thermogenic gene levels 

in BAT53. This effect is due to a direct effect of NPs on adipose cells.  Mechanistically, 

NPs trigger lipolysis and browning through activation of cGMP-dependent protein kinase 
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(PKG).  PKG works in parallel with the more familiar β-adrenergic/PKA pathway to 

trigger lipolysis and stimulate thermogenesis (Figure 3).    

 The effect of NPs on brown and beige adipogenesis suggests that the control of 

adaptive thermogenesis is more complex than is currently appreciated.  

Cardiomyocytes, a cell type thought to have little cross-talk with adipocytes can 

dramatically alter gene expression and function of adipose through the secretion of 

potent cardiometabolic hormones. Importantly, cold increases NP levels, suggesting that 

this browning system may have evolved, perhaps in epidcardial fat, to safeguard cardiac 

function in animals during cold exposure. Systemic elevation of NPs would likely have a 

large number of undesirable off-target effects, but pharmacological targeting of this 

pathway in adipocytes could be considered.   

BAT activators with central and peripheral actions 

 Bmp8b is produced by mature brown fat cells and functions to amplify the 

thermogenic response of brown adipocytes to adrenergic activators181  (Figure 4). 

Interestingly, Bmp8b is also expressed in certain hypothalamic nuclei. Central treatment 

with Bmp8b increases sympathetic outflow to BAT but not other tissues and leads to 

weight loss.   More studies are needed to assess the effect of Bmp8b on other tissues. 

But, at this stage, Bmp8b is a very promising target for therapeutics. 

 Other factors have been shown to augment BAT activity through both central and 

peripheral actions. For example, thyroid hormone directly induces thermogenic genes in 

brown adipocytes via the action of Thyroid receptors and also functions centrally to 

activate BAT182-184. Along similar lines, the neurotransmitter, Orexin augments BAT 

function via regulating sympathetic outflow and through directly promoting brown fat 
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precursor differentiation (Figure 4)185,186.  Targeting molecules like Bmp8b, Orexin and 

Thyroid hormone that both recruit and activate brown fat may be particularly effective in 

promoting energy expenditure and weight loss. 

Outlook and challenges 
 

 There is persuasive evidence from animal models that enhancement of brown 

and/or beige adipose function in humans could be very effective for treating type 2 

diabetes and/or obesity.  Moreover, there is now an extensive variety of factors and 

pathways that could potentially be targeted for therapeutic effect.  In particular, the 

discoveries of circulating factors like Irisin, Fgf21 and NPs that enhance brown and 

beige fat function in mice has garnered tremendous interest.  However, there are several 

challenges/issues to consider with regard to brown/beige fat-targeted therapies. 

 First, many of the thermogenic inducers, like Irisin, Bmp8b, Orexin, NPs, Sirt1, 

etc. were identified very recently as having effects on brown/beige fat biology. While the 

early findings are very promising, many more studies are needed to assess the potency 

of these factors on brown/beige fat under a variety of experimental conditions. On a 

related point, very few studies have explored the mechanisms of brown/beige adipocyte 

recruitment in human cells/tissues.  Given the depot-specific mechanisms of beige fat 

recruitment in mice, this trait is likely to be highly variable amongst human fat depots. 

Defining the cell type(s) within human fat depots that can undergo efficient thermogenic 

activation and examining which pathways promote this process will be an important 

avenue of future research. 

 Secondly, even if thermogenic tissue can be pharmacologically expanded in 

humans, it still must be efficiently activated.  Most available studies have used mice 
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housed below their thermoneutrality, which consequently have increased sympathetic 

outflow to fat.  Thus, brown/beige fat-based therapies will likely need to expand the 

number of thermogenic fat cells(s) and/or activate them.  Molecules like Bmp8b that 

increase the sensitivity of brown fat cells to adrenergic stimuli could be particularly 

valuable.  

Finally, energy balance is tightly controlled by homeostatic mechanisms.  Despite 

enormous fluctuations in food intake and physical activity, the average person is 

relatively weight stable over long periods of time.  By virtue of this, most individuals that 

lose weight tend to gain it back.  Even if brown fat thermogenesis can be ramped up to 

increase calorie consumption, the body may compensate for the calorie “deficit” by 

increasing hunger or increasing the metabolic efficiency of other tissues, like muscle.   
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CHAPTER 2: Prdm16 is required for the maintenance of brown 
adipocyte identity and function in adult mice 
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Abstract 

Prdm16 is a transcription factor that regulates the thermogenic gene program in brown 

and beige adipocytes.  However, whether Prdm16 is required for the development or 

physiological function of brown adipose tissue (BAT) in vivo has been unclear. By 

analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found 

that Prdm16 was dispensable for embryonic BAT development. However, Prdm16 was 

required in young mice to suppress the expression of white fat-selective genes in BAT 

through recruitment of the histone methyltransferase Ehmt1. Additionally, Prdm16-

deficiency caused a severe adult-onset decline in the thermogenic character of 

interscapular BAT. This resulted in BAT dysfunction and cold sensitivity but did not 

predispose the animals to obesity. Interestingly, the loss of brown fat identity due to 

ablation of Prdm16 was accelerated by concurrent deletion of the closely related Prdm3 

gene.  Together, these results show that Prdm16 and Prdm3 control postnatal BAT 

identity and function. 
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Introduction 
 

The global rise in obesity and type-2 diabetes has precipitated the need for novel 

approaches to reduce adiposity. Obesity is caused by prolonged periods of positive 

energy balance in which energy taken in from food exceeds energy expenditure.  Brown 

and beige adipose cells expend chemical energy in the form of heat and can thus 

oppose obesity in mice.  Higher levels of brown and/or beige adipose activity are also 

correlated with reduced adiposity in people 18.    

Brown adipocytes reside in discrete brown adipose tissue (BAT) depots whereas 

beige adipocytes are intermingled with white adipocytes in white adipose tissue (WAT).  

Both cell types have a multilocular morphology, large numbers of mitochondria, and 

express a common set of brown fat (versus white fat)-selective genes such as 

Uncoupling protein-1 (Ucp1) 187.   Upon activation, Ucp1 dissipates the mitochondrial 

proton gradient, which results in loss of respiratory control and the production of 

substantial amounts of heat from the combustion of available substrates 120.  The heat 

produced by brown and/or beige fat is necessary for the survival of small mammals in 

the cold and also reduces fat deposition in animals fed a high fat/low protein diet 98,101,120.  

The development of therapies aimed at increasing the amount of brown or beige 

adipocytes will require a detailed mechanistic understanding of how these cell types are 

formed. PR (PRD1-BF1-RIZ1 homologous)-domain containing 16 (Prdm16) is a 

transcriptional co-regulator that has been shown to powerfully regulate the differentiation 

of brown and beige fat cells 187.  Notably, increased expression of Prdm16 in mouse 

WAT promotes beige adipocyte development and suppresses metabolic disease 26.  By 

contrast, deletion of Prdm16 in adipocytes causes a profound loss of beige adipocyte 

function in mice, leading to aggravated metabolic disease upon exposure to high fat diet 
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188. Surprisingly, the deletion of Prdm16 in adipocytes, at relatively late stages of their 

differentiation, does not affect BAT function 188. 

BAT forms during embryonic development before other fat depots, and is an 

essential source of heat production in neonates.  Lineage analyses indicate that brown 

adipocytes and skeletal myocytes originate from precursor cells in the somite that 

express Engrailed-1, Pax7 and Myf5 13,76,189. Previous studies showed that Prdm16 

controls a bidirectional cell fate switch between brown fat and skeletal muscle in this 

somite-derived lineage 13,90,97,190,191. However, the requirement for Prdm16 in regulating 

brown adipocyte development and function in vivo had not been thoroughly assessed. 

In this study, we used the Myf5Cre mouse strain to delete Prdm16 in the 

progenitors for brown adipocytes and muscle but not beige adipose cells.  BAT 

developed normally in the absence of Prdm16, without evidence of a cell fate switch into 

muscle.  In BAT from young mice, Prdm16-deficiency had little effect on the expression 

of key BAT-selective genes but elicited a dramatic rise in expression of many WAT-

selective genes.  As the knockout animals aged, however, there was a striking loss of 

thermogenic character in the interscapular BAT (iBAT).  This collapse of iBAT identity 

was accelerated by concurrent deletion of the closely related Prdm3 gene.  Importantly, 

adult mice with Prdm16-depleted BAT had severely reduced BAT function but did not 

gain more weight than wildtype animals.  Altogether, our results indicate that Prdm16 

and Prdm3 play a critical role in the postnatal maintenance and function of BAT.  
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Results 

Prdm16 is dispensable for embryonic BAT development  

 

To investigate the genetic requirement for Prdm16 in BAT development and function, we 

deleted Prdm16 in the brown fat lineage by intercrossing Myf5Cre mice 192 with 

Prdm16flox/flox mice (Figure S1A). Myf5Cre is activated in the somitic precursors that give 

rise to brown adipocytes.  The resulting Myf5Cre/+;Prdm16flox/flox (Myf5-ΔPrdm16) mice 

were born in normal Mendelian ratios and were grossly indistinguishable from their 

wildtype (WT) littermates.  Prdm16 mRNA and protein expression were almost 

completely ablated in Myf5-ΔPrdm16 BAT (Figure 1A). 

 

Figure 1: Prdm16 is dispensable for embryonic BAT development 

(A) Prdm16 mRNA and protein levels from wildtype (WT) and Myf5∆Prdm16 (KO) mice (mean ± SEM; n=5, 8 (WT, KO); 

*p<0.05). (B) Hematoxylin and eosin (H&E) staining of representative sections from the interscapular regions of E17.5 WT 

and KO embryos. (C) Interscapular brown adipose tissue (iBAT) from 6-week-old WT and KO mice. (D) H&E staining of 

representative sections from the iBAT of 6-week-old WT and KO mice.   
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Surprisingly, there were no differences in the morphology or size of BAT depots 

between WT and Myf5-ΔPrdm16 mice at E17.5 of development (Figure 1B). At 6 weeks 

of age, WT and Prdm16-deficient iBAT depots were also grossly and histologically 

similar (Figures 1C, D).  The other major site of Myf5Cre-mediated DNA recombination 

during development is skeletal muscle where Prdm16 mRNA is not normally detected 87.  

Consistent with this, Prdm16 mRNA levels were equivalent in WT and Myf5-ΔPrdm16 

muscles (Figure S1B). Previous studies indicated that Prdm16 can suppress the 

expression of certain muscle-specific genes 13; however, we did not observe elevated 

expression of muscle-specific genes in the iBAT of Myf5-ΔPrdm16 mice (Figure S1C).  

Taken together, these results indicate that Prdm16 is dispensable for BAT formation in 

mice.   

 

            Figure S1. Prdm16 deficiency in BAT does not increase the expression of skeletal muscle genes. 

(A) Gene targeting strategy 

for creating Prdm16flox mice. 

(B) Prdm16 mRNA levels in 

interscapular brown adipose 

tissue (iBAT) and several 

skeletal muscles (quadricep, 

tibialis anterior [TA], extensor 

digitorum longus [EDL], 

gasterocnemius, diaphragm 

and soleus) of wildtype (WT) 

and Myf5-ΔPrdm16 mice. (C) 

mRNA levels of skeletal 

muscle-selective genes from 

the iBAT of 6-week-old and 

E18.5 WT and KO mice. (B,C: 

mean ±SEM, n=6-11. 

*p,0.01). 
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Prdm16 recruits Ehmt1 to repress the expression of white fat-selective genes 

 

We next analyzed the molecular phenotype of iBAT from 6-week-old WT and 

Myf5-ΔPrdm16 mice.  Pan-adipocyte genes like Fabp4 and Adipoq were equivalently 

expressed in WT and Prdm16 knock-out (KO) iBAT (Figure 2A), although KO tissue 

expressed higher levels of Pparγ2, the adipose-selective isoform of Pparγ.  The levels of 

brown fat-selective (Pgc1α, Ucp1 and Cidea) and mitochondrial (Cycs, Cox5b, Cox7a1) 

genes were mildly but not significantly decreased in Prdm16 KO tissue (Figure 2A).  

To search for genes/pathways that were sensitive to Prdm16 levels in BAT, we 

compared the global gene expression profiles of iBAT from 6-week-old WT and Myf5-

ΔPrdm16 mice using cDNA microarrays. Gene ontology analysis revealed that genes 

involved in lipid-metabolism, including “lipid biosynthetic process” and “lipid metabolic 

process”, were increased in the absence of Prdm16 (Figure S2A). This suggested that 

loss of Prdm16 shifted adipocyte metabolism to favor a white fat-like energy storage 

phenotype. We thus specifically analyzed the impact of Prdm16-deficiency on the 

complete set of BAT- and WAT-selective genes (Figure 2B).  Consistent with qPCR 

analysis, most typical brown-selective genes (e.g. Ucp1, Cidea, Cox5b) were only 

slightly reduced in Prdm16-deficient BAT. However, the expression of a few BAT-

selective genes were dramatically diminished in KO BAT, including Dio2 (deiodinase, 

iodothyronine, type II), an important regulator of brown adipocyte function 182 (Figure 2B, 

C).  In line with the mRNA data, western blots showed that Prdm16-deficient BAT 

expressed higher levels of Pparγ and Agt and slightly reduced levels of Ucp1 protein 

(Figure 2D).  Additionally, the global expression analyses revealed a broad increase in 

the expression of white fat-selective genes in KO BAT (Figure 2B).  Real-time PCR 

analysis validated the increased expression of many of these genes, including a 20-fold 
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increase in Agt, and 6- to 8-fold increases in Retn, Gpr64, Nnmt and Trim14 (Figure 2C).  

These results reveal that Prdm16 is required in BAT to suppress the expression of many 

white fat-selective genes. 

 

Figure 2: Prdm16 

represses the 

expression of white 

fat-selective genes 

(A) mRNA levels of pan-

adipocyte and BAT-

selective genes in BAT 

from 6-week-old 

wildtype (WT) and 

Myf5∆Prdm16 (KO) 

mice (mean ± SEM, WT 

n=5, KO n=4, *p<0.05). 

(B) Heat map depicting 

the mRNA levels of 

white and brown fat-

selective genes 

(WAT/BAT) in BAT from 

6-week-old WT and KO 

mice (KO/WT) (n=4). (C) 

qPCR validation of BAT- 

and WAT-selective 

mRNAs identified in (B) 

from WT and KO BAT (mean ± SEM, WT n=5, KO n=4, *p<0.05. (D) Western blot analysis of Pparγ, Agt, Ucp1 and Actin 

(loading control) protein levels in BAT from 6-week-old WT and KO mice. (E) ChIP-qPCR analysis of endogenous Prdm16 

and Ehmt1 binding at the Retn promoter (mean ± SEM; n=3; *p<0.05). (F) ChIP-qPCR analysis of H3K27-Ac, H3K9-Me1 

and H3K9-Me2 enrichment in a 4 kb region spanning the transcriptional start site of Retn.  Ins1 was used a non-specific 

control binding site (mean ± SEM; n=3; *p<0.05). (G) mRNA levels of WAT-selective genes in brown adipocytes treated 

with Ehmt1 antagonist UNC 0646, or vehicle control  (mean ± stdev; n=3; *p<0.05). 
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We used Retn as a model locus to investigate the mechanism by which Prdm16 

represses white fat-selective genes.  Chromatin immunoprecipitation (ChIP) for Prdm16 

in WT and KO BAT showed that it was specifically enriched at the Retn promoter relative 

to non-specific control sites (Figure 2E).  The repressive chromatin modifier, Ehmt1 

(G9a-like protein), an interacting partner of Prdm16 90,190, was also bound to the Retn 

promoter in BAT and its binding there was reduced by ~40% in Prdm16 KO BAT relative 

to WT BAT (Figure 2E).  Importantly, the loss of Prdm16 and Ehmt1 binding at Retn was 

associated with increased levels of H3K27-Ac, a histone mark correlated with active 

transcription; and decreased levels of H3K9-Me1 and H3K9-Me2, modifications laid 

down by Ehmt1 and associated with gene repression (Figure 2F).  Ehmt1 binding at the 

Agt promoter was also significantly decreased in Myf5-ΔPrdm16 BAT (Figure S2B). 

These data suggest that Prdm16 recruits Ehmt1 to certain white fat-selective genes to 

decrease their transcription. In accordance with this, treatment of cultured brown 

adipocytes with UNC 0646, an Ehmt1 antagonist, increased the expression of many 

white fat-selective genes, including Retn and Agt (Figure 2G).   

 

 

Figure S2. Prdm16 deficient iBAT 

expressed a white fat-related 

gene profile. 

(A) Gene Ontology (GO) analysis of 

genes thar are differentially 

expressed betweeb wildtype (WT) 

and Prsm16-deficient BAT (KO) of 

6-week-old mice. (B) Relative ChIP 

enrichment for Ehmt1 at the Ins1 

(control) and Agt promoter in WT 

and KO iBAT. (mean± stdev, 

n=3,*p<0.05). 
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Prdm16 maintains iBAT identity during aging 

 

In contrast to juvenile mice, we noticed that older (>6 months of age) Myf5-

ΔPrdm16 animals exhibited a profound morphological “whitening” of their iBAT. This 

included a ~50% increase in the size of the tissue, a switch from multilocular to 

unilocular morphology, and increased lipid content (Figures 3A, S3A).  To determine 

when this phenotype emerged, we analyzed gene expression in iBAT from WT and 

Myf5-ΔPrdm16 mice at 3 and 6 months of age.  In 3-month-old animals, Prdm16-

deficiency resulted in a modest decline in the expression of brown fat-selective genes, 

including ~30-40% reductions in the levels of Ucp1, Pparα and many mitochondrial 

genes (Figure 3B).  The reduction of brown fat-specific gene expression in KO BAT was 

much more pronounced in 6-month-old mice.  At that age, Ucp1 mRNA levels were 

decreased by >90% and Cidea and Pparα levels were reduced by ~70% (Figure 3B).  

Hematoxylin and eosin staining showed that lipid droplet size increased dramatically in 

the KO BAT from 3 to 6 months of age (Figure S3B). Microarray analyses revealed that 

Myf5-ΔPrdm16 iBAT from 11-month-old mice expressed substantially reduced levels of 

a broad brown fat-selective program (Figure 3C). The elevation of white fat-selective 

gene expression caused by Prdm16-deficiency was further exaggerated in older mice 

(Figure 3C).  Immunohistochemical analysis showed that Ucp1 protein levels decreased 

dramatically in the iBAT of Myf5-ΔPrdm16 animals between 3 and 6 months of age 

(Figure 3D). Western blot analysis confirmed that Ucp1 protein levels were much lower 

in KO relative to WT iBAT at 6 months of age, coincident with elevated levels of Pparγ 

and Agt (Figure 3E). DNA isolated from the iBAT of 11-month-old Myf5-ΔPrdm16 mice 

was >90% recombined at the Prdm16 locus (ie. exon 9-deleted) (Figure S3C), indicating 

that the “whitened” KO tissue was composed of Myf5Cre lineage-derived adipocytes.  
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We next examined the consequences of Prdm16-deficiency on mitochondrial 

mass and function.  Using a Clark electrode, we measured oxygen consumption in 

isolated iBAT from 9-month-old WT and Myf5-ΔPrdm16 mice.  Remarkably, basal 

(unstimulated) respiration in the KO iBAT was ~85% lower than in WT tissue (Figure 3F), 

indicative of a loss of mitochondrial mass.  Indeed, PCR analysis revealed that KO BAT 

had 50% less mitochondrial DNA than WT tissue (Figure 3G).  Transmission electron 

microscopy studies showed that WT adipocytes were packed with mitochondria 

containing well-ordered cristae, whereas KO adipocytes had a paucity of mitochondria, 

of which the remainder had poorly organized cristae and exhibited signs of degeneration 

(Figure 3H).  Taken together, these data establish an important role for Prdm16 in 

maintaining brown adipocyte identity (including high levels of mitochondria) in adult 

mice. 
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Figure 3: Prdm16 is 

required for the 

maintenance of iBAT 

fate in adult animals 

(A) Gross morphology 

and mass of iBAT 

depots from one-year-

old wildtype (WT) and 

Myf5∆Prdm16 (KO) 

mice (mean ± SEM, 

n=7, *p<0.05).  (B) 

mRNA levels of BAT-

selective genes in 

BAT from 3- and 6-

month-old WT and KO 

mice (mean ± SEM, 

n=4, *p<0.05). (C) 

Global analysis of 

BAT- and WAT-

selective mRNA levels 

in BAT from 6-week-

old and 11-month-old 

mice.  Dashed orange 

line illustrates the 

change in gene expression pattern. Data is presented as a log2FC scatter plot. (n=4). (D) Immunohistochemical staining 

for Ucp1 protein in sections of BAT from 3- and 6-month-old WT and KO mice. (E) Western blot analysis of Pparγ, Agt, 

Ucp1 and Actin (loading control) protein levels in BAT from 11-month-old WT and KO mice.  (F) Oxygen consumption of 

isolated and minced BAT from 9-month-old WT and KO mice.  Data is presented as nmol of oxygen consumed per minute 

per mg of tissue (mean ± SEM, WT n=4, KO n=3, *p<0.05). (G) Mitochondrial DNA levels in BAT from 9-month-old WT 

and KO mice (mean ± SEM, WT n=4, KO n=3, *p<0.05. (H) Transmission electron micrographs of BAT from 9-month-old 

WT and KO mice (L=lipid droplet; M=mitochondria; N=nucleus). 
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The interscapular depot is the largest BAT depot in adult mice and was the focus 

of our study.  However, we also investigated the impact of Prdm16-deficiency on the 

axillary and cervical BAT (aBAT and cBAT). The aBAT and cBAT depots in 6-month-old 

Myf5-ΔPrdm16 appeared paler than those in WT mice, but there was no difference in 

aBAT or cBAT mass between WT and Myf5-ΔPrdm16 mice (Figure S3D). Interestingly, 

the white fat-selective genes were markedly elevated in Prdm16-deficient aBAT and 

cBAT but brown fat-specific gene levels were not affected (Figure S3E).  These results 

suggest that interscapular BAT is particularly reliant on Prdm16 for maintaining the 

expression of brown fat-selective genes during aging. 

 

Figure S3. Prdm16-deficiency causes a 

loss of interscapular brown adipose 

tissue identity in adult mice 

 (A) Hematoxylin and eosin (H&E) staining 

of sections from the interscapular brown 

adipose tissue (iBAT) of one-year-old WT 

and Myf5-ΔPrdm16 (Prdm16 KO) mice. (B) 

H&E staining of WT and Myf5-ΔPrdm16 

(KO) iBAT from 3 and 6 month-old-mice. 

(C) Myf5-Cre driven DNA recombination of 

the Prdm16 locus in iBAT from 9-month-old 

WT and KO mice. (D) Gross morphology 

and mass of dissected axillary and cervical 

BAT depots from WT and KO mice. (E) 

mRNA levels of brown and white fat-related 

genes in the axillary and cervical BAT 

depots of 6-month-old WT and KO mice 

(mean ± stdev, n=4, *p<0.05).  
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Prdm16 is required for induction of the brown fat gene program in isolated 
precursors 

 

The aging-associated decline of iBAT identity in Myf5-ΔPrdm16 mice raised the 

question of whether Prdm16 was required cell autonomously for proper brown adipocyte 

differentiation in this depot. To study this, we isolated primary brown adipocyte 

precursors from the iBAT of WT and Myf5-ΔPrdm16 mice and examined their 

differentiation into adipocytes under defined culture conditions.  WT and KO precursor 

cells from newborn iBAT differentiated with equivalent efficiently into mature lipid droplet-

containing adipocytes that expressed similar levels of pan-adipocyte genes, including 

Fabp4 and Adipoq (Figure 4A, S4A).   KO cultures displayed a >90% reduction in 

Prdm16 mRNA and protein levels (Figure 4B, D), indicating that most or all of the 

precursor cells in BAT descend from Myf5Cre-expressing cells. Strikingly, Prdm16-

deficient cultures expressed dramatically lower levels of brown adipocyte-specific genes 

as compared to WT cultures, including 90-95% reductions in the mRNA levels of Ucp1, 

Cidea and Dio2; and 60-80% decreases in Pgc1α, Pparα, Cox7a1, Cycs, and Errγ 

(Figure 4B).  WT adipocytes also had four times more mitochondrial DNA than KO cells 

(Figure 4C).  Western blot analysis showed that Ucp1 protein, like its mRNA, was 

dramatically lower in KO adipocytes (Figure 4D). Importantly, retroviral expression of 

Prdm16 in KO preadipocytes efficiently activated the expression of thermogenic genes 

like Ucp1 and Cidea (Figure 4E), indicating that the KO cells were competent to induce 

the brown-selective gene program.  Immortalized brown fat cell lines from newborn BAT 

of Myf5-ΔPrdm16 mice displayed a similarly severe defect in activating the 

differentiation-linked brown fat-specific gene program (Figure S4B).  
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Figure 4: Prdm16 is required for activation of the brown fat-selective gene program in cultured brown fat 

precursors 

(A,B) Primary precursor cells from the iBAT of newborn wildtype (WT) and Myf5∆Prdm16 (KO) mice induced to 

differentiate into adipocytes and stained with Oil-red-o (A) or analyzed by qPCR for their expression of brown fat-selective 

genes (mean ± stdev, n=3, *p<0.05) (B). (C) Mitochondrial DNA levels in WT and KO adipocytes from immortalized brown 

fat-derived precursor cells (mean ± SEM, n=6, *p<0.05). (D) Western blot analysis of Prdm16, Ucp1 and Actin (loading 

control) in WT and KO adipocytes from immortalized brown fat-derived precursor cells.  (E) Primary precursor cells from 

iBAT of newborn KO mice infected with puromycin (KO-puro; control) or Prdm16 (KO-Prdm16) retrovirus, were induced to 

differentiate into adipocytes.  Gene expression analysis for general adipocyte (Fabp4, Pparγ) and brown fat-selective 

genes (mean ± stdev, n=3, *p<0.05). (F) Primary precursor cells from the iBAT of adult Rosa26Cre/+;Prdm16flox/flox mice 

were treated with 4-hydroxytamoxifen (4-OHT) to delete Prdm16 or vehicle (ethanol) (CTL) before being induced to 

undergo adipocyte differentiation.  Adipocyte cultures were analyzed for their expression of  brown fat-selective genes  

(mean ± stdev, n=3, *p<0.05). 

 

We also tested whether acute Prdm16 deletion affected the brown fat 

differentiation program of preadipocytes isolated from adult animals. To this end, brown 

fat precursor cells were isolated from 8-week-old Prdm16flox/flox;Rosa26CreERT mice that 

ubiquitously express a tamoxifen-inducible Cre recombinase.  Precursor cells from the 
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iBAT of these mice were isolated and then treated with 4-hydroxytamoxifen (4-OHT) or 

vehicle (ethanol).  The acute loss of Prdm16 caused by 4-OHT treatment completely 

blocked the differentiation-linked induction of brown-selective genes (including Ucp1 and 

Cidea) while leaving the general adipogenic program intact (Figure 4F).  

The brown-specific gene program was not significantly affected by loss of 

Prdm16 in BAT from embryos and young mice. This raised the possibility that the 

embryonic precursors may not require Prdm16 to execute a normal brown fat 

differentiation program.  To investigate this, we purified brown adipocyte precursors from 

the dorsal body walls of WT and Myf5-ΔPrdm16 mouse embryos at E14.5 days post-

coitum - a stage when differentiated brown adipocytes are first appearing.  Precursor 

cells were purified by flow cytometry based on cell-surface expression of platelet-derived 

growth factor receptor alpha (Pdgfrα), which enriches for adipogenic precursors in BAT 

and other tissues193.  

Figure S4 - Prdm16 is required 

cell automously 

(A) Fabp4 and Adipoq mRNA levels 

in adipocytes derived from newborn 

WT and Myf5-ΔPrdm16 (KO) brown 

adipocyte precursors. (B) 

Differentiated immortalized WT and 

KO brown precursor cells. Oil-red-O 

staining (left); mRNA expression 

(mean ± stdev, n=3) (right). (C) 

Gene expression in FACS purified 

Pdgfrα+ precursors from the body 

wall of E14.5 WT and KO embryos 

induced to differentiated for 8 days      

(mean ± SEM, n=3, *p<0.05).  
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The Prdm16-deficient embryonic cells, like the cells from newborn and adult 

BAT, displayed an ex vivo deficit in brown fat-specific gene expression during 

adipogenesis (Figure S4C).  Taken together, these data demonstrate that Prdm16 is 

required to activate the brown-specific adipogenic program in isolated BAT precursors. 

Reduced BAT function in Myf5-ΔPrdm16 mice  

 

A key question is whether the loss of Prdm16 in BAT has physiological 

consequences for the animals. To assess BAT function in mice, we surgically implanted 

temperature probes subcutaneously in the interscapular region of 10-month-old WT and 

Myf5-ΔPrdm16 mice. After allowing the animals to recover for one week, we exposed 

them to cold (4°C) and monitored tissue temperature over a period of 3 hours. Under 

room temperature conditions (at T=0 prior to cold exposure), WT and Myf5-ΔPrdm16 

mice had similar core and interscapular temperatures (Figure 5A; S5A). However, upon 

cold exposure, tissue temperature dropped precipitously in Myf5-ΔPrdm16 mice, 

declining >1°C more than in WT animals after 3 hours (Figure 5A). Since mice rely 

substantially on shivering thermogenesis during acute cold exposure 195, we further 

analyzed in vivo BAT function by measuring whole-animal oxygen consumption before 

and at several time points after injection of norepinephrine (NE), the classic activator of 

BAT-mediated thermogenesis.  As evidenced through the study of Ucp1 KO animals, 

this method provides a more stringent measurement of BAT activity 195,196.  In WT mice, 

oxygen consumption increased by ~4-fold in response to NE (Figure 5B).  By contrast, 

NE only marginally raised the oxygen consumption of Myf5-ΔPrdm16 mice, which 

diverged significantly from than that of WT mice by 24 minutes post-NE treatment 

(Figure 5B). Taken together, these data demonstrate that Prdm16 is required for the 
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thermogenic function of BAT in vivo.  

 

Figure 5: Myf5-∆Prdm16 mice have severely deficient BAT function but are not prone to obesity or metabolic 

disease 

(A) Temperature recordings from probes implanted into the interscapular (subcutaneous) region of 1-year-old WT and 

Myf5∆Prdm16 (KO) mice.  Data was collected over 3 hours after moving animals from room temperature (~22°C) to 4°C 

(T=0) (mean ± SEM, n=10, *p<0.05). (B) Whole-body oxygen consumption in 1-year-old WT and KO mice before and 

after treatment with 1 mg/kg norepinephrine (NE) (mean ± SEM, n=10, *p<0.05). (C) Body weights of WT and KO mice at 

different ages maintained under standard housing conditions and fed a regular chow diet (mean ± SEM, n=10-22, 

*p<0.05). (D) Body weights of 9-month-old WT and KO mice that were housed at 28°C and fed a high fat diet (HFD) for 

ten weeks  (mean ± SEM, n=5, *p<0.05).  (E) Hematoxylin and eosin (HE) staining of sections from the interscapular BAT 

of 3-week-old mice housed at 28°C on HFD. (F) Body weights of WT and KO mice that were kept at 28°C and fed a high 

fat diet for 9 weeks starting at weaning (3-weeks-old) (mean ± SEM, WT n=6, KO n=8, *p<0.05).  
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The reduced thermogenic capacity of Myf5-ΔPrdm16 mice suggested that these 

animals may be susceptible to weight gain and metabolic disease.  However, contrary to 

our expectation, Myf5-ΔPrdm16 mice weighed less than their WT counterparts at all 

ages studied (Figure 5C).  MRI examination revealed that Myf5-ΔPrdm16 mice had less 

lean and fat mass than WT mice (Figure S5B). Unexpectedly, Myf5-ΔPrdm16 mice were 

also slightly, but significantly shorter than WT animals (Figure S5C) – this likely explains 

their proportional reduction in lean and fat mass.  Consistent with their reduced fat mass, 

Myf5-ΔPrdm16 mice also had improved glucose tolerance as compared to WT mice 

(Figure S5D). 

The contribution of BAT thermogenesis to energy balance can be masked at 

room temperature in mice due to the cold-mediated activation of other thermogenic 

pathways 101,195.  We therefore placed 9-month-old WT and Myf5-ΔPrdm16 mice at 28°C 

to exempt them from cold stress, and fed them a high fat diet for 10 weeks.  Under these 

conditions, the weight gained by WT and Myf5-ΔPrdm16 mice was remarkably similar 

(Figure 5D).  We also placed 3-week-old WT and Myf5-ΔPrdm16 mice on a high fat diet 

and housed them at 28°C for 10 weeks.  Under these conditions, Myf5-ΔPrdm16 iBAT 

developed a severe loss of normal brown adipocyte morphology (Figure 5E) and 

reduced levels of brown fat-specific genes (Figure S5E).  Despite this, the KO mice 

gained less weight than WT mice (Figure 5F), although the percent weight gained by WT 

and KO mice per week and overall was very similar. Consistent with this, oxygen 

consumption (Figure S5F) and food intake (Figure S5G) was not significantly different 

between WT and KO mice.  

The loss of BAT function in adult Myf5-ΔPrdm16 mice was not accompanied by 

increased browning of WAT depots. Specifically, there was: (1) no increase in the 

expression levels of Ucp1 or other brown fat-selective gene markers in the inguinal or 
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epididymal WAT of Myf5-ΔPrdm16 KO mice (Figure S5H,I); and (2) no difference 

between the morphology of WT and KO WAT in mice housed at 22°C (not shown) or 

28°C (Figure S5J). Altogether, these data show that loss of Prdm16 activity in BAT does 

not impair diet-induced thermogenesis in mice. 

 

Figure S5 - Myf5-

ΔPrdm16 mice do 

not have metabolic 

defects. 

(A) Core body 

temperatures of  3-

month-old WT and 

Myf5-ΔPrdm16 (KO) 

mice, n=4. (B) Body 

compositions (fat and 

lean mass) of 11-

month-old WT and KO 

mice by MRI, n=10. 

(C)  Body length of 

11-month-old WT and 

KO mice, n=10. (D) 

Glucose tolerance 

tests on 11-month-old 

chow-fed WT and KO 

mice after an overnight fast. Blood glucose levels measured at the indicated times following an intraperitoneal 

injection of glucose (T0), n=10. (E) mRNA expression levels of BAT-enriched genes from BAT of 3-month-old WT 

and KO mice at thermoneutrality and fed a high-fat diet, n=8. (F,G)  Oxygen consumption and food intake over 48 

hours in individually housed 11-month-old WT and KO mice housed at 22°C.  Data are normalized to lean body 

mass. Oxygen consumption is presented as V(O2)/mouse/hour, n=10. (H) mRNA expression of BAT-enriched genes 

in inguinal WAT from 6-month-old WT and KO mice housed at standard housing conditions, n=4. (I,J) Hematoxylin 

and eosin staining (I) and mRNA expression levels of BAT nriched genes (J) in inguinal and epididymal WAT from 3-

month-old mice at thermoneutrality and fed a high-fat diet for 9 weeks, n=8. Values are mean ± SEM;  *p < 0.05. 
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Prdm3 compensates for the loss of Prdm16 to preserve brown fat fate in young 
mice 

Prdm16 is most closely related in sequence and structure to Prdm3 (also called 

Mecom [Mds1 and Evi1 complex locus]) 197.  We previously reported that Prdm3 

regulates white adipocyte differentiation through its association with C/EBPβ198.  To test 

whether Prdm3 could induce brown fat-selective genes, we used retrovirus to ectopically 

express Prdm16, Prdm3 (Evi1 isoform), or empty vector (MSCV-Puro) in C2C12 cells 

(Figure 6A).  In this context, both Prdm16 and Prdm3 robustly induced adipocyte 

differentiation and the expression of Adipoq, a general adipocyte marker (Figure 6A).  

Prdm16 and Prdm3 also potently activated Ucp1 and Pgc1α expression (Figure 6A).  

Interestingly, we also noted that Prdm3 expression in iBAT was higher in E18 embryos 

compared to 1.5-, 3- and 6-month-old mice (Figure S6A).  Prdm3 mRNA levels were 

also somewhat reduced in 6-month-old BAT relative to 3-month-old BAT.  Together, 

these data suggested that Prdm3 might be compensating for the loss Prdm16 during 

brown fat development. 
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Figure 6:  Prdm3 compensates for the loss of Prdm16 in juvenile BAT 

(A) C2C12 muscle cells were transduced with retrovirus expressing puromycin (ctl), Prdm3 or Prdm16 and induced to 

undergo adipocyte differentiation. Cultures were then analyzed by qPCR for their expression levels of Adipoq (adipocyte 

marker) and brown fat-selective genes (Pgc1α, Ucp1). (B) Gross appearance (top) and hematoxylin/eosin (HE) staining 

(bottom) of interscapular BAT from 3-month-old WT, Myf5-ΔPrdm16 (KO) and Myf5-ΔPrdm16/Prdm3 (DKO) mice. (C,D) 

Expression analysis of WAT-selective (C) and BAT-selective (D) transcripts in WT, KO, and DKO BAT (mean ± SEM, 

n=5-7, *p < 0.01). 
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To explore this possibility, we created mice lacking both Prdm16 and Prdm3 in 

the brown fat lineage by intercrossing Myf5-ΔPrdm16 mice with Prdm3flox mice 199.  At 3 

months of age, the iBAT of Myf5-ΔPrdm16/Prdm3 double knockout (DKO) mice was 

visibly paler than Prdm16-KO, Prdm3-KO or WT BAT (Figure 6B, S6B).  H&E staining of 

iBAT sections revealed that DKO adipocytes had larger lipid droplets than adipocytes in 

WT or Prdm16 KO tissue (Figure 6B).  Gene expression analysis showed that white fat-

selective genes were increased to a similar extent in KO and DKO iBAT relative to their 

levels in WT iBAT (Figure 6C).   However, the levels of brown fat-selective genes 

(including Pgc1α, Ucp1, Cidea, and Pparα) were dramatically reduced in DKO BAT at 

this age while only modestly reduced in Prdm16 KO BAT relative to WT controls.   We 

did not detect any changes in the expression of brown or white genes in Prdm3 KO 

relative to WT iBAT (Figure S6C).  Skeletal muscle-enriched genes were not significantly 

increased in DKO relative to WT BAT (Figure S6D). Notably, at two weeks of age, WT 

and DKO iBAT expressed nearly equivalent levels of most brown fat-selective genes, 

including Ucp1 (Figure S6D).  These results indicate that, while both factors are 

dispensable for establishing a BAT-specific gene program during embryonic 

development, Prdm16 or Prdm3 is required for the postnatal/adult expansion and 

maintenance of iBAT. 
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Figure S6.  Prdm16 or Prdm3 are required for the postnatal maintenance of brown fat fate 

(A) Prdm3 mRNA levels in interscapular brown adipose tissue (iBAT) of E18.5 embryos (n=5) and 1.5 to 6 month-old mice 

(as indicated (n=4/group). (B) iBAT depots from WT and Prdm3 Knockout (KO) (Myf5Cre) mice. (C) mRNA levels of 

Prdm3, Prdm16 and various adipocyte, BAT-selective and WAT-selective markers in the iBAT of 3-month-old WT (n=3) 

and Prdm3 KO animals (n=4). (D) mRNA levels of skeletal muscle-selective genes in iBAT of 3-month-old WT (n=7) and 

Myf5-ΔPrdm16/Prdm3 (DKO, n=5) mice. (E) mRNA levels of adipocyte and BAT-selective genes in iBAT of p14 (2-week-

old) WT (n=7) and DKO (n=4) mice.  All mRNA expression values are mean ± SEM, *p < 0.05.
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Discussion 

A detailed understanding of the mechanisms that control brown adipocyte 

development may reveal new approaches to reduce obesity and associated disorders.  

Prdm16, a zinc-finger containing transcription factor, is a key regulator of brown fat cell 

development and function.  Using conditional knockout mice, we found that Prdm16 is 

required for suppressing a white fat-selective gene profile in all BAT depots and for 

maintaining the brown fat-specific attributes of iBAT in adult animals. As a result, 

animals lacking Prdm16 in BAT have a dramatically reduced capacity to produce heat. 

The major BAT depots in mice arise from a multipotent cell population in the 

somites that expresses Myf5, Pax7 and En1 at early stages of development 13,76,189.  

Surprisingly, deletion of Prdm16 in this early embryonic precursor pool caused an adult-

onset loss of brown fat-specific characteristics in the interscapular depot, with little effect 

on the embryonic and early postnatal tissue.  BAT is a critical source of heat in eutherian 

mammals and, as such, is required for the survival of newborn and young mice in the 

cold.  Consequently, redundant mechanisms have likely evolved to safeguard early BAT 

development.   

Prdm16 is most closely related in sequence and structure to Prdm3.   Notably, 

Prdm3, like Prdm16, activates the expression of brown fat-selective genes when 

expressed in C2C12 muscle cells (Figure 6).  Importantly, simultaneous loss of both 

Prdm16 and Prdm3 in the Myf5Cre-descendent brown fat lineage caused a profound loss 

of iBAT fate in young mice, much earlier and more completely than observed with 

Prdm16-deficiency alone (Figure 6). Loss of Prdm3 alone had no detectable impact on 

BAT development, suggesting that Prdm3 has no non-redundant functions in BAT.    

Altogether, our results suggest that Prdm16 or Prdm3 is required for the function of 
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brown fat stem/precursor cells that mediate tissue expansion after birth. In other words, 

as BAT grows and undergoes turnover postnatally, the differentiation of new brown 

adipocytes requires the presence of Prdm3 or Prdm16.   The distinctive requirement for 

Prdm16 in iBAT maintenance, which is revealed as animals get older, correlates with a 

decline in Prdm3 levels (Figure S6).  Brown fat precursor cells also appear to lose 

Prdm3 expression after their isolation into culture (not shown), which could explain why 

Prdm16-deficient brown fat precursor cells display such a profound differentiation deficit 

ex vivo (Figure 4).  

The precursor cells in the embryo that give rise to brown adipocytes and skeletal 

muscle are developmentally related13,76,189. Interestingly, Prdm16 and several other 

factors have been shown to regulate a muscle/brown fat cell fate switch13,90,190,191,200-202.  

In particular, ectopic expression of Prdm16 in myogenic precursor cells promotes brown 

fat differentiation13,90,202, whereas knockdown of Prdm16 in brown preadipose cells 

increases muscle differentiation13.  Consistent with this, loss of the Ehmt1, a histone 

methyltransferase that mediates Prdm16 action in BAT, leads to the ectopic expression 

of a broad set of muscle-specific genes in iBAT190.  

Unexpectedly, we found that deletion of Prdm16 and Prdm3 in the brown adipose 

lineage did not elevate muscle-specific gene expression.  These results diverge from 

those of earlier studies in demonstrating that Prdm16 is, in fact, not required in brown fat 

cells to repress the expression of muscle genes.  The increased expression of muscle 

genes observed in other models of Prdm16-depleted brown adipocytes may be related 

to differences in mouse strain used, off-target effects of the shRNA, non-brown fat cell-

autonomous functions of Prdm16 or variable levels of muscle contamination during 

dissection.  While it will be important to investigate these possible explanations, our 

current findings using cell-type selective genetic ablation in vivo provide compelling 
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evidence that Prdm16 and Prdm3 are dispensable for the determination of brown fat 

versus muscle cell identity.   Given this, we speculate that there is additional redundancy 

in the Prdm16/Prdm3 pathway that activates the brown-selective program whilst 

suppressing skeletal muscle gene expression during the first wave of brown fat 

differentiation in the embryo.  Future studies should thus consider whether another Prdm 

family member or functionally related protein can participate in the same complexes as 

Prdm16/Prdm3 to recruit Ehmt1 during embryonic BAT development. 

Prdm16 is uniquely required at all stages of BAT development to repress the 

transcription of many WAT (versus BAT)-selective genes.  Deletion of Prdm16, but not 

Prdm3, caused a large increase in the expression of these genes in all the BAT depots 

we examined and at all ages.  It makes sense that Prdm3 lacks this repressive function 

since it is also expressed in all WAT depots 198. Our data suggest that Prdm16 represses 

the transcription of “white” genes (eg. Retn, Agt) by binding to their promoters and 

recruiting Ehmt1 to cause histone methylation (Figure 2).   The consequences of having 

these genes over-expressed in BAT remain unknown.   

A key question was whether the selective loss of Prdm16 activity in BAT had 

physiological consequences for the animals.  Indeed, we found that Myf5-ΔPrdm16 mice 

had a severely crippled thermogenic response to norepinephrine, the dominant 

physiological activator of BAT.  Despite this, Myf5-ΔPrdm16 mice did not gain more 

weight than their WT counterparts under a variety of conditions.  By contrast, mice 

lacking Prdm16 in all adipose cells (AdipoQ-ΔPrdm16) display a selective loss of beige 

fat activity, gain more weight and become much more severely insulin resistant than WT 

mice 188. Taken together, these results suggest that beige fat cells play a larger role than 

BAT in high fat diet-induced thermogenesis and in modulating systemic insulin 

sensitivity.  
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However, it is important to consider that alternative thermogenic mechanisms 

may be recruited in Myf5-ΔPrdm16 animals to compensate for their diminished iBAT 

function.   While there was no compensatory browning of WAT in Myf5-ΔPrdm16 mice, 

future studies should examine whether adaptive decreases in skeletal muscle efficiency 

could compensate for loss of BAT function as has been observed in other models of 

BAT-insufficiency 103.  Additionally, it is conceivable that BAT depots which express 

normal levels of Ucp1 in the absence of Prdm16 are recruited under the influence of high 

fat diet to compensate for defective iBAT function.   In this regard, surgical removal of 

iBAT has been shown to promote expansion of the remaining BAT depots in animals 

exposed to a low protein diet 203,204. On the other hand, the aBAT and cBAT in adult 

Myf5-ΔPrdm16 mice is pale and expresses high levels of white fat-specific genes, so it is 

not clear that these depots are functional even though they have normal amounts of 

Ucp1. 

The body weight and metabolic studies led us to discover that Myf5-ΔPrdm16 

mice are smaller than controls, involving proportionate decreases in fat mass, lean 

mass, and body length.  We do not know if the reduced stature of Myf5-ΔPrdm16 mice is 

secondary to the BAT defects.  Interestingly, BAT has been suggested to affect bone 

development and metabolism 205; the relevance of this will require further study.  It is 

also incumbent upon us to note that Myf5Cre activity traces to tissues other than BAT, 

including muscle (where Prdm16 is not expressed) and also regions in the developing 

brain 206,207.  Prdm16 may therefore regulate stature directly through its expression in 

non-adipose tissues. 

In conclusion, our analyses of Myf5-ΔPrdm16 and -ΔPrdm16/Prdm3 mice have 

revealed that Prdm16 and Prdm3 control the postnatal growth and maintenance of BAT. 

Moreover, genetic loss of iBAT activity in adult mice is not necessarily associated with 
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obesity or metabolic disease.  However, ectopically increasing BAT function remains 

likely to have therapeutic value, and our observation that Prdm16 and Prdm3 maintain 

brown fat identity will be important for designing persistent thermogenesis-based 

treatments. 

Materials and Methods 

Animals 

Myf5Cre (stock no. 010529) and Rosa26Cre (stock no. 004847) mice were obtained from 

the Jackson Laboratory.  Prdm16flox (Figure S1A) and Prdm3flox 199 conditional-null mice 

were generated by standard gene-targeting techniques.  Myf5Cre;Prdm16flox mice were 

backcrossed for 10 generations into the C57Black6 strain.  The 

Myf5Cre;Prdm16flox;Prdm3flox mice studied were on a mixed 129Sv/C57Black6 genetic 

background. Mice in weight-gain studies were fed a 45% high-fat diet (Research Diets).  

For norepinephrine injections, mice were first placed in metabolic chambers at 22°C, 

then sedated with 75 mg/kg Nembutal, followed 15 min later by injection with 1 mg/kg 

norepinephrine.  Data were collected until mice recovered from barbituate sedation. 

Temperature probes (IPTT 300; BioMedic Data Systems) were implanted into a 

subcutaneous position on top of the BAT of sedated mice.   All animal experiments were 

approved by the University of Pennsylvania’s Institutional Animal Care and Use 

Committee. 

 

Histology 

For immunohistochemistry, BAT was fixed in 4% PFA overnight, dehydrated, and 

embedded in paraffin for sectioning.  Sections were stained with hematoxyin and eosin; 

or were probed with antibodies for Ucp1 (R&D Systems; MAB6158). For transmission 
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electron microscopy, tissues were fixed with 2.5% glutaraldehyde, 2.0% 

paraformaldehyde in 0.1M sodium cacodylate buffer, pH7.4, overnight at 4°C; then post-

fixed with 2.0% osmium tetroxide for 1 hour at room temperature.  Thin sections were 

stained with uranyl acetate and lead citrate and examined with a JEOL 1010 electron 

microscope.  

 

Cell culture 

Primary brown preadipocytes were isolated as described previously (Seale et al., 2007).  

Preadipocytes were immortalized through retroviral expression of SV40 large-T antigen.  

For differentiation assays, confluent preadipocytes were treated with medium containing 

10% FBS, 0.5 mM isobutylmethylxanthine, 125 nM indomethacin, 1 µM dexamethosone, 

20 nM insulin, and 1 nM T3.  After 48 hrs, cells were switched to medium containing 

10% FBS, 20 nM insulin, and 1 nM T3.  Thermogenesis was stimulated by treatment 

with 10 µM isoproterenol.  Recombination in R26Cre/Prdm16floxEx9 adipocytes was 

induced by treating cells with 1 µM of 4-hydroxy-tamoxifen (Sigma) for 3 days in growth 

phase.  The GLP antagonist UNC 0646 (Tocris Bioscience) was added to medium 

throughout differentiation at 1 µM.  Oil-red-o staining and retrovirus production was 

performed as decribed previously 87.   

 

Real-Time PCR and Western blot analysis 

Total RNA was extracted by TRIzol (Invitrogen) followed by purification using PureLink 

RNA columns (Invitrogen). Isolated mRNA was reverse transcribed using the High-

Capacity cDNA Synthesis kit (Applied Biosystems) and used in real-time PCR reactions 

with SYBR Green master mix (Applied Biosystems) on a 7900 HT (Applied Biosystems).  

Tata-binding protein (Tbp) was used as an internal normalization control.  Primer 
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sequences are in Table S1. Protein extracts were prepared as previously described208.  

Proteins were separated in 4-12% Bis-Tris NuPAGE gels (Invitrogen), and transferred to 

PVDF membranes. Primary antibodies were: anti-Prdm16 87, anti-Pparγ (E8; Santa Cruz 

Biotechnology; sc-7273), anti-Agt (IBL; 28101), anti-Ucp1 (R&D Systems; MAB6158), 

and anti-pan-actin (Chemicon; MAB1501).  

 

Chromatin Immunoprecipitation (ChIP) 

For ChIP, fat depots from WT and KO mice (6 weeks old) were dissected and washed 

with PBS. Chromatin was purified from the isolated fat tissue and immunoprecipitated as 

previously described 208. Target enrichment was calculated as percent input and 

normalized to WT. Primer sequences are in Table S1. Anti-Prdm16 for ChIP was 

produced by inoculating rabbits with a Prdm16 peptide (RMDKRPEIQDLDSNPPC) to 

generate a polyclonal antiserum (Pierce).  Commercial antibodies were anti-GLP 

(Abcam; ab41969), anti-H3K27-Me3 (Abcam; ab6002), anti-H3K9-Me1 (Millipore; 17 

680) or anti-H3K9-Me2 (Abcam; ab1220).   

 

Microarray Analyses 

We used Agilent cDNA microarrays to profile gene expression in WT and Prdm16-

deficient BAT from young (6-week-old) and old mice (11-month-old) (GSE55080). To 

identify depot-specific genes for BAT and WAT, we compared data sets from epididymal 

WAT and iBAT (GDS2813) 87.  Gene expression comparisons were performed using 

Linear Models for Microarray Data 209.  Genes with fold-changes >2 and FDR <0.05 in 

each direction were selected as brown or white depot-specific genes.  Hierarchical 

clustering was done by Euclidean distance and Ward’s criterion using Fastcluster 210.  
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Gene ontology analysis was performed on differentially expressed genes in 

Myf5∆Prdm16 BAT from 6-week-old mice using HOMER 211. 

 

Mitochondrial DNA Quantification 

BAT was isolated and digested overnight in a buffer containing 100 mM Tris pH 8, 5 mM 

EDTA, 200 mM NaCl, 0.5% SDS, and 100 µg/ml proteinase K.  DNA was ethanol 

precipitated and resuspended in TE.  DNA was quantified by real-time PCR by 

comparing the ratios of Mt-Co1 and Ndufv1 212. Primer sequences are in Table I. 

 

Tissue O2 Consumption 

BAT was isolated, weighed, and 15-25 mg of tissue was minced in a buffer comprised of 

2% BSA, 1.1 mM sodium pyruvate, and 25 mM glucose in PBS.  Samples were placed 

in an MT200A Respirometer Cell (Strathkelvin) and oxygen consumption was measured 

for approximately 5 minutes.  Oxygen consumption was normalized to minced tissue 

weight. 

 

Fluorescence Activated Cell Sorting 

Excised tissue was digested as described above.  Cells were resuspended in DMEM 

with 5% FBS, and stained with Pdgfrα-APC (Biolegend, 135907) for 30 min at 4 °C in the 

dark.  Stained cells were sorted with BD FACS Aria. Debris and dead cells were 

excluded by forward scatter, side scatter and DAPI gating. The purity was greater than 

95%. Data analysis was performed using FlowJo.   

 

Statistical Analysis 
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All data derived from tissues are reported as mean ± SEM.  Data from cells are reported 

as mean ± standard deviation.  Student’s t-test was used to calculate significance (*p < 

0.05) using Excel or Prism software packages.  Data from mice in metabolic chambers 

was tested for significant differences using a Two-Way Anova (Prism).  

 

Accession Numbers 

The Gene Expression Omnibus (GEO) accession number for the mRNA expression data 

reported in this paper is: GSE55080. 

 

Primers used for real-time PCR and ChIP-PCR analysis 

  
 mRNA Fwd Rev 

Adipoq GCACTGGCAAGTTCTACTGCAA GTAGGTGAAGAGAACGGCCTTGT 

Agt AAGACCCTGCATGATCAGCTC  CTTCCTGCCTCATTCAGCATC  

Casq1 ATGAGGTGCTGGCCCTCCTCT GAGTCCACCAGGCCAAAGCCA 

Cidea TGCTCTTCTGTATCGCCCAGT  GCCGTGTTAAGGAATCTGCTG  

Cideb ATGGTGCTTGAGCAGGGCCAG ATCGAAGGTGATGCGGGCGAT 

Clstn3 AGCCGTGAGGTCATCGAGTGC CCTCCAGGGTGAGCAGGGACT 

Cox5b GCTGCATCTGTGAAGAGGACAAC CAGCTTGTAATGGGTTCCACAGT 

Cox7a1 CAGCGTCATGGTCAGTCTGT AGAAAACCGTGTGGCAGAGA 

Cycs GCAAGCATAAGACTGGACCAAA TTGTTGGCATCTGTGTAAGAGAATC 

Cyp2b10 TGCCCCTCTTGGGGAACCTCT CACAGGCCTTGGTCCCAGGTG 

Dgat1 CGGGACAAAGACGGGCGGAC AGGATCAGCATCACCACACACCA 

Dio2 CAGTGTGGTGCACGTCTCCAATC TGAACCAAAGTTGACCACCAG 

Errg TGGCTGACCGAGAGTTGGTGG AGCGATCGGTACACAACGCCG 

Fabp4 ACACCGAGATTTCCTTCAAACTG  CCATCTAGGGTTATGATGCTCTTCA  

Flnc ATGCCAGAGAGGCCATGCAGC CGGGTTTGAGCTTGGCCTTGG 

Fosl1 GAGACGCGAGCGGAACAA CTTCCAGCACCAGCTCAAGG 

Fosl2 AGCCTCCCGAAGAGGACAG AGGACATTGGGGTAGGTGAAG 

Gpr64 CCACACCAGCCCCATCTGTCC TCCATCTGGGATACTTGGGCTTCC 

Hsph1 ACGGACCTGCCGCTGAACATC TGCAGGAGCTCAGCACACAGT 

Krt19 ACCATCGAGGACTTGCGCGAC GCTCAGACGCAAGGCGTGTTC 

Limk1 GACCTGGGTCGCTCCGAATCC CCTTGCCCAGCACTTCCCCAT 

Mybpc1 CGCAGGGAATTATAGGTGTGAGGTC CCTGCATCCTCTTGACCTTCTCCA 

Myf5 CAGCCCCACCTCCAACTG GGGACCAGACAGGGCTGTTA 
Myh8 CTCCATGAGCCCGGAGTGCTG CGGCAGCCACTTGTAGGGGTT 
Mylpf GAGAAGGGCAGGAGCGGAAGG TGGCTGCAAAGGTGTCCCGAA 

Myod CGCCACTCCGGGACATAG GAAGTCGTCTGCTGTCTCAAAGG 

Myogenin AGCGCAGGCTCAAGAAAGTGAATG CTGTAGGCGCTCAATGTACTGGAT 

Myom2 CGGTCACAGGCTCGGGACAAG GGGCCCTGCTCATTCGGTCTT 

Neb AGGCAAAGGCTTCTTCCCCCA GGGCTTGCACCAGGACAGGAG 

Nnmt GGAGCCTTTGACTGGTCCCCA CCTGCTTGATTGCACGCCTCA 

Pck1 TGGCCATGATGAACCCCAGCC GAGGTGCCAGGAGCAACTCCA 

Pgc-1a CCCTGCCATTGTTAAGACC  TGCTGCTGTTCCTGTTTTC  

Ppara GCGTACGGCAATGGCTTTAT GAACGGCTTCCTCAGGTTCTT 

Pparg1 TGAAAGAAGCGGTGAACCACTG TGGCATCTCGTGTCAACCATG 

Pparg2 TGGCATCTCTGTGTCAACCATG  GCATGGTGCCTTCGCTGA  
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Prdm3 AACAAAACCTGGAGAGTGAGAG AATGCCTTGGGACACTGATC 

Prdm16 CAGCACGGTGAAGCCATTC  GCGTGCATCCGCTTGTG  

Retn CTGTCCAGTCTATCCTTGCACAC  CAGAAGGCACAGCAGTCTTGA  

Ryr1 GCACTCATGCCCGCTCCCTAT GGCCTTGGTCCTCAGTGAGCC 

Sgk2 GGTGGTGCTTAGGGGCAGTCC GAGGTCACAGGCAGCCACTGT 

Tbp GAAGCTGCGGTACAATTCCAG  CCCCTTGTACCCTTCACCAAT  

Thbd CAGGGGCCCAATCCATGTCCC CGGATCCAGAAGCTCCACGCA 

Tpm2 GGGGACAGAGGACGAGGTGGA GGCGGTTCAGAGAGGCCACAT 

Trfr2 GAGCGACCTCCAGGCCATGTT TGGCGCGAGAGCTTATCGAGG 

Trim14 TTGGAAGACGCCGGGGAAAGG GGCCAGTACTTCCTCTTCATCCAGG 

Tubb2a GTGAGGTCGGGACCATTCGGC GACAGAGTCCACCAGCTCGGC 

Ucp1 ACTGCCACACCTCCAGTCATT  CTTTGCCTCACTCAGGATTGG  

Ugdh GCCGATGTGGAAGAGGTGGCA CGGGCAGATTCAGAGCCTCACA 

 
ChIP     

Ins GGACCCACAAGTGGAACAAC GTGCAGCACTGATCCACAAT 

Retn -2kb AGCACAAAGGTGGGGGATGGT AACCACAGAACAGGAGGCCCAT 

Retn -1.5kb TGGACAGAGGGGTGTCAGGGG GCATTGCTGGAGACCTGAGGTGA 

Retn -1kb CAGGAGTTCAAGGTCGTTCTTGGC GCTGTTACACTGGCCTCGATGT 

Retn -0.5kb CTCTTGCTTAGCCCCACCCCC ACCACACCACCAGACCCTCAC 

Retn P. AGACAACGTCCTGAGAAGACAATC CCATCCTGCCTTGGATAATAAGTA 

Retn 0.5kb GGAACAGACCCGCCCAGCTAC GGGGCCTTTTGGAGTGAGGGG 

Retn 1.0kb ATGGGTGCCCCTACACCATGC GCAGGGGGCGATCTTTGGGT 

Retn 1.5kb CATCTCTGCCTCCCACCTGCC GCGGGCTGCTGTCCAGTCTAT 

Retn 2kb TGGACCTTGGCAGGACTGAGGT ATCCTCTGCCCCAGGTGGTGT 

Agt P. CTTGGTCAAGCCTGGATTCTC CCAACCTAGACAAGCACAGCTATC 

 
Mito DNA     

Ndufv1  CTTCCCCACTGGCCTCAAG CCAAAACCCAGTGATCCAGC 

MT-CO1 TGCTAGCCGCAGGCATTAC GGGTGCCCAAAGAATCAGAAC 
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CHAPTER 3:  PRDM16 binds MED1 and controls chromatin 
architecture to determine a brown fat transcriptional program 
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Abstract 

PRDM16 drives a thermogenic gene program in fat cells, but the mechanism by which 

PRDM16 activates genes was unknown. Through ChIP-seq analyses in brown adipose 

tissue (BAT), we reveal that PRDM16 is strongly enriched at a broad set of BAT-

selective genes. Importantly, PRDM16 physically binds to MED1, a component of the 

Mediator complex, and recruits it to BAT-selective super-enhancers. Loss of PRDM16 

reduces MED1 and RNA Pol II binding at PRDM16-target sites; this is associated with a 

fundamental change in chromatin architecture at key BAT genes. Together, these data 

indicate that PRDM16 controls chromatin architecture and super-enhancers in BAT. 
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Introduction 

Obesity is a leading cause of preventable death in the U.S. due to its link to many 

diseases, including type 2 diabetes, cardiovascular disease, stroke and certain cancers 

2
. White adipose tissue (WAT), which expands in obesity, is specialized to store energy 

in the form of lipid whereas brown and beige adipose tissue expend energy as heat 187. 

High levels of brown/beige fat activity protect animals against many of the harmful 

effects of a high fat diet, including obesity and insulin resistance. In humans, 

brown/beige fat activity levels also correlate with reduced adiposity. Thus, elucidating the 

molecular pathways that regulate brown/beige fat activity may reveal new approaches to 

treat obesity and related diseases.  

PR (PRD1-BF1-RIZ1 homologous)-domain containing 16 (PRDM16), a zinc-

finger containing transcription factor, is a critical molecular determinant of brown/beige 

fat cell fate. Ectopic expression of PRDM16 in fibroblasts or muscle precursors drives 

brown fat cell differentiation 26,87,90,213.  PRDM16 is also required for beige fat 

differentiation and for the maintenance of BAT fate in adult mice 188,214. PRDM16 induces 

genes that are expressed at higher levels in brown relative to white adipocytes (BAT-

selective) such as Ucp1, Pparγ and Ppargc1a, while also suppressing white fat- (versus 

brown fat- selective genes (WAT-selective) 214,215. However, the mechanism(s) by which 

PRDM16 stimulates BAT-selective gene expression was unknown. 

We show here that PRDM16 binds strongly to a broad set of BAT-selective 

genes in BAT.  Genetic loss of PRDM16 reduced RNA Polymerase II (Pol II) levels at 

BAT-selective genes and caused an associated decrease in gene expression levels. 

PRDM16-deficiency did not affect PPARγ or C/EBPβ binding at BAT-selective genes 

and caused only a mild decrease in the levels of H3K27-Acetylation (H3K27-Ac), a 
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chromatin mark that is associated with active transcription. By contrast, PRDM16 was 

critically required for the binding of MED1, a component of the Mediator complex, to 

BAT-selective genes. Notably, PRDM16 binds directly to MED1 through its zinc-finger 

domains. Loss of PRDM16/MED1 in brown fat cells disrupted the chromatin architecture 

at Ppargc1a and Pparγ, two crucial PRDM16-target genes. Finally, we found that 

PRDM16 marks and regulates the activity of super-enhancers (SE), large clusters of 

transcriptional binding sites that drive the expression of cell identity genes 216. Taken 

together, our results reveal that PRDM16 recruits MED1 to SE in the control of BAT 

identity. 

Results and Discussion 

PRDM16 binding is enriched at BAT-selective genes 
 

PRDM16 stimulates BAT-selective gene expression, but whether PRDM16 acts 

directly at these genes was unknown. To investigate this, we analyzed the genome-wide 

binding profile of PRDM16 in BAT using chromatin immunoprecipitation followed by 

deep sequencing (ChIP-Seq) (Figure S1A). A majority of the PRDM16-binding sites 

identified in wildtype (WT) BAT were lost in Prdm16-knockout (KO) tissue (Figure S1B), 

indicating that the ChIP antibody was specific. The genomic distribution of PRDM16 

binding was typical for transcription factors with a large proportion of binding sites 

located within intergenic and intronic regions (Figure S1C).  

 There were numerous PRDM16 binding sites at classic BAT-selective genes, 

such as Ucp1, Pparγ, Cidea and Ppargc1a (Figure 1A). These PRDM16-bound sites 

also displayed enriched levels of the activating histone mark H3K27-Ac in BAT relative 

to WAT. As previously reported, PRDM16 was also bound at certain WAT-selective 
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genes, including Agt and Retn 214,215 (Figure S1D). Upon genome-wide analysis, we 

found that PRDM16 binding was, in general, more highly enriched at BAT-selective 

genes than at WAT-selective or common genes (Figure 1B). BAT-selective genes also 

contained more PRDM16 binding sites and these sites were located closer to the 

transcriptional start site (TSS) (Figure 1C and 1D). Consistent with these findings, 

PRDM16-binding levels were positively correlated with RNA Pol II levels at BAT-

selective genes (Figure S1E). Finally, PRDM16-binding was globally enriched at BAT-

selective regions of H3K27-Acetylation (Figure S1F). These results suggest that 

PRDM16 acts directly in chromatin to regulate the transcription of BAT-selective genes. 

 

 

Figure 1. PRDM16 binding is 
enriched at BAT-selective 
genes 
(A) ChIP-seq profiles in reads per 

million (RPM) for PRDM16 in BAT 

and H3K27-Ac in BAT and WAT at 

Ucp1, Pparα, Cidea and 

Ppargc1a. (B) Box plot comparing 

PRDM16 ChIP signal (RPM) 

around BAT-selective (BAT-sel.), 

common and WAT-selective 

(WAT-sel.) genes (***p < 10−20). 

(C) Box plot comparing the 

distance (kb) of the closest 

PRDM16 binding site from the 

transcriptional start site (TSS) of 

BAT-sel., common or WAT-sel. 

genes (***p < 10−25). (D) 

Proportion (%) of BAT and WAT-

selective genes grouped by 

number of PRDM16 binding sites 

within 100 kb of the TSS. (E) De 

novo motif analysis of PRDM16-

binding sites. 
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An important question is whether PRDM16 binds to DNA directly or is recruited to 

the genome by other factors. De novo motif analyses showed that consensus sequences 

for EBF, C/EBP and PPAR (DR1 motif) were enriched at PRDM16 binding sites (Figure 

1E). By contrast, the putative PRDM16/PRDM3 binding motif 217 was poorly represented 

in the full set of PRDM16-binding regions. These results suggest that PRDM16 is 

recruited to chromatin in BAT through its interaction with DNA-binding partners, including 

C/EBPβ and PPARy 13,90. This is consistent with earlier mutational studies which 

indicated that the DNA-binding activity of PRDM16 was dispensable for much of its 

action in fat cells 87.  

Figure S1. PRDM16 is 

preferentially bound to BAT-

selective genes 

(A) Scatter plot comparing 

PRDM16 ChIP-seq data from 

independent biological replicates 

(B) Scatter plot comparing 

PRDM16 ChIP-seq signal in 

wildtype (WT) and Prdm16 KO BAT 

using pooled replicates. (C) Pie 

chart portraying the relative 

enrichment of PRDM16 in different 

genomic regions (D) ChIP-seq 

stack-height profiles in reads per 

million (RPM) for PRDM16 in BAT 

and H3K27-Ac. in BAT and WAT at 

the Agt and Retn loci.(E) Box plot 

comparing Pol II (RPM/kb) within 

gene bodies of BAT-sel., common and WAT-sel. genes with  ncreasing number 

of proximal PRDM16 binding sites (F) Average number of PRDM16 binding sites 

(per 1Mbp) at BAT-sel., common and WAT-sel. regions of H3K27-Ac. enrichment 



70 

 

PRDM16 recruits MED1 to BAT-selective genes 

 

Prdm16-deficiency causes a severe loss of BAT function in adult mice 214. At a 

global scale, Prdm16-deficiency reduced the expression levels of BAT-selective genes, 

increased WAT-selective gene levels, and had no effect on the expression of common 

genes (Figure 2A). RNA Pol II binding was significantly reduced at BAT-selective genes 

in KO relative to WT BAT, suggesting that PRDM16 determines mRNA expression levels 

by affecting transcription (Figure 2B). We first postulated that PRDM16 may act to 

stabilize the association of its direct DNA-binding partners, PPARy and C/EBPβ 13,90 with 

chromatin. However, ChIP-PCR experiments revealed no difference between WT and 

KO in the binding levels of PPARy or C/EBPβ at BAT-selective genes (Figure S1A,B). 

Moreover, PRDM16-deficiency caused only a modest, albeit significant, reduction in 

H3K27-Ac levels at BAT-selective genes (Figure 2C).  
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Figure 2. PRDM16-deficiency reduces MED1 levels at BAT-selective genes  

(A) Box plot depicting changes in gene expression of BAT-sel. genes (red), common genes (gray) and WAT-sel. genes 

(white) in PRDM16 knockout (KO)/Wildtype (WT) BAT (***p < 10−100). (B) Box plot showing changes in Pol II levels within 

the gene body of BAT-sel., common and WAT-sel. genes in Prdm16 KO/WT BAT (***p < 10−70). (C) Box plot showing 

H3K27-Ac levels within 100kb of the transcriptional start site (TSS) of BAT-sel., common and WAT-sel. genes in Prdm16 

KO/WT BAT. (D) Box plot depicting MED1 occupancy within 100kb of the TSS of BAT-sel., common, and WAT-sel. genes 

in Prdm16 KO/WT BAT (***p < 10-15). (E) ChIP-seq profiles for: PRDM16 (blue), Pol II in WT and KO BAT (green), MED1 

in WT and KO BAT (red) and H3K27-Ac in WT and KO BAT (magenta).  
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The Mediator complex plays a crucial role in regulating transcription, in part 

through bridging of the transcription factor-bound enhancer regions with the general 

transcriptional machinery and RNA Pol II 218. Of particular interest, the MED1 subunit of 

Mediator regulates the function of important transcription factors in adipocytes, including 

PPARy, PPARGC1a, C/EBPβ and Thyroid Receptor (TR) 219; which, themselves, also 

cooperate with PRDM16. ChIP-seq analyses revealed a striking reduction in MED1 

levels at BAT-selective, PRDM16-target sites in KO relative to WT BAT (Figure 2D, 

S2C). For example, there was diminished MED1 (and Pol II) binding with only modest 

decreases in H3K27-Ac levels at Ucp1, Pparα, Cidea and Ppargc1a (Figure 2E, S2D).  

 

 

Figure S2. Loss of PRDM16 does 

not affect PPARγ or C/EBPβ binding 

levels at BAT-selective genes 

(A) ChIP-qPCR analysis of PPARy 

binding at BAT-sel. genes in WT and 

Prdm16 KO BAT(mean ± SEM; n = 3; 

*p < 0.05) (B) ChIP-qPCR analysis of 

C/EBPβ binding at BAT-sel. genes in 

WT and Prdm16 KO BAT(mean ± 

SEM; n = 3; *p < 0.05) (C) Box plot 

comparing MED1 occupancy changes 

upon Prdm16 KO in BAT at sites that 

possess or lack PRDM16 binding 

(***p < 10−10) (D) ChIP-qPCR analysis 

of MED1 levels at BAT-sel. genes in 

WT and Prdm16 KO BAT (mean ± 

SEM; n = 3; *p < 0.05,**p<0.01) 
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We next tested whether PRDM16 could increase the recruitment of MED1 to 

BAT-selective genes. To do this, we transduced Prdm16 KO brown adipocytes with 

PRDM16-expressing or control retrovirus. Prdm16 KO adipocytes, while expressing 

normal levels of general adipogenic genes, displayed reduced binding levels of MED1 to 

BAT-selective genes (Ucp1, Cidea and Pparα) and a corresponding decrease in the 

expression levels of these genes (Figure S3A)214. Ectopic expression of PRDM16 in KO 

cells promoted the binding of MED1 to BAT-selective genes and activated the 

expression of these genes (Figure 3A, S3B). To determine whether MED1 was required 

for the expression of BAT-selective genes, we acutely knocked-down MED1 in mature 

brown adipocytes using siRNA. The depletion of MED1 caused a sharp decrease in the 

expression of BAT-selective genes while also reducing the expression levels of some 

common adipocyte genes (Figure S3C).  

The PRDM16-dependent binding of MED1 to BAT-selective genes raised the 

question of whether PRDM16 physically interacts with MED1. Using co-

immunoprecipitation assays, we detected a robust interaction between MED1 and 

PRDM16 in brown adipocytes (Figure 3B). In vitro binding studies using bacterially 

purified GST-PRDM16 protein fragments revealed that MED1 interacts with the two zinc 

finger domains of PRDM16 (242-454 and 881-1038) (Figure 3C, S3D). Taken together, 

these data demonstrate that PRDM16 plays a critical role in physically recruiting MED1 

to BAT-selective target genes in adipocytes. 
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Figure 3. PRDM16 binds to MED1 and recruits it to BAT-selective genes 

 (A) ChIP-qPCR analysis of MED1 binding at BAT-selective genes in Prdm16 KO adipocytes that express PRDM16 or a 

control (puro) virus. 18s was used as a non-specific binding site (mean ± Stdev; n = 3; *p < 0.05, **p<0.01). (B) Co-

immunoprecipitation of MED1 and PRDM16 in brown adipocytes that express control or Flag-PRDM16. (C) Fluorography 

of GST fusion proteins containing different regions of PRDM16 that had been incubated with in vitro translated and S35-

labeled MED1. (D) 3C analysis of the Ppargc1a and Pparα loci in WT and Prdm16 KO brown adipocytes and 3T3-L1 

white adipocytes. Map of loci shows location of restriction sites and PCR primers used. *anchor primer which resides on a 

fragment containing the transcriptional start site (TSS) (mean ± Stdev; n = 3; *p < 0.05) 

 

In young animals (< 2 months) PRDM3 compensates for the loss of PRDM16 to 

activate BAT-selective genes214. This suggested that PRDM3 may also bind and 

cooperate with MED1 at BAT genes. As hypothesized, PRDM3, like PRDM16, bound to 



75 

 

MED1 in brown preadipocytes (Figure S3E). Moreover, there were substantially lower 

levels of MED1 at BAT-selective PRDM16-target genes (Ucp1, Cidea, Pparα and 

Pparc1a) in Prdm16/Prdm3 double-KO (dKO) BAT relative to WT or Prdm16 KO BAT 

(Figure S3F). These results indicate that PRDM3 and/or PRDM16 can participate in the 

recruitment of MED1 to BAT-selective genes. 

Figure S3. PRDM3 

binds and recruits 

MED1 to BAT-selective 

loci 

(A) ChIP-qPCR analysis 

of MED1 binding at BAT-

selective genes in 

wildtype (WT) and 

PRDM16 knockout (KO) 

adipocytes. Ins1 was 

used as a non-

specificbinding site 

(mean ± Stdev; n = 3; *p 

< 0.05, **p<0.01, 

***p<0.001). 

(B) Relative mRNA 

levels of BAT-sel. genes 

in PRDM16-deficient 

brown adipocytes that 

were transduced with 

control or PRDM16 expressing virus. (mean ±Stdev; n = 3; *p < 0.05, **p<0.01, ***p<0.001 ) (C) Relative mRNA levels of 

adipogenic and BAT-sel. genes from differentiated primary brown adipocytes that were transfected with siScr or siMed1. 

(mean ± Stdev; n = 3; *p < 0.05, **p<0.01, ***p<0.001 ) (D) Commassie blue staining of GST and GST-PRDM16 fusion 

proteins (E) Co-immunopreciptation of MED1, PRDM16 and PRDM3 from PRDM16 deficient pre-adipocytes that express 

control, Flag-PRDM16 or Flag-PRDM3 (F) ChIP-qPCR analysis of MED1 binding at adipogenic and BAT-sel. genes in 

WT, Prdm16 KO and Prdm16/Prdm3 double KO (dKO) BAT. 18s and Ins1 were used as non-specific binding sites (mean 

± SEM; n = 3; *p < 0.05, **p<0.01) 
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PRDM16 controls higher order chromatin structure  
 

We hypothesized that PRDM16 was essential for promoting long range 

chromatin interactions between gene regulatory regions and their associated promoters. 

To test this, we used chromosome conformation capture (3C) assays to examine the 

effect of PRDM16 on the chromatin architecture at Ppargc1a and Pparα. At Ppargc1a, 

the region surrounding two PRDM16/MED1 binding sites (-34 kb to -46 kb) interacts with 

the promoter in WT brown adipocytes but not in 3T3-L1 white adipocytes (Figure 3D). 

The interactions between the promoter and the -34 kb and -46 kb regions were 

significantly decreased in PRDM16 KO adipocytes, whereas the interaction between the 

promoter and the -41 kb region was unaffected. These results suggest PRDM16 

regulates the assembly of an active chromatin hub. Similarly, at Pparα, there were 

higher levels of interaction between the promoter and 2 upstream regions (containing all 

three sites of PRDM16/MED1 enrichment) in WT relative to Prdm16 KO adipocytes. 

(Figure 3D). Altogether, these results show that PRDM16 is required for the proper 

assembly of higher order (and active) chromatin structure at critical BAT genes.  

Previous studies showed that PRDM16 binds and regulates the adipogenic 

transcription factors PPARy and C/EBPβ 87,90. Here, we noted that PRDM16 activity was 

not required to promote or stabilize the binding of these factors to BAT-selective genes. 

This implies that PRDM16 does not play a crucial role in making the chromatin 

competent for DNA-binding or for stabilizing transcription factor complexes at enhancers. 

Rather, our data argue that PRDM16, presumably through interacting with 

MED1/Mediator, regulates long range interactions between enhancer elements and 

promoters. In support of this, Mediator is known to bridge enhancer-bound 
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transcriptional complexes with the general transcriptional machinery and to promote the 

formation of pre-initiation complexes 218,220.  

 

Prdm16 controls BAT-selective super-enhancers 
 

Cell type-specific identity genes are often regulated by large enhancer regions 

called super-enhancers (SE) that are bound by master-transcription factors 216. SE have 

higher levels of MED1 binding and multiple MED1 binding sites as compared to typical 

enhancers (TE) 216. Given the role of PRDM16 in controlling BAT identity, we tested 

whether PRDM16 was associated with SE activity. We used the genome-wide binding 

profile of PPARy, the master transcriptional regulator of white and brown adipocytes, to 

define a set of constituent enhancers. Then, using the previously described method 216, 

we identified 507 SE and 15,712 TE in BAT and assigned them to the nearest gene 

(Figure 4A). As anticipated, genes associated with a nearby SE were expressed at 

higher levels as reflected by higher levels of Pol II in gene bodies (Figure S4A). Many 

BAT-selective genes had a nearby SE, including Prdm16, Pparα, Ppargc1a, Ucp1 and 

Cidea. Brown fat differentiation, fat cell differentiation, oxidative reduction and fatty acid 

metabolic process were identified by GO analysis as the top scoring gene categories 

associated with SE-linked genes in BAT (Figure S4B).  

Remarkably, 78% of BAT SE contain at least one PRDM16 binding site and the 

strength of PRDM16 binding was higher at SE than at TE (Figure 4B,C). SE were much 

more sensitive than TE to the loss of PRDM16 (Figure 4D). Out of 507 SE in WT BAT, 

more than half of these (277) were lost (defined by reduction in MED1 levels) in 

PRDM16 KO BAT while only 15 SE were induced (Figure 4E). The lost SE were linked 

to genes that had reduced expression levels in Prdm16 KO relative to WT BAT, 
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including Ucp1, Pparα, Cidea and Ppargc1a (Fig 4F). Globally, ~50% of the SE-linked 

BAT-selective genes had decreased levels in Prdm16 KO BAT (Figure 4G).  

 

 

Figure 4. PRDM16 

controls BAT-

selective Super 

Enhancers 

(A) MED1 ChIP-seq 

signal (normalized tag 

count) across 16,219 

identified enhancers in 

BAT. (B) Pie chart 

showing the number of 

super enhancers (SE) 

that are bound by 

PRDM16. (C) Box plot 

comparing PRDM16 

binding strength 

(RPM) at typical 

enhancers (TE) and 

SE (***p < 10−25). (D) 

Metagene 

representation of 

MED1 signal at TE and SE in Wildtype (WT) (red) and PRDM16 knockout (KO) (blue) BAT. X-axis schematizes the start 

and end of enhancers. The y-axis is the average signal in RPM. (E) Pie chart showing BAT SE that are lost (blue), 

induced (red) or unchanged (gray) by PRDM16-deficiency. Lost or induced was defined as ≥2 fold change of MED1 

signal. (F) Scatter plot showing correlation between SE lost in PRDM16 KO BAT and gene expression levels in BAT 

versus WAT (X-axis) and PRDM16 KO versus WT BAT (Y-axis). (G) Proportion of BAT-sel., common or WAT-sel. genes 

that have reduced gene expression in PRDM16 KO BAT and are associated with lost SE. (H) Model for PRDM16-

mediated gene activation. PRDM16 interacts with enhancer regions at BAT-selective genes through C/EBPβ and PPARy. 

PRDM16 recruits MED1/Mediator to bridge enhancer-bound transcription factors with RNA Pol II/the general transcription 

machinery. 
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SE activity is regulated by BRD4, a bromodomain protein that interacts with 

Mediator 221. To examine if the transcription of SE-linked, BAT-selective genes is 

dependent on BRD4 activity, we treated brown adipocytes with JQ1, an inactive analog 

(JQ1-), or vehicle control for 6 hours. We then measured the expression levels of the top 

eight BAT-selective genes that had a linked SE. The levels of 7/8 of these genes were 

decreased by JQ1, whereas several highly expressed TE-associated genes were 

unaffected (Figure S4C). These results suggest that PRDM16-activated genes in BAT 

depend on BRD4 function and are thus likely controlled by SE. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. PRDM16 regulates Super Enhancers in BAT 

(A) Average Pol II profile (RPM) around gene bodies of genes associated with super enhancers (red), typical enhancers 

(black), or genes without proximal MED1 occupancy (grey). Insert – box plot representation of Pol II signal (RPM/kb) of 

same data (***p < 10−50) (B) DAVID gene ontology (GO) analysis for super enhancer-associated genes in WT BAT 

(C) Relative mRNA levels of genes marked by SE or TE in differentiated primary brown adipocytes that were treated with 

either vehicle, JQ1 or an inert JQ1 analog (JQ1(-)) (mean ± Stdev; n = 6; *p < 0.05, **p<0.01, ***p<0.001 ) 
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In summary, our data suggests that PRDM16 binds to chromatin at BAT-

selective genes via PPARy and C/EBPβ (and likely other factors) where it acts to recruit 

MED1/Mediator (Figure 4H). In our model, the chromatin-bound PRDM16/MED1 

enhances transcription by: (1) establishing interactions between promoters and SE; and 

(2) increasing Pol II and promoting pre-initiation complex assembly at promoter regions.  
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Materials and Methods 

Animals 

Myf5Cre mice (stock number 010529) were obtained from the Jackson Laboratory. 

Prdm16flox and Prdm3flox were previously described 199,214. Adult Prdm16 KO mice were 

studied at ≥ 9 months of age. All animal experiments were approved by the University of 

Pennsylvania’s Institutional Animal Care and Use Committee. 

Cell Culture 

WT and Prdm16 KO brown adipocytes were cultured and differentiated as described 

before 214. siMed1 (Dharmacon L-040964-01) was electroporated into primary brown 

adipocytes at 6 days of differentiation using the Lonza Amaxa Nucleofector II (program 

A-033) and nucleofector kit V (VCA-1003). Brown adipocytes were treated with 500 nM 

of JQ1 and its inert analog JQ1(-) for 6 hr. 

Real-Time qPCR  

Total RNA was extracted by TRIzol (Invitrogen) followed by purification using PureLink 

RNA columns (Invitrogen). Isolated mRNA was reverse transcribed using the High-

Capacity cDNA Synthesis kit (Applied Biosystems) and used in real-time qPCR reactions 

with SYBR Green master mix (Applied Biosystems) on a 7900 HT (Applied Biosystems). 

Tata-binding protein (Tbp) was used as an internal normalization control.  

 
Chromatin Immunoprecipitation  

ChIP was performed as previously described 214,222.  

ChIP-seq data processing 

ChIP-seq reads for Prdm16, H3K27-Ac, Pol II, and Med1 were aligned to mouse 

genome (mm9) using Bowtiee with options, ‘-k 1 -m 1 --best --strata’ 223. All redundant 
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reads were discarded except one per genomic position. Peak-calling for PRDM16 and 

MED1 was performed using Homer 224. After initial calling, all peaks were resized to 200 

bp, and a 1 RPM cut-off was applied. PRDM16 binding sites were more rigorously 

defined as follows. After initial peak-calling, reproducibility of replicates was assessed by 

scatter plot before pooling. Final peak-calling was performed for pooled WT using pooled 

KO samples as background control. For H3K27-Ac analysis, we performed differential 

peak-calling for BAT and WAT samples using one depot as a ChIP sample and the other 

as a control, and vice-versa. In all cases, any genomic regions that overlapped with 

ENCODE blacklist regions 225 were eliminated. De novo motif search was done within 

200 bp region around peak centers using Homer.  

Genome-wide analysis comparing depot-selective genes 

‘Bedtools’ 226 was used for genomic region handling. When comparing PRDM16 signal 

around depot-selective genes, we used Fat Pad DNase hypersensitive (DHS) sites 

downloaded from ENCODE 225 as an unbiased set of regulatory elements, and PRDM16 

ChIP-seq signals at DHS within 100 kb of TSS were summed for each gene. H3K27-Ac 

levels were also compared between depot-selective genes anchoring on DHS sites, 

where H3K27-Ac ChIP-seq signal was measured in 2 kb window around DHS. Gene 

transcriptional changes were measured as Pol II ChIP-seq signal in gene bodies 

excluding first 500bp from TSS. To compare MED1 occupancy changes, two sets of 

MED1 peaks from WT and KO were pooled and any overlapping peaks whose center-to-

center distance is < 100bp were merged into a single peak.  

Super enhancer (SE) analysis 

Previously published PPARy ChIP-seq data in BAT was downloaded from GEO 156. 

ROSE 221,227 was used for SE calling, where enhancers were ranked by MED1 signal. A 
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gene was associated with enhancers (typical or super) within 100 kb region around TSS, 

where multiple associations were allowed. Gene ontology analysis was done using 

DAVID 228. 

Chromatin Conformation Capture (3C) 

The 3C procedure was performed as described 229 using WT and Prdm16 KO brown 

adipocytes or 3T3-L1 adipocytes at day 8 of differentiation. Briefly, 20 µg of fixed nuclei 

was digested with Bgl II (Ppargc1a) or EcoR1 (Pparα). Half (10 µg) of the digested 

chromatin was used for the ligation while the other half was set up identically, but without 

T4 DNA ligase. The PCR products were separated on 1.5% agarose gels, stained with 

SYBR Gold, imaged with the Typhoon Phosphorimager system (GE Healthcare) and 

quantified using ImagerQuant TL (GE Healthcare). The ligation efficiency was calculated 

as the ratio of ligated products to the corresponding random ligation of a mouse BAC 

clone; this was normalized to 3C analysis at a housekeeping locus (Ercc3) 230.  

Protein Interaction Analyses 

Protein interactions were assayed as previously described 13,215. Protein extracts were 

prepared in a buffer containing 20mM Tris, 10% glycerol, 200mM NaCl, 2mM EDTA, 

0.1% NP-40, 10mM NaF and protease inhibitors. Flag-M2 beads (Sigma A2220) were 

added to the lysate and subsequently washed 5 times. Proteins were separated in 4%–

12% Bis-Tris NuPAGE gels (Invitrogen) and transferred to PVDF membranes. Primary 

antibodies were anti-PRDM16 87, MED1 (Bethyl A300-793A) and M2-HRP (Sigma 

A8592). For In vitro binding assays, GST-PRDM16 fragments were prepared as 

described 215. S35 labeled MED1 was prepared using the TNT reticulocyte lysate kit 

(Promega L5020). Equal amounts of GST-PRDM16 proteins were incubated overnight at 

4°C with in vitro translated MED1 in a buffer containing 20mM HEPES pH 7.6, 150mM 
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KCl, 2.5mM MgCl2, 0.05% NP40 and 10% glycerol. GST beads were washed three 

times. Bound proteins were separated in 4%–12% Bis-Tris NuPAGE gels (Invitrogen), 

soaked in a solution containing 4% glycerol, 46% MeOH and 10% acetic acid for 30 

minutes, followed by soaking in Amplify (GE/Amersham NAMP 100) for 30 minutes. The 

gel was dried and analyzed via fluorography.  

 

Statistical Analysis 

All ChIP-qPCR data derived from tissue is reported as mean ± SEM. Data from cell lines 

and primary cells is reported as mean ± SD. Student’s t test was used to calculate 

significance in ChIP-qPCR and tissue culture experiments (*p < 0.05, **p<0.01, 

***p<0.001) using Excel. 

Primers used for real-time qPCR and ChIP-qPCR analysis 

mRNA Fwd Rev 

Aspg ATTGCCTTCAGG GGCTGTGAC CTGGCCCAGCACATAGGACAGT 

C/ebpβ ACGACTTCCTCTCCGACCTCT CGAGGCTCACGTAACCGTAGT 

Cidea  TGCTCTTCTGTATCGCCCAGT  GCCGTGTTAAGGAATCTGCTG 

Cox5b  GCTGCATCTGTGAAGAGGACAAC  CAGCTTGTAATGGGTTCCACAGT 

Cox7a1  CAGCGTCATGGTCAGTCTGT  AGAAAACCGTGTGGCAGAGA 

Cpn3 GCCGACATCCCTCCGGACATC TCCAGGTGACGGACCTGAGTGT 

Cycs  GCAAGCATAAGACTGGACCAAA  TTGTTGGCATCTGTGTAAGAGAATC 

Fabp4  ACACCGAGATTTCCTTCAAACTG  CCATCTAGGGTTATGATGCTCTTCA 

Kcnk3 GCTTCGCCG GCTCCTTCTACTT CTAGTGTGAGCGGGATGCCCAG 

Med1 TGCTTGGAAAATTCCTCAAAA GATGTCAAAGTGGCTCACCA 

Ntrk3 ATGCGAGCCCTACACCTCCTA GACTGCTATGGACACCCCAAA 

Pank1 CGCTGTTCGCCCAGCATGATTC CAGCTTAACCAGGGTTCCACCGA 

Ppargc1a CCCTGCCATTGTTAAGACC  TGCTGCTGTTCCTGTTTTC 

Pparα GCGTACGGCAATGGCTTTAT  GAACGGCTTCCTCAGGTTCTT 

Pparγ2  TGGCATCTCTGTGTCAACCATG  GCATGGTGCCTTCGCTGA  

Prdm16  CAGCACGGTGAAGCCATTC  GCGTGCATCCGCTTGTG  

Tbp GAAGCTGCGGTACAATTCCAG CCCCTTGTACCCTTCACCAAT 

Ucp1  ACTGCCACACCTCCAGTCATT  CTTTGCCTCACTCAGGATTGG 
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ChIP Fwd Rev 

18s  AGTCCCTGCCCTTTGTACACA  CGATCCGAGGGCCTCACT 

Cidea (13) GGCCACTTGAGGAGCCAACCA TGGGCACTGGCCTTGTAGCTG 

Fabp4 GACAAAGGCAGAAATGCACA  AATGTCAGGCATCTGGGAAC  

Ins1  GGACCCACAAGTGGAACAAC  GTGCAGCACTGATCCACAAT 

Ppargc1a (38) TCCGAGTTTCCCTGCTGTGGC AGGGACTTGCAGCTGTGGTGG 

Ppargc1a (42) GAGGTGGCACCAGGACACCAG CCCAAGCTCGAGACTCCGCTC 

Pparα (1) GGGGCATGTGCATTCCGTGAC CACTGGGGCTCTGCCAACTGA 

Pparα (11) AAGAGCATGGGACAGTGGCCG TGGCCAGCTGAAGGTCACCAC 

Pparα (14) CCTGCCCCATAGGCAGTATGGTC ACAGGGGCAGAAGCCAAGCTG 

Pparγ (122) AGCTTTGCTGGCTAGAGGTG TTTCGCAGAACTGAGGTTGA 

Ucp1 (2.5) CAAATGGTGACCGGGTGCCCT  GGGTGACTGACCCTCTGTGACG 

Ucp1 (4.7) CCCCACTGCCTGTCACGTTCA      GAAGCTGCCGAATGGTGCGTC 

Ucp1 (5.7) ACCACACCATTTGGAGCCTGAC TGAGTTTGCAGGGAGGATGGGC 
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Discussion and Future Directions 
 

Taken together, my work reveals new insights into the mechanistic function of 

PRDM16. We have shown that PRDM16 is critically required to maintain BAT identity 

and this requirement appears to be linked to the recruitment of MED1/the Mediator 

complex to control chromatin architecture. However, a number of salient questions 

remain to be addressed. 

One of our most surprising results is that mice with poor brown fat functionality 

(adult PRDM16 KO mice) are not predisposed to weight gain. This suggests that in mice, 

while brown fat is required to acutely defend body temperature against a cold challenge, 

it is the thermogenic adipocytes in white fat (beige adipocytes) which mediate diet-

induced thermogenesis and regulate body weight. In direct support of this hypothesis, 

the Spiegelman lab found that mice lacking Prdm16 in all adipose tissues, thus ablating 

beige adipocytes, gained more weight than wild type controls188. Indeed, the data from 

Table 1 which displays mouse models that are resistant to weight gain indicates that 

most of the mouse models that have decreased weight gain have an activation of both 

brown and beige fat, or only beige fat without a concurrent activation of brown fat. Only a 

small number of genetic models resistant to obesity have an increase in brown fat 

activity without an increase in beige187. Taken together, this suggests that 

hyperstimulating brown fat can be a way to suppress weight gain, however the loss of 

brown fat doesn’t necessarily predispose to weight gain.  

Although Prdm16 deficient BAT eventually loses its brown fat character, the 

expression of WAT-selective genes are elevated in BAT at any age post-weaning. This 

has presented us with a number of interesting questions. The most obvious being, is 
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PRDM16 predominantly a repressor, and has secondary activating effects on BAT-

selective genes? This would explain why/how the brown fat is able to develop in 

PRDM16 KO mice. However, our results in chapter 2 refute this hypothesis. Using 

genome-wide data of PRDM16 occupancy we find that PRDM16 is more strongly 

associated with BAT genes, indicating that PRDM16 more directly regulates the 

activation and expression of BAT-selective genes. 

 We do not preclude the possibility that PRDM16 also acts on certain WAT genes 

directly. Indeed we show ChIP-seq tracks for PRDM16 at Angiotensinogen and Resistin 

showing a number of binding sites proximal to the respective genes TSS. These data 

suggest that PRDM16 directly regulates some WAT genes, while the others are 

consequential. Interestingly, PRDM16, but not PRDM3 is required to repress a WAT 

program. When we have assessed PRDM3 KO BAT, there is no increase in the 

expression of the WAT-selective gene set (data not shown). Furthermore the 

PRDM16/PRDM3 dKO BAT does not have further elevated expression of this WAT 

expression signature beyond that is seen in PRDM16 KO BAT. Thus the function of 

PRDM16 in the repression of WAT genes is unique. In the future it will be important to 

determine why PRDM16 represses these genes. Given the dramatic rise in expression 

of such a large number of WAT-selective genes, one would expect that some 

fundamental aspect of adipocyte biology has been altered. However, using metabolic 

cages and acutely activating BAT, we detected no change in thermogenic function in 

young PRDM16 KO mice that have elevated expression of WAT-selective genes but not 

BAT-selective genes (data not shown). It would be prudent to look at other measures of 

BAT function such as cold intolerance to determine if the up-regulation of these WAT-

selective genes is sufficient to alter BAT function and impart a white adipocyte function. 
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Additionally, we will address if the aforementioned Adiponectin-Cre Prdm16flox/flox mice 

have elevated expression of these genes in the subcutaneous and visceral WAT. It is 

possible that PRDM16 has conserved mechanistic function in both tissues, but the 

repression of the WAT program in the browning of WAT has more physiological 

significance. To assess this hypothesis mutations in PRDM16 that prevent the binding of 

CtBP and fail to repress WAT-selective genes could be employed231. White adipocytes 

isolated from inguinal fat could be transduced with WT or PRDM16ΔCtBP virus and 

differentiated in culture, allowing us to see if PRDM16ΔCtBP is unable to repress WAT-

selective genes in this cell type. If this mutation is revealed to be critical in this cell type, 

transgenic mice that contain the ΔCtBP mutation in all adipocytes could be generated 

and tested for metabolic/thermogenic defects. 

One possible explanation for the broad rise in the expression of WAT-selective 

genes is that PRDM16 KO BAT has a significant increase in the expression and protein 

levels of PPARγ, the master regulator of adipogenesis. This increase is consistently 

observed in BAT in our studies using a Myf5-Cre driver and the Spiegelman group, who 

used Adiponectin-Cre188. It is conceivable that a slight elevation of PPARγ pushes a 

WAT transcriptional profile. To test this we could use existing genome-wide binding data 

of PPARγ in BAT208. We could take the list of genes that are up-regulated in PRDM16 

KO mice and select proximal enhancers based on PPARγ binding. We could then 

assess if these genes have more PPARγ at enhancers in the PRDM16 KO mice relative 

to WT. Alternatively, PPARγ ChIP-seq can be performed on PRDM16 KO BAT and WT 

controls to look at changes in PPARγ binding in an unbiased way. Lastly, we could take 

WT brown adipocytes and virally overexpress PPARγ to asses if this is capable of 

inducing the expression of these genes. 
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An element of PRDM16 biology that remains unanswered is how PRDM16 is 

differentially recruited to activate BAT genes while repress certain WAT genes. PRDM16 

can bind to canonically activating transcription factors and co-activators including 

PPARγ, PPARα, C/EBPs and PPARGC1a and with repressors including CtBP1/2 and 

EHMT187,90,231,232. A mechanism has even been proposed that PPARGC1A and CtBP 

compete for binding with PRDM16231. Regardless, PRDM16 apparently works as an 

activator at certain loci, while at a repressor as others. Given the fact that PRDM16 

contains zinc-fingers that are able to directly bind DNA, one hypothesis is that PRDM16 

binds chromatin indirectly at BAT genes (as we have suggested in Chapter 2) while 

directly at WAT genes that it regulates, which could lead to differential recruitment of 

activating vs repressive complexes. However, in our analysis we did not pick up a highly 

enriched PRDM16 motif at WAT or BAT genes. One possibility is that when we 

assessed PRDM16 binding in mature brown adipocytes, our analysis was not amenable 

to capturing a unique “repressive” motif. Interestingly, over-expression of Prdm16 in 

PRDM16 KO brown pre-adipocytes leads to the repression of Agt and other WAT-

selective gene expression, and it binds prominently proximal to Agt and Retn (data not 

shown). These binding sites are found in mature adipocytes, but interestingly, a number 

of additional PRDM16 binding sites found in mature tissue around these genes are not 

present in the preadipocyte state. Furthermore, these changes in gene expression are 

occurring in a preadipocyte state when PPARγ is not yet expressed. This indicates that 

PRDM16 is being recruited to these sites in a manner that differs from activating BAT-

selective genes. Performing de novo motif analysis under areas of PRDM16 enrichment 

in preadipocytes – proximal to these effected WAT genes may reveal a novel binding 

signature. 
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 PRDM16 is documented to control lineage specificity between brown fat and 

skeletal muscle cells13. Lineage tracing indicates that brown fat and skeletal muscle 

come from a common progenitor population, and that adenoviral delivery of siRNAs 

targeted against Prdm16 results in an increase in the expression of muscle enriched 

genes. Indeed, mice that are whole body knockout for PRDM16 are embryonic lethal, 

but have an increase in the expression of certain skeletal muscle genes in their BAT. 

Surprisingly, despite this strong evidence in support of PRDM16 controlling lineage 

specificity, the mice used in both chapters above do not show any increase in a muscle 

signature at any time point that we have assessed. A number of possibilities exist that 

may explain the difference in results. One appealing argument is that the Myf5-Cre we 

used to drive recombination was expressed too late in development – that at the time 

Myf5 is expressed brown adipocyte cell identity has already been determined. Little 

research has explored exactly when PRDM16 is expressed in developing mesoderm. It 

is possible that Prdm16 could be expressed earlier than is currently imagined perhaps 

even coincident with Myf5. Given that PRDM16 powerfully shuts down a myogenic 

program in cell assays, it is conceivable that any expression of PRDM16 would be 

sufficient to permanently direct a cell towards an adipogenic lineage. To address this 

hypothesis an embryonic time course should be conducted looking for the earliest 

expression of PRDM16 in the mesoderm that develops into BAT. By assessing at what 

embryonic stage Prdm16 is expressed we would be better informed to determine if 

issues with recombination timing are influencing our results. An alternative approach 

would be to cross our Prdm16flox/flox with another promoter driven-Cre that is expressed 

in the somatic mesoderm including Pax7, Pax3 and Engrailed-1.  
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Another possibility is that the siRNA directed against PRDM16 could have had off 

target effects that somehow made the cells more dependent on PRDM16. As we have 

seen with PRDM3 there is at least one instance where another factor is poised to 

compensate for the loss of PRDM16. In a developmental context, PRDM3 does not 

compensate since PRDM16/PRDM3 dKO BAT does not express a myogenic gene 

signature. However, there are numerous zinc finger proteins that share a highly 

conserved zinc finger motif in PRDM16; a segment of the protein which is critical for 

PRDM16 function. Indeed, by assessing the level of the 5 most closely related proteins 

to PRDM16, three of them have transcript levels that are reduced in siPrdm16 infected 

cells (data not shown). Two of these factors are enriched in BAT relative to WAT, as well 

as BAT relative to skeletal muscle (data not shown). Further analysis of these proteins 

and the consequence of their loss of function may shed light on this issue. It will also be 

of interest to determine when these unknown function are expressed in vivo and during 

the course of in vitro differentiation.  

It is interesting to note that when the histone methyl transferase EHMT1 is 

knocked out in vivo using Myf5-Cre there in an increase in the expression of myogenic 

genes. This protein has been shown to interact directly with PRDM16 and mediate the 

PRDM16-action at least in cells190. The difference in the phenotype of the Myf5-Cre 

Prdm16flox/flox and Myf5-Cre Ehmt1flox/flox mice is consistent with the existence of a 

PRDM16-compensating factor. These data suggest that the compensating factor may 

also able to interact with EHMT1 and recruit EHMT1 to muscle genes. It would be 

interesting to perform mass spectrometry in order to identify EHMT1-interacting factors 

in brown adipocytes and look for other PRDM16-like zinc finger proteins. Or 

alternatively, if any of the putative compensating factors described in the section above 
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appear to be promising, assessing the interaction between the zinc finger protein and 

EHMT1 could lead to mechanistic insight. 

The issue of compensating factors could potentially explain a number of 

unexpected results in the PRDM16 KO mice. One very curious observation is the 

difference in PRDM16 KO adipocytes in vitro versus in vivo. In culture, upon 

differentiation, Prdm16-deficient adipocytes have a substantial defect in the expression 

of a BAT-selective program. However this cell autonomus in vitro phenotype happens 

regardless of the age of the mice from which the cells were isolated, including embryonic 

day 18, a time in which the tissue displays no defects. One possible explanation for this 

is the observation that PRDM3 levels precipitously decline after plating primary cells 

(data not shown). This could mean that PRDM16 KO cells are functionally the same as 

double KO cells, when studied ex vivo. In the future it will be important to isolate primary 

cells from double KO mice and compare the results of differentiation to PRDM16 KO 

cells. Additionally PRDM3 should be virally overexpressed in PRDM16 KO cells to 

determine if this is sufficient to rescue the thermogenic program. Lastly, it will be 

interesting to assess if any of the other related zinc finger proteins also have levels that 

decline in culture. 

Given that the phenotype in the PRDM16 KO mice is associated with age, it is 

possible that the phenotype is due to tissue turnover and incorporation of new 

adipocytes that are unable to induce a thermogenic program. Our isolation of primary 

cells from BAT involves enriching for the undifferentiated stem cell population while 

removing mature adipocytes. Our data from primary cells clearly shows that when 

PRDM16 KO cells are cultured they have a severe loss of BAT-selective gene 

expression. These data could imply that as the tissue turns over naturally, thermogenic-
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defective adult stem cells are incorporated into the BAT yielding the progressive loss of 

BAT character that we observe. How PRDM16-deficient embryonic BAT is able to 

develop normally is unclear. It is possible that two pools of brown adipocyte precursors 

exist; one population could be responsible for embryonic tissue development and is 

PRDM16 independent, while another adult population maintains tissue mass and 

function through the animal’s life and is PRDM16 dependent.  

Interestingly, the PRDM16/PRDM3 dKO mice have what appears to be an 

accelerated phenotype, however we do not believe this is due to increased tissue 

turnover (data not shown). It is possible that in the dKO mice, although the incorporation 

of defective adipocytes plays a role, the accelerated phenotype is due to mature 

adipocytes requiring PRDM16 or PRDM3. This hypothesis implies that PRDM16/PRDM3 

independent pathways are able to preserve BAT function in the dKO mice until 4-6 

weeks. Future studies need to address which pathways and stimuli are 

PRDM16/PRDM3 independent, and if this knowledge can help explain the sudden 

phenotype onset in the dKO mice. 

How and why PRDM3 is able to compensate in post embryonic BAT, and what 

causes it to no longer be sufficient in PRDM16 KO mice remains unclear. One 

explanation is the fact that as mice age from weaning to 6 months of age Prdm3 mRNA 

levels decline (data not shown). However the mechanism responsible for decreasing the 

expression of Prdm3 is not clear. It is unknown if the changes in expression are due to 

cell-autonomous regulation or systemic influences. One of the most obvious places to 

look is the effect that cold has on the regulation of PRDM3. However, housing and 

rearing WT and PRDM16 KO mice at thermoneutrality does accelerate the loss of 
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thermogenic function, indicating that cold stimulation does not keep PRDM3 levels 

elevated (data not shown).  

Another avenue to explore is the fact that even in the dKO mice we see no 

phenotype until after weaning. One possibility is that suckling or dames’ milk is able to 

rescue/maintain BAT identity through PRDM16/PRDM3 independent pathways. For 

example it is well established that milk/suckling induces the expression of FGF21 and 

PPARα in BAT, both which have been shown to be required for functional BAT172,173,175. 

To address this, dKO mice could be weaned slightly early from their mother (at 2 weeks 

of age) and fed a hydrogel diet. If this results in an interesting effect mice can be weaned 

earlier and fed manually with formula. For an in vitro approach we could assess if 

treating PRDM16 KO adipocytes with FGF21 or a PPARα activator is sufficient to rescue 

the phenotype. 

Although the mechanism is currently unclear, it is highly probable that additional 

factors are able to compensate for the loss of PRDM16/PRDM3 to ensure the proper 

development of BAT. In the future I propose to do a small screen using CRISPR 

technology to delete structurally similar zinc-finger proteins (as mentioned above) as well 

as the remaining PRDM family members. Using this system in PRDM16 KO or 

PRDM16/PRDM3 dKO adipocytes we would be able to look for factors, or combinations 

of factors that either inhibit adipogenesis or increase the expression of myogenic factors. 

Any hits that reveal interesting phenotypes will have their patterns of expression 

assessed during the course of adipogenesis, during BAT development, and determine 

where they bind genome-wide at a stage in which they are found to be critical for BAT 

development. Lastly we will determine if any candidates are able to interact with MED1, 

possibly revealing mechanistic insight into the function of these proteins. As an 
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alternative approach we could interrogate the same factors but with a gain of function 

approach. In these experiments the factors would be virally overexpressed in C2C12 

myoblasts, allowing us to assess which factors are competent to reprogram these cells 

into adipocytes like PRDM16 and PRDM3 can. 

 We have shown that PRDM16 recruits MED1/mediator to brown fat-selective 

genes and that loss of PRDM16 results in change of higher-order chromatic architecture. 

Furthermore our super enhancer analysis gives insight into how PRDM16 controls genes 

essential for BAT identity. Taken together, these results increase our understanding of 

PRDM16 function by allowing us to think of PRDM16 as a hub for higher-order 

chromatin structure. Acting as a hub PRDM16 is able to integrate the binding of master 

transcription factors such as PPARγ and C/EBPβ from multiple enhancers and allow 

these activators to come in contact with the TSS to activate the transcriptional 

machinery. Despite our increased understanding, a number of questions remain about 

how PRDM16 is able to organize chromatin. One of the most obvious questions is to 

what degree does PRDM16 affect chromatin structure genome-wide? To address this I 

would perform HiC, a genome-wide approach to assess chromatin interactions in WT 

and KO adipocytes. Using this technique we would be able to observe the full extent of 

the changes due to the loss of PRDM16. This data could also help us discern functional 

enhancers. For example at the Ppargc1a loci we detect changes in the loss at one of the 

two enhancers but not the other. This could imply that the enhancer which is lost is more 

critically required. Given that PPARGC1a is critical for mitochondrial formation and 

brown fat function, this type of information could be critical for therapeutics that wish to 

boost the expression of this gene or others like it. Furthermore, through this technique 

and defining functional PRDM16 binding sites we could perform additional computation 
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analysis such as motif analysis under these peaks of interest. A similar approach 

investigating chromatin organization could be informative for better understanding 

PRDM16s role in development. It would be interesting to infect C2C12 myoblasts with 

PRDM16 and do a time course with HiC. This would give us a detailed understanding of 

the temporal changes to chromatin that affect cell identity. 

 Another interesting fact is that in the BAT of Adiponectin-Cre Prdm16 flox/flox mice, 

which only express Cre in differentiated adipocytes, there is no change in the expression 

of BAT-selective genes such as Ucp1, Ppargc1a or Cidea, even at three months of age, 

a time point that our data would suggest the mice should have a phenotype. This data 

from the Spiegelman lab lies in agreement with unpublished data that the acute 

knockdown of PRDM16 in differentiated brown adipocytes has a very subtle effect on the 

expression of BAT-selective genes. Together this implies that PRDM16 is required for 

chromatin hub formation, but not necessarily hub stabilization. In this model PRDM16 

brings the enhancers into contact with the TSS, but once the interaction is formed it may 

be stabilized through other mechanisms. One appealing hypothesis is that the structural 

cohesin proteins, which are well documented to interact with MED1, are additionally 

recruited with the enhancers to the TSS by PRDM16. Once PRDM16 has established a 

thermogenic chromatin architecture they stabilize the chromatin loops. To test this, we 

should determine if there is cohesin at/near BAT selective loci. We can then compare 

cohesin enrichment at WT, PRDM16-acute KO, and KO adipocytes. 

 In our model PRDM16 is required to recruit MED1 to connect distal enhancers 

with the transcriptional start site (TSS) of BAT-selective genes to drive gene 

expression218,220. Our data also implies that PRDM3 and possibly other related zinc-

finger transcription factors are also able to do the same in the absence of PRDM16. In 
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our PRDM16 KO mice, the understanding is that a connection between distal enhancers 

and the TSS was initially formed but lost over time. This implies that although other 

factors have the capacity to form a connection between enhancers and the TSS in the 

absence of PRDM16, PRDM16 is uniquely required for the maintenance of the 

chromatin conformation and BAT identity.  

 Another point to consider is that in our model PRDM16 recruits MED1 to BAT-

selective loci. However, PPARγ and C/EBP both interact with MED1219 and are bound at 

these enhancers, so why is PRDM16 required at all? It would appear that either in brown 

adipocytes or at BAT-selective enhancers PPARγ and C/EBP do not, or are unable to 

interact with MED1. Perhaps the binding patterns at BAT-selective genes are unique and 

sterically prevent the interaction with MED1. For example infecting C2C12 muscle cells 

with PPARγ will induce an adipogenic program presumably through the recruitment of 

MED1233. However, no brown fat genes will be turned on. These observations give 

exciting insight into the unique functions that PRDM16 is able to perform. 

Lastly, all of our ChIP assays have been performed in fully differentiated brown 

adipocytes. It would be interesting to determine if our analysis of “steady state” BAT 

recapitulates development. It is highly possible PRDM16 binding patterns change and 

differ throughout out the course of differentiation. In support of this notion, in 

undifferentiated adipocytes that over express PRDM16, we find no enrichment at 

enhancers proximal to Ucp1. To further explore the dynamic regulation and recruitment 

of PRDM16, I would perform ChIP-Seq on WT brown adipocytes throughout their 

differentiation. 
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In conclusion, my studies have revealed new insight into the developmental and 

transcriptional regulation of BAT through PRDM16. I have found that PRDM16 is 

critically required to maintain BAT identity and functionality in adult mice. However, BAT 

is able to develop normally in the absence of PRDM16, suggesting that related factors 

may compensate for its loss. We found that indeed, PRDM3 is able to compensate for 

the loss of PRDM16. Mechanistically we found that PRDM16s ability to control brown 

adipocyte cell identity is based upon the ability of PRDM16 to interact with MED1/the 

mediator complex, and recruit MED1 to BAT-selective genes to drive transcription. The 

insight garnered from these studies will be of use to future researchers that aim to recruit 

BAT in humans to decrease body weight. Any therapeutic approach that aims to 

increase BAT mass will have to affect PRDM16 directly or indirectly. Having a better 

understanding of when PRDM16 is required for BAT functionality and PRDM16s 

mechanism of action will be of benefit when designing weight loss strategies.  
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