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Extensions and Applications of Ensemble-of-trees Methods in Machine
Learning

Abstract
Ensemble-of-trees algorithms have emerged to the forefront of machine learning due to their ability to
generate high forecasting accuracy for a wide array of regression and classification problems. Classic ensemble
methodologies such as random forests (RF) and stochastic gradient boosting (SGB) rely on algorithmic
procedures to generate fits to data. In contrast, more recent ensemble techniques such as Bayesian Additive
Regression Trees (BART) and Dynamic Trees (DT) focus on an underlying Bayesian probability model to
generate the fits.

These new probability model-based approaches show much promise versus their algorithmic counterparts,
but also offer substantial room for improvement. The first part of this thesis focuses on methodological
advances for ensemble-of-trees techniques with an emphasis on the more recent Bayesian approaches. In
particular, we focus on extensions of BART in four distinct ways. First, we develop a more robust
implementation of BART for both research and application. We then develop a principled approach to
variable selection for BART as well as the ability to naturally incorporate prior information on important
covariates into the algorithm. Next, we propose a method for handling missing data that relies on the recursive
structure of decision trees and does not require imputation. Last, we relax the assumption of
homoskedasticity in the BART model to allow for parametric modeling of heteroskedasticity.

The second part of this thesis returns to the classic algorithmic approaches in the context of classification
problems with asymmetric costs of forecasting errors. First we consider the performance of RF and SGB more
broadly and demonstrate its superiority to logistic regression for applications in criminology with asymmetric
costs. Next, we use RF to forecast unplanned hospital readmissions upon patient discharge with asymmetric
costs taken into account. Finally, we explore the construction of stable decision trees for forecasts of violence
during probation hearings in court systems.
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ABSTRACT

EXTENSIONS AND APPLICATIONS OF ENSEMBLE-OF-TREES METHODS

IN MACHINE LEARNING

Justin Bleich

Richard Berk

Ensemble-of-trees algorithms have emerged to the forefront of machine learning

due to their ability to generate high forecasting accuracy for a wide array of regression

and classification problems. Classic ensemble methodologies such as random forests

(RF) and stochastic gradient boosting (SGB) rely on algorithmic procedures to generate

fits to data. In contrast, more recent ensemble techniques such as Bayesian Additive

Regression Trees (BART) and Dynamic Trees (DT) focus on an underlying Bayesian

probability model to generate the fits.

These new probability model-based approaches show much promise versus their

algorithmic counterparts, but also offer substantial room for improvement. The first

part of this thesis focuses on methodological advances for ensemble-of-trees techniques

with an emphasis on the more recent Bayesian approaches. In particular, we focus

on extensions of BART in four distinct ways. First, we develop a more robust imple-

mentation of BART for both research and application. We then develop a principled
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approach to variable selection for BART as well as the ability to naturally incorporate

prior information on important covariates into the algorithm. Next, we propose a

method for handling missing data that relies on the recursive structure of decision

trees and does not require imputation. Last, we relax the assumption of homoskedas-

ticity in the BART model to allow for parametric modeling of heteroskedasticity.

The second part of this thesis returns to the classic algorithmic approaches in the

context of classification problems with asymmetric costs of forecasting errors. First we

consider the performance of RF and SGB more broadly and demonstrate its superiority

to logistic regression for applications in criminology with asymmetric costs. Next,

we use RF to forecast unplanned hospital readmissions upon patient discharge with

asymmetric costs taken into account. Finally, we explore the construction of stable

decision trees for forecasts of violence during probation hearings in court systems.
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1
Introduction

1.1 Overview

Leo Breiman eloquently captures the motivation for and aim of statistical machine

learning in his 2001 Statistical Science paper:

“The approach is that nature produces data in a black box whose insides

are complex, mysterious, and, at least, partly unknowable. What is ob-

served is a set of x′s that go in and a subsequent set of y′s that come out.

The problem is to find an algorithm f(x) such that for future x in a test

set, f(x) will be a good predictor of y.”

For the past few decades, statisticians and computer scientists have sought to

uncover “nature’s black box” across a wide array of domains and applications, leading

to many novel algorithms and advancements in a field that today has come to be

known as “supervised learning.”

In particular, ensemble methods have gained much popularity in supervised learn-

ing problems, where the goal is to estimate this unknown function f from observed

data. Ensemble methods take a set of base algorithms, also called “learners”, and
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combine them together in some fashion to produce a final model. In both theory and

practice, ensemble methods are often able to improve predictive performance relative

to the capabilities of the base algorithms that constitute the ensemble. Such findings

hold true for both regression and classification settings (Rokach, 2009).

We focus in particular on ensemble-of-trees procedures. These algorithms are ma-

chine learning techniques that use decision trees, such as Classification and Regression

Trees (CART, Breiman et al., 1984), as the base learner. As a standalone technique,

decision trees provide highly interpretable models that can effectively capture interac-

tion effects and nonlinearities (Chipman et al., 2010). Regarding predictive accuracy,

decision trees fare reasonably well; Breiman (2001b) states that decision trees rate

“a B on prediction.” More recent efforts in machine learning though have studied

the predictive performance of ensembles of decision trees. Such techniques include

random forests (RF, Breiman, 2001a), stochastic gradient boosting (SGB, Friedman,

2002), Bayesian Additive Regression Trees (BART, Chipman et al., 2010) and Dynamic

Trees (DT, Taddy et al., 2011). The aforementioned algorithms have achieved supe-

rior predictive accuracy across a wide array of domains and rank among the most

competitive techniques for supervised learning to date. In order to achieve strong

predictive performance, these models sacrifice a high degree of interpretability associ-

ated with the component decision trees. For example, Breiman (2001b) remarks that

RF “are A+ predictors...on interpretability, they rate an F.” Much work has been

done to improve the interpretability of such “black-box” algorithms, and some new

developments will be presented in this work.

The ensemble-of-trees methods can be divided into two distinct groups. The first

group contains the supervised learning procedures that are constructed in a purely

algorithmic fashion; there is no statistical model underlying the technique. RF and SGB

fall into this group. The second group, developed more recently, contains supervised
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learning procedures that posit an underlying probability model. BART and DT, two

members of the second group, are both based on Bayesian probability models. In the

first component of this thesis, we develop methodological extensions for the models

in the second group, particularly for BART. In the second half of this thesis, we return

to the algorithmically-motivated procedures and explore applications in criminology

and healthcare where there are asymmetric costs associated with forecasting errors.

The remainder of this thesis is organized as follows. In the subsequent sections of

this chapter, we first review CART as an example of how a decision tree is constructed.

We next briefly review RF and SGB, and then provide a a more extensive introduction

to BART. Each chapter following the introduction is adapted from a specific article

(cited at the end of each chapter) and modified for coherence within the overall thesis.

The next four chapters develop extensions for BART. Chapter 2 introduces

bartMachine, a new R package implementing BART for both robust research and ap-

plication, highlighting key performance and visualization features of the package.

Using the bartMachine implementation as a computational engine, we then develop

a number of methodological innovations for BART. Chapter 3 develops a method for

principled nonparametric variable selection using BART. The approach relies on ap-

plying frequentist permutation testing ideas to output from a Bayesian model. We

additionally develop a means for incoporating informed prior information into the

variable selection and demonstrate the promise of our approach via an application

to inferring the genetic regulatory network in yeast. The third methodological in-

novation, discussed in Chapter 4, offers an approach for incorporating missing data

into BART in both the training and forecasting phases. The approach takes advan-

tage of the structure of decision trees and does not require any imputation. Finally,

Chapter 5 relaxes the assumption of homoskedasticity in the original BART model

and introduces an approach for specifying parametric models of heteroskedasticity in
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BART.

Following the methodological innovations, Chapters 6-8 discuss applications of

ensemble-of-trees methods in classification problems where forecasting errors associ-

ated with each outcome class have asymmetric costs. Chapter 6 advocates for the

superiority of RF and SGB over traditional techniques such as logistic regression in

criminology applications with asymmetric forecasting costs. The exposition in the

chapter is largely didactic and meant to highlight the general merits of machine

learning methods over parametric modeling for prediction problems in criminology.

Continuing with the theme of asymmetric costs incorporated into ensemble-of-trees

models, we next switch the subject matter domain. Chapter 7 proposes RF models

for forecasts of unplanned hospital readmissions that rely on a large set of patient

covariates. The models herein are designed to be used in real-time upon patient

discharge and account for the asymmetric forecasting costs that health system ad-

ministrators face. Finally, we return to the criminology setting to explore a scenario

where traditional ensemble methods may not be available. Chapter 8 develops pro-

totype classification tree models that can be used in sentencing decisions for courts

where the technology to access more sophisticated procedures may not be available.

We develop an approach to generate trees with stable predictions by examining classi-

fication agreement across an ensemble of bootstrapped trees. Finally, Chater 9 offers

directions for future research and concludes.

1.2 Decision Trees

The basic building block for all ensemble-of-trees algorithms is the decision tree.

Although multiple versions of decision trees have been proposed in the literature,

we limit our focus to CART and cover the key aspects of decision trees required to
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understand the ensemble methods developed herein. The ensuing discussion draws

from Breiman et al. (1984) and Hastie et al. (2009).

At a high level, decision trees partition the observed data (or training data) into

subsets with similar values of the response. This is accomplished by exploiting the

predictors to create the greatest homogeneity between the observed outcomes and the

outcomes that the tree can project. Let y denote the response vector, which may be

continuous or categorical, and let x1, · · · ,xp denote the set of p predictors as column

vectors. With this notation, we can describe the general construction of a CART tree.

After introducing the algorithm, we will highlight key aspects of regression trees and

classification trees separately.

First, all of the observations begin in a single node known as the “root node.”

The data is the partitioned into two child nodes by considering “splitting rules” of

the form xj < c. Here, xj denotes the “splitting variable” (or “splitting attribute”)

and c denotes the “splitting value.” All observations satisfying the “splitting rule” are

sent to the left child node and the rest of the observations are sent to the right child

node. Using a greedy approach, all possible splitting rules that can be created from

the observed data are evaluated and the rule that minimizes some statistical criterion

is chosen. Once a split is selected, the observations are moved to their respective

nodes and the above process is repeated for each of the two child nodes. Such split

construction proceeds in a recursive fashion until a stopping rule is satisfied. Examples

of common stopping rules include a maximum depth for which a tree is allowed to

grow, a constraint on the minimum number of observations in a node, or a required

reduction in the value of the statistical criterion selected. Nodes which no longer split

are labelled “terminal nodes.” The construction of a CART tree is completed once all

nodes are labelled as terminal. Note that in some cases, the nodes are removed

from the CART tree in a process known as “pruning,” but we omit a discussion of
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CART pruning as it is generally not applicable to the understanding of the ensemble

methods we discuss.

After tree construction, fitted values are assigned to each terminal node based

on the observations that land in that node. As will be shown, the fitted values

will be an average of response values for regression trees and the majority class (or

plurality class for multi-class problems) in the node for classification trees. Forecasts

for observations with an unknown response can be obtained by “dropping” the cases

down the tree and following the path implied by the splitting rules. The forecast

assigned to the observation is the fitted value associated with the terminal node in

which the observation lands.

Figure 1.1 shows two steps in the growth of a classification tree for response y

with levels “0” and “1” and predictors x1 and x2. Terminal nodes are assigned the

majority class as evidenced by the proportion of outcome classes given in the terminal

nodes.

With the general CART algorithm in place, we now highlight the specifics of clas-

sification trees and regression trees.

x2 < 0.83

0
.62  .38

1
.07  .93

(a) Depth 1 classification tree

x2 < 0.83

x1 < 0.13

x2 < 0.26

0
1.00  .00

0
.74  .26

1
.49  .51

1
.07  .93

(b) Depth 2 classification tree

Figure 1.1: Two steps in the growing process of a classification tree.
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1.2.1 Classification Trees

Classification trees are employed for data with categorical response variables. Suppose

there are K distinct classes for the response in the training data. For the mth node

in the tree, let Pm represent the set of observations in node m of size Nm. One can

compute

p̂mk =
1

Nm

∑
i∈Pm

I (yi = k) (1.1)

which is the empirical proportion of observations belonging to class k in node m. p̂mk

is then used to define the statistical criterion used to determine the optimal splitting

rule at each step in growing classification trees. This criterion acts to minimize within-

node homogeneity of class labels and are often called “impurity functions.” Breiman

et al. (1984) proposes three commonly impurity functions:

Misclassification error :
1

Nm

∑
i∈Pm

I (yi 6= hatcm) (1.2)

Gini index :
∑
k 6=k′

p̂mkp̂mk′ (1.3)

Cross-entropy : −
K∑
k=1

p̂mk log (p̂mk) (1.4)

In practice, the Gini index or cross-entropy are more commonly employed as they are

smooth functions and hence more amenable to optimization. These criteria are also

more sensitive to changes in the node probabilities compared to the misclassification

error.

Letting φ denote an impurity function evaluated on the observations in node m,

for each splitting rule s evaluated, the goodness of split s is given by
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∆ (s,m) = φ (m)− 1

NmL

φ (mL)− 1

NmR

φ (mR) (1.5)

where mL and mR denote the left and right child nodes resulting from splitting rule

s on node m. The splitting rule that maximizes ∆ (s,m) across all available rules is

selected and the tree is partitioned.

Once the classification tree has been fully grown, fitted values for terminal nodes

are often assigned by taking the plurality class in the node. Letting ĉm denoted the

fitted value for a (terminal) node m, we have

ĉm = argmax
k

p̂mk. (1.6)

Note that the assignment above operates under the assumption of symmetric costs

for misclassification errors. We will introduce asymmetric misclassification costs and

the appropriate modifications to the CART algorithm in Chapter 8.

1.2.2 Regression Trees

Regression trees are employed for data with continuous response variables. For

regression trees, the impurity function used for CART is the sum of square errors∑
i∈Pm (yi − ȳm)2 where ȳm is the average of the observations in node m. The split-

ting rule s that maximizes ∆ (s,m) for node m is selected at each partitioning step.

Terminal node fitted values in regression trees are given by the average value of

all observations in the terminal node:
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ĉm =
1

Nm

∑
i∈Pm

yi. (1.7)

1.3 Algorithmic Ensemble-of-trees Techniques

Two popular ensemble-of-trees techniques, RF and SGB traditionally use CART trees

as the basic building blocks of their ensembles. The trees serve as the base learners

within the algorithm and the output of each tree is combined to create a final fitted

value or forecast. RF and SGB use the CART trees in substantially different fashions

and we review each algorithm in the subsequent sections. The discussion for RF draws

from Breiman (2001a) and Hastie et al. (2009, chapter 15), and the discussion for

SGB draws upon Friedman (2002) and Hastie et al. (2009, chapter 10).

1.3.1 Random Forests

RF builds upon a method known as “bootstrap aggregation,” or “bagging” (Breiman,

1996), in which multiple versions of some base learner are independently constructed

on different bootstrapped samples of the data. In bagging, the forecasts from each of

the learners is then aggregated, often via averaging for continuous responses or plural-

ity vote for categorical responses. When grown sufficiently deep, trees are especially

good candidates for bagging as they are considered to be low-bias, high variance learn-

ers. Aggregrating across multiple instances can work to lower variance and reduce

generalization error.

RF takes bagging one step further in an effort to further reduce variance. The

key innovation is to search for an optimal split at each partitioning step by greedily
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evaluating a subset of predictors rather than all predictors. By choosing m∗ ≤ p

predictors, an additional source of randomness is introduced into the tree-growing

process. This randomness decorrelates the decision trees across the ensemble (at the

expense of a slight increase in the individual variance of each tree), which can further

reduce the variance of the aggregated ensemble.

RF contains two important tuning parameters. The first is the number of decision

trees to grow in the ensemble. Typically, no more than 500 decision trees are needed

for the performance of RF to stabilize and the procedure does not overfit the data as

the number of trees grows larger. The second tuning parameter is m∗, the number

of predictors to evaluate at each split. For regression problems, p/3 is recommended

and for classification problems,
√
p is the commonly used default. Empirical evidence

suggests that RF is fairly robust to choices of these tuning parameters. For certain

applications, additionally tuning the minimum number of observations required to

split a node may also be useful. Algorithm 1 provides the pseudocode for the default

RF algorithm.

Algorithm 1 Random Forests

1. For b = 1 to B:
(a) Draw a bootstrap sample X∗ of size N from the training data
(b) Grow a decision tree Tb to the data X∗ by doing the following recursively

until the minimum node size nmin is reached:
i. Select m∗ of the p variables
ii. Pick the best split from the m∗ variables and partition

2. Output the ensemble {Tb}Bb

Classification: Let Ĉb(x
∗) be the predicted class for x∗ tree Tb. Then ĈB

rf (x
∗) =

plurality vote{Ĉb(x∗)}B1 .
Regression: Let f̂b(x

∗) be the predicted value from tree Tb. Then f̂Brf (x
∗) =

1

B

B∑
i=1

f̂b(x
∗).

When predicting for new observations x∗, RF computes forecasts by dropping the
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observation down each decision tree as described in the above algorithm. However,

there is often interest in obtaining fitted values for the training data. Such estimates

can be obtained via “out-of-bag” (OOB) estimates. OOB estimates are computed

by obtaining the forecasts for observations in the training data on decision trees for

which the observations were not used to construct the tree. This implies that such

observations were not selected in the bootstrap sample X∗ and hence are referred to

as out-of-bag for such trees. For each observation, the set of forecasts from each tree

is then aggregated to produce a single fitted value. Given that OOB estimates are

obtained from trees where the observation did not contribute to tree construction,

the estimates are often a good proxy for true out-of-sample performance. We will

make extensive use of this fact in Chapters 6-8 to tune the RF models for asymmetric

costs of forecasting errors.

Throughout this work, we use the RF implementation provided in the R package

randomForest (Liaw and Wiener, 2002).

1.3.2 Stochastic Gradient Boosting

In constrat to RF which aggregates a collection of independent base learners, SGB op-

erates on a set of learners in a stepwise fashion. SGB proceeds by taking a pass

through the data, constructing a base learner, and then reweighting observations

that were more difficult to correctly classify. While there are numerous flavors of

boosting that each result in different reweighting schemes for the data, SGB operates

on the negative partial derivatives of the loss function at each training observation.

These partial derivatives are often referred to as “pseudo-residuals”. A regression tree

is then grown to the pseudo-residuals, thereby using partitions of predictor space to

group similar pseudo-residuals together. Fitted values for terminal nodes are found
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by computing the addition to the current fit that minimizes the loss function. The

current fitted values are then updated by adding the computed terminal node values

to the existing fitted values for each observation.

Friedman (2001) originally proposed the above algorithm under the name “gra-

dient boosting.” In this implementation, each regression tree was constructed on

the entire set of training data. Friedman (2002) modified the algorithm to select a

random bootstrap sample of training observations for growing each regression tree,

resulting in the name stochastic gradient boosting. This subsampling step results in

variance reduction, which improves performance through lower generalization error.

SGB contains a number of important tuning parameters as well. The first is the

“learning rate” ν. The update to the current fitted values are shrunk by ν to control

how quickly the algorithm descends down the gradient of the loss function. The

learning rate provides regularization through shrinkage. The second parameter is the

number of boosting iterations T . It is well-known that boosting algorithms overfit

the data as the number of iterations grows and too many iterations can result in poor

generalization error. There is a tradeoff between ν and T , however. Lower values of

ν allow for more iterations without too much overfitting. However, this relationship

between ν and T is not direct, and hence Ridgeway (2006) recommends choosing

a small value of ν to not descend the gradient too quickly and then select T via

cross-validation. The third important tuning parameter is the depth to which the

regression trees are grown. Deeper trees allow for higher order interaction effects.

Depths between 2-6 work well in practice (Ridgeway, 2006) and can be chosen via

cross-validation.

Algorithm 2 provides the pseudocode for SGB for general loss functions. Com-

monly used loss functions include squared error loss or absolute loss for continuous

responses, and Bernoulli deviance or Huberized hinge loss for binary classification.
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Implementations of loss functions for Poisson-distributed, multinomial, and censored

outcomes have been developed as well. The reader is referred to Ridgeway (2006) for

a more complete discussion of available loss functions.

Algorithm 2 Stochastic Gradient Boosting

1. Initialize f0(x) = arg min γ

∑n
i=1 L(yi, γ)

2. For t = 1 to T :
(a) Draw a bootstrap sample X∗ of size N from the training data:
(b) For i = 1, 2, ..., N compute:

rim = −
{
∂L(yi,f(xi))
∂f(xi)

}
f=ft−1

i ∈X∗

(c) Fit a regression tree to the rit yielding terminal nodes Rjt, j = 1, ..., Jt
(d) For j = 1, 2, , ..., Jt compute:

γjt = argmin
ν

∑
xi∈Rjt

L(yi, ft−1(x) + γ)

(e) Update ft(x) = ft−1 + ν ·
∑Jt

j=1 γjtI(x ∈ Rjt)

3. Output f̂(x) = fT (x)

Throughout this work, we use the SGB implementation provided in the R package gbm

(Ridgeway, 2006).

1.4 Bayesian Additive Regression Trees

BART differs from RF and SGB by relying on an underlying probability model to gener-

ate estimates of some unknown function f rather than a purely algorithmic approach.

BART uses a Bayesian probability model to generate a posterior distribution for f (x).

In this section, we extensively develop the BART model. The ensuing development is

adapted from Kapelner and Bleich (2015) and also draws from Chipman et al. (2010).

BART can be considered a sum-of-trees ensemble. While single decision trees are

effective for capturing nonlinearities and interaction effects in f , a sum-of-trees model

allows for better fitting of additive components in f . Specifically, the BART model

can be expressed as:
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Y = f(X) + E ≈ i
l

1 (X) + i
l

2 (X) + . . .+ i
l

m(X) + E , E ∼ Nn
(
0, σ2In

)
(1.8)

where Y is the n× 1 random vector of responses, X is the n× p design matrix (the

predictors column-joined) and E is the n×1 vector of noise. Here we have m distinct

regression trees, each composed of a tree structure, denoted by i, and the parameters

at the terminal nodes (also called leaves), denoted by l. The two together, denoted

as i
l

represents an entire tree with both its structure and set of leaf parameters.

The structure of a given tree it includes all of the splitting rules, allowing one to

specify how any observation traverses down the tree. We denote the parameters for

the leaves of the tree as lt = {µt,1, µt,2, . . . , µtbt} where bt is the number of terminal

nodes for a given tree. An observation’s predicted value is the sum of the m leaf

values arrived at by traversing down all m trees.

As a Bayesian model, BART consists of a set of priors for the structure and the leaf

parameters and a likelihood for data in the terminal nodes. The aim of the priors is

to provide regularization, preventing any single regression tree from dominating the

total fit. We first provide an overview of the priors for BART and likelihood and then

discuss how draws from the posterior distribution are made.

1.4.1 Priors and likelihood

The prior for the BART model has three components: (1) the tree structure itself, (2)

the leaf parameters given the tree structure, and (3) the error variance σ2 which is

independent of the tree structure and leaf parameters
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P
(
i
l

1 , . . . ,i
l

m, σ
2
)

=

[∏
t

P
(
i
l

t

)]
P
(
σ2
)

(1.9)

=

[∏
t

P
(
lt | it

)
P
(
it
)]

P
(
σ2
)

(1.10)

=

[∏
t

∏
`

P
(
µt,` | it

)
P
(
it
)]

P
(
σ2
)

(1.11)

where the last equality follows from an additional assumption of conditional indepen-

dence of the leaf parameters given the tree’s structure.

We first describe P
(
it
)

, the component of the prior which affects the locations

of nodes within the tree. Node depth is defined as distance from the root. Thus,

the root itself has depth 0, its first child node has depth 1, etc. Nodes at depth d

are nonterminal with prior probability α(1 + d)−β where α ∈ (0, 1) and β ∈ [0,∞].

This component of the tree structure prior has the ability to enforce shallow tree

structures, thereby limiting complexity of any single tree and resulting in more model

regularization. Default values for these hyperparameters of α = 0.95 and β = 2 are

recommended by Chipman et al. (2010).

For nonterminal nodes, splitting rules occur in two parts. First, a predictor is

randomly selected to serve as the splitting variable. In the original formulation, each

available predictor is equally likely to be chosen from a discrete uniform distribution,

and hence each variable is selected with probability 1/p. This is relaxed in our im-

plementation to allow for a generalized Bernoulli distribution where the user specifies

p1, p2, . . . , pp (such that
∑p

j=1 pj = 1), where pj denotes the probability of the jth

variable being selected a priori. This more general prior will be developed further

in Chapter 3. Additionally, note that “structural zeroes,” variables that do not have

any valid split values, are assigned probability zero in the implementation of the al-
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gorithm (see Appendix A.1.2 for details). Once the splitting variable is chosen, the

splitting value is chosen from the multiset (the non-unique set) of available values at

the node via the discrete uniform distribution.

We now describe the prior component P
(
lt | it

)
which controls the leaf param-

eters. Given a tree with a set of terminal nodes, each terminal node (or leaf) has a

continuous parameter (the leaf parameter) representing the “best guess” of the re-

sponse in this partition of predictor space. This parameter is the fitted value assigned

to any observation that lands in that node. The prior on each of the leaf parameters

is given as: µ`
iid∼ N

(
µµ/m, σ

2
µ

)
. The expectation, µµ, is picked to be at the range

center, (ymin + ymax)/2.

The variance hyperparameter σ2
µ is empirically chosen so that the range center

plus or minus k = 2 variances cover 95% of the provided response values in the

training set (where k = 2 corresponding to 95% coverage is only by default and

can be customized). Thus, since there are m trees, we then choose σµ such that

mµµ − k
√
mσµ = ymin and mµµ + k

√
mσµ = ymax. The aim of this prior is to

provide model regularization by shrinking the leaf parameters towards the center of

the distribution of the response. The larger the value of k, the smaller the value of

σ2
µ, resulting in more model regularization.

The final prior is on the error variance and is σ2 ∼ InvGamma (ν/2, νλ/2). λ

is determined from the data so that there is a q = 90% a priori chance (by default)

that the BART model will improve upon the root mean square error (RMSE) from

an ordinary least squares regression. Therefore, the majority of the prior probability

mass lies below the RMSE from least squares regression. Additionally, this prior

limits the probability mass placed on small values of σ2 to prevent overfitting. Thus,

the higher the value of q, the larger the values of the sampled σ2’s, resulting in more

model regularization.
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Note that the adjustable hyperparameters are α, β, k, ν and q. Additionally,

m, the number of trees, must be chosen. Default values generally provide good

performance, but optimal tuning can be achieved automatically via cross-validation.

Along with a set of priors, BART specifies the likelihood of responses in the terminal

nodes. They are assumed a priori normal with the mean being the “best guess” in the

leaf at the moment (i.e. in the current Markov chain Monte Carlo (MCMC) iteration)

and variance being the best guess of the variance at the moment, y` ∼ N (µ`, σ
2).

1.4.2 Posterior distribution and prediction

A Metropolis-within-Gibbs sampler (Geman and Geman, 1984; Hastings, 1970) is

employed to generate draws from the posterior distribution of P(i
l

1 , . . . ,i
l

m, σ
2 | y).

A key feature of this sampler for BART is to employ a form of “Bayesian backfitting”

(Hastie and Tibshirani, 2000) where the jth tree is fit iteratively, holding all other

m− 1 trees constant by exposing only the residual response that remains unfitted:

R−j := y −
∑
t6=j

i
l

t (X). (1.12)

The sampler,

1 : i1 | R−1, σ2 (1.13)

2 : l1 | i1,R−1, σ
2

3 : i2 | R−2, σ2

4 : l2 | i2,R−2, σ
2

...
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2m− 1 : im | R−m, σ2

2m : lm | im,R−m, σ2

2m+ 1 : σ2 | i1,l1, . . . ,im,lm,E ,

proceeds by first proposing a change to the first tree’s structure i which are accepted

or rejected via a Metropolis-Hastings step. Note that sampling from the posterior of

the tree structure does not depend on the leaf parameters, as they can be analytically

integrated out of the computation (see Appendix A.1.2). Given the tree structure,

samples from the posterior of the b leaf parameters l1 := {µ1, . . . , µb} are then drawn.

This procedure progresses iteratively for each tree, using the updated set of partial

residuals R−j. Finally, conditional on the updated set of tree structures and leaf

parameters, a draw from the posterior of σ2 is made based on the full model residuals

E := y −
∑m

t=1 i
l

t (X).

Within a given terminal node, since both the prior and likelihood are normally

distributed, the posterior of each of the leaf parameters in l is conjugate normal with

its mean being a weighted combination of the likelihood and prior parameters (lines

2, 4, . . . , 2m in Equation set 1.13). Due to the normal-inverse-gamma conjugacy, the

posterior of σ2 is inverse gamma as well (line 2m + 1 in Equation set 1.13). The

complete expressions for these posteriors can be found in Gelman et al. (2004).

Lines 1, 3, . . . , 2m−1 in Equation set 1.13 rely on Metropolis-Hastings draws from

the posterior of the tree distributions. These involve introducing small perturbations

to the tree structure: growing a terminal node by adding two child nodes, pruning

two child nodes (rendering their parent node terminal), or changing a split rule. We

denote the three possible tree alterations as: GROW, PRUNE, and CHANGE.1 The

1In the original formulation, Chipman et al. (2010) include an additional alteration called SWAP.
In the implementation of BART used herein, this step is omitted and hence we exclude it from the
discussion.
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mathematics associated with the Metropolis-Hastings step are tedious. Appendix A.1

contains the explicit calculations. Once again, over many MCMC iterations, trees

evolve to capture the fit left currently unexplained.

All 2m+ 1 steps represent a single Gibbs iteration. Empirical work suggests that

no more than 1,000 iterations are needed as “burn-in,” although diagnostics can be

used to assess the MCMC chain (see Chapter 2). An additional 1,000 iterations are

usually sufficient to serve as draws from the posterior for f(x). A single predicted

value f̂(x) can be obtained by taking the average of the posterior values and a quantile

estimate can be obtained by computing the appropriate quantile of the posterior

values. Additional features of the posterior distribution will be discussed in Chapter 2.

1.4.3 BART for classification

BART can easily be modified to handle classification problems for categorical response

variables. In Chipman et al. (2010), only binary outcomes were explored but recent

work has extended BART to the multiclass problem (Kindo et al., 2013). All work

herein focuses on the binary classification problem and we limit the discussion to

that scenario.

For the binary classification problem (coded with outcomes “0” and “1”), we

assume a probit model,

P (Y = 1 | X) = Φ
(
i
l

1 (X) + i
l

2 (X) + . . .+ i
l

m(X)
)
, (1.14)

where Φ denotes the cumulative distribution function of the standard normal dis-

tribution. In this formulation, the sum-of-trees model serves as an estimate of the

conditional probit at x which can be easily transformed into a conditional probability
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estimate of Y = 1.

In the classification setting, the prior on σ2 is not needed as the model assumes

σ2 = 1. The prior on the tree structure remains the same as in the regression setting

and a few minor modifications are required for the prior on the leaf parameters.

Sampling from the posterior distribution is again obtained via Gibbs sampling with

a Metropolis-Hastings step outlined in Section 1.4.2. Following the data augmentation

approach of Albert and Chib (1993), an additional vector of latent variables Z is

introduced into the Gibbs sampler. Then, a new step is created in the Gibbs sampler

where draws of Z |y are obtained by conditioning on the sum-of-trees model:

Zi | yi = 1 ∼ maxN

(∑
t

i
l

t (X) , 1

)
, 0 and (1.15)

Zi | yi = 0 ∼ min

{
N

(∑
t

i
l

t (X) , 1

)
, 0

}
. (1.16)

Next, Z is used as the response vector instead of y in all steps of Equation 1.13.

Upon obtaining a sufficient number of samples from the posterior, inferences can

be made using the the posterior distribution of conditional probabilities and classifica-

tion can be undertaken by applying a threshold to the averages (or another summary)

of these posterior probabilities.

1.4.4 BART Implementation

BART was implemented by the algorithm’s original authors in the R package BayesTree.

Chapter 2 develops a new novel R implementation for BART, bartMachine. Unless oth-

erwise noted, we exclusively use bartMachine throughout this work.
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2
Bayesian Additive Regression Trees Implementation

Abstract

We present a new package in R implementing BART. The package introduces many new

features for data analysis using BART such as variable selection, interaction detection,

model diagnostic plots, incorporation of missing data and the ability to save trees

for future prediction. It is significantly faster than the current R implementation,

parallelized, and capable of handling both large sample sizes and high-dimensional

data.

2.1 Introduction

The initial implementation of BART was provided by Chipman et al. (2010) as a

supplement to the original work. The algorithm was developed with a C++ en-

gine for constructing the ensemble with the output linked to R to allow for effective

data analysis. This implementation is available on CRAN in the package BayesTree.

BayesTree, however, provides limited capabilities for a data analyst and lacks features

that allow it to be a robust platform for research and application. In this chapter,
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we develop a novel implementation of BART that draws inspiration from BayesTree,

but also attempts to remedy a number of its shortcomings in order to provide a more

broadly applicable BART toolbox to the statistics and machine learning communities.

The R package for our implementation, bartMachine, is available from the Compre-

hensive R Archive Network at http://CRAN.R-project.org/package=bartMachine.

We first highlight some key differences across BART implementations in Section 2.1.1

and then devote the rest of the chapter to eludicating the features of bartMachine.

In Section 2.2 we provide a general introduction to the package, highlighting the

novel features. Section 2.3 provides step-by-step examples of the regression capabil-

ities and Section 2.4 introduces additional step-by-step examples of features unique

to classification problems. We conclude in Section 2.5.

2.1.1 Comparison of BART Implementations

The goal of bartMachine is to provide a fast, easy-to-use, visualization-rich machine

learning package for R users. In developing bartMachine, we explored other BART im-

plementations and attempted to understand both the positives and negatives of each

implementation of the algorithm.

One of the most critical drawbacks of BayesTree is its lack of a standalone

predict function. Test data must be provided as an argument during the train-

ing phase of the model. Hence it is impossible to generate forecasts on future data

without re-fitting with the entire model. Since the run time is not trivial, forecast-

ing becomes an arduous exercise. A significantly faster implementation of BART that

contains master-slave parallelization was introduced in Pratola et al. (2013), but this

is only available as standalone C++ source code and not integrated with R. Addi-

tionally, a recent package dbarts allows updating of BART with new predictors and
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response values to incorporate BART into a larger Bayesian model. dbarts relies on

BayesTree as its BART engine.

Our implementation of BART is in Java and is integrated into R via rJava (Ur-

banek, 2011). From a runtime perspective, our algorithm is significantly faster than

BayesTree and is parallelized, allowing computation on as many cores as desired.

Not only is the model construction itself parallelized, but the additional features such

as prediction, variable selection, and many others can be divided across cores as well.

We also include a variety of expanded and additional features. We implement the

ability to save trees in memory and provide convenience functions for prediction on

test data as well as the ability to save models across R sessions. We also include plot-

ting functions for both posterior credible and predictive intervals and plots for visually

inspecting the convergence of BART ’s MCMC chain. We expand variable importance

exploration to include permutation tests and interaction detection. We implement re-

cently developed features for BART including a formal approach to variable selection

and the ability to incorporate prior information for covariates (Chapter 3). We also

implement a new strategy to incorporate missing data during training and handle

missingness during prediction without imputation (Chapter 4). Table 2.1 emphasizes

the differences in features between bartMachine and BayesTree, the two existing R

implementations of BART.

2.2 The bartMachine package

The package bartMachine provides a novel implementation of BART in R. The algo-

rithm is substantially faster than the current R package BayesTree and our implemen-

tation is parallelized at the MCMC iteration level during prediction. Additionally,

the interface with rJava allows for the entire posterior distribution of tree ensembles
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Feature bartMachine BayesTree

Implementation Language Java C++
External Predict Function Yes No

Model Persistence Across Sessions Yes No
Parallelization Yes No

Native Missing Data Mechanism Yes No
Built-in Cross-Validation Yes No

Variable Importance Statistical Tests Exploratory
Tree Proposal Types 3 Types 4 Types

Partial Dependence Plots Yes Yes
Convergence Plots Assess trees and σ2 Assess σ2

Model Diagnostics Yes No
Incorporation into Larger Model No Through dbarts

Table 2.1: Comparison of features between bartMachine and BayesTree.

to persist throughout the R session, allowing for prediction and other calls to the trees

without having to re-run the Gibbs sampler (a limitation in the current BayesTree

implementation). The bartMachine object can be serialized, thereby persisting across

R sessions as well (a feature discussed in Section 2.3.12). Since our implementation

is different from BayesTree, we provide a predictive accuracy “bakeoff” on different

datasets in Section 2.5.1 which illustrates that the two exhibit similar performance.

2.2.1 Speed improvements and parallelization

We make a number of significant speed improvements over the original BayesTree

implementation.

First, bartMachine is fully parallelized (with the number of cores customizable)

during model creation, prediction, and many of the other features. During model

creation, we chose to parallelize by creating one independent Gibbs chain per core.

Thus, if we employ the default 250 burn-in samples and 1,000 post burn-in samples

and four cores, each core would sample 500 samples: 250 for a burn-in and 250
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post burn-in samples. The final model will aggregate the four post burn-in chains

for the four cores yielding the desired 1,000 total burn-in samples. This has the

drawback of effectively running the burn-in serially (which suffers from Amdahl’s

Law), but has the added benefit of reducing auto-correlation of the sum-of-trees

samples in the posterior samples since the chains are independent which may provide

greater predictive performance. Parallelization at the level of likelihood calculations

is left for a future release as we were unable to address the costs of thread overhead.

Parallelization for prediction and other features scale linearly in the number of cores

without Amdahl’s diminishing returns.

Additionally, we take advantage of a number of additional computational short-

cuts:

1. Computing the unfitted responses for each tree (Equation 1.12) can be accom-

plished by keeping a running vector and making entry-wise updates as the Gibbs

sampler (Equation 1.13) progresses from step 1 to 2m. Additionally, during the σ2

sampling (step 2m + 1), the residuals do not have to be computed by traversing

the data down all the trees.

2. Each node caches its acceptable variables for split rules and the acceptable unique

split values so they do not need to be calculated at each tree sampling step. Recall

from the discussion concerning uniform splitting rules in Section 1.4.1 that ac-

ceptable predictors and values change based on the data available at an arbitrary

location in the tree structure. This speed enhancement, which we call memcache

comes at the expense of memory and may cause issues for large data sets. We

include a toggle in our implementation defaulted to “on.”

3. Careful calculations in Appendix A.1 eliminate many unnecessary computations.

For instance, the likelihood ratios are only functions of the squared sum of re-
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sponses and no longer require computing the sum of the responses squared.

Figure 2.1 displays model creation speeds for different values of n on a linear regres-

sion model with p = 20, normally distributed covariates, β1, . . . , β20
iid∼ U (−1, 1), and

standard normal noise. Note that we do not vary p as it was already shown in Chip-

man et al. (2010) that BART’s computation time is largely unaffected by the dimen-

sionality of the problem. We include results for BART using BayesTree, bartMachine

with one core, bartMachine with four cores having the memcache option both on and

off, and bartMachine with four cores, memcache off, and computation of in-sample

statistics off (all with m = 50 trees). The in-sample statistics that are computed by

default are in-sample predictions (ŷ), residuals (e := y− ŷ), L1 error which is defined

as
∑ntrain

i=1 |ei|, L2 error which is defined as
∑ntrain

i=1 e2i , pseudo-R2 which is defined as

1 − L2/(
∑ntrain

i=1 (yi − ȳ)2) and RMSE which is defined as
√
L2/ntrain. We also in-

clude random forests model creation times via the package randomForest (Liaw and

Wiener, 2002) with its default settings.

We first note that Figure 2.1a demonstrates that the bartMachine model creation

runtime is approximately linear in n (without in-sample statistics computed). There

is about a 30% speed-up when using four cores instead of one. The memcache en-

hancement should be turned off only with sample sizes larger than n = 20, 000 (data

unshown). Noteworthy is the 50% reduction in time of constructing the model when

not computing in-sample statistics. In-sample statistics are computed by default be-

cause the user generally wishes to see them. Also, for the purposes of this comparison,

BayesTree models compute the in-sample statistics by necessity since the trees are

not saved. The randomForest implementation becomes slower just after n = 1, 000

due to its reliance on greedy exhaustive search at each node.

Figure 2.1b displays results for smaller sample sizes (n ≤ 2, 000) that are often

encountered in practice. We observe the memcache enhancement provides about a
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Figure 2.1: Model creation times as a function of sample size for a number of settings

of bartMachine, BayesTree and randomForest. Simulations were run on a quad-core

3.4GHz Intel i5 desktop with 24GB of RAM running the Windows 7 64bit operating

system.
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10% speed improvement. Thus, if memory is an issue, it can be turned off with little

performance degradation.

2.2.2 Implementation of Tree Alterations

Additionally, recall from Section 1.4.2, that there are 4 possible proposals for altering

the trees in BART originally proposed by Chipman et al. (2010): GROW, PRUNE,

CHANGE, and SWAP. bartMachine does not implement SWAP due to complexi-

ties that arise in implementation. Additionally, Pratola et al. (2013) argue that a

CHANGE step is unnecessary for sufficient mixing of the Gibbs sampler. While we

too observed this to be true for estimates of the posterior means, we found that omit-

ting CHANGE can negatively impact the variable inclusion proportions (the feature

introduced in Section 2.3.5). As a result, we implement a modified CHANGE step

where we only propose new splits for nodes that are singly internal (versus the original

proposal of changing any splitting rule in a tree). These are nodes where both chil-

dren nodes are terminal nodes (details are given in Appendix A.1.4). After a singly

internal node is selected we (1) select a new split attribute from the set of available

predictors and (2) select a new split value from the multiset of available values (these

two uniform splitting rules were explained in detail previously). We emphasize that

the CHANGE step does not alter tree structure.

2.2.3 Implementation of Research Features

The current stable release of bartMachine available on CRAN implements the vari-

able selection and informed prior procedures introduced in Chapter 3 and the method

for natively handling missing data proposed in Chapter 4. An experimental version

of the package also implements the heteroskedasticity augmentation developed in
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Chapter 5. Future work will involve incorporating this last feature into the package

available on CRAN.

2.3 bartMachine Package Features for Regression

We illustrate the package features by using both real and simulated data, focusing

first on regression problems.

2.3.1 Computing parameters

We first set some computing parameters. In this exploration, we allow up to 5GB of

RAM for the Java heap2 and we set the number of computing cores available for use

to 4.

R> options(java.parameters = "-Xmx5000m")

R> library("bartMachine")

R> set_bart_machine_num_cores(4)

bartMachine now using 4 cores.

The following Sections 2.3.2 – 2.3.9 use a dataset obtained from UCI repository

(Bache and Lichman, 2013). The n = 201 observations are automobiles and the goal

is to predict each automobile’s price from 25 features (15 continuous and 10 nominal),

first explored by Kibler et al. (1989).3 This dataset also contains missing data. We

omit missing data for now (41 observations that will later be retained in Section 2.3.8)

2Note that the maximum amount of memory can be set only once at the beginning of the R

session (a limitation of rJava since only one Java Virtual Machine can be initiated per R session),
but the number of cores can be respecified at any time.

3We first preprocess the data. We first drop one of the nominal predictors (car company) due
to too many categories (22). We then coerce two of the of the nominal predictors to be continuous.
Further, the response variable, price, was logged to reduce right skew in its distribution.
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and we create a variable for the design matrix X and the response y. The following

code loads the data.

R> data(automobile)

R> automobile <- na.omit(automobile)

R> y <- automobile$log_price

R> X <- automobile; X$log_price <- NULL

2.3.2 Model building

We are now ready to construct a bartMachine model. The default hyperparameters

generally follow the recommendations of Chipman et al. (2010) and provide a ready-

to-use algorithm for many data problems. Our hyperparameter settings are m = 50,4

α = 0.95, β = 2, k = 2, q = 0.9, ν = 3, and probabilities of the GROW / PRUNE

/ CHANGE steps is 28% / 28% /44%. We retain the default number of burn-in

Gibbs samples (250) as well as the default number of post-burn-in samples (1,000).

In the default mode, the covariates are equally important a priori. Other parameters

and their defaults can be found in the package’s online manual. Below is a default

bartMachine model. Here, X denotes automobile attributes and y denotes the log

price of the automobile.

R> bart_machine <- bartMachine(X, y)

Building bartMachine for regression ...

evaluating in sample data...done

4In contrast to Chipman et al. (2010), we recommend this default as a good starting point
rather than m = 200 due to our experience experimenting with the “RMSE by number of trees”
feature found later in this section. Performance is often similar and computational time and memory
requirements are dramatically reduced.
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If one wishes to see more information about the individual iterations of the Gibbs

sampler of Equation 5.5, the flag verbose can be set to “TRUE.” One can see more

debug information from the Java program by setting the flag debug log to TRUE and

the program will print to unnamed.log in the current working directory. In the fol-

lowing code segment, we inspect the model object to query its in-sample performance

and to be reminded of the input data and model hyperparameters.

R> bart_machine

bartMachine v1.1.1 for regression

training data n = 160 and p = 41

built in 1.7 secs on 4 cores, 50 trees, 250 burn-in

and 1000 post. samples

sigsq est for y beforehand: 0.014

avg sigsq estimate after burn-in: 0.00794

in-sample statistics:

L1 = 8.01

L2 = 0.65

rmse = 0.06

Pseudo-Rsq = 0.979

p-val for shapiro-wilk test of normality of residuals: 0.04584

p-val for zero-mean noise: 0.97575

The above output provides a summary for a default bartMachine model built with

the automobile data. Since the response was continuous, bartMachine for regression
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was employed automatically. First, the output prints the dimensions of the design

matrix. Then, it prints the creation time along with other model parameters. Next

the output prints the MSE for the OLS model and displays the bartMachine model’s

estimate of σ2
e . We are then given in-sample statistics on error. The pseudo-R2 is

calculated via 1 − SSE/SST . Also provided are outputs from tests of the error

distribution being normal and mean centered . Note that the p-value for Shapiro-

Wilk test of normality of residuals is marginally less than 5%. Thus we conclude

that the noise of Equation 1.8 is not normally distributed. Just as when interpreting

the results from a linear model, non-normality implies we should be circumspect

concerning bartMachine output that relies on this distributional assumption such as

the credible and prediction intervals of Section 2.3.4.

We can also obtain out-of-sample statistics to assess level of overfitting by using

k-fold cross-validation. Using 10 randomized folds we find:

R> k_fold_cv(X, y, k_folds = 10)

..........

$L1_err

[1] 21.64303

$L2_err

[1] 4.742511

$rmse

[1] 0.1721647

$PseudoRsq

[1] 0.8467881
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The code provides the out of sample statistics for the model built above. This

function also returns the ŷ predictions as well as the vector of the fold indices (which

are omitted in the output shown above).

The Pseudo-R2 being lower out-of-sample (above) versus in-sample suggests that

bartMachine is slightly overfitting (note also that the training sample during cross-

validation is 10% smaller).

It may also be of interest to see how the number of trees m affects performance.

One can examine how out-of-sample predictions vary by the number of trees via

R> rmse_by_num_trees(bart_machine, num_replicates = 20)

and the output is shown in Figure 2.2. This illustration suggests that predictive

performance levels off around m = 50. We observe similar illustrations across a

wide variety of datasets and hyperparameter choices which is the reason we have set

m = 50 as the default value in the package.
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Figure 2.2: Out-of-sample predictive performance by number of trees.
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Note that there is nominal improvement at m = 200. There may also be im-

provement if other hyperparameters are varied. We can attempt to build a better

bartMachine model using the procedure bartMachineCV by grid-searching over a set

of hyperparameter combinations, including m (for more details, see BART-cv in Chip-

man et al., 2010). The grid of interest can be customized by the user and defaults to

a small grid.

R> bart_machine_cv <- bartMachineCV(X, y)

...

bartMachine CV win: k: 2 nu, q: 3, 0.9 m: 200

This function returns the “winning” model, which is the one with lowest out-of-

sample RMSE over a 5-fold (by default) cross-validation. Here, the cross-validated

bartMachine model has slightly better in-sample performance (L1 = 8.18, L2 = 0.68

and Pseudo-R2 = 0.978) in comparison to the initial BART model as well as slightly

better out-of-sample performance (L1 = 21.05, L2 = 4.40 and Pseudo-R2 = 0.858)

when assessed via:

R> k_fold_cv(X, y, k_folds = 10, k = 2, nu = 3, q = 0.9,

num_trees = 200)

Predictions are handled with the predict function. Below are fits for the first seven

observations.

R> predict(bart_machine_cv, X[1 : 7, ])

[1] 9.49 9.78 9.79 10.05 9.67 9.70 9.91

We also include a convenience method bart predict for test data that will predict

and return out-of-sample error metrics when the test outcomes are known.
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2.3.3 Assumption checking

The package includes features that assess the plausibility of the BART model assump-

tions. Checking the mean-centeredness of the noise is addressed in the summary

output of a constructed model and is simply a one-sample t-test of the average resid-

ual value against a null hypothesis of true mean zero. We assess both normality and

heteroskedasticity via:

R> check_bart_error_assumptions(bart_machine_cv)

This will display a plot similar to Figure 2.3 which contains a QQ-plot (to as-

sess normality) as well as a residual-by-predicted plot (to assess homoskedasticity).

There is little evidence that the errors violate the assumptions of normality and ho-

moskedasticity.

In addition to the model assumptions, BART requires convergence of its Gibbs

sampler which can be investigated via:

R> plot_convergence_diagnostics(bart_machine_cv)

Figure 2.4 displays the plot which features four types of convergence diagnostics

(each are detailed in the figure caption). The top left plot shows σ2 by MCMC

iteration. Samples to the left of the first vertical grey line are burn-in from the first

computing core’s MCMC chain. The four subsequent plots separated by grey lines are

the post-burn-in iterations from each of the four computing cores employed during

model construction. The top right plot shows the percent acceptance of Metropolis-

Hastings proposals across the m trees where each point plots one iteration. Points

before the grey vertical line illustrate burn-in iterations and points after illustrate

post burn-in iterations. Each computing core is colored differently. The bottom left

plot shows the average number of leaves across the m trees by iteration (post burn-in

35



−2 −1 0 1 2

−
0.

2
0.

0

Assessment of Normality
 p−val for shapiro−wilk test of normality of residuals: 0.203

Normal Q−Q plot for in−sample residuals
(Theoretical Quantiles)

es

● ●
● ● ●

●●●●
●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●● ● ● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●● ● ●

●

●

● ●

●

●

●

●

●
●

● ●
●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●●

●
●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

● ●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

8.5 9.0 9.5 10.0

−
0.

2
0.

0

Assessment of Heteroskedasticity
Fitted vs residuals

Fitted Values

R
es

id
ua

ls
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only where computing cores separated by vertical grey lines). Finally, the bottom

right plot shows average tree depth across the m trees by iteration (post burn-in only

where computing cores separated by vertical grey lines). Overall, visual inspection

of the plots suggests that the bartMachine model has been sufficiently burned-in as

each of the plots seems to exhibit a stationary process.
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Figure 2.4: Convergence diagnostics for the cross-validated bartMachine model.

37



2.3.4 Credible intervals and prediction intervals

An advantage of BART is that if we believe the priors and model assumptions, the

Bayesian probability model and corresponding burned-in MCMC iterations provide

the approximate posterior distribution of f (x). Thus, one can compute uncertainty

estimates via quantiles of the posterior samples. These provide Bayesian “credible

intervals” which are intervals for the conditional expectation function, E [y | X].

Another useful uncertainty interval can be computed for individual predictions by

combining uncertainty from the conditional expectation function with the systematic,

homoskedastic normal noise produced by E . This is accomplished by generating 1,000

samples (by default) from the posterior predictive distribution and then reporting the

appropriate quantiles.

Below is an example of how both types of intervals are computed in the package

(for the 100th observation of the training data):

R> calc_credible_intervals(bart_machine_cv, X[100, ], ci_conf = 0.95)

ci_lower_bd ci_upper_bd

[1,] 8.725202 8.971687

R> calc_prediction_intervals(bart_machine_cv, X[100, ],

pi_conf = 0.95)

pi_lower_bd pi_upper_bd

[1,] 8.631243 9.06353

Note that the prediction intervals are wider than the credible intervals because

they reflect the uncertainty from the error term.

We can then plot these intervals in sample:

R> plot_y_vs_yhat(bart_machine_cv, credible_intervals = TRUE)

R> plot_y_vs_yhat(bart_machine_cv, prediction_intervals = TRUE)
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Figure 2.5a shows how our prediction fared against the original response (in-

sample) with 95% credible intervals. Figure 2.5b shows the same prediction versus

the original response plot now with 95% prediction intervals.

2.3.5 Variable importance

After a bartMachine model is built, it is natural to ask the question: which variables

are most important? This is assessed by examining the splitting rules in the m trees

across the post burn-in MCMC iterations which are known as “inclusion proportions”

(Chipman et al., 2010). The inclusion proportion for any given predictor represents

the proportion of times that variable is chosen as a splitting rule out of all splitting

rules among the posterior draws of the sum-of-trees model. Figure 2.6 illustrates the

inclusion proportions for all variables obtained via:

R> investigate_var_importance(bart_machine_cv,

num_replicates_for_avg = 20)

2.3.6 Variable effects

It is also natural to ask: does xj affect the response, controlling for other variables in

the model? This is roughly analogous to the t-test in ordinary least squares regression

of no linear effect of xj on y while controlling for all other variables, x−j. The null

hypothesis here is the same but the linearity constraint is relaxed. To test this, we

employ a permutation approach where we record the observed Pseudo-R2 from the

bartMachine model built with the original data. Then we permute the xjth column,

thereby destroying any relationship between xj and y (and the other predictors),

construct a new duplicate bartMachine model from this permuted design matrix and
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Figure 2.5: Fitted versus actual response values for the automobile dataset. Segments

are 95% credible intervals (a) or 95% prediction intervals (b). Green dots indicate

the true response is within the stated interval and red dots indicate otherwise.
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Figure 2.6: Average variable inclusion proportions in the cross-validated bartMachine

model for the automobile data averaged over 100 model constructions to obtain sta-

ble estimates across many posterior modes in the sum-of-trees distribution (as rec-

ommended in Bleich et al., 2014). The segments on top of the bars represent 95%

confidence intervals. The eight predictors with inclusion proportions of zero are pre-

dictors with identically one value (after missing data were dropped).
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record a “null” Pseudo-R2. We then repeat this process to obtain a null distribution

of Pseudo-R2’s. Since the alternative hypothesis is that xj has an effect on y in

terms of predictive power, our p value is the proportion of null Pseudo-R2’s greater

than the observed Pseudo-R2, making our procedure a natural one-sided test. Note,

however, that this test is conditional on the BART model and its selected priors being

true, similar to the assumptions of the linear model.

If we wish to test if a set of covariates A ⊂ {x1, . . . ,xp} affect the response after

controlling for other variables, we repeat the procedure outlined in the above para-

graph by permuting the predictors in A in every null sample. We do not permute each

column separately, but instead permute as a unit in order to preserve the collinear-

ity structure in A. This is roughly analogous to the partial F -test in ordinary least

squares regression.

If we wish to test if any of the covariates matter in predicting y, we simply

permute y during the null sampling. This procedure breaks the relationship between

the response and the predictors but does not alter the existing associations between

predictors. This is roughly analogous to the omnibus F -test in ordinary least squares

regression.

At α = 0.05, Figure 2.7a demonstrates an insignificant effect of the variable width

of car on price. Even though width is putatively the “most important” variable as

measured by proportions of splits in the posterior sum-of-trees model (Figure 2.6),

note that this is largely an easy prediction problem with many collinear predictors.

Figure 2.7b shows the results of a test of the putatively most important categorical

variable, body style (which involves permuting the categories, then dummifying the

levels to preserve the structure of the variable). We find a marginally significant

effect (p = 0.0495). A test of the top ten most important variables is convincingly

significant (Figure 2.7c). For the omnibus test, Figure 2.7d illustrates an extremely
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statistically significant result, as would be expected. The code to run these tests is

shown below (output suppressed).

R> cov_importance_test(bart_machine_cv, covariates = c("width"))

R> cov_importance_test(bart_machine_cv, covariates = c("body_style"))

R> cov_importance_test(bart_machine_cv, covariates = c("width",

"curb_weight", "city_mpg", "length", "horsepower", "body_style",

"engine_size", "highway_mpg", "peak_rpm", "normalized_losses"))

R> cov_importance_test(bart_machine_cv)

BART test for importance of covariate(s): width 
 Null Samples of Pseudo−R^2's

permutation samples
 pval =  0.356
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(a) width

BART test for importance of covariate(s): body_style 
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 pval =  0.05
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(b) body style

BART test for importance of 10 covariates 
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BART omnibus test for covariate importance
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(d) All covariates

Figure 2.7: Tests of covariate importance conditional on the cross-validated

bartMachine model. All tests performed with 100 null samples.
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2.3.7 Partial dependence

A data analyst may also be interested in understanding how xj affects the response on

average, after controlling for other predictors. This can be examined using Friedman

(2001)’s Partial Dependence Function (PDP),

fj(xj) = Ex−j [f(xj,x−j)] :=

∫
f(xj,x−j)dP (x−j) . (2.1)

The PDP of predictor xj gives the average value of f when xj is fixed and x−j

varies over its marginal distribution, dP (x−j). As neither the true model f nor

the distribution of the predictors dP (x−j) are known, we estimate Equation 2.1 by

computing

f̂j(xj) =
1

n

n∑
i=1

f̂(xj,x−j,i) (2.2)

where n is the number of observations in the training data and f̂ denotes predictions

via the bartMachine model. Since BART provides an estimated posterior distribution,

we can plot credible bands for the PDP function. Credible bands are computed as

follows: in Equation 2.2, the f̂ can be replaced with a function that calculates the qth

quantile of the post-burned-in MCMC iterations for ŷ. Figure 2.8a plots the PDP

along with the 2.5%ile and the 97.5%ile for the variable horsepower. By varying over

most of the range of horsepower, the price is predicted to increase by about $1000,

holding all else constant. Figure 2.8b plots the PDP along with the 2.5%ile and the

97.5%ile for the variable stroke. This predictor seemed to be relatively unimportant

according to Figure 2.6 and the PDP confirms this, with a very small, yet nonlinear

average partial effect. The code for both plots is below.
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R> pd_plot(bart_machine_cv, j = "horsepower")

R> pd_plot(bart_machine_cv, j = "stroke")
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(a) horsepower

2.3.8 Incorporating missing data

The procedure for incorporating missing data will be formally developed in Chapter 4.

Here, we briefly introduce how to build a bartMachine model using our procedure

for incorporating missing data below:

R> y <- automobile$log_price

R> X <- automobile; X$log_price <- NULL

R> bart_machine <- bartMachine(X, y, use_missing_data = TRUE,

use_missing_data_dummies_as_covars = TRUE)
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Figure 2.8: PDPs plotted in black and 95% credible intervals plotted in blue for

variables in the automobile dataset. Points plotted are at the 5%ile, 10%ile, 20%ile,

. . . , 90%ile and 95%ile of the values of the predictor. Lines plotted between the points

approximate the PDP by linear interpolation.
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The model output below parallels the model output with the missing rows omitted

(Section 2.3.2) with the key difference that the missing data feature has been turned

on.

R> bart_machine

bartMachine v1.1.1 for regression

Missing data feature ON

training data n = 201 and p = 50

built in 1.4 secs on 1 core, 50 trees, 250 burn-in

and 1000 post. samples

sigsq est for y beforehand: 0.016

avg sigsq estimate after burn-in: 0.00939

in-sample statistics:

L1 = 11.49

L2 = 1.04

rmse = 0.07

3 Pseudo-Rsq = 0.9794

p-val for shapiro-wilk test of normality of residuals: 0.69814

p-val for zero-mean noise: 0.96389

Note that the output reflects the use of the complete data set. There are 41

observations now included for which there are missing features. Also note that p has

now increased from 41 to 50. The nine “new” predictors are:

[1] "engine_location_rear" "engine_type_rotor" "fuel_system_4bbl"

[4] "fuel_system_spfi" "M_normalized_losses" "M_bore"
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[7] "M_stroke" "M_horsepower" "M_peak_rpm"

The first two predictors are two new levels for the variable engine location

which appear in the 41 rows with missingness. The next two predictors are two

new levels for the variable fuel system which appear in the 41 rows with miss-

ingness as well. The last five new predictors are dummy variables which indicate

missingness constructed from the predictors which exhibited missingness (due to the

use missing data dummies as covars parameter being set to true).

The procedure developed in Chapter 4 also incorporates missing data during pre-

diction. As will be shown, missingness in the data will yield larger credible intervals.

In the example below, we suppose that the curb weight and symboling values were

suddenly unavailable for the 20th automobile and we observe their credible intervals

widening as a result.

R> x_star <- X[20, ]

R> calc_credible_intervals(bart_machine, x_star, ci_conf = 0.95)

ci_lower_bd ci_upper_bd

[1,] 8.650093 8.824515

R> x_star[c("curb_weight", "symboling")] <- NA

R> calc_credible_intervals(bart_machine, x_star, ci_conf = 0.95)

ci_lower_bd ci_upper_bd

[1,] 8.622582 8.978313

2.3.9 Variable selection

In this section we demonstrate the variable selection procedures formally developed

in Chapter 3. The following code will select variables based on the three thresholds
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and also displays the plot in Figure 2.9.5

R> vs <- var_selection_by_permute(bart_machine,

bottom_margin = 10, num_permute_samples = 10)

R> vs$important_vars_local_names

"curb_weight" "city_mpg" "engine_size" "horsepower"

"length" "width" "num_cylinders" "body_style_convertible"

"wheel_base" "peak_rpm" "highway_mpg" "wheel_drive_fwd"

R> vs$important_vars_global_max_names

"curb_weight" "city_mpg" "engine_size" "horsepower" "length"

R> vs$important_vars_global_se_names

"curb_weight" "city_mpg" "engine_size" "horsepower" "length"

"width" "num_cylinders" "wheel_base" "wheel_drive_fwd"

As will be shown, in many situations it will not be clear to the data analyst which

threshold is most appropriate. The fourth procedure we will introduce can choose

the “best” procedure via cross-validation using RMSE as follows:

var_selection_by_permute_response_cv(bart_machine)

$best_method

[1] "important_vars_local_names"

$important_vars_cv

[1] "body_style_convertible" "city_mpg" "curb_weight"

[4] "engine_size" "engine_type_ohc" "horsepower"

[7] "length" "num_cylinders" "peak_rpm"

5By default, variable selection is performed individually on dummy variables for a factor. The
variable selection procedures return the permutation distribution and an aggregation of the dummy
variables’ inclusion proportions can allow for variable selection to be performed on an entire factor.
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Figure 2.9: Visualization of the three variable selection procedures developed in Chap-

ter 3 with α = 0.05. The top plot illustrates the “Local” procedure. The green lines

are the threshold levels determined from the permutation distributions that must be

exceeded for a variable to be selected. The plotted points are the variable inclusion

proportions for the observed data (averaged over five duplicate bartMachine mod-

els). If the observed value is higher than the green bar, the variable is included and

is displayed as a solid dot; if not, it is not included and it is displayed as an open dot.

The bottom plot illustrates both the “Global SE” and “Global Max” thresholds. The

red line is the cutoff for “Global Max” and variables pass this threshold are displayed

as solid dots. The blue lines represent the thresholds for the “Global SE” procedure.

Variables that exceed this cutoff but not the “Global Max” threshold are displayed

as asterisks. Open dots exceed neither threshold.
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[10] "wheel_base" "wheel_drive_fwd" "wheel_drive_rwd"

[13] "width"

On this dataset, the “best” approach (as defined by out-of-sample prediction error)

is the “Local” procedure.

2.3.10 Informed prior information on covariates

Chapter 3 also introduces a method for incorporating informed prior information

about the predictors into the BART model. This can be achieved by modifying the

prior on the splitting rules as well as the corresponding calculations in the Metropolis-

Hastings step. In particular, covariates believed to influence the response can a priori

be proposed more often as candidates for splitting rules. Useful prior information can

aid in both variable selection and prediction tasks. We demonstrate the impact of a

correctly informed prior in the context of the Friedman (1991) function (Equation 2.3).

y = 10sin (πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + E , E ∼ Nn
(
0, σ2I

)
. (2.3)

To illustrate, we construct a design matrix X where the first five columns are

predictors which influence the response (x1, . . . ,x5 in Equation 2.3) and the next 95

columns are predictors that do not affect the response.

All that is required is a specification of relative weights for each predictor. These

weights are normalized internally to become probabilities. As an example, we assign

5 times the weight to the 5 true covariates of the model relative to the 95 useless

covariates.

R> prior <- c(rep(5, times = 5), rep(1, times = 95))
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We now sample 500 observations from the Friedman function and construct a

default bartMachine model as well as a bartMachine model with the informed prior

and compare their performance using the RMSE metric on a test set of another 500

observations.

R> bart_machine <- bartMachine(X, y)

R> bart_machine_informed <- bartMachine(X, y, cov_prior_vec = prior)

R> bart_predict_for_test_data(bart_machine, Xtest, ytest)$rmse

[1] 1.661159

R> bart_predict_for_test_data(bart_machine_informed,

Xtest, ytest)$rmse

[1] 1.232925

There is a substantial improvement in out-of-sample predictive performance when

a properly informed prior is used.

Note that by default the prior vector down-weights the indicator variables that

result from dummifying categorical variables so that the total set of dummy variables

has the same weight as a continuous covariate.

2.3.11 Interaction effect detection

In Section 2.3.5, we explored using variable inclusion proportions to understand the

relative influences of different covariates. A similar procedure can be carried out

for examining interaction effects within a BART model. This question was initially

explored in Damien et al. (2013) where an interaction was considered to exist between

two variables if they both appeared in at least one splitting rule in a given tree. We

refine the definition of an interaction as follows.
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We first begin with a p × p matrix of zeroes. Within a given tree, for each split

rule variable j, we look at all split rule variables of child nodes, k, and we increment

the j, k element of the matrix. Hence variables are considered to interact in a given

tree only if they appear together in a contiguous downward path from the root node

to a terminal node. Note that a variable may interact with itself (when fitting a linear

effect, for instance). Since there is no order between the parent and child, we then

add the j, k counts together with the k, j counts (if j 6= k). Summing across trees

and MCMC iterations gives the total number of interactions for each pair of variables

from which relative importance can be assessed.

We demonstrate interaction detection on the Friedman function using 10 covari-

ates using the code below:

R> interaction_investigator(bart_machine, num_replicates_for_avg = 25,

num_var_plot = 10, bottom_margin = 5)

Figure 2.10 shows the ten most important interactions in the model. The illustra-

tion is averaged over 25 model constructions to obtain stable estimates across many

posterior modes in the sum-of-trees distribution. Notice that the interaction between

x1 and x2 dominates all other interaction terms, as bartMachine is correctly captur-

ing the single true interaction effect: the sin (πx1x2) term in Equation 2.3. Choosing

which of these interactions significantly affect the response is not addressed in this

paper. The methods proposed in Chapter 3 may be applicable here and we consider

this to be fruitful future work.

2.3.12 bartMachine Model Persistence Across R Sessions

A convenient feature of bartMachine is its ability to “serialize” the model. Serializa-

tion allows the user to construct models and have them persist across R sessions. The
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Figure 2.10: The top 10 average variable interaction counts (termed “relative impor-

tance”) in the default bartMachine model for the Friedman function data averaged

over 25 model constructions. The segments atop the bars represent 95% confidence

intervals.

cost is time during model creation and hard drive space. Thus, the serialize feature

is defaulted to “off.” We demonstrate using the code below:

R> bart_machine <- bartMachine(X, y, serialize = TRUE)

R> save.image("bart_demo.RData")

R> q("no")

> R

R> options(java.parameters = "-Xmx2500m")

R> library(bartMachine)

R> load("bart_demo.RData")

R> predict(bart_machine, X[1 : 4, ])

[1] 20.0954617 14.8860727 10.9483889 11.4350277

The training data is the same as in the previous section: n = 100 and p = 10.

For the default bartMachine settings, m = 50, number of burn-in MCMC iterations
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is 250 and number of posterior samples is 1000. These settings yielded an almost

instant serialization and a 2.1MB RData image file. For a more realistic dataset with

n = 5000, p = 1000, m = 100 and 5000 posterior samples, the serialization and saving

of the file took a few minutes and required 100MB.

Note that the package throws an error if the user attempts to make use of a

bartMachine object in another session which was not serialized:

R> bart_machine <- bartMachine(X, y) #serialize is FALSE here

R> save.image("bart_demo.RData")

R> q("no")

> R

R> options(java.parameters = "-Xmx2500m")

R> library(bartMachine)

R> load("bart_demo.RData")

R> predict(bart_machine, X[1 : 4, ])

Error in check_serialization(object) :

This bartMachine object was loaded

from an R image but was not serialized.

Please build bartMachine using the

option "serialize = TRUE" next time.

2.4 bartMachine Package Features for Classification

In this section we highlight the features that differ in bartMachine when the response

is continuous (in the regression setting) versus when the response is dichotomous

categorical variable (in the classification setting). The illustrative dataset consists of

332 Pima Indians obtained from the UCI repository. Of the 332 subjects, 109 were
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diagnosed with diabetes, the binary response variable. There are seven continuous

predictors which are body metrics such as blood pressure, glucose concentration, etc.

and there is no missing data.

Building a bartMachine model for classification has the same computing param-

eters except that q, ν cannot be specified since there is no longer a prior on σ2 (see

Section 1.4.3). We first build a cross-validated model below.

R> library(MASS)

R> data(Pima.te)

R> X <- data.frame(Pima.te[, -8])

R> y <- Pima.te[, 8]

R> bart_machine_cv <- bartMachineCV(X, y)

... bartMachine CV win: k: 3 m: 50

R> bart_machine_cv

bartMachine v1.1.1 for classification

training data n = 332 and p = 7

built in 0.7 secs on 4 cores, 50 trees, 250 burn-in

and 1000 post. samples

confusion matrix:

predicted No predicted Yes model errors

actual No 210.000 13.00 0.058

actual Yes 41.000 68.00 0.376

use errors 0.163 0.16 0.163
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Classification models have an added hyperparameter, prob rule class, which is

the rule for determining if the probability estimate is great enough to be classified

into the positive category. We can see above that the bartMachine at times predicts

“NO” for true “YES” outcomes and we suffer from a 37.6% error rate for this out-

come. We can try to mitigate this error by lowering the threshold to increase the

number of “YES” labels predicted:

R> bartMachine(X, y, prob_rule_class = 0.3)

bartMachine v1.1.1 for classification

training data n = 332 and p = 7

built in 0.6 secs on 4 cores, 50 trees, 250 burn-in

and 1000 post. samples

confusion matrix:

predicted No predicted Yes model errors

actual No 177.000 46.000 0.206

actual Yes 11.000 98.000 0.101

use errors 0.059 0.319 0.172

This lowers the model error to 10% for the “YES” class, but at the expense of

increasing the error rate for the “NO” class. We encourage the user to cross-validate

this rule based on an appropriate objective function for the problem at hand.

We can also check out-of-sample statistics:

R> oos_stats <- k_fold_cv(X, y, k_folds = 10)
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R> oos_stats$confusion_matrix

predicted No predicted Yes model errors

actual No 200.00 23.000 0.103

actual Yes 47.00 62.000 0.431

use errors 0.19 0.271 0.211

Note that it is possible to predict both class labels and probability estimates for given

observations:

R> predict(bart_machine_cv, X[1 : 2, ], type = "prob")

[1] 0.6253160 0.1055975

R> predict(bart_machine_cv, X[1 : 2, ], type = "class")

[1] Yes No

Levels: No Yes

When using the covariate tests of Section 2.3.6, total misclassification error be-

comes the statistic of interest instead of Pseudo-R2. The p value is calculated now

as the proportion of null samples with lower misclassification error. Figure 2.11 il-

lustrates the test showing that predictor age seems to matter in the prediction of

Diabetes, controlling for other predictors.

The partial dependence plots of Section 2.3.7 are now scaled as probit of the

probability estimate. Figure 2.12 illustrates that as glucose increases, the probability

of contracting Diabetes increases linearly on a probit scale.

Credible intervals are implemented for classification bartMachine and are dis-

played on the probit scale. Note that the prediction intervals of Section 2.3.4 do not

exist for classification since E noise is not part of the probit model.

R> calc_credible_intervals(bart_machine_cv, X[1 : 2, ])
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ci_lower_bd ci_upper_bd

[1,] 0.34865355 0.8406097

[2,] 0.01686486 0.2673171

Other functions work similarly to regression except those that plot the responses

and those that explicitly depend on RMSE as an error metric.

2.5 Conclusion

2.5.1 Forecasting “Bakeoff”

Finally, we compare the performance of bartMachine to BayesTree (and RF). We

bake-off nine regression data sets and assessed out-of-fold RMSE using 10-fold cross-

validation. We average the results across 20 replications of cross-validation. The

results are displayed in Table 2.2.

bartMachine BayesTree RF

boston 4.451 4.503 4.582
triazine 0.128* 0.130 0.119

ozone 4.147 4.144 4.064
baseball 709.197 709.437 729.188
wine.red 0.656 0.651* 0.642

ankara 1.348* 1.461 1.574
wine.white 0.759* 0.766 0.746

pole 11.713* 12.755 10.691
compactiv 3.262 2.795* 2.957

Table 2.2: RMSE values for three machine learning algorithms averaged across

20 replicates. Asterisks indicate a significant difference between bartMachine and

BayesTree at a significance level of 5% with a Bonferroni correction. Comparisons

with randomForest’s performance were not conducted.
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We conclude that the implementation outlined in this paper performs approxi-

mately the same as the previous implementation with regards to predictive accuracy.

Table 2.3 shows the average run-time for each algorithm. Note that bartMachine

is run using 4 cores.

bartMachine BayesTree RF

boston 7.8 28.5 5.1
triazine 5.7 10.7 2.6

ozone 4.7 17.6 2.1
baseball 5.6 18.6 3.3
wine.red 13.5 51.1 10.6

ankara 12.8 27.0 10.9
wine.white 13.5 56.0 11.0

pole 18.2 7.0 12.0
compactiv 16.3 18.4 19.2

Table 2.3: Average run-times (in seconds) for each complete k-fold estimation for

three machine learning algorithms.

2.5.2 Discussion

This article introduced bartMachine, a new R package which implements Bayesian

additive regression trees. The goal of this package is to provide a fast, extensive and

user-friendly implementation accessible to a wide range of data analysts, and increase

the visibility of BART to a broader statistical audience. We hope we have provided

organized, well-documented open-source code and we encourage the community to

make innovations on this package.
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3
Variable Selection for BART

Abstract

We consider the task of discovering gene regulatory networks, which are defined as

sets of genes and the corresponding transcription factors which regulate their expres-

sion levels. This can be viewed as a variable selection problem, potentially with high

dimensionality. Variable selection is especially challenging in high dimensional set-

tings, where it is difficult to detect subtle individual effects and interactions between

predictors. BART provides a novel nonparametric alternative to parametric regression

approaches, such as the lasso or stepwise regression, especially when the number of

relevant predictors is sparse relative to the total number of available predictors and

the fundamental relationships are nonlinear. We develop a principled permutation-

based inferential approach for determining when the effect of a selected predictor is

likely to be real. Going further, we adapt the BART procedure to incorporate informed

prior information about variable importance. We present simulations demonstrating

that our method compares favorably to existing parametric and nonparametric proce-

dures in a variety of data settings. To demonstrate the potential of our approach in a

biological context, we apply it to the task of inferring the gene regulatory network in

yeast (Saccharomyces cerevisiae). We find that our BART-based procedure is best able
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to recover the subset of covariates with the largest signal compared to other variable

selection methods. The methods developed in this work are readily available in the

R package bartMachine.

3.1 Introduction

An important statistical problem in many application areas is variable selection: iden-

tifying the subset of covariates that exert influence on a response variable. We consider

the general framework where we have a continuous response variable y and a large set

of predictor variables x1, ...,xK . We focus on variable selection in the sparse setting:

only a relatively small subset of those predictor variables truly influences the response

variable.

One such example of a sparse setting is the motivating application for this paper:

inferring the gene regulatory network in budding yeast (Saccharomyces cerevisiae). In

this application, we have a collection of approximately 40 transcription factor proteins

(TFs) that act to regulate cellular processes in yeast by promoting or repressing

transcription of specific genes. It is unknown which of the genes in our yeast data

are regulated by each of the transcription factors. Therefore, the goal of the analysis

is to discover the corresponding network of gene-TF relationships, which is known as

a gene regulatory network. Each gene, however, is regulated by only a small subset

of the TFs which makes this application a sparse setting for variable selection. The

available data consist of gene expression measures for approximately 6000 genes in

yeast across several hundred experiments, as well as expression measures for each of

the approximately 40 transcription factors in those experiments (Jensen et al., 2007).

This gene regulatory network was previously studied in Jensen et al. (2007) with

a focus on modeling the relationship between genes and transcription factors. The
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authors considered a Bayesian linear hierarchical model with first-order interactions.

In high-dimensional data sets, specifying even first-order pairwise interactions can

substantially increase the complexity of the model. Additionally, given the elaborate

nature of biological processes, there may be interest in exploring nonlinear relation-

ships as well as higher-order interaction terms. In such cases, it may not be possible

for the researcher to specify these terms in a linear model a priori. Indeed, Jensen

et al. (2007) acknowledge the potential utility of such additions, but highlight the

practical difficulties associated with the size of the resulting parameter space. Thus,

we propose a variable selection procedure that relies on BART. BART dynamically esti-

mates a model from the data, thereby allowing the researcher to potentially identify

genetic regulatory networks without the need to specify higher order interaction terms

or nonlinearities ahead of time.

Additionally, we have data from chromatin immunoprecipitation (ChIP) binding

experiments (Lee et al., 2002). Such experiments use antibodies to isolate specific

DNA sequences which are bound by a TF. This information can be used to discover

potential binding locations for particular transcription factors within the genome.

The ChIP data can be considered “prior information” that one may wish to make

use of when investigating gene regulatory networks. Given the Bayesian nature of

our approach, we propose a straightforward modification to BART which incorporates

such prior information into our variable selection procedure.

In Section 3.2, we review some common techniques for variable selection. We em-

phasize the limitations of approaches relying on linear models and highlight variable

selection via tree-based techniques. Section 3.3 focuses on modifying BART for vari-

able selection. In Sections 3.3.1 and 3.3.2, we introduce how BART computes variable

inclusion proportions and explore the properties of these proportions. In Section 3.3.3,

we develop procedures for principled variable selection based upon BART output. In
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Section 3.3.4 we extend the BART procedure to incorporate prior information about

predictor variable importance. In Section 3.4, we compare our methodology to al-

ternative variable selection approaches in both linear and nonlinear simulated data

settings. In Section 3.5, we apply our BART-based variable selection procedure to the

discovery of gene regulatory networks in budding yeast. Section 3.6 concludes with a

brief discussion. As noted in Chapter 2, our variable selection procedures as well as

the ability to incorporate informed prior information are readily available features in

the bartMachine package. Code demonstrations are shown in Sections 2.3.9-2.3.10.

3.2 Techniques for Variable Selection

3.2.1 Linear Methods

The variable selection problem has been well-studied from both the classical and

Bayesian perspective, though most previous work focuses on the case where the out-

come variable is assumed to be a linear function of the available covariates. Stepwise

regression (Hocking, 1976) using criteria such as the AIC or BIC is a common ap-

proach for variable selection from a large set of possible predictor variables. Best

subsets regression (Miller, 2002) can also be employed, although this option becomes

too computationally burdensome as K becomes large. Other popular linear variable

selection methods are lasso regression (Tibshirani, 1996) and the elastic net (Zou and

Hastie, 2005). Both of these approaches enforce sparsity on the subset of selected

covariates by imposing penalties on non-zero coefficients. Park and Casella (2008)

and Hans (2009) provide Bayesian treatments of lasso regression.

Perhaps the most popular Bayesian variable selection strategies are based on linear

regression with a “spike-and-slab” prior distribution on the regression coefficients.
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Initially proposed by Mitchell and Beauchamp (1988), who used a mixture prior of a

point mass at zero and a uniform slab, George and McCulloch (1993) went on to use

a mixture-of-normals prior, for which Markov chain Monte Carlo stochastic search of

the posterior could be easily implemented. Eventually, most applications gravitated

towards a limiting form of the normal mixture with a degenerate point mass at zero.

More recent work involving spike-and-slab models has been developed in Ishwaran and

Rao (2005), Li and Zhang (2010), Hans et al. (2007), Bottolo and Richardson (2010),

Stingo and Vannucci (2011) and Rockova and George (2013). In these approaches,

variable selection is based on the posterior probability that each predictor variable

is in the slab distribution, and sparsity can be enforced by employing a prior that

strongly favors the spike distribution at zero.

3.2.2 Tree-Based Methods

Each of the aforementioned approaches assumes that the response variable is a linear

function of the predictor variables. A major drawback of linear models, both in the

frequentist and Bayesian paradigms, is that they are ill-equipped to handle complex,

nonlinear relationships between the predictors and response. Nonlinearities and in-

teractions, which are seldom known with certainty, must be specified in advance by

the researcher. In the case where the model is mis-specified, incorrect variables may

be included and correct variables excluded.

As an alternative, we consider nonparametric methods which are flexible enough

to fit a wide array of functional forms. We focus in particular on the ensemble-of-

trees algorithms. Compared with linear models, these procedures are better able to

approximate complicated response surfaces but are “black-boxes” in the sense that

they offer less insight into how specific predictor variables relate to the response
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variable.

Tree-based variable selection makes use of the internals of the decision tree struc-

ture. In particular, existing tree-based methods for variable selection focus on the set

of splitting variables within the trees. For example, Gramacy et al. (2013) develop

a backward stepwise variable selection procedure for dynamic trees (DT) by consid-

ering the average reduction in posterior predictive uncertainty within all nodes that

use a particular predictor as the splitting variable. Also, the splitting variables in

RF can also be used to develop variable selection approaches. For instance, one can

consider the reduction in sum of square errors (node impurity in classification prob-

lems) associated with a particular predictor. Additionally, Dı́az-Uriarte and Alvarez

de Andrés (2006) consider reduction in out-of-bag mean square error associated with

each predictor to develop a backward stepwise selection procedure.

We too consider the splitting variables for BART in developing our method, but

our approach differs from the previously mentioned work in two aspects. First, we do

not propose a backwards stepwise selection, but rather develop a permutation-based

inferential approach. Second, we do not consider the overall improvement to fit pro-

vided by each predictor variable, but instead consider how often a particular predictor

appears in a BART model. While simple, this metric shows promising performance for

variable selection using BART.

3.3 Calibrating BART Output for Variable Selection

Recalling the BART model

Y = f(X) + E ≈ i
l

1 (X) + i
l

2 (X) + . . .+ i
l

m(X) + E , E ∼ Nn
(
0, σ2In

)
, (3.1)
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we first draw attention to the hyperparameter m, the number of trees in the ensemble.

In Chipman et al. (2010), m is generally pre-specified by the researcher. The usual

goal of BART is predictive performance, in which case a large value of m allows for

increased flexibility when fitting a complicated response surface, thereby improving

predictive performance. However, Chipman et al. (2010) recommend using a smaller

value of m for the purposes of variable selection (we default to m = 20). When the

number of trees in the ensemble is smaller, there are fewer opportunities for predictor

variables to appear in the model and so they must compete with each other to be

included. However, if m is too small, the Gibbs sampler in BART becomes trapped

in local modes of the posterior distribution more often which can destabilize the

results of the estimation procedure (Chipman et al., 1998). Also, there is not enough

flexibility in the model to fit a variety of complicated functions. However, when the

number of trees becomes too large, there is opportunity for unimportant variables

to enter the model without impacting the overall model fit, thereby making variable

selection more challenging.

Our explorations have shown that m = 20 represents a good compromise, although

similar choices of m should not impact results. Under the sparse data settings we

will examine in Sections 3.4 and 3.5, we show that this medium level of m aids the

selection of important predictor variables even when the number of predictor variables

is relatively large.

It is also worth recalling that in the default BART formulation, each predictor vari-

able xk has an equal a priori chance of being chosen as a splitting variable for each

tree in the ensemble. However, in many applications, we may have real prior informa-

tion that suggests the importance of particular predictor variables. In Section 3.3.4,

we will extend the BART procedure to incorporate prior information about specific

predictor variables, which will be used to aid in discovering the yeast gene regulatory
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network in Section 3.5.

3.3.1 BART Variable Inclusion Proportions

The primary output from BART is a set of predicted values ŷ for the response variable

y. Although these predicted values ŷ serve to describe the overall fit of the model,

they are not directly useful for evaluating the relative importance of each predictor

variable in order to select a subset of predictor variables. For this purpose, Chipman

et al. (2010) begin exploring the “variable inclusion proportions” of each predictor

variable. We extend their exploration into a principled method.

Across all m trees in the ensemble (Equation 3.1), we examine the set of predictor

variables used for each splitting rule in each tree. Within each posterior Gibbs sample,

we can compute the proportion of times that a split using xk as a splitting variable

appears among all splitting variables in the ensemble. Since the output of BART

consists of many posterior samples, we estimate the variable inclusion proportion pk

as the posterior mean of the these proportions across all of the posterior samples.

Intuitively, a large variable inclusion proportion pk is suggestive of a predictor

variable xk being an important driver of the response. Chipman et al. (2010) suggest

using p = (p1, ..., pK) to rank variables x1, . . . ,xK in terms of relative importance.

These variable inclusion proportions naturally build in some amount of multiplicity

control since the pk’s have a fixed budget (in that they must sum to one) and that

budget will become more restrictive as the number of predictor variables increases.

However, each variable inclusion proportion pk cannot be interpreted as a posterior

probability that the predictor variable xk has a “real effect”, defined as the impact

of some linear or nonlinear association, on the response variable. This motivates the

primary question being addressed by this chapter: how large does the variable inclu-
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sion proportion pk have to be in order to select predictor variable xk as an important

variable?

As a preliminary study, we evaluate the behavior of the variable inclusion propor-

tions in a “null” data setting, where we have a set of K predictor variables xk that

are all unrelated to the outcome variable y. Specifically, we generate each response

variable yi and each predictor variable xik independently from a standard normal

distribution. In this null setting, one might expect that BART would choose amongst

the predictor variables uniformly at random when adding variables to the ensemble of

trees (Equation 3.1). In this scenario, each variable inclusion proportion would then

be close to the inverse of the number of predictor variables, i.e. pk ≈ 1/K for all k.

However, we have found empirically that in this scenario the variable inclusion

proportions do not approach 1/K for all predictor variables. As an example, Fig-

ure 3.1 gives the variable inclusion proportions from a null simulation with n = 250

observations and K = 40 predictor variables, all of which are unrelated to the response

variable y.

In this setting, the variable inclusion proportions do not converge to 1/40 = .025.

As seen in Figure 3.1, some variable inclusion proportions remain substantially larger

than 1/K and some are substantially smaller. We observed this same phenomenon

with different levels of noise in the response variable.

3.3.2 Further Exploration of Null Simulation

We hypothesize that the variation between pk’s in Figure 3.1 can stem from two

causes. First, even though the response and predictors were generated independently,

they will still exhibit some random association. BART may be fitting noise, or “chance-

capitalizing;” given its nonparametric flexibility, BART could be fitting to perceived
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Figure 3.1: Variable inclusion proportions from BART model in null setting where

each predictor variable is unrelated to the response variable. Left: Variable inclusion

proportions for all K = 40 predictor variables over 12,000 Gibbs samples. Right:

Tracking of the maximum and minimum of the variable inclusion proportions.

nonlinear associations that are actually just noise. Second, there might be inherent

variation in the BART estimation procedure itself, possibly due to the Gibbs sampler

getting stuck in a local maximum.

Thus, we consider an experiment to explore the source of this variation among

the pk’s. We generate 100 data sets under the same setting as that in Figure 3.1.

Within each data set, we run BART 50 times with different initial values for the

model parameters randomly drawn from the respective prior distributions. Let pijk

denote the variable inclusion proportion for the ith data set, jth BART run, and the kth

predictor variable. We then consider the decomposition into three nested variances

listed in Table 3.1. Note that we use standard deviations in our illustration that

follows.

First consider what may happen if the source of Figure 3.1’s observed pathology

is purely due to BART’s Gibbs sampler getting stuck in different local posterior modes.

On the first run for the first data set, BART would fall into a local mode where some
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s2ik =
1

50

50∑
j=1

(pijk − p̄i·k)2 The variability of BART estimation for a par-
ticular predictor k in a particular data set i.

s2k =
1

100

100∑
i=1

(p̄i·k − p̄··k)2 The variability due to chance capitalization
of the BART procedure for predictor k across
data sets.

s2 =
1

40

40∑
k=1

(p̄··k − p̄···)2 The variability across predictors.

Table 3.1: The three nested variances.

predictors are naturally more important than others and hence the p11k’s would be

unequal. In the same data set, second run, BART might fall into a different local

mode where the p12k’s are unequal, but in a way that is different from the first run’s

p11k’s. This type of process would occur over all 50 runs. Thus, the s1k, the standard

deviation of pijk over runs of BART on the first data set, would be large. Note that

if there is no chance capitalization or overfitting, there should be no reason that

averages of the proportions, the p̄1·k’s, should be different from 1/K over repeated

runs. Then, when the second data set is introduced, BART will continue to get stuck

in different local posterior modes and the s2k’s should be large, but the p̄2·k’s should

be near 1/K. Hence, over all of the data sets, p̄i·k’s should be approximately 1/K,

implying that the sk’s should be small. In sum, BART getting stuck in local modes

suggests large sik’s and small sk’s.

Next consider what may happen if the source of Figure 3.1’s observed pathology is

purely due to BART chance-capitalizing on noise. On the first data set, over each run,

BART does not get stuck in local modes, and therefore the pi1k’s across runs would be

fairly stable. Hence, the s1k’s would be small. However, in each of the runs, BART

overfits in the same way for each data set. For example, perhaps BART perceives an

association between x1 and y on the first data set. Hence, the p1j1’s would be larger

than 1/K on all restarts (BART would select x1 as a splitting rule often due to the
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perceived association) and thus p̄1·1 > 1/K. Then, in the second data set, BART may

perceive an association between x3 and y, resulting in p2j3’s being larger on all runs

(p̄2·3 > 1/K). Thus, BART overfitting is indicated by small sik’s and large sk’s.

Figure 3.2 illustrates the results of the simulations. Both sources of variation

appear but for all predictors, the average sik is significantly smaller than the sk. This

finding suggests that within a particular data set, BART is chance-capitalizing and

overfitting to the noise, which prevents the pk’s from converging to 1/K.6

Also note the overall average inclusion proportion p̄··· is .025 = 1/K, so across

data sets and BART runs the variable inclusion proportions are correct on average.

Further, the standard deviation across predictors s is small. This implies that the

p̄··k’s are approximately 1/K as well, which indicates there is no systematic favoring

of different covariates once the effect of overfitting by data set and remaining in local

modes by run is averaged out.

We believe this experiment demonstrates that there is a large degree of chance

capitalization present in the variable inclusion proportions in the “null” model. This

implies that it is not possible to decide on an appropriate threshold for the pk’s when

selecting a subset of important predictor variables in real data settings. Further, the

chance capitalization is idiosyncratic for any data set, making it challenging to pose

a simple parametric model for the behavior in Figure 3.1 that would be useful in

practice. This motivates our nonparametric approach to establishing thresholds for

the variable inclusion proportions based on permutations of the response variable y.

As noted above, there is some variability in the pk’s between BART runs from

different starting points. We found that averaging over results from five repetitions

6We also considered this experiment with orthogonalized predictors (not shown). This reduces
the sk’s (chance capitalization) in Figure 3.2 slightly, but the sk’s are still larger than the average
sik’s. Hence, even if there is no linear correlation between the predictors and the response, BART is
capitalizing on nonlinear associations.
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Figure 3.2: The boxplots represent the distribution of sik for each predictor. The

circles represent the values of sk and the dashed line corresponds to s. Note that the

results are reported as standard deviations and points in the boxplots beyond the

whiskers are omitted.

of the BART algorithm from different starting points was sufficient to provide stable

estimates of the variable inclusion proportions and use these averaged values as our

variable inclusion proportions for the remainder of the chapter.

3.3.3 Variable Inclusion Proportions under Permuted Re-
sponses

We now address our key question: how large does the variable inclusion frequency

pk have to be in order to select predictor variable xk? To determine an appropri-

ate selection threshold, we employ a permutation-based approach to generate a null

distribution for the variable inclusion proportions p = (p1, ..., pK).

Specifically, we create P permutations of the response vector: y∗1,y
∗
2, . . . ,y

∗
P . For

each of these permuted response vectors y∗p, we run the BART model using y∗p as the

response and the original x1, . . . ,xK as predictor variables. This permutation strategy

preserves possible dependencies among the predictor variables while removing any
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dependency between the predictor variables and the response variable.

We retain the variable inclusion proportions estimated from the BART run using

each permuted response y∗p. We use the notation p∗k,p for the variable inclusion pro-

portion from BART for predictor xk from the p-th permuted response, and we use the

notation p∗p for the vector of all variable inclusion proportions from the p-th permuted

response. We use the variable inclusion proportions p∗1,p
∗
2, . . . ,p

∗
P across all P per-

mutations as the null distribution for our variable inclusion proportions p from the

real (unpermuted) response y.

The remaining issue is selecting an appropriate threshold for predictor xk based

on the permutation null distribution p∗1,p
∗
2, . . . ,p

∗
P . We will consider three different

threshold strategies that vary in terms of the stringency of their resulting variable

selection procedure.

The first strategy is a “local” threshold: we calculate a threshold for each variable

inclusion proportion pk for each predictor xk based only on the permutation null

distribution of pk. Specifically, we take the 1 − α quantile of the distribution of

p∗k,1, p
∗
k,2, . . . , p

∗
k,P and only select predictor xk if pk exceeds this 1− α quantile.

The second strategy is a “global max” threshold: we calculate a threshold for

the variable inclusion proportion pk for predictor xk based on the maximum across

the permutation distributions of the variable inclusion proportions for all predictor

variables. Specifically, we first calculate p∗max,p = max
{
p∗1,p, p

∗
2,p, . . . , p

∗
K,p

}
, the largest

variable inclusion proportion across all predictor variables in permutation p. We then

calculate the 1 − α quantile of the distribution of p∗max,1, p
∗
max,2, . . . , p

∗
max,P and only

select predictor xk if pk exceeds this 1− α quantile.

The first “local” strategy and the second “global max” strategy are opposite ex-

tremes in terms of the stringency of the resulting variable selection. The local strategy

is least stringent since the variable inclusion proportion pk for predictor xk needs to
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only be extreme within its own permutation distribution in order to be selected. The

global maximum strategy is most stringent since the variable inclusion proportion pk

for predictor xk must be extreme relative to the permutation distribution across all

predictor variables in order to be selected.

We consider a third strategy that is also global across predictor variables, but is

less stringent than the global max strategy. The third “global SE” strategy uses

the mean and standard deviation from the permutation distribution of each variable

inclusion proportion pk to create a global threshold for all predictor variables. Specif-

ically, letting mk and sk be the mean and standard deviation of variable inclusion

proportion p∗k for predictor xk across all permutations, we calculate

C∗ = inf
C∈R+

{
∀k, 1

P

P∑
p=1

1p∗k,p≤mk+C·sk > 1− α

}
.

The value C∗ is the smallest global multiplier that gives simultaneous 1−α cover-

age across the permutation distributions of pk for all predictor variables. The predictor

xk is then only selected if pk > mk +C∗ · sk. This third strategy is a compromise be-

tween the local permutation distribution for variable k (by incorporating each mean

mk and standard deviation sk) and the global permutation distributions of the other

predictor variables (through C∗). We outline all three thresholding procedures in

more detail in Appendix A.2.

As an example of these three thresholding strategies, we provide a brief preview of

our application to the yeast gene regulatory network in Section 3.5. In that applica-

tion, the response variable y consists of the expression measures for a particular gene

across approximately 300 conditions and the predictor variables are the expression

values for approximately 40 transcription factors in those same 300 conditions.
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In Figure 3.3, we give the fifteen predictor variables with the largest variable

inclusion proportions from the BART model implemented on the data for a particular

yeast gene YAL004W. In the top plot, we see the different “local” thresholds for each

predictor variable. Four of the predictor variables had variable inclusion proportions

pk that exceeded their local threshold and were selected under this first strategy. In

the bottom plot, we see the single “global max” threshold for all predictor variables

as well as the different “global SE” thresholds for each predictor variable. Two of the

predictor variables had variable inclusion proportions pk that exceeded their global

SE thresholds whereas only one predictor variable exceeded the global max threshold.

This example illustrates that our three threshold strategies can differ substantially

in terms of the stringency of the resulting variable selection. Depending on our prior

expectations about the sparsity in our predictor variables, we may prefer the high

stringency of the global max strategy, the low stringency of the local strategy, or the

intermediary global SE strategy.

In practice, it may be difficult to know a priori the level of stringency that is

desired for a real data application. Thus, we propose a cross-validation strategy

for deciding between our three thresholding strategies for variable selection. Using

k-fold cross validation, the available observations can be partitioned into training and

holdout subsets. For each partition, we can implement all three thresholding strategies

on the training subset of the data and use the thresholding strategy with the smallest

prediction error across the holdout subsets. We call this procedure “BART-Best” and

provide implementation details in Appendix A.2.

Our permutation-based approach for variable selection does not require any ad-

ditional assumptions beyond those of the BART model. Once again, the sum-of-trees

plus normal errors is a flexible assumption that should perform well across a wide

range of data settings, especially relative to methods that make stronger parametric
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Figure 3.3: The fifteen largest variable inclusion proportions from BART implemented

on the yeast gene YAL004W with α = .05. Top: The tips of the green bands are

the “local” thresholds of our first variable selection strategy. Solid dots are selected

predictor variables whereas hollow dots are unselected predictor variables. Bottom:

The red line is the threshold from our second “global max” strategy. The tips of the

blue bands are the thresholds from our “global SE” strategy. The one solid dot is the

predictor selected by both strategies. The star is the additional predictor variable

selected by only the global SE strategy. The hollow dots are unselected predictor

variables.
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demands. Also, it is important to note that we view each of the strategies described

in this section as a procedure for variable selection based on well-founded statisti-

cal principles, but do not actually associate any particular formal hypothesis testing

with our approach. Finally, a disadvantage of our permutation-based proposal is the

computational cost of running BART on a large set of permuted response variables y∗.

However, it should be noted that the permuted response vector runs can be computed

in parallel on multiple cores when such resources are available.

3.3.4 Real Prior Information in BART-based Variable Selec-
tion

Most variable selection approaches do not allow for a priori preferences for particular

predictor variables. However, in many applications, there may be available prior

information that suggests particular predictor variables may be more valuable than

others.

As an example, the yeast regulatory data in Section 3.5 consist of expression

measures yg for a particular gene g as the response variable with predictor variables

xk being the expression values for ≈40 transcription factors. In addition to the

expression data, we also have an accompanying ChIP-binding data set (Lee et al.,

2002) that indicates for each gene g which of the ≈40 transcription factors are likely to

bind near that gene. We can view these ChIP-binding measures as prior probabilities

that particular predictor variables xk will be important for the response variable y.

The most natural way to give prior preference to particular variables in BART is

to alter the prior on the splitting rules. As mentioned in Section 3.3, by default

each predictor xk has an equal a priori chance of being chosen as a splitting rule

for each tree branch in the BART ensemble. We propose altering the prior of the

standard BART implementation so that more weight is given to the predictor variables
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that have a higher prior probability of being important when randomly selecting

a particular predictor variable for a splitting rule. Additionally, the prior on the

tree structure, which is needed for the Metropolis-Hastings ratio computation, is

appropriately adjusted. This strategy has some precedent as Chipman et al. (1998)

discuss non-uniform criteria for splitting rules in the context of an earlier Bayesian

Classification and Regression Tree implementation. Note that when employing one

of the strategies discussed in Section 3.3.3, the prior is reset to discrete uniform when

generating the permutation distribution as it is assumed that there is no relationship

between the predictors and the response.

In Section 3.4.3, we present a simulation-based evaluation of the effects on correct

variable selection when an informed prior distribution is either correctly specified, giv-

ing additional weight to the predictor variables with true influence on the response,

or incorrectly specified, giving additional weight to predictor variables that are unre-

lated to the response. Before our simulation study of the effects of prior information,

we first present an extensive simulation study that compares our BART-based variable

selection procedure to several other approaches.

3.4 Simulation Evaluation of BART-based Variable

Selection

We use a variety of simulated data settings to evaluate the ability of our BART-based

procedure to select the subset of predictor variables that have a true influence on a

response variable. We examine settings where the response is a linear function of the

predictor variables in Section 3.4.1 as well as settings where the response is a nonlinear

function of the predictor variables in Section 3.4.2. We also examine the effects of

correctly versus incorrectly specified informed prior distributions in Section 3.4.3. For
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each simulated data setting, we compare the performance of several different variable

selection approaches:

1. BART-based Variable Selection: As outlined in Section 3.3, we use the vari-

able inclusion proportions from BART to rank and select predictor variables. We

evaluate the performance of the three proposed thresholding strategies as well

as “BART-Best,” the (five-fold) cross-validation strategy for choosing amongst our

thresholding strategies. In each case, we set α = 0.05 and the number of trees m is

set to 20. Default settings from Chipman et al. (2010) are used for all other hyper-

parameters. The variable selection procedures are implemented in the R package

bartMachine (Kapelner and Bleich, 2015).

2. Stepwise Regression: Backward stepwise regression using the stepAIC function

in R.7

3. Lasso Regression: Regression with a lasso (L1) penalty can be used for variable

selection by selecting the subset of variables with nonzero coefficient estimates.

For this procedure, an additional penalty parameter λ must be specified, which

controls the amount of shrinkage towards zero in the coefficients. We use the

glmnet package in R (Friedman et al., 2010), which uses ten-fold cross-validation

to select the value of the penalty parameter λ.

4. Random Forests (RF): Similarly to BART, RF must be adapted to the task of

variable selection.8 The randomForest package in R (Liaw and Wiener, 2002)

produces an “importance score” for each predictor variable: the change in out-

of-bag mean square error when that predictor is not allowed to contribute to the

7We also considered forward stepwise regression but found that backward stepwise regression
performed better in our simulated data settings.

8Existing variable selection implementations for RF from Dı́az-Uriarte and Alvarez de Andrés
(2006) and Deng and Runger (2012) are not implemented for regression problems to the best of our
knowledge.
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model. Breiman and Cutler (2013) suggest selecting only variables where the

importance score exceeds the 1−α quantile of a standard normal distribution. We

follow their approach and further suggest a new approach: using the Bonferroni-

corrected (1− α)/p quantile of a standard normal distribution. We employ a five-

fold cross-validation approach to pick the best of these two thresholding strategies

in each simulated data setting and let α = .05. Default parameter settings for RF

are used.

5. Dynamic Trees (DT): Gramacy et al. (2013) introduce a backwards variable se-

lection procedure for DT. For each predictor, the authors compute the average

reduction in posterior predictive uncertainty across all nodes using the given pre-

dictor as a splitting variable. The authors then propose a relevance probability,

which is the proportion of posterior samples in which the reduction in predictive

uncertainty is positive. Variables are deselected if their relevance probability does

not exceed a certain threshold. After removing variables, the procedure is repeated

until the log-Bayes factor of the larger model over the smaller model is positive,

suggesting a preference for the larger model. We construct DT using the R package

dynaTree (Taddy et al., 2011) with 5000 particles and a constant leaf model. We

employ the default relevance threshold suggested by the authors of .50.

6. Spike-and-Slab Regression (Spike-slab): We employ the spike-and-slab re-

gression procedure outlined in Ishwaran and Rao (2005) and Ishwaran and Rao

(2010). The procedure first fits a spike-and-slab regression model and then per-

forms variable selection via the generalized elastic net. Variables with non-zero

coefficients are considered relevant. The method is applicable to both high and

low dimensional problems, as in the high dimensional setting, a filtering of the vari-

ables is first performed for dimension reduction. The procedure is implemented in
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the R package spikeslab (Ishwaran et al., 2013).

Each of the above methods will be compared on the ability to select “useful”

predictor variables, the subset of predictor variables that truly affect the response

variable. We can quantify this performance by tabulating the number of true posi-

tive (TP) selections, false positive (FP) selections, true negative (TN) selections and

false negative (FN) selections. The precision of a variable selection method is the

proportion of truly useful variables among all predictor variables that are selected,

Precision =
TP

TP + FP
. (3.2)

The recall of a variable selection method is the proportion of truly useful variables

selected among all truly useful predictor variables,

Recall =
TP

TP + FN
. (3.3)

We can combine the precision and recall together into a single performance crite-

rion,

F1 = 2 · Precision · Recall

Precision + Recall
, (3.4)

which is the harmonic mean of precision and recall, balancing a procedure’s capa-

bility to make necessary identifications with its ability to avoid including irrelevant

predictors. This F1 measure is called the “effectiveness” by van Rijsbergen (1979)

and is used routinely in information retrieval and categorization problems.

While many variable selection simulations found in the literature rely on out-

of-sample RMSE to assess performance of a procedure, we believe the F1 score is

a better alternative. Out-of-sample RMSE inherently overweights recall vis-à-vis
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precision since predictive performance depends more heavily on including covariates

which generate signal. This is especially true for adaptive learning algorithms.

We chose the balanced9 F1 metric because we want to demonstrate flexible per-

formance while balancing both recall and precision. For example, if an investigator

is searching for harmful physiological agents that can affect health outcomes, identi-

fying the complete set of agents is important (recall). If the investigator is looking to

fund new, potentially expensive research based on discoveries (as in our application

in Section 3.5) avoiding fruitless directions is most important (precision).

3.4.1 Simulation Setting 1: Linear Relationship

We first examine the performance of the various variable selection approaches in a

situation where the response variable is a linear function of the predictor variables.

Specifically, we generate each predictor vector xj from a normal distribution

x1, . . . ,xp
iid∼ Nn (0, I) , (3.5)

and then the response variable y is generated as

y = Xβ + E , E ∼ Nn
(
0, σ2I

)
, (3.6)

where β = [1p0 ,0p−p0 ]
>. In other words, there are p0 predictor variables that are

truly related to the response y, and p− p0 predictor variables that are spurious. The

sparsity of a particular data setting is reflected in the proportion p0/p of predictor

variables that actually influence the response.

Fifty data sets were generated for each possible combination of the following dif-

ferent parameter settings: p ∈ {20, 100, 200, 500, 1000}, p0/p ∈ {0.01, 0.05, 0.1, 0.2}
9The F1 measure can be generalized with different weights on precision and recall.
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and σ2 ∈ {1, 5, 20}. In each of the 60 possible settings, the sample size was fixed at

n = 250.

Figure 3.4 gives the F1 performance measure for each variable selection method

for 8 of the 60 simulation settings. We choose to illustrate these simulation results

as they are representative of our overall findings. Here, higher values of F1 indicate

better performance. Complete tables of precision, recall, and F1 measure values for

the simulations shown in Figure 3.4 can be found in the supplementary materials of

Bleich et al. (2014).

We first focus on the comparisons in performance between the four thresholding

strategies for our BART-based variable selection procedure: our three thresholding

strategies plus the BART-Best cross-validated threshold strategy. First, we consider

the case where p = 200. In the more sparse settings (Figures 3.4a and 3.4b), the more

stringent global max and global SE strategies perform better than the less stringent

local thresholding strategy. However, the local thresholding strategy performs better

in the less sparse settings (Figures 3.4c and 3.4d). The BART-Best procedure with a

cross-validated threshold performs slightly worse than the best of the three thresholds

in each setting, but fares quite well uniformly. Hence, the cross-validated threshold

strategy represents a good choice when the level of sparsity is not known a priori.

For the settings where p = 500, the findings are relatively similar. The local

thresholding strategy performs well given the fact that the data is less sparse. Per-

formance also degrades when moving from the low noise settings (Figure 3.4e and

3.4g) to the high noise settings (Figure 3.4f and 3.4h). Note that BART-Best does not

perform particularly well in Figure 3.4h.

Compared to the alternative approaches when p = 200, we see that BART-Best

performs better than all of the alternatives in the lower noise, more sparse setting

(Figures 3.4a) and is competitive with the lasso in the lower noise, less sparse setting
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(g) p = 500, p0 = 50, σ2 = 1
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(h) p = 500, p0 = 50, σ2 = 5

Figure 3.4: Average F1 measures for different variable selection approaches on sim-

ulated data under the linear model setting across 50 simulations. The black bars

represent 90% error bars for the average. Results for p = 200 and p = 500 are shown.
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(Figure 3.4c). BART-Best is competitive with the lasso in the higher noise, more sparse

setting (Figure 3.4b) and beaten by the linear methods in the higher noise, less sparse

setting (Figure 3.4d). When p = 500, the cross-validated BART is competitive with

the lasso and Spike-slab and outperforms the nonlinear methods when p0 = 25

(Figure 3.4e and 3.4f). When p0 = 50 (Figure 3.4g and 3.4h), the cross-validated

BART performs worse than the lasso and Spike-slab, and has performance on par

with the cross-validated RF.

Overall, the competitive performance of our BART-based approach is especially

impressive since BART does not assume a linear relationship between the response and

predictor variables. One would expect that stepwise regression, lasso regression, and

Spike-slab would have an advantage since these methods assume a linear model

which matches the data generating process in this setting. Like BART, RF and DT also

do not assume a linear model, but in most of the cases we examined, our BART-based

variable selection procedure performs better than RF and DT. We note that DT does not

perform well on this simulation, possibly suggesting the need for a cross-validation

procedure to choose appropriate relevance thresholds in different data settings.

Additionally, we briefly address the computational aspect of our four proposed

approaches here by giving an estimate of the runtimes. For this data with n = 250 and

p = 200, the three strategies (local, global max and global SE) are estimated together

in one bartMachine function in about 90 seconds. The cross-validated BART-Best

procedure takes about 7 minutes.

3.4.2 Simulation Setting 2: Nonlinear Relationship

We next examine the performance of the variable selection methods in a situation

where the response variable is a nonlinear function of the predictor variables. Specif-
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ically, we generate each predictor vector xj from a uniform distribution,

x1, . . . ,xp
iid∼ Un (0, 1) ,

and then the response variable y is generated via the Friedman function as

y = 10sin (πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + E , E ∼ Nn
(
0, σ2I

)
. (3.7)

The Friedman function is challenging for variable selection models due to its in-

teractions and nonlinearities. In this data setting, only the first five predictors truly

influence the response, while any additional predictor variables are spurious.

Fifty data sets were generated for each possible combination of σ2 ∈ {5, 100, 625}

and p ∈ {25, 100, 200, 500, 1000}. Since the number of relevant predictor variables is

fixed at five, we simulate over a wide range of sparsity values ranging from p0/p = 0.2

down to p0/p = 0.005. In each data set, the sample size was fixed at n = 250.
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(a) p = 500, σ2 = 100
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(b) p = 500, σ2 = 625
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(c) p = 1000, σ2 = 100
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(d) p = 1000, σ2 = 625

Figure 3.5: Average F1 measures across 50 simulations for different variable selection

approaches on simulated data under the Friedman model setting. The black bars

represent 90% error bars for the average. Moving from the top row to the bottom

shifts from low to high dimensionality and moving from the left column to the right

shifts from low to high noise.

Figure 3.5 illustrates the F1 performance measure for each variable selection

method for four of the (p, σ2) simulation pairs. We have chosen to illustrate these

simulation results as they are representative of our overall findings. Backward step-

wise regression via stepAIC could not be run in these settings where n < p and is

excluded from these comparisons (values in Figure 3.5 for this procedure are set to
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0). Complete tables of precision, recall, and F1 measure values for the simulations

shown in Figure 3.5 are given in the supplementary materials of Bleich et al. (2014).

Just comparing the four thresholding strategies of our BART-based procedure, we

see that the more stringent selection criteria have better F1 performance measures in

all of these sparse cases. The cross-validated threshold version of our BART procedure

performs about as well as the best individual threshold in each case.

Compared to the other variable selection procedures, the cross-validated BART-

Best has the strongest overall performance. Our cross-validated procedure outper-

forms DT and RF-CV in all situations. The assumption of linearity puts the lasso and

Spike-slab at a disadvantage in this nonlinear setting. Spike-slab does not perform

well on this data, although lasso performs well.10 BART-Best and the cross-validated

RF have the best performance in the low noise settings (Figures 3.5a and 3.5c), as

they do not assume linearity. Moving to the high noise settings (Figures 3.5b and

3.5d), BART and RF both see a degradation in performance, and BART-Best and the

lasso are the best performers, followed by the cross-validated RF.

3.4.3 Simulation Setting 3: Linear Model with Informed Pri-
ors

In the next set of simulations, we explore the impact of incorporating informed priors

into the BART model, as discussed in Section 3.3.4. We will evaluate the performance

of our BART-based variable selection procedure in cases where the prior information

is correctly specified as well as in cases where the prior information is incorrectly

specified.

10We note that the lasso’s performance here is unexpectedly high. For this example, lasso is able
to recover the predictors that are interacted within the sine function. This seems to be an artifact
of this particular data generating process, and we would expect lasso to perform worse on other
nonlinear response functions.
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We will use the linear model in Section 3.4.1 as our data generating process. We

will consider a specific case of the scheme outlined in Section 3.3.4 where particu-

lar subsets of predictor variables are given twice as much weight as the rest of the

predictor variables. With a noninformative prior, each predictor variable has a prob-

ability of 1/p of being selected as the splitting variable for a splitting rule. For the

informed prior, a subset of p0 predictor variables are given twice as much weight,

which gives those variables a larger probability of 2/(p + p0) of being selected as a

splitting variable.

For the fifty data sets generated under each combination of the parameter settings

in the simulations of Section 3.4.1, we implemented three different versions of BART:

(1) BART with a noninformative prior on the predictor variables, (2) BART with a

“correctly” informed prior (twice the weight on the subset of predictor variables that

have a true effect on response) and (3) BART with an “incorrectly” informed prior

(twice the weight on a random subset of spurious predictor variables). For each of

these BART models, predictor variables were then selected using the cross-validated

threshold strategy.

Figure 3.6 gives the F1 measures for the three different BART priors in four of the

data settings outlined in Section 3.4.1.
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(d) p = 200, p0 = 20, σ2 = 20

Figure 3.6: Average F1 measures across 50 simulations for BART-based variable selec-

tion under three different prior choices. The black bars represent 90% error bars for

the average. The settings shown are the same as those in Figures 3.4a-3.4d.

There are two key observations from the results in Figure 3.6. First, correct prior

information can substantially benefit the variable selection ability of our BART adap-

tation, especially in higher noise settings (Figures 3.6b and 3.6d). Second, incorrect

prior information does not degrade performance in any of the cases, which suggests

that our BART-based variable selection procedure is robust to the mis-specification of

an informed prior on the predictor variables. This seems to be a consequence of the

Metropolis-Hastings step, which tends to not accept splitting rules that substantially

reduce the model’s posterior value, regardless of how often they are proposed.
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To summarize our simulation studies in Section 3.4, our BART-based variable se-

lection procedure is competitive with alternative approaches when there is linear

relationship between the predictor variables and the response, and performs better

than alternative approaches in a nonlinear data setting. BART-based variable selection

can be further improved by correctly specifying prior information (when available)

that gives preference to particular predictor variables, and appears to be robust to

mis-specification of this prior information.

3.5 Application to Gene Regulation in Yeast

Experimental advances in molecular biology have led to the availability of high-

dimensional genomic data in a variety of biological applications. We will apply our

BART-based variable selection methodology to infer the gene regulatory network in

budding yeast (Saccharomyces cerevisiae). One of the primary mechanisms by which

genes are regulated is through the action of transcription factors, which are proteins

that increase or decrease the expression of a specific set of genes.

The data for our analyses are expression measures for 6026 genes in yeast across

314 experiments. For those same 314 experiments, we also have expression measures

for 39 known transcription factors. For each of the 6026 genes, our goal is to identify

the subset of the 39 transcription factors that have a real regulatory relationship with

that particular gene.

We consider each of the 6026 genes as a separate variable selection problem. For

a particular gene g, we model the expression measures for that gene as a 314 × 1

response vector yg and we have 39 predictor variables (x1, . . . ,x39) which are the

expression measures of each of the 39 transcription factors. This same data were

previously analyzed using a linear regression approach in Jensen et al. (2007), but
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we will avoid assumptions of linearity by employing our BART-based variable selection

procedure.

We also have additional data available for this problem that can be used as prior

information on our predictor variables. Lee et al. (2002) performed chromatin im-

munoprecipitation (ChIP) experiments for each of the 39 transcription factors that

we are using as predictor variables. The outcome of these experiments is the esti-

mated probabilities mgk that gene g is physically bound by each transcription factor

k. Chen et al. (2007) give details on how these probabilities mgk are derived from the

ChIP data.11

We will incorporate these estimated probabilities into our BART-based variable se-

lection approach as prior information. When selecting predictor variables for splitting

rules, we give more weight to the transcription factors k with larger prior probabilities

mgk in the BART model for gene g. Specifically, we have a splitting variable weight

wgk for predictor xk in the BART model for gene g, which we calculate as

wgk = 1 + c ·mgk. (3.8)

In the BART model for gene g, each predictor xk is chosen for a splitting rule

with probability proportional to wgk. The global parameter c controls how influential

the informed prior probabilities mgk are on the splitting rules in BART. Setting c =

0 reduces our informed prior to the uniform splitting rules of the standard BART

implementation. Larger values of c increases the weights of predictor variables with

large prior probabilities mgk, giving the informed prior extra influence.

In a real data setting such as our yeast application, it is difficult to know how

much influence to give our informed priors on the predictor variables. We will consider

several different values of c = {0, 1, 2, 4, 10000} and choose the value that results in

11Probabilities were truncated to be between 5% and 95%.
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the smallest prediction error on a subset of the observed data that is held-out from

our BART model estimation. Specifically, recall that we have 314 expression measures

for each gene in our data set. For each gene, we randomly partition these observations

into an 80% training set, 10% tuning set, and 10% hold-out set. For each value of

c = {0, 1, 2, 4, 10000}, we fit a BART model on the 80% training set and then choose

the value of c that gives the smallest prediction error on the 10% tuning set. This

same 10% tuning set is also used to choose the best threshold procedure among the

three options outlined in Section 3.3.3. We will use the terminology “BART-Best” to

refer to the BART-based variable selection procedure that is validated over the choice

of c and the three thresholding strategies. While we could also cross-validate over

the significance level α, we fix α = .05 due to computational concerns given the large

number of data sets to be analyzed.

For each gene, we evaluate our approach by re-fitting BART using only the vari-

ables selected by our BART-based variable selection model and evaluate the prediction

accuracy on the final 10% hold-out set of data for that gene. This same 10% hold-out

set of data for each gene is also used to evaluate the prediction accuracy of vari-

ous alternative variable selection methods. We consider the alternative methods of

stepwise regression, lasso regression, RF, DT, and Spike-slab in a similar fashion to

Section 3.4. The 10% tuning set is used to choose the value of the penalty parameter

λ for lasso regression as well as the importance score threshold for RF. For DT, we use

a constant leaf model for variable selection and then construct a linear leaf model

using the selected variables for prediction.

We also consider three simpler approaches that do not select particular predictor

variables: (1) “BART-Full” which is the BART model using all variables, (2) ordinary

least squares regression (OLS) with all predictor variables included and (3) the “null”

model: the sample average of the response which does not make use of any predictors.
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In the null model, we do include an intercept so we are predicting for the hold-out set

of expression measures for each gene with the average expression level of that gene in

the training set.

We first examined the distribution of RMSEs across the 6026 genes. We found

that each procedure improves over the null model with no covariates, suggesting that

some subset of transcription factors is predictive of gene expression for most of the

6026 genes. However, for a minority of genes, the null model is competitive, suggesting

that the 39 available transcription factors may not be biologically relevant to every

one of these genes. The non-null variable selection methods show generally similar

performance in terms of the distribution of RMSEs, and a corresponding figure can

be found in the supplementary materials of Bleich et al. (2014). It is important to

note that predictive accuracy in the form of out-of-sample RMSE is not the most

desirable metric for comparing variable selection techniques because it overweights

recall relative to precision.

In Figure 3.7, we show the distribution of the number of selected predictor vari-

ables (TFs) across the 6026 genes, where we see substantial differences between the

variable selection procedures. Figure 3.7 confirms that BART-G.max is selecting very

few TFs for each gene. Even more interesting is the comparison of BART-Best to

stepwise regression, lasso regression, RF, and Spike-slab. BART-Best is selecting far

fewer TFs than these alternative procedures. Interestingly, DT, the other Bayesian

tree-based algorithm, selects a number of TFs most comparable to BART-Best.

Given the relatively similar performance of methods in terms of RMSE and the

more substantial differences in number of variables selected, we propose the following

combined measure of performance for each variable selection method:
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(RMSE reduction per predictor)method =
RMSEnull − RMSEmethod

NumPredmethod

,

where RMSEmethod and NumPredmethod are respectively the out-of-sample RMSE and

number of predictors selected for a particular method. This performance metric

answers the question: how much “gain” are we getting for adding each predictor

variable suggested by a variable selection approach? Methods that give larger RMSE

reduction per predictor variable are preferred.
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Figure 3.7: Distributions of the number of predictor variables selected for each method

across all 6026 genes. Blue bars represent the average number of selected predictor

variables. Not shown are the null model which uses no predictors as well as OLS and

the full BART model which both use all predictors. Points beyond the whiskers are

omitted.

Figure 3.8 gives the RMSE reduction per predictor for each of our variable selec-

tion procedures. Note that we only plot cases where at least one predictor variable
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is selected, since RMSE reduction per predictor is only defined if the number of

predictors selected is greater than zero.

Our BART-Best variable selection procedure gives generally larger (better) values of

the RMSE reduction per predictor measure than stepwise regression, lasso regression,

RF, and Spike-slab. DT is the closer competitor, but does slightly worse, on average,

than BART-Best. Also, both the BART-Full and OLS procedures, where no variable

selection is performed, perform worse than the variable selection procedures.

BART-G.max, the BART-based procedure under the global max threshold, seems to

perform even better than the BART-Best procedure in terms of the RMSE reduction

per predictor measure. However, recall that we are plotting only cases where at least

one predictor was selected. BART-G.max selects at least one transcription factor for

only 2866 of the 6026 genes, though it shows the best RMSE reduction per predictor

in these cases. By comparison, BART-Best selects at least one transcription for 5459 of

the 6026 genes while showing better RMSE reduction per predictor than the non-BART

variable selection procedures.
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Figure 3.8: Distributions of the RMSE reduction per predictor for each method across

all 6026 genes. Blue bars represent the average RMSE reduction per predictor. Points

beyond the whiskers are omitted.

Additionally, Table 3.2 shows the proportion of times each choice of prior influ-

ence c appeared in the ”BART-Best” model. Almost a quarter of the time, the prior

information was not used. However, there is also a large number of genes for which

the prior was considered to have useful information and was incorporated into the

procedure.

c Value Percentage of Genes

0 23.3%
0.5 16.1%
1 15.4%
2 14.9%
4 14.6%

10000 15.7%

Table 3.2: Distribution of prior influence values c used across the 6026 genes.

Jensen et al. (2007) also used the same gene expression data (and ChIP-based prior
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information) to infer gene-TF regulatory relationships. A direct model comparison

between our BART-based procedures and their approach is difficult since Jensen et al.

(2007) fit a simultaneous model across all genes whereas our current BART-based

analysis fits a predictive model for each gene separately. In both analyses, prior

information for each gene-TF pairing from ChIP binding data (Lee et al., 2002) was

used.12 However, in Jensen et al. (2007) the prior information for a particular TF

was given the same weight (relative to the likelihood) for each gene in the data set.

In our analysis, each gene was analyzed separately and so the prior information for a

particular TF can be weighted differently for each gene.

A result of this modeling difference is that the prior information appears to have

been given less weight by our BART-based procedure across genes, as evidenced by the

substantial proportion of genes in Table 3.2 that were given zero or low weight (c = 0

or c = 0.5). Since that prior information played the role in Jensen et al. (2007) of

promoting sparsity, a consequence of that prior information being given less weight

in our BART-based analysis is reduced promotion of sparsity.

This consequence is evident in Figure 3.9, where we compare the number of se-

lected TFs. The x-axis gives the 39 transcription factors that served as the predictor

variables for each of our 6026 genes. The y-axis is the number of genes for which

that TF was selected as a predictor variable by each of three procedures: BART-Best,

BART-G.max and the analysis of Jensen et al. (2007). The most striking feature of

Figure 3.9 is that each TF was selected for many more genes under our BART-Best

procedure compared to BART-G.max, which also selected more variables than the anal-

ysis of Jensen et al. (2007). This result indicates that selecting more TFs per gene

leads to the best out-of-sample predictive performance (i.e. BART-Best). It could be

12Jensen et al. (2007) used additional prior information based on promoter sequence data that we
did not use in our analysis.
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that Jensen et al. (2007) was over-enforcing sparsity, but that previous method also

differed from our current approach in terms of assuming a linear relationship between

the response and predictor variables.
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Figure 3.9: Number of genes for which each TF was selected. Results are compared

for BART-Best, BART-G.Max, and the linear hierarchical model developed in Jensen

et al. (2007).

3.6 Conclusion

We adapt BART to the task of variable selection by employing a permutation procedure

to establish a null distribution for the variable inclusion proportion of each predic-

tor. We present several thresholding strategies that reflect different beliefs about the

degree of sparsity amongst the predictor variables, as well as a cross-validation pro-

cedure for choosing the best threshold when the degree of sparsity is not known a

priori.

In contrast with popular variable selection methods such as stepwise regression

and lasso regression, our BART-based approach does not make strong assumptions of

101



linearity in the relationship between the response and predictors. We also provide a

principled means to incorporate prior information about the relative importance of

different predictor variables into our procedures.

We used several simulated data settings to compare our BART-based approach

to alternative variable selection methods such as stepwise regression, lasso regression,

random forests, and dynamic trees. Our variable selection procedures are competitive

with these alternatives in the setting where there is a linear relationship between

response and predictors, and performs better than these alternatives in a nonlinear

setting. Additional simulation studies suggest that our procedures can be further

improved by correctly specifying prior information (if such information is available)

and seems to be robust when the prior information is incorrectly specified.

We applied our variable selection procedure, as well as alternative methods, to the

task of selecting a subset of transcription factors that are relevant to the expression

of individual genes in yeast (Saccharomyces cerevisiae). In this application, our BART-

based variable selection procedure generally selected fewer predictor variables while

achieving similar out-of-sample RMSE compared to the lasso and random forests. We

combined these two observations into a single performance measure, RMSE reduction

per predictor. In this application of inferring regulatory relationships in yeast, our

BART-based variable selection demonstrates much better predictive performance than

alternative methods such as lasso and random forests while selecting more transcrip-

tion factors than the previous approach of Jensen et al. (2007).

While we found success using the variable inclusion proportions as the basis for our

procedure, fruitful future work would be to explore the effect of a variance reduction

metric, such as that explored in Gramacy et al. (2013) within BART.
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4
Incorporating Missingness into BART

Abstract

We present a method for incorporating missing data into general prediction problems

which use nonparametric statistical learning. We focus on BART for incorporating

missingness into decision trees. Our procedure extends the native partitioning mech-

anisms found in tree-based models and does not require imputation. Simulations

on generated models and real data indicate that our procedure offers promise for

both selection model and pattern-mixture frameworks as measured by out-of-sample

predictive accuracy. We also illustrate BART’s abilities to incorporate missingness

into uncertainty intervals. Our implementation is readily available in the R package

bartMachine.

4.1 Introduction

This article addresses prediction problems where covariate information is missing dur-

ing model construction and is also missing in future observations for which we are

obligated to generate a forecast. Our aim is to develop a nonparametric statisti-
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cal learning extension which incorporates missingness into both the training and the

forecasting phases. In the spirit of nonparametric learning, we wish to incorporate

the missingness into both phases automatically, without the need for pre-specified

modeling or imputation.

We limit our focus to tree-based statistical learning, which has demonstrated

strong predictive performance and has consequently received considerable attention

in recent years. Popular implementations of RF, SGB, and similar algorithms do not

incorporate covariate missingness natively without relying on either imputation or

a complete case analysis of observations with no missing information. Additionally,

no means for incorporating missing data in BART has been published to date. Our

goal here is to develop a principled way of adapting BART’s machinery to incorporate

missing data that takes advantage of the Bayesian framework.

Our proposed method modifies the recursive partitioning scheme during construc-

tion of the decision trees to incorporate missing data by the introduction of new split-

ting rules known as “missing incorporated in attributes” (MIA). Here, missingness

itself also becomes a valid splitting criterion. By relying on the Metropolis-Hastings

algorithm embedded in BART, our method frequently sends missing data to whichever

of the two daughter nodes increases the overall model posterior value. Due to these

benefits as well as conceptual simplicity, we chose to implement MIA-within-BART

and we henceforth refer to it as “BARTm.”

Taking advantage of this modified set of splitting rules during model construction

does not require imputation, a method which relies on assumptions that cannot be

easily verified. Our approach is equally viable for continuous and nominal covariate

data and both selection and pattern-mixture models for missing data.

Since missingness is handled natively within the algorithm, BARTm can generate

predictions on future data with missing entries as well. The amount of uncertainty
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associated with the predicted values increases with the amount of information lost

due to missingness; thereby missingness is incorporated into the standard error of the

prediction in a principled way. Also, our proposed procedure has negligible impact

on the runtime during both model construction and prediction phases.

In Sections 4.2.1 - 4.2.3, we provide a framework for statistical learning with

missingness with a focus on decision trees. We explain the adaptions of BART which

yields BARTm in Section 4.3. We then demonstrate BARTm’s predictive performance on

generated models in Section 4.4 as well as real data with a variety of missing data

scenarios in Section 4.5. We conclude with Section 4.6. BARTm is implemented as a

feature in bartMachine and a code demonstration is shown in Section 2.3.8.

4.2 Background

4.2.1 A Framework for Missing Data in Statistical Learning

Consider p covariates X := [X1, . . . , Xp], a continuous response Y and an unknown

function f where Y = f(X) + E . We denote E as the noise in the response unex-

plained by f . The goal of statistical learning is to use the training set, [ytrain,Xtrain]

which consists of n observations drawn from the population P (Y , X), to produce an

estimate f̂ , the best guess of E [Y | X], which can then be used to generate predic-

tions on future test observations with an unknown response. We denote these future

observations as X∗ which we assume are likewise drawn from the same population as

the training set.

Missingness is one of the scourges of data analysis, plaguing statistical learning by

causing missing entries in both the training matrix Xtrain as well as missing entries

in the future records X∗. In the statistical learning context, the training set is
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defined as the observations which do not exhibit missingness in their response, ytrain.

Records with missing responses cannot be used to construct models which estimate f .

Imputing missing values in the response for the new X∗ is equivalent to “prediction”

and is the primary goal of statistical learning. Thus, “missingness” considered in this

paper is missingness only in Xtrain and X∗. We denote missingness in the pM ≤ p

features of X which suffer from missingness as M := [M1, . . . ,MpM ], binary vectors

where 1 indicates missing and 0 indicates present, and covariates that are present with

Xobs :=
[
Xobs1 , . . . , Xobsp

]
. The main goal of statistical learning with missingness is

to estimate E [Y | Xobs,M ].

To frame missing data models in statistical learning, we now borrow from the

canonical framework of selection and pattern-mixture models with one key difference.

As explained above, in the statistical learning context, Y cannot be missing. Thus,

M denotes missingness in the covariates X and not the conventional missingness in

Y .

Conditional on X, selection models (Little, 1993, Equation 1) factor the full data

likelihood as

P (Y ,M | X,θ,γ) = P (Y | X,θ)P (M | X,γ) (4.1)

where θ and γ are parameter vectors which are assumed distinct. The first term on

the right-hand side reflects that the marginal likelihood for the response P (Y | X,θ)

is independent of the missingness M . The second term on the right conventionally

conditions on Y . In the forecasting paradigm explored herein, missingness is assumed

independent of the response because Y is often yet to be realized and thus its unknown

value should not influence M , the missingness of the previously realized covariates.
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Conditional on X, pattern-mixture models (Little, 1993, Equation 2) partition the

full data likelihood as

P (Y ,M | X,θ,γ) = P (Y |M ,X,θ)P (M | X,γ) . (4.2)

where θ and γ are parameter vectors which are again assumed distinct. The difference

between the above and Equation (4.1) is the marginal likelihood of the response may

now depend on M . This implies that there can be different response models under

different patterns of missingness in the pM covariates.

In both selection and pattern-mixture paradigms, the term on the right is the

missing data mechanism, which traditionally (but not always) is the mechanism con-

trolling missingness in the response. In our framework however, the missing data

mechanism controls missingness only in X: the covariates (along with additional

parameters γ) create missingness within themselves which inevitably needs to be in-

corporated during model construction and forecasting. Thus, the missing data mech-

anism is conceptually equivalent in both the selection and pattern-mixture paradigms

in our framework.

The conceptual difference between the selection and pattern-mixture models in the

statistical learning setting can be envisioned as follows. Imagine the full covariates

X are realized, but due to the missing data mechanism, X is latent and we instead

observe Xobs and M . In the selection paradigm, Y is realized only from the full

covariates via P (Y | X,θ). However, in the pattern-mixture paradigm, both X and

M intermix to create many collated response models {P (Y | X,θ,M = m)}m∈M

where each m-vector corresponds to a different arrangement of missingness in the

covariates. Thus, under our assumptions, selection models are a subset of pattern-
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mixture models. Note that pattern-mixture models are chronically under-identified

and difficult to explicitly model in practice. We address why our proposed method

is well-suited to handle prediction problems in pattern-mixture model scenarios in

Section 4.3.

We now present Little and Rubin (2002)’s taxonomy of missing data mechanisms

which are traditionally framed in the selection model paradigm but here apply to

both paradigms: (1) missing completely at random (MCAR), (2) missing at random

(MAR) and (3) not missing at random (NMAR). MCAR is a mechanism that gener-

ates missingness in the jth covariate Xj without regard to the value of Xj itself nor

the values and missingness of any other covariates, denoted X−j; it is determined

by the exogenous parameter(s) γ exclusively. The MAR mechanism generates miss-

ingness in the jth covariate without regard to Xj, its own value, but can depend on

values of other attributes X−j as well as γ. The NMAR mechanism features the

additional dependence on the value of Xj itself as well as unobserved covariates (note

that explicit dependence on unobserved covariates was not explored as missing data

mechanisms in this paper). We summarize these mechanisms in Table 4.1.

In our framework, each of the pM ≤ p covariates with missingness are assumed to

have their own missing data mechanism. Thus, the full missing data mechanism for

the whole covariate space, P (M | X,γ), can be arbitrarily convoluted, exhibiting

combinations of MCAR, MAR and NMAR among its pM covariates and each missing

data mechanism relationship may be highly non-linear with complicated interactions.

When developing our methodology, we make no outright assumptions on the forms

or distributions of these mechanisms.

We conclude this section by emphasizing that in the nonparametric statistical

learning framework where predictive performance is the objective, there is no need for

explicit inference about θ (which may have unknown structure and arbitrary, possibly
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missing data mechanism P (M j | Xj,miss,X−j,miss,X−j,obs,γ) = . . .
MCAR P (M j | γ)
MAR P (M j | X−j,obs,γ)
NMAR (does not simplify)

Table 4.1: Missing data mechanism models in the context of statistical learning. M j

is an indicator vector which takes the value one when the jth covariate is missing for

the ith observation. X−j,obs are the observed values of the other covariates, besides

j. X−j,miss are the values of the other covariates, besides j, which are not observed

because they are missing.

infinite, dimension). Instead, the learning algorithm performs “black-box” estimation

of the data generating process such that the output f̂ estimates the E [Y | Xobs,M ]

function. Thus, if we can successfully estimate this conditional expectation function

directly, then accurate forecasts can be obtained. This is the approach that BARTm

takes.

4.2.2 Strategies for Incorporating Missing Data in Statistical
Learning

There are many nonparametric approaches to handling missing data that have been

employed in statistical learning. The simplest strategy for incorporating missingness

into model building is to simply remove the observations in Xtrain that contain at

least one missing measurement. This is called “list-wise deletion” or “complete case

analysis.” It is well known that complete case analysis will be unbiased for MCAR

and MAR selection models where missingness does not depend on the response when

the target of estimation is E [Y | X]. However, when forecasting, the data analyst

must additionally be guaranteed that X∗ (the future observations for which we wish

to predict response values) has no missing observations, since it is not possible to
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generate forecasts for any incomplete cases.

By properly modeling missingness, incomplete cases can be included and more in-

formation about E [Y | X] becomes available, potentially yielding higher predictive

performance. One popular strategy is to impute the missing entries. The imputed

Xtrain is then used as if it were the real covariate data when constructing f̂ and the

imputed X∗ is then used as if it were the real covariate data during forecasting. To

carry out imputation, the recommended strategy is to model the predictive distri-

bution of the missing covariate(s) and then use draws from the model to fill in the

missing values. Multiple imputation imputes many times and averages over the esti-

mates for the parameter(s) of interest from each imputation’s “full” dataset (Rubin,

1978). In statistical learning, a prediction could be calculated by averaging the pre-

dictions from many f̂ ’s built from many imputed Xtrain’s and then further averaging

over many imputed X∗’s. In practice, having knowledge of both the missing data

mechanism and each probability model is very difficult and has usually given way

to nonparametric methods such as k-nearest neighbors (Troyanskaya et al., 2001) for

continuous covariates and saturated multinomial modeling (Schafer, 1997) for cat-

egorical covariates. The widely used R package randomForest (Liaw and Wiener,

2002) imputes via “hot-decking” (Little and Rubin, 2002).

A more recent approach, MissForest (Stekhoven and Bühlmann, 2012), fits non-

parametric imputation models for any combination of continuous and categorical

input data, even when the response is unobserved. In this unsupervised procedure,

initial guesses for the imputed values are made. Then, for each attribute with missing-

ness, the observed values of that attribute are treated as the response and a RF model

is fit using the remaining attributes as predictors. Predictions for the missing values

are obtained via the trained RF model and serve as updated imputations. The process

proceeds iteratively through each attribute with missingness and then repeats until
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a stopping criterion is achieved. The authors argue that their procedure intrinsically

constitutes multiple imputation due to RF’s averaging over many unpruned decision

trees. The authors also state that their method will perform particularly well when

“the data include complex interactions or non-linear relations between variables of

unequal scales and different type.” Although no explicit reference is given to Little

and Rubin (2002)’s taxonomy in their work, we expect MissForest to perform well in

situations generally well-suited for imputation, namely, the MCAR and MAR selec-

tion models discussed in Section 4.2.1. MissForest would not be suited for NMAR

missing data mechanisms as imputation values for Xj can only be modeled from X−j

in their implementation. Additionally, implementing MissForest would not be rec-

ommended for pattern-mixture scenarios because imputation is insufficient to capture

differing response patterns.

Since BART is composed primarily of a sum-of-regression-trees model, we now

review strategies for incorporating missing data in tree-based models.

4.2.3 Missing data in Binary Decision Trees

There have been many previous efforts to handle missingness in decision trees, most

of which rely on the structure of the decision trees thesmelves. Examples include

surrogate variable splitting (Therneau and Atkinson, 1997), “Missing Incorporated

in Attributes” (MIA, Twala et al., 2008, Section 2) and many others (see Ding

and Simonoff, 2010 and Twala, 2009). MIA, the particular focus for this work, is a

procedure that natively uses missingness when greedily constructing the rules for the

decision tree’s internal nodes. More specifically, the procedure relies on a modification

of the potential splitting rules at each partition. We summarize the procedure in

Algorithm 3 and we explain how the expanded set of rules is incorporated into the
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BART estimation procedure in Section 4.3.

Algorithm 3 Splitting rule choices when constructing a new tree branch in MIA.
The algorithm chooses one of the following three rules for all splitting variables and
all splitting values c. Since there are p splitting attributes and at most n− 1 unique
values to split on, a greedy splitting algorithm using MIA considers 2(n − 1)p + pM
possible splitting rules at each iteration instead of the classic (n− 1)p.

1: If xij is present and xij ≤ c, send this observation left (←−); otherwise, send this
observation right (−→). If xij is missing, send this observation left (←−).

2: If xij is present and xij ≤ c, send this observation left (←−); otherwise, send this
observation right (−→). If xij is missing, send this observation right (−→).

3: If xij is missing, send this observation left (←−); if it is present, regardless of its
value, send this observation right (−→) .

There are many advantages of the MIA approach. First, MIA has the ability to

model complex MAR and NMAR relationships, as evidenced in both Twala et al.

(2008) and our results found in Sections 4.4 and 4.5. Since missingness is integrated

into the splitting rules, forecasts can be made without imputing when X∗ contains

missingness.

Another strong advantage of MIA is the ability to split on feature missingness

(line 3 of Algorithm 3). This splitting rule choice allows for the tree to better capture

pattern-mixture models where missingness directly influences the response model.

Generally speaking, imputation ignores pattern-mixture models; missingness is only

viewed as holes to be filled in and forgotten.

Due to these benefits as well as conceptual simplicity, we chose to implement

MIA-within-BART, denoted “BARTm”, when enhancing BART to handle missing data.

4.3 Missing Incorporated in Attributes within BART

Implementing BARTm is straightforward. Recall from Section 1.4.1 that the prior on

the splitting rules within the decision tree branches as being discrete uniform on the
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possible splitting attributes and discrete uniform on the possible splitting values. To

account for Lines 1 and 2 in the MIA procedure (Algorithm 3), the splitting attribute

xj and split value are proposed within BART, but now we additionally propose a

direction (left or right with equal probability) for records to be sent when the records

have missing values in xj. A possible splitting rule would therefore be “xij < c

and dispense to the left if xij is missing.” To account for Line 3 in the algorithm,

splitting on missingness itself, we create dummy vectors of length n for each of the pM

attributes with missingness, denoted M 1, . . . ,M pM , which assume the value 1 when

the entry is missing and 0 when the entry is present. We then augment the original

training matrix together with these dummies and use the augmented training matrix,

X ′train := [Xtrain,M1, . . . ,MpM ], as the training data in the BARTm algorithm. Once

again, the prior on the splitting rules is the same as in the original BART but now with

the additional consideration that the direction of missingness is equally likely left or

right conditional on the splitting attribute and value.

We expect BARTm to exhibit greater predictive performance over MIA in classical

decision trees for two reasons. First, BARTm’s sum-of-trees model offers much greater

fitting flexibility compared to a single tree. Additionally, due to the greedy nature of

decision trees, once a split is chosen, the direction in which missingness is sent cannot

be reversed. BARTm can alter its trees by pruning and regrowing nodes or changing

splitting rules. These proposed modifications to the trees are accepted or rejected

stochastically using the Metropolis-Hastings machinery depending on how strongly

the proposed move increases the model’s posterior value.

We hypothesize that BARTm’s stochastic search for splitting rules allows obser-

vations with missingness to be grouped with observations having similar response

values. Due to the Metropolis-Hastings step, the algorithm will attempt to move

towards splitting rules and corresponding groupings that increase overall model like-
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lihood P (Y | X,M ). In essence, BARTm is “feeling around” predictor space for a

location where the missing data increases the overall marginal likelihood. For selec-

tion models, since splitting rules can depend on any covariate (including the covariate

with missing data), it should be possible to generate successful groupings for the miss-

ing data under both MAR and NMAR mechanisms.

We describe simple examples of rules that increase overall model likelihood. Sup-

pose there are two covariates X1 and X2 and we are fitting a BARTm model with one

tree. In a simple MAR example, imagine a mechanism where X2 is increasingly likely

to go missing for large values of X1. The model can partition this data in two steps

to increase overall likelihood: (1) A split on a large value of X1 and then (2) a split

on M2. As a simple NMAR example, suppose a mechanism where X2 is more likely

to be missing for large values of X2. BARTm can select splits of the form “x2 > c and

x2 is missing” with c large. Here, the missing data is appropriately kept with larger

values of X2 and overall likelihood should be increased.

When missingness does not depend on any other covariates, it should be more

difficult to find appropriate ways to partition the missing data, and we hypothesize

that BARTm will be least effective for selection models with MCAR missing data mech-

anisms. We hypothesize this is due to the regularization prior on the depths of the

trees coupled with the fact that all missing data must move to the same daughter

node. In short, the trees do not extend deeply enough to create sufficiently complex

partitioning schemes to handle the MCAR mechanism.

We also hypothesize that BARTm has potential to perform well on pattern-mixture

models due to the partitioning nature of the regression tree. BARTm can partition the

data based on different patterns of missingness by using missingness as a valid split

value. Then, underneath these splits, different submodels for the different patterns

can be constructed. More concretely, consider a simple saturated pattern mixture
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model where the model is fA(X1) if X2 is missing and fB(X1) if X2 is present. The

model can split immediately on M2 and attempt to fit fA(X1) in a tree below the left

node and fB(X1) in a tree below the right node.

In light of the above examples, it should be noted that the MIA steps within the

Bayesian framework can also conceptually be viewed as combining pattern mixture

models with imputation. Conditional on a splitting rule, non-missing values of a

covariate are transformed into an indicator that takes the value of 1 if the splitting

rule condition is satisfied. Here, MIA rule 1 effectively imputes 1 for the missing

covariate and analagously MIA rule 2 effectively imputes 0 for the missing covariate.

Another motivation for adapting MIA to BART arises from computational concerns.

BART is a computationally intensive algorithm, but its runtime increases negligibly

in the number of covariates (see Chipman et al., 2010, Section 6). Hence, BARTm

leaves the computational time virtually unchanged with the addition of the pM new

missingness dummy covariates. Another possible strategy would be to develop an

iterative imputation procedure using BART similar to that in Stekhoven and Bühlmann

(2012) or a model averaging procedure using a multiple imputation framework, but

we believe these approaches would be substantially more computationally intensive.

4.4 Generated Data Simulations

4.4.1 A Simple pattern-mixture Model

We begin with an illustration of BARTm’s ability to directly estimate E [Y | Xobs,M ]

and additionally provide uncertainty intervals. We consider the following nonlinear

response surface:
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Y = g(X1, X2, X3) +BM3 + E , E iid∼ N
(
0, σ2

e

)
, B

iid∼ N
(
µb, σ

2
b

)
, (4.3)

g(X1, X2, X3) = X1 +X2 + 2X3 −X2
1 +X2

2 +X1X2

[X1, X2, X3]
iid∼ N3

0, σ2
x


1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1


 ,

where σ2
x = 1, ρ1 = 0.2, ρ2 = 0.4, σ2

e = 1, µb = 10 and σ2
b = 0.5. Note that

the pattern-mixture model is induced by M3 (the missingness in X3). Under this

missingness pattern, the response is offset by B, a draw from a normal distribution.

Figure 4.1a displays the n = 500 sample of the response from the model coloured by

M3 to illustrate the separation of the two response patterns. We choose the following

jointly NMAR missing data mechanism for X2 and X3 which was chosen to be simple

for the sake of ensuring that the illustration is clear. The next section features more

realistic mechanisms.

1 : X2 is missing with probability 0.3 if X2 ≥ 0 (4.4)

2 : X3 is missing with probability 0.3 if X1 ≥ 0.

If the BARTm model assumptions hold and is successfully able to estimate

E [Y | Xobs,M ], then the true E [Y | Xobs,M ] is highly likely to be contained within

a 95% credible interval for the prediction. We first check to see whether BARTm can

capture the correct response when Xtrain has missing entries but X∗ does not. Pre-

dicting for x∗ = [0 0 0] should give E [Y | X = x∗] = 0 for the prediction. Figure 4.1b

illustrates that BARTm captures the expected value within its 95% credible interval.
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(d) x∗ = [0 0 ·] , ŷ = 10.1± 1.00
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(e) x∗ = [0 · ·] , ŷ = 10.5± 1.14

Figure 4.1: (a) A n = 500 sample of the responses of the model in Equation (4.3).

Coloured in blue are the responses when X3 is present and red are responses when

X3 is missing. (b-e) 1,000 burned-in posterior draws from a BARTm model for different

values of x∗ drawn from the data generating process found in Equation (4.3). The

green line is BARTm’s forecasted ŷ (the average of the posterior burned-in samples).

The blue line is the true conditional expectation. The two yellow lines are the

bounds of the 95% credible interval for E [Y | Xobs = x∗, M = m∗].

Next we explore how well BARTm estimates the conditional expectation when miss-

ingness occurs within the new observation x∗. We examine how BARTm handles miss-

ingness in attribute X2 by predicting on x∗ = [0 · 0] where the “·” denotes missing-

ness. By Equation (4.4), X2 is missing 30% of the time if X2 itself is greater than 0.

By evaluating the moments of a truncated normal distribution, it follows that BARTm

should estimate E [X2 +X2
2 | X2 > 0] =

√
2/π+ 1 ≈ 1.80. Figure 4.1c indicates that

BARTm’s credible interval captures this expected value. Note the larger variance of the
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posterior distribution relative to Figure 4.1b reflecting the higher uncertainty due to

x∗2 going missing. This larger interval is an additional benefit of our methodology.

As the trees are built during the Gibbs sampling, the splitting rules on X2 are ac-

companied by a protocol for missingness: missing data will flow left or right (once

a Metropolis-Hastings proposal is accepted) and this direction is chosen randomly.

Thus, when x∗ is predicted with x∗2 missing, missing records flow left and right over

the many burned-in Gibbs samples creating a wider distribution of predicted values,

and thus a wider credible interval. This is an important point — BARTm can give a

rough estimate of how much information is lost when values in new records become

missing by looking at the change in the standard error of a predicted value. Note that

if BART’s hyperparameters are considered “tuning parameters,” the credible intervals’

endpoints are not interpretable. However, the relative lengths of the intervals can

still signify different levels of forecast confidence to the practitioner.

We next consider how BARTm performs when X3 is missing by predicting on x∗ =

[0 0 ·]. By Equation (4.4), BARTm should estimate E [X3 | X1 > 0] = .4
√

2/π ≈ .32

(which follows directly from the properties of the conditional distribution of a bivariate

normal distribution recalling that Corr [X1, X3] = 0.4). When X3 is missing, there is

a different response pattern, and the response is shifted up by B. Since E [B] = 10,

BARTm should predict approximately 10.32. The credible interval found in Figure 4.1d

indicates that BARTm’s credible interval again covers the conditional expectation.

Finally, we consider the case where X2 and X3 are simultaneously missing. Pre-

dicting on x∗ = [0 · ·] has a conditional expectation of E [X2 +X2
2 | X2 > 0] +

E [X3 | X1 > 0] + E [B] ≈ 12.12. Once again, the posterior draws displayed in Fig-

ure 4.1e indicate that BARTm reasonably estimates the conditional expectation. Note

that the credible interval here is wider than in Figure 4.1d due to the additional

missingness of X2.
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Figure 4.1 illustrates a representative sample of prediction estimates with corre-

sponding intervals for BARTm. In our experiments, we predicted across a wide range

of values for x (other than 0) and obtained similar results.

4.4.2 Selection Model Performance

In order to gauge BARTm’s out-of-sample predictive performance on selection models

and to evaluate the improvement over model-building on complete cases, we construct

the same model as in Equation (4.3) withholding the offset B (which previously in-

duced the pattern-mixture). Thus Y = g(X1, X2, X3)+E . We impose three indepen-

dently simulated scenarios illustrating performance under the following missingness

mechanisms. The first is MCAR; X1 is missing with probability γ. The second is

MAR; X3 is missing according to a non-linear probit model depending on the other

two covariates:

P (M3 = 1 | X1, X2) = Φ
(
γ0 + γ1X1 + γ1X

2
2

)
. (4.5)

The last is NMAR; X2 is missing according to a similar non-linear probit model this

time depending on itself and X1:

P (M2 = 1 | X1, X2) = Φ
(
γ0 + γ1X

2
1 + γ1X2

)
. (4.6)

For each simulation, we set the number of training observations to n = 250 and

simulate 500 times. Additionally, via appropriate selection of parameters, each simu-

lation is carried out with varying levels of missing data: approximately {0, 10, . . . , 70}

percent of rows have at least one missing covariate entry. For the MCAR dataset,
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the corresponding γ = {0, 0.03, 0.07, 0.11, 0.16, 0.26, 0.33} and for both the MAR and

NMAR datasets, γ0 = −3 and γ1 = {0, 0.8, 1.4, 2.0, 2.7, 4.0, 7.0, 30}.

For each missing data mechanism, we record results for four different scenarios: (1)

Xtrain and X∗ contain missingness (2) Xtrain contains missingness and X∗ is devoid

of missing data (in this case, X∗ is generated without the missing data mechanism to

maintain a constant number of rows). (3) only complete cases of Xtrain are used to

build the model but X∗ contains missingness and (4) only complete cases of Xtrain

are used to build the model and X∗ is devoid of missing data.

We make a number of hypotheses about the relationship between the predictive

performance of using incomplete cases (all observations) compared to the complete

case performance. As we discussed in Section 4.3, BARTm should be able model the

expectation of the marginal likelihood in selection models, thus we expect models built

with incomplete cases to predict better than models that were built with only the

complete cases. The complete case models suffer from performance degradation for

two main reasons. First, these models are built with a smaller sample size and hence

their estimate of E [Y | Xobs,M ] has higher variance. Second, the lack of missingness

during the training phase does not allow the model to learn how to properly model

the missingness, resulting in the missing data being filtered randomly from node to

node during forecasting. These hypotheses are explored in Figure 4.2 by comparing

the solid blue and solid red lines.

Further, during forecasting, we expect X∗ samples with incomplete cases to have

worse performance than the full X∗ samples (devoid of missingness) simply because

missingness is equivalent to information loss. However, for the NMAR model, as the

amount of missingness increases, we expect predictive performance on X∗ without

missingness to eventually be surpassed by the predictive performance on X∗ with

missingness. Eventually there will be so much missingness in X2 that (1) the trained
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model on missingness will only be able to create models by using M 2 and expect M 2

in the future X∗ and (2) the trained model on complete cases will never observe the

response of the function where X2 went missing. These hypotheses are explored in

Figure 4.2 by comparing the solid lines to the dashed lines within the same colour.

The results for the four scenarios under the three missing data mechanisms com-

port with our hypotheses. The solid red line is uniformly higher than the solid

blue line, confirming degradation for complete case model forecasting on new data

with missingness. The dotted lines are lower than their solid counterparts indicating

that providing more covariate information yields higher predictive accuracy. The one

exception is for NMAR. After the number of rows with missingness exceeds 40%,

forecasts on only complete cases begin to perform worse than the forecasts on data

with missingness for models built with missingness (BARTm).

For this set of simulations, BARTm performs better than BART models that ignore

missingness in the training phase. The next section demonstrates BARTm’s perfor-

mance on a real data set and compares its performance to a nonparametric statistical

learning procedure that relies on imputation.

4.5 Real Data Example

The Boston Housing data (BHD) measures 14 features about housing in the n = 506

census tracts in Boston in 1970. For model building, the response variable is usually

taken to be the median home value of the tract. Covariates we explicitly make use of

in our exposition are the average number of rooms per dwelling (rm), per capita crime

rate by town (crim), percent lower income status of the population (lstat), parts

per million nitrogen oxide concentration in the air (nox), full-value property tax rate

(tax), proportion of owner-occupied units built prior to 1940 (age), proportion of
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Figure 4.2: Simulation results of the response model for the three missing data mech-

anisms explained in the text. The y-axis measures the multiple of out-of-sample root

mean square error (RMSE) relative to the performance in the absence of missingness.

The x-axis is the approximate proportion of missing data. Blue lines correspond to

the two scenarios where BART was built with all cases in Xtrain and red lines cor-

respond to the two scenarios where BART was built with only the complete cases of

Xtrain. Solid lines correspond to the two scenarios where X∗ included missing data

and dotted lines correspond to the two scenarios where X∗ had no missing data.

Vertical segments at each point illustrate 95% confidence intervals.
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non-retail business acres per town (indus) and an index of accessibility to highways

(rad).

For these simulations, we evaluate the performance of three procedures (1) BARTm

(2) RF with Xtrain and X∗ imputed via MissForest and (3) BART with Xtrain and

X∗ imputed via MissForest. Note that in these simulations we assume a priori

that X∗ will have missing data. Thus, the complete case comparisons proposed in

Section 4.4.2 were not possible. We gauge out-of-sample predictive performance as

measured by the out-of-sample RMSE for the three procedures on the independent

simulation scenarios described in Table 4.2.

Scenario Description
Selection Model MCAR rm, crim, lstat, nox and tax are each missing w.p. γ
Selection Model MAR rm and crim are missing via:

P (M rm = 1) = Φ(γ0 + γ1(indus + lstat + age))
P (M crim = 1) = Φ(γ0 + γ1(nox + rad + tax))

Selection Model NMAR rm and crim are missing via:
P (M rm = 1) = Φ(γ0 + γ1(rm + lstat))
P (M crim = 1) = Φ(γ0 + γ1(crim + nox))

Pattern-Mixture The MAR selection model above and two offsets:
(1) if M rm = 1, the response is increased by N (µb, σ

2
b )

(2) if M crim = 1, the response is decreased by N (µb, σ
2
b )

Table 4.2: Distinct missingness scenarios for the BHD simulations. Monospace codes

are names of covariates in the BHD. Note that rm has sample correlations with indus,

lstat and age of -0.39, -0.61 and -0.24 and crim has sample correlations with nox,

rad, and tax of 0.42, 0.63 and 0.58. These high correlations should allow for impu-

tations that perform well.

Similar to Section 4.4.2, each simulation is carried out with different levels of miss-

ing data, approximately {0, 10, 20, . . . , 70} percent of rows have at least one missing

covariate entry. For the MCAR scenario, the corresponding

γ = {0, 0.02, 0.04, 0.07, 0.10, 0.13, 0.17}, for the MAR scenario and pattern-mixture
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scenario, γ1 = {0, 1.3, 1.5, 1.7, 2.1, 2.6, 3.1, 3.8} and γ0 is constant at -3 and for the

NMAR scenario γ1 = {0, 3.3, 3.6, 3.9, 4.1, 4.3, 4.6, 4.8} and γ0 is constant at -3. Similar

to Section 4.4.1, we induce a pattern-mixture model by creating a normally distributed

offset based on missingness (we create two such offsets here). Here, we choose µb to

be 25% of the range in y and σb to be µb/4. These values are arbitrarily set for illus-

tration purposes. It is important to note that the performance gap of BARTm versus

RF with imputation can be arbitrarily increased by making µb larger.

For each scenario and each level of missing data, we run 500 simulations. In

each simulation, we first draw missingness via the designated scenario found in Ta-

ble 4.2. Then, we randomly partition 80% of the 506 BHD observations (now with

missingness) as [ytrain,Xtrain] and the remaining 20% as [y∗,X∗]. We build all three

models (BARTm, RF with MissForest and BART with MissForest) on Xtrain, forecast

on X∗ and record the out-of-sample RMSE. Thus, we integrate over idiosyncrasies

that could be found in a single draw from the missing data mechanism and idiosyn-

crasies that could be found in a single train-test partition. When using MissForest

during training, we impute values for the missing entries in Xtrain using [ytrain,Xtrain]

column-binded together. To obtain forecasts, we impute the missing values in X∗

using [Xtrain,X∗] row-binded together then predict using the bottom rows (i.e. those

corresponding to the imputed test data). Note that we use MissForest in both RF

and BART to ensure that any difference in predictive capabilities of BART and random

forests are not driving the results.

For the MCAR selection model, we hypothesize that the MissForest-based im-

putation procedures will outperform BARTm due to the conceptual reasons discussed

in Section 4.3. For the MAR selection model, we hypothesize similar performance be-

tween BARTm and both MissForest-based imputation procedures, as both MIA and

imputation are designed to perform well in this scenario. In the NMAR selection

125



model and pattern-mixture model, we hypothesize that BARTm will outperform both

MissForest-based imputation procedures, as MissForest (1) cannot make use of the

values in the missingness columns it is trying to impute and (2) cannot construct

different submodels based on missingness. Although imputation methods are not de-

signed to handle these scenarios, it is important to run this simulation to ensure that

BARTm, which is designed to succeed in these scenarios, has superior out-of-sample

predictive performance.

The results displayed in Figure 4.3 largely comport with our hypotheses. Meth-

ods using MissForest perform better on the MCAR selection model scenario (Figure

4.3a) and BARTm is stronger in the NMAR scenario (Figure 4.3c) and pattern-mixture

scenario (Figure 4.3d). It is worth noting that in the MAR selection model sce-

nario (Figure 4.3b), BARTm begins to outperform the imputation-based methods once

the percentage of missing data becomes greater than 20%. The performance of the

imputation-based algorithms degrades rapidly here, while BARTm’s performance re-

mains fairly stable, even with 70% of the rows having at least one missing entry. In

conclusion, BARTm performs better than MissForest because it is not “limited” to

what can be imputed from the data on-hand. This advantage generally grows with

the amount of missingness.

4.6 Discussion

We propose a means of incorporating missing data into statistical learning for predic-

tion problems where missingness may appear during both the training and forecast-

ing phases. Our procedure, BARTm, implements “missing incorporated in attributes”

(MIA), a technique recently explored for use in decision trees, into Bayesian Additive

Regression Trees, a newly developed tree-based statistical learning algorithm for clas-
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Figure 4.3: Simulations for different probabilities of missingness across the four simu-

lated missing data scenarios in the BHD. The y-axis is out-of-sample RMSE relative

to BART’s out-of-sample RMSE on the full dataset. Lines in green plot BARTm’s per-

formance, lines in red plot RF with MissForest’s performance, and lines in blue

plot BART-with-MissForest’s performance. Note that the MissForest-based impu-

tation might perform worse in practice because here we allow imputation of the entire

test set. In practice, it is likely that test observations appear sequentially. Vertical

segments at each point illustrate 95% confidence intervals.
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sification and regression. MIA natively incorporates missingness by sending missing

observations to one of the two daughter nodes. Missingness is incorporated into split-

ting rules which are chosen via Metropolis-Hastings sampling. This innovation allows

missingness itself to be used as a legitimate value within splitting criteria, resulting

in no need for imputing in the training or new data and no need to drop incomplete

cases.

For the simulations explored in this article, BARTm’s performance was generally

superior to models built using complete cases, especially when missingness appeared

in the test data as well. Additionally, BARTm provided higher predictive performance

on the MAR selection model relative to MissForest, a nonparametric imputation

technique. We also observe promising performance on NMAR selection models and

pattern-mixture models in simulations. Additionally, BARTm’s Bayesian nature pro-

vides informative credible intervals reflecting uncertainty when the forecasting data

has missing covariates.

Due to space considerations, the exploration in this article was focused on regres-

sion and we were unable to investigate our method for estimating probabilities in the

binary classification setting. The R package bartMachine implements BARTm for both

classification and regression and we view a survey of its classification performance as

important future work.

Due to MIA’s observed promise, we recommend it as a viable strategy to handle

missingness in other tree-based statistical learning methods. Future work should also

consider exploration of methods that combine imputation with MIA appropriately, in

order to enhance predictive performance for MCAR missing data mechanisms. Other

important future work includes investigating whether MIA’s steps 1 and 2 can be

altered so that each observation is sent in a random direction, an idea which draws

inspiration from Rubin (1981)’s Bayesian bootstrap.
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5
BART with Parametric Models of Heteroskedasticity

Abstract

We incorporate heteroskedasticity into BART by modeling the log of the error vari-

ance parameter as a linear function of prespecified covariates. Under this scheme, the

Gibbs sampling procedure for the original sum-of-trees model is easily modified, and

the parameters for the variance model are updated via a Metropolis-Hastings step.

We demonstrate the promise of our approach by providing more appropriate pos-

terior predictive intervals than homoskedastic BART in heteroskedastic settings and

demonstrating the model’s resistance to overfitting.

5.1 Introduction

We consider the the following general heteroskedastic regression framework to charac-

terize the relationship between a continuous response vector y and a set of p predictor

variables X := [x·1, . . . ,x·p] which can be continuous or categorical:
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y = f(X) + E , E ∼ Nn
(
0, σ2D

)
D denotes the diagonal matrix whose entries are scaling factors for the error variance

for each observation. In this model, the response is considered to be an unknown

function f of the predictors and the observations, while independent, exhibit non-

constant error variance. The goal of this article is to model the relationship between

the predictors and response with the aim of generating accurate predictions. To this

end we model f with BART . As developed in Chapter 1, the original BART model

is constrained to have homoskedastic error variance (D = I). Here, we extend the

model to flexibly handle an error variance structure which is a linear model of pre-

specified covariates and we name our procedure “heteroskedastic BART” or “HBART.”

Similar to Huber-White sandwich estimation (White, 1980), appropriately modeling

the diagonal entries of D “downweights” high variance observations. This allows for

(a) a more accurate model as measured by predictive performance on future obser-

vations as well as (b) posterior credible and predictive intervals which appropriately

reflect the changing heteroskedasticity in predictor space.

In Section 5.2, we provide an overview of the literature on heteroskedastic regres-

sion modeling in a Bayesian paradigm. In Section 5.3, we introduce HBART, highlight-

ing the necessary modifications to the original homoskedastic BART. In Section 5.4,

we provide simulations to showcase the desirable properties of HBART, including less

overfitting for high noise observations as well as more appropriate uncertainty inter-

vals for predictions in the presence of heteroskedasticity. Section 5.5 explores two

applications to real data. We conclude and offer future research directions in Sec-

tion 5.6. The method developed in this chapter will be implemented in an upcoming
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release of bartMachine.

5.2 Bayesian Heteroskedastic Regression

Early approaches for heteroskedastic regression primarily focused on point estimation

for the parameters governing the underlying heteroskedasticity of the model (for an

overview, see Carroll and Ruppert, 1988). Potential problems with point estimation

gave rise to a proposal of a fully Bayesian approach for heteroskedastic linear regres-

sion, where the non-constant variance depends on simple functions of an unknown

parameter θ and a set of weights wi (Boscardin and Gelman, 1994).

Cepeda and Gamerman (2001) introduce a Bayesian regression model where the

conditional mean of the response is modeled using a linear function of covariates

x1, . . . ,xp plus heteroskedastic noise. They model the variance for each observation

as a monotonic differentiable function of a linear combination of another set of covari-

ates, g(z1, . . . ,zk). Additionally, the function g is chosen to ensure positivity of the

variance terms. The authors rely on a block Gibbs sampling approach (Geman and

Geman, 1984), sampling the parameters for the mean function and variance function

in two stages. In particular, the parameters for the variance function are updated via

a Metropolis-Hastings step (Hastings, 1970) using the approach of Gamerman (1997),

which relies on an iteratively reweighted least squares model to generate suitable pro-

posal distributions.

More recent approaches have focused on relaxing the assumptions of linear ad-

ditive components for modeling the mean and variance functions. Yau and Kohn

(2003) propose nonparametric models for each of these two functions by employing

penalized regression spline estimation for both models. Chan et al. (2006) extend

this nonparametric model to allow for semiparametric modeling of both the mean
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and variance functions, using radial basis functions for nonparametric components.

Additionally, their approach can handle a large number of basis terms by introducing

Bayesian variable selection priors, thereby allowing model estimation to be locally

adaptive. Leslie et al. (2007) relax the assumption of normal errors and developed a

heteroskedastic linear regression model with general error distributions by relying on

a Dirichlet process mixture prior.

Both Chan et al. (2006) and Leslie et al. (2007) rely on the sampling scheme

developed in Gamerman (1997) to obtain draws from the posterior distribution of

the parameters for the variance function. Our work similarly draws heavily on this

technique.

5.3 Augmenting BART to Incorporate Heteroskedas-

ticity

In its original formulation by Chipman et al. (2010), the authors assume that the re-

sponse y could be modeled as a sum-of-trees model of the covariatesX := [x·1, . . . ,x·p]

plus homoskedastic normal noise:

Y =
m∑
i=1

i
l

i (X) + E , E ∼ Nn
(
0, σ2In

)
. (5.1)

We propose an extension to BART by allowing each σ2
1, . . . , σ

2
n to be scaled by the

exponential of a linear parametric function of k covariates Z := [z·1, . . . ,z·k], the

“heteroskedasticity covariates” which are potentially distinct from the covariates used

to define the model for the mean function, x·1, . . . ,x·p. Our heteroskedastic model,

HBART, is given as
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Y =

m∑
i=1

i
l

i (X) + E, E ∼ Nn

0, σ2


exp (z1· · γ) 0

. . .

0 exp (zn· · γ)


 (5.2)

where γ := [γ1, . . . , γk]
> is a column vector of linear coefficients for the k heteroskedas-

ticity covariates. Thus, the variance of each observation is specified as a log-linear

model:

ln
(
σ2
i

)
= ln

(
σ2
)

+ zi · γ for i = 1, . . . , n. (5.3)

It is important to note that BART, by design, is an overparameterized model with

“an abundance of unidentified parameters” (Chipman et al., 2010) allowing for a

highly flexible fit. First, given the unidentifiable nature of the model, our focus is

not on valid inference for γ. Instead, we incorporate heteroskedasticity to aid in fore-

casting and generating posterior uncertainty intervals. Second, due to the already

complex nature of the original BART algorithm, we employ parametric models for het-

eroskedasticity versus more sophisticated alternatives (such as the proposal of Chan

et al., 2006) in order to prevent the model from becoming “too flexible.” Given highly

flexible, unidentifiable estimation of both the mean and variance functions, the algo-

rithm may have difficulty distinguishing between signal and noise, thereby shirking

on its primary duty which is accurate estimation of the mean model. Hence, paramet-

ric models of heteroskedasticity represent the first step towards understanding how

flexible BART can be in nonparametric function estimation when the homoskedasticity

assumption is relaxed.

The remainder of the section is dedicated to describing the priors on HBART as
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well as the Gibbs sampling procedure for obtaining posterior inference.

5.3.1 Priors and Likelihood

As discussed in Section 1.4.1, the BART model requires three priors. The first prior

is on the tree structures themselves and the second is on the leaf parameters. The

third prior is on the error variance σ2. HBART requires these same three priors as well

as a prior on γ. By assumption, the priors on σ2, γ, i and l are independent of one

another:

P
(
i
l

1 , . . . ,i
l

m, σ
2,γ
)

=

[∏
t

P
(
i
l

t

)]
P
(
σ2
)
P (γ)

=

[∏
t

P
(
lt | it

)
P
(
it
)]

P
(
σ2
)
P (γ)

=

[∏
t

∏
`

P
(
µt,` | it

)
P
(
it
)]

P
(
σ2
)
P (γ)

where the last line follows from an assumption of conditional independence of the leaf

parameters given the tree structure.

The priors on the tree structures, leaf parameters and splitting rules proposals are

the same as those used in the original BART model and were discussed in Section 1.4.1.

For the homoskedastic implementation, recall that the prior is on the error variance

and is chosen to be σ2 ∼ InvGamma (ν/2, νλ/2). λ is determined from the data so

that there is a q = 90% a priori chance (by default) that the BART model will improve

upon the RMSE from an ordinary least squares regression (therefore, the majority of

the prior probability mass lies below the RMSE of a least squares regression). We use

this same data-informed prior for the σ2 parameter in HBART, the logarithm of which

serves as the intercept term in the log-linear model for the variances (Equation 5.3).
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Following the approach of Gamerman (1997), we place a multivariate normal prior

on γ given as:

γ ∼ Nk

γ0,


Σ11 0

. . .

0 Σkk


 (5.4)

We make the simplifying assumption that each component of the prior is inde-

pendent of one another, but this can be easily generalized.

Along with a set of priors, HBART (and BART) consists of the likelihood of responses

in the leaf nodes. The likelihood is assumed to be normal with the mean being the

“best guess” of the leaf parameters at the current moment and variance being the best

guess of the variance at the moment i.e. y` ∼ N (µ`, σ
2
i /m). These “best guesses”

are the values being conditioned on in the Gibbs sampler during each iteration.

5.3.2 Sampling from the Posterior

The Gibbs sampler can be used to obtain draws from P(i
l

1 , . . . ,i
l

m, σ
2,γ | y,X), the

posterior distribution of the model parameters. As with the original sampling scheme

for BART, HBART also relies on “Bayesian backfitting” (Hastie and Tibshirani, 2000)

to fit each tree iteratively, holding all other m− 1 trees constant. This is achieved by

considering the residual response when updating the jth tree Rj := y−
∑

t6=j i
l

t (X).

The Gibbs sampler for HBART is similar to that of BART and we briefly review here.

The Gibbs sampler for HBART proceeds by first proposing a change to the first tree’s

structure i1 which are accepted or rejected via a Metropolis-Hastings step (Hastings,

1970). Tree structures are altered by introducing small changes: growing a terminal

node by adding two terminal daughter nodes, pruning two terminal daughter nodes,
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or changing a split rule. Given the tree structure, samples from the posterior of

the b leaf parameters l1 := {µ1, . . . , µb} are then drawn from the conjugate-normal

posterior distribution. This procedure proceeds iteratively for each tree, using an

updated set of partial residuals Rj.

Once each tree structure and leaf values has been updated, a draw from the

posterior of σ2 conditional on all other parameters is made based on the full model

residuals E := y −
∑m

t=1 i
l

t (X). Finally, a draw from the posterior of γ conditional

the other parameters is computed via a Metropolis-Hastings step.

The steps of the full HBART procedure are illustrated below:

1 : i1 | R−1, σ2,γ (5.5)

2 : l1 | i1, R−1, σ
2,γ

...

2m− 1 : im | R−m, σ2,γ

2m : lm | im, R−m, σ2,γ

2m+ 1 : σ2 | i
l

1 , . . . ,i
l

m,γ,E

2m+ 2 : γ | σ2,E

All 2m + 2 steps represent a single Gibbs iteration13. After a sufficient burn-

in period, burned-in draws from the posterior of f are obtained. As with BART, a

point prediction f̂(x) for HBART can be obtained by taking the average of the burned-

in values of i
l

1 , . . . ,i
l

m evaluated at a given x; posterior credible intervals for f are

computed by using the quantiles of the burned-in values. Posterior predictive intervals

13BART relies on a similar scheme, removing the conditioning on γ at each step and not requiring

step 2m+ 2.
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at a given x are computed as follows:

1. Draw f(x) via

i) drawing one of the burned-in sum-of-trees collections i
l

1 , . . . ,i
l

m and

ii) computing f(x) =
m∑
i=1

i
l

i (x).

2. Draw σ2(x) via

i) obtaining γ and σ2 from the same Gibbs sample from which the sum-of-trees

was obtained,

ii) determining the z which corresponds to the x of interest and

iii) computing σ2(x) by evaluating γ, σ2 and z in the exponentiation of Equa-

tion 5.3.

3. Take one draw from N (f(x), σ2(x)) which is the BART model (Equation 5.1)

4. Collect draws from step 3 by repeating steps 1–3 many times. Then, return the

desired quantiles.

Note that HBART requires modifications to the original BART likelihood calcu-

lations necessary for Metropolis-Hastings steps to alter the tree structures (steps

1, 3, . . . , 2m − 1 of Equation 5.5). Also, the posterior distributions for the leaf pa-

rameters must be updated (steps 2, 4, . . . , 2m of Equation 5.5). It is worth noting

that these modifications are valid for any heteroskedastic BART model and not just

the log-linear HBART model proposed in this work, as they computed as functions of

σ2
1, . . . , σ

2
n. Additionally, modifications to the posterior distribution of σ2 (step 2m+1

of Equation 5.5) is required. Finally, the sample of γ (step 2m + 2 of Equation 5.5)

is obtained using the Metropolis-Hastings procedure with the proposal distribution

138



outlined in Gamerman (1997). We provide explicit computational details for each of

these steps in Appendix A.3.

5.4 Simulations

5.4.1 Univariate Model

We begin by comparing the performance of BART versus HBART in a simple univariate

setting. Consider a single predictor x which is a uniformly spaced sequence of n

points on [0, 1]. Then, we consider two models. The first is heteroskedastic and is

given by

Yi = 100xi + Ei, Ei
ind∼ N

(
0, σ2

i

)
, σ2

i = exp (7xi) . (5.6)

The second is homoskedastic and is given by

Yi = 100xi + Ei, Ei
ind∼ N

(
0, 52

)
. (5.7)

For HBART, the matrix of covariates for the parametric variance model will be

set to Z = [x], our one uniformly spaced covariate. Parenthetically, note that the

default in our software implementation is to set Z = X. Therefore, HBART will have a

correctly specified variance function for the model given in Equation 5.6. We include

the homoskedastic model as well to benchmark HBART’s performance to determine

if the unnecessary extra complexity of the variance model degrades the algorithm’s

performance.

139



0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

x

y

(a) Heteroskedastic Model,

Posterior Mean Estimates

++++++++++
++++++++++++++

++++++++
+++
+++++++

++++
++++++

++++++++
+
+++
++++
++++
+
+
++
++
++++++

+++++
+
+++

+

+
++
++
+++
+
+++
+
+++
++
+
++
+
+

+

++

+

+

+
++
+
+

+

++++
+++++
+

+
+
++
++

+
++
+

+
++
+

++

+
+

+
+

+
+++

+

+
+

+

+

+

+

+

+
+++
+

+
+
+

+
+

+

++
+

++

+

+
++

+

+

+
+

+

+

+++

+

+

+
+

+
+

+
++

+

+

+

+
+

+

+

+

++

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+
+
++

+
+
+

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

x

y

(b) Heteroskedastic Model,

Posterior Predictive Intervals

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

x

y

(c) Homoskedastic Model,

Posterior Mean Estimates

+

+

+

+
++++++

+
+
+++
+
++
++
+++
+
+++++++

+
+
+
+++
+++
++
++
+
+++
+
++
+++

+
++++
+
+++
+
+
+
++++
++++
+
+++
+
++
++
+
+
++
+
+++
++++
+
++
+
+++++
+++
+
++
+
+
+

++
++++++

+
+++
+
+
++
++
+

+
+
++++++

++
+
++
+
+

+
++++
+
+++
+

+++++
++
+++
++
+
+
++++
++++
++++++

+
+++
+++
+

+
++
++

+
+++++++++

+
+
+
+
++
+
+++
+++
+
+
+

+
+
+
+
++++

+
+
+++
+
+
++
++++
+
++
++

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

x

y

(d) Homoskedastic Model,

Posterior Predictive Intervals

Figure 5.1: BART’s and HBART’s posterior mean estimates and 90% posterior predictive

intervals for each algorithm built from a sample of n = 250 observations drawn from

the processes in Equation 5.6 (a and b) and Equation 5.7 (c and d). Red lines

correspond to the results of a BART model and blue lines correspond to the results

from a HBART model. The black lines in (b) and (d) correspond to the true conditional

mean function (Yi = 100xi) and the black +’s represent the actual observations.
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Figure 5.1 compares BART to HBART in both the heteroskedastic and homoskedastic

simulated models by gauging two metrics: accuracy of estimation of f and appropri-

ateness of posterior predictive intervals.

Figure 5.1a highlights the posterior means f̂ estimated by the two different models.

Note that HBART provides a better estimate of the true f when x > 0.7, the region

of relatively high variance. By estimating large variance in this region, it has the

flexibility to downweight these high variance observations, allowing for more shrinkage

towards the global average and away from the noisy local (within-node) sample mean.

In contrast, BART overfits in this region. By assuming homoskedasticity, the algorithm

is handicapped, and is obligated to move its mean function up when the noise term

is large and positive and down when the noise term is large and negative. Note that

both algorithms perform well when x < 0.7, where the data has lower variance.

Figure 5.1b provides 90% posterior predictive intervals for future observations (as

explained in the procedure outlined in Section 5.3.2). Given the homoskedasticity

assumption of BART, the prediction intervals at each x-location are of constant width.

This implies that the intervals are too wide at low values of x and too narrow at

higher values of x. In contrast, HBART provides more appropriate prediction intervals,

narrow at low x and wide at high x, thus correctly reflecting the heteroskedasticity in

the underlying data-generating model. Although not the primary focus of this paper,

examining the burned in γ values yielded a 90% credible interval of [6.52, 7.65], which

captures 7, the value of the linear coefficient in the log-linear variance model of

Equation 5.6.

For the homoskedastic model, Figures 5.1c and 5.1d highlight that BART and HBART

yield virtually identical results in terms of mean function estimation and predictive

intervals. Thus, HBART seems to be robust in the absence of heteroskedasticity for

this illustration.
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5.4.2 Multivariate Model

We now consider the following data generating process, similar to the model simulated

in Cepeda and Gamerman (2001):

Yi = f(xi) + Ei, f(xi) = −35 + .35x1,i − 1.7x2,i, Ei
iid∼ N

(
0, σ2

i

)
(5.8)

x1,i
iid∼ U (0, 400) , x2,i

iid∼ U (10, 23) , x3,i
iid∼ U (0, 10)

σ2
i = exp (−6 + .03x1,i + .4x3,i) (5.9)

We set the number of observations to be n = 500 and then we fit an HBART model

using the default Z = [x1,x2,x3]. Thus, the variance model is misspecified (the true

model is not a function of x2). We again compare HBART’s performance to that of

BART.

Figure 5.2 plots actual values of the conditional mean function versus fitted values.

This illustration demonstrates that in areas of high variance, BART has difficulty

separating the mean function from the noise, and as a result, provides wide credible

intervals for the true f . HBART, on the other hand, provides more narrow credible

intervals, indicating that the algorithm was able to successfully separate the mean

function from the heteroskedastic variance structure in the data generating process.

We next evaluate the performance of HBART versus BART in terms of out-of-sample

predictive performance. We consider two models: one with homoskedastic errors,

E iid∼ N (0, 32), and one with heteroskedastic error structure according to Equation 5.9.

For each error structure, we then generate n = 500 training observations based on the

data generating process outlined in Equation 5.8. Both HBART and BART models are

constructed on the training set and performance is evaluated in terms of root mean

square error (RMSE) on an additional n = 500 independent test observations drawn
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(b) BART

Figure 5.2: Estimates of the conditional mean function f for HBART and BART with

associated 90% credible intervals. The x-axis is the true value of the conditional mean

function and the y-value is the model estimate. Gray lines illustrate 90% credible

intervals. If the true conditional mean falls within the interval, the point is colored

green and points in red signify the true value falls outside of the interval.
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from the same data generating process.

Figure 5.3 displays the out-of-sample performance results for 100 simulations.

For the heteroskedastic model, HBART significantly outperforms BART (Figure 5.3a)

For the homoskedastic model, the performance of BART and HBART are statistically

equal and the results of both algorithms are quite stable (Figure 5.3b). This plot

provides more evidence of the robustness of HBART’s performance in the absence of

heteroskedasticity.
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Figure 5.3: Distribution of out-of-sample RMSE for BART and HBART fit in 100 simula-

tions for (a) the heteroskedastic data generating process of Equations 5.8 and 5.9 and

(b) the homoskedastic data generating process of Equation 5.8 with E iid∼ N (0, 32).

The models are built on 500 observations and tested on 500 independent observations.
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5.5 Real Data Examples

5.5.1 Lidar Data

We consider the LIDAR data set explored in Ruppert et al. (2003). The data set

contains 221 observations. The response denoted Log(Ratio) is the logarithm of

the ratio of reflected laser-emitted light from two sources and the predictor denoted

Range is the distance traveled before the light is reflected back to its source. Leslie

et al. (2007) explored this data set by fitting both nonparametric mean and variance

functions to the data under the assumptions of both normal and non-normal error

distributions.

We fit the data using BART and HBART. For HBART, Z is taken to be [Range, Range2]

where the two columns are orthogonalized. Figure 5.4 illustrates the posterior mean

estimates for both HBART and BART. One will notice that both algorithms estimate

relatively similar posterior mean functions with HBART’s estimation being slightly more

smooth in the region of higher variance than that of BART. Figure 5.1b shows 90%

posterior predictive intervals for the two algorithms. The intervals for HBART seem

to appropriately reflect the heteroskedasticity in the data, while BART’s predictive

intervals are too wide at low values of Range and too narrow at high values of Range.

5.5.2 Motorcycle Data

We next consider a dataset of simulated motorcycle crashes that was compiled by

Schmidt et al. (1981). The observations in the data set consist of accelerometer

readings (acceleration) taken from riders’ helmets at 133 different points in time

(time) after a simulated impact. As discussed in Gramacy (2007), many researchers

find that this dataset exhibits multiple regimes in both the mean function and variance
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Figure 5.4: BART’s and HBART’s posterior mean estimates and 90% posterior predictive

intervals for the Lidar data. Red lines correspond to the BART model and blue lines

correspond to the HBART model.

function over time.

This dataset was also explored by Taddy et al. (2011) who remarked that the

90% posterior predictive interval for BART appeared to “variously over or under es-

timate data uncertainty around the regression mean. In particular, BART’s global

variance term is misspecified for this heteroskedastic data.” We attempt to remedy

this problem with HBART. Exploring a scatterplot of the data, the model seems to be

characterized by a low variance regime followed by a high variance regime and then

an additional low variance regime (see Figure 5.5). Hence, when building an HBART

model, we do not use the default Z. To capture the low-high-low variance relation-

ship, we specify the model to be quadratic in the predictor, Z = [time, time2] where

the two columns are orthogonalized.

Figure 5.5 displays 90% posterior predictive intervals for HBART, BART, dynamic
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trees (dynaTree, Taddy et al., 2011), and treed Gaussian processes (tgp, Gramacy,

2007). Each of the algorithms has a similar estimate of the posterior mean process

(unshown), but there are some differences in the posterior predictive intervals. BART’s

predictive intervals are much too wide at low and high values of time and perhaps

too narrow for the intermediate values of time. However, HBART’s intervals are quite

similar to those of dynaTree, being widest for intermediate values of time and more

narrow near the beginning and end. Interestingly, HBART is the only of the four models

that builds a narrower predictive interval at the higher values of time.

+++++ ++++++++++++ +++
+
+

+

+

+

+

+

+

+
+

+

+
+
+

+

++
+

+

+
+
+ ++

+

+

+
+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

++

+
+

++
+ +

+
+

+
+

+
++

+

10 20 30 40 50

−
15

0
−

10
0

−
50

0
50

10
0

Time

A
cc

el
er

at
io

n

BART
HBART
dynaTree
TGP

Figure 5.5: 90% posterior predictive intervals for BART, HBART, dynaTree and TGP.
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5.6 Discussion

We have proposed HBART, an extension of BART that relaxes the assumption of ho-

moskedasticity in the model errors. In particular, we have developed a model that

allows for a multiplicative heteroskedastic error structure, where the multiplicative

factor is the exponential of a parametric function of some set of covariates.

Through simulations and explorations of real data, we have demonstrated HBART’s

potential for generating more appropriate posterior predictive intervals in the presence

of appropriately modeled heteroskedastic data versus BART. Additionally, BART suffers

from overfitting in areas of very high variance and HBART seems to offer promise in

ameliorating this issue. In our explorations, the added complexity of fitting a model

to the error terms did not hinder HBART’s performance on homoskedastic data. In

this situation, HBART’s estimates of the posterior means, predictive intervals, and

out-of-sample RMSE were very similar to BART’s.

Originally proposed in Chipman et al. (2010) and implemented in Kapelner and

Bleich (2015), it is possible to cross-validate over the a number of the hyperparam-

eters of the BART model. Future work will involve extending BART-CV to HBART-CV,

where it is possible to cross-validate over a selection of prior variances for the para-

metric variance model to impose varying degrees of shrinkage by modifying the Σjj

hyperparameters. One final direction of research is to further relax the assumptions

on the error structure. For instance, one could incorporate more flexible variance

models such as smoothing splines instead of the standard linear model or relax the

assumption of normality of the errors by considering Dirichlet mixture priors.
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6
Ensemble-of-Trees Algorithms in Criminology

Abstract

There is a substantial and powerful literature in statistics and computer science clearly

demonstrating that modern machine learning procedures can forecast more accurately

than conventional parametric statistical models such as logistic regression. Yet, sev-

eral recent studies have claimed that for criminal justice applications, forecasting

accuracy is about the same. In this chapter, we address the apparent contradiction.

Forecasting accuracy will depend on the complexity of the decision boundary. When

that boundary is simple, most forecasting tools will have similar accuracy. When

that boundary is complex, procedures such as machine learning, that proceed adap-

tively from the data will improve forecasting accuracy, sometimes dramatically. The

complexity of the decision boundary will in practice be unknown, and there can be

substantial risks to gambling on simplicity. Criminal justice decision makers and

other stakeholders can be seriously misled with rippling effects going well beyond the

immediate offender. There seems to be no reason for continuing to rely on traditional

forecasting tools such as logistic regression.
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6.1 Introduction

Forecasts of recidivism have been widely used in the United States to inform parole

decisions since the 1920s (Burgess, 1928; Borden, 1928). Of late, such forecasts are

being proposed for a much wider range of criminal justice decisions. One important

example is recent calls for predictions of “future dangerousness” to help shape sen-

tencing (Pew Center of the States, 2011; Casey et al., 2011). The recommendations

build on related risk assessment tools already operational in many jurisdictions, some

mandated by legislation (Kleiman et al., 2007; Turner et al., 2009; Hyatt et al., 2011;

Skeem and Monahan, 2011; Oregon Youth Authority, 2011).

With such widespread enthusiasm and very high stakes, one might assume fore-

casting accuracy has been properly evaluated and determined to be good. In fact,

competent evaluations can be difficult to find for a wide variety of criminal justice

decisions. Some of the problems have a long history (Ohlin and Duncan, 1949; Ohlin

and Lawrence, 1952; Reiss Jr, 1951). For example, it is relatively rare for evaluations

to be based on “test data” that were not used to construct the forecasting proce-

dures. The danger is grossly overoptimistic assessments. More recent commentaries

have documented a number of other problems, sometimes including no evaluation at

all (Farrington and Tarling, 1985; Gottfredson and Moriarty, 2006; Berk, 2007, 2012)

The need for thorough and thoughtful evaluations has become even more impor-

tant over the past decade because in addition to calls for a more routine use of crime

forecasts, new forecasting tools from computer science and statistics have been devel-

oped. Often supported by formal proofs, simulations, and comparative applications

across many different data sets, these tools promise improved accuracy in principle

(Breiman et al., 1984; Breiman, 1996, 2001a; Vapnik, 1998; Friedman, 2002; Chipman

et al., 2010), including several instructive criminal justice applications in print as well
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(Berk, 2012).

Yet, there are also several recent articles claiming that for criminal justice ap-

plications, the new tools perform no better than the old tools (Yang et al., 2010;

Liu et al., 2011; Tollenaar and Van der Heijden, 2013). Logistic regression is a fa-

vorite conventional approach. The conclusion seems to be “why bother?” For criminal

justice forecasting applications, the new procedures are mostly hype.

“The conclusion is that using selected modern statistical, data mining and

machine learning models provides no real advantage over logistic regres-

sion and LDA.14 If variables are suitably transformed and included in the

model, there seems to be no additional predictive performance by search-

ing for intricate interactions and/or non-linear relationships” (Tollenaar

and Van der Heijden, 2013).

How can the proofs, simulations and many applications provided by statisticians

and computer scientists be so wrong? How can it be that statistical procedures being

rapidly adopted by private firms such as Google and Microsoft and by government

agencies such as the Department of Homeland security and the Federal Bureau of

Investigation are no better than regression methods readily available for over fifty

years? Why would the kinds of new analysis procedures being developed for analyzing

a variety of datasets with hundreds of thousands of cases (Dumbill, 2013; National

Research Council, 2013) not be especially effective for a criminal justice dataset of

similar size?

A careful reading of the technical literature and recent criminal justice applications

suggests that there can be a substantial disconnect between that technical literature

and the applications favored by many criminal justice researchers. Statisticians and

computer scientists sometimes do not distinguish between forecasting performance in

14“LDA” stands for linear discriminant analysis.
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principle and forecasting performance in practice. Criminal justice researchers too

often proceed as if the new procedures are just minor revisions of the generalized

linear model. In fact, the conceptual framework and actual procedures can be very

different and require a substantial change in data analysis craft lore. Without a

proper appreciation of how the new methods differ from the old, there can be serious

operational and interpretative mistakes.

In this chapter, we try to improve the scientific discourse by providing an acces-

sible discussion of some especially visible, modern forecasting tools that can usefully

inform criminal justice decision-making. The discussion is an introduction to material

addressed far more deeply in Berk (2012). We also try to provide honest, apples-to-

apples performance comparisons between the newer forecasting methods and more

traditional approaches.

For some readers, it may be useful to make clear what this discussion is not about.

As one would expect, there have been jurisprudential concerns about “actuarial meth-

ods” dating from at least the time when sentencing guidelines first became popular

(Messinger and Berk, 1987; Feeley and Simon, 1994), and more recent discussions

about the role of race have introduced an important overlay (Harcourt, 2008; Berk,

2009). The issues are difficult and real. They are also not addressed here. Our con-

cerns are more immediate. Forecasts of future dangerousness are being developed and

used. Real decisions are being made affecting real people. At the very least, those

decision should be informed by the best information available. And that information

depends significantly on the forecasting procedures deployed.
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6.2 Proper Criminal Justice Forecasting Compar-

isons

The conceptual foundation for criminal justice forecasting can easily be misconstrued

(Ridgeway, 2013). We begin, therefore, with a fundamental conceptual point that

some readers may at first find counterintuitive. As a formal matter, one does not

have to understand the future to forecast it with useful accuracy. Accurate forecast-

ing requires that the future be substantially like the past. If this holds, and one

has an accurate description of the past, one has an accurate forecast of the future.

That description does not have to explain why the future takes a particular form and

certainly does not require a causal interpretation. Readers comfortable with tradi-

tional time series analysis (Box and Jenkins, 1970), should have no problem with this

reasoning.

It follows that there is a key distinction between forecasting and explanation that

has been badly conflated in some accounts (Andrews et al., 2006). Understanding a

phenomena may lead to improved forecasting accuracy, or it may not, but forecast-

ing and explanation are different enterprises that can work at cross-purposes. For

example, explanatory models should be relatively simple and provide instructive in-

terpretations. Such models can leave out a large number of weak predictors that

one-by-one do not enlighten but in the aggregate dramatically improve forecasting

accuracy. Common practice implicitly folds such variables into the disturbance term.

Alternatively, such predictors, often called “nuisance variables” in limited information

structural models, are associated “nuisance parameters” and given “minimal atten-

tion” (Cameron and Trivedi, 2005). Similar issues arise if simple, easily interpretable

functional forms (e.g., linear) are used when complex functional forms might fit the

data somewhat better.
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The approach we take is to maximize forecasting accuracy, and that is the premise

on which the underlying mathematics depend. We take this approach because it leads

to clear performance criteria and various proofs of optimal forecasting accuracy for

a given dataset. Such clarity is an undeniable virtue about which more will be said

shortly.

Equally important, there are a wide variety of decisions made by criminal jus-

tice officials in which a necessary condition is the best possible forecasting accuracy.

Consider a judge’s decision to sentence an offender to either incarceration or proba-

tion. A recent Pennsylvania statute states that a “risk assessment instrument may

be used as an aide in evaluating the relative risk that an offender will reoffend and be

a threat to public safety.” Presumably, accuracy really matters. Imagine the ethical

and legal implications of using a particular risk tool to justify a long incarceration

when there exist more accurate risk tools from which a sentence of probation could

be more appropriate. There is also no requirement in the legislation that a judge

understand why an individual is high or low risk. Indeed, it is not even clear what a

judge would do with such information.15 Other examples, include pre-trial decisions

to release defendants on bail or decisions by parole boards to release under supervi-

sion inmates who have not served their full terms. One could also imagine forecasts

of future dangerousness helping to determine charging decisions by prosecutors.

Thus, there is no formal concern in this discussion with why certain predictors

improve forecasting accuracy and no attempt to interpret them as explanations for

the forecasted behavior. For example, if other things equal, shoe size is a useful

predictor of recidivism, it can be included as a predictor. Why shoe size matters is

immaterial. In short, we are not seeking to identify risk factors that may or may not

15In the special case when there are clear indications of substance dependency or psychological
problems, a judge might order treatment along with the sentence. But such conditions are not
necessarily risk factors for many kinds of crime, and indications of need can be sufficient.
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make any subject-matter sense. That can be a useful enterprise, but it is a different

enterprise.

Indeed, if the enterprise really is explanation, than some form of structural equa-

tion modeling may be called for. There is an extensive and largely unrebutted lit-

erature highly critical of structural equation modeling in general. An excellent, ac-

cessible, and technically sound treatment can be found in Freedman (2009). We

cannot rehash the issues here except to stress that machine learning is not a form of

structural equation modeling and should never be interpreted as such.16 Moreover,

if the goal is to use one or more risk factors to design and test interventions, many

would argue that the only sound approach is randomized experiments or very strong

quasi-experiments.

6.2.1 Some Common-Sense Requirements for Fair Forecast-
ing Comparisons

If one intends to compare the forecasting performance of different forecasting tools,

there are several basic, common-sense requirements. These provide the ground rules.

(a) One must be clear on what features of forecasting procedures are being com-

pared. As we explain below, “black box” forecasting methods may forecast

with remarkable accuracy and provide decision makers with tools that can be

enormously helpful (Breiman, 2001b). But black box forecasting methods may

have little to say about which risk factors matter most. If the goal is to compare

different procedures by their forecasting accuracy, forecasting accuracy should

be the benchmark.

16A structural equation model is an algebraic theory of how nature generated the data and as
such, can be right or wrong. Machine learning employs algorithms that seek some well-defined
empirical goal, such as maximizing forecasting accuracy. There is no structural model. Concerns
about whether the model is correct are irrelevant. What matters is how well the algorithm performs.
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(b) Forecasting comparisons must be based on data not used to construct the com-

peting forecasting procedures. Such data are often called “test data,” and

accuracy is often called “out-of-sample performance.” Data used to build the

forecasting procedures can be called “training data.” If training data are also

used as test data, all comparisons risk contamination through overfitting (Hastie

et al., 2009, p. 219-226). As already noted, this point has been appreciated for

well over 50 years, but is often ignored.

(c) Proper performance criteria must be used that are the same across competing

methods. For example, measures of fit are not appropriate if the competition

claims to be testing forecasting accuracy. In addition, there are many differ-

ent measures of forecasting performance (Hastie et al., 2009, chapter 7), and

the same measure should be used for all of the competitors. For example, the

area under a receiver operating characteristic curve (ROC) provides very differ-

ent information from that available through direct estimates of generalization

(forecasting) error (Hastie et al., 2009, p. 314-317).

(d) All of the forecasting competitors should be accurately characterized if compar-

isons are to be properly understood. For example, there are a number of fore-

casting procedures represented as state-of-the-art that actually are not. There

are also forecasting procedures characterized as machine learning that actu-

ally are not. Classification trees, for instance, is neither state-of-the-art nor a

machine learning technique. AdaBoost (Freund, 1997) is a machine learning

procedure, but was state-of-the-art 15 years ago. Algorithms such as RF and

SGB are machine learning procedures and state-of-the-art.17

17What qualifies as state-of-the-art can certainly be debated, but within sensible boundaries,
there can be remarkable consensus. For example, RF is certainly not the newest machine learning
procedure, but for a wide range applications nothing else seems to consistently perform better. Like-
wise, sharp distinctions between machine learning, statistical learning and a variety of other related
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(e) Many of the popular forecasting procedures have tuning parameters that re-

searchers can use to improve forecasting accuracy.18 In addition, sometimes

researchers do not understand that in their effort to maximize forecasting accu-

racy they are implicitly tuning their procedure. Fair comparisons require that

all competitors are tuned in a comparable fashion. This can be difficult be-

cause the tuning is often based on principles that can depend on the particular

forecasting procedure being used.

(f) All forecasting competitions are necessarily data dependent and can vary across

different applications. Forecasting competitions do not reveal fundamental and

invariant forecasting truths. To take a simple example, a procedure that per-

forms poorly in small samples may be a star in large samples because its best

properties only materialize asymptotically. Appropriate caveats should be at-

tached to the results of all forecasting comparisons.

(g) Performance differences across different forecasting procedures must be thought-

fully evaluated. This will often mean a careful consideration of how a forecasting

procedure will be used. A small difference in forecasting accuracy can translate

into a difference of hundreds of crimes. Academic researchers may not care. But

stakeholders surely do. There is also the equally important matter of taking un-

certainty into account. Some apparent differences wash out in new realizations

of the data. They are just chance artifacts.

procedures are increasingly difficult to defend and probably not worth quarreling over (National
Research Council, 2013). Nevertheless, within somewhat fuzzy boundaries, there can be widespread
agreement.

18In the estimation of a logistic regression, for instance, the convergence threshold of the iteratively
reweighted least squares algorithm is a tuning parameter. It needs to small enough to produce a
close approximation to a maximum likelihood estimate, but not so small that unnecessary iterations
are performed. Another example is a decision in stepwise regression to fix the number of predictors
that can be included in the final model. In forecasting settings, tuning parameters usually are chosen
in service of forecasting accuracy.
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(h) It should go without saying, but all of the forecasting procedures must be im-

plemented correctly. There is ample evidence that too often this is not the case

(Berk, 2012).

6.3 Some Conceptual Fundamentals

We turn now to a conceptual overview of classification and forecasting. The intent is

to provide a very accessible, didactic overview that can apply to a very broad range

of forecasting procedures used previously in criminal justice applications. Readers

interested in a technical discussion should consult the references cited.

Consider the decision of whether or not to release an individual on parole. Since

the 1920’s, such decisions have often been informed by forecasts of whether a given

inmate will be arrested for a new crime soon after release. The forecasts are shaped

by actuarial procedures applied to information from inmates who had been released in

the past. In effect, profiles are developed that can classify inmates by whether they

succeeded or failed on parole. These profiles are used to forecast parole outcomes

when they are not yet known. In the next few pages, we provide a basic, nontechnical

overview of how this can be done. We build on a prior treatment written for criminal

justice researchers (Berk, 2012) and on more formal textbook discussions as needed

(Bishop, 2006; Hastie et al., 2009).

6.3.1 The Basic Account

Figure 6.1 is a very simplified and initial plot illustrating how classification and fore-

casting can be undertaken. The red circles represent individuals who have failed on

parole in the past. The blue circles represent individuals who have succeeded on

159



parole in the past. There are two predictors in this illustration. One predictor is

the number of prior arrests. The other predictor is the number of rule infractions

during the most recent incarceration. Both can be seen as “dynamic” predictors, but

“static” predictors would have not materially changed the discussion. Figure 6.1 can

be seen as a 3-dimensional scatterplot.19

Number 
of Priors

Number of Prison Infractions
Low

Low

High

High

Less
Errors

More 
Errors

Figure 6.1: Two linear decision boundaries in 2-dimensional predictor space.

The statistical task is to impose a “decision boundary” on the 2-dimensional

predictor space that can be used to define two classes: those who fail and those

who do not. The term “decision boundary” is used because the intent is to directly

inform actual decisions.20 Statistical procedures that partition the data into different

19The meanings of “dynamic predictors” and “static predictors” can depend on the context and
the decision to be informed by the forecast. For example, the difference between statistic and
dynamic predictors plays a key role in the fairness of parole decisions. Is it appropriate to use static
predictors already employed at sentencing when later parole decisions are made? Is there a risk of
unfair “double counting”? Thus, the crime that sent an individual to prison is static. Should it be
also used to help inform parole decisions? In contrast, time in a prison secure housing unit (SHU)
is in this context dynamic. There would be no concerns about double counting if it were employed
by a parole board.

20The underlying mathematics is shaped by the same goal.
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grouping are often called “classifiers.” In this instance, the partitioning should result

in the fewest classification errors possible. For Figure 6.1, there will necessarily be

two regions defined, one for failures and one for successes. Ideally, the failure region

has no successes, and the success region has no failures. Usually, one has to settle for

less.

The dotted line is one possible linear decision boundary. In the region above the

dotted line, failures predominate by a count of 13 to 2. So, that region is assigned

the class of “failure.” In the region below the dotted line, successes predominate by

a count of 17 to 5. So, that region is assigned the class of “success.”

The assigned classes can be used for forecasting. When a new case is found for

which a forecast is needed, that case is placed in one region or the other depending

on its values for the two predictors. For example, a case with a very large number of

priors and a very large number of prison infractions would be placed in the “failure”

region to the upper right, and a forecast of failure would be made. A decision to

impose a stiff prison sentence could follow.

The dotted decision boundary results in several classification errors. There are 2

(blue) successes classified as failures, and 5 five (red) failures classified as successes.

Overall, there are 7 errors for 35 cases, which means that the classification procedure

is right about 80% of the time. In real applications, this would be considered very

good performance.

The dashed line is another attempt to accurately separate the successes from

the failures. Above this alternative linear decision boundary, the majority of cases

once again are failures. Therefore, the class of “failure” is assigned to that region of

the figure. Below the alternative linear decision boundary, the majority of cases are

successes. Therefore, the class of “success” is assigned to that region of the figure.

Now there are only five misclassified cases: 2 blue circles are in the red region and 3
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red circles are in the blue region. The new boundary produces correct classifications

about 85% of the time, and on those grounds is likely to be preferred to the old

boundary.

As before, any cases with predictor values that place them above the decision

boundary, but whose outcomes are not yet known, are forecasted to be failures. Sim-

ilarly, any cases with predictor values that place them below the decision boundary,

but whose outcomes are not known, are forecasted to successes. From a classification

exercise comes a forecasting procedure. The forecasts, in turn, are used to inform

parole decisions.

How might one arrive at the best linear decision boundary? If the two outcomes

are coded as 1 or 0, and conventional linear regression is applied using the two pre-

dictors as regressors, one important kind of optimal linear decision boundary can be

imposed on the predictor space. That line is defined by fitted values of .50. Cases

with regression fitted values greater than .50 are assigned one class and cases with

regression fitted values equal to or less than .50 are assigned the other class. By

minimizing the sum of squared residuals and imposing a fitted value threshold at .5,

one is also minimizing the sum of the classification errors (Hastie et al., 2009).

When the response is represented as the log of the odds of the category coded as

1, there is again a linear decision boundary in “logit” units. The threshold is a logit

of 0.0, which in a probability metric is .50. Forecasting accuracy may be better or

worse than for linear regression. Linear regression assumes that in the metric of the

1/0 outcome, relationships with the predictors are linear. Logistic regression assumes

that in the metric of the 1/0 outcome, relationships with the predictors are S-shaped

(i.e., the cumulative logistic function). Which of these leads to better forecasts in

a given setting will usually be an empirical matter. Both functions are typically

arbitrary because there will rarely be compelling subject-matter theory requiring one
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or the other.21

6.3.2 Building in Differential Forecasting Error Costs

To this point, all classification errors are given equal weight. A success classified

as a failure counts the same as a failure classified as a success. This is why the

least squares regression minimizes the number of forecasting errors. In many criminal

justice settings, the assumption of equal weights is not responsive to the preferences

of stakeholders. For example, the consequences of forecasting a parole success for

an individual who will fail can be far more serious than forecasting a parole failure

for an individual who will be a success. The parole failure may entail a heinous

crime. Failing to release an individual who would be crime-free leads to increased

time behind bars. Both forecasting errors are costly, but for many stakeholders, the

costs to victims of a heinous crime are far greater than the costs of extra prison time.

Whether or not these relative costs generally hold, an assumption that all forecasting

errors have equal costs is likely to be unrealistic.22

And costs matter for forecasts meant to inform real decisions. Figure 6.2 shows

why. Using the broken line as the decision boundary, there are two successes that are

incorrectly classified as failures. For this illustration, suppose that stakeholders think

that the costs of “over-incarceration” are greater than the costs of crimes committed

while on parole. There are reasons, therefore, to upweight the blue mistakes relative

to the red mistakes. We show this in Figure 6.2 by making the two blue mistakes

much larger. A new linear decision boundary results. Least squares regression can be

21Linear and quadratic discriminant function analysis has much in common with logistic regression
and has been used in criminal justice risk assessments. We do not consider linear or quadratic
discriminant function analysis because one must assume that the predictors have a multivariate
normal distribution (Hastie et al., 2009, section 4.3). This is unrealistic for most predictors in
criminal justice settings, especially when any of the predictors are categorical.

22A more complete discussion about the role of asymmetric costs is beyond the scope of this paper.
An excellent treatment can be found in a special issue of the Albany Law Review (Bushway, 2010).
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Figure 6.2: Impact of asymmetric costs in 2-dimensional predictor space.

used as before. But the decision boundary shifts toward the upper right with perhaps

also a change in the slope.

The two blue mistakes are now accurately classified as successes. They no longer

count as errors. But in trade, there are now five rather than three misclassified red

circles. It looks like a wash — there are two fewer successes classified as failures,

and two more failures classified as successes. But it is not a wash. The new decision

boundary is to be preferred because the original two blue mistakes were much more

costly than the two new red mistakes.

If the new decision boundary is preferred, many of the forecasts can change. In

this example, cases to be forecasted as failures will need a greater number of prior

offenses and a greater number of prison infractions than previously. The increase will

be larger for the number of prison infractions because the new decision boundary was

shifted outward more for the infractions predictor.

The point is that not all forecasting errors are created equal, and the relative costs
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of different kinds of forecasting errors should be built into any classification/forecast-

ing procedure. To ignore this issue is to assume equal costs. And if equal costs are not

consistent with stakeholder preferences, the forecasts will not be properly responsive.

Misleading forecasts can result.

6.3.3 Nonlinear Decision Boundaries

Why be limited to linear decision boundaries? Nonlinear boundaries can in principle

perform better. In Figure 6.3, we reproduce much of Figure 6.1, but now with a

nonlinear decision boundary shown by the dotted line. There are no red circles falling

below the nonlinear decision boundary, and no blue circles falling above the nonlinear

decision boundary. Classification is perfect. The prospects for forecasting accuracy

look very promising indeed.

Number 
of Priors

Number of Prison Infractions
Low

Low

High

High

`

Figure 6.3: A linear and nonlinear decision boundary in 2-dimensional predictor space.

The linear decision boundary is far less complex than the nonlinear decision bound-
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ary.23 The price for greater simplicity is more classification errors. Clearly, one’s

ability to classify accurately is enhanced when the decision boundary can be more

complex. It is easier for the nonlinear decision boundary to respond to complicated

data structures.

A sensible statistical aim, therefore, can be to use predictors in a manner that al-

lows for nonlinear decision boundaries as needed. There can be two related approaches

(National Research Council, 2013). For parametric procedures such as logistic regres-

sion, greater complexity can in principle be addressed by including a larger number of

predictors. Transformations of predictors can help. For instance, one might include

not just the age of an inmate, but some polynomial function of age. One might even

break up age into a set of binary dummy variables. Statistical interactions might

also be captured with products of variables. The point is that the capacity to address

greater complexity needs to be built in from the beginning or determined later in a set

of very effective exploratory procedures. Also required is that the requisite predictors

are included in the dataset. Many would argue that these requirements cannot be

met in practice.

For nonparametric procedures such as smoothing splines (Hastie et al., 2009), one

may include as many predictors as possible, along with promising transformations,

but the procedure attempts to determine the decision boundary complexity needed.

At one extreme, the fitted values are a hyperplane (just as in conventional linear

regression). At the other extreme, the fitted values are an interpolation between all

data points. The former is much less complex than the latter. In practice, some

result between these extremes is typical. In contrast to parametric methods like

23There seems to be no consensus on how best to define the amount of complexity. One popular
approach is the degrees of freedom used to construct the decision boundary. In this example,
the nonlinear decision boundary would use many more degrees of freedom than the linear decision
boundary. A closely related approach is link complexity to the “effective dimension” of the statistical
procedure or in some cases, the data itself (National Research Council, 2013).
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logistic regression, an adaptive process is used to arrive at a decision boundary — the

procedure exploits information in the data to determine both the shape and location

of a decision boundary.24 Unless a researcher is close to prescient and has the data

rich enough to constructively respond, adaptive procedures start with a substantial

forecasting advantage.25

But there is a downside to adaptively determined decision boundaries. As a greater

number of degrees of freedom is used up for a given sample size, there is the real risk of

increased instability in the results. There is less information available per procedure

parameter. In addition, there can be overfitting in which the procedure responds to

idiosyncratic features of the data. Because forecasting involves new data, not the data

used to develop the decision boundary, forecasting accuracy can be disappointing. The

procedure does not generalize well to new data, which is precisely what forecasting

entails.

For example, an individual with a large number of priors and a large number

of prison misconducts may have a high probability of failure on parole. But a high

probability is not a certainty. If that individual does not fail, a complex decision

boundary would try to accurately classify that individual as a success. As a result,

an anomalous case inconsistent with most of the data would help shape the decision

24Stepwise regression is an example of a very simple adaptive procedure within a conventional
regression framework. But again, distinctions may not be sharp. When researchers respecify their
models after looking at the results, the final model is shaped by data-informed induction. Some
would say that the difference is that the model selection process is not built into the data analysis
algorithm itself.

25If resources allow, a parametric brute force approach may help to level the playing field. With
thousands of observations and hundreds of predictors, one can in addition construct a priori many
nonlinear transformations and interaction variables. In effect, the researcher tries to anticipate how
a effective adaptive procedure could respond. All of the original predictors and new transformations
can then be included in a single “kitchen sink” regression. The regression will likely be uninter-
pretable. The complexity and multicollinearity alone could be toxic. If model selection procedures
are applied to simplify, one is doing a seat-of-the-pants adaptive modeling with all of its attendant
problems (Berk et al., 2010). Why settle for a brute force approximation to the desired procedure?
An example can be found in the recent paper by (Tollenaar and Van der Heijden, 2013).

167



boundary. When that decision boundary is then used for forecasting with data in

which such anomalous cases were absent, the decision boundary would not perform

as well. It would be unnecessarily complex and risk an increase in forecasting errors.

Looking back at Figure 6.3, if any one of the 3 red circles had as little as one or two

more prison infractions or priors, the red circle would have fallen above the linear

decision boundary, and one of the fingers in the nonlinear decision boundary would

not have been constructed.

There are useful responses to overfitting, often called “shrinkage” or “regulariza-

tion.” The intent is to reduce the instability. With smoothing splines, for instance,

the fitting function is penalized for increases in complexity (Hastie et al., 2009). In a

least squares context, the residual sum of squares is increased based on model com-

plexity so that what might be the smallest sum of squared residuals no longer is the

smallest. A residual sum of squares that starts out being larger, but has a smaller

penalty because of less complexity, can be the preferred minimizer. In other words,

a price is put on complexity that does not substantially improve the fit.

Another approach, “bagging”, capitalizes on a large number of random samples

with replacement from the data on hand. A classification procedure is applied to each

sample, and the results are averaged across samples. One important consequence is

that idiosyncratic results tend to cancel out.

Finally, in this illustration, the two predictors have substantive interpretations.

In general, parolees with a great number of prior arrests and a greater number of

prison infractions are more likely to fail on parole. However, any substantive insights

are a bonus. The primary goal is to classify accurately because that can lead to

the most accurate forecasts. With respect to that goal, the two predictors could

as well be longitude and latitude. This allows for the possibility of using “black

box” classification procedures, for which no apologies need be made. One does not
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have to rely a “structural model” when forecasting is the primary motive. Indeed,

the requirement of a structural model can undercut forecasting accuracy (Breiman,

2001b). Two different masters are being served.

In summary, when forecasting accuracy is the primary goal, parametric approaches

such as logistic regression can in principle perform as well as nonparametric ap-

proaches when the best decision boundary is relatively simple, and when the predic-

tors required by the correct model are available in their proper form. When the best

decision boundary is complex and/or the requisite predictors are not all available,

nonparametric procedures will forecast more accurately, often substantially more ac-

curately.

6.3.4 Enter Machine Learning

Where does machine learning come in? The goal of machine learning can be to

find the “right model.” But when machine learning is used strictly as a forecasting

procedure, the connections to conventional regression models become very distant

indeed as there is no structural model even in principle.

The transition to machine learning can confer a number of important benefits,

some of which are not readily available otherwise.

(a) One is not limited to classifiers able to forecast one of two outcome categories.

In some recent applications, for instance, parole outcomes are forecasted for

three classes: an arrest for a violent crime, an arrest for a crime that is not

violent, and no arrest (Berk et al., 2010). Increasingly, criminal justice agencies

want to forecast more than the binary outcome of any arrest versus no arrest

(Berk, 2012). The kind of arrest really matters. In particular, arrests for crimes

of violence are distinguished from other kinds of arrests.
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(b) Forecasting errors that do not have equal costs can be introduced into the

procedure at the beginning so that all of the results properly represent the

preferences of stakeholders (Berk, 2011).

(c) Regularization is often built directly into the procedure to increase forecasting

accuracy (Hastie et al., 2009, chapter 5).

(d) Highly unbalanced distributions for the classes to be forecasted create no spe-

cial problems as long as the rare outcomes are important enough to be given

extra weight in the analysis. For example, in some recent work for individuals

primarily on probation, the outcome classes to be forecasted included a class

for homicide or attempted homicide, which represented only about 2% of the

outcomes (Berk, 2009; Berk et al., 2009).

(e) Some procedures work well and in a principled manner with an enormous num-

ber of predictors and even when there are more predictors than cases (Hastie

et al., 2009, chapter 15).

6.4 The Forecasting Contestants

We will compare the forecasting performance of three different classifiers: logistic

regression, RF, and stochastic gradient boosting. Logistic regression represents busi-

ness as usual over the past 50 years. It is a special case of the generalized linear

model, and very familiar to criminal justice researchers. RF and SGB, both ensemble-

of-trees methods, will be the machine learning contestants. All of the evidence to date

indicates that these ensemble procedures can perform well in criminal justice appli-

cations (Berk, 2013). All three algorithms are worthy competitors. We now turn the
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discussion to the introduction of asymmetric costs to each of the three competing

procedures.

6.4.1 Logistic Regression with Asymmetric Costs

Logistic regression, sometimes called binomial regression, is a special case of the

generalized linear model. As such, it is meant to represent how nature generated

the data — it is an algebraic translation of subject-matter theory. In that sense

it is a “structural model,” and forecasting can be little more than an afterthought.

Nevertheless, if the theory is correct and its algebraic representation is consistent

with the theory, accurate forecasting can result.

Forecasting is undertaken through the regression’s fitted values. These can either

be in logit (i.e., log odds) units or probability units. Researchers typically use the

probabilities when forecasting. To get from the probabilities to a forecasted class,

a single threshold must be applied. For example, it is common to use a threshold

of .50. Probabilities greater than .50 are assigned one outcome class (e.g., failed on

parole). Probabilities less than or equal to .50 are assigned the other outcome class

(e.g., succeeded on parole).

The threshold of .50 implies that the costs of false negatives and false positives are

the same. As already noted, they are usually not the same. Suppose a “positive” is a

person who commits a violent crime. Suppose a “negative” is a person who does not

commit a violent crime. It follows that if false negatives are three times more costly

than false positives, one should use a threshold of .25. Cases with predicted proba-

bilities greater than .25 are forecasted to be violent offenders. Cases with predicted

probabilities equal to or less than .25 are forecasted to not be violent offenders. It is

three times easier for a person to be forecasted a violent offender than a nonviolent
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offender or no offender at all (.75/.25 = 3).

Altering the threshold only affects the step from probabilities to classes. All of

the other logistic regression output is computed under the assumption that false

negatives have the same costs as false positives. In particular, the logistic regression

coefficients would almost surely be different had the actual relative costs of false

negatives and false positives been properly taken into account. It can be a serious

error, for instance, to use the regression coefficients as weights for constructing risk

assessment instruments.

Finally, logistic regression can only be used for binary outcomes. These days,

criminal justice stakeholders often want much more — they want to forecast different

kinds of crimes. As already noted, in some applications the intent is to work with

three crime categories: arrests for violent crimes, arrests for crimes that are not

violent, and no arrest at all. In the context of probation supervision, one motivation

is to move supervisory resources from individuals who do not threaten public safety to

individuals who do, a strategy that has been shown to work well (Berk et al., 2010).

When there are more than two outcome classes, multinomial logistic regression may

be an option, but there are a number of unresolved issues about how best to go from

predicted probabilities for each class to the classes themselves.

6.4.2 Random Forests with Asymmetric Costs

There are several ways to introduce asymmetric costs into RF. Perhaps the best way

is to employ stratified sampling in Step 1a of the RF procedure given in Algorithm 1.

There is one stratum for each outcome class. Sample sizes for each stratum are deter-

mined so that some outcome classes are oversampled and some are undersampled. In

effect, the oversampled classes are given more weight as each tree is grown, which in
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turn will affect the balance of false negatives to false positives. That balance captures

relative costs. For example, if there are 10 false positives for every false negative, false

negatives are necessarily 10 times more costly than false positives.

The approach is similar in spirit to the balanced RF approach (Chen et al., 2004),

but does not necessarily use equal sampling sizes for the classes. By relying on this

resampling approach, each tree in the RF is constructed with the cost asymmetry

taken into account. Not only will the predicted classes reflect this asymmetry, but

any additional model output, such as variable importance scores, will as well. Ad-

ditionally, since each tree draws a unique stratified bootstrap sample based on the

desired sampling size values for each class, different observations appear in each tree.

Hence, even when a particular class is undersampled, all observations are likely to

appear in at least some trees and can contribute to the overall ensemble. Rebalancing

the dataset via undersampling before deploying RF, on the other hand, would result

in a loss of data and potential predictive information (Chen et al., 2004).

Note that similarly to logistic regression, asymmetric costs can also be accounted

for by altering the threshold on the voting rule for classification. For example, rather

than using majority vote, 2/3 of the trees might be required to classify a case as

readmission in order to assign a final label of readmission. A major drawback of this

approach is that asymmetric costs are only incorporated after the model has been

fully constructed. The asymmetric costs are not accounted for in the tree-growing

process, which is suboptimal (Hastie et al., 2009).

6.4.3 Asymmetric Costs in Stochastic Gradient Boosting

SGB can be employed for classification by using Bernoulli deviance as the loss func-

tion. Unfortunately, unlike in RF, there is no option to oversample or undersample
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the different strata of the outcome. SGB using Bernoulli deviance outputs probabili-

ties as its fitted values, and asymmetric costs are incorporated are introduced at the

end of the procedure by altering the threshold for classification as is done in logis-

tic regression. Experience to date suggests that SGB can perform about as well on

classification problems as RF.

6.4.4 A Simulation

Logistic regression can forecast well when it is able to capture the data structure.

However, logistic regression is not adaptive and depends on the researcher to specify

an effective model. Important nonlinearities and interaction effects must be antici-

pated and included using the available predictors. If the researcher lacks the requisite

insight or data, logistic regression will necessarily stumble. In contrast, adaptive pro-

cedures such as RF or SGB can shine because both algorithms are designed to search

for structure with each pass through the data.

Figure 6.4 shows a fictitious dataset constructed to illustrate when logistic regres-

sion will perform poorly and RF or sgb will perform well.26 It is by intent a worst case

scenario for logistic regression and is not meant to represent in general the relative

merits of the forecasting competitors. We are trying to address why nonparametric

methods can forecast better than parametric methods. The exercise is didactic.

There are 100,000 observations. The outcome is binary. Red is coded 1 and blue

is coded 0. There are two predictors. The 2-dimensional predictor space contains a

blue area that is homogeneously successes and two red areas that are homogeneously

failures. The graphical conventions are no different from those used for the earlier

figures except that the colored circles for individual observations are replaced by

26The lessons learned can be applied far beyond logistic regression to any parametric regression
approach. The lessons also apply to a wide range functions that have clear structures, but are very
difficult for parametric regression models to capture.

174



Age in Years

Ye
ar

s 
of

 E
du

ca
tio

n

20 30 40 50 60

6
8

10
12

14
16

Figure 6.4: A very challenging classification example.

solid colors for different regions. It is as if we have printed a very large number of

overlapping red circles and a very large number of overlapping blue circles. However,

the data structure is far more complex because the blue region has red regions to its

left and its right. Complex data structures of this sort are routinely analyzed in the

classification literature (Hastie et al., 2009), but usually with many more than two

predictors so that visualizations such as Figure 6.4 are unavailable. Any researcher

trying to arrive at the correct parametric model from an examination of a scatter plot

would necessarily be flying blind.

The surface was built by first drawing one predictor from a uniform distribution.

The second predictor was constructed as a power function of the first. Then the

predictor space was partitioned to show an interaction effect: both predictors had

be high or low for the area to be red. That is, there are nonlinear effects and an

interaction effect. Because each of the three regions is perfectly homogeneous, the
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data provide a clear and compelling signal that a good classifier should be able to

accurately detect.

After the fact, one might overlay the following subject-matter account. The out-

come is whether or not a parolee finds employment. The blue area contains successes

and the red area contains failures. On the horizontal axis is age in years. The young

and the old do not do well. The vertical axis is years of education. The association

is not strong but parolees with a lot of education or very little do slightly better.

In addition, when the educational level is higher, the best ages for finding work are

older.

Why might such patterns occur? The kinds of positions for which parolees apply

and the kinds of employers who would hire them represent a very limited subset

of all jobs. By and large, the positions will involve physical labor for which not

much experience or skill is required. Pay will be low and the work will be hard.

Younger parolees may not be inclined to seek such positions, and older parolees may

be incapable of doing the work. Education may be largely irrelevant for most of the

jobs a parolee will seek. But, those who have very little education may correctly target

their job search only for menial positions. Those with more education may correctly

understand that they have a wider range of employment options. Finally, having

more education may give some older workers, who would have difficulty working at

demanding menial jobs, the chance to take entry level white collar positions (e.g.,

taking orders and making change at fast food restaurants).27

This post hoc account may well be wrong, perhaps very wrong. The intent is to

provide a less abstract setting in which to think about each contestant’s performance.

By itself, the story has no impact whatsoever on how well a given classifier performs.

27Some analyses we conducted for the program “Ready, Willing & Able” supported by the Doe
Fund, are consistent with this account.
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Any good classifier should forecast with near perfect accuracy. Unlike in real data,

there is no noise.

When logistic regression is used, both regression coefficients are virtually zero.28

Logistic regression is unable to extract any useful information from the two predictors.

All that remains is the intercept, which is effectively the logit of the outcome variable’s

proportion of reds (i.e., .80). The distribution of the predicted probabilities ranges

from .7958 to .8022. The predicted probabilities have almost no variability.

For didactic purposes and with no important loss of generality, we assume that the

costs of false negatives are the same as the costs of false positives. The corresponding

threshold of .50 is applied. It follows that forecasting error is minimized by always

predicting red. 20% of the time the forecast would be wrong. The true reds would

be forecasted with 100% accuracy, and the true blues would be forecasted with 0%

accuracy. Table 6.1 shows the results.29

Predict Blue Predict Red Model Error

Actual Blue 0 20078 1.0
Actual Red 0 79922 0.0

Table 6.1: Logistic regression confusion table using simulated test data.

Suppose a researcher is astute enough to include in advance the product of the two

predictors to capture an interaction effect. Our reading of criminal justice forecasting

applications is that such interactions are rarely used, but it is useful to see how logistic

regression performs when given an especially good opportunity to deliver.

Table 6.2 shows the results. Although there are now nonzero regression coefficients

28The two regression coefficients are -.03 and -.01. Even with 100,000 observations, one cannot
reject the null hypothesis of 0.0 for either.

29Other thresholds would not change the performance of logistic regression. A threshold a very
little bit below .80 would allow some blues to be correctly forecasted. The price would be a commen-
surate increase in reds forecasted incorrectly. Virtually no predictive information from the predictors
is being used. The predictors might as well be ignored.
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for all three regressors, there are still no predicted probabilities smaller than .5. As

before, forecasting error is minimized by always forecasting red. Nevertheless, there

is some meaningful information in the predicted probabilities, and with cost ratios

that weight forecasting errors for blue cases more heavily than for red cases, some

blue cases will be correctly predicted.30 For example, if a cost ratio of 4 to 1 is used,

actual blues and actual reds are both correctly forecasting about 2/3rds of the time.

That may seem quite good, but for these data the appropriate target is perfection.

Predict Blue Predict Red Model Error

Actual Blue 0 20078 1.0
Actual Red 0 79922 0.0

Table 6.2: Logistic regression with interaction confusion table using simulated test

data.

How does an adaptive machine learning procedure perform? For illustrative pur-

poses, we take RF as our machine learning champion. Table 6.3 shows the results for

RF assuming equal costs. With respect to the cost ratio, we are comparing apples

to apples. The same two predictors are used, but there is no product variable for

an interaction effect. The researcher using RF is not allowed to be as clever as the

researcher using logistic regression — RF begins with a model specification disadvan-

tage. Still, RF is just about perfect. Given either outcome, RF forecasts correctly more

than 99% of the time. The failure to be literally perfect results from randomness in

the RF algorithm itself.

The implications of this forecasting contest are clear. When the data structure

is complex, machine learning procedures can perform very well. An adaptive pro-

cess that “learns” from data can be very effective. This is precisely what the large

30The predicted probabilities now range from .5333 to .9384.
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Predict Blue Predict Red Model Error

Actual Blue 19975 102 0.005
Actual Red 92 79830 0.001

Table 6.3: Random forests confusion table using simulated test data.

literature in statistics and computer science says. Logistic regression and other para-

metric forecasting procedures will not perform as well unless the researcher is able to

construct a parametric model that captures all of the significant features of the data

structure. As already noted, this can be a daunting task.

6.5 An Empirical Example

We turn now to analyses of real data. The dataset was selected to be typical of those

recently used in parole or probation settings. Recall, however, that it is very difficult

with real data to arrive at results that are broadly generalizable.

6.5.1 Forecasting Arrests for Serious Crimes

The data address how well parolees manage under supervision. There are 20,000 ob-

servations in the training data and 5,000 observations in the test data. We consider

whether an individual is arrested for a serious crime within 2 years of release on pro-

bation. Serious crimes include murder, attempted murder, rape, aggravated assault,

and arson. About 13% fail by this definition. Such crimes are of widespread concern.

Static and dynamic predictors include:

(a) Date of Birth;

(b) Number of Violent Priors as an Adult
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(c) Earliest Age for a Charge as an Adult

(d) Total Number of Priors as an Adult

(e) Earliest Age for a Charge as a Juvenile

(f) Total Number of Priors as a Juvenile

(g) Number of Charges for Drug Crimes as an Adult

(h) Number of Sex Crime Priors as an Adult

There is nothing special about these predictors. They represent the usual kinds of

information that is routinely available on parolees when they begin their supervision.

From past experience, they can make important contributions to forecasting accuracy

(Berk, 2012).

We first apply logistic regression to the training data. A threshold of .135 is

imposed on the predicted probabilities in order to arrive empirically at a 5 to 1 cost

ratio of false negatives to false positives. Table 6.4 is the confusion table that results

when the model is applied to test data. From the column on the far right, about

44% of the true failures are misclassified and about 32% of the true successes are

misclassified. The forecasting accuracy is within the range of recent studies with

similar data (Berk, 2012) and could well be useful for decision-makers.

Predict Fail Predict No Fail Model Error

Actual Fail 378 302 0.444
Actual No Fail 1385 2935 0.321

Table 6.4: Logistic regression test data confusion table for serious crime.

Table 6.5 is the confusion table for RF using the test data. The procedure was

tuned to also arrive at a cost ratio of about 5 to 1 for false negatives versus false
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positives. From the column on the far right, about 37% of those who actually fail are

incorrectly identified and about 28% of those who actually do not fail are incorrectly

identified. Forecasting accuracy for RF appears to be superior.

Predict Fail Predict No Fail Model Error

Actual Fail 427 253 0.372
Actual No Fail 1196 3124 0.277

Table 6.5: Random forests test data confusion table for serious crime.

Table 6.6 is the confusion table for SGB using the test data.

A threshold of .13 was used on the predicted probabilities from the training data

to empirically arrive at a cost ratio of about 5 to 1. From the column on the far right,

about 42% of those who actually fail are incorrectly identified and about 32% of those

who actually do not fail are incorrectly identified. SGB does appreciably better than

logistic regression when forecasting failures, but only slightly better when forecasting

successes.

Predict Fail Predict No Fail Model Error

Actual Fail 396 284 0.418
Actual No Fail 1361 2459 0.315

Table 6.6: Stochastic gradient boosting test data confusion table for serious crime.

It appears that across the three tables, RF performs better than logistic regression

and SGB. This is consistent with published studies (Berk, 2012). But one must not

overstate what is learned from the comparisons we report. It is difficult to guarantee

that after tuning, one is necessarily comparing apples-to-apples. We have tried to

insure that for all practical purposes, the false negative to false positive cost ratios

are the same for all three procedures. But the cost ratios are not identical, and
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it is essentially impossible to make them so. The test data and training data are

different random splits of the available dataset. Tuning done on the training data will

carry over a bit differently to the test data, depending on the forecasting procedure.

Moreover, each procedure was tuned with its own special set of tuning parameters.

There is no guarantee that the results are fully comparable. Indeed, it is not even

clear how to define such a thing.

Another important issue is whether the differences are large enough to matter.

As already explained, that judgment depends on the application. For example, the

agency from which these data were obtained supervises about 40,000 individuals

on probation each year. About 5000 of these individuals are arrested for a serious

crime within 24 months, most within less than a year. For failures, the difference

of approximately 7% between the accuracy of logistic regression compared to RF

translates into about 350 serious crimes. Roughly 50 of those will be homicides or

attempted homicides, the perpetrator of which could be identified in advance by

RF, but not by logistic regression. In this instance, stakeholders found the practical

difference in forecasting accuracy dramatic.

If one is looking for firm conclusions about forecasting accuracy from our results

and others, it is almost certain that properly applied, RF will always do at least as

well as logistic regression and much of the time meaningfully better. SGB will do at

least as well as logistic regression, but is somewhat less likely to dominate it.

6.6 Conclusions

Complex decision boundaries pose a significant challenge for logistic regression or any

other parametric classifier. To forecast well, a researcher must understand the nature

of the complexity, be able to properly translate that knowledge into an algebraic
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expression, and then have the data to construct an appropriate model. These are

daunting requirements for criminal justice applications.

In contrast, adaptive machine learning procedures have the capacity to empirically

discover patterns in the data and construct suitably complex decision boundaries.

The requirements are a conventional menu of predictors and a large enough sample

to exploit them. The tree-based machine learning procedures we have reviewed can

then perform well and have several other important assets that logistic regression

lacks: the capacity for outcome categories with more than two classes, a natural way

to build in the asymmetric costs of forecasting errors, and a variety of instructive

output that builds in asymmetric costs.

In practice, performance differences between logistic regression and most machine

learning procedures can be small if the true decision boundary is simple. But how

would one know? If logistic regression is used because a simple decision boundary

is incorrectly assumed, substantial forecasting accuracy can be forfeited. In criminal

justice settings where real lives can be at stake, the consequences could be significant.

Why take the risk?
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7
Using Random Forests with Asymmetric Costs to

Predict Hospital Readmissions

Abstract

Sufficiently accurate predictions of hospital readmissions are necessary for the alloca-

tion of scare clinical resources to reduce preventable readmissions. Here, we describe

the use of a data-driven approach that relies on machine learning algorithms to pre-

dict readmission risk at the time of discharge. We employ random forests to clinical

and administrative electronic health record data available from a cohort of 103,688

patients discharged from the acute inpatient settings of the University of Pennsylva-

nia Health System between June 25th, 2011 and June 30th, 2013. We predict both

30-day all-cause readmissions and 7-day unplanned readmissions using only predic-

tors available by the time of discharge. Using oversampling and undersampling of

the different outcome classes of readmission and no readmission, we incorporate into

our models the asymmetric costs of a false negative relative to a false positive from

the perspective of a hospital. We developed a machine learning-based model using

random forests with a 5:1 relative cost ratio for 30-day all-cause readmissions that
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achieves a sensitivity of 65% and specificity of 71% on validation data, as well as a

random forests model with a 20:1 cost ratio for 7-day unplanned readmissions that

achieves a sensitivity of 62% and specificity of 66% on validation data and discover

that prior health system utilization, clinical discharging service, and vital sign infor-

mation were most predictive of readmissions. By modeling the complex relationships

between many predictor variables and readmission data for a large health system,

we demonstrate successful predictive models that can be used upon discharge to flag

patients at high risk of readmission.

7.1 Background and Significance

Hospital readmissions (the return of a patient to the hospital within some specified

time after discharge) often reflect poor quality care, and can result in significant

patient distress and high health care costs (Jencks et al., 2009; Allaudeen et al.,

2011b; Bisharat et al., 2012; Allaudeen et al., 2011a; Bradley et al., 2012, 2013a).

Thus, reduction in hospital readmissions is a public health priority. In the United

States, the Centers for Medicare & Medicaid Services (CMS) penalizes health care

providers with high rates of 30-day all-cause readmissions (Au et al., 2012; Bradley

et al., 2013b). Therefore many hospitals have an interest in accurately predicting

patients risk of readmission in order to target their limited resources to prevent them

(Amarasingham et al., 2013; Allaudeen et al., 2011a; Bowles et al., 2014; Ahmad

et al., 2013).

Prior approaches to predict readmissions using regression models and clinical and

administrative data have had poor to modest predictive power as measured by the

Area Under the Curve (AUC) with values ranging from 0.61 to 0.70, as well as high

sensitivity and low specificity (Allaudeen et al., 2011a; Au et al., 2012; Baillie et al.,
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2013; Billings et al., 2012; Donzé et al., 2013; Umscheid et al., 2014; de Lissovoy, 2013).

Additionally, preexisting models are often disease-specific with potentially limited

generalizability (Allaudeen et al., 2011b; Bradley et al., 2013a). Further, all of these

approaches have used manual regression modeling to select risk variables (Allaudeen

et al., 2011b; Bradley et al., 2013b), a process that is particularly cumbersome when

it is estimated that an acutely ill inpatient generates a median of 1,348 individual

data points per patient per day(Chandra et al., 2011), ranging from laboratory values

to free text data (de Lissovoy, 2013). This has created a need for novel approaches

to prediction, such as the application of machine learning algorithms and natural

language processing, which take advantage of big data available from electronic health

records (EHR).

EHR data present the opportunity to leverage machine learning algorithms and

data mining techniques to uncover previously unknown and often complicated pat-

terns and associations that can be used to improve quality of care and inform clin-

ical decision-making in real-time. The advent of affordable data storage and analy-

sis technologies at the health system level has opened new frontiers in institutional

evidence-based practice, including the application of predictive modeling techniques

such as machine learning to identify patients at high risk of adverse events such as

readmission.

Machine learning approaches have been successfully employed to predict adverse

clinical outcomes using high-dimensional datasets such as EHR data, often signif-

icantly outperforming traditional regression approaches. In particular, the random

forests (RF) algorithm (Breiman, 2001a) was developed to provide highly generalizable

predictions based on an ensemble of tree-based classifiers that are individually derived

from random subsamples of a training dataset. RF has been successfully employed as

a predictive classifier across diverse application domains such as criminology (Berk,
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2013), ecology (Cutler et al., 2007), and bioinformatics (Strobl et al., 2007).

A perceived limitation on the predictive performance of RF (and similar classifiers)

appears when one class (or outcome) occurs less frequently than another in a dataset,

as is the case with hospital readmissions, which occur relatively infrequently. The

perceived limitation arises because the algorithm is designed to favor predicting the

majority class (or most frequent outcome) in order to minimize overall misclassifi-

cation error (Strobl et al., 2007). However, minimization of overall misclassification

error implicitly assumes that the different types of misclassification errors (i.e. false

positives and false negatives) have equal costs. Hospitals, on the other hand, face

asymmetric costs for the different misclassification errors related to readmissions. In

other words, falsely misclassifying patients as low risk and thus foregoing opportu-

nities to prevent readmissions is likely more costly given existing financial penalties

than falsely misclassifying patients as high risk, and providing transitional care ser-

vices when they may not have been needed. By default, RF assumes equal costs and

optimizes the misclassification rate under the assumption of these equal costs. In this

scenario, where the costs of the different misclassification errors are assumed equal

and the event rate for a particular outcome is low, the algorithm can achieve the

lowest total misclassification rate by predicting no readmissions for all hospital dis-

charges. However, this results in sensitivity values of 0. These limitations of RF can be

overcome by modifying the RF procedure to incorporate the appropriate asymmetric

costs during model construction. We offer such an approach herein.

We additionally demonstrate models that could be deployed at time of discharge,

thereby allowing the health system to direct transitional care interventions and in-

tensive discharge planning to patients at high risk of readmissions. Implementation

of these models provides the potential for avoiding adverse outcomes that threaten

patient safety and generate high costs for the health care system.
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7.2 Objective

In this study, we describe the development and resulting performance of RF modeling

approaches to predict both 30-day all-cause and 7-day unplanned readmissions. We

utilize two key methods in our approach. First, we restrict our set of patient variables

to only employ clinical and administrative data available to the health system by the

time of a patient discharge, allowing for real-time prediction. Second, we construct

cost-sensitive models that can accurately account for the relative rarity of readmission

events and the asymmetric costs associated with misclassification errors related to

readmission events.

7.3 Materials and Methods

7.3.1 Setting

The UPHS includes three hospitals with over 1,500 beds and more than 70,000 annual

admissions (Baillie et al., 2013). We obtained data on 103,688 adults discharged from

the acute inpatient settings of UPHS between June 25th, 2011 and June 30th, 2013.

The unit of analysis is each unique hospital visit. Thus, individual patients can have

multiple visits within the data set, and for each admission, a prediction is generated.

7.3.2 Outcome Variables

We consider the CMS 30-day all-cause readmission criterion as well as 7-day un-

planned readmissions because the discharging hospital may face factors beyond its

control that might influence readmission for a 30-day period (Joynt and Jha, 2012).

Thus, a shorter window for readmissions may offer a more meaningful metric for hos-
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pital quality. In addition, by targeting readmissions that may be more preventable,

one can gauge the effectiveness of proposed prevention efforts more accurately (Laven-

berg et al., 2014). We define readmissions using ICD-9 and CMS diagnosis-related

group codes.

7.3.3 Predictor Variables

We examined 188 variables (e.g. predictors) for each hospital admission. Classes of

predictors include information on demographics, previous admissions statistics, lab

test values and vital sign recordings. For predictors with more than two values during

a given hospital encounter (e.g. lab test and vital sign information), we retained only

the first and last values recorded as well as the times of the recording. We excluded

predictors that were not available by the time of discharge, such as procedure and

diagnostic codes for that admission. We did, however, include for each patient the

procedure and diagnostic codes from the most recent admission within the dataset (if

applicable) prior to the current admission.

For quantitative predictors with large proportions of missing data such as labora-

tory tests, we transformed quantitative values into categorical predictors consisting

of deciles and added an additional level for missing values. For these recoded quan-

titative predictors, we additionally relabeled extreme values (defined as being in the

top or bottom 0.5 percentile of a given predictors distribution) to a level denoted as

extreme.

7.3.4 Random Forests with Asymmetric Costs

As previously discussed, the cost of an incorrect prediction of readmission (false pos-

itive) is not likely to be equal to that of an incorrect prediction of no readmission
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(false negative). This cost asymmetry may arise from resource considerations and

constraints, such as a limited staff to employ readmission reduction interventions, as

well as financial penalties associated with hospital readmissions. Here, we consider

failing to identify a readmission to be relatively more costly. For the 30-day model,

we consider a failure to identify a readmission (i.e. a false negative) as 5 times more

costly than incorrectly predicting a readmission for a patient who is not readmitted

(i.e. a false positive), generating a 5:1 cost ratio. Given the relative rarity of 7-day

unplanned readmissions, there must be a substantial cost incurred by the health sys-

tem for failing to identify patients with this type of readmission, otherwise these cases

are not worth identifying from a cost minimization perspective. Thus for the 7-day

unplanned readmissions, we consider a cost ratio of 20:1. Note that these cost ratios

are meant to be illustrative and should be appropriately determined based on each

hospital’s unique circumstances.

Recalling the discussion from Section 6.4.2, we incorporate these cost ratios into

the model by oversampling cases resulting in a readmission and undersampling cases

resulting in no readmission until the desired empirical cost ratio is achieved on the

OOB estimates obtained from the model.

7.3.5 Variable Selection

In theory, a health system could construct a RF approach using the full set of predictors

available by the time of discharge and allow the model to dynamically determine

which predictors are most useful. From an implementation perspective, however, it

can be difficult to always collect such a complete set of information for each patient

in real-time. Therefore, we strive to develop models using a smaller subset of the

predictors without sacrificing predictive performance. This is achieved via a backward
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selection that iteratively removes predictors with the lowest “variable importance

scores”(Breiman, 2001a). For each predictor, the variable importance score we use

represents the average increase in prediction error for a given outcome class when

the predictor of interest is not allowed to contribute to the current model. Hence,

predictors with higher scores (and thereby larger implied performance losses) are more

important. Our elimination procedure continues removing predictors until the cost-

sensitive performance begins to degrade when compared to performance when using

the full set of predictors available. No stopping criterion was employed, but rather

the cost-sensitive performance results were manually inspected to determine the final

set of predictors. We utilized the variable importance scores computed within the

randomForest package and describe these scores in detail in Section 7.4.2.

7.3.6 Model Evaluation

In any machine learning application, it is of utmost importance to have insight into

how this model will perform on future data before actual implementation into the

production environment. It is possible to obtain an accurate assessment of future

performance, but proper procedures must be followed. The variable selection pro-

cedure and model construction must occur on one subset of the data (the training

data) and then evaluated on a different subset of the data (the validation data). The

validation data should not be used for model construction, otherwise any estimates

of the models future performance using this test data would be invalid. Thus, we

performed variable selection and model development on a 75% random subset of the

data, reserving the remaining 25% to validate model performance. Note that under

this scheme, we are implicitly assuming stationarity with respect to time across the

sample period. That is, the relationship between the predictors and readmission risk
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does not change over the time period we examine.

7.4 Results

7.4.1 Descriptive Characteristics

Table 7.1 provides a summary of the cohort of patients used in this study.

Characteristic Value

Mean age, years (SD) 58.5 (17.2)
Female, % 50.1
Race/Ethnicity, %

White 56.2
Black 36.7
Other 7.1

Median length of stay (IQR), days 3.7 (2.6, 6.5)
Discharging service, %

Medicine 56.2
Surgery 22.6
Mixed/Other 25.8

Top 5 primary discharge diagnoses, %
Circulatory system diseases 22.2
Neoplasm 13.4
Injury and poisoning 13.3
Digestive system diseases 9.7
Musculoskeletal system diseases 9.4

Table 7.1: Study cohort characteristics.

Table 7.2 shows the incidence of 30-day all-cause and 7-day unplanned readmis-

sions. Here we characterize all clinical services into either one of Medicine or Surgery.

Overall, admissions to medical units result in slightly higher rates of readmissions

than those to surgical units.

We observed substantial heterogeneity of readmission rates when different ser-
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Readmission Window Medicine Surgery Overall

7-day 4.7% 3.4% 4.2%
30-day 13.8% 8.1% 11.3%

Table 7.2: Incidence rates for 30-day all cause and 7-day readmissions.

vices are compared. For example, categorizing individual clinical services into either

Medicine or Surgery services, we observe that the Hematology/Oncology service at-

tains the highest overall readmission rate (24.7% of visits result in 30-day all-cause

readmissions and 9.1% of visits result in unplanned 7-day readmissions), and that the

Transplant service had the highest readmission rate among surgical services (22.1%

of visits result in 30-day all-cause readmissions and 9.9% of visits result in unplanned

7-day readmissions). These results demonstrate the importance of hospital service in

prediction of readmission risk.

7.4.2 30-Day All-cause Readmissions Random Forests Model

We used OOB confusion matrix-derived performance metrics to achieve a sampling

scheme that resulted in a 5:1 cost ratio as defined by the ratio of false positives to

false negatives (Figure 7.1). The cost ratio achieved from OOB estimates was 4.97

(19,794 false positives divided by 3,977 false negatives), which corresponded to the

5:1 assumed stakeholder cost ratio preferences. Since there are about five times more

false positives than false negatives, but each false negative is five times more costly,

the overall cost of the prediction errors are roughly balanced.

Performance conditional on our given cost ratio is examined via the row and

column proportions in the confusion matrix. The column conditional proportions

provide sensitivity and specificity measures, given as 63.3% and 70.4%, respectively.

The two main rows of the confusion matrix give the positive and negative predictive
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Figure 7.1: RF confusion matrix for 30-day all-cause readmissions on training data

(OOB) using 5:1 cost ratio.

values, given as 25.7% and 92.2% respectively.

The resulting models performance was then evaluated on the 25% validation data,

where we observed a cost-ratio of 5.01 (6,528 false positives divided by 1,303 false

negatives), demonstrating strong concordance with the OOB values from the training

data subset and suggesting that the approach performs well on the validation data

with respect to stakeholder preferences (Figure 7.2). Similar to the OOB performance

on the training data, the model achieved a sensitivity of 64.7% and a specificity of

70.6%, and positive and negative predictive values of 26.8% and 92.3% respectively.

Given the performance of the model, one may inquire as to which predictors are

contributing to the black-box fit constructed by the RF. The variable importance

scores computed by RF can provide such insights, and the variable importance plot

for the 5:1 30-day all-cause readmission model is shown in Figure 7.3. For each

predictor, there is an associated score representing the average increase in forecasting

error for the outcome “readmission” (a similar plot is available for the outcome “no
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Figure 7.2: Random forests confusion matrix for 30-day all-cause readmissions on

validation data using 5:1 cost ratio.

 Outcome '30−Day All−Cause Readmission'

Increase in Prediction Error

Temperature−First Time
BP Dias.− First Time

BP Sys.−First time
HR−First Time

Number of Discharge Meds
Prev. Admissions with ER Count

Prev. Admissions since June 2011 Count
Clinical Service

Current Visit is Readmission
Total Prev. Admissions Count

0.005 0.010 0.015

●
●
●
●

●
●

●
●

●
●

Figure 7.3: Variable importance plot for 30-day all-cause readmissions RF model. The

top 10 variables for the class “readmission” are shown.
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readmission”, but is not shown). Recall that this score is to be interpreted as the

increase in prediction error assuming that the predictor is not allowed to contribute

to the current model. Hence, these scores are conditional on the existing model

and do not apply to a model refit with a given predictor excluded. For example,

Figure 7.3 indicates that if the predictor representing the total count of previous

admissions is not allowed to contribute to the current model, predictive accuracy

for the outcome “readmission” would decrease by about 2.0%. It is important to

note that for variables further down the plot, such as the first heart rate value,

despite the variable importance value being near 0, this does not necessarily imply

that the variable has no predictive power. Variables in RF models are intricately

tied together through the tree construction process and singly weak predictors can

have large aggregate contributions. The plot shown only considers contributions to

predictive accuracy one predictor at a time.

We included 39 predictors in our selected model, and the top 10 predictors are in-

cluded in Figure 7.3. Prior health system utilization, the clinical service at discharge,

and vital signs were among the most important predictors.

7.4.3 7-Day Unplanned Readmissions Random Forests Model

To provide additional insight into preventable readmissions, we focused on 7-day read-

missions that were identified as unplanned by ICD-9 and DRG codes. We used a cost

ratio of 20:1, reflective of the decreased prevalence of unplanned 7-day readmissions.

The training model had a sensitivity of 61.2%, a specificity of 65.3%, and positive and

negative predictive values of 7.1% and 97.4% respectively.(Figure 7.4) The results for

the validation data were similar (Figure 7.5). We observed an empirical cost ratio of

19.5, in accordance with the target cost ratio of 20:1. To assess the impact of pre-
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dictors on unplanned 7-day readmission, we analyzed the importance of the top 10

predictors as done for the 30-day all-cause model (Figure 7.6). The most important

predictors were similar for the two readmission outcome timeframes, except that the

serum sodium value at discharge appears in the top predictors of 7-day unplanned

readmissions and blood pressure measurements do not.

Figure 7.4: RF confusion matrix for 7-day unplanned readmissions on training data

(OOB) using 20:1 cost ratio.

7.5 Discussion

In this study, we report that two RF models sensitive to asymmetric costs can accu-

rately predict 30-day all-cause and 7-day unplanned readmissions. We demonstrate

that cost-sensitive models can achieve a balance between sensitivity and specificity,

thereby overcoming the RF problem of majority class bias that is a hindrance to ac-

curate prediction of a minority class, such as readmission events following discharge.

We also demonstrate that the RF approach can utilize information encoded in EHR
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Figure 7.5: RF confusion matrix for 7-day unplanned readmissions on validation data

using 20:1 cost ratio.

 Outcome '7−Day Unplanned Readmission'

Increase in Prediction Error

HR−First Value
Temperature−First Value

Sodium−Last Value
HR−Last Value

Number of Discharge Meds
Current Visit is Readmission

Service
Prev. Admissions since June 2011 Count

Prev. Admissions with ER Count
Total Prev. Admissions Count

0.002 0.004 0.006 0.008

●
●

●
●
●

●
●

●
●

●

Figure 7.6: Variable importance plot for 7-day unplanned readmissions RF model.

The top 10 variables for the class “readmission” are shown.
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data to make predictions. Finally, we peek inside the black-box model and high-

light the importance of variables such as health care utilization, number of discharge

medications, and vital signs in the prediction of readmissions.

Considering the positive and negative predictive values for the 30-day all-cause

readmissions model, when the RF predicts a readmission, it makes about 4 mistakes for

every correct prediction. However, when it predicts no readmission, it is rarely wrong–

only once in 20 predictions. The reason that the model is generally accurate when

predicting no readmission, but not when predicting readmission, is a consequence of

the 5:1 ratio of costs that were predefined. Given that it is of relatively high cost

to misidentify a case that results in a readmission, the model casts a wide net and

is more likely to predict a readmission unless it is fairly certain that the case will

not result in a readmission. Health system priorities should dictate the width of this

net. For example, UPHS administrators should consider the resource constraints or

financial costs associated with 4 mistakes for each correct readmission prediction.

A previous modeling effort for 30-day all-cause readmissions for UPHS produced

sensitivity and specificity values of 39% and 84%, respectively, and a PPV and NPV

of 30% and 89%, respectively, on prospective data (Baillie et al., 2013). We see that

our RF approach drastically improves sensitivity with some reduction in specificity

and improves the NPV with a slight reduction in the PPV. It is important to note,

however, that this is not a fair comparison. The results for the previous model

mathematically imply a cost ratio of roughly 1.5:1 0 , as compared to our current cost

ratio of 5:1. And an honest comparison of models under asymmetric costs requires

proper tuning of all of the models under comparison to the desired cost ratio(Berk,

2013). Given the lower cost of false negatives in the previous model versus ours, it is

not surprising to see such a high value of specificity.

While the prototype models presented in this paper show promise for predicting
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readmissions, there is still substantial opportunity to improve the predictions. There

are almost certainly useful covariates missing from the available data set that could

improve predictive accuracy, and other machine learning algorithms such as support

vector machines and SGB could be explored. Additionally, the target outcomes could

be refined to focus on preventable readmissions (Lavenberg et al., 2014), or read-

missions for specific diseases or medical conditions. After a model is constructed,

providers are then presented with the challenge of integrating the prediction tool into

practice, and designing and testing interventions to be used when a patient meets

threshold criteria for readmission risk. Finally, the machine learning framework pre-

sented herein is highly flexible and can be applied to a broad set of health system

prediction tasks, such as predicting length of stay and assessing risk of mortality.

7.6 Conclusion

In summary, we have presented a data-driven machine learning approach to pre-

dicting hospital readmissions derived from EHR data obtained at the University of

Pennsylvania Health System. We employed a machine learning approach that could

process a large set of patient and visit-level information to discover patterns in the

data associated with readmissions. Our approach demonstrates that cost asymme-

tries can be integrated into the construction of RF models such that their predictions

best reflect user needs and values. Models such as those presented herein could be

implemented into an EHR so that a prediction can be produced at time of discharge

for each patient. This prediction can help target scarce health system resources to

the patients in need of transitional care interventions, resulting in improved patient

outcomes and reduced health system costs.
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8
Bootstrapping for Stable Classification Trees

Abstract

Recent legislation in Pennsylvania mandates that forecasts of ”future dangerousness”

be provided to judges when sentences are given. Similar requirements already exist

in other jurisdictions. Research has shown that machine learning can lead to usefully

accurate forecasts of criminal behavior in such setting. But there are settings in which

there is insufficient IT infrastructure to support machine learning. The intent of this

paper is provide a prototype procedure for making forecasts of future dangerousness

that could be used to inform sentencing decisions when machine learning is not prac-

tical. We consider how classification trees can be improved so that they may provide

an acceptable second choice. We apply a version of classifications tree available in R,

with some technical enhancements to improve tree stability. Our approach is illus-

trated with real data that could be used to inform sentencing decisions. We find that

modest sized trees grown from large samples can forecast well and in a stable fashion,

especially if the small fraction of indecisive classifications are found and accounted for

in a systematic manner. But machine learning is still to be preferred when practical.

We conclude that our enhanced version of classification trees may provide a viable
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alternative to machine learning when machine learning is beyond local IT capabilities.

8.1 Introduction

Behavioral forecasts have informed parole decisions in the United States since the

1920’s (Burgess, 1928; Borden, 1928). Over the decades, these forecasts have in-

creasingly relied on quantitative methods that some would call actuarial (Messinger

and Berk, 1987; Feeley and Simon, 1994). Despite jurisprudential concerns and fore-

casting accuracy that has been difficult to evaluate (Farrington and Tarling, 1985;

Gottfredson and Moriarty, 2006; Harcourt, 2008; Berk, 2008, 2009, 2012), there is

little doubt that these methods are here to stay. Forecasts using even very simple

statistical procedures have been shown to consistently perform better than clinical

judgments (Monahan, 1981; Hastie and Dawes, 2001), and there is growing support

for forecasts of criminal behavior across a range of criminal justice settings in addition

to parole hearings: bail determinations, charging, sentencing, and probation/parole

supervision.

In this chapter, we focus on sentencing decisions. There are already jurisdictions

that provide judges with quantitative forecasts of risk (Kleiman et al., 2007), and

some are heading down the same path. For example, a recent Pennsylvania statute

authorizes the Pennsylvania Commission on Sentencing to develop a risk forecasting

instrument to help inform sentencing decisions under the state’s sentencing guidelines.

The history and politics are complicated (Hyatt et al., 2011), but for purposes of this

discussion, the key section reads as follows:

42 Pa.C.S.A.§2154.7. Adoption of risk assessment instru-

ment.

(a) General rule. – The commission shall adopt a sentence risk assessment
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instrument for the sentencing court to use to help determine the appro-

priate sentence within the limits established by law for defendants who

plead guilty or nolo contendere to, or who were found guilty of, felonies

and misdemeanors. The risk assessment instrument may be used as an

aide in evaluating the relative risk that an offender will reoffend and be a

threat to public safety.

(b) Sentencing guidelines. – The risk assessment instrument may be in-

corporated into the sentencing guidelines under section 2154 (relating to

adoption of guidelines for sentencing).

(c) Pre-sentencing investigation report. – Subject to the provisions of the

Pennsylvania Rules of Criminal Procedure, the sentencing court may use

the risk assessment instrument to determine whether a more thorough

assessment is necessary and to order a pre-sentence investigation report.

(d) Alternative sentencing. – Subject to the eligibility requirements of

each program, the risk assessment instrument may be an aide to help de-

termine appropriate candidates for alternative sentencing, including the

recidivism risk reduction incentive, State and county intermediate pun-

ishment programs and State motivational boot camps.

(e) Definition. – As used in this section, the term risk assessment instru-

ment means an empirically based worksheet which uses factors that are

relevant in predicting recidivism.

We addresses efforts to construct a forecasting prototype that might be used to

inform sentencing under the Pennsylvania statute. One might ordinarily apply a tree-

based form of machine learning already shown to be effective in related circumstances

(Barnes et al., 2010; Berk et al., 2005, 2006, 2009) . However, these methods lead to

forecasting procedures that are best implemented in real time by computers linked
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to large criminal justice databases. For now at least, those capacities do not exist

in many courtrooms. Moreover, insofar as the forecasts are to be integrated into a

sentencing guidelines grid, there are software challenges.

As a fallback position, we suggest that classification trees can be improved in

specific ways so that they perform well, and perhaps even well enough, to inform

sentencing decisions. One would not ordinarily expect them to forecast as accurately

as tree-based machine learning approaches, but the gains in ease of use may offer a

sensible tradeoff. We consider these issues conceptually and then provide an illustra-

tion with real data. One can think of our results as not yet ready for prime time, but

perhaps as an interesting pilot episode. In particular, we focus on the CART algorithm

although other classification tree methods exist.

8.2 Modifying Classification Trees for Criminal Jus-

tice Settings

While we formally introduced the construction of classification trees in Chapter 1,

we note that the resulting set of splits from a classification tree effectively constructs

profiles of individuals. Hopefully these profiles result in similar outcomes. For ex-

ample, men under 21, who are gang members with a long history of crime beginning

at an early age, represent one simple and short profile likely to be high risk. Such

a profile would be effective insofar as most (ideally, all) of the individuals with that

profile have the same outcome class. In this instance, that outcome class might be an

arrest for a violent crime while on probation. At the other extreme, women over 35

with no gang affiliation and who are first offenders would probably not be arrested

for a violent crime while on probation. This profile would be effective in identifying

individuals posing little threat to public safety. In both of these simple examples,
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forecasts could naturally follow. Any individual with the first profile could be pro-

jected as high risk. Any individual with the second profile could be projected as low

risk.

One benefit of classification trees is their ability to incorporate asymmetric costs

directly into their growing procedure (Breiman et al., 1984). In our context, false

positives are incorrect predictions of crime perpetration. False negatives are incorrect

predictions that a crime will not be committed. From a law enforcement perspective,

the costs of false negatives are often higher than the costs of false positives. A failure

to identify a high risk individual is relatively more costly than falsely identifying a

high risk individual, and these greater relative costs should be, and can be, taken

formally into account. For example, if a profile conveys even a hint of an undesirable

outcome, a felony arrest can justifiably be projected. One is prepared to live with

an increase in the number of false positives if the number of false negatives can be

meaningfully reduced.

Identifying the relevant consequences of different kinds of forecasting errors and

specifying their relative costs usually depends heavily on subjective judgments. Hence,

different stakeholders legitimately can have different relative cost assessments. How

these are properly framed and reconciled can raise difficult issues that are beyond the

scope of this paper. An excellent treatment can be found in (Bushway, 2010).

Classification trees are well-known for their ability to construct profiles that can

classify individuals quite accurately under asymmetric costs. Unfortunately, the re-

sults can also be unstable (Hastie et al., 2009, section 9.2). With new data, such as

those one would use to make forecasts, predictive accuracy can be disappointing. In

other words, with new data, rather different profiles will sometimes be constructed

with different implications for forecasts.

We address instability here by creating classification profiles from a very large
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data set. Such data sets are increasingly common in sentencing settings. More stable

results can follow. For similar reasons, we construct profiles with relatively few pre-

dictors. In addition, we introduce a special class of forecasted outcomes which one

might call “can’t tell.” If even a relatively small number of “can’t tell” cases can be

identified and properly isolated, stability is greatly increased, and forecasts for the

vast majority of cases are substantially improved. We see this approach as a useful,

practical advance.

8.2.1 Asymmetric Costs and Tuning

In practice, using a simple majority vote in terminal nodes as described in Sec-

tion 1.2.1 is unsatisfactory because false positives and false negatives are treated

as if they have the same costs; their relative costs are 1 to 1. Symmetric costs are

the default in most software so that if the arguments in the loss function are ignored,

symmetric costs are necessarily implemented. The California Static Risk Assessment

Instrument, for instance, implicitly adopts the default of equal costs with no apparent

rationale (Turner et al., 2009).

When symmetric costs are inconsistent with stakeholder preferences, the votes in

each terminal node can be weighted to take asymmetric relative costs into account.

For our later illustrative analysis, we make false negatives 5 times more costly than

false positives. Thus, failing to identify a high risk individual is five times more

costly than incorrectly labeling an individual as high risk.31 This weighting is broadly

consistent with work we have done in the past (Berk, 2012).32

31There is nothing special about the 5 to 1 cost ratio, and for the methodological issues raised in
the paper, most any reasonable cost ratio would suffice. The cost ratio just could not be so extreme
that the same class is assigned to essentially all cases. In that instance, the role of either false
positives or false negatives would be obscured.

32Cost ratios have ranged from 20 to 1 to 3 to 1. The relative costs of false negatives are more
dear. Anecdotally, we have found that criminal justice officials and representatives from a variety
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However, as discussed for RF in Section 6.4.2, the entire partitioning procedure

should respond to differential costs, and we proceed in this fashion below. In other

words, the profiles themselves are altered to account for the relative cost of false

negatives to false positives. Hence, the entire classification tree is tuned to the 5 to

1 cost ratio. The procedure for incorporating asymmetric costs into CART is slightly

different than that for RF. Asymmetric costs can be incorporated by either altering

the prior distribution of the outcome or by explicitly introducing a loss matrix into

the classification tree algorithm. We generally favor the latter because the relative

costs are explicitly represented.

Consider a K × K loss matrix W. For simplicity, and with no important loss

of generality, suppose that K = 2. The response outcomes are “fail” or “not fail.”

When the forecasting procedure misses a failure, one has a false negative. When the

forecasting procedure incorrectly identifies a failure, one has a false positive. Then

W is  0 Rfn

Rfp 0


where the entries along the main diagonal are zero, and the off-diagonal elements

contain the relative costs of false positives (i.e., Rfp) and false negatives (i.e., Rfn).

The units do not matter. What matters is the ratio of the two. For example, Rfn

could be 10, and Rfp could be 1. False negatives are 10 times more costly than false

positives. Put another way, 10 false positives have the same cost as 1 false negative.

Asymmetric costs, introduced so that the forecasts properly respond to stakeholder

preferences, can affect not just the recursive partitioning and the classes assigned

to terminal nodes, but evaluations of forecasting performance as well. Standard

evaluation tools such as the ROC curve take the forecasting output as is. If that

of citizen groups broadly agree that at least for crimes of violence, false negatives are substantially
more costly than false positives.
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output is based on equal costs, so is the ROC. If the costs are not equal, performance

measured by the ROC does not capture what decision-makers want (Hastie et al.,

2009, section 9.2.5). For example, risk forecasts that score well by the ROC may

implicitly give too little weight to false positives. This may inadvertently increase

prison populations and diminish public confidence in the sentencing process.

Finally, for our illustrative analysis we chose tuning parameter values that can

help improve stability. The intent was to prevent the partitioning from proceeding

too far; smaller trees tend to be more stable because the number of observations in

each partition is larger on the average. Precisely how one proceeds will depend on

the software used. To build our classification trees, we applied the rpart package in

R with which the number of terminal nodes can be controlled directly (Therneau and

Atkinson, 1997). One happy consequence of smaller trees is that they can be easier

to interpret.

8.2.2 Stability Analysis

Working with large data sets and smaller trees is unlikely to fully eliminate potential

instability. Had the data been even slightly different, it is possible that the splits

chosen could have differed substantially, leading to a new set of terminal nodes and

perhaps new forecasts.

To consider how successful our strategy actually was, we explicitly explored pre-

diction instability. We generated a substantial number of bootstrap samples, drawing

from the training data with replacement. For each sample, a classification tree was

grown using tuning parameters at their previously determined values. The classifi-

cations from each tree were stored. Cross tabulations were then undertaken for all

possible pairs of trees. From each cross tabulation, the proportion of times the clas-
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sifications were the same was computed. A very instructive analysis of tree stability

followed, and some important refinements of the forecasts were implemented. Our

approach draws heavily on the work of (Kuhnert and Mengersen, 2003). Details are

provided below.

In this context, it is important to appreciate that different tree structures imply

different substantive interpretations, and it is the structures that can be especially

unstable. Predictions derived from terminal nodes are typically more robust because

all that matters is the forecasted class. Many different tree structures can lead to the

same forecast for a given case. For example, if males under 21 are at high risk, it

does not matter for forecasting whether gender defines the first partition and age the

second or whether that order is reversed. But it does matter if the variable used in

the first partition is taken to be more important. It will also not matter if an age of

20 is chosen instead of 21 as long as 20 year olds and 21 year olds are assigned the

same class as before through the impact of other predictors.

8.3 Data

The data used for the illustrative analysis include individuals on probation in Philadel-

phia between 2002 and 2005. There are 48,923 observations with each observation

representing a case. An individual can appear in the data more than once as differ-

ent cases. Because sentencing decisions are made on a case basis, using cases as the

unit of analysis is consistent with the needs of decision makers and how one might

understand the social processes responsible for the data. In fact, repeat offenders are

not unusual, even over relatively short time intervals, but decisions are made case

by case. In short, the case/individual distinction has no important implications for

the forecasting procedures we use, but there are some related issues for the stability
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analysis that will be addressed later.

A random subset of the data were used as training data. These were the data

employed to construct the forecasting procedure. The remaining data served as test

data from which proper assessments of forecasting accuracy could be obtained. Hav-

ing both training data and test data is consistent with honest performance assessments

and with recommended practice (Hastie et al., 2009, chapter 7).

8.3.1 Variables

Drawing on prior discussions with local stakeholders, the response variable for the

analysis is whether an individual once placed on probation was arrested within two

years for a violent crime: murder, attempted murder, manslaughter, robbery, assault,

kidnapping, rape, and arson. These are “failures.” Of the 48,923 cases, 6,284 cases

“fail.” Thankfully, failures are relatively rare. Roughly 15% of all cases fail. All other

outcome are treated as the absence of “failure.”

Stakeholder rationale was this: a key consideration after most felony convictions is

whether to incarcerate. That decision should be informed at least in part by a forecast

of “future dangerousness.” Presumably, judges would be less inclined to release an

individual on probation if they are projected to commit a violent crime.

There are, of course, other behavioral outcomes that could in principle be pre-

dicted (Berk, 2012). One example is whether an individual is arrested for a murder

(Berk et al., 2009). Another example is whether an individual is arrested for any

felony. Yet another example allows for three outcome classes: an arrest for a violent

crime, an arrest for a crime that is not violent, and no arrest for any felony. A similar

three-class outcome has proved to be useful for supervisory decisions of individuals

on probation or parole (Barnes et al., 2010).
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The usual collection of covariates was available as potential predictors. They can

be grouped as follows:

� Demographic Information: gender, date of birth

� Juvenile Priors: total number of priors, number of sex offense priors, number

of drug priors, etc.

� Adult Priors: total number of priors, number of sex offense priors, number of

murder priors, etc.

� Other Criminal Record Information: prior number of days in jail, number

of prior probation sentences, bail types, age at earliest prior, etc.

Race and ethnicity were excluded in deference to stakeholder sensitivities. Pre-

dictors that should be excluded on other than statistical grounds can raise subtle

technical issues because individual, neighborhood, and behavioral attributes can be

strongly related. In addition, because offenders tend to victimize individuals who

share their “demographics,” controversial predictors may be just those needed to

help protect the most likely victims. We have discussed these matters in some detail

elsewhere (Berk, 2009).

To further complicate matters, the set of predictors was not limited to the covari-

ates specified. A very important feature of classification trees is that step functions

and higher order interaction effects are automatically constructed as needed. In ef-

fect, a large number of empirically derived basis functions can be determined. For

example, young males from high crime neighborhoods may be projected as high risk.

The three constituent covariates (age, gender, and neighborhood) are combined as a

three-way interaction that may serve as a surrogate for gang membership, which is

not directly measured. Age may serve as a splitting variable several times so that
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Predict ‘Fail’ Predict ‘No Fail’ Model Error
Actual ‘Fail’ 3331 1697 0.34

Actual ‘No Fail’ 8837 25100 0.26
Use Error 0.73 0.06 Overall Error=0.27

Table 8.1: RF confusion table (OOB) using a 5 to 1 cost ratio of false negatives to

false positives.

a nonlinear function is approximated in several steps. In short, the set of potential

predictors can far exceed the set of explicit predictors in ways that are not likely to be

apparent. We refer interested readers to a more thorough treatment that is beyond

the scope of this paper (Berk, 2012).

8.4 Random Forest Results

As a benchmark, we first employed RF to the data.

Table 8.1 shows the confusion table that results. The confusion table is a cross-

tabulation of the actual outcome and the forecasted outcome, and for RF, these con-

fusion table is computed on the OOB data.

We begin by considering model error addressed by the rows of the table. When

the actual outcome is a violent crime, the model correctly forecasts that outcome

66% of the time (1.0 - .34). When the actual outcome is no violent crime, the model

correctly forecasts that outcome 74% of the time (1.0 - .26). This is respectable per-

formance compared to past research (Berk, 2012), especially when one recalls that

failures are relatively rare in these data. Although about 15% fail in the overall pool

of individuals, RF is able to correctly forecast nearly two-thirds of all failures. More-

over, forecasting accuracy should improve as additional predictors become available
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in future work. Note also that the intended cost ratio of 5 to 1 is well approximated

in the results: 8837/1697 = 5.21.

Now consider use error. If RF were used to make actual forecasts, performance

would then be conditioned on the forecast, not the outcome. The columns in Table 8.1

show the result, but have to be interpreted with some care. The 5 to 1 cost ratio

imposed on the analysis means that a substantial number of false positives will be

tolerated so that false negatives are reduced. This tradeoff is explicitly built into the

column calculations. Thus, when a violent crime is forecasted, that forecast is correct

only 27% of the time (1.0 -.73). The preference toward false positives has a large

impact, just as intended.

When the absence of a violent crime is forecasted, that forecast is correct 94%

of the time (1.0-.06). A happy outcome of the preference for false positives is that

when a violent crime is not forecasted, it has a very good chance of being correct.

Individuals not forecasted to fail could be very good probation risks if one is mainly

concerned about future dangerousness.33

8.5 Classification Tree Results

How well does a classification tree perform on the same data? Proper evaluation

of a classification tree requires that the tree be evaluated with test data. Using

training data to grow and evaluate a tree can lead to results that are too optimistic.

For a given tree grown from the training data, test observations are placed in their

appropriate terminal nodes. Classes previously assigned to those nodes provide the

forecasts. Table 8.2 shows the results.

33Overall model error is reported at the lower right corner of the table. However, when the loss
function is asymmetric, the overall proportion correct (or in error) is misleading. Symmetric costs
are being assumed.
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Predict ‘Fail’ Predict ‘No Fail’ Model Error
Actual ‘Fail’ 719 515 0.42

Actual ‘No Fail’ 2829 5722 0.33
Use Error 0.80 0.08 Overall Error=0.342

Table 8.2: Classification tree confusion table using test data.

For a given observed outcome, as before, each row shows the proportion of cases in

which the classification tree gets it wrong. When an individual actually fails, the tree

makes the correct forecast about 58% of the time (i.e., 1.0 - .42). When an individual

actually does not fail, the tree makes the correct forecast about 67% of the time (i.e.,

1.0 -.33). The empirical cost ratio is a little farther off (2829/515 = 5.5), but not

enough to matter in practice. Nevertheless, the classification tree does not perform

as well as RF. This is to be expected.

How much the reduction in accuracy matters in practice would be for stakeholders

to determine. In this instance, for every 100 cases, the RF procedure would fail to

predict 34 violent crimes whereas the classification tree would fail to predict 42 violent

crimes. Stakeholders would need to decide how much a differential of 8 violent crimes

per 100 cases matters. In Philadelphia, thousands of individuals are sentenced each

year so that the number of violent crimes missed by the classification tree could be

well over several hundred.

As before, for each column, for a given outcome predicted by the tree, the pro-

portion of cases in which the forecast is correct is shown. When the tree forecasts a

case to be a failure, it is right 20% of the time (1.0 - .80). The large number of false

positives, which as before were favored by the 5 to 1 cost ratio, are a key factor in

the disappointing performance. But again, there is good news. When a tree forecasts

that an individual will not fail, it is right 92% of the time (1.0 - .08). As with RF,
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when an individual is not predicted to commit a violent crime, it is a pretty good

bet. Indeed, forecasting accuracy for such predictions is nearly the same as for RF.34

But why settle for a classification tree when RF will usually forecast more ac-

curately, especially if the associations between the predictors and the outcome are

complicated? Perhaps the main reason is that the results of a classification tree can

be easily translated into practice without the help of a computer.

8.5.1 A Classification Tree Visualization

Figure 8.1 shows a rendering of the classification tree built from the training data.

The figure provides some information about which predictors are driving the forecasts

and can be a tool for implementing the forecasts without the aid of a computer.

At the top of the tree (i.e., the root node) there are no partitions. Each successive

split is shown as branches that lead to internal nodes. At the bottom of the tree

are the terminal nodes (also sometimes called “leaves”) to which outcome classes are

assigned. In Figure 8.1, terminal nodes are shaded. The classes assigned to each

terminal node are shown in the rectangular boxes at the bottom of the figure, with

number of failures on the left and the number of non-failures on the right. The

assigned class can be used as the forecasted class.

The classification tree is simple by design. Any observation for which a forecast

is needed can simply be “dropped down” the tree until a terminal node is reached.

For example, if the offender in question has an adult first charge age of less than 21

years, move left. Then, if as a juvenile there are any charges, move left again. The

observation then lands in a terminal node and would be forecasted to “fail” because

of the cost-weighted vote: (5× 2038) > 6774. If the second split sends a case to the

34One important reason stems from the large imbalance in the outcome distribution favoring the
absence of violent crime. The absence of violent crime is far more common and, therefore, easier to
predict correctly. RF earns its keep by forecasting rare events.
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Prototype Classification Tree

Root Node

First Adult Charge Before 21
First Adult Charge 21 Or Older

Juvenile Charges

Fail
2038 / 6774

More Than 45 Days Days in Jail

No Juvenile Charges

45 Days in Jail Or Less

One Or More Serious Priors No Serious Priors

No Fail
96 / 821

Fail
773 / 3516

Younger Than 25 25 Or Older

No Fail
1439 / 17e+3

First Adult Charge Before 19 First Adult Charge 19 0r Older

No Fail
216/ 990

No Fail
264/ 2126

No Fail
220 / 2431

Figure 8.1: Classification tree for whether an individual is arrested for a violent crime.
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right, there are additional partitions before one of several terminal nodes is reached.

All observations in need of a forecast can be treated in a similar fashion and

will fall into one of the terminal nodes. As a result, the tree structure creates a

straightforward set of selection criteria that can aid in sentencing decisions. One just

follows that path appropriate for a given offender to its terminal node for which the

predicted outcome is provided. In short, the classification tree results can be used in

a paper-and-pencil fashion.

The structure of the tree can also provide subject-matter insights. For example,

the terminal node on the far right contains all individuals whose first criminal charge

occurred after the age of 21. They are the best risks. For those arrested and charged

before they were 21, the class assigned depends upon interactions with other variables.

For example, one relatively high risk group is composed of individuals whose first adult

criminal charge was before the age of 21, who had a criminal charge as a juvenile,

who spent at least 46 days in jail previously, and who had at least one serious charge

as an adult. In linear model terms, this is a high order interaction effect that would

probably not have been specified a priori or discovered with conventional regression

diagnostics. At best, each constituent of the interaction would have been included as

a main effect.

It is important to stress, however, that forecasting is the goal. Even if there are

substantive insights in the tree structure, a classification tree is not a causal model.

At best, there can be provocative associations.

8.5.2 Stability Analysis

There is a relatively small literature on uncertainty in classification trees, and it is seg-

mented into somewhat different estimation problems and applications. Holmes (2003)
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provides an excellent review for phylogenetic applications that has broader implica-

tions. A very different tradition can be found in computer science (Tóth, 2008). The

work of (Kuhnert and Mengersen, 2003) seems most relevant to a sentencing setting.

Kuhnert and Mengersen (2003) consider several kinds of reliability questions but

for us, the following question seems most germane. For a given classification tree,

how reliable are terminal node classifications over realizations of the data? Here are

the steps.

(a) Generate B bootstrap “test” samples, sampling with replacement from the

training data.

(b) Using the original classification tree, drop each test sample down the tree and

determine the class label to be attached to each terminal node using the Bayes

classifier (i.e., the class assigned is the class with the most cases).

(c) Compute the proportion of times the class assigned to the terminal nodes is the

same as the class assigned with the original data.

All of the uncertainty is driven by sampling variation in the test samples. There is

no uncertainty in the model itself. Moreover, stability is defined over terminal nodes,

not the cases that fall within them. So a node containing 10 cases is treated the

same as a node containing 100 cases even though a change in how the node is labeled

affects 10 times more cases for the second node.

We find this formulation insufficiently responsive to our application. First, we

view our classification tree as illustrative, not definitive. It could well change with

new data from sampling variation alone. It is important, therefore, to capture model

uncertainty. Second, judges sentence cases. It is the stability of case classifications

that matters. Stability should be represented at the level of cases, not the level of

terminal nodes.
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As a result, we implement the following procedure.

(a) We generated 50 “new” samples with replacement from the training data using

the same number of observations as in the training data.

(b) For each new sample, a classification tree was grown as before with the same

values for the tuning parameters. The result was a total of 50 trees.35

(c) The classifications from each tree were stored.

(d) For each possible pair of the 50 trees (i.e., 1225), we computed the proportion

of times the classifications were the same for common cases.36

8.5.2.1 Some Technical Issues

Recall that the unit of analysis is the case, not the individual. As a result, some

individuals are included in the data more than once. Substantively, this is not a

problem because judges make sentencing decisions on cases as they come up and

repeat offenders, even within short time intervals, are not unusual.

If there are problems, they are technical. First, our stability analysis appropriately

sampled cases independently with replacement. If sampling were not with replace-

ment, each of the samples would necessarily be identical to the original data and

to each other. However, the data can be seen as a random realization of the social

processes that generate cases in need of sentences, for which there is, in effect, simple

35We used the same tuning parameter values so that the trees were comparable. We were trying to
isolate the impact of new data for a tree of a given complexity. Had we altered the tuning parameter
values, changes in how cases were classified could result from either the new data or differing tuning
parameters. The cost ratio was also unchanged.

36One reason Kuhnert and Mengersen (2003) suggest additional measures of stability is that they
apparently do not find sufficiently strong justification for using a Bayes classifier. In our context,
where the relative costs of false negatives and false positives are elicited from stakeholders, their
concerns seem far less troubling.
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random sampling of cases. Because a case cannot be sentenced more than once, the

sampling is without replacement.

Second, sampling without replacement also is an imperfect formalization for how

the data were perhaps generated. It is possible that once a given individual has

been selected, there is an increased probability that that individual will be selected

again. Perhaps criminal behavior becomes more likely and/or the criminal justice

system is primed to arrest and punish that individual. Alternatively, it is possible

that the experience of being arrested, convicted, sentenced and sanctioned reduces

the probability that an individual will be selected again because criminal behavior

is deterred. If the sanction involves effective probation supervision, behavior may be

changed for the better. If the sanction involves incarceration, time on the streets (at

least in the short to medium term) is reduced.

The first problem implies that we may be underestimating instability, at least a bit.

Our effective sample size is smaller than our nominal sample size. The second problem

could lead to some underestimation or overestimation of instability depending on how

the two competing forces balance for a large number of cases. We will revisit these

issues after some results are summarized.

8.5.2.2 Results

Figure 8.2 is a histogram of common classification proportions across pairs of trees.

Agreement over trees is very high. The distribution is centered around 90% agree-

ment. The proportions range from around 75% agreement to 100% agreement. One

can properly conclude that when our provisional tree is used to arrive at real fore-

casts, there is relatively little instability. Put another way, the forecasts were on the

average about 90% reliable over new realizations of the data.

But it is possible to do even better. Recall that classifications and forecasts are
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Figure 8.2: Histogram of proportions of common classifications between tree pairs.

derived from the equivalent of votes in each terminal node. It follows that when

that vote is close (e.g., 52% v. 48%), there will likely be more instability than when

the vote is decisive (e.g., 75% v. 25%). When the vote is close, altering just a few

observations can often be enough to swing the vote in the other direction. A close

vote indicates that the model is not highly “confident” in the class assigned. It might

be sensible, therefore, to flag cases in such terminal nodes as “can’t tell” and perhaps

discard them when forecasts are made.

The forecasts from two terminal nodes were discarded as “too close to call.” We

began with a “too-close-to-call” definition of .05. Votes within .05 of the .50 threshold

were discarded. But because entire nodes had to be either retained or discarded,

the .05 rule did not in this instance remove enough unreliable forecasts. When the

definition was changed to .07, the results were satisfactory. Thus, forecasts based on

votes closer than .43 to .57 were discarded. All other forecasts were retained. With
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Figure 8.3: Histogram of proportions of common classifications between tree pairs

with 14% of data discarded.

other data and different stakeholders, the definition of “unreliable” could well have

been quite different. The question for decision makers is how reliable a forecast has

to be before it is used to inform sentencing, and that is not our call.

Figure 8.3 shows what happens when the two nodes with votes “too close to

call” are not used to generate forecasts. There is nearly 100% agreement. Average

agreement is now 99.9%. Average reliability was improved to nearly 100%. The price

is that there are no forecasts for about 14% of the cases. But had those forecasts been

reported, they could have been deemed too unreliable to use anyway. Overall, these

results would have been about the same had the 14% been only 10%, but because

unreliable nodes had to be removed in their entirety, all of the cases in them had to

be removed as well.

In summary, one might envision providing judges with two kinds of information.
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For those profiles leading to highly reliable forecasts, a forecast is made. For those

profiles leading to forecasts that are insufficiently reliable, no forecast is made, but

those cases would be flagged as such. For the second group, a proper inference

is that one cannot decide from the available data and statistical procedures how

the individual will perform.37 Therefore, sentences would be determined without

quantitative forecasts of risk.

More broadly framed, our stability analysis addresses an important kind of un-

certainty in the tree-based, quantitative forecasts. How likely is it that a different

forecast would be made with new realizations for the data? With our large sample

and small classification tree, there is almost no instability uncertainty in the fore-

casts for about 85% of the cases. Instability uncertainty would likely be greater in

other analyses with substantially smaller samples and/or substantially larger trees.

Instability uncertainty would also be affected by the strength of relationships between

the predictors and the outcome. As best we can tell, uncertainty in classification tree

forecasts has not been addressed in this simple fashion before. We re-emphasize, how-

ever, the our concern is with instability in forecasts, not instability in tree structure.

The latter can be far more unstable than the former.

One could also imagine providing judges with the votes for each forecast so that

the reliability of each forecast could be taken into account. As a practical matter, we

thought this was far too heavy a burden to place on the sentencing process, especially

because in our illustration at least, most forecasts were highly reliable. But as a

technical matter, that information would be available and easily accessed. An outline

of the procedure code used for the stability analysis is provided in Appendix A.4.

37Even using the same data, it is likely that a machine learning procedure would do better. Recall,
however, that in this paper we are assuming that machine learning is not a practical option.
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8.6 Conclusions

The failure outcome for this population is relatively rare: about 15% of the cases fail

through an arrest for a violent crime. Nevertheless, even a very simple classification

tree is able to correctly identify about 60% of those who fail in the test data. Of

those who do not fail, about 67% are correctly identified.

Foresting accuracy depends especially heavily and directly on the 5 to 1 cost ratio

of false negatives to false positives. By design, this opens the door to a substantial

number of false positives so that forecasts of failure are correct only about 21% of

the time. But another consequence is that forecasting accuracy for individuals who

do not fail is over 90%. That is, if a forecast of not failing is made, it is quite likely

to be correct. If this kind of information were to be used in sentencing, there would

a large pool of convicted offenders who might be good probation risks. But one must

be clear that by “good” risks, we mean with respect to a violent crime only.

It might be more useful in the future to redefine the response, as we have in other

applications, to measure three outcomes: an arrest for a violent crime, an arrest for a

crime that is not violent, and no arrest at all. Or perhaps some other three-way break

would be more appropriate. The point is that by using three outcome classes instead

of two, less ham-fisted distinctions can be made. An individual would be forecasted

into one of the three outcomes, not one of two. The procedures discussed above would

still apply, although the algorithmic output would be a bit more complicated.

We found that the forecasts are quite reliable. Instability does not seem to be a

problem for about 85% of the cases. The small tree grown from a large sample no

doubt helps a lot. If one discards the relatively small number of cases whose forecasts

are deemed unreliable, instability virtually disappears. More generally, the stability

analysis provides information on the uncertainty in tree-based forecasts that judges
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might find helpful.

Whatever one thinks of the results, it is possible to do substantially better. A high

priority is obtaining better data from an appropriate population of offenders. That

process has begun. Finally, cost ratios of false negatives to false positives should be

obtained from stakeholders. Indeed, several different cost ratios might be relevant.

These alone could significantly change the results.
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9
Conclusion

In this thesis, we have presented both methodological and applied advances in ensemble-

of-trees methods in machine learning.

In the methodological part, we have provided a number of extensions to the BART

algorithm. In particular, we introduced a new R package bartMachine which we

hope will greatly increase the accessibility of BART to both academics and practi-

tioners alike. Using bartMachine as our research engine, we have presented three

novel features for the algorithm. First, we introduced a procedure for nonparametric

variable selection for BART using permutation testing on the variable inclusion pro-

portions. We also presented a simple alteration of BART’s prior on splitting rules

that allows for informed prior information to be incorporated into the model. Our

proposed methodology showed promise in both simulation studies against compet-

ing variable selection methods as well as on the application to the yeast regulatory

network. We then relaxed the assumption of homoskedasticity in the BART model to

incorporate parametric models of heteroskedasticity into the model. We found in our

simulations that HBART was better able to recover the mean function and appropriate

credible intervals versus the original implementation. Additionally, HBART fared well

versus other tree-based Bayesian methods in the motorcycle data example. Finally,

we developed a means for incorporating missing data into both the training and test-
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ing phases of statistical learning. Our proposed method, BARTm, was able to perform

well on the MAR, NMAR and pattern-mixture model examples we explored.

As a relatively new algorithm, there is still ample opportunity to further extend

BART. Given that BART has an underlying probability model, it is well-equipped ver-

sus other algorithms to explore handling correlated errors across observations, such

as in repeated measurement design or longitudinal studies. To date, dealing with

correlation structures across observations has been challenging problem for machine

learning. Additional areas to explore for BART include examining it’s performance in

extremely high dimensional settings as well as considering BART’s performance with

respect to probability estimation.

The second part of this thesis explored applications of ensemble-of-trees methods

under asymmetric costs. We examined the performance of RF and sgb in criminology

applications. We additionally developed RF models that could be used for real-time

forecasting of unplanned hospital readmissions in the asymmetric cost framework.

Last, we developed stable classification trees for forecasts of violence during probation

hearings, a setting where the technology to deploy more sophisticated algorithms

may not be readily available. Important future work includes further developing

additional ensemble algorithms that incorporate asymmetric costs throughout the

entire procedure and not just when applying a threshold to probabilities output from

the trained models. In fact, introducing asymmetric costs throughout the entire BART

fitting procedure is an open question.

Despite having designed highly sophisticated algorithms for prediction, it is ulti-

mately hard to forecast precisely what the future holds for machine learning. At the

current juncture in time, both ensemble-of-trees models and deep learning algorithms

seem to be at the forefront of the field. As time progresses, it will be exciting to see

how the development of future ensemble-of-trees methods unfolds.
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A
Appendices

A.1 Supplement for Chapter 1

A.1.1 Sampling New Trees

This section provides details on the implementation of Equation 1.13 (steps 1, 3,

. . . , 2m − 1), the Metropolis-Hastings step for sampling new trees. Recall from

Section 1.4.2 that trees can be altered via growing new child nodes from an existing

terminal node, pruning two terminal nodes such that their parent becomes terminal,

or changing the splitting rule in a node.

Below is the Metropolis ratio (Gelman et al., 2004, p.291) where the parameter

sampled is the tree and the data is the responses unexplained by other trees denoted

byR. We denote the new, proposal tree with an asterisk and the original tree without

the asterisk.

r =
P
(
i∗ → i

)
P
(
i → i∗

) P
(
i∗ | R, σ2

)
P
(
i | R, σ2

) (A.1)
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We accept a draw from the posterior distribution of trees if a draw from a standard

uniform distribution is less than the value of r. Immediately we note that it is difficult

(if not impossible) to calculate the posterior probabilities for the trees themselves.

Instead, we employ Bayes’ Rule,

P
(
i | R, σ2

)
=

P
(
R | i, σ2

)
P
(
i | σ2

)
P (R | σ2)

, (A.2)

and plug the result into Equation A.1 to obtain:

r =
P
(
i∗ → i

)
P
(
i → i∗

)
︸ ︷︷ ︸
transition ratio

×
P
(
R | i∗, σ2

)
P
(
R | i, σ2

)
︸ ︷︷ ︸

likelihood ratio

×
P
(
i∗
)

P
(
i
)

︸ ︷︷ ︸
tree structure ratio

. (A.3)

Note that the probability of the tree structure is independent of σ2.

The goal of this section is to explicitly calculate r for all possible tree proposals

— GROW, PRUNE and CHANGE. For each proposal, the calculations are organized

into separate sections detailing each of the three ratios — transition, likelihood and

tree structure. Note that our actual implementation uses the following expressions in

log form for numerical accuracy.

A.1.2 Grow Proposal

Transition Ratio

Transitioning from the original tree to a new tree involves growing two child nodes

from a current terminal node:
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P
(
i → i∗

)
= P (GROW)P (selecting η to grow from)× (A.4)

P (selecting the jth attribute to split on)×

P (selecting the ith value to split on)

= P (GROW)
1

b

1

padj(η)

1

nj·adj(η)
.

We chose one of the current b terminal nodes which we denote the ηth node, and

then we pick an attribute and split point. padj(η) denotes the number of predictors

left available to split on. This can be less than p if certain predictors do not have

two or more unique values once the data reaches the ηth node. For example, this

regularly occurs if a dummy variable was split on in some node higher up in the

lineage. nj·adj(η) denotes the number of unique values left in the pth attribute after

adjusting for parents’ splits.

Transitioning from the new tree back to the original tree involves pruning that

node:

P
(
i∗ → i

)
= P (PRUNE)P (selecting η to prune from) = P (PRUNE)

1

w∗2
(A.5)

where w∗2 denotes the number of second generation internal nodes (nodes with two

terminal child nodes) in the new tree. Thus, the full transition ratio is:

P
(
i∗ → i

)
P
(
i → i∗

) =
P (PRUNE)

P (GROW)

b padj(η) nj·adj(η)

w∗2
. (A.6)

Note that when there are no variables with more two or more unique values, the
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probability of GROW is set to zero and the step will be automatically rejected.

Likelihood Ratio

To calculate the likelihood, the tree structure determines which responses fall into

which of the b terminal nodes. Thus,

P
(
R1, . . . , Rn | i, σ2

)
=

b∏
`=1

P
(
R`1 , . . . , R`n`

| σ2
)

(A.7)

where each term on the right hand side is the probability of responses in one of the

b terminal nodes, which are independent by assumption. The R`’s denote the data

in the `th terminal node and where n` denotes how many observations are in each

terminal node and n =
∑b

`=1 n`.

We now find an analytic expression for the node likelihood term. Remember, if

the mean in each terminal node, which we denote µ`, was known, then we would have

R`1 , . . . , R`n`
|µ`, σ2 iid∼ N (µ`, σ

2). BART requires µ` to be margined out, allowing the

Gibbs sampler in Equation 1.13 to avoid dealing with jumping between continuous

spaces of varying dimensions (Chipman et al., 2010, page 275). Recall that one of the

BART model assumptions is a prior on the average value of µ ∼ N
(
0, σ2

µ

)
and thus,

P
(
R`1 , . . . , R`n`

| σ2
)

=

∫
R
P
(
R`1 , . . . , R`n`

| µ`, σ2
)
P
(
µ`;σ

2
µ

)
dµ` (A.8)

which can be shown via completion of the square or convolution to be

P
(
R`1 , . . . , R`n`

| σ2
)

=
1

(2πσ2)n`/2

√
σ2

σ2 + n`σ2
µ

× (A.9)
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exp

(
− 1

2σ2

(
n∑̀
i=1

(
R`i − R̄`

)2 − R̄2
`n

2
`

n` + σ2

σ2
µ

+ n`R̄
2
`

))

where R̄` denotes the mean response in the node and R`i denotes the observations

i = 1 . . . n` in the node.

Since the likelihoods are solely determined by the terminal nodes, the proposal

tree differs from the original tree by only the selected node to be grown, denoted by

`, which becomes two children after the GROW step denoted by `L and `R. Hence,

the likelihood ratio becomes:

P
(
R | i∗, σ2

)
P
(
R | i, σ2

) =
P
(
R`L,1 , . . . , R`L,n`,L

| σ2
)
P
(
R`R,1 , . . . , RR,`n`,R

| σ2
)

P
(
R`1 , . . . , R`n`

| σ2
) (A.10)

Plugging Equation A.9 into Equation A.10 three times yields the ratio for the

GROW step:

√
σ2
(
σ2 + n`σ2µ

)(
σ2 + n`Lσ

2
µ

) (
σ2 + n`Rσ

2
µ

) (A.11)

× exp

 σ2µ
2σ2


(∑n`L

i=1 R`L,i

)2
σ2 + n`Lσ

2
µ

+

(∑n`R
i=1 R`R,i

)2
σ2 + n`Rσ

2
µ

−
(
∑n`

i=1R`,i)
2

σ2 + n`σ2µ




where n`L and n`R denote the number of data points in the newly grown left and right

child nodes.

Tree Structure Ratio

In Section 1.4.1 we discussed the prior on the tree structure (where the splits occur)

as well as the tree rules. For the entire tree,
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P
(
i
)

=
∏

η∈Hterminals

(1− PSPLIT (η))
∏

η∈Hinternals

PSPLIT (η)
∏

η∈Hinternals

PRULE (η) (A.12)

where Hterminals denotes the set of terminal nodes and Hinternals denotes the internal

nodes.

Recall that the probability of splitting on a given node η is PSPLIT (η) = α/ (1 + dη)
β.

The probability is controlled by two hyperparameters, α and β, and dη is the depth

(number of parent generations) of node η. When assigning a rule, recall that BART

picks from all available attributes and then from all available unique split points. Us-

ing the notation from the transition ratio section, PRULE (η) = 1/padj(η)×1/nj·adj(η).

Once again, the original tree features a node η that was selected to be grown. The

proposal tree differs with two child nodes denoted ηL and ηR. We can now form the

ratio:

P
(
i∗
)

P
(
i
) =

(1− PSPLIT (ηL)) (1− PSPLIT (ηR))PSPLIT (η)PRULE (η)

(1− PSPLIT (η))
(A.13)

=

(
1− α

(1 + dηL)β

)(
1− α

(1 + dηR)β

)
α

(1 + dη)
β

1

padj(η)

1

nj·adj(η)

1− α

(1+dη)
β

= α

(
1− α

(2+dη)
β

)2(
(1 + dη)

β − α
)
padj(η)nj·adj(η)

The last line follows from algebra and using the fact that the depth of the grown

nodes is the depth of the parent node incremented by one (dηL = dηR = dη + 1).
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A.1.3 Prune Proposal

A prune proposal is the “opposite” of a grow proposal. Prune selects a node with

two children and removes them. Thus, each ratio will be approximately the inverse

of the ratios found in the previous section concerning the grow proposal. Note also

that prune steps are not considered in trees that consist of a single root node.

Transition Ratio

We begin with transitioning from the original tree to the proposal tree:

P
(
i → i∗

)
= P (PRUNE)P (selecting η to prune from) = P (PRUNE)

1

w2

(A.14)

where w2 denotes the number of parent nodes that have two children but no grand-

children. To transition in the opposite direction, we are obligated to grow from node

η. This is similar to Equation A.4 except the proposed tree has one less terminal

node due to the pruning of the original tree, resulting in a 1/(b− 1) term:

P
(
i∗ → i

)
= P (GROW)

1

b− 1

1

padj(η∗)

1

nj∗·adj(η∗)
. (A.15)

Thus, the transition ratio is:

P
(
i∗ → i

)
P
(
i → i∗

) =
P (GROW)

P (PRUNE)

w2

(b− 1)padj(η∗)nj∗·adj(η∗)
. (A.16)
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Likelihood Ratio

This is simply the inverse of the likelihood ratio for the grow proposal:

P
(
R | i∗, σ2

)
P
(
R | i, σ2

) =

√(
σ2 + n`Lσ

2
µ

) (
σ2 + n`Rσ

2
µ

)
σ2
(
σ2 + n`σ2

µ

) × (A.17)

exp

 σ2
µ

2σ2

(∑n`
i=1R`,i

)2
σ2 + n`σ2

µ

−

(∑n`L
i=1 R`L,i

)2
σ2 + n`Lσ

2
µ

−

(∑n`R
i=1 R`R,i

)2
σ2 + n`Rσ

2
µ


 .

Tree Structure Ratio

This is also simply the inverse of the tree structure ratio for the grow proposal:

P
(
i∗
)

P
(
i
) =

(
(1 + dη)

β − α
)
padj(η

∗)nj∗·adj(η
∗)

α
(

1− α

(2+dη)
β

)2 . (A.18)

A.1.4 Change

A change proposal involves picking an internal node and changing its rule by picking

both a new available predictor to split on and a new valid split value among values

of the selected predictor. Although this could be implemented for use in any internal

node in the tree, for simplicity we limit our implementation to singly internal nodes:

those that have two terminal child nodes and thus, no grand-children.

Transition Ratio

The transition to a proposal tree is below:
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P
(
i → i∗

)
= P (CHANGE)P (selecting node η to change)× (A.19)

P (selecting the new attribute to split on)×

P (selecting the new value to split on)

When calculating the ratio, the first three terms are shared in both numerator

and denominator. The probability of selecting the new value to split on will differ as

different split features have different numbers of unique values available. Thus we are

left with

P
(
i∗ → i

)
P
(
i → i∗

) =
nj∗·adj(η

∗)

nj·adj(η)
(A.20)

where nj∗·adj(η
∗) is the number of split values available under the proposal tree’s

splitting rule and nj·adj(η) is the number of split values available under the original

tree’s splitting rule.

Likelihood Ratio

The proposal tree differs from the original tree only in the two child nodes of the

selected change node. These two terminal nodes have the unexplained responses

apportioned differently. Denote R1· as the residuals of the first child node and R2· as

the unexplained responses in the second daughter node. Thus we begin with:

P
(
R | i∗, σ2

)
P
(
R | i, σ2

) =
P (R1∗,1, . . . , R1∗,n1∗ | σ2)P (R2∗,1, . . . , R2∗,n2∗ | σ2)

P (R1,1, . . . , R1,n1 | σ2)P (R2,1, . . . , R2,n2 | σ2)
(A.21)
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where the responses denoted with an asterisk are the responses in the proposal tree’s

child nodes.

Substituting Equation A.9 four times and using algebra, the following expression

is obtained for the ratio:

√√√√√
(
σ2

σ2
µ

+ n1

)(
σ2

σ2
µ

+ n2

)
(
σ2

σ2
µ

+ n∗1

)(
σ2

σ2
µ

+ n∗2

) × (A.22)

exp

(
1

2σ2

(
(
∑n1∗

i=1R1∗,i)
2

n1∗ + σ2

σ2
µ

+
(
∑n2∗

i=1R2∗,i)
2

n2∗ + σ2

σ2
µ

− (
∑n1

i=1R1,i)
2

n1 + σ2

σ2
µ

− (
∑n2

i=1R2,i)
2

n2 + σ2

σ2
µ

))

which simplifies to

exp

(
1

2σ2

(
(
∑n1∗

i=1R1∗,i)
2 − (

∑n1∗
i=1R1,i)

2

n1 + σ2

σ2
µ

+
(
∑n1∗

i=1R2∗,i)
2 − (

∑n1∗
i=1R2,i)

2

n2 + σ2

σ2
µ

))
(A.23)

if the number of responses in the children do not change in the proposal (n1 = n∗1

and n2 = n∗2).

Tree Structure Ratio

The proposal tree has the same structure as the original tree. Thus we only need to

take into account the changed node’s children:

P
(
i∗
)

P
(
i
) =

(1− PSPLIT (η1∗)) (1− PSPLIT (η2∗))PSPLIT (η∗)PRULE (η∗)

(1− PSPLIT (η1) (1− PSPLIT (η2)))PSPLIT (η)PRULE (η)
. (A.24)

The probability of splits remain the same because the child nodes are at the same

depths. Thus we only need to consider the ratio of the probability of the rules. Once
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again, the probability of selecting the new value to split on will differ as different split

features have different numbers of unique values available. We are left with

P
(
i∗
)

P
(
i
) =

nj·adj(η)

nj∗·adj(η∗)
. (A.25)

Note that this is the inverse of the transition ratio. Hence, for the change step,

only the likelihood ratio needs to be computed to determine the Metropolis-Hastings

ratio r.
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A.2 Supplement for Chapter 3

A.2.1 Pseudo-code for Variable Selection Procedures

Algorithm 4 Local Threshold Procedure

Compute p1, ..., pK . Inclusion proportions from original data

for i← {1, ..., P} do . P is the number of null permutations

y∗ ← Permute(y)

Run BART using y∗ as response

Compute p∗i1, ..., p
∗
iK . Inclusion proportions from permuted data

end for

for j ← {1, ..., K} do

q∗j ← Quantile(p∗1j, ..., p
∗
Pj, 1− α) . 1− α quantile of xj permutation

distribution

if pj > q∗j then Include pj in Vars end if

end for

return Vars
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Algorithm 5 Global Maximum Threshold Procedure

Compute p1, ..., pK . Inclusion proportions from original data

for i← {1, ..., P} do . P is the number of null permutations

y∗ ← Permute(y)

Run BART using y∗ as response

Compute p∗i1, ..., p
∗
iK . Inclusion proportions from permuted data

gi ← Max(p∗i1, ..., p
∗
iK) . Maximum of proportions from permuted data

end for

g∗ ← Quantile(gi, ..., gp, 1− α) . 1− α Quantile of maxima

for j ← {1, ..., K} do

if pj > g∗ then Include pj in Vars end if

end for

return Vars
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Algorithm 6 Global Standard Error Threshold Procedure

Compute p1, ..., pK . Inclusion proportions from original data

for i← {1, ..., P} do . P is the number of null permutations

y∗ ← Permute(y)

Run BART using y∗ as response

Compute p∗i1, ..., p
∗
iK . Inclusion proportions from permuted data

end for

for j ← {1, ..., K} do

mj ← Avg(p∗1j, ..., p
∗
Pj) . Sample average of xj permutation distribution

sj ← SD(p∗1j, ..., p
∗
Pj) . Sample sd of xj permutation distribution

end for

C∗ ← inf
C∈R+

{
∀j, 1

P

P∑
i=1

1p∗ij≤mj+C·sj > 1− α

}
. Simultaneous coverage

for j ← {1, ..., K} do

if pj > mj + C∗ · sj then Include pj in Vars end if

end for

return Vars
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Algorithm 7 Cross-Validated Comparison of Threshold Procedures

Divide the data into K training-test splits

for k ← {1, ..., K} do

for method ← {Local, Global Maximum, Global SE} do

Varmethod ← Selected variables using method on BART

BARTmethod ← BART built from kth training set using only Varmethod

L2k,method ← L2 error from BARTmethod on kth test set

end for

end for

for method ← {Local, Global Maximum, Global SE} do

L2method ←
K∑
k=1

L2k,method . Aggregate L2 error over entire training set

end for

method∗ ← arg min
method

{L2method} . Choose the best method from the three

return Selected variables using method∗ on BART on full training set
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A.3 Supplement for Chapter 5

A.3.0.1 Gibbs Sampling Details for HBART

In the following sections, we provide implementation details for each step of the HBART

Gibbs sampler (Equation 5.5).

Drawing σ2 (step 2m+ 1)

Drawing σ2 in HBART requires a slight modification to the scheme used in the original

homoskedastic BART. With the errors distributed multivariate normal (Equation 5.2)

and the prior on σ2 being distributed inverse-gamma, conjugacy yields the posterior

as an inverse-gamma distribution just as in BART. The quadratic form of the errors

and their covariance matrix carries into the scale parameter. Hence, we sample σ2 as

σ2 ∼ InvGamma

(
ν + n

2
,
νλ+ ETD−1E

2

)
(A.26)

= InvGamma

(
ν + n

2
,
νλ

2
+

1

2

(
n∑
i=1

exp
(
−z>i γ

)
E2i

))
.

The default values of hyperparameters ν and q are set to be the same as the defaults

of the original homoskedastic BART algorithm.

Drawing γ (step 2m+ 2)

The posterior of γ | E1, . . . , En, σ2 is proportional to:

P
(
γ | E1, . . . , En, σ2

)
∝ P

(
E1, . . . , En | γ, σ2

)
P (γ) (A.27)
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=
n∏
i=1

1√
2πσ2exp

(
z>i γ

)exp

(
− 1

2σ2exp
(
z>i γ

)E2i
)
×

p∏
j=1

1√
2πΣjj

exp

(
− 1

2Σjj
(γj − γ0j)2

)
∝ 1√

σ2exp
(∑n

i=1 z
>
i γ
) ×

exp

−1

2

 n∑
i=1

E2i
σ2exp

(
z>i γ

) +

p∑
j=1

(γj − γ0j)2

Σjj


Since it is not tractable to draw directly from the above distribution, a proposal dis-

tribution is required. A suitable proposal distribution can be obtained using Gamer-

man (1997), which is based on a single step of an iteratively reweighted least squares

algorithm. Letting γ represent the current value of the parameter vector, the recom-

mended proposal density is P (γ∗|γ) = Np (a(γ), B) where

a = B

(
Σ−1γ0 +

1

2
ZTw

)
, B =

(
Σ−1 +

1

2
ZTZ

)−1
and (A.28)

w =

[
z>1 γ +

E21
σ2exp

(
z>1 γ

) − 1 . . . z>n γ +
E2n

σ2exp (z>n γ)
− 1

]>
.

Then, γ∗ is accepted if a draw from a standard uniform distribution is less than the

Metropolis-Hastings ratio (Gelman et al., 2004, p.291),

r =
P (γ∗|γ)

P (γ|γ∗)︸ ︷︷ ︸
jump ratio

P (γ∗ | σ2, E1, . . . , En)

P (γ | σ2, E1, . . . , En)︸ ︷︷ ︸
likelihood ratio

. (A.29)

The jump ratio in Equation A.29 becomes
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P (γ∗|γ)

P (γ|γ∗)
=

(2π)−
p
2 |B|−

1
2 exp

(
−1

2
(γ∗ − a(γ))>B−1 (γ∗ − a(γ))

)
(2π)−

p
2 |B|−

1
2 exp

(
−1

2
(γ − a(γ∗))>B−1 (γ − a(γ∗))

) (A.30)

= exp

(
1

2
(γ − γ∗ + a(γ)− a(γ∗))>B−1 (γ − γ∗ + a(γ)− a(γ∗))

)
,

the likelihood ratio in Equation A.29 is calculated to be

P
(
γ∗ | σ2, E1, . . . , En

)
P (γ | σ2, E1, . . . , En)

=

n∏
i=1

1√
2πσ2exp

(
z>i γ

∗
)exp

(
− 1

2σ2exp
(
z>i γ

∗
)E2i

)
n∏
i=1

1√
2πσ2exp

(
z>i γ

)exp

(
− 1

2σ2exp
(
z>i γ

)E2i
) (A.31)

×

p∏
j=1

1√
2πΣjj

exp

(
− 1

2Σjj
(γ∗j − γ0j)2

)
p∏
j=1

1√
2πΣjj

exp

(
− 1

2Σjj
(γj − γ0j)2

)

= exp

(
1

2

(
n∑
i=1

z>i (γ − γ∗)

+
1

σ2

(
n∑
i=1

E2i
(

exp
(
−z>i γ

)
− exp

(
−z>i γ∗

))))

+

p∑
j=1

1

Σjj

(
γ2j − γ∗

2

j + 2γ0j(γ
∗
j − γj)

))

which results in the Metropolis-Hastings ratio of Equation A.29 of

r = exp

(
1

2

(
(γ − γ∗ + a(γ)− a(γ∗))>B−1 (γ + γ∗ − (a(γ) + a(γ∗))) (A.32)

+

n∑
i=1

z>i (γ − γ∗) +
1

σ2

n∑
i=1

E2i
(

exp
(
−z>i γ

)
− exp

(
−z>i γ∗

))
+

p∑
j=1

1

Σjj

(
γ2j − γ∗2j + 2γ0j

(
γ∗j − γj

))))
.

246



We choose default values for the hyperparameters γ0,1, . . . , γ0,p and Σ11, . . . ,Σpp.

All γ0,j are set to 0. This choice centers the prior distribution of the linear model

coefficients at zero. For the variance hyperparameters, we choose the Σjj’s to be

1000 for all j which is sufficiently large so our model will not impose shrinkage of the

coefficients towards 0. Investigating this parameter’s role in our algorithm we view

as fruitful future work.

Drawing the l’s (steps 2, 4, . . . , 2m)

Sampling the leaf parameters must be adjusted to reflect the heteroskedasticity in

the model. Observations considered highly variable will now be downweighted when

constructing an estimate of a leaf node’s prediction. Recall that lt | i1,R1, σ
2
1, . . . , σ

2
n

is the sampling for all leaves where each leaf is considered independent,

µt1 | it,Rt1 , σ
2
1, . . . , σ

2
n (A.33)

µt2 | it,Rt2 , σ
2
1, . . . , σ

2
n

...

µtbt | it,Rtbt
, σ2

1, . . . , σ
2
n

where bt denotes the number of terminal nodes in the tth tree and the subscripts on

the Rti terms denote only the data that is apportioned to the specific terminal node.

Recall that the prior on the leaf parameters, µ’s, are normal and the likelihood of the

responses, Rt’s, are assumed normal as well.

Given the normal-normal conjugacy, we derive the normal posterior distribution

for a given leaf’s prediction which is necessarily a function of the heterogeneous vari-

ances. We drop the subscripts on the R term for convenience and denote k as the
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number of data records that fell into the given leaf. Note that we drop double sub-

scripting on the variances {σ2
1, . . . , σ

2
k} which are a subset of {σ2

1, . . . , σ
2
n} for the data

records in this leaf.

P
(
µ | R, σ2

1, . . . , σ
2
k,γ
)
∝ P

(
R | µ, σ2

1, . . . , σ
2
k,γ
)
P
(
µ | σ2

1, . . . , σ
2
k

)
(A.34)

= Nk
(
µ1, σ2D

)
N
(
0, σ2

µ

)
=

(
k∏
i=1

N
(
µ, σ2

i

))
N
(
0, σ2

µ

)

= N


k∑
i=1

Ri

σ2
i

1

σ2
µ

+
k∑
i=1

1

σ2
i

,
1

1

σ2
µ

+
k∑
i=1

1

σ2
i



Drawing the i’s (steps 1, 3, . . . , 2m− 1)

As described in Kapelner and Bleich (2015, Appendix A), the draw of a new tree

structure relies on a Metropolis-Hastings step where trees can be altered via growing

new child nodes from an existing terminal node (GROW), pruning two terminal nodes

such that their parent becomes terminal (PRUNE), or changing the splitting rule in a

node (CHANGE).

Below is the Metropolis-Hastings ratio where the parameter sampled is the tree

and the data is the responses unexplained by other trees denoted by R. We denote

the new, proposal tree with an asterisk and the original tree without the asterisk.

r =
P
(
i∗ → i

)
P
(
i → i∗

) P
(
i∗ | R, σ2,γ

)
P
(
i | R, σ2,γ

) (A.35)

This can be reformulated using repeated applications of Bayes’ Rule to be a prod-
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uct of three ratios.

r =
P
(
i∗ → i

)
P
(
i → i∗

)
︸ ︷︷ ︸
transition ratio

×
P
(
R | i∗, σ2,γ

)
P
(
R | i, σ2,γ

)
︸ ︷︷ ︸

likelihood ratio

×
P
(
i∗
)

P
(
i
)

︸ ︷︷ ︸
tree structure ratio

(A.36)

Note that the probability of the tree structure is independent of σ2 and γ.

The transition ratio and the tree structure ratio remain the same as in the original

BART as they do not depend on the variance parameters. The likelihood ratio now

must take into account the heterogeneity in variances. The PRUNE likelihood ratio is

the inverse of the GROW likelihood ratio. Thus, we only need to compute likelihood

ratios for GROW and CHANGE.

The Likelihood Ratio for the GROW proposal

Since the likelihoods are solely determined by the terminal nodes, the grown proposal

tree differs from the original tree by only the selected node to be grown. We denote

the node to be grown by `, the left child by `L and the right child by `R.

P
(
R | i∗σ

2,γ
)

P
(
R | i, σ2,γ

) =

∫
R
P
(
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)
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∫
R
P
(
R`R | µ, σ2,γ

)
P (µ) dµ∫

R
P
(
R` | µ, σ2,γ

)
P (µ) dµ

(A.37)

Each of these three integrals are the same with regards to marginalizing the µ

term:

∫
R
P
(
R | µ, σ2,γ

)
P (µ) dµ

=
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1
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dµ
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(A.38)

The likelihood ratio can now be computed by substituting Equation A.38 into Equa-

tion A.37 three times to arrive at:
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 .

The Likelihood Ratio for the CHANGE proposal

The homoskedastic BART implementation of Kapelner and Bleich (2015) considered

change proposals for singly internal nodes only (i.e., both child nodes must be terminal

nodes). The likelihood ratio in this case simplifies to the likelihood of these two leaves

before and after the change:
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P (R`∗,1, . . . , R`∗,n`∗ | σ2,γ)P (Rr∗,1, . . . , Rr∗,nr∗ | σ2,γ)

P (R`,1, . . . , R`,n` | σ2,γ)P (Rr,1, . . . , Rr,nr | σ2,γ)
. (A.40)

The ` refers to the left terminal node and r refers to the terminal right node. The

`∗ and the r∗ denote these same two nodes in the proposal tree, i.e after the parent’s

split rule was changed.

The likelihood with µ margined out has been calculated in Equation A.38 and we

express it here with a convenient factorization:
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To find the ratio, we must substitute this expression into equation A.40 four times.

We begin by substituting only the term marked A above to arrive at
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Of course n`∗ + nr∗ = n` + nr = n and the σ2’s are the same since they aren’t drawn
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until later on in the Gibbs sampling scheme. Thus, the above reduces to
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In term B, upon making all four substitutions, it is clear all the parents’ observations

must be summed in the numerator as well as the denominator. Thus, this term

cancels.

Now we examine term C. Due to the exponentiation, multiplication becomes

addition and division becomes subtraction and all four substitutions yield

exp


σ2µ
2



(
n`∗∑
i=1

Ri
σ2i

)2

1 + σ2µ

n`∗∑
i=1

1

σ2i

+

(
nr∗∑
i=1

Ri
σ2i

)2

1 + σ2µ

nr∗∑
i=1

1

σ2i

−

(
n∑̀
i=1

Ri
σ2i

)2

1 + σ2µ

n∑̀
i=1

1

σ2i

−

(
nr∑
i=1

Ri
σ2i

)2

1 + σ2µ

nr∑
i=1

1

σ2i



 . (A.45)

Multiplying terms A.44 and A.45 yields the likelihood ratio for the CHANGE proposal.
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A.4 Supplement for Chapter 8

The steps that follow summarize the procedure used to discard unreliable forecasts.

(a) Construct a classification tree using a loss-matrix with the desired costs.

(b) For each case, find the terminal node where it was classified.

(c) Create a table that shows for each terminal node, how many observations in

that node were labelled “Fail” vs. “No Fail.”

(d) To understand how close the vote in each node was, re-weight the “Fails” in

each terminal node by their weight as if they were false negatives (e.g., assign

a cost of 5.0 to each failure). This now allows one to check the majority vote

(using weighted fails) to see which classification won.

(e) Let F be the weighted sum of all of the ”Fails” (e.g., 400 fails X 5.0 cost =

2000) and NF be total number of non-failures, each with a weight of 1.0. Let

p = F/(F +NF ), the proportion of the weighted total number of votes that are

“Fail” in a given terminal node. This can be done symmetrically with (1 − p)

as well.

(f) Set a desired margin. Check if |p− .5| < c is too close to call. How close is too

close will require some trial and error.

(g) Store which nodes are too close and which are not. Use the output from the

tree with the additional label that some nodes are now too close too call.

(h) One can exclude these too-close observations and run a cross-check against the

bootstrapped trees to see how the stability improves.
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