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Optical Cerebral Blood Flow Monitoring of Mice to Men

Abstract
This thesis describes cerebral hemodynamic monitoring with the optical techniques of diffuse optical
spectroscopy (DOS) and diffuse correlation spectroscopy (DCS). DOS and DCS both employ near-infrared
light to investigate tissue physiology millimeters to centimeters below the tissue surface. DOS is a static
technique that analyzes multispectral tissue-scattered light intensity signals with a photon diffusion approach
(Chapter 2) or a Modified Beer-Lambert law approach (Chapter 3) to derive tissue oxy- and deoxy-
hemoglobin concentrations, which are in turn used to compute tissue oxygen saturation and blood volume
(Section 2.13). DCS is a qualitatively different dynamic technique that analyzes rapid temporal fluctuations in
tissue-scattered light with a correlation diffusion approach to derive tissue blood flow (Chapter 4). Further, in
combination these measurements of blood flow and blood oxygenation provide access to tissue oxygen
metabolism (Section 7.6).

The new contributions of my thesis to the diffuse optics field are a novel analysis technique for the DCS signal
(Chapter 5), and a novel approach for separating cerebral hemodynamic signals from extra-cerebral artifacts
(Chapter 6). The DCS analysis technique extends the Modified Beer-Lambert approach for DOS to the DCS
measurement. This new technique has some useful advantages compared to the correlation diffusion
approach. It facilitates real-time flow monitoring in complex tissue geometries, provides a novel route for
increasing DCS measurement speed, and can be used to probe tissues wherein light transport is non-diffusive
(Chapter 5). It also can be used to filter signals from superficial tissues. For separation of cerebral
hemodynamic signals from extra-cerebral artifacts, the Modified Beer-Lambert approach is employed in a
pressure modulation scheme, which determines subject-specific contributions of extra-cerebral and cerebral
tissues to the DCS/DOS signals by utilizing probe pressure modulation to induce variations in extra-cerebral
hemodynamics while cerebral hemodynamics remain constant (Chapter 6).

In another novel contribution, I used optical techniques to characterize neurovascular coupling at several
levels of cerebral ischemia in a rat model (Chapter 7). Neurovascular coupling refers to the relationship
between increased blood flow and oxygen metabolism and increased neuronal activity in the brain. In the rat,
localized neuronal activity was increased from functional forepaw stimulation. Under normal flow levels, I
(and others) observed that the increase in cerebral blood flow (surrogate for oxygen delivery) from forepaw
stimulation exceeded the increase in cerebral oxygen metabolism by about a factor of 2. My measurements
indicate that this mismatch between oxygen delivery and consumption are more balanced during ischemia
(Chapter 7).

In Chapters 2 and 3, I review the underlying theory for the photon diffusion model and the Modified Beer-
Lambert law for DOS analysis. I also review the correlation diffusion approach for analyzing DCS signals in
Chapter 4. My hope is that readers new to the field will find these background chapters helpful.
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ABSTRACT

OPTICAL CEREBRAL BLOOD FLOW MONITORING OF MICE TO

MEN

Wesley Boehs Baker

Arjun G. Yodh

This thesis describes cerebral hemodynamic monitoring with the optical techniques of diffuse

optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS). DOS and DCS both

employ near-infrared light to investigate tissue physiology millimeters to centimeters below the

tissue surface. DOS is a static technique that analyzes multispectral tissue-scattered light in-

tensity signals with a photon diffusion approach (Chapter 2) or a Modified Beer-Lambert law

approach (Chapter 3) to derive tissue oxy- and deoxy-hemoglobin concentrations, which are in

turn used to compute tissue oxygen saturation and blood volume (Section 2.13). DCS is a quali-

tatively different dynamic technique that analyzes rapid temporal fluctuations in tissue-scattered

light with a correlation diffusion approach to derive tissue blood flow (Chapter 4). Further, in

combination these measurements of blood flow and blood oxygenation provide access to tissue

oxygen metabolism (Section 7.6).

The new contributions of my thesis to the diffuse optics fieldare a novel analysis technique

for the DCS signal (Chapter 5), and a novel approach for separating cerebral hemodynamic sig-

nals from extra-cerebral artifacts (Chapter 6). The DCS analysis technique extends the Modified

Beer-Lambert approach for DOS to the DCS measurement. This new technique has some useful

advantages compared to the correlation diffusion approach. It facilitates real-time flow monitor-

ing in complex tissue geometries, provides a novel route forincreasing DCS measurement speed,

and can be used to probe tissues wherein light transport is non-diffusive (Chapter 5). It also can

be used to filter signals from superficial tissues. For separation of cerebral hemodynamic signals

from extra-cerebral artifacts, the Modified Beer-Lambert approach is employed in a pressure

modulation scheme, which determines subject-specific contributions of extra-cerebral and cere-

bral tissues to the DCS/DOS signals by utilizing probe pressure modulation to induce variations
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in extra-cerebral hemodynamics while cerebral hemodynamics remain constant (Chapter 6).

In another novel contribution, I used optical techniques tocharacterize neurovascular cou-

pling at several levels of cerebral ischemia in a rat model (Chapter 7). Neurovascular coupling

refers to the relationship between increased blood flow and oxygen metabolism and increased

neuronal activity in the brain. In the rat, localized neuronal activity was increased from func-

tional forepaw stimulation. Under normal flow levels, I (andothers) observed that the increase

in cerebral blood flow (surrogate for oxygen delivery) from forepaw stimulation exceeded the

increase in cerebral oxygen metabolism by about a factor of 2. My measurements indicate that

this mismatch between oxygen delivery and consumption are more balanced during ischemia

(Chapter 7).

In Chapters 2 and 3, I review the underlying theory for the photon diffusion model and the

Modified Beer-Lambert law for DOS analysis. I also review thecorrelation diffusion approach

for analyzing DCS signals in Chapter 4. My hope is that readers new to the field will find these

background chapters helpful.
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Chapter 1

Introduction

Diffuse correlation spectroscopy [37, 79, 84, 182, 269] (DCS) and diffuse optical spectroscopy

[99, 115, 166, 175, 193, 219, 231, 248] (DOS) are optical techniques that employ near-infrared

light (NIR) to monitor cerebral blood flow, oxygen saturation, and blood volume continuously

and non-invasively at the bedside. In adults, the surface ofthe cerebral cortex is about 1-1.5 cm

below the surface of the scalp, which is optically deep tissue. To investigate tissue physiology

centimeters below the tissue surface, DCS/DOS relies on theNIR spectral window (∼ 650−950

nm) wherein light absorption from water and hemoglobin is relatively low (Figure 1.1). Although

the overall low light absorption enables NIR photons to travel deep in tissue, the spectra of

dominant NIR tissue chromophores, i.e., oxy-hemoglobin (HbO orHbO2), deoxy-hemoglobin

(HbR orHb), and water, still differ significantly across the spectralwindow (Figure 1.1). Thus,

these tissue chromophore concentrations can be separated from one another and quantitatively

resolved with multi-spectral spectroscopy measurements.

Conversely, tissue scattering is high in the NIR window, andphotons will scatter thousands of

times before they are absorbed. While most traditional optical spectroscopy techniques sample

optically thin media where photons scatter no more than once, cerebral tissue measurements

are in the opposite, optically thick regime. In the high multiple scattering limit, light transport

through tissue is very well approximated as a diffusive process (Chapter 2). The photon diffusion

model of light makes the inverse problem of determining tissue absorption, scattering, and blood

flow from measurements of light intensity tractable (Chapters 2, 4).
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Figure 1.1: Absorption (µa) spectra of main tissue chromophores over a large wavelength range.
The inset shows the so-called “physiological window” in thenear-infrared where water and
hemoglobin absorption are relatively low. Notice in the inset that the water and lipid absorption
are not multiplied by 100. In this NIR spectral window, lightcan penetrate several centimeters
into tissue. Furthermore, there are clear features in the spectra which enable estimation of chro-
mophore concentration from diffuse optical measurements at several wavelengths. This figure is
a reprint of [79, Figure 1]
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Figure 1.2: A single DCS/DOS source-detector pair (separation ρ = 3 cm) in the remission
geometry for brain tissue measurements.
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A very basic DCS/DOS cerebral measurement with a single source-detector pair is depicted

in Figure 1.2. NIR light delivered to a point on the scalp diffuses through tissue randomly

in all directions. A fraction of this diffusing light emerges at the light detector located a few

centimeters away from the source point. This detected lighthas probed (i.e., interacted with) a

“banana shaped” volume of tissue that spans millimeters to acouple centimeters below the scalp

surface (Section 2.12).

The DOS and DCS techniques use the same measurement geometry, but they measure the

detected light intensity on different time scales (Figure 1.3). DOS is a static technique that mea-

sures slow (0.1− 1 s) variations in the detected light intensity induced by tissue absorption (µa)

and scatttering (µ′s) changes. DCS is a qualitatively different dynamic technique that measures

the rapid (microsecond scale) speckle light intesity fluctuations induced by blood flow (F ). Tis-

sue absorption in the NIR spectral window depends predominantly onHbO2, Hb, water, and

lipids. Multispectral DOS measurements can quantitatively resolve the concentrations of these

chromophores through using the photon diffusion model to separate absorption from scatter-

ing (Section 2.13). The primary chromophores of interest are oxy- and deoxy-hemoglobin, from

which the tissue oxygen saturation, i.e.,StO2 = HbO2/(HbO2+Hb), and tissue blood volume,

i.e.,BV ∝ (HbO2 +Hb), can be calculated (see Section 2.13).

DCS obtains a tissue blood flow index,F , that is directly proportional to tissue blood flow,

from the decay of the intensity autocorrelation function ofthe speckle intensity fluctuations

(Section 4.9). Further, a tissue compartment model (Section 7.6) can be employed to compute

an index of tissue oxygen metabolism (or oxygen consumptionrate) from measurements ofF

andStO2.

As might be anticipated, this information about cerebral blood flow, blood oxygenation and

oxygen metabolism has clinical value. All three parameters, for example, are important biomark-

ers for brain diseases such as ischemic stroke [127,229].

1.1 Ischemic Stroke

Ischemic stroke is among the leading causes of death and morbidity, and occurs iñ700 thousand

people each year in the U.S. alone [110]. In an ischemic stroke, a blood clot blocks a cerebral
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Figure 1.3:(A) Schematic for a homogeneous tissue model of the head with a blood flow index,
absorption coefficient, and reduced scattering coefficientof F , µa, andµ′s, respectively. The
incident source intensity,Is, remains constant over time. Blood cell motion (e.g., red disks at
time t and light-red disks at timet+ τ ) induces fast temporal fluctuations (i.e., speckle intensity
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tering changes modify mean light intensities (e.g., averaged on time scales of ms or greater).
(B) Schematic of detected intensity fluctuations for a baselinetissue state (red curve) and a per-
turbed state from baseline with higher blood flow and absorption (blue curve). The horizontal
black lines are the mean intensities for the two states, denoted asI0 andI.

artery (e.g., middle cerebral artery (MCA)), causing an interruption in blood flow supply to

a localized region of the brain (Figure 1.4). The stroke lesion is comprised of a core and a

penumbra [11, 127, 229]. The core is almost entirely dependent on the blocked artery for blood

flow supply, and consequentially, blood flow in the core is very low (< 20% of normal flow).

This tissue region does not remain viable long, and is usually doomed. Surrounding the core is

the penumbra, which is partially dependent on the blocked artery for blood flow supply. Thus,

blood flow in the penumbra is low (< 50% of normal flow), but substantially higher than the

core due to perfusion from collateral vessels. Therefore, the penumbra remains viable on a

longer time scale than the core.

The volume of stroke-related dead tissue is the infarct. On short time scales, the infarct

mostly consists of the core, but on longer time scales, the penumbra will also succumb to low

blood flow conditions (Figure 1.4). Importantly, the penumbra tissue does not die all at once,

but is recruited in a complex infarction process that results in gradual infarct growth until well

perfused tissue is encountered (Figure 1.4).

Since the recruitment of penumbra tissue into the infarct takes time, an acute therapeutic
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Figure 1.4: Exemplar schematic of acute ischemic stroke progression. Blood flow supply is
interrupted to a localized region of the brain (i.e., the stroke lesion) by occlusion of the middle
cerebral artery (MCA) (left). The ischemic stroke lesion consists of a core that depends almost
entirely on the MCA for blood flow supply, and a surrounding penumbra that is partially perfused
by collateral vessels. On short time scales, the infarct largely consists of the core. At longer time
scales, the infarct expands into the penumbra until well perfused tissue is encountered. Since the
recruitment of penumbra tissue into the infarct takes time,there is an acute therapeutic window
in which interventions can be prescribed to reduce the infarct growth by maximizing perfusion.
DCS is a promising technique for determining the efficacy of an intervention’s ability to increase
penumbra blood flow. This figure is courtesy of Turgut Durduran.

window should exist where effective treatment interventions can halt infarct growth. Thus, treat-

ments for acute ischemic stroke aim to minimize neurological damage by maximizing perfusion

to the brain lesion [86,97,259]. Of course, the most obviousway restore blood flow is to remove

the clot blocking the cerebral artery. Indeed, on short timescales within a few hours of stroke

onset, rtPA infusion is typically prescribed, which is a drug that dissolves the clot.

However, on longer time scales after stroke onset, rtPA infusion can be harmful. If the core

has been dead long enough, the vasculature in the core is often no longer intact. In these cases,

a sudden restoration of blood flow to the core results in heavybleeding that leads to death.

Paradoxically, restoration of blood flow to the core hours after stroke onset can also exacerbate

tissue damage through mechanisms such as increased edema (e.g., brain swelling from a leaky

vasculature) and the production of injurious free oxygen radicals [229]. Thus, on time scales of

several hours to days following stroke onset, the treatmentstrategy is to maximize perfusion to

the penumbra to halt infarct growth without restoring flow tothe core.

Numerous acute treatment interventions for stroke are available, but variability in response-

to-treatment has been observed [86, 97, 155], and an effective treatment for one patient may be

ineffective, or even harmful, for another patient. Thus, a promising clinical application for DCS
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and DOS is rapid patient-specific assessment of treatment efficacy. An effective treatment will

increase perfusion to the penumbra, which DCS and DOS/NIRS can measure in real time. In-

deed, DCS and DOS enable detection of hemodynamic changes before new neurological symp-

toms emerge [84, 192, 277]. Crucially, DCS and DOS/NIRS can detect an ineffective treatment

on a faster time scale than the time it takes for new neurological symptoms from an ineffective

treatment to develop.

1.2 Thesis organization

Although DCS and DOS show strong potential for ischemic stroke treatment management, a

well-known drawback for optical monitoring of cerebral tissue is its significant sensitivity to

blood flow and oxygenation in theextra-cerebraltissues (scalp and skull) [26, 184, 221, 237,

238]. Traditional diffuse optics analyses approximate thehead as a homogeneous medium (Fig-

ure 1.3A). The homogenous model is simple and does not require a priori anatomical informa-

tion, but it ignores differences between extra-cerebral hemodynamics and cerebral hemodynam-

ics in the brain. Because extra-cerebral blood flow and bloodoxygenation are non-negligible,

their responses contaminate the DCS and DOS signals. Specifically, extra-cerebral contributions

can lead experimenters to incorrectly assign cerebral physiological responses [64, 237, 239],

which raises questions about the accuracy of optical cerebral monitoring.

A big part of my thesis was the development of a new analysis approach for filtering extra-

cerebral contamination in the DCS measurements of cerebralblood flow. This approach utilizes

a novel DCS Modified Beer-Lambert law for analysis of DCS signals (Chapter 5), and employs a

two-layer model of the head with pressure modulation to separate the cerebral and extra-cerebral

contributions to the DCS signal (Chapter 6). Importantly, this algorithm does not requirea priori

anatomical information(though it’s helpful if available), and can be implemented in real-time.

Further, this algorithm extends to the DOS measurement of cerebral blood oxygenation and

blood volume (Chapter 6). My hope is that this algorithm whenimplemented in clinical settings

will lead to more reliable cerebral hemodynamic monitoring.

In another major part of my thesis, I utilized optical techniques to assess neurovascular cou-

pling at different levels of cerebral ischemia, including penumbral levels and core levels, in a
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rat model (Chapter 7). Neurovascular coupling is the quantification of hemodynamics due to

increase neuronal activity. To increase neuronal activity, the forepaw of the rat was stimulated.

For normal flow, this resulted in a localized blood flow increase (which is a surrogate for oxy-

gen delivery) that substantially exceeded the localized oxygen consumption increase by about

a factor of 2 (Chapter 7). If forepaw stimulation continues to increase oxygen delivery more

than oxygen consumption during ischemia, then stimulationcould be an effective treatment for

locally increasing oxygen to the penumbral region of the stroke region. The oxygen delivery and

consumption increases from functional stimulation are more balanced at the penumbral levels of

ischemia, but the oxygen delivery increase is still slightly higher. This suggests that functional

stimulation may be neuroprotective in the penumbra.

Additionally, I have extensively reviewed the underlying theory for the photon diffusion

and Modified Beer-Lambert law approaches for analyzing DOS signals in Chapters 2 and 3,

respectively. I also have reviewed the underlying theory for the correlation diffusion approach

for analyzing DCS signals in Chapter 4. My hope is that readers new to the field will find these

background chapters helpful.

7



Chapter 2

Diffuse Optical Spectroscopy (DOS):

Photon Diffusion Approach

2.1 Introduction

Light in the near-infrared (NIR) spectral window ( 650-950 nm) interacts with tissue via two

fundamental processes: absorption and scattering (Figure2.1). Absorption is the light interaction

with matter resulting in the conversion of light energy to other forms of energy (e.g., thermal

energy). Thus, absorption irretrievably removes light from tissue via the destruction of photons.

The energy of these vanished photons is not lost, but transferred to tissue in the form of heat.

Scattering is the light interaction with matter where lightis taken up by matter and re-emitted.

The re-emitted, or scattered, light may have both a different energy and momentum than the

original light. As illustrated in Figure 2.1B,ki = 2π/λik̂i andks = 2π/λsk̂s are the wave

vectors andλi andλs are the wavelengths of the incident and scattered light, respectively. The

scattering interaction in principle could impart both an energy change (~ω = ~v(|ks| − |ki|); v
is the speed of light through matter) and a momentum change (~q = ~(ks − ki)) between the

scattered and incident light.

Elastic (or Rayleigh) scattering is a commonly used term describing scattering interactions

where light energy is conserved (i.e.,λs = λi), but light momentum is not necessary conserved

(i.e., the directions ofki andks are different). In Raman scattering and fluorescence, the energy

8
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Figure 2.1: Photon absorption (A) and scattering (B) interactions within tissue. A tissue absorber
completely transforms the photon’s energy into internal thermal energy, thus halting any further
propagation of the photon through tissue. A tissue scatterer takes up the incident photon with
wave vectorki and reemits a scattered photon with wave vectorks. The scattering interaction
can induce changes in both the magnitude and direction betweenks andki.

of the scattered light is different from the incident light.The energy shifts in Raman scattering

are caused by photon interactions with vibrational and rotational degrees of freedom in matter,

while the energy shifts in fluorescence are caused by photon interactions with electronic degrees

of freedom in matter. Energy shifts in fluorescense are typically much larger, and thus easier to

detect, than energy shifts in Raman scattering. For near-infrared light propagating in endogenous

tissue, elastic scattering is dominant. However, if exogenous contrast agents such as fluorescent

dyes (e.g., Indocyanine Green) are added to tissue to improve contrast, fluorescent scattering

will obviously need to be considered as well [59].

Elastic light scattering in tissue reveals structural information about cells and surrounding

fluids [74, 189, 248]. This is because light scattering originates from spatial variations in the re-

fractive index on the length scale of the light wavelength [18]. In most cases, the refractive index

is directly proportional to the molecule number density [100], and light scattering measurements

therefore provide information on the spatial heterogeneity of molecule density. Pure water is

a non-scattering medium because the number density of watermolecules is homogeneous on

the length scale ofλ. Tissue, in contrast, is a highly scattering medium for near-infrared light

because it has heterogeneous regions of greater and lesser density on a length scale comparable

to NIR wavelengths. Examples of these heterogeneous regions include interfaces between cells

and extracellular space and interfaces between cellular cytoplasm and cellular organelles.

Tissue light absorption measurements provide complementary information on the concen-

trations of various tissue chromophores. In the near-infrared spectral region, the strongest
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Figure 2.2: A single DOS source-detector pair (separationρ = 3 cm) in the remission geometry
for brain tissue measurements. Detected light travels overa distribution of pathlengths between
source and detector to probe a “banana shaped” volume of tissue [200]. As a rough rule of
thumb, the mean penetration depth is of orderρ/3 = 1 cm.

absorbing endogeneous tissue chromophores are oxy- and deoxy-hemoglobin and water (Fig-

ure 2.20) [144]. From using the well-known spectra of these chromophores [207], tissue absorp-

tion measurements at multiple wavelengths permits the direct calculation of the chromophore

concentrations (Section 2.13) [79, Section 2.8].

Diffuse optical spectroscopy (DOS) uses near-infrared light to measure absorption and scat-

tering in tissue. For example, a very basic DOS measurement probing brain tissue is depicted

in Figure 2.2. Near-infrared source light is delivered to a point on the scalp surface via an opti-

cal fiber. Another optical fiber is employed to detect the backscattered component of the source

light emerging from tissue at a different point on the scalp surface. This detected light has probed

(i.e., interacted with) a “banana shaped” volume of tissue that spans millimeters to a couple cen-

timeters below the scalp surface (Section 2.12) [200]. It isimportant to recognize, though, that

the attenuation in the detected light relative to the sourcedepends on both the absorption and

scattering properties of tissue. In order to separate scattering effects from absorption effects in

the detected light signals, a quantitative model of light transport through tissue is required.

In this chapter, I will first show that light transport over long distances in tissue is well

approximated as a diffusive process [123, 266]. Then, I willdiscuss in detail how to use the

diffusion model of light transport in practice to separate tissue absorption from tissue scattering

in DOS measurements [10,79].
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Figure 2.3: The light radianceL is defined such that the radiant power transported across an
element of areadσ at positionr and timet in directions confined to an element of solid angle
dΩ centered around thêΩ direction isL(r, Ω̂, t, λ) cos θdσdΩ.

2.2 Radiative Transport Theory

Maxwell’s equations correctly describe light transport through all media, including tissue. How-

ever, because of their complexity, solving Maxwell’s equations over long distances in tissue

is an intractable problem that must be addressed numerically. From numerical solutions, it is

very difficult to gain physical insight on light transport through tissue. For these reasons, I will

use radiative transport theory as the starting point for thetheoretical description of diffuse op-

tics, which is an excellent approximation of Maxwell’s equations for describing light transport

through tissue [46, 51, 142]. The notation for important light transport parameters is shown in

Table 2.1.

In radiative transport theory, light with wavelengthλ propagating through tissue with refrac-

tive indexn is characterized by its light radiance,L(r, Ω̂, t, λ) [Wcm−2sr−1], which is the light

power per unit area traveling in thêΩ direction at positionr and timet. The amount of radiant

power,W (Ω̂) [W], which is transported across an element of areadσ in directions confined to

an element of solid angledΩ (see Figure 2.3) is

W (Ω̂) = L cos θdσdΩ, (2.1)

whereθ is the angle between̂Ω and the area element’s normal vector,n̂.

The interactions of light with tissue are in turn characterized by an absorption coefficient,

µa(Ω̂, r, t, λ) [1/cm], and a scattering phase function,p(Ω̂, Ω̂′, r, t, λ) [1/cm]. These parameters
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are wavelength-dependent probability densities for lightabsorption in thêΩ direction and for

light scattering into the direction̂Ω given the incident direction̂Ω′ at (r, t), respectively. To

understand their physical meanings, consider a radianceL(r, Ω̂, t, λ) incident on an infinitesimal

spherical volume of diameter|dr| (Figure 2.4). The amount of the incident radiance absorbed by

this volume isµa(Ω̂, r, t, λ)L(r, Ω̂, t, λ)|dr|, and the amount of the incident radiance scattered

into theΩ̂′ direction isp(Ω̂′, Ω̂, r, t, λ)L(r, Ω̂, t, λ)|dr|.

Often of interest is the total amount of incident radiance scattered by the tissue volume in all

directions. This is determined by a tissue scattering coefficient,µs(Ω̂, r, t, λ) [1/cm], which is

simply the integral of the scattering phase function over all 4π steradians of space1:

µs(Ω̂, r, t, λ) =

∫

4π

p(Ω̂′, Ω̂, r, t, λ)dΩ′. (2.2)

From the definition of the scattering phase functionp, µs(Ω̂, r, t, λ)L(r, Ω̂, t, λ)|dr| is the total

amount of incident radiance scattered by the infinitesimal tissue volume, andµs is the probability

density for tissue scattering in any direction2.

The typical light transport length scales between absorption and scattering events are the

multiplicative inverses ofµa andµs, respectively. To understand why, let us use the particle

description of light as a packet ofN0 photons propagating through a homogeneous medium. Let

N(r) be the number of photons that havenotbeen scattered after traveling a distancer inside the

medium. The probability of a single photon being scattered in distancedr is µsdr. Therefore,

sinceN(r + dr) is less thanN(r) by the number of photons that have scattered indr, we have

the equation

N(r + dr) = N(r)−N(r)µsdr,

which is a differential equation:
dN(r)

dr
= −µsN(r).

The above equation describes exponential decay, and has thewell known solution [100, Section

1In spherical coordinates,
∫

4π
f(Ω̂)dΩ =

∫ π

0

∫ 2π

0
f(θ, φ) sin θdθdφ [240, Section 14.4].

2If the tissue volume consists of discrete scattering particles with number density̺ and a scattering cross section
of σs [cm2], thenµs = ̺σs [240, Section 14.2]. Here, the total scattered light power from a single particle is the
product ofσs and the incident radiance on the particle. Thus, a particle occupies an effective areaσs where light
impinging on this area is scattered. Similarly, the scattering phase function,p, is related to the particle differential
scattering cross-section,σD , via p = ̺σD [240, Section 14.4]
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Figure 2.4: The radianceL(r + dr, Ω̂, t + dt, λ) emerging from an infinitesimal spherical vol-
ume of tissue is different from the radianceL(r, Ω̂, t, λ) incident on the volume because of the
interactions between light and tissue. The portion of the incident radiance absorbed by the tissue
volume isµa(Ω̂, r, t, λ)L(r, Ω̂, t, λ)|dr|. The portion of the incident radiance scattered by the
tissue volume into thêΩ′ direction isp(Ω̂′, Ω̂, r, t, λ)L(r, Ω̂, t, λ)|dr|. Here, |dr| denotes the
magnitude of the vectordr, i.e., |dr| = vdt, wherev = c/n is the speed of light through the
volume element.

43-1]

N(r) = N0 exp[−µsr] = N0 exp[−r/ℓs],

whereℓs ≡ 1/µs is the scattering length. Note that the probability densityfunction for a photon

to scatter after traveling a distancer without scattering, i.e.,Ps(r)dr, is equal to the probability

that a photon travels a distancer without scattering (i.e.,N(r)/N0) multiplied by the probability

of scattering in distancedr (i.e.,µsdr):

Ps(r)dr =
N(r)

N0
µsdr = µs exp[−µsr]dr.

Consequentially, the mean distance a photon travels between scattering events is the scattering

length, i.e.,

〈r〉 =
∫ ∞

0
rPs(r)dr =

∫ ∞

0
rµs exp[−µsr]dr =

1

µs
= ℓs. (2.3)

Using exactly the same logic, the absorption length,ℓa ≡ 1/µa, is the mean distance photons

travel before they are absorbed.

Transport theory is valid when the characteristic scattering and absorption lengths,ℓs and

ℓa, are much greater than the light wavelength. In other words,photons travel distances of many

wavelengths between interactions with tissue. This is truefor near-infrared light, where typical

values forℓs andℓa are on the order of 0.1 and 10 cm, respectively. Under these conditions,

light transport is adequately described by the geometricaloptics (or small wavelength) limit of
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Table 2.1: Parameters affecting light transport through tissue
Quantity Symbol Units
Light radiance (Equation 2.4) L W cm−2 sr−1

Scattering phase function (Figure 2.4) p 1/cm
Absorption coefficient (Figure 2.4) µa 1/cm
Absorption length ℓa ≡ 1/µa cm
Scattering coefficient (Equation 2.2) µs 1/cm
Scattering length ℓs ≡ 1/µs cm
Total transport coefficient µt ≡ µa + µs 1/cm
Normalized scattering phase function f ≡ p/µs dimensionless
Refractive index n dimensionless
Speed of light in tissue v = c/n cm/s
Radiant source power per volume (Equation 2.7) Q W cm−3 sr−1

Maxwell’s equations [31, Chapter 3], where the light electric field propagates in straight lines

between tissue interactions as a local quasi plane wave. Thelight radiance in terms of these

propagating electric fields is3 [116, Section 9.3.1]:

L(r, Ω̂, t) =











∣

∣

∣
E‖(r, Ω̂, t)

∣

∣

∣

2
+
∣

∣

∣
E⊥(r, Ω̂, t)

∣

∣

∣

2
, unpolarized light

∣

∣

∣
E(r, Ω̂, t)

∣

∣

∣

2
, polarized light,

(2.4)

whereE(r, Ω̂, t) is the complex representation of the electric field at(r, t) that is transported as

a quasi plane wave with wave vectorkΩ = (2πn/λ)Ω̂, amplitudeE0, and angular frequencyω,

i.e.,

E(r, Ω̂, t) = E0(r, t) exp [i(kΩ · r− ωt)] . (2.5)

For unpolarized light, the light radiance is the sum over theintensities of the two orthogonal

polarization components, i.e.,|E‖|2 = E‖E
∗
‖ and |E⊥|2 = E⊥E∗

⊥. Another key result from

geometrical optics is that light interference effects are negligible, which results in additive light

intensities.

Changes in the light radiance are described by the radiativetransport equation, which is a

conservation equation for the radiance in each infinitesimal volume element within the tissue.

Referring again to Figure 2.4, the change in radiance as it moves across an infinitesimal tis-

sue volume element in thêΩ direction is given by a convective (or material) derivativeof the

3Here and in some of the remaining equations, theλ dependence ofL is implict to make the notation less
cumbersome.

14



radiance [240, Section 16.12]:

dL ≡ L(r+ dr, Ω̂, t+ dt)− L(r, Ω̂, t) =
∂L(r, Ω̂, t)

∂t
dt+ dr · ∇L(r, Ω̂, t)

=
∂L(r, Ω̂, t)

∂t
dt+ vdtΩ̂ · ∇L(r, Ω̂, t). (2.6)

Because interference effects are negligible, this change in radiancedL also must be equal to

dL = −µa(Ω̂, r, t)L(r, Ω̂, t)|dr| − L(r, Ω̂, t)

∫

Ω̂′ 6=Ω̂

p(Ω̂′, Ω̂, r, t)dΩ′|dr|+

∫

Ω̂′ 6=Ω̂

p(Ω̂, Ω̂′, r, t)L(r, Ω̂′, t)dΩ′|dr|+Q(r, Ω̂, t)vdt. (2.7)

Here,Q(r, Ω̂, t) [Wcm−3sr−1] is the light power per volume emitted by sources at positionr

and timet in theΩ̂ direction with wavelengthλ. The change in radiancedL is decreased by the

losses in the incident radiance due to absorption (first term, right-hand side) and due to scattering

in all directionsΩ̂′ different thanΩ̂ (second term, right-hand side).dL is also increased by the

gains in radiance scattered intôΩ from all incident directionŝΩ′ different thanΩ̂ (third term,

right-hand side) and the gains from light sources inside thevolume element (fourth term, right-

hand side)4. Substitutingvdt for |dr|, and adding zero, i.e.,−p(Ω̂, Ω̂, r, t, λ)L(r, Ω̂, t, λ)|dr| +
p(Ω̂, Ω̂, r, t, λ)L(r, Ω̂, t, λ)|dr|, to the right-hand side of Equation 2.7, we obtain

dL = −
[

µa(Ω̂, r, t) + µs(Ω̂, r, t)
]

L(r, Ω̂, t)vdt+
∫

4π
p(Ω̂, Ω̂′, r, t)L(r, Ω̂′, t)dΩ′vdt+Q(r, Ω̂, t)vdt, (2.8)

whereµs is given by Equation 2.2. Combining Equations 2.6 and 2.8 results in the radiative

transport equation (RTE) [46, Section 1.3],

1

v

∂L(r, Ω̂, t, λ)

∂t
= −Ω̂ · ∇L(r, Ω̂, t, λ) − µt(Ω̂, r, t, λ)L(r, Ω̂, t, λ) +Q(r, Ω̂, t, λ)+

µs(Ω̂, r, t, λ)

∫

4π
L(r, Ω̂′, t)f(Ω̂, Ω̂′, r, t, λ)dΩ′. (2.9)

4To understand the gain in radiance from light sources, note thatQ(r, Ω̂, t, λ)dt is the light energy per volume
generated in timedt that is propagating in thêΩ direction. The increase in the light radiance emerging fromthe
volume element due to sources is then the product of this generated light energy with the speed of light through the
volume element.
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Here, I have introduced a total transport coefficient,µt [1/cm], and a normalized scattering

phase function,f , which are defined as:

µt(Ω̂, r, t, λ) ≡ µa(Ω̂, r, t, λ) + µs(Ω̂, r, t, λ) (2.10)

f(Ω̂, Ω̂′, r, t, λ) =
p(Ω̂, Ω̂′, r, t, λ)

µs(Ω̂, r, t, λ)
. (2.11)

Note from Equations 2.2 and 2.11 that

∫

4π

f(Ω̂, Ω̂′, r, t, λ)dΩ′ = 1. (2.12)

The RTE (Equation 2.9) is the main result of this section, which I derived using the geo-

metrical optics limit of Maxwell’s equations5. A hidden assumption in this derivation of the

RTE is that the radiation field propagating through matter isunpolarized. In principle, both

the absorption coefficient and scattering phase function depend on the polarization state of the

radiation field, and avector radiative transport equation is required to account for polarization

effects [188]. In the vector RTE,L is replaced by a4 × 1 vector of the four Stokes parameters

describing the intensity and polarization of the light field, i.e.,

L̃ =

















L

pEL

ǫ〈−E‖E
∗
⊥ − E⊥E∗

‖〉
ǫ〈i(E⊥E∗

‖ − E‖E
∗
⊥)〉

















,

wherepE is the degree of polarization,ǫ is a proportionality constant,E‖ andE⊥ denote the or-

thogonal polarization states of the electric field (see Equation 2.4), and the angle brackets denote

time averages [51, 188]. Additionally,µt, µs, andf are replaced by4 × 4 tensors. The vector

RTE simplifies to the scalar RTE (Equation 2.9) when the lightfield is completely unpolarized,

i.e.,pE = 0. In many practical DOS tissue measurements, the light field is unpolarized because

of the rapid depolarization of light via multiple scattering [18, Chapter 14].

To summarize, the scalar RTE is valid when

5In a more rigorous approach, Jorge Ripoll also recently presented a step by step derivation of the RTE directly
from Maxwell’s equations [211].
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• The characteristic scattering length,ℓs ≡ 1/µs, and the characteristic absorption length,

ℓa ≡ 1/µa, are both much greater than the light wavelengthλ. The photon propagation

distances within the medium also need to be much greater thanλ.

• The light field propagating through tissue is unpolarized.

• The tissue refractive index is homogeneous, meaning that between tissue interactions,

the light field travels with constant velocityv = c/n. This condition can be relaxed by

replacingv with v(r, Ω̂, t, λ) in the RTE (Equation 2.9).

Though it is considerably simpler than Maxwell’s equations, the RTE is still complex enough

that it must be solved numerically in most cases of interest [9, 162]. Numerical schemes to

solve the RTE are computationally time consuming and difficult to implement in data fitting

algorithms. Fortunately, for many cases of practical importance, near-infrared light transport

through tissue is well approximated as a diffusive process,which reduces the complexity of the

RTE significantly.

2.3 Photon Diffusion Equation

Under diffusive light transport, individual photons execute random walks through tissue, wan-

dering about in all directions without having a preferential direction of travel. As with Brownian

motion of diffusing particles in general, the net movement of large numbers of photons through

tissue is driven by the concentration gradient of these photons. Macroscopically, the concen-

tration of photons is directly proportional to the photon energy concentration (also called the

light energy density),Γ(r, t) [Jcm−3], which is the light energy per volume at(r, t). The photon

energy concentration is in turn dependent on the light radiance,L (Table 2.1).6 To understand

how, note thatL(r, Ω̂, t)/v, wherev is the speed of light, is the component of the photon en-

ergy concentration traveling in thêΩ direction [100, Section 43-5]. The total photon energy

6To make the notation less cumbersome in this section, I will no longer explicitly label the wavelength dependence
(i.e.,λ) in L, µa, µs, andf . The wavelength dependence is not important in the derivation of the photon diffusion
equation, but it will be very important later on when I discuss diffuse optical spectroscopy.
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concentration is thus the integral ofL/v over all solid angles, i.e.,

Γ(r, t) =
1

v

∫

4π

L(r, Ω̂, t)dΩ =
1

v
Φ(r, t). (2.13)

In Equation 2.13, I have introduced the photon fluence rate,Φ(r, t) [Wcm−2], which is defined

as the total light power per area moving radially outward from the infinitesimal volume element

centered at(r, t):

Φ(r, t) ≡
∫

4π

L(r, Ω̂, t)dΩ. (2.14)

Clearly, the photon energy concentration and fluence rate are directly proportional to each other

(Equation 2.13). The rest of this section presents a detailed derivation of the diffusion model

for the photon fluence rate (Equation 2.46). A summary of important optical parameters in this

diffusion model are given in Table 2.2.

2.3.1 Continuity relation between the photon fluence rate and the photon flux

The transport of the fluence rate through tissue is describedby a continuity equation obtained

from integrating the radiative transport equation (Equation 2.9) over all solid angles:7

1

v

∂

∂t

∫

4π

L(r, Ω̂, t)dΩ = −
∫

4π

∇ ·
(

L(r, Ω̂, t)Ω̂
)

dΩ−

∫

4π

µt(Ω̂, r, t)L(r, Ω̂, t)dΩ +

∫

4π

Q(r, Ω̂, t)dΩ+

∫

4π

µs(Ω̂, r, t)

∫

4π
L(r, Ω̂′, t)f(Ω̂, Ω̂′, r, t)dΩ′dΩ. (2.15)

The photon diffusion model is only applicable in isotropic media, wherein the scattering and

absorption coefficients do not depend on the direction of light travel:

assumption 1:µs(Ω̂, r, t) = µs(r, t), µa(Ω̂, r, t) = µa(r, t). (2.16)

Physically, Equation 2.16 means that on both the scatteringand absorption length scales,ℓs ≡
1/µs andℓa ≡ 1/µa, respectively, the medium looks the same to incident photons from every

7BecausêΩ is a constant direction vector,̂Ω · ∇L(r, Ω̂, t) = ∇ ·
(

L(r, Ω̂, t)Ω̂
)

[116, Section 1.2.6]
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direction. Under this condition, Equation 2.15 simplifies to

1

v

∂Φ(r, t)

∂t
= −∇ ·

∫

4π

L(r, Ω̂, t)Ω̂dΩ− µt(r, t)Φ(r, t) + S(r, t)+

µs(r, t)

∫

4π





∫

4π

f(Ω̂, Ω̂′, r, t)dΩ



L(r, Ω̂′, t)dΩ′. (2.17)

Here, S(r, t) [Wcm−3] is the concentration of radiant source power, or the total power per

volume emitted radially outward from positionr at timet, i.e.,

S(r, t) ≡
∫

4π

Q(r, Ω̂, t)dΩ. (2.18)

Another assumption of photon diffusion theory is that the normalized scattering phase func-

tion, f , is rotationally symmetric. Mathematically, this means that f depends only on the angle

between incident and outgoing scattering wave vectors:

assumption 2:f(Ω̂, Ω̂′, r, t) = f(Ω̂′, Ω̂, r, t) = f(Ω̂ · Ω̂′, r, t). (2.19)

Assumptions 1 (Equation 2.16) and 2 (Equation 2.19) go hand in hand in that they are generally

either both true or both false. Applying Equations 2.10 and 2.12 to Equation 2.17, along with

using assumption 2, results in a continuity equation for thefluence rate,

1

v

∂Φ(r, t)

∂t
+∇ · J(r, t) + µa(r, t)Φ(r, t) = S(r, t), (2.20)

where the photon flux,J(r, t) [Wcm−2], is the vector sum of the radiance emerging from the

infinitesimal volume element centered at(r, t), i.e.,

J(r, t) ≡
∫

4π

L(r, Ω̂, t)Ω̂dΩ. (2.21)

Note thatJ(r, t) · n̂dσ [W] is the net light power crossing an element of areadσ (with

normal vector̂n) in the n̂ direction (see Figure 2.3). This physical meaning of the photon flux is

understood from the definition of the light radiance (Equation 2.1). The light power crossing the

area elementdσ from light traveling in theΩ̂ direction is

W (Ω̂) = L(r, Ω̂, t)dΩdσ cos θ = L(r, Ω̂, t)Ω̂ · n̂dσdΩ.

Thus, the total net light power crossingdσ, i.e.,
∫

4πW (Ω̂)dΩ, isJ(r, t) · n̂dσ.
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2.3.2 Fick’s law relation between the photon fluence rate andthe photon flux

Another relation between the photon fluence rate and the photon flux is derived from approxi-

mating the light radiance,L, as a series expansion of spherical harmonics,Yℓm (with coefficients

φ̃ℓm), truncated atℓ = N :

L(r, Ω̂, t) =

N
∑

ℓ=0

ℓ
∑

m=−ℓ

√

2ℓ+ 1

4π
φ̃ℓm(r, t)Yℓm(Ω̂). (2.22)

Equation 2.22 is the so-calledPN approximation of the light radiance [46,134,142]. Substituting

Equation 2.22 into Equation 2.14, and noting that sphericalharmonics form an orthonormal set,

we obtain

Φ(r, t) =

N
∑

ℓ=0

ℓ
∑

m=−ℓ

φ̃ℓm(r, t)

∫

4π

√

2ℓ+ 1

4π
Yℓm(Ω̂)dΩ

=

N
∑

ℓ=0

ℓ
∑

m=−ℓ

√
2ℓ+ 1φ̃ℓm(r, t)

∫

4π

Y ∗
00(Ω̂)Yℓm(Ω̂)dΩ

= φ̃00(r, t). (2.23)

Similarly, substituting Equation 2.22 into Equation 2.21 results in8

J(r, t) =
N
∑

ℓ=0

ℓ
∑

m=−ℓ

√

2ℓ+ 1

4π
φ̃ℓm(r, t)

∫

4π

Yℓm(Ω̂) [sin θ cosφx̂+ sin θ sinφŷ + cos θẑ] dΩ

=

√

4π

3

N
∑

ℓ=0

ℓ
∑

m=−ℓ

√

2ℓ+ 1

4π
φ̃ℓm(r, t)

∫

4π

Yℓm(Ω̂)

[

√

1

2

(

Y ∗
1−1(Ω̂)− Y ∗

11(Ω̂)
)

x̂−

i

√

1

2

(

Y ∗
1−1(Ω̂) + Y ∗

11(Ω̂)
)

ŷ + Y ∗
10(Ω̂)ẑ

]

dΩ

=

√

1

2

(

φ̃1−1(r, t)− φ̃11(r, t)
)

x̂− i

√

1

2

(

φ̃1−1(r, t) + φ̃11(r, t)
)

ŷ + φ̃10(r, t)ẑ

(2.24)

8I wrote Ω̂ in terms of the Cartesian unit vectors (i.e.,x̂, ŷ, andẑ), whereθ andφ (not to be confused with̃φℓm)
are the polar angle and azimuthal angle, respectively, in the spherical coordinate system [116, Section 1.4.1].
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In terms of the coefficients̃φℓm, the net power per area traveling in theΩ̂ direction is

J · Ω̂ = Jx sin θ cosφ+ Jy sin θ sinφ+ Jz cos θ

=
1√
2

(

φ̃1−1 − φ̃11

)

sin θ cosφ− i√
2

(

φ̃1−1 + φ̃11

)

sin θ sinφ+ φ̃10 cos θ

= φ̃10 cos θ +
sin θ√

2
(cosφ− i sin φ)φ̃1−1 −

sin θ√
2
(cosφ+ i sin φ)φ̃11

= φ̃10 cos θ +
1√
2
sin θe−iφφ̃1−1 −

1√
2
sin θeiφφ̃11

=

√

4π

3

(

φ̃10Y10(Ω̂) + φ̃1−1Y1−1(Ω̂) + φ̃11Y11(Ω̂)
)

, (2.25)

In Equation 2.25, there is still implicit position and time dependence in the coefficients̃φℓm and

J.

For diffusive light transport,L is accurately described by theP1 approximation, wherein the

series expansion in Equation 2.22 is truncated atN = 1:

L(r, Ω̂, t) =
1

4π
φ̃00(r, t) +

√

3

4π

(

φ̃1−1(r, t)Y1−1(Ω̂) + φ̃10(r, t)Y10(Ω̂) + φ̃11(r, t)Y11(Ω̂)
)

(2.26)

From combining Equations 2.23, 2.25, and 2.26, we see that theP1 approximation of the light

radiance is a linear combination of the photon fluence rate and flux, i.e.,

L(r, Ω̂, t) =
1

4π
Φ(r, t) +

3

4π
J(r, t) · Ω̂. (2.27)

A necessary condition for diffusive light transport is the validity of Equation 2.27. For nearly

isotropic light, i.e.,

assumption 3:Φ(r, t) ≫ |J(r, t)|, (2.28)

the dominance of the isotropic fluence rate term in thePN expansion ensures the accuracy of the

P1 approximation.

Substituting Equation 2.27 into the radiative transport equation (Equation 2.9), we have9

1

v

∂Φ

∂t
+

3

v

∂

∂t
(J · Ω̂) = −Ω̂ · ∇Φ− 3Ω̂ · ∇

(

J · Ω̂
)

− (µt − µs)Φ− 3µtJ · Ω̂+

4πQ(Ω̂) + 3µs

∫

4π

f(Ω̂ · Ω̂′)J · Ω̂′dΩ′. (2.29)

9For simplicity, ther andt dependence is implicit forΦ, J, µt, µs, f , andQ.
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The last term on the right-hand side in Equation 2.29 is further simplified by evaluating the

integral in a spherical coordinate system defined such thatΩ̂ is pointing in theẑ direction:
∫

4π

f(Ω̂ · Ω̂′)J · Ω̂′dΩ′ =
∫

4π

f(cos θ′)
[

sin θ′ cosφ′x̂+ cos θ′ cosφ′ŷ + cos θ′ẑ
]

dΩ′ · J

=

∫

4π

f(cos θ′) cos θ′dΩ′ẑ · J

=

∫

4π

f(Ω̂ · Ω̂′)Ω̂ · Ω̂′dΩ′Ω̂ · J

= gΩ̂ · J. (2.30)

Equation 2.30 introduces the scattering anisotropy factor, g, which is the ensemble average of

the cosine of the scattering angleθ, i.e.,

g(r, t) ≡
∫

4π

f(Ω̂ · Ω̂′, r, t)Ω̂ · Ω̂′dΩ′ = 〈cos θ〉. (2.31)

The closerg is to unity, the more probable it is for a photon to be scattered in the forward

direction, i.e.,θ = 0. Reported near-infrared tissue measurements ofg from the literature vary a

lot, but in general,g is high (> 0.7) [144].

Substituting Equation 2.30 into Equation 2.29, we obtain

1

v

∂Φ

∂t
+
3

v

∂

∂t
(J·Ω̂) = −Ω̂·∇Φ−3Ω̂·∇

(

J · Ω̂
)

−(µt−µs)Φ−3(µt−µsg)J·Ω̂+4πQ(Ω̂). (2.32)

Multiplying Equation 2.32 bŷΩ and integrating over all solid angles results in a simpler relation

between the fluence rate and flux:

1

v

∂Φ

∂t

∫

4π

Ω̂dΩ = −3

v

∂

∂t

∫

4π

Ω̂
[

J · Ω̂
]

dΩ−
∫

4π

Ω̂
[

Ω̂ · ∇Φ
]

− 3

∫

4π

Ω̂
[

Ω̂ · ∇(J · Ω̂)
]

dΩ−

(µt − µs)Φ

∫

4π

Ω̂dΩ− 3(µt − µsg)

∫

4π

Ω̂
[

J · Ω̂
]

+ 4π

∫

4π

Q(Ω̂)Ω̂dΩ (2.33)

Equation 2.33 is further simplified through noting that for any vectorA,
∫

4π

Ω̂
(

Ω̂ ·A
)

dΩ =
4π

3
A (2.34)

∫

4π

Ω̂
[

Ω̂ · ∇
(

A · Ω̂
)]

dΩ = 0. (2.35)
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Equation 2.34 is derived through evaluating the integral ina spherical coordinate system defined

such thatA is pointing in theẑ direction,
∫

4π

Ω̂
(

Ω̂ ·A
)

dΩ = |A|
∫

4π

Ω̂ cos θdΩ

= 2π|A|ẑ
∫ π

0
cos2 θ sin θdθ

=
4π

3
A, (2.36)

To derive Equation 2.35, note that10 [116, Section 1.2.6]

Ω̂ · ∇(Ω̂ ·A) = Ω̂ ·
(

Ω̂× (∇×A) +A× (∇× Ω̂) + (Ω̂ · ∇)A+ (A · ∇)Ω̂
)

= Ω̂ · (Ω̂ · ∇)A =
∂Ar

∂r
, (2.37)

where the last line uses spherical coordinates;A = Ar r̂ + Aθθ̂ + Aφφ̂ and Ω̂ = r̂. From

Equation 2.37,
∫

4π

Ω̂
[

Ω̂ · ∇
(

A · Ω̂
)]

dΩ =
∂Ar

∂r

∫

4π

Ω̂dΩ = 0. (2.38)

Substituting Equations 2.34 and 2.35 into 2.33, as well as noting that
∫

4π Ω̂dΩ = 0, we have

∇Φ = −3

v

∂J

∂t
− 3(µt − µsg)J+ 3

∫

4π

Q(Ω̂)Ω̂dΩ. (2.39)

For diffusive light transport, two additional assumptionsare now made:

assumption 4:Light sources are isotropic, i.e.,Q(Ω̂) = Q (2.40)

assumption 5:Slow temporal photon flux variations, i.e., (2.41)

3

v

∂J

∂t
+ 3(µt − µsg)J = 3(µt − µsg)J. (2.42)

Applying these two assumptions to Equation 2.39 results in the well known diffusive relation

between the fluence rate and flux, i.e., Fick’s first law of diffusion [17, Chapter 2]:

J(r, t) = − 1

3(µ′s(r, t) + µa(r, t))
∇Φ(r, t)

= −D(r, t)

v
∇Φ(r, t) = −D(r, t)∇Γ(r, t) (2.43)

10SinceΩ̂ is a constant unit vector,(A ·∇)Ω̂ = 0 andA× (∇× Ω̂) = 0. Further, by the nature of cross products,
Ω̂ andΩ̂× (∇×A) are perpendicular vectors; thus their dot product is zero.
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Table 2.2: Relevant optical parameters in diffusion model of light transport
Quantity Symbol Units
Speed of light in tissue v = c/n cm/s
Photon fluence rate (Equation 2.14) Φ W cm−2

Photon energy concentration (Equation 2.13) Γ = Φ/v J cm−3

Absorption coefficient (Figure 2.4) µa = 1/ℓa 1/cm
Scattering coefficient (Equation 2.2) µs = 1/ℓs 1/cm
Scattering anisotropy factor (Equation 2.31) g dimensionless
Reduced scattering coefficient µ′s ≡ µs(1− g) 1/cm
Photon transport mean-free path (random walk step)ℓtr ≡ 1/(µ′s + µa) cm
Photon diffusion coefficient D ≡ vℓtr/3 cm2/s
Photon flux (Equation 2.21) J = −D∇Γ W cm−2

Concentration of radiant source power (Equation 2.18) S W cm−3

Here,Γ(r, t) is the photon energy concentration, which is given in Equation 2.13,µ′s(r, t) [1/cm]

is the reduced scattering coefficient, i.e.,

µ′s(r, t) ≡ µs(r, t) [1− g(r, t)] , (2.44)

andD(r, t) [cm2s−1] is the photon diffusion coefficient, i.e.,

D(r, t) ≡ v

3(µ′s(r, t) + µa(r, t))
=

1

3
vℓtr. (2.45)

The photon diffusion coefficient is directly proportional to the photon transport mean-free path,

ℓtr ≡ 1/(µ′s + µa) [cm], which is the random walk step of diffusing photons [17,Chapter 1].

2.3.3 Photon diffusion model

Substituting the diffusive relation between the fluence rate and flux (Equation 2.43) into the

continuity relation (Equation 2.20) results in the photon diffusion equation for the photon fluence

rate [123,210]:

∇ · [D(r, t)∇Φ(r, t)]− vµa(r, t)Φ(r, t) −
∂Φ(r, t)

∂t
= −vS(r, t). (2.46)

Microscopically, the photon diffusion equation (Equation2.46) is a consequence of many in-

dividual photons executing random walks through tissue [17, 49]. In this random walk visu-

alization, photons move in straight-line segments with sudden interruptions wherein either the

propagation direction is randomly changed or the photon is absorbed. The average length of the
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Figure 2.5: Schematic of a photon taking two random walk steps through tissue. Each random
walk step involves many photon scattering events. This figure is adopted from Figure 2.2 in
David Busch’s thesis [39].

straight-line segments is the transport mean-free path,ℓtr. For near-infrared light propagating

through tissue, the scattering anisotropy factorg (2.31) is typically close to unity, which means

that µ′s ≪ µs (Equation 2.44), which in turn means that the transport mean-free path,ℓtr, is

much greater than the scattering length,ℓs ≡ 1/µs. Thus, photons scatter many times over the

length scale ofℓtr, and each scattering event produces a “kink” in their paths through tissue

(Figure 2.5). However, because of the high bias for forward scattering in tissue, the direction of

travel of photons is not fully randomized until they have moved over a length scale ofℓtr. Thus,

over large length scales, individual photon dynamics resemble random walks with step sizeℓtr

(Figure 2.5).

To summarize, the validity of the photon diffusion model (Equation 2.46) rests on the validity

of several assumptions about the nature of light transport:

Light radiance is nearly isotropic (Equation 2.28): Nearly isotropic light radiance (i.e.,Φ ≫
|J|) is well modeled by theP1 approximation (Equation 2.27). Ifµ′s ≫ µa (i.e., a typical

photon takes many random walk steps of lengthℓtr ≈ 1/µ′s before it is absorbed), and

the photon propagation distances within the medium are large relative toℓtr, then the light

radiance will be nearly isotropic.

Rotational symmetry (Equations 2.16, 2.19)):The photon diffusion model assumes that the

tissue optical propertiesµa, µs, andf are independent of the direction of light travel.

Physically, this means that tissue should be rotationally symmetric on the absorption and

scattering length scales ofℓa ≡ 1/µa andℓs ≡ 1/µs, respectively.
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Radiative Transport Equation (Equation 2.9) is valid: As discussed at the end of Section 2.2,

the RTE is valid for unpolarized light propagating in media whereinℓs andℓa are much

greater than the light wavelengthλ.

Slow temporal variations in photon flux (Equation 2.42): The implication of this assumption

is that the variation in photon flux occurs on a time scale muchlarger than the time it takes

photons to move one transport length, i.e.,ttr ≡ ℓtr/v. The left-hand side of Equation 2.42

can be rewritten as

3

v

∂J

∂t
+ 3(µt − µsg)J = 3(µ′s + µa)

[

ℓtr
v

∂J

∂t
+ J

]

≈ 3(µ′s + µa)

[

ttr
∆J

(∆t)J
+ J

]

= 3(µ′s + µa)J, if ttr ≪ (∆t)J . (2.47)

Here, (∆t)J is the time scale over which the change in flux,∆J, becomes significant

relative toJ. Equation 2.47 is valid provided thatttr ≪ (∆t)J . For frequency space, i.e.,

J = J̃eiωt,

3

v

∂J

∂t
+ 3(µt − µsg)J = 3(µ′s + µa)(ttriω + 1)J

= 3(µ′s + µa)
√

1 + (ωttr)2e
i arctan(ωttr)J

= 3(µ′s + µa)J, if ωttr ≪ 1. (2.48)

For typical tissue properties ofµa = 0.1 1/cm, µ′s = 10 1/cm, andn = 1.4, ttr ≈ 5

ps. Thus, from Equation 2.48, the slowly varying flux condition is satisfied if the linear

frequencies in the signal (i.e.,f = 2πω), satisfy the conditionf ≪ 32 GHz.

Homogeneous refractive index:More precisely, this means that photons travel with constant

velocity,v, between scattering events. Ifv depends on position and time, then this assump-

tion is relaxed by replacingv with v(r, t) in the photon diffusion equation (Equation 2.46).

In complex media wherev also depends on the direction of light travel,Ω̂, the diffusion

model is no longer valid.

Light sources are isotropic (Equation 2.40).
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These assumptions are valid in thenear-infrared spectral window(∼ 650 − 950 nm) for many

tissues, wherein light transport is dominated by scattering (µ′s ≫ µa)11. For example, in brain

and breast tissue,µ′s is roughly two orders of magnitude greater thanµa (see Table 2.3). Muscle,

skin, fat, and a variety of other tissues are also highly scattering, low absorbing media in the

near-infrared [144]. Many researchers have shown experimentally that the diffusion model is a

good approximation of light transport in these tissues, e.g. [55,80,96,201,266].

The photon diffusion model (Equation 2.46) is a major simplification of the radiative trans-

port model (Equation 2.9), and in several relevant tissue geometries, the diffusion model can

be solved analytically. With analytical solutions in hand, it is much easier to gainphysical

insight and intuition on tissue light transport. The analytical solutions further facilitate the im-

plementation of data fitting algorithms to extract tissue hemoglobin concentrations from fluence

rate measurements. Even when numerical solutions are required, the photon diffusion model is

considerably more tractable than the full radiative transport model.

Keep in mind, though, that the diffusion model also has limitations in tissue measurements.

In anisotropic tissues such as axon fiber bundles, the rotational symmetry assumption may no

longer be reasonable. To account for anisotropy, Heinoet al proposed an anisotropic diffusion

model that relaxes the isotropic assumption for the scattering phase function (Equation 2.19),

but keeps the isotropic assumption for the scattering coefficient (Equation 2.16) [126]. Although

this model is an improvement over the isotropic diffusion model (Equation 2.46), it is likely that

in tissue where the phase function is anisotropic, the scattering coefficient will be anisotropic as

well.

In tissues that contain very high concentrations of blood (i.e., highµa ), as in the liver,

or in applications wherein the photon propagation distances are comparable toℓtr (e.g., finger

joint measurements), the photon propagation directions donot fully randomize to create a nearly

isotropic radiance. Further, some heterogenous tissues have both “diffusing regions” such as

brain tissue, where the diffusion model assumptions hold, and “non-diffusing regions” such as

cerebrospinal fluid, where the diffusion model assumptionsbreak down [63,196]. In all of these

cases, approximations beyond theP1 (Equation 2.27) are needed for optimal data analysis. One

11Recall thatµ′
s ≈ 1/ℓtr (in diffusion regime) andµa are probability densities for isotropic light scattering and

light absorption, respectively (see Figure 2.4, Equation 2.2, and Equation 2.45)
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Table 2.3: Optical properties (mean± SD) of brain and breast tissue atλ = 780 nm compiled
from Tables 2 and 3 in Jacques’ review of tissue optical properties [144].

Tissue Brain Breast Number of samples (n)
µa (cm−1) 0.15± 0.04 0.05± 0.02 5
µ′s (cm−1) 12± 8 11± 6 8

approach is to use the higher orderP3 approximation (Equation 2.22 with N = 3) of the light

radiance in the radiative transport equation (Equation 2.9) to model the photon fluence rate [21,

135]. Another approach is to solve the radiative transport equation directly using numerical

methods such as Monte Carlo simulations or finite element techniques [9, 79, 124, 162, 254].

Compared to the diffusion model, these more complex approaches are computationally time

consuming.

The rest of this chapter mostly follows the tutorial approach taken in Durduranet al to

present how the diffusion model is used in practice to probe tissue absorption and scattering

with near-infrared light [79]. Section 2.13 then discusseshow to convert measurements ofµa at

multiple wavelengths into measurements of oxygenated and de-oxygenated tissue hemoglobin

concentrations.

2.4 Source Types

To apply the diffusion model for measuring tissue absorption and scattering, one typically detects

light at known distances from point sources. Figure 2.6 shows two source-detector pairs; one in

the reflection geometry and the other in the transmission geometry. In the reflection geometry

(also see Figure 2.2), light injected into the tissue by a source fiber (usually coupled to a laser)

is detected a distanceρ away with another fiber (usually coupled to a photomultiplier tube or

avalanche photodiode). In the transmission geometry, light detection is facilitated using either a

fiber or a lens/CCD camera system. At first glance, the directional light from a fiber violates the

isotropic source assumption for the diffusion model (Equation 2.40). This light source, however,

can be very well approximated by an isotropic light source atdepthℓtr inside the tissue [96].

In practice, the source-detector separations should exceed 3ℓtr to apply the diffusion model and

expect accurate (∼ 5%) results [154].
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Figure 2.6: Three common types of sources are employed. On the far left are schematic “banana
patterns” showing the sampled volumes in the reflection and transmission geometries. As a
rough rule of thumb, the mean light penetration depth in the reflection geometry isρ/3 (for a
more precise relation, see [200]). For continuous wave (CW)sources (panel (1)), the input light
intensity, I0, remains constant, and slow (0.1 − 1 s) variations in the detected light intensity
(I(ρ)) induced by changes in tissue absorption and tissue scattering are measured. For intensity
modulated (FD) and time-resolved (TR) sources, the source (input) and detected (output) light
intensities resemble panels (2) and (3), respectively. In the FD measurement, the amplitude and
phase (θ) of the detected signal are related to the absolute tissue optical properties.

Three types of light sources commonly used in diffuse opticsare (see Figure 2.6): continuous

wave (CW), intensity modulated (FD), and time resolved (TR). The simplest source type is

CW light, where the intensity remains constant over time [48, 61, 98, 228]. CW sources enable

fast data acquisition and the use of simple detectors and detection electronics, but as I will

discuss further,µa andµ′s cannot be determined simultaneously from a single CW measurement

(Sections 2.5).

Intensity modulated sources (the frequency-domain technique, FD) are more complex but

also give more information about the medium [10, 47, 80, 113,133, 253]. Here, the light inten-

sity of the source is sinusoidally modulated with angular frequencyω (of order 100 MHz or

larger, up to∼ 1 GHz), producing a diffusive wave in the medium oscillating at the same fre-

quency (Section 2.5). At a given source-detector separation, both the amplitude and phase of the

diffusing wave are measured. The additional information from the phase, in principle, permits

simultaneous determination ofµa andµ′s.

Time resolved light sources (the time-domain technique, TR) deliver short light pulses (<

100 ps) to the medium, which will temporally broaden as they propagate through the medium.
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At the detector, the temporal pulse shape contains the necessary information to determineµa and

D from a single source-detector pair. Time resolved light is related to intensity modulated light

via a Fourier transform (Section 2.7), and it contains the same information content as intensity

modulated sources scanned over the wide range of modulationfrequencies present in the source

light pulse [10,16,143,201,203].

2.5 Diffuse photon density waves

In the frequency-domain, the source is radio frequency modulated light delivered to the medium

at positionrs such thatS(r, t) in the diffusion model (2.46) is12

S(r, t) = S0
(

1 +Meiωt
)

δ(r − rs), (2.49)

whereS0 [W] is the time averaged power emitted by the source,M [dimensionless] is the depth

of modulation of the source,0 ≤ M ≤ 1, ω is the angular frequency of modulation, i.e.,ω =

2πf wheref is the frequency of modulation in [Hz], andδ(r) [cm−3] is the three-dimensional

Dirac delta function. This light source produces a photon fluence rate with a continuous wave

(CW) component and an oscillating ac component at the same angular frequencyω:

Φ(r, t) = Φcw(r) + Φac(r, t)

= Φcw(r) + U(r)eiωt. (2.50)

Here,U(r)eiωt is the complex representation of the frequency-domain photon fluence rate. Both

Φcw andU are described by diffusion equations obtained from substituting Equations 2.50 and

2.49 into Equation 2.46:

∇ · (D(r)∇Φcw(r)) − vµa(r)Φcw(r) = −vS0δ(r− rs) (2.51)

∇ · (D(r)∇U(r)) − (vµa(r) + iω)U(r) = −vMS0δ(r − rs). (2.52)

For homogeneous media, these equations simplify to

(

∇2 − k20
)

Φcw(r) = −vS0
D

δ(r − rs) (2.53)

(

∇2 − k2
)

U(r) = −vMS0
D

δ(r − rs), (2.54)

12For simplicity, I am employing the complex representation (eiωt) for sinuosoidal oscillations in the source and
fluence rate. The actual source and fluence rate will be the real parts of their complex representations.
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wherek20 ≡ vµa/D andk2 ≡ (vµa + iω)/D.13

The general solution to Equation 2.54 is a damped wave-like fluence rate “disturbance” in

the turbid medium, which is called a diffuse photon density wave.

2.5.1 Solutions in infinite, homogeneous turbid media

2.5.1.1 Frequency domain solution

Conceptually, diffuse photon density waves are easiest to understand in the infinite, homoge-

neous medium with a single intensity modulated point sourceat the origin (i.e.,rs = 0 in

Equation 2.49). In this geometry, the solution to Equation 2.54 given the boundary condition

that the fluence rate falls to zero at infinity is well known [10, 45]. It has the form of a simple

damped spherical wave with complex wave vectork = kr + iki, i.e.,

U(r) =
vMS0
4πDr

exp(−kr), (2.55)

wherer = |r|. To determinekr andki, note that

k2 ≡ vµa + iω

D
=

(

v2µ2a + ω2

D2

)1/2

exp

[

i arctan

(

ω

vµa

)]

, (2.56)

and therefore

kr =

(

v2µ2a + ω2

D2

)1/4

cos

[

1

2
arctan

(

ω

vµa

)]

= a cos[b/2], (2.57)

ki =

(

v2µ2a + ω2

D2

)1/4

sin

[

1

2
arctan

(

ω

vµa

)]

= a sin[b/2], (2.58)

wherea ≡ ((v2µ2a + ω2)/D2)1/4, andb ≡ arctan(ω/(vµa)). Equivalent expressions to Equa-

tions 2.57 and 2.58 are

kr =
(vµa
2D

)1/2





(

1 +

[

ω

vµa

]2
)1/2

+ 1





1/2

(2.59)

ki =
(vµa
2D

)1/2





(

1 +

[

ω

vµa

]2
)1/2

− 1





1/2

. (2.60)

13Some authors use slightly different definitions fork2 andU , e.g.,k2 = (vµa − iω)/D with Φac = Ue−iωt;
k2 = (−vµa + iω)/D with Φac = Ue−iωt; k2 = −(vµa + iω)/D with Φac = Ueiωt. The latter two definitions
enable us to write Equation 2.54 in Helmholtz form, which hasthe advantage of more obvious analogies with waves.
I chose the definitions used by Arridgeet al in their classic paper deriving solutions to Equation 2.54 for several
useful geometries [10], i.e.,k2 = (vµa + iω)/D with Φac = Ueiωt. Of course, regardless of the way terms are
defined, the solutions are the same.
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The complete diffuse photon density wave is given by

Φac(r, t) = A(r) exp [i(ωt− θ(r))] , (2.61)

whereA(r) andθ(r) are the amplitude and phase of the diffuse photon density wave, respec-

tively:

A(r) =
vMS0
4πDr

exp(−krr) (2.62)

θ(r) = kir. (2.63)

From measurements ofA andθ atonesource-detector separationr, Equations 2.62 and 2.63 can

be solved for the optical propertiesµa andµ′s only if v and the productMS0 are known. We

typically do assume a tissue index of refraction ofn = 1.4 for calculatingv = c/n in the near-

infrared spectral range [29,144]. However, the productMS0 is unknown in practice. Even if the

modulation depth and power of the source laser are carefullymeasured initially, small changes

in any elements of the fluence rate measurement (e.g., detector sensitivity, fiber coupling with

tissue) will effectively changeMS0 [96]. I will discuss these fluence rate measurement effects

in detail in Section 2.11.

The determination of optical properties with diffuse photon density waves, then, requires

measurements of their amplitude and phase atmultiple distances from the source. Figure 2.7

outlines the procedure for extractingµa andµ′s from measured changes in wave amplitude and

wave phase with distance from the source. Briefly, the slopesof log(Ar) vs. r andθ vs. r

are−kr andki, respectively, from whichµa andµ′s can be calculated using Equations 2.57 and

2.58 [93].

Specifically, from using trigonometry relations,

kr
ki

− ki
kr

=
1 + cos b− 1 + cos b

sin b
=

2

tan b
=

2vµa
ω

, (2.64)

and

k2r − k2i = a2 cos b = a2
vµa

√

ω2 + (vµa)2
=
vµa
D

. (2.65)

Rearranging Equations 2.64 and 2.65, we obtain

µa =
ω

2v

(

kr
ki

− ki
kr

)

, (2.66)

µ′s =
2v

3ω
krki − µa ≈ 2v

3ω
krki. (2.67)
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Figure 2.7: A radio-frequency modulated light source atrs = 0 induces a diffuse photon density
wave,Φac(r, t) (Equation 2.61), which is characterized by its amplitude,A, and its phase shift
from the source,θ (a). Some researchers useθ̃ = −θ (also depicted in panel (a)) to characterize
the phase shift of the diffuse photon density wave instead, i.e.,Φac = A exp[i(ωt + θ̃)]. In
the homogeneous infinite geometry,Φac is a simple spherical wave. Panel(b) shows constant
phase contours (θ in degrees) as a function of position for a typical set of parameters in tissue
measurements:µa = 0.1 1/cm,µ′s = 10 1/cm,ω = 2π × (70 MHz) and an index of refraction
n = 1.4. Note that the wavelength (2π/ki ∼ 19 cm) is roughly a factor of 20 greater than the
attenuation length (1/kr ∼ 1 cm). For this same set of parameters, panel(c) plotslog(Ar) (blue
solid line) andθ (green dashed line) as a function of the radial distance fromthe source,r. The
slopes reveal−kr andki (see Equations 2.62 and 2.63), from whichµa andµ′s can be calculated
using Equations 2.66 and 2.67 (v is assumed). Note that the slope ofθ̃ vs. r is−ki instead ofki.
Therefore, phase measurements from instruments that report θ̃ will show decreasingphase with
increasingr.
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The approximation in Equation 2.67 is equivalent to making the approximationD ≈ v/(3µ′s).

Equations 2.59 and 2.60 reveal why frequency domain sourcesare radio-frequency modu-

lated. Ifω ≪ vµa, thenki is very close to zero, resulting in unmeasurable phase changes with

increasingr. Asω increases, the instrument will have an improved sensitivity to phase changes

with increasingr at the cost of higher attenuation in the amplitude. The modulation frequency

should be chosen to balance the trade off between having a high sensitivity to phase with in-

creasingr and having a large range of separationsr over which the amplitude signal is above

the noise floor of the detector. Thus, radio frequencies of order∼ 100 MHz up to1GHz are

used for modulating light sources in frequency domain measurements of tissue. Note that instru-

ment measurements cannot differentiate between phase shifts of 0, 2π, 4π, etc. Source-detector

separations in multiple distance measurements, then, should be chosen such that the phase does

not change by more than2π between adjacent separations. In practice this is not an issue for

frequencies less than1 GHz because the wavelength of the diffuse photon density wave (2π/ki)

is much greater than the attenuation length of the wave (1/kr), as is evident from Figure 2.7.

Therefore, at separations wherein the phase has changed by over a wavelength, the amplitude is

essentially zero.

2.5.1.2 Continuous wave solution

The CW fluence rate is the solution to Equation 2.53 in the homogeneous infinite geometry,

which is the special case of the ac solution (Equation 2.55)at ω = 0:

Φcw(r) =
vS0
4πDr

exp(− [vµa/D]1/2 r). (2.68)

The optical propertiesµa andµ′s cannot be uniquely determined from measurements ofΦcw(r)

alone, regardless of the number of distancesr that are measured. In a classic paper, Arridge and

Lionheart theoretically proved that it is impossible to uniquely separate absorption from scatter-

ing with CW light [8]. Consequentially, in order to obtainµa from CW light measurements,D

must beassumed, which is a major drawback. Errors in the assumed tissue scattering coefficient

will result in systematic errors in the measured absorptioncoefficient.

Some frequency domain instruments, such as the ISS Imagent (ISS Medical, Urbana-Champaign,

IL), measure both the ac and dc fluence rates. In the same manner as described in Figure 2.7,

34



µa andD can be determined from measurements of dc amplitude and phase at multiple source-

detector separations. The dc amplitude (Equation 2.68) is less attenuated than the ac amplitude

(Equation 2.62) at a given separationr, which in principle means the signal to noise ratio of the

dc amplitude is higher than the ac amplitude. However, the acamplitude and phase combination

for determining optical properties is less sensitive to stray ambient light. In typical measure-

ments, the phase is substantially noisier than the ac or dc amplitudes. This suggests that it may

be best to bypass the phase measurements by using the ac and dcamplitudes to obtain the tis-

sue optical properties. However, although the ac and dc signals are less noisy than the phase,

the extracted optical properties from ac and dc amplitude measurements are very susceptible to

instrument noise because of the similarity in changes of theac and dc amplitudes with increas-

ing r [93, Section 2D]. In practice, Equations 2.68 and 2.62 are not independent, meaning they

cannot be uniquely solved forµa andµ′s.

2.5.1.3 Time domain solution

The time-domain and frequency-domain solutions to Equation 2.46 are Fourier transform pairs

(Section 2.7). Therefore, the inverse Fourier transform ofEquation 2.55 gives the homogeneous

infinite medium fluence rate solution to Equation 2.46 in the presence of a pulsed point source of

the formS(r, t) = S0δ(r)δ(t), whereS0 [J] is the total energy of the light pulse. The resulting

fluence rate is

Φ(r, t) =
vS0

(4πDt)3/2
exp

[

− r2

4Dt
− µavt

]

. (2.69)

Here, instead of using fluence rate measurements at multipledistances to derive optical prop-

erties, one measures the fluence rate at multiple times for asingle source-detector separation.

Equation 2.69 (convolved with an “instrument response function”) is then fit to this measured

time-domain data to extractD andµa [39, 191]. Alternatively, if it is only necessary to deter-

mineµa, the full nonlinear fit can be avoided by noting that∂ log Φ(r, t)/∂t → −µav ast→ ∞.

Thus,µa is given by the slope of the natural log of the fluence rate at long times (i.e., typically

only a few nanoseconds) [201].

The major advantage of using time-resolved pulsed sources compared to intensity modulated
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sources is that only one source-detector separation is needed to measure absolute optical prop-

erties. Also, by employing time-gating and moments analysis at the detection end, it is possible

to pathlength resolve the detected light in order to reject contributions from superficial tissue

layers [172, 222]. However, time-resolved instrumentation is considerably more complex and

expensive than frequency-domain instrumentation.

2.6 Boundary Conditions

While conceptually useful, the infinite homogeneous mediumis not a good appoximation for

practical tissue geometries. Most realistic geometries have interfaces between different media.

For example, in the DOS measurement depicted in Figure 2.2, there is the interface between the

scalp and the probe. A particularly useful geometry is the planar interface wherein a semi-infinite

turbid tissue is bounded in the other half-space by air (Figure 2.8). Another commonly used

geometry is the slab geometry wherein tissue is bounded by two planar interfaces (Figure 2.8).

The diffusion model can still be applied near these interfaces provided appropriate boundary

conditions on the fluence rate are used. In this section, I will derive the partial-flux boundary

condition (also known as the Robin boundary condition) and the extrapolated-zero boundary

condition on the photon fluence rate at the interface betweena highly scattering medium (e.g.,

tissue) and anon-scatteringmedium (e.g., air) [7,123]. These boundary conditions are applicable

at a given pointri on any turbid-nonscattering interface. In this derivation, it is necessary to

consider the light radiance (see Table 2.1) again.

2.6.1 Partial-Flux Boundary Condition

Photons escaping from the tissue into air will almost never re-enter the tissue medium because

non-scattering media do not alter the direction of light travel. Therefore, if all light sources are

inside the tissue, the incoming irradiance (i.e., total light power per area traveling into the diffuse

medium at the boundary) at positionri on the interface, i.e.,Jin(r, t), is due to Fresnel reflections

of the radiance in the diffuse medium that travels out towardthe interface (see Figure 2.8):

36



d
w

h

x

y

z

ρ

Incident
Beam

To
Detector

n
nout d

n
nout

L( )Ω R L( )Fresnel Ω( )Ω
θ θ

z

h

π θ-2

Figure 2.8: Common geometry used to model tissue with refractive indexn that is bounded by
a non-scattering medium with refractive indexnout. In the semi-infinite geometry, w, h, and d
all go to infinity, while in the infinite slab geometry, w and h are infinite but d is finite. Both
geometries have azimuthal symmetry about the z-axis, meaning the photon fluence rate only
depends on the radial and axial cylindrical coordinatesρ andz. On the left, a single source-
detector pair (with separationρ) in the remission geometry is shown. Note that for the slab
geometry, detectors can also be used for transmission measurements by being placed on the
z = d plane. On the right is a cross-section showing that the radiance moving into the turbid
medium at a pointri on the boundary is due to the Fresnel reflection of the radiance incident on
the boundary.
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Jin(ri, t) ≡
∫

Ω̂·ẑ>0

L(ri, Ω̂, t)Ω̂dΩ · ẑ (2.70)

=

∫

Ω̂·ẑ<0

RFresnel(Ω̂)L(ri, Ω̂, t)Ω̂dΩ · (−ẑ). (2.71)

RFresnel(Ω̂) is the familiar Fresnel reflection coefficient for light incident upon the boundary in

a directionΩ̂ from within the tissue [116, Chapter 9], andri denotes a point on the boundary.

Note thatJin is also called the partial flux because the integration in Equation 2.70 is over2π

steradians in thez > 0 hemisphere, whereas the integration in the full photon flux,J (Equa-

tion 2.21), is over all4π steradians of space14. All of the light power crossing the boundary into

the tissue is from Fresnel reflections, and consequentiallythe partial flux is the total reflected

power into the tissue from light traveling inside the tissuetowards the boundary (Equation 2.71).

To convert Equations 2.70 and 2.71 into a boundary conditionon the fluence rate, we use

theP1 approximation of the radiance (Equation 2.27), which we also used to derive the photon

diffusion equation. Substituting Equation 2.27 into Equation 2.70 and evaluating the integral in

spherical coordinates results in

Jin(ri, t) =

∫ π/2

0

∫ 2π

0

(

1

4π
Φ+

3

4π
J · [sin θ cosφx̂+ sin θ sinφŷ + cos θẑ]

)

cos θ sin θdφdθ

=
1

2
Φ(ri, t)

∫ π/2

0
cos θ sin θdθ +

3

2
Jz(ri, t)

∫ π/2

0
cos2 θ sin θdθ

=
Φ(ri, t)

4
+
Jz(ri, t)

2
, (2.72)

whereJz(ri, t) is thez−component of the photon flux.

14
J(ri, t) · ẑ is the net light power per area crossing the boundary. The Fresnel reflections in Equation 2.71

determine thetotal light power per area crossing the boundary into the tissue, which is the partial flux.
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Similarly, substituting Equation 2.27 into Equation 2.71 results in

Jin(ri, t) =

∫ π/2

0

∫ 2π

0
RFresnel(θ)L(ri, π − θ, φ, t)[− cos(π − θ)] sin(π − θ)dφdθ

=

∫ π/2

0

∫ 2π

0
RFresnel(θ)

(

1

4π
Φ+

3

4π
J · [sin(π − θ) cosφx̂+

sin(π − θ) sinφŷ + cos(π − θ)ẑ]) cos θ sin θdφdθ

=

∫ π/2

0

∫ 2π

0
RFresnel(θ)

(

1

4π
Φ− 3

4π
Jz cos θ

)

cos θ sin θdφdθ

= RΦ
Φ(ri, t)

4
−RJ

Jz(ri, t)

2
(2.73)

where

RΦ ≡
∫ π/2

0
2 sin θ cos θRFresnel(θ)dθ (2.74)

RJ ≡
∫ π/2

0
3 sin θ cos2 θRFresnel(θ)dθ. (2.75)

In arriving at Equation 2.73, we used the fact thatRFresnel(Ω̂) depends on the polar angleθ

(Figure 2.8) but not the azimuthal angleφ. For the case of unpolarized light withn > nout, the

reflection coefficient for light incident on the boundary from the tissue is [116,123]

RFresnel(θ) =











1
2

(

n cos θ′−nout cos θ
n cos θ′+nout cos θ

)2
+ 1

2

(

n cos θ−nout cos θ′

n cos θ+nout cos θ′

)2
if 0 ≤ θ ≤ θc,

1 if θc ≤ θ ≤ π/2,

(2.76)

where the angle of incidenceθ and the refracted angleθ′ satisfy Snell’s law, i.e.,n sin θ =

nout sin θ
′, and the critical angleθc for total internal reflection is given byn sin θc = nout.

Combining Equations 2.72 and 2.73, we obtain

Φ(ri, t) =
1 +RJ

1−RΦ
(−2Jz(ri, t)). (2.77)

Equation 2.77 is commonly rearranged in terms of an effective reflection coefficient,Reff , to

account for the refractive index mismatch between tissue and the non-scattering medium:

Φ(ri, t) =
1 +Reff

1−Reff
(−2Jz(ri, t)) (2.78)

with

Reff ≡ RΦ +RJ

2−RΦ +RJ
. (2.79)
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n nout RΦ RJ Reff |Φ/Jz|
1.40 1.40 0 0 0 2.0
1.33 1.00 0.472 0.328 0.431 5.1
1.40 1.00 0.529 0.389 0.493 6.0

Table 2.4: Ratios of the fluence rate to the flux at the surface boundary, as given by Equation 2.77,
for some typical index refraction

Given refractive indicesn andnout,Reff ≈ −1.440 (n/nout)
−2+0.701 (n/nout)

−1+0.668+

0.0636 (n/nout) [88, 118]. However, it is best to solve the integrals forRΦ (Equation 2.74)

andRJ (Equation 2.75) numerically using Equation 2.76 for the Fresnel reflection coefficient.

Table 2.4 lists the exactReff and ratio|Φ/Jz | for some typical index of refraction mismatches.

The partial flux boundary condition is obtained from substituting Fick’s law of diffusion

(Equation 2.43) in forJz in Equation 2.78:

Φ(ri, t) = zb
∂Φ(ri, t)

∂z
, (2.80)

where

zb ≡
2

3
ℓtr

1 +Reff

1−Reff
. (2.81)

2.6.2 Extrapolated-Zero Boundary Condition

The partial-flux boundary condition is exact, but it is difficult to use in practice, especially if

analytical solutions to the diffusion equation with interfaces are desired. The extrapolated-zero

boundary condition is an approximation of the partial-flux boundary condition that makes solv-

ing the diffusion equation more tractable. It is derived by Taylor expanding the fluence rate to

first order around the boundary (atz = 0, with the first derivative term taken from the partial-flux

boundary condition (Equation 2.80), i.e.,

Φ(z) = Φ(0) +
∂Φ

∂z
z = Φ(0) +

Φ(0)

zb
z. (2.82)

As shown in Figure 2.9, if we use this line to approximate the fluence rate outside of the turbid

medium (z < 0), then

Φ(z = −zb) = 0, (2.83)

which is the extrapolated-zero boundary condition.
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Figure 2.9: The fluence rate curve is approximated by its tangent line atz = 0, where theΦ = 0
intercept of this curve isz = −zb. This figure is adapted from Li [170, Fig. 1.6].

2.7 Green’s function solutions

An age old strategy [6, 15] employed to solve the time-domainand frequency-domain diffusion

equations (Equation 2.46 and Equation 2.52) is to first find their respective Green’s functions,

and then to use these Green’s functions to construct more general solutions. We will first focus on

the special case of homogeneous media. In the time-domain, the homogeneous photon diffusion

equation is
(

∇2 − vµa
D

− 1

D

∂

∂t

)

Φ(r, t) = − v

D
S(r, t). (2.84)

The homogeneous time-domain Green’s function (g(r, rs, t, ts) [cm−2s−1]) is defined as the

solution of Equation 2.84 for a normalized infinitesimally narrow light pulse emitted at position

rs and timets, i.e.,

(

∇2 − vµa
D

− 1

D

∂

∂t

)

g(r, rs, t, ts) = − v

D
δ(r − rs)δ(t − ts), (2.85)

that satisfies the boundary condition (e.g., Equation 2.83)for the geometry of interest. For an

arbitrary source distribution,S(r, t), the photon fluence rate solution to Equation 2.84 is the

convolution of the Green’s function withS(r+ rs, t+ ts), i.e.,

Φ(r, t) =

∫

g(r′, rs, t
′, ts)S(r+ rs − r′, t+ ts − t′)d3r′dt′, (2.86)
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where the spatial integration is done over the entire volumeof tissue, and the temporal integration

is from −∞ to ∞. Notice that the photon fluence rate from a point source, i.e., S(r, t) =

S0δ(r− rs, t− ts), isΦ(r, t) = S0g(r, rs, t, ts).

Similarly, the frequency-domain homogeneous Green’s function (G(r, rs) [cm−2]) is the

solution of Equation 2.54 for a normalized oscillating point source at positionrs, i.e.,

(

∇2 − k2
)

G(r, rs) = − v

D
δ(r − rs), (2.87)

that satisfies the boundary condition for the geometry of interest. The solution to the homoge-

neous frequency-domain photon diffusion equation (Equation 2.54) for an arbitrary distribution

of oscillating point sources (i.e.,Sac(r, t) = S(r)eiωt) is

U(r) =

∫

G(r′, rs)S(r+ rs − r′)d3r′, (2.88)

where the spatial integration again is over the entire volume of tissue. As with the time-domain,

the frequency-domain fluence rate for a point source,S(r) = S0δ(r−rs), isU(r) = S0G(r, rs).

Notice that Equation 2.86 can also be used to find the photon fluence rate,Φac(r, t) (Equa-

tion 2.50), for the same arbitrary distribution of oscillating sources. SubstitutingSac into Equa-

tion 2.86, we obtain

Φac(r, t) = eiωt
∫ (∫ ∞

−∞
g(r′, rs, t

′, ts)e
−iω(t′−ts)dt′

)

S(r+ rs − r′)d3r′. (2.89)

Recalling thatΦac(r, t) = U(r)eiωt (Equation 2.50), Equation 2.89 is equivalent to

U(r) =

∫ (∫ ∞

−∞
g(r′, rs, t

′, ts)e
−iω(t′−ts)dt′

)

S(r+ rs − r′)d3r′. (2.90)

Comparing Equation 2.90 with Equation 2.88, it is evident that the frequency-domain Green’s

function,G(r, rs), is the Fourier transform of the time-domain Green’s function, i.e.,

G(r, rs) =

∫ ∞

−∞
g(r, rs, t, ts)e

−iω(t−ts)dt. (2.91)

Correspondingly, the time-domain Green’s function is the inverse Fourier transform ofG(r, rs):

g(r, rs, t, ts) =
1

2π

∫ ∞

−∞
G(r, rs)e

iω(t−ts)dω. (2.92)

42



Importantly, Equations 2.91 and 2.92 can be utilized to convert a time-domain Green’s function

to its corresponding frequency-domain Green’s function, and vice versa. The time-domain and

frequency-domain fluence rates are then given by Equations 2.86 and 2.88, respectively.

Finally, the Green’s function for a continuous-wave light source (i.e.,Gcw(r, rs)) is the

special case of the frequency-domain Green’s function forω = 0. The CW analogue of Equa-

tion 2.88 for the CW fluence rate is

Φcw(r) =

∫

Gcw(r
′, rs)S(r+ rs − r′)d3r′. (2.93)

Exactly the same approach can be used for heterogeneous geometries as well. The key

difference is that the definition of time-domain and frequency-domain Green’s functions are the

heterogeneous analogues of Equation 2.85 and Equation 2.87.

2.8 Semi-infinite Frequency-Domain Green’s Function for Partial-

Flux Boundary Condition

I will now utilize the method of images [35] to derive the frequency-domain Green’s function

of the photon diffusion equation for the semi-infinite geometry (Figure 2.8) and the partial-flux

boundary condition (Equation 2.80). The method of images consists of adding infinite medium

Green’s functions (e.g., arising from a light source and “image sources”) together in a way that

satisfies the appropriate boundary condition.

First, recall from Section 2.4 that light from the incident beam in Figure 2.8 is well approx-

imated as an isotropic point source at position (in cylindrical coordinates)rs = (ρs = 0, zs =

ℓtr). The frequency-domain Green’s function for this point source in the infinite geometry is

(see Equation 2.55)

GI([ρ, z], [ρs = 0, zs = ℓtr]) =
v

4πDr1
exp(−kr1), (2.94)

wherer1 ≡
√

(z − ℓtr)2 + ρ2. The partial-flux Green’s function for the semi-infinite geometry

(i.e.,Gpf
S ) is the sum of the infinite geometry Green’s function and a correction termGc that

arises from the presence of the boundary:

Gpf
S = GI([ρ, z], [ρs = 0, zs = ℓtr]) +Gc([ρ, z], [ρs = 0, zs = ℓtr]). (2.95)
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The partial-flux boundary condition (Equation 2.80) for Equation 2.95 is

(GI +Gc)z=0 = zb

[

∂GI

∂z
+
∂Gc

∂z

]

z=0

. (2.96)

Substituting Equation 2.94 into Equation 2.96, we obtain

(

∂Gc

∂z
− 1

zb
Gc

)

z=0

= −
(

∂GI

∂z
− 1

zb
GI

)

z=0

=

(

v

4πDr21
e−kr1

[

k(z − ℓtr) +
z − ℓtr
r1

]

+
v

4πDzbr1
e−kr1

)

z=0

=
v exp

[

−k
√

ℓ2tr + ρ2
]

4πD(ℓ2tr + ρ2)

(

−kℓtr −
ℓtr

√

ℓ2tr + ρ2
+

1

zb

)

, (2.97)

wherezb is given by Equation 2.81.

The next step is to consider the infinite Green’s function foran image point source (Fig-

ure 2.10) at (ρs = 0, zs = −ℓtr), i.e.,

G
image
I =

v

4πDr2
exp[−kr2], (2.98)

wherer2 ≡
√

(z + ℓtr)2 + ρ2.

Notice at the interface,z = 0, that

[(

∂

∂z
+

1

zb

)

G
image
I

]

z=0

=

(

− v

4πDr22
e−kr2

[

k(z + ℓtr) +
z + ℓtr
r2

]

+
v

4πDzbr2
e−kr2

)

z=0

=
v exp

[

−k
√

ℓ2tr + ρ2
]

4πD(ℓ2tr + ρ2)

(

−kℓtr −
ℓtr

√

ℓ2tr + ρ2
+

1

zb

)

. (2.99)

The right hand sides of Equations 2.97 and 2.99 are identical, which means that a solution for

Gc that satisfies

∂Gc

∂z
− 1

zb
Gc =

(

∂

∂z
+

1

zb

)

Gimage
I (2.100)

will also satisfy the partial-flux boundary condition.

To solve Equation 2.100, multiply both sides byexp[−z/zb] and then integrate the resulting
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equation, i.e.,

∫ ∞

z

∂

∂z′

(

e−z′/LsGc

)

dz′ =
∫ ∞

z

∂

∂z′

(

v

4πDr2
e−(kr2+z′/zb)

)

dz′+

2

zb

∫ ∞

z

v

4πDr2
e−(kr2+z′/zb)dz′,

⇒ −Gc = − v

4πDr2
e−kr2 − 2

zb

∫ ∞

z

v

4πDr2
e−(k0r2+[z′−z]/Ls)dz′,

⇒ Gc =
v

4πDr2
− 2

zb

∫ ∞

0

v

4πDr2(u)
e−(k0r2(u)+u/zb)du, (2.101)

where a change of variablesu = z′ − z was made between lines 2 and 3.

Substituting Equation 2.101 into Equation 2.95 results in the Green’s function that satis-

fies the diffusion equation inside the semi-infinite medium (z > 0) as well as the partial-flux

boundary condition:

Gpf
S =

v

4πD

[

e−kr1

r1
+

e−kr2

r2
−

2

zb

∫ ∞

0
e−u/zb

exp
[

−k
√

(z + ℓtr + u)2 + ρ2
]

√

(z + ℓtr + u)2 + ρ2
du



 . (2.102)

We know that Equation 2.102 satisfies the photon diffusion equation (Equation 2.54) in ad-

dition to the partial-flux boundary condition because it is alinear sum of infinite media Green’s

functions (Equation 2.94). Each infinite Green’s function satisfies the photon diffusion equation,

and therefore their sum will also satisfy the photon diffusion equation.

As illustrated in the left panel of Figure 2.10, the first two terms in Equation 2.102 are the

infinite medium Green’s functions from a point source at (ρs = 0, zs = ℓtr) and an image source

at (ρs = 0, zs = −ℓtr). The integral in Equation 2.102 represents a continuous line of infinite

Green’s functions from image sinks (i.e., image sinks contribute negatively toGS) that starts

at (ρs = 0, z = −ℓtr) and extends to (ρs = 0,z = −∞). The magnitudes of the sinks are

exponentially damped asz → −∞ with a characteristic decay length ofzb (Figure 2.10).
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Figure 2.10: Analytical Green’s functions in homogeneous semi-infinite media for both the
partial-flux (Equation 2.80) and extrapolated-zero (Equation 2.83) boundary conditions can be
derived using the method of images. The method of images findsthe superposition of infinite
media Green’s functions (Equation 2.94) that satisfies the appropriate boundary condition. One
term in the superposition is the infinite Green’s function from the “real light source”. The other
terms arise from image sources (e.g., positive terms) and image sinks (e.g., negative terms). The
image source and sink distributions for the partial-flux (left panel) and extrapolated-zero (right
panel) boundary conditions are shown. For the partial-flux case, the infinite line of sinks is ex-
ponentially damped asz → −∞ with a characteristic decay length ofzb. This figure is adapted
from Haskell [123, Fig. 4].
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2.9 Semi-infinite Frequency-Domain Green’s Function for Extrapolated-

Zero Boundary Condition

In the semi-infinite geometry, the extrapolated-zero boundary condition (Equation 2.83) is satis-

fied by a superposition of only two infinite medium Green’s functions (Equation 2.94), i.e.,

GS([ρ, z], [ρs = 0, zs = ℓtr]) =
v

4πD

[

exp(−kr1)
r1

− exp(−krb)
rb

]

, (2.103)

where

r1 =
√

(z − ℓtr)2 + ρ2 (2.104)

rb =
√

(z + 2zb + ℓtr)2 + ρ2.. (2.105)

The first term is from the source at (ρs = 0, zs = ℓtr) and the second term is from an image

sink at (ρs = 0, zs = −(ℓtr + 2zb)) (Figure 2.10). Obviously, the extrapolated-zero solution

(Equation 2.103) is more tractable than the partial-flux solution (Equation 2.102) because there

is no integral to evaluate.

2.9.1 Extrapolated-zero and partial-flux multipole expansion

The extrapolated-zero image configuration (Figure 2.10) isthe best single-point image repre-

sentation of the partial-flux configuration, differing onlyin octupole and higher multipole mo-

ments [123]. Thus, far away from the image configurations, the partial-flux and extrapolated-

zero solutions are virtually the same. The semi-infinite Green’s functions Equation 2.102 and

Equation 2.103 have the same1/|r−rs| dependence as the electrostatics Coulomb potential [116,

Section 3.4].

Therefore, a multipole expansion on the semi-infinite photon fluence rate solutions can be

done, and it’s useful to compare the “image configuration dipole moments” for the partial-flux

and extrapolated-zero fluence rates. Recall from electrostatics that two charge distributions with

the same dipole moment have virtually the same electrostatic potential at distances far from the

the distribution [116]. Similarly, two image configurations with the same dipole moment have

virtually the same fluence rate at distances far from the image distribution.
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Figure 2.11: Simulated amplitude and phase data as a function of source-detector separation,ρ,
was generated using the exact semi-infinite Green’s function (Equation 2.103) withµa = 0.1
cm−1, µ′s = 10 cm−1, n = 1.4, nout = 1, andf = ω/2π = 70 MHz. Equations 2.110 and
2.111 were employed to calculateµa (left) andµ′s (right) from linear fits to five equally spaced
source-detector separations spaced over the ranges specified on the horizontal axis, i.e., [1, 1.5,
2, 2.5, 3] cm, [1.5, 2, 2.5, 3, 3.5] cm,. . ., [6, 6.5, 7, 7.5, 8] cm.

I will first compute the dipole moment of the partial-flux image configuration in Figure 2.10:

p ≈
(

2ℓtr +
2

zb

∫ ∞

0
ze−z/zb

)

e−kρẑ = 2(zb + ℓtr)e
−kρẑ. (2.106)

Here, I made the approximation thatexp[−k|r − rs|] ≈ exp[−kρ], which is the case on the

planar interface for largeρ. Also, I used the image source position as the origin for the dipole

calculation.

The dipole moment of the extrapolated-zero image configuration in Figure 2.10 is

p ≈ 2(ℓtr + zb)e
−kρẑ, (2.107)

which is the same as Equation 2.106. It also turns out that thetwo image configurations have the

same quadrupole moments for the origin on the planar interface [123].

The main point to remember is that for measurements with longsource-detector separations

compared toℓtr, the extrapolated-zero fluence rate is an excellent approximation of the partial-

flux fluence rate [123].
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2.9.2 Extrapolated-zero Green’s function at the boundary (large ρ limit)

In diffuse optical measurements, the fluence rate is typically detected at the tissue-air interface,

i.e.,z = 0. Equation 2.83 can be fit exactly, but in the limitρ≫ (ℓtr+2zb), the extrapolated-zero

Green’s function simplifies considerably. Following Li’s discussion [170, Sec. 1.6], atz = 0

andρ≫ (ℓtr + 2zb) (see Equations 2.104 and 2.105),

r1 ≈ ρ

[

1 +
1

2

(

ℓtr
ρ

)2
]

,

rb ≈ ρ

[

1 +
1

2

(

ℓtr + 2zb
ρ

)2
]

,

1

r1
≈ 1

ρ

[

1− 1

2

(

ℓtr
ρ

)2
]

,

1

rb
≈ 1

ρ

[

1− 1

2

(

ℓtr + 2zb
ρ

)2
]

.

Applying these approximations to Equation 2.83 and dropping all terms of order higher than

1/ρ2, we obtain

G([ρ, z = 0], [ρs = 0, zs = ℓtr]) ≈
v

4πD

e−kρ

ρ

[

exp

(

−kℓ
2
tr

2ρ

)

(

1− 1

2

[

ℓtr
ρ

]2
)

−

exp

(

−k (ℓtr + 2zb)
2

2ρ

)

(

1− 1

2

[

ℓtr + 2zb
ρ

]2
)]

,

≈ v

4πD

e−kρ

ρ

[

(

1− kℓ2tr
2ρ

)

(

1− 1

2

[

ℓtr
ρ

]2
)

−

(

1− k0(ℓtr + 2zb)
2

2ρ

)

(

1− 1

2

[

ℓtr + 2zb
ρ

]2
)]

,

≈ v

4πD

e−kρ

ρ

[

1− kℓ2tr
2ρ

− 1 +
k(ℓtr + 2zb)

2

2ρ

]

,

=
v

4πD

e−kρ

ρ2
[2k(zbℓtr + z2b )]. (2.108)

For an oscillating point sourceS(r) =MS0e
iωtδ(z−ℓtr)δ(ρ), the frequency-domain photon

fluence rate is obtained from substituting Equation 2.108 into 2.88, i.e.,

U(ρ, z = 0) ≈ MS0v

4πD

e−kρ

ρ2
[

2k(zbℓtr + z2b
]

. (2.109)
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Figure 2.12: Two orthogonal cross-sections of the cylindrical geometry (A, B) and one cross
section of the spherical geometry (C). For the infinite cylindrical geometry,h→ ∞.

The amplitude and phase of this diffuse photon density wave (i.e.,U(ρ, z = 0) = A(ρ)e−iθ(ρ);

see Equation 2.61) satisfy

log(ρ2A(ρ)) = −krρ+ log(A0), (2.110)

θ = θ0 − kiρ, (2.111)

wherekr andki are given by Equations 2.59 and 2.60, respectively. Therefore, in the largeρ

limit of the semi-infinite geometry,kr andki are determined from linear fits to measurements of

log(ρ2A(ρ) andθ(ρ) at multiple source-detector separations. Then,µa andµ′s are determined

from kr andki via Equations 2.66 and 2.67.

Equations 2.110 and 2.111 are an approximation of the semi-infinite fluence rate, which can

lead to a systematic error of up to10% in the calculated absorption coefficient (Figure 2.11). This

systematic effect approximately divides out when computing fractional changes in hemoglobin

concentration or the tissue oxygen saturation with multispectral measurements.

2.10 Extrapolated-zero Green’s Functions in Spherical, Cylindri-

cal, Slab, and Two-layer Geometries

Tables 2.5 and 2.6 show the frequency-domain and time-domain Green’s functions subject to the

extrapolated-zero boundary condition for cylindrical (Figure 2.12), spherical (Figure 2.12), and

slab (Figure 2.8 homogeneous geometries [10]. Again, the photon fluence rates are calculated

from the Green’s functions using Equations 2.88 and 2.86.
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Case Green’s function (frequency-domain)

Infinite G(r, rs) =
v

4πD|r−rs| exp(−k|r− rs|)

Semi-infinite G([ρ, z], [ρs = 0, zs = ℓtr]) =
v

4πD

[

exp(−kr1)
r1

− exp(−krb)
rb

]

Infinite Slab G([ρ, z], [ρs = 0, zs = ℓtr]) =
v

4πD

∞
∑

m=−∞

(

exp[−kr+,m]
r+.m

− exp[−kr−.m]
r−,m

)

Infinite Cylindrical G([ρ, φ, z], [ρs, zs]) =
v

2πDa2b

∞
∑

m=−∞
cosmφ

∑

βm

e−|z−zs|/

√
k2+β2

m√
k2+β2

m

Jm(βmρ)Jm(βmρs)
[J ′

m(βmab)]2

Finite Cylindrical G([ρ, φ, z], [ρs, zs]) =
v

πD(h+2zb)

∞
∑

m=1
sin mπz

h+2zb
sin mπzs

h+2zb
×

∑∞
n=−∞

In(ρkm)[In(abkm)Kn(ρskm)−In(ρskm)Kn(abkm)]
In(abkm) cosnφ

Spherical (rs < r < a) G([r, φ], rs) =
v

4πD
√
rrs

∞
∑

n=0

Kn+1/2(kr)In+1/2(kab)−In+1/2(kr)Kn+1/2(kab)

In+1/2(kab)
×

(2n + 1)In+1/2(krs)Pn(cos φ)

k ≡
√

(µav + iω)/D Jm(z)mth order Bessel function, 1st kind
r1 ≡

√

(z − ℓtr)2 + ρ2 Im(z)mth order modified Bessel function, 1st kind
rb ≡

√

(z + 2zb + ℓtr)2 + ρ2 Km(z)mth order modified Bessel function, 2nd kind

zb = 2ℓtr
1+Reff

3(1−Reff )
Reff ≈ −1.440

(

n
nout

)−2
+ 0.701

(

n
nout

)−1
+ 0.668 + 0.0636

(

n
nout

)

m, an integer Pm(z)mth order Legendre polynomial
r±,m ≡

√

ρ2 + (z − z±,m)2 a, cylinder/sphere radius (Fig. 2.12)
z+,m ≡ 2m(d+ 2zb) + ℓtr ab = a+ zb, i.e., extrapolated-zero boundary (cylinder/sphere)
z−,m ≡ 2m(d+ 2zb)− 2zb − ℓtr βm, a positive root ofJm(βmab) = 0
d, slab thickness (Fig. 2.8) φ, angle between input/output light beams (cylinder/sphere, Fig. 2.12)
km ≡

√

k2 +m2π2/(h+ 2zb)2 ρ, radial cylindrical coordinate
r, radial spherical coordinate h, finite cylinder axial length (Fig. 2.12)

Table 2.5: Frequency-domain Green’s functions (Equation 2.87) in several homogeneous geome-
tries subject to the extrapolated-zero boundary condition(Equation 2.83). Notation is defined in
the lower part of the Table, and for more details about the geometries, refer to Figures 2.8 and
2.12. The sum overβm for the infinite cylindrical Green’s function explicitly means to sum
over all positive roots of themth order Bessel function,Jm(z), andJ ′

m(z) is the derivative of
Jm(z). In practice, the infinite sums are truncated after a desiredaccuracy has been reached.
Further, note that the special caseω = 0 corresponds to the continuous-wave Green’s functions
(Equation 2.93).
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Case Green’s function (time-domain)

Infinite g(r, rs, t, ts) =
v

(4πD(t−ts))3/2
exp

[

− |r−rs|2
4D(t−ts)

− µav(t− ts)
]

Semi-infinite g([ρ, z], [ρs = 0, zs = ℓtr], t, ts) =
v exp[−µav(t−ts)]

(4πD(t−ts))3/2

(

exp
[

− r21
4D(t−ts)

]

− exp
[

− r2b
4D(t−ts)

])

Infinite Slab g([ρ, z], [ρs = 0, zs = ℓtr], t, ts) =
v exp[−µav(t−ts)]

(4πD(t−ts))3/2

∞
∑

m=−∞

(

exp

[

− r2+,m

4D(t−ts)

]

− exp

[

− r2−,m

4D(t−ts)

])

Infinite Cylindrical g([ρ, φ, z], [ρs, zs], t, ts) =
v exp

[

−
(

µav(t−ts)+
(z−zs)

2

4D(t−ts)

)]

2πa2b

√
πD(t−ts)

×
∞
∑

m=−∞
cosmφ

∑

βm

exp[−Dβ2m(t− ts)]
Jm(βmρ)Jm(βmρs)

[J ′
m(βmab)]2

Finite Cylindrical g([ρ, φ, z], [ρs, zs], t, ts) =
2ve−µav(t−ts)

πa2b(h+2zb)

∞
∑

m=1
exp

[

−Dm2π2(t−ts)
(h+2zb)2

]

sin mπz
h+2zb

sin mπzs
h+2zb

×
∞
∑

n=−∞
cosnφ×∑

βn

e−Dβ2
n(t−ts) Jn(βnρ)Jn(βnρs)

[J ′
n(βnab)]

2

Spherical (rs < r < a) g([r, φ], rs, t, ts) =
−v exp[−µav(t−ts)]

2πa2b
√
rrs

∞
∑

m=0

∑

βm+1/2

Jm+1/2(βm+1/2r)Jm+1/2(βm+1/2rs)

[Jm+3/2(βm+1/2ab)]
2 ×

(2m+ 1)Pm(cosφ)e−Dβm+1/22(t−ts)

Table 2.6: Time-domain Green’s functions (Equation 2.85) in several homogeneous geometries
subject to the extrapolated-zero boundary condition (Equation 2.83). Notation is defined in
Table 2.5. As with the frequency-domain Green’s functions,in practice, the infinite sums are
truncated after a desired accuracy has been reached.
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Analytical Green’s functions also exist for heterogeneities such as spherical [22] and cylin-

drical inclusions [252] in homogeneous media as well as for multi-layer media [129,157,212].

I have used the Green’s function for the two-layer geometry extensively to distinguish be-

tween cerebral and superficial tissue layers (Figure 2.13).The two-layer geometry is comprised

of a semi-infinite bottom layer (e.g., corresponding to the cortical regions of the brain) with a

distinct absorption coefficient and scattering coefficientof µa,c andµ′s,c, respectively, and a su-

perficial top layer (e.g., corresponding to extra-cerebralscalp and skull tissue) with thickness

ℓ, and distinct tissue properties denoted byµa,ec, andµ′s,ec. The frequency-domain Green’s

function for this geometry at thez = 0 plane is [157]

G([ρ, z = 0], [ρs = 0, zs = z0]) =
1

2π

∫ ∞

0
G̃(s)sJ0(sρ)ds, (2.112)

G̃(s) =
v sinh[kec(zb + z0)]

Deckec

Deckec cosh[kecℓ] +Dckc sinh[kecℓ]

Deckec cosh[kec(ℓ+ zb)] +Dckc sinh[kec(ℓ+ zb)]
−

v sinh[kecz0]

Deckec
,

whereDj = v/[3(µ′s,j + µa,j)], k2j = (Djs
2 + vµa,j + iω)/Dj (with subscriptj denotingc

(cerebral) orec (extra-cerebral)),zb = 2(Dec/v)(1 + Reff )/(1 − Reff ), z0 = 3Dec/v, and

Reff is defined by Equation 2.79 (this solution assumes the top andbottom layers have the same

optical index of refraction).

Although an analytical solution for the time-domain two-layer Green’s function does not

exist, it can be determined numerically from substituting Equation 2.112 into Equation 2.91 and

evaluating the resulting expression with a fast Fourier transform technique [108,157].

2.11 Relationship Between the Fluence Rate and the DetectedSig-

nal

From the previous sections, I presented the photon diffusion model and its solutions in several

geometries for the photon fluence rate. I will now discuss therelationship between the photon

fluence rate and the detected light intensity [52, 123]. Two common methods for light detection

are depicted in 2.14.

Let’s first consider the case of optical fiber based detectionat positionr on the boundary. The
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Figure 2.13: (A) Two-layer tissue model of the head and(B) parallel plane two-layer tissue
geometry.

Figure 2.14: Diffusing light can be detected with both contact and non-contact probes. Contact
probes typically use an optical fiber (with numerical apertureNAF ) to transport light emerging
from a pointr to a light detector (e.g., photomultiplier tube). Non-contact probes typically
utilize a lens (with numerical apertureNAL) to image the light emerging from a pointrd onto
its corresponding point on the detector plane, i.e.,rd,CCD. As in Figure 2.8,n is the tissue index
of refraction andnout is the refractive index of the non-scattering medium bounding the tissue.
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detected light intensity,I(r, t), is the light radiance integrated over the collection solidangle and

detection area (σfiber) of the fiber, i.e.,

I(r, t) =

∫

σfiber

d2r

∫

NAF

dΩT (r, Ω̂, t)L(r, Ω̂, t). (2.113)

Here,T (r, Ω̂, t)dΩ is the probability that a photon at positionr and timet traveling in theΩ̂

direction is detected. To relate the detected signal to the fluence rate, theP1 approximation of

the light radiance (Equation 2.27) is employed in Equation 2.113, i.e.,

I(r, t) =

∫

σfiber

d2r

∫ ϑc

0
dϑ sinϑ

∫ 2π

0
dφT (r, Ω̂, t)

1

4π

[

Φ(r, t) + 3J(r) · Ω̂
]

, (2.114)

where the half-angle of the maximum cone of light that can propagate through the fiber,ϑc, is

determined from the fiber’s numerical aperture viaϑc = arcsin(NAF /n). With the additional

assumptions thatT is spatially homogeneous across the fiber detection area andis symmetric

about the central optical axis of the fiber, i.e.,T = T (ϑ, t) (see Figure 2.14), Equation 2.114

simplifies to

I(r, t) =

∫

σfiber

d2r

∫ ϑc

0
dϑ sinϑT (ϑ, t)

∫ 2π

0
dφ

1

4π
[Φ(r, t)+

3J(r, t) · (sin(ϑ) cos(φ)x̂ + sin(ϑ) sin(φ)ŷ − cos(ϑ)ẑ]]

=

∫

σfiber

d2r

∫ ϑc

0
dϑT (ϑ, t)

1

2
[Φ(r, t)− 3Jz(r, t) cos(ϑ)] sin(ϑ). (2.115)

Since the fluence rate is proportional to the flux at the boundary, i.e., the partial-flux boundary

condition (Equation 2.78), Equation 2.115 is equivalent to

I(r, t) =

[∫ ϑc

0
T (ϑ, t)

1

2

(

1 +
3

2

1−Reff

1 +Reff

)

dϑ

] ∫

σfiber

Φ(r, t)d2r. (2.116)

If the fluence rate is approximately constant over the areaσfiber, then the detected signal is di-

rectly proportional toΦ(r, t), i.e.,

I(r, t) =

[

σfiber

∫ ϑc

0
T (ϑ, t)

1

2

(

1 +
3

2

1−Reff

1 +Reff

]

dϑ

]

Φ(r, t) = C(t)Φ(r, t). (2.117)

Here, the multiplicative factor in brackets is the so-called light coupling coefficient,C, which

is the proportionality constant between the detected signal intensity and the photon fluence rate.
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It depends on many factors, such as the Fresnel transmissioncoefficient from the tissue to the

fiber, the light sensitivity of the detector, “fiber-detector coupling”, and physical properties of

the tissue surface (e.g., hair follicles, melanin content in the skin, thin layers of dust and/or water

droplets, etc.). If any of these aspects of the measurement changes with time, thenC will also

change with time. It is very difficult to predictC theoretically, so in practical measurements,C

is regarded as an unknown.

Equation 2.117 applies to the non-contact detection arrangement in Figure 2.14 as well, i.e.,

I(rd,CCD, t) = CLΦ(rd, t). Non-contact detection has a different light coupling coefficient

wherein the critical angleϑc in Equation 2.117 is given by the numerical aperture of the lens,

i.e., ϑc = arcsin(NAL/nout), and the fiber detection areaσfiber is replaced byσL , which is

the area of the “resolution cell” just resolved by the lens imaging the surface. Further, the

probability density function for light detection, i.e.,T (ϑ), for the lens/CCD scheme is different

from the fiber/PMT scheme. Note that the lens detection scheme works best if the detection

point of interest,rd, is not too far from the central optical axis of the lens. At points far from the

axis, larger aberrations could induce significant contamination atrd,CCD from light emerging at

neighboring positions tord on the tissue surface. Effectively, aberrations increase the resolution

cell area and affectϑc, thus altering the light coupling coefficientCL. Finally, beam vignetting

decreases the light coupling coefficient,CL, at detection points on the tissue surface far from the

lens axis [52].

2.11.1 Strategies for Estimating Light Coupling Coefficients

For a frequency-domain measurement with a single source-detector optical fiber pair (e.g., Fig-

ure 2.8), there are two equations, i.e., one for the measuredamplitude (Equation 2.110) and one

for the measured phase (Equation 2.111), but four unknowns.In addition to tissue absorption

and scattering, there are also two light coupling coefficient unknowns for amplitude and phase,

i.e.,Ca andCp, whereC = Ca exp(−iCp) (see Equation 2.117). Thus, for accurate estimates of

µa andµ′s, frequency-domain measurements at multiple source-detector separations is preferred.

If the source fiber is physically translated across the medium using a translation stage [121], then

to a decent approximation,Ca andCp will be the same at every separation. In this case, Equa-

tions 2.110 and 2.111 can be directly applied to linearly fit the measured amplitude and phase
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Figure 2.15:(A) Multiple source-detector separations are highly preferred for accurate measure-
ments of tissue absorption and scattering with intensity modulated light sources.(B) Top view of
an exemplar self-calibrating probe. Both the self-calibrating probe and the linear probe in panel
(A) have four source-detector separations. A self-calibrating probe requires at least two sources
and two detectors (see text).

data for−kr andki, which are then used to calculateµa andµ′s via Equations 2.66 and 2.67.

However, physically translating a single fiber places a severe limit on time resolution, and

the measurement is also prone to motion artifacts and light leakage since the moving fiber is not

fixed to the tissue. Another, more practical approach utilizes multiple fibers secured to the tissue

of interest (Figure 2.15A). The drawback here, though, is that since each fiber has its own light

coupling coefficient, there will be two additional unknownsfor each additional fiber used. Two

methods are commonly employed to address this problem. One approach uses calibration phan-

toms with known optical properties to determine the coupling coefficients before and after each

experiment [36, 133, 253]. A second approach employs self-calibrating probes [268]. The first

method assumes the coupling coefficients will be the same fortissue and phantom; the second

method assumes axially symmetric tissue. The subsequent discussions of these approaches are

for optical fibers, but the results are also applicable for non-contact detection.

2.11.1.1 Phantom Calibration

The phantom calibration technique estimates the fiber lightcoupling coefficients from measure-

ments on a homogeneous semi-infinite phantom with known optical properties (µPa , µ′Ps ). For
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an arbitrary source-detector pair (i.e., source fiberi, coupling coefficientCs,i; detector fiberj,

coupling coefficientCd,j) with source-detector separationρij , the measured signal intensity is

given by (Equation 2.117)

IPij = |IPij | exp[−ipPij] = Cs,aiCd,aj exp [−i(Cs,pi + Cd,pj)]A
P (ρij) exp[−iθP (ρij ]. (2.118)

Here,AP (ρij) and theθP (ρij are the calculated amplitude and phase obtained from substituting

the known phantom optical properties into the frequency-domain semi-infinite diffusion Green’s

function (e.g., Equation 2.103);pPij is the measured phase difference between the intensities

detected by fiberj and delivered by fiberi on the phantom, and the measured amplitude is

|IPij | ≡
√

IP∗
ij I

P
ij . Equation 2.118 is a system of two equations, i.e.,

Cs,aiCd,aj = |IPij |/AP (ρij), (2.119)

Cs,pi + Cd,pj = pPij − θP (ρij). (2.120)

After the phantom calibration, the probe is attached to the tissue of interest, and the measured

amplitude and phase on the tissue are

|Iij | = Cs,aiCd,ajA(ρij), (2.121)

pij = Cs,pi + Cd,pj + θ(ρij), (2.122)

whereA(ρij) andθ(ρij) are the amplitude and phase predicted by the photon diffusion model

(Equation 2.52). To correct the measured amplitude and phase for the light coupling coefficients,

substitute Equations 2.119 and 2.120 into Equations 2.121 and 2.122, i.e.,

A(ρij) =
AP (ρij)

|IPij |
|Iij |, (2.123)

θ(ρij) = pij −
(

pPij − θP (ρij)
)

. (2.124)

The tissue optical properties can then be extracted from fitting these corrected amplitude and

phase measurements at all source-detector separations to the photon diffusion model.

A big advantage of the phantom calibration technique is its flexibility. It can be utilized for

any arrangement of source and detector fibers. With phantom calibration, it is even possible

to estimate absolute absorption and scattering with only a single source-detector separation.
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Equations 2.123 and 2.124 form a system of two equations, wherein the two unknowns areµa

andµ′s. However, the single separation frequency-domain measurement is not recommended

because it is highly prone to cross talk induced by measurement noise.

The phantom calibration technique also has drawbacks. Its underlying assumption is that the

fiber coupling coefficients calculated on the phantom remainthe same when the probe is moved

to tissue. This assumption is not always valid. Hair follicles strongly effect the coupling coeffi-

cients, and can easily have a heterogeneous effect across different fibers. If this is the case, the

phantom calibration technique will not work. Another extreme case is if there is any liquid un-

derneath the fibers. The light coupling coefficients on a solid phantom are different than they are

on a liquid (e.g., intralipid), which is why the phantom calibration approach usually fails when

using a probe calibrated on a solid phantom to measure optical properties of a liquid. Finally, the

phantom calibration technique assumes temporally constant light coupling coefficients. In prin-

ciple, the coupling coefficients will change with time if anyof the factors they depend on changes

with time (see Equation 2.117). Although it is feasible to reset the calibration with additional

phantom measurements, it is not possible to monitor the coupling coefficients continuously.

2.11.1.2 Self Calibrating Probes

Self-calibrating probes rely on tissue symmetry to estimate the light coupling coefficients with-

out phantom calibration. Specifically, the underlying assumption is that the tissue is appro-

priately symmetric such that the fluence rate predicted by the photon diffusion model (i.e.,

A exp(−iθ)) is the same for equidistant source-detector pairs. Semi-infinite/slab (Figure 2.8),

spherical (Figure 2.12, and two-layer geometries (Figure 2.13) have this symmetry on the tissue-

air boundaries. This assumption also applies in the cylindrical geometry (Figure 2.12) if the

equidistant source-detector pairs on the boundary also have the same z-component separations.

More generally, the self-calibrating technique is appropriate for N-layered planar, spherical, and

cylindrical geometries (N is an integer). They are best understood by example (Figure 2.15B).

Light coupling coefficients are estimated from ratios of thesignals from equidistant source-

detector pairs. Using the same notation defined in Equation 2.118 for the probe in Figure 2.15B,
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these ratios are

r1 ≡
I11
I12

=
Cs,a1Cd,a1

Cs,a1Cd,a2

exp[−i(Cs,p1 + Cd,p1]

exp[−i(Cs,p1 + Cd,p2]

A(ρ)e−iθ(ρ)

A(ρ)e−iθ(ρ)
,

r2 ≡
I11
I41

=
Cs,a1Cd,a1

Cs,a4Cd,a1

exp[−i(Cs,p1 + Cd,p1]

exp[−i(Cs,p4 + Cd,p1]

A(ρ)e−iθ(ρ)

A(ρ)e−iθ(ρ)
,

r3 ≡
I12
I22

=
Cs,a1Cd,a2

Cs,a2Cd,a2

exp[−i(Cs,p1 + Cd,p2]

exp[−i(Cs,p2 + Cd,p2]

A(ρ)e−iθ(ρ)

A(ρ)e−iθ(ρ)
,

r4 ≡
I12
I32

=
Cs,a1Cd,a2

Cs,a3Cd,a2

exp[−i(Cs,p1 + Cd,p2]

exp[−i(Cs,p3 + Cd,p2]

A(ρ)e−iθ(ρ)

A(ρ)e−iθ(ρ)
, (2.125)

whereρ = 3cm. Separating these ratios into their amplitude and phase components (e.g.,r1 =

r1,a exp(−ir1,p)), we obtain

r1,a = Cd,a1/Cd,a2, r1,p = Cd,p1 − Cd,p2,

r2,a = Cs,a1/Cs,a4, r2,p = Cs,p1 − Cs,p4,

r3,a = Cs,a1/Cs,a2, r3,p = Cs,p1 − Cs,p2,

r4,a = Cs,a1/Cs,a3, r4,p = Cs,p1 − Cs,p3. (2.126)

The self-calibrating probe in Figure 2.15B has four distinct separations. The measured sig-

nals at these separations are

|I42| = Cs,a4Cd,a2A(ρ42), p42 = Cs,p4 + Cd,p2 + θ(ρ42),

|I11| = Cs,a1Cd,a1A(ρ11), p11 = Cs,p1 + Cd,p1 + θ(ρ11),

|I21| = Cs,a2Cd,a1A(ρ21), p21 = Cs,p2 + Cd,p1 + θ(ρ21),

|I31| = Cs,a3Cd,a1A(ρ31), p31 = Cs,p3 + Cd,p1 + θ(ρ31). (2.127)

The signal measurements given by Equation 2.127 are corrected for light coupling using Equa-

tion 2.126, i.e.,

A(ρ42) =
r2,ar1,a
Cs,a1Cd,a1

|I42|, θ(ρ42) = p42 − (Cs,p1 + Cd,p1) + r2,p + r1,p,

A(ρ11) =
1

Cs,a1Cd,a1
|I11|, θ(ρ11) = p11 − (Cs,p1 + Cd,p1),

A(ρ21) =
r3,a

Cs,a1Cd,a1
|I21|, θ(ρ21) = p21 − (Cs,p1 + Cd,p1) + r3,p,

A(ρ31) =
r4,a

Cs,a1Cd,a1
|I31|, θ(ρ31) = p31 − (Cs,p1 + Cd,p1) + r4,p. (2.128)
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Notice that there are only two unknowns from light coupling in the system of equations given by

Equation 2.127, which areCs,a1Cd,a1 andCs,p1 +Cd,p1. Thus, Equation 2.128 is readily solved

for the tissue optical properties.

In addition to the self-calibration technique not requiring phantom calibration, its other big

advantage is that it can be applied for every measurement time point. Thus, unlike the phantom

calibration technique, the self-calibration technique accurately handles time-varying light cou-

pling coefficients. However, self-calibrating probes are larger in size than corresponding probes

using phantom calibration (compare Figure 2.15A with Figure 2.15B). Self-calibrating probes

also require very accurate source-detector separations toensure equidistant source-detector pairs.

A difference in separation of∼ 1 mm between two pairs that are supposed to be equidistant is

enough to induce significant errors. For this reason, self-calibrating probes work best for rigid

probes.

2.11.2 Validity ofP1 Approximation at Tissue Boundary

The key step in relating the detected signal to the photon fluence rate is using theP1 approxi-

mation for the light radiance (i.e., Equation 2.114). TheP1 approximation is accurate for nearly

isotropic light whereinΦ ≫ |J| (Equation 2.28). On examination of Table 2.4, though, the

fluence rate is not a lot greater than the photon flux at the boundary, especially for the index-

matched case whereinn = nout. This consequentially raises questions about the accuracyof

theP1 approximation at the boundary. Specifically, does the boundary perturb incident diffusive

light enough to induce light anisotropy beyond theP1 approximation?

To answer this, I used the MCML Monte Carlo software package [255] to solve the linear

transport equation (Equation 2.9) directly at a semi-infinite index-matched tissue boundary. This

Monte Carlo solution is compared to the continuous-wave semi-infinite photon diffusion fluence

rate solution (i.e., Equation 2.103 withω = 0) in Figure 2.16A. Recall that the photon diffu-

sion equation is theP1 approximation to the linear transport equation. Therefore, since there

is excellent agreement between the Monte Carlo and photon diffusion solutions, theP1 approx-

imation is accurate at the boundary. Intuitively, this result makes sense because the detected

signal is sensitive only to light propagating in directionswithin the fiber’s numerical aperture.

The light radiance in these “incident directions” is much less affected by the boundary than the
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Figure 2.16:(A) Comparison of Monte Carlo and continuous-wave photon diffusion solutions
as a function of source-detector separation,ρ, for the detected light signal at the boundary of
an index-matched semi-infinite medium (µa = 0.1, µ′s = 10 cm−1, n = nout = 1.4; see
Figure 2.8). The Monte Carlo simulation utilized 10 millionphotons to numerically solve the
linear transport equation (Equation 2.9), while the photondiffusion model is theP1 approxi-
mation of the linear transport equation. In the photon diffusion model,I(ρ)/I(ρ = 2.5 cm) =
Φ(ρ)/Φ(ρ = 2.5 cm) (Equation 2.117), where the fluence rateΦ(ρ) is given by the continuous-
wave semi-infinite Green’s function (i.e., Equation 2.103 with ω = 0). (B) Simulated “normal-
ized” detected signals,I(ρ)/I(ρ = 2.5 cm), for detection fiber core diameters ofd = 1 mm
andd = 3 mm, plotted againstρ. The simulated detected signals were computed by spatially
integratingΦ(ρ) (i.e., continuous-wave semi-infinite Green’s function) over the detection fiber
areas (see Equation 2.116). The normalization byI(ρ = 2.5 cm) was done to divide out the
light coupling coefficient in Equation 2.116.

light radiance traveling in opposite directions back into the tissue. Therefore, even though the

light radiance at the boundary is not nearly isotropic over all directions, it is nearly isotropic over

the incident directions that are detected, provided that the incident light is diffusive. Thus, the

photon diffusion model is valid at the boundary for the detected signal if the incident light on

the boundary is diffusive. At short separations, the incident light is not diffusive, and there is

deviation between the Monte Carlo and photon diffusion models (Figure 2.16A).

2.11.3 Signal Detection with “Large-diameter” Optical Fibers

In the derivation of Equation 2.117, I assumed that the fluence rate is approximately constant over

the detection area of the fiber. In practical measurements, though, large-diameter optical fibers

with diameters of 1 mm or 3 mm are often used. These fibers are big enough for the fluence rate

to change significantly over their area. However, the spatial integral of the fluence rate across the
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fiber detection area for these two diameters is still proportional toΦ(ρ) (Figure 2.16B). Thus,

Equation 2.117 is still valid for large-diameter optical fiber detection. The spatial integration

over the fiber area is another factor perturbing the light coupling coefficient (C(t)) from its

theoretical value, which is corrected for by the calibration schemes discussed above.

2.12 Penetration Depth of Diffusing Light

As illustrated in Figure 2.6, for a basic DOS measurement comprised of a point source and a

point detector, the detected light interacts with a “bananashaped” volume of tissue. In this sec-

tion, I quantitatively characterize this “banana shaped” volume of tissue sampled by a single

source-detector pair in homogeneous media. The key to understanding the sampled tissue vol-

ume is knowledge of the probability that a detected photon visits (i.e., passes through) a pointr

inside the tissue [200]. I will first focus on the simpler caseof continuous-wave light.

Let’s consider a point source at positionrs with source powerS0, i.e.,S(r) = S0δ(r − rs).

The fluence rate at pointr inside the tissue is given by (Equation 2.93)

Φcw(r) = S0Gcw(r, rs), (2.129)

whereGcw(r, rs) is the continuous-wave Green’s function for the geometry ofinterest. Since

diffusive light is nearly isotropic,Φcw(r) can be regarded as another point source with a light

power ofS0Gcw(r, rs) [146]. The photon fluence rate at the detector position,rd, from this

“point source” atr is then given byS0Gcw(r, rs)Gcw(rd, r), which is the contribution to the

total fluence rate at the detector from photons that have visited the tissue pointr.

Consequentially, the probability that a detected photon atpositionrd has visited the infinites-

imal tissue volumed3r centered atr is

P (rd, r, rs)d
3r =

Gcw(r, rs)Gcw(rd, r)d
3r

∫

V

Gcw(r, rs)Gcw(rd, r)d3r
, (2.130)

where the spatial integration is over the entire tissue volume,V . Note that becauseP (rd, r, rs)

is a “photon visitation” probability density function, theprobability that a detected photon has

visited a volume of tissuẽV within the total volume of tissue is

Prob(rs → Ṽ → rd) =

∫

Ṽ

P (rd, r, rs)d
3r. (2.131)
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Figure 2.17: (A) Cross-section of the photon visitation probability density function (Equa-
tion 2.130) for a semi-infinite medium (µa = 0.1, µ′s = 10 cm−1, n = 1.4, nout = 1.0)
probed with a source-detector separation ofρ = 2.5 cm. Only15% of the detected light has vis-
ited tissue depths greater thanz = 1 cm (black horizontal line).(B) Photon probability density
function isosurface at theP = 0.2 level for the same semi-infinite geometry.

In the semi-infinite geometry,P (rd, r, rs) has a “banana shaped profile” (Figure 2.17)15 that

is weighted towards superficial tissue depths. The mean depth of photon visitation (or penetra-

tion depth),〈z〉, given by

〈z〉 =
∫

V

zP (rd, r, rs)d
3r, (2.132)

is substantially less than the source-detector separation(Figure 2.18A). However, the width of

the banana shaped profile (e.g.,σz = (〈z2〉−〈z〉2)1/2) encompasses greater tissue depths. Since

a typical scalp/skull thickness in adult humans is∼ 1 cm, the fraction of detected photons that

have visited tissue deeper than a depth ofz = 1 cm, i.e.,

Prob(z > 1 cm) =

∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

z
dz′P (rd, r, rs), (2.133)

is informative. Although this fraction is significant, the majority of the detected light has only

visited tissue at depths shallower than 1 cm (Figure 2.18B).For example, atρ = 2.5 cm, only

15% of the detected light samples tissue below depths of 1 cm. Theinfluence of optical prop-

erties on the fraction of detected light sampling depths greater than 1 cm is investigated in Fig-

ure 2.18C. Bothµa andµ′s influence this fraction, though the absorption influence is stronger.

Since the detected light is heavily weighted towards superficial tissue, cerebral monitoring in

15To compute the photon visit probability density function numerically in the semi-infinite geometry, it is help-
ful to use the relationG(r, rd) = G(rd, r). Explicitly, evaluate the semi-infinite Green’s functionsin Cartesian
coordinates, e.g.,G(rd, r) = G([ρ, 0, 0], [x, y, z])
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Figure 2.18: For a typical semi-infinite medium (µa = 0.1, µ′s = 10 cm−1, n = 1.4, nout = 1.0),
the mean depth of detected photon visitation ((A)), the fraction of detected photons visiting tissue
depths greater than 1 cm ((B)), and the standard deviations of detected photon visitation for the
two orthogonal directions to the “source-detector line” ((C)), are plotted against the source-
detector separation,ρ. (D) Contour plot of the fraction of detected photons visitingtissue depths
greater than 1 cm as a function of tissue scattering (vertical axis) and tissue absorption (horizontal
axis).

adults is prone to superficial tissue contamination. I discuss strategies for filtering this superfi-

cial tissue contamination in Chapter 6.

Finally, notice that the banana shaped profile has a narrowerwidth than depth, i.e.,σy < σz

(Figure 2.18D).

2.12.1 Photon Visitation Probability Density Function forFrequency-Domain Light

The frequency-domain analogue of Equation 2.130 for intensity modulated light is

P (rd, r, rs)d
3r =

|G(r, rs)G(rd, r)| d3r
∣

∣

∣

∣

∫

V

Gcw(r, rs)Gcw(rd, r)d3r

∣

∣

∣

∣

, (2.134)

whereG(r, rs) is the frequency-domain Green’s function for the geometry of interest (Equa-

tion 2.87). Equation 2.134 can in turn be used to compute the frequency-domain analogues
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Figure 2.19: For a typical semi-infinite medium (µa = 0.1, µ′s = 10 cm−1, n = 1.4, nout = 1.0)
probed with a source-detector separation ofρ = 2.5 cm, the signal modulation depth (i.e.,
the ratio of the detected signal amplitude divided by the CW amplitude) ((A)), the mean depth
of detected photon visitation ((B)), and the fraction of detected photons visiting tissue depths
greater than 1 cm ((C)), are plotted against intensity modulation frequency,f = ω/(2π).

of Equations 2.132 and 2.133. Interestingly, although the signal amplitude (i.e.,|G(rd, rs)|) is

strongly attenuated with increasing modulation frequency(Figure 2.19A), the mean photon pen-

etration depth remains the same (Figure 2.19B). However, the standard deviation of the photon

visitation depth in the frequency-domain decreases with increasing frequency (Figure 2.19B),

and thus the fraction of detected photons visiting tissue depths greater than 1 cm also decreases

with increasing frequency (Figure 2.19C).

2.12.2 Photon Visitation Probability Density Function forTime-resolved Light

I will now briefly present the photon visitation probabilitydensity function from an infinitesi-

mally narrow light pulse emitted at positionrs = 0 and timet = 0, i.e.,S(r, t) = S0δ(r)δ(t).

From applying the argument presented in the previous section to time-resolved data, the proba-

bility that a detected photon at positionrd and timet has visited the infinitesimal tissue volume

d3r centered atr is

Ptr(rd, r, rs, t)d
3r =

(

∫ t−|rd−r|/v
|r|/v g(r, 0, t′, 0)g(rd, r, t, t′)dt′d3r

)

∫

V d3r
∫ t−|rd−r|/v
|r|/v g(r, 0, t′, 0)g(rd, r, t, t′)dt′

. (2.135)

The temporal integration limits in Equation 2.135 correspond to the shortest and longest possible

times for a detected photon at timet to reach the positionr in the tissue. The shortest time is the

time it takes a photon to travel in a straight line from sourceto r, i.e.,r/v. The longest time is

the detection timet subtracted by the time it takes a photon to travel in a straight line from r to

the detector, i.e.,t − |rd − r|/v. One intuitive result arising from Equation 2.135 is thatPtr at
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longer detection times,t, is more sensitive to deeper tissue depths [200].

2.13 Spectroscopy for Determination of Tissue ChromophoreCon-

centrations

The tissue absorption depends linearly on the concentrations of tissue chromophores. In partic-

ular, the wavelength-dependent absorption coefficient is given by

µa (λ) = log(10)
∑

i

εi (λ) ci. (2.136)

Hereεi(λ) [M−1cm−1] is the wavelength-dependent extinction coefficient (usually known for

typical tissue chromophores, see Figure 2.20),ci [M] represents the concentration of theith chro-

mophore, andlog(10) is the natural logarithm of ten.16 We have seen above that the diffusion

approximation enables us to separate the scattering and absorption contributions in the detected

light signals. Thus, by measuringµa at multiple optical wavelengths, we generate a system of

coupled equations (Equation 2.136) that can be solved to yield the unknown chromophore con-

centrations. Generally, to estimate the concentrations ofN chromophores, one must determine

µa atN or more wavelengths.

DOS is most typically employed to measure oxygenated and de-oxygenated hemoglobin;

thus a bare minimum of phase and amplitude measurements at two wavelengths are required.

Use of more wavelengths permits inclusion of other tissue chromophores such as water and lipid,

and also improves the accuracy of the hemoglobin measurements because measurement redun-

dancy reduces systematic errors. Of course, more wavelengths increase the cost and complexity

of the instrument and require longer data acquisition times.

For tissue spectroscopy, if the water concentration is not measured, then it should be assumed

(e.g., a 75% water volume fraction corresponds to a water concentrationof 0.75 × 55 M) and

incorporated in Equation 2.136. In some tissues such as breast, fat contributes significantly

to the absorption coefficient, especially at longer wavelengths in the near-infrared around 900

16The absorption coefficient is defined such that the transmittance through a non-scattering homogeneous medium
is T ≡ I/Is = exp[−µaρ], whereρ is the distance between source and detector. Thus,− log(T ) = µaρ. Tab-
ulated extinction coefficients, though, are determined from the base 10 logarithm of the transmittance [207], i.e.,
− log10(T ) = µaρ/ log(10). This explains the presence of the factorlog(10) in Equation 2.136.
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Figure 2.20: Extinction coefficient spectra in the near-infrared spectral window for oxy-
hemoglobin (HbO), deoxy-hemoglobin (HbR), and water, plotted as a function of wavelength,
λ [207]. The values plotted for water are the actual extinction coefficients multiplied by 700
thousand. I chose this scaling factor because the concentration of water in tissue is typically 700
thousand times higher than the oxy-hemoglobin concentration.

nm [52,144]. As with water, lipid content should be assumed in applications where its absorption

coefficient contribution is significant [52]. Equation 2.136 is equivalent to [144]

µa(λ) =
∑

i

fv,iµ
pure
a,i (λ), (2.137)

wherefv,i is the tissue volume fraction of theith chromophore, andµpure
a,i is the absorption

coefficient of that pure chromophore. For some chromophores, µpure
a,i is tabulated as a function

of wavelength rather than the extinction coefficient [207].

Finally, melanin content in the skin affects the detected signal (e.g., a higher melanin content

corresponds to a lower signal). Assuming that melanin is only in the skin, its effect is similar

to hair follicles in that it influences the light coupling coefficient for the detected signal (2.117).

As with hair, the phantom calibration technique for estimating light coupling coefficients (Sec-

tion 2.11.1.1) does not take into account melanin content. However, it is typically reasonable to

assume uniform melanin content in the skin across the area ofthe optical probe. For this case,

the component in the coupling coefficient from melanin is thesame for every source-detector

separation, and melanin will not affect the slopes in amplitude and phase given by Equations

2.110 and 2.111.

DOS provides quick estimates of bulk chromophore concentrations in large tissue volumes.
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These estimates are often accurate enough to be useful in many monitoring applications. Imag-

ing schemes employ Equation 2.136 on a volume-element-by-volume-element basis to assign

chromophore concentrations to particular voxels in the tissue sample. The oxy- and deoxy-

hemoglobin concentrations measured by DOS (i.e., HbO and HbR) are per volume of tissue, not

per volume of blood. Normal hemoglobin concentration in blood is around 2300µM . How-

ever, blood typically occupies only a5% volume fraction of tissue, meaning that the hemoglobin

concentration in tissue is around 100µM . Typically, the total hemoglobin concentration in

blood remains constant, i.e., the hematocrit remains constant. Consequentially, changes in the

measured total hemoglobin concentration with DOS, i.e.,HbT = HbO + HbR, correspond

to changes in tissue blood volume. If the hematocrit is constant, the tissue total hemoglobin

concentration is proportional to tissue blood volume, i.e.,

HbT ≡ HbO +HbT ∝ Tissue Blood Volume [mL Blood / mL Tissue]. (2.138)

Further, the tissue oxygen saturation,

StO2 =
HbO

HbT
, (2.139)

is equivalent to the blood oxygen saturation.

The DOS measurements of tissue blood volume and tissue oxygen saturation are bulk av-

erages weighted towards the microvasculature (e.g., capillaries, small venules, arterioles). The

reason DOS is most sensitive to the microvasculature is thatphoton absorption in larger vessels is

much higher than it is in smaller vessels. Since the total hemoglobin in blood is∼ 2300 µM , the

photon absorption length when it is actually traveling inside a blood vessel is about 2.5 mm. For

small vessels, the photon exits the vessel well before this length scale. In large vessels, though,

it is more likely for photons to travel this length scale before exiting. Thus, photons passing

through large vessels are preferentially absorbed, which means that detected photons have pref-

erentially visited smaller vessels, making the DOS measurement predominantly sensitive to the

tissue microvasculature.
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2.13.1 Optimal Wavelengths for Diffuse Optical Spectroscopy

Determination of tissue chromophore concentrations requires the separation of tissue absorp-

tion from tissue scattering at more than one optical wavelength. The optimal choice of wave-

lengths for chromophore concentration determination is animportant topic in its own right, with

an interesting history that involved careful consideration of measurement type, i.e. frequency-

domain, time-domain, CW, and measurement signal-to-noise. For simple, two-wavelength time-

and frequency-domain instruments, early experimenters wondered about which wavelengths to

choose to minimize cross-talk between chromophores when inverting Equation 2.136. Superfi-

cially, one might expect that at least one wavelength withinthe NIR window should be below

the isosbestic point of hemoglobin and one should be above this isosbestic point. The isosbestic

point is the wavelength wherein the extinction coefficientsof oxygenated and de-oxygenated

hemoglobin are the same (∼800 nm, see Figure 2.20); wavelengths below the isosbestic point are

thus more sensitive to deoxy-hemoglobin, while wavelengths above are more sensitive to oxy-

hemoglobin. However, such wavelength selection processesare limited. Yamashitaet al [263],

Strangmanet al [235], and Boaset al [26] have shown theoretically and experimentally that

when using only two wavelengths, a pair at660 − 760 nm and830 nm provides superior oxy-

and deoxy- hemoglobin separation by comparison to what was the more commonly used choice

of 780 nm and830 nm.

A formal evaluation of the optimum wavelength selection foran arbitrary number of wave-

lengths was carried out by Corluet al [58, 60]; they introduced a general procedure for find-

ing those wavelengths which best differentiate tissue chromophores using CW and frequency-

domain light. These results built on a theoretical approachdeveloped in a classic paper by

Lionheart and Arridge [8]. That paper [8] theoretically proved that it is impossible to uniquely

separate scattering from absorption in a diffuse optical imaging experiment employing CW light.

In an attempt to circumvent this uniqueness problem for CW imaging, Corluet al demonstrated

that a multi-spectral approach can be employed to uniquely reconstruct the chromophore con-

centrations,ci. In a key advance, Corluet al [58,60] abandoned the two-step approach of deter-

mining µa at each wavelength first and then inverting Equation 2.136. Instead, they introduced
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a multi-spectral approach that exploits known spectral properties of the mediuma priori to di-

rectly reconstruct chromophore concentrations with better fidelity than the traditional two-step

method. Specifically,a priori assumptions about the form of the scattering (e.g.,µ′s(λ) = aλ−b)

and wavelength-dependent absorption extinction factors (i.e., Equation 2.136) are used, and the

wavelength independent variablesci, a, andb are reconstructed directly from all of the data si-

multaneously. Because the data from all wavelengths are simulataneously used, the inverse prob-

lem is better-constrained than the traditional approach (see [58] for details). The multi-spectral

technique is now commonly used, and has been extended for frequency domain sources [232],

for including uncertainties in the hemoglobin extinction coefficients [34], and for spectral win-

dow optimization when using broadband sources [87].
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Chapter 3

Diffuse Optical Spectroscopy (DOS):

Modified Beer-Lambert Law Approach

3.1 Introduction

In Chapter 2, I presented the photon diffusion approach for analysis of DOS signals to separate

tissue absorption from tissue scattering. Multi-spectralmeasurements of tissue absorption then

enable estimation of blood volume and blood oxygen saturation in the tissue microvasculature.

In this chapter, I discuss an alternative approach for DOS analysis, which is the Modified Beer-

Lambert law [10, 67, 130]. The Modified Beer-Lambert law is arguably the most widely used

approach for analysis of DOS signals [99,122,166,175,219,248], in large part because of its sim-

plicity. With this approach, researchers have monitored temporal changes in blood oxygenation

and blood volume with CW light, using only one source-detector separation.

The Modified Beer-Lambert law scheme relates differential light transmission changes (in

any geometry) to differential changes in tissue absorption1. In essence, this scheme accounts for

tissue scattering by using the mean pathlength traveled by photons through the highly scattering

sample as a best estimate for the actual photon pathlengths.The mean pathlength provides a

natural constant of proportionality between the measured differential intensity and the sample’s

differential absorption.

1The term differential refers to a comparison between a baseline state and a perturbed state.
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The Modified Beer-Lambert law is well suited for monitoring temporal variations in blood

oxygenation and blood volume with respect to some perturbation, as in brain mapping. Im-

portantly, it is also valid in tissues/geometries wherein light transport is not diffusive, which

facilitates accurate absorption monitoring for small source-detector separations typical of endo-

scopic probes, for visible light wherein tissue absorptionis very high, and for tissue that contain

very high concentrations of blood, as in the liver. A drawback of this approach, though, is that

it cannot determine absolute tissue hemoglobin concentrations. Most of this chapter (Sections

3.3 - 3.3.7) focuses on utilizing the Modified Beer-Lambert law in homogeneous media for both

diffusive and non-diffusive light transport. The heterogeneous media Modified Beer-Lambert

law is discussed briefly in Section 3.4.

3.2 Beer-Lambert Law for Optically Thin Homogeneous Media

In optically thin (i.e., non-scattering) homogeneous media, light travels in a straight line between

source and detector, and is exponentially attenuated by absorption, i.e.,

I = Is exp[−µaρ], (3.1)

whereIs is the source intensity delivered to the sample,I is the detected intensity emerging

from the sample, andρ is the straight line distance between source and detector (Figure 3.1).

Thus, the sample optical density (OD), which is defined as the negative logarithm of the ratio of

transmitted to incident light intensity, is proportional to the absorption coefficient:

OD ≡ − log[I/Is] = µaρ. (3.2)

Equation 3.2 is the Beer-Lambert law, which utilizes multi-spectral measurements of the op-

tical density to measure absolute chromophore concentrations (ci) in optically thin homogeneous

media via the system of equations

OD(λ) = ρ log(10)
∑

i

εi(λ)ci, (3.3)

whereεi(λ) is the wavelength-dependent extinction coefficient for chromophorei. Chromophore

extinction coefficients can be calculated from multi-spectral light transmission measurements
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Figure 3.1: Schematics of an optically thin homogeneous medium (left) and an optically thick
turbid homogeneous medium (right).

through pure solutions with a known chromophore concentration, ci, i.e.,

εi(λ) =
−1

ciρ
log10

(

I(λ)

Is(λ)

)

=
OD(λ)

ciρ log(10)
. (3.4)

3.3 Modified Beer-Lambert Law for Turbid Homogeneous Media

When light scattering within the sample is significant, thenlight attenuation is affected by both

absorption and scattering, and the Beer-Lambert law (Equation 3.2) is no longer applicable.

As discussed in Chapter 2, photon trajectories through turbid tissues are well approximated as

random walks, and photons therefore travel over a distribution of pathlengths from source to

detector (Figure 3.1), wherein the average length of a photon path is much greater than the

straight-line distance between source and detector,ρ.

In turbid media, the effects of scattering are tangled with those of absorption. Although the

photon diffusion model can be employed to separate scattering from absorption (Chapter 2), an

alternative paradigm is the Modified Beer-Lambert law [10, 67], which is readily derived from

the first order Taylor expansion of the optical density:

OD ≈ OD0 +
∂OD0

∂µa
∆µa +

∂OD0

∂µ′s
∆µ′s, (3.5)

where the optical densitiesOD ≡ − log(I/Is) andOD0 ≡ − log(I0/Is) correspond to a

“perturbed” tissue state (e.g., at timet) with optical properties of(µa, µ′s) and a “baseline”

tissue state (e.g., at timet0) with optical properties of(µ0a, µ
′0
s ), respectively. Further,∆µa ≡
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µa − µ0a and∆µ′s ≡ µ′s − µ′0s are the differential changes in absorption and scattering between

the perturbed and baseline tissue states. The Modified Beer-Lambert law is a rearrangement of

Equation 3.5 wherein the source intensityIs is assumed to remain constant, i.e.,

∆OD = − log

(

I(ρ)

I0(ρ)

)

≈ L(ρ)∆µa +

(

µ0a
µ′0s

)

L(ρ)∆µ′s ≈ L(ρ)∆µa. (3.6)

Here,L(ρ) ≡ ∂OD0/∂µa [cm] is the so-called differential pathlength, which is approximately

the mean pathlength that diffusing photons travel through the medium from a point source to

a point detector with separationρ [10], and∂OD0/∂µ′s ≈ (µ0a/µ
′0
s )L(ρ) (Section 3.3.1). It is

often reasonable to neglect the scattering term in Equation3.6 because (1), the multiplicative

factor µ0a/µ
′0
s for many tissues is much less than one, and (2), tissue scattering changes that

accompany hemodynamic variations are often negligible [12].

Notice that whereas the Beer-Lambert law (Equation 3.2) relatesabsoluteoptical densities to

absoluteabsorption coefficients, the Modified Beer-Lambert law (Equation 3.6) relatesdifferen-

tial changesin the optical density todifferential changesin the absorption coefficient. Implemen-

tation of Equation 3.6 requires knowledge of the differential pathlength,L(ρ), which not only

depends on the source-detector separation,ρ, but also the tissue geometry and the wavelength-

dependent baseline tissue absorption and scattering properties,µ0a andµ′0s . The differential path-

length can be measured with time-resolved [67] or frequency-domain techniques [10, 75]; or

computed with a diffusion model [94] or radiative transportmodels [162, 255]. Direct mea-

surements ofL(ρ) do not requirea priori knowledge of the baseline optical properties or tissue

geometry, but light transport must be diffusive, and the instrumentation is considerably more

complex and expensive than CW measurements. Conversely, the computation ofL(ρ) from

light transport models permits accurate tissue absorptionmonitoring with the Modified Beer-

Lambert law for non-diffusive light transport and for spatially extended light sources (e.g., plane

waves), but utilization of the light transport models requiresa priori knowledge of the baseline

optical properties and tissue geometry.

3.3.1 Time-resolved Measurement of Differential Pathlength

For continuous-wave, diffusive light traveling through the medium from a point source to a

point detector, the differential pathlength is the speed oflight through tissue multiplied by the
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mean time of flight of photons in tissue, i.e.,L(ρ) = v〈t − ts〉. Here,ts is the time that an

infinitesimally narrow source pulse of light is emitted at positionrs, t is the photon detection time

at positionrd, andv is the speed of light through tissue. Thus, the differentialpathlength can be

measured via direct measurement of the mean time of flight with a time-resolved instrument [67].

I will now explicitly derive this relationship betweenL(ρ) and〈t− ts〉. The probability that

a photon emitted at (rs, ts) reaches the detector atrd in a time intervaldt around the detection

time t is proportional to the time-domain photon diffusion Green’s function (see Section 2.12

and Equation 2.85), i.e.,

P ([t, rd], [ts, rs]) =
g(rd, rs, t, ts)dt

∫∞
−∞ g(rd, rs, t, ts)dt

. (3.7)

Therefore, the mean time of flight is

〈t− ts〉 =
∫ ∞

−∞
(t− ts)P ([t, rd], [ts, rs])dt =

∫∞
−∞(t− ts)g(rd, rs, t, ts)dt
∫∞
−∞ g(rd, rs, t, ts)dt

. (3.8)

From Equation 2.91, the mean time of flight is alternatively given by

〈t− ts〉 =
i ∂
∂ω

∫∞
−∞ g(rd, rs, t, ts)e

−iω(t−ts)dt

Gcw(rd, rs)
=
i ∂G(rd, rs)/∂ω|ω=0

Gcw(rd, rs)
. (3.9)

Here,Gcw(rd, rs) andG(rd, rs) are the continuous-wave (Equation 2.93) and frequency-domain

(Equation 2.87) photon diffusion Green’s functions, respectively, evaluated at the baseline tissue

optical propertiesµ0a andµ′0s . The frequency derivative,∂G/∂ω, is additionally evaluated at the

modulation frequencyω = 0.

For continuous-wave diffusive light transport, the detected light intensity is proportional to

Gcw(rd, rs) (Section 2.11). Consequentially, the differential pathlength is

L(ρ) ≡ ∂OD0

∂µa
= − ∂

∂µa
log[Gcw(rd, rs)] =

−1

Gcw(rd, rs)

∂Gcw(rd, rs)

∂µa
, (3.10)

where again,Gcw(rd, rs) is evaluated at the baseline tissue optical properties. Combining Equa-

tions 3.9 and 3.10, we obtain

〈t− ts〉 =
−iL(ρ) ∂

∂ωG(rd, rs)
∣

∣

ω=0
∂

∂µa
Gcw(rd, rs)

. (3.11)

From examining the homogeneous frequency-domain photon diffusion equation (Equation 2.54),

the modulation frequency dependence ofG(rd, rs) is contained in the variablek2 ≡ (vµa +
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iω)/D, while the absorption dependence ofGcw(rd, rs) is contained in the variablek20 ≡
vµa/D. Thus2,

∂

∂ω
G(rd, rs)

∣

∣

∣

∣

ω=0

=
∂Gcw(rd, rs)

∂k20
× ∂k2

∂ω
, (3.12)

∂

∂µa
Gcw(rd, rs) =

∂Gcw(rd, rs)

∂k20
× ∂k20
∂µa

. (3.13)

Substituting Equations 3.12 and 3.13 into 3.11 reveals thatthe differential pathlength is approx-

imately the mean photon pathlength traveled from source to detector, i.e.,

L(ρ) =
〈t− ts〉∂k20/∂µa

−i∂k2/∂ω =

[

1 +
µ0a

µ0a + µ′0s

]

v〈t− ts〉 ≈ v〈t− ts〉. (3.14)

The latter approximation in Equation 3.14 is equivalent to the approximationD ≈ v/(3µ′s).

An advantage of measuringL(ρ) directly with a time-resolved technique is that noa priori

knowledge of baseline optical properties for the homogeneous medium is required. Compared to

continuous-wave measurements, though, time-resolved instrumentation is complex and expen-

sive.

3.3.2 Frequency-Domain Measurement of Differential Pathlength

If the time-domain Green’s function for homogeneous media,i.e.,g(rd, rs, t−ts), is symmetrical

about the mean time of flight,〈t − ts〉, then the phase of the corresponding frequency-domain

Green’s function isθ = ω〈t − ts〉 [10]. To derive this, consider an infinitesimal pulse of light

emitted atts = 0. If g is symmetrical about the mean time of flight, i.e.,g(rd, rs, t + 〈t〉) =

g(rd, rs, 〈t〉 − t), then the frequency-domain Green’s function is determinedfrom substituting

g(rd, rs, t+ 〈t〉) into Equation 2.91:

G(rd, rs) =

∫ ∞

−∞
g(rd, rs, t+ 〈t〉)e−iω(t+〈t〉)dt

= e−iω〈t〉
(∫ ∞

−∞
g(rd, rs, t+ 〈t〉) cos(ωt)dt− i

∫ ∞

−∞
g(rd, rs, t+ 〈t〉) sin(ωt)dt

)

= e−iω〈t〉
∫ ∞

−∞
g(rd, rs, t+ 〈t〉) cos(ωt)dt,

= A(rd, rs)e
−iω〈t〉. (3.15)

2Note that∂G(rd, rs)/∂k
2|ω=0 = ∂Gcw(rd, rs)/∂k

2
0 .
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Figure 3.2: For a semi-infinite medium withµa = 0.1, µ′s = 10 cm−1, Reff = 0.493, n = 1.4,
andρ = 2.5 cm, the mean photon time of flight (see Equation 3.23) and the frequency-domain
phase shift,θ (as a function ofω), were calculated using the semi-infinite frequency-domain
Green’s function (Equation 2.103). Bothθ andω〈t〉 are plotted against the oscillation frequency.

Thus, from Equation 3.15, the phase shift acquired by intensity modulated light propagating from

a point source to a point detector isθ = ω〈t〉, provided thatg(rd, rs, t) is symmetrical about the

mean time of flight,〈t〉. The second term in line two of Equation 3.15 is zero because the

integral is over the product of an even function (i.e.,g(rd, rs, t+ 〈t〉)) and an odd function (i.e.,

sin(ωt)). Further, sinceg is real, the integral in the third line is the frequency-domain amplitude,

A(rd, rs). Althoughg is not truly symmetrical, it is nearly symmetrical, andθ = ω〈t〉 is a good

approximation for modulation frequencies less than 200 MHz(Figure 3.2). The differential

pathlength is then (Equation 3.14)

L(ρ) ≈ vθ(ρ)/ω. (3.16)

The drawback of using Equation 3.16 to measure the differential pathlength is its sensitivity

to the assumption that the phase light coupling coefficient obtained from phantom calibration

(Section 2.11.1.1) remains the same on tissue. Nonetheless, reasonable measurements ofL(ρ)

have been made using this approach in a variety of tissues [75]. If multi-separation frequency-

domain measurements are not practical, the phase information from a single separation can be

used to measure the differential pathlength, enabling tissue absorption monitoring with the Mod-

ified Beer-Lambert law (Equation 3.6).
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3.3.3 Scattering Weighting Factor in Modified Beer-LambertLaw

For diffusive light, the scattering factor weighting factor in the Modified Beer-Lambert Law, i.e.,

Ls(ρ) ≡ ∂OD0/∂µ′s, is determined from evaluating

Ls(ρ) = − 1

Gcw(rd, rs)

∂Gcw(rd, rs)

∂µ′s
, (3.17)

at the baseline tissue optical properties. Combining Equation 3.17 with Equation 3.9, we obtain

Ls(ρ) =
〈t− ts〉(∂k20/∂µ′s)

−i∂k2/∂ω =
µ0a

µ0a + µ′0s
v〈t− ts〉, (3.18)

which in the limitµ′s ≫ µa is

Ls(ρ) ≈
µ0a
µ′0s

L(ρ). (3.19)

In tissue, the ratioµ0a/µ
′0
s is typically small, and consequentially,L(ρ) ≫ Ls(ρ).

3.3.4 Computing Differential Pathlength from Tissue Optical Properties

The differential pathlength can also be computed for any homogeneous geometry through eval-

uating the absorption derivative of the optical density at the baseline tissue optical properties,

i.e.,

L(ρ) ≡ − ∂

∂µa
log[I(ρ, µ0a, µ

′0
s )] ≈

1

∆µa
log

[

I(ρ, µ0a −∆µa/2, µ
′0
s )

I(ρ, µ0a +∆µa/2, µ′0s

]

, (3.20)

where∆µa/µ0a = 10−5. For continuous-wave (CW) diffusive light,I is proportional to the

continuous-wave photon diffusion Green’s function,Gcw(ρ, µa, µ
′
s), for the appropriate geome-

try, i.e.,

L(ρ) = − ∂

∂µa
log[Gcw(ρ, µ

0
a, µ

′0
s )] ≈

1

∆µa
log

[

Gcw(ρ, µ
0
a −∆µa/2, µ

′0
s )

Gcw(ρ, µ0a +∆µa/2, µ′0s

]

. (3.21)

Substitution of the semi-infinite continuous-wave Green’sfunction (Equation 2.103 atω =

0) into Equation 3.21 and taking the analytical absorption derivative results in a simple expres-

sion for the differential pathlength in terms of the baseline optical properties:

L(ρ) =
3r1rbµ

′0
s

2k0

[

ek0r1 − ek0rb

r1ek0r1 − rbek0rb

]

, (3.22)

wherek0 =
√

3µ0a(µ
0
a + µ′0s ), r1 =

√

(µ′0s + µ0a)
−2 + ρ2, rb =

√

((µ′0s + µ0a)
−1 + 2zb)2 + ρ2,

zb = 2(1+Reff )/[3(µ
′0
s +µ0a)(1−Reff )], andReff is an effective Fresnel reflection coefficient
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defined by Equation 2.79. The corresponding mean time of photon flight in the semi-infinite

geometry is given by (Equation 3.9)

〈t〉 = 3(µ0a + µ′0s )
(

e−k0r1 − e−k0rb
)

2vk0

[

e−k0r1

r1
− e−k0rb

rb

] (3.23)

For more complex geometries, it is usually easier to computeL(ρ) by evaluating the derivative

in Equation 3.21 numerically.

Importantly, the Modified Beer-Lambert law is applicable for non-diffusive light transport.

In this regime, the differential pathlength is determined from evaluating Equation 3.20, whereI

is modeled with solutions of the radiative transport equation (Equation 2.9) for the tissue optical

properties and tissue geometry of interest. The radiative transport equation can be solved with a

Monte Carlo method [25,145,255] or with finite difference orfinite volume methods [162].

Additionally, the Modified Beer-Lambert law can be utilizedfor applications with spatially

extended light sources. For example, the so-called opticalimaging of intrinsic signals (OIS) tech-

nique uses the Modified Beer-Lambert law to obtain 2-dimensional maps of hemoglobin con-

centration changes from intensity images of a surface illuminated with planar light [77,78,163].

Although the source-detector separation no longer has meaning in this context, the differential

pathlength is still evaluated via

L ≈ 1

∆µa
log

[

I(µ0a −∆µa/2, µ
′0
s )

I(µ0a +∆µa/2, µ′0s

]

, (3.24)

whereI(µa, µ′s) is the detected signal from the spatially extended source when the tissue optical

properties are (µa, µ′s). I(µa, µ
′
s) is obtained from solving the photon diffusion equation for

the appropriate source and geometry (e.g., Equation 2.93),or solving the radiative transport

equation. I discuss OIS further in Chapter 7.

3.3.5 Differential Pathlength Factor

In the large source-detector limit (i.e.,ρ ≫ 2zb + (µ0a + µ′0s )
−1), the semi-infinite differential

pathlength (Equation 3.22) simplifies to [94]

L(ρ) ≈ 3µ′0s ρ
2

2
(

ρ
√

3µ0aµ
′0
s + 1

) . (3.25)
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Figure 3.3: Comparison of the exact semi-infinite differential pathlength (Equation 3.22) plot-
ted against source-detector separation,ρ, with (A), the “largeρ dpf” approximation (Equa-
tion 3.26), and with(B), the “empirical dpf” approximation,L(ρ) ≈ 7.3278ρ, i.e., dpf =
L(ρ = 3 cm)/(3 cm) = 7.3278. (C) Ratio of the exact semi-infinite differential pathlength
divided by the source-detector separation, plotted against ρ. In all three panels, the semi-infinite
medium properties areµa = 0.1, µ′s = 10 cm−1, n = 1.4, andReff = 0.493. The empirical dpf
approximation is in good agreement with the exact differential pathlength for separations close
to the “calibration separation”, i.e.,3 cm. Further, the ratioL(ρ)/ρ slowly approaches a constant
value (i.e.,dpf = 8.66 from Equation 3.26) asρ increases.

A more severe approximation than Equation 3.25 is

L(ρ) ≈ 3µ′0s
2
√

3µ0aµ
′0
s

ρ = dpf × ρ. (3.26)

Here, the differential pathlength is proportional to the source-detector separation, and the propor-

tionality coefficient is the so-called differential pathlength factor, i.e.,dpf . Theρ−independence

of dpf makes it more convenient to tabulate in the literature as a function of wavelength for a

given tissue type, and it is in large part for this reason thatthedpf is commonly used. Typically,

the differential pathlength is measured using a time-resolved technique (Equation 3.14) at mul-

tiple wavelengths and then divided by the source-detector separation,ρ, to empirically compute

the differential pathlength factor. In addition to depending on wavelength, thedpf depends on

age and tissue type, since the tissue optical properties vary with age and tissue type. Scholkmann

and Wolf have recently reviewed the wavelength and age dependence of thedpf for the frontal

human head [220]. Differential pathlength values have alsobeen published for other regions of

the adult human head [272], and in muscle [243].

However, even when accounting for age and tissue type, thereis still considerable variability

across human subjects in thedpf , because the tissue optical properties are heterogeneous across

different subjects [144]. Further, Equation 3.26 only roughly approximates the true differential

pathlength (Figure 3.3), which could be a source of systematic error. When employing thedpf
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Figure 3.4: For a semi-infinite medium withµa = 0.1, µ′s = 10 cm−1, Reff = 0.493, and
n = 1.4, the differential pathlength for intensity modulated light (L(ρ), Equation 3.27) is plotted
against the source-detector separationρ for several different intensity modulation frequenciesf .
Thedpf values in the legend areL(2.5 cm)/(2.5 cm).

approach for analysis, it is of course best to use published values of thedpf that were measured

in a sample of statistically similar tissue types with a similar source-detector separation and sim-

ilar wavelengths. It is even more preferable to use time-resolved or frequency-domain instru-

mentation to measure subject-specific differential pathlengths for the Modified Beer-Lambert

law.

3.3.6 Differential Pathlength with Intensity Modulated Li ght

The Modified Beer-Lambert law (Equation 3.6) can also be employed for intensity modulated

light. For this case, the optical density is the negative logarithm of the detected intensity modu-

lated amplitude, and the differential pathlength is

L(ρ) = − ∂

∂µa
log[|G(ρ, µ0a, µ′0s )|], (3.27)

where |G(ρ, µ0a, µ′0s )| is the amplitude of the frequency-domain Green’s function.For lower

modulation frequencies (< 100 MHz), the differential pathlength is roughly equivalent tothe

CW differential pathlength (Figure 3.4). Thus, for lower modulation frequencies, it is a decent

approximation to utilize the measured CW differential pathlength given by Equation 3.14 or

Equation 3.16 in the frequency-domain Modified Beer-Lambert law.
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3.3.7 Spectroscopy for Determination of Tissue Chromophore Concentration Changes

Recall that the absorption coefficient depends on the tissuechromophore concentrations (Equa-

tion 2.136), and therefore multi-spectral measurements ofthe tissue optical density enables mon-

itoring of differential changes in chromophore concentrations (∆ci) with the Modified Beer-

Lambert law, i.e.,

∆OD(λ) = − log

(

I(ρ, λ)

I0(ρ, λ)

)

≈ L(ρ, λ) log(10)
∑

i

εi(λ)∆ci. (3.28)

The Modified Beer-Lambert law is most typically employed to measure changes in oxy-hemoglobin

concentration (∆HbO) and deoxy-hemoglobin concentration (∆HbR).

Since the Modified Beer-Lambert law is the first order Taylor series expansion of the optical

density, it is expected to be accurate in the limit∆µa/µ
0
a ≪ 1. However, simulations show that

Equation 3.28 remains accurate for substantial changes inHbO andHbR (Figure 3.5). Even

for ±50% changes, the Modified Beer-Lambert law still recovers the true hemoglobin changes

within ∼ 5% (Figure 3.5). Notice also that the Modified Beer-Lambert is more erroneous for

decreases inHbO andHbR than increases.

As I mentioned previously, the main drawback of Equation 3.28 is its inability to estimate

absolute “basline” hemoglobin concentrations. Further, if it’s not feasible to measure the dif-

ferential pathlengths directly, then the baseline hemoglobin concentrations along with the base-

line tissue scattering (µ′0s (λ)) are needed for calculating the differential pathelengthsL(ρ, λ)

(e.g., Equation 3.22, whereµ0a(λ) is obtained from the baseline chromophore concentrations

(Equation 2.136). Often, the baseline hemoglobin concentrations and tissue scattering must be

assumed, which leads to errors in the differential pathlengths used for hemoglobin monitoring.

Simulations, however, show the computed hemoglobin concentration changes with the Mod-

ified Beer-Lambert law to be fairly robust to differential pathlength errors (Figure 3.6). Recall

that wavelengths above the hemoglobin spectral isobestic point of λ = 800 nm are more sensi-

tive toHbO, while wavelengths below800 nm are more sensitive toHbR. Thus, computation of

∆HbO is more sensitive to errors inL(830 nm) than inL(690 nm), and vice versa for compu-

tation of∆HbR (Figure 3.6). Further, the simulations show that underestimating the differential

pathlengths induce larger errors in the computed hemoglobin concentrations than overestimating

the differential pathlengths does. For example, underestimation of the differential pathlengths by
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Figure 3.5: Contour plots of(A), the fractional error between the oxy-hemoglobin computedwith
the Modified Beer-Lambert law (HbOMBL ≡ HbO0 + ∆HbOMBL; ∆HbOMBL determined
from Equation 3.28) and the actual oxy-hemoglobin (HbOactual ≡ HbO0 +∆HbOactual), i.e.,
HbOMBL/HbOactual − 1, and (B), the fractional error between the deoxy-hemoglobin com-
puted with the Modified Beer-Lambert law (HbRMBL ≡ HbR0 + ∆HbRMBL; ∆HbRMBL

determined from Equation 3.28) and the actual deoxy-hemoglobin (HbRactual ≡ HbR0 +
∆HbRactual), i.e., HbRMBL/HbRactual − 1. For both panels, the contour levels are plot-
ted as a function of the actual fractional oxy-hemoglobin change (vertical axis) and the actual
fractional deoxy-hemoglobin change (horizontal axis). These plots were generated from apply-
ing the Modified Beer-Lambert law to simulated multi-spectral data (λ = 690, 786, 830 nm)
at a source-detector separation ofρ = 2.5 cm. The simulated data was generated from vary-
ing HbO andHbR from baseline hemoglobin concentrations representative of the brain (i.e.,
HbO0 = 58 µM , HbR0 = 27 µM ) while tissue scattering remained constant (µ′s(λ) = 10
cm−1) [86]. Equation 2.136, with an assumed water volume fraction of 80%, was employed
to convert each oxy-hemoglobin and deoxy-hemoglobin concentration pair to multi-spectral ab-
sorption coefficients (µa(λ)). Then, the semi-infinite continuous-wave diffusion Green’s func-
tion (Equation 2.103 withω = 0) was utilized to compute simulated detected intensities (I(λ))
from µa(λ) and a constant tissue scattering coefficient ofµ′s = 10 cm−1. The multi-spectral
differential pathlengths were computed with Equation 3.25.

84



∼ 25% induces underestimations in the computed hemoglobin concentrations of∼ 10%, while

overestimation of the differential pathlengths by∼ 25% induces< 5% errors in the computed

hemoglobin concentrations (Figure 3.6).

3.4 Modified Beer-Lambert Law for Turbid Heterogeneous Media

The homogeneous Modified Beer-Lambert law discussed above assumes that the absorption

change,∆µa, is homogeneously distributed across the sampled light volume. This has the ad-

vantage of simplicity, but realistically, tissue is heterogeneous; it contains multiple compartments

with different optical properties due to vasculature, fat,and bone. Often these regions arise as

“layers” below the tissue surface such as scalp, skull, and cortex. Under these conditions, a Tay-

lor series expansion of the optical density can also be used to derive the Modified Beer-Lambert

law for heterogeneous media [130]. Assuming that the heterogeneous tissue can be divided into

N piecewise homogeneous regions, then the first-order Taylorseries expansion of the optical

density is

OD ≈ OD0 +

N
∑

k=1

[

∂OD0

∂µa,k
∆µa,k +

∂OD0

∂µ′s,k
∆µ′s,k

]

. (3.29)

Here,µa,k andµ′s,k are the tissue absorption and scattering for thekth homogeneous region in

the tissue, and∆µa,k ≡ µa,k − µ0a,k and∆µ′s,k ≡ µ′s,k − µ′0s,k denote the differential changes in

absorption and scattering from baseline. Rearranging Equation 3.29, the Modified Beer-Lambert

law for heterogeneous media is:

∆OD ≈
N
∑

k=1

[

Lk(ρ)∆µa,k +
µ0a,k
µ′0s,k

Lk(ρ)∆µ
′
s,k

]

≈
N
∑

k=1

Lk(ρ)∆µa,k, (3.30)

where the partial pathlengths,{Lk(ρ) ≡ ∂OD0/∂µa,k}, are the mean pathlengths that de-

tected photons travel in thekth region [130, 235]. In other words, thekth partial pathlength

is the photon mean time of flight in thekth region multiplied by the speed of light in thekth

region, i.e.,Lk(ρ) = vk〈tk〉. As in Equation 3.6, the scattering term∂OD0/∂µ′s,k∆µ
′
s,k ≈

Lk(µ
0
a,k/µ

′0
s,k)∆µ

′
s,k is often negligible compared to the absorption term.

In addition to the partial pathlengths depending on source-detector separation,ρ, they also
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Figure 3.6: Semi-infinite simulated data sets imitating cerebral signal changes induced by fin-
ger tapping (panels A, B) and induced by ischemic stroke (panels C, D), were utilized to make
contour plots showing the sensitivity of the computed hemoglobin concentration changes from
Equation 3.28 (λ = 690, 830 nm;ρ = 2.5 cm) to errors in the differential pathlength atλ = 830
nm (horizontal axis) and atλ = 690 nm (vertical axis). The contour levels are the fractional er-
rors in the Modified Beer-Lambert law calculations (using the erroneous differential pathlengths
specified on the horizontal and vertical axes) of(A) oxy-hemoglobin (HbOMBL/HbOactual−1;
HbOMBL defined in Figure 3.5) and(B) deoxy-hemoglobin (HbRMBL/HbRactual − 1;
HbRMBL defined in Figure 3.5). Here, the actual oxy- and deoxy-hemoglobin concentration
changes are representative of the finger tapping task-induced changes in the motor cortex, i.e.,
∆HbOactual = 15 µM , ∆HbRactual = −5 µM [85]. Contour plots are also generated for
the fractional errors in the Modified Beer-Lambert law calculations of (C) oxy-hemoglobin
and (D) deoxy-hemoglobin for a different set of actual concentration changes that mimic the
changes induced by an ischemic stroke in the core of the lesion, i.e.,∆HbOactual = −15 µM ,
∆HbRactual = 15 µM [62]. The baseline tissue state is the same for all contour plots (i.e.,
HbO0 = 58 µM , HbR0 = 27 µM , µ′0s = 10 cm−1), and the actual differential pathlengths,
L0(830 nm) = 13.2 cm andL0(690 nm= 14.1 cm, were computed with Equation 3.25. Tissue
scattering was not varied. Additional details on generating the simulated data are provided in the
caption for Figure 3.5. The reason that the zero-level contours do not intersect the point (1,1) is
because of errors in the Modified Beer-Lambert law itself (3.5). The Modified Beer-Lambert law
is a first-order Taylor series approximation, so it will not calculate the true hemoglobin changes
with perfect accuracy.
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depends on tissue geometry and the baseline tissue properties,{µ0a,k, µ′0s,k}. The partial path-

lengths cannot be directly measured, but they can be numerically computed with the hetero-

geneous analogue of Equation 3.20, which requiresa priori knowledge of the baseline tissue

optical properties and tissue geometry.

The heterogeneous analogue of Equation 3.28 for spectroscopy with Equation 3.30 is

∆OD(λ) = − log

(

I(ρ, λ)

I0(ρ, λ)

)

≈ log(10)

N
∑

k=1

[

Lk(ρ, λ)
∑

i

εi(λ)∆ci,k

]

, (3.31)

where∆ci,k is the differential concentration change for theith chromophore in thekth region.

3.4.1 Two-layer Modified Beer-Lambert Law

The simplest heterogeneous model for tissue is the two-layer geometry (Figure 3.7), which

many researchers use to model the brain as a compromise between simplicity and accuracy

[55,91,108,120,172,208,215]. The two-layer Modified Beer-Lambert law is the special case of

Equation 3.30 forN = 2 homogeneous layered regions, i.e.,

∆OD = − log

(

I(ρ)

I0(ρ)

)

≈ Lc(ρ)∆µa,c + Lec(ρ)∆µa,ec. (3.32)

Here,∆µa,c and∆µa,ec are the differential absorption changes in the cerebral andextra-cerebral

layers, respectively, andLc(ρ) andLec(ρ) are the cerebral and extra-cerebral partial pathlengths,

which depend onρ, baseline optical properties, and the extra-cerebral layer thickness,ℓ.

I presented the two-layer photon diffusion Green’s function for the planar two-layer geom-

etry in Section 2.10 (Equation 2.112), which can be utilizedto compute the two-layer partial

pathlengths:

Lc(ρ) ≡
∂OD0

∂µa,c
≈ 1

∆µa,c
log

[

G(ρ, µ0a,c −∆µa,c/2, µ
0
a,ec, µ

′0
s,c, µ

′0
s,ec, ℓ)

G(ρ, µ0a,c +∆µa,c/2, µ0a,ec, µ
′0
s,c, µ

′
s,ec0, ℓ)

]

, (3.33)

Lec(ρ) ≡
∂OD0

∂µa,ec
≈ 1

∆µa,ec
log

[

G(ρ, µ0a,c, µ
0
a,ec −∆µa,ec/2, µ

′0
s,c, µ

′0
s,ec, ℓ)

G(ρ, µ0a,c, µ
0
a,ec +∆µa,ec/2, µ′0s,c, µ′s,ec0, ℓ)

]

, (3.34)

where∆µa,c/µ0a,c = ∆µa,ec/µ
0
a,ec = 10−5. Alternatively, a Monte Carlo technique [255] can

be utilized to evaluate Equations 3.33 and 3.34 forLc(ρ) andLec(ρ).

The two-layer partial pathlengths for representative baseline tissue optical properties of the

head are plotted as a function of source-detector separation in Figure 3.8. The extra-cerebral
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Figure 3.7:(A) Two-layer tissue model of the head and(B) parallel plane two-layer tissue ge-
ometry.

partial pathlength is substantially greater than the cerebral partial pathlength, which confirms

that the detected light is weighted towards superficial tissue. Further, the partial pathlengths

are significanlty influenced by even small changes in the layer thickness, e.g.,∆ℓ = 2 mm

(Figure 3.8B).

The two-layer model is useful in many tissues for distinguishing between superficial tissue

(e.g., scalp/skull) and the tissue of interest (e.g., brain). However, the problem in general with

heterogeneous tissue models is that there are too many unknowns. Even with the two-layer

model, the partial pathlength computation requires 5 inputparameters (i.e.,µ0a,c, µ
0
a,ec, µ

′0
s,c,

µ′0s,ec, ℓ) that are potentially unknowns. Heterogeneous models alsorely on the “finer features”

of the detected signal to distinguish between the differenttissue regions, and are consequentially

less robust to measurement noise than the homogeneous modelis.

In chapter 6, I will discuss how probe pressure modulation and multiple source-detector

separations can be utilized to add constraints to the two-layer model, making cerebral absorption

monitoring with the two-layer model more tractable.
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Figure 3.8:(A) Computed cerebral (Lc; Equation 3.33) and extra-cerebral (Lec; Equation 3.34)
partial pathlengths, plotted as function of source-detector separation,ρ, for a two-layer medium
representative of the head [55], i.e.,µ0a,c = 0.16, µ0a,ec = 0.12, µ′0s,c = 6, µ′0s,ec = 10 cm−1,
ℓ = 1 cm,n = 1.4, andReff = 0.493. (B) The ratioLc(ρ)/Lec(ρ) is plotted as a function ofρ
for different extra-cerebral layer thicknesses,ℓ.
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Chapter 4

Diffuse Correlation Spectroscopy

(DCS): Correlation Diffusion Approach

4.1 Introduction

Diffuse optical spectroscopy (DOS) (Chapters 2, 3) is a static technique that measures slow (0.1

- 1 s) variations in the detected light intensity (I) induced by changes in tissue absorption (µa)

and tissue scattering (µ′s). Diffuse correlation spectroscopy (DCS) is a qualitatively different

dynamic light scattering technique that measures the rapid(e.g., microsecond scale fluctuations)

speckle light intensity fluctuations induced by red blood cell motion (Figure 4.1) [24, 37, 84].

DCS is a variant of the diffusing wave spectroscopy technique used in condensed matter physics

to study particle dynamics [179,204,257].

To probe blood flow, DCS uses the same measurement geometry asDOS, wherein NIR light

travels diffusively through tissue over a distribution of pathlengths from source to detector. At

the detector, the light electric fields from the different pathlengths interfere constructively or de-

structively to produce a bright or dark spot, or speckle. Themotion of red blood cells within

the tissue slightly alters these light pathlengths, inducing speckle intensity fluctuations between

constructive and destructive interference. Higher blood flows correspond to faster speckle fluc-

tuations.
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Quantitatively, these speckle intensity fluctuations are characterized by computing the nor-

malized intensity autocorrelation function, i.e.,

g2(τ) ≡
〈I(t)I(t+ τ)〉

〈I(t)〉2 , (4.1)

at multiple delay-times,τ , whereI(t) is the detected light intensity at timet, and the brackets

〈〉 represent time-averages (for experiments) or ensemble averages (for calculations) [18]. It is

straight forward to show that [18]

g2(τ) =
〈δI(t)δI(t + τ)

〈I(t)〉2 + 1, (4.2)

where the fluctuation,δI(t) ≡ I(t) − 〈I(t)〉, represents the deviation of the intensity from its

average value. At “long delay-times” wherein the intensityfluctuation at timet is not predictive

of the fluctuation at timet+ τ , 〈δI(t)δI(t + τ)〉 = 〈δI(t)〉2 = 0, andg2(τ) = 1. At τ = 0,

g2(0) =
〈[I(t)]2〉 − 〈I(t)〉2

〈I(t)〉2 + 1 = 1 + Λ2 = 1 + β, (4.3)

whereΛ ≡ σI/〈I〉 is the speckle contrast of the speckle fluctuations, andβ ≡ Λ2. Thus,g2(τ)

decays from1 + β to 1 asτ increases. Faster intensity fluctuations, which are associated with

higher blood flow, correspond to steeper decays ing2(τ) (Figure 4.1C).

For “fully developed” speckle, the speckle contrast is unity, i.e.,g2(0) = 2, which indicates

that the speckle intensity fluctuations are of the same orderas the average intensity (Section 4.2)

[112]. However, in practice there are a number of measurement-related factors that can reduce

speckle contrast, such as source coherence and experimental collection optics. If the width of

the pathlength distribution (i.e., the spread of differentpathlengths) is comparable to or exceeds

the coherence length of the source, then the speckle contrast is substantially reduced. The phase

of the source light needs to remain constant on a length scalecomparable to the spread of light

pathlengths between source and detector for the detectableinterference that underlies a high

speckle contrast to exist [100, Section 32-4]. On the detection side of the measurement, the

detected signal is typically a sum over independent speckleintensities with the same statistics

[168]. For example, these independent speckle intensitiescan arise from orthogonal polarization

states and optical fiber modes. The effect of summing over independent speckle intensities is a

reduction in speckle contrast [112,168] (Section 4.2).
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Figure 4.1:(A) Schematic for a homogeneous, semi-infinite model of the headwith a blood flow
index, absorption coefficient, and reduced scattering coefficient ofF , µa, andµ′s, respectively.
The incident continuous wave source intensity,Is, is assumed to remain constant over time.
Blood cell motion (e.g., red disks at timet and light-red disks at timet+τ ) induces fast temporal
fluctuations (i.e., speckle intensity fluctuations) in the detected light intensity on the time scale
of µs, while absorption changes modify mean light intensities (e.g., averaged on time scales of
ms or greater).(B) Schematic of detected intensity fluctuations for a baselinetissue state (red
curve) and a perturbed state from baseline with higher bloodflow and absorption (blue curve).
The horizontal black lines are the mean intensities for the two states, denoted asI0 andI. (C)
The fast speckle intensity fluctuations in the two states arecharacterized by normalized intensity
autocorrelation functions (i.e.,g02(τ), g2(τ)). The decay of the intensity autocorrelation function
curves is related to tissue blood flow.

For DCS, low speckle contrast is bad. The closerβ is to zero, the more difficult it is to ascer-

tain blood flow from the decay ing2(τ). With no speckle contrast (i.e.,β = 0), there is no decay

in the autocorrelation function at all, making it impossible to estimate blood flow. To maximize

speckle contrast in the DCS measurement, a high-coherence light source (e.g., coherence length

> 5 m) and single-mode fiber detection should be used (Section 4.10). However, since single

mode fibers have low numerical apertures and small core diameters, the detected light intensi-

ties are quite low at longer source-detector separations (e.g., 3 cm), and the DCS signal suffers

from low SNR. Several strategies for improving SNR in the DCSmeasurement are discussed in

Section 4.10.

To quantitatively relate the measurements ofg2(τ) to blood flow, a correlation diffusion

approach (Section 4.5) is employed to calculate the electric field autocorrelation function, i.e.,

g1(τ) ≡ 〈E∗(t)E(t+τ)〉/〈I(t)〉 (I(t) = |E(t)|2), as a function of a blood flow index describing

the dynamics of red blood cells (F [cm2/s]) [23,24,79]. The blood flow index is ascertained by

fitting the calculatedg1(τ) to the experimentally measuredg2(τ) using the Siegert relation [168]:

g2(τ) = 1 + β|g1(τ)|2, (4.4)
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with β defined in Equation 4.3. The Siegert relation is valid ifE(t) is a Gaussian variable with

zero mean. This is the case for any linear combination of “fully developed” speckle electric

fields (Section 4.2) [112]. For DCS measurements of tissue, the Siegert relation is generally a

good approximation (Section 4.10).

Although the blood flow index does not have absolute blood flowunits, it is directly propor-

tional to tissue blood flow (Section 4.9), and has been successfully validated against a plethora

of gold-standard techniques [149,182]. Further, it is feasible to calibrate DCS for absolute blood

flow monitoring with an “initial” measurement of absolute blood flow from another technique

such as time-domain measurements of the contrast agent ICG [70].

Two key approximations of light transport make the calculation of g1(τ) tractable. The

first approximation is the photon diffusion model of light transport (Chapter 2), wherein each

path from source to detector involves many scattering events, and the photon directions of light

transport are completely randomized. The second approximation uses the phase change from an

average scattering event as the phase change for each individual photon scattering event.

4.2 Speckle Statistics

Speckle fluctuations, which appear in a signal that is composed of a large number of independent

phasors [112], are fundamental to the DCS measurement of blood flow. For many scattering

media, including tissue in the NIR spectral regime, the polarized light electric field at a point in

space and time, i.e.,E(rd, t), is described by a random phasor sum:

E(rd, t) =

N
∑

n=1

ane
iφn . (4.5)

Here,N ≫ 1 is the number of phasor components, and(an, φn) denote the amplitude and phase

of thenth phasor in the sum. For “fully developed” speckle fields, the statistics of the phasor

components satisfy the following three fundamental assumptions:

• The amplitudes and phasesan andφn are statistically independent ofam andφm provided

n 6= m.

• For anyn, an andφn are statistically independent of each other.
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• The phasesφn are uniformly distributed on the interval(−π, π), i.e., all values of phase

are equally likely.

Recall that two parameters are statistically independent if knowledge of one parameter conveys

no knowledge of the other parameter. Equation 4.5 constitutes a random walk in the complex

plane, and it is straight forward to show thatE(r, t) is a Gaussian-distributed variable with zero

mean [112]. The probability density function for the amplitude of the electric field is therefore

given by the Rayleigh distribution [112], i.e.,

PE(|E|) = |E|
2πσ2

exp

[

−|E|2
2σ2

]

, (4.6)

whereσ2 = 〈a2〉/2.

Dynamic light scattering techniques generally measure theintensity,I(rd, t) = |E(rd, t)|2,

instead of the electric field. The probability density function for the intensity of a fully developed

speckle field is the negative exponential distribution [112], i.e.,

PI(I) =

∣

∣

∣

∣

d|E|
dI

∣

∣

∣

∣

PE(
√
I) =

1

〈I〉 exp
(

− I

〈I〉

)

. (4.7)

Thus, a histogram of intensities measured over many time points at the spatial locationrd is

characterized by an exponential distribution1. One characteristic of the exponential distribu-

tion is that there are many more intensities below the mean (“dark spots”) than above the mean

(“bright spots”). Another property is that the standard deviation of intensities is equal to the

mean, and the speckle contrast is therefore unity. Recall that unity speckle contrast is expected

for polarized light detected at one spatial point. In practice, the detected light intensity is typi-

cally a sum over multiple independent fully developed speckle intensities, each governed by the

same statistics (Equation 4.7).

For example, consider the case of partially polarized light. Here, the detected light intensity

is the sum of two independent speckle intensities corresponding to the two orthogonal polariza-

tion states, i.e.,I = I1 + I2, which reduces the speckle contrast to [112,168]

Λ =

√

〈I1〉2 + 〈I2〉2
〈I1〉+ 〈I2〉

=

√
1 + r2

1 + r
, (4.8)

1The exponential distribution also applies for intensitiessampled over many spatial locations at one time point,
i.e., an image.
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wherer = 〈I2〉/〈I1〉. For completely unpolarized light, i.e.,r = 1, Λ = 1/
√
2, and the intensity

autocorrelation intercept isβ = g2(0)− 1 = 0.5 (see Equation 4.3).

More generally, if there areN fully developed speckles present in the detected signal, the

speckle contrast is [112,168]

Λ =
√

β =

√

∑N
n=1〈In〉2

∑N
n=1〈In〉

, (4.9)

where〈In〉 is the mean intensity of thenth speckle. For light detection with a multimode fiber

that supportsM independent modes of light propagation, the number of speckles isN =M for

polarized light, andN = 2M for unpolarized light (discussed further in Section 4.10).In the

special case wherein the mean speckle light intensities areequal (i.e.,〈In〉 = I0 for all n), then

Equation 4.9 simplifies to

Λ =
√

β =
1√
N
. (4.10)

As a brief digression, for an imaging detection scheme with alens and CCD camera (Fig-

ure 2.14), the spatial size of a speckle,b, is roughly the diffraction-limited spot size on the CCD

from the lens, i.e.,b ≈ 2.44λ/NA, whereλ is the wavelength of light, andNA is the numeri-

cal aperture of the lens [112]. The number of speckles detected by a pixel on the CCD is then

N ≈ Apixel/[(π/4)b
2] for polarized light, andN ≈ 2Apixel/[(π/4)b

2] for unpolarized light. In

this detection scheme, Equation 4.9 is still valid.

4.3 Dynamic Light Scattering in the Single-scattering Limit

Before developing the theory of DCS in the high multiple-scattering limit, it is useful to review a

simple traditional dynamic light scattering (DLS) (sometimes called quasi-elastic light scattering

(QELS)) experiment in the single-scattering limit (Figure4.2). In the experiment, coherent,

polarized light illuminates a dilute sample of scatterers;dilute in the sense that an incident photon

is scattered once or not at all as it traverses the sample (seeFigure 2.1B for the definition of a

scattering event). From the classical electromagnetic wave point of view, each scatterer develops

an induced dipole moment in the presence of the incident light given by

p = (χ̃ ·mi)Ei(t), (4.11)
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Figure 4.2: Illustration of a single scattering experimentfor a dilute solution ofN independent
scatterers. Light with polarizationmi and wavevectorki is scattered in all directions. The com-
ponent of the scattered light with polarizationms and wavevectorks, i.e.,E(rd, t), is detected
in the far field. The scattering wavevector,q ≡ ks − ki, is proportional to the momentum trans-
ferred from the incident light to the detected light. For elastic scattering,|q| = 2|ki| sin(θ/2).

whereχ̃ is the polarizability tensor of the scatterer [116]. The oscillating dipole moment in the

scatterer, in turn, emits scattered light in all directions, which at the detector is given by [206,

Chapter 15]

Es(rd, t) =
µ0|Ei|

4π|rd − rj(t)|
ω2χis(t)e

−iq·rj(t)ei(ks·rd−ωt). (4.12)

Here,rd is the detector position,rj is the position of thejth scatterer,χis ≡ ms · χ̃ · mi, and

q ≡ ks − ki (Figure 4.2). The terme−iq·rj(t) varies in time because of translation, while the

termχis(t) varies in time because of rotation or vibration.

In the single-scattering limit, only the incident light interacts with the scatterers, and there-

fore, the total light electric field at the detector is the superposition of the dipole contribution

from each scatterer (i.e., Equation 4.12). Therefore, in the far field limit,

E(rd, t) ∝
N(t)
∑

j=1

χis(t) exp[−iq · rj(t)], (4.13)

whereN(t) is the number of scatterers within the scattering volume at time t. Notice that if

N ≫ 1 and the scatterer positions are independent, Equation 4.13is a random phasor sum
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that describes speckle fluctuations (Section 4.2). The electric field autocorrelation function of

Equation 4.13 is related to the scatterer displacements,∆r(τ) = rj(t + τ) − rj(t), via [18,

Chapter 5]

g1(τ) ≡
〈E∗(t)E(t + τ)〉

〈I〉 = 〈exp[iq ·∆r(τ)]〉, (4.14)

provided the scatterers satisfy the following two assumptions:

1. The scatterer size is small compared to the light wavelength, λ,

2. The scatterer positions,{rj}, are statistically independent.

Assumption two is usually valid in dilute liquid solutions wherein scatterers rarely encounter

each other, but violated in solids wherein the scatterers are fixed in placed. Assumption one

ensures that the decay ofg1(τ) is only due to translational motion (i.e.,χis does not depend on

time). This assumption is discussed further in Section 4.3.4.

Again, recall that the〈〉 brackets in Equation 4.14 indicate an ensemble average for the

calculation ofg1(τ), i.e.,

g1(τ) =

∫

P (∆r(τ)) exp[iq ·∆r(τ)]d3(∆r), (4.15)

where the integration limits are from−∞ to ∞ in all dimensions, andP (∆r(τ)) is the proba-

bility density function for a particle to travel a distance of ∆r in time τ . Calculation ofg1(τ)

thus requires knowledge ofP (∆r(τ)).

4.3.1 Brownian Motion

A very important and common type of particle motion is Brownian motion. The underlying

equation describing Brownian motion is the Langevin equation [49,50], i.e.,

du

dt
= −γu+ F(t). (4.16)

Here,u is the velocity of the particle,γ [s−1] is the frictional drag coefficient of the particle

moving through the medium divided by the particle’s mass [17], andF(t) is a stochastic term

accounting for collisions between the Brownian particle and molecules in the surrounding fluid

(e.g., water molecules). The key assumptions of Brownian motion are (1),F(t) is independent
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of u, and (2),F(t) varies extremely rapidly compared withu [49, 50]. Physically, the second

assumption means that there exist time intervals,∆t, during which the Brownian particle velocity

changes inifinitesimally while the particle experiences a very large number of collisions with

molecules of the surrounding fluid.

On time scalest ≫ γ−1, the probability distribution for the Brownian particle’sdisplace-

ment, which can be derived from Equation 4.16, is Gaussian [49,50], i.e.,

P (∆r(t)) =
1

(4πDbt)3/2
exp

[

−|∆r(t)|2
4Dbt

]

. (4.17)

Here, the Brownian particle’s diffusion coefficient,Db, is [17,49,50] (see Equation 2.45)

Db =
vbℓp

3(1 − 〈cos ϑ〉) , (4.18)

wherevb is the constant speed of the Brownian particle along a straight-line trajectory (or run),

ℓp is the mean run length (i.e., mean distance traveled betweendirection changes), and〈cos ϑ〉
is the average of the cosine of the angle between successive runs.

Substituting Equation 4.17 into Equation 4.15, we obtain

g1(τ) = exp

[

−1

6
q2〈|∆r(τ)|2〉

]

. (4.19)

The particle mean-squared displacement is also determinedfrom Equation 4.17:

〈|∆r(τ)|2〉 =
∫

|∆r(τ)|2P (∆r)d3∆r = 6Dbτ. (4.20)

Thus, in the single-scattering limit for Brownian motion, the electric-field autocorrelation func-

tion is

g1(τ) = exp[−q2Dbτ ]. (4.21)

Since the particle positions are independent, and the number of particles in the scattering

volume is assumed to be much greater than one, the detected electric field (Equation 4.13) is a

fully developed speckle field, and the Siegert relation (Equation 4.4) is valid. Thus, the measured

intensity auto-correlation function for Brownian motion is

g2(τ) = 1 + β exp[−2q2Dbτ ]. (4.22)
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4.3.2 Brownian Motion with Drift

If Brownian particles are exposed to a constant external force (e.g., gravity, pressure gradiant,

centrifugal), the particles still diffuse similarly to howthey would in the absence of the external

force, but with a small persistent directional bias [17]. This motion is Brownian motion with

drift (or diffusion with drift). The extension of the Langevin equation (Equation 4.16) to include

an external force,Fext, is
du

dt
= −γu+ F(t) +

Fext

m
, (4.23)

wherem is the particle’s mass. On the same time scalet≫ γ−1, the probability distribution for

Brownian particle displacement derived from Equation 4.23is [49]

P (∆r(t)) =
1

(4πDbt)3/2
exp

[

−|∆r(t)− vdt|2
4Dbt

]

. (4.24)

Here,vd is the terminal drift velocity obtained from the external force, i.e.,vd = Fext/(mγ).

Substituting Equation 4.24 into Equation 4.15, the electric field autocorrelation function for

diffusion with drift is

g1(τ) = exp(iq · vdτ) exp(−q2Dbτ), (4.25)

and the corresponding intensity autocorrelation functionis (Equation 4.4)

g2(τ) = 1 + β exp[−2q2Dbτ ] (4.26)

Equations 4.26 and 4.22 are identical, indicating that the measured intensity autocorrelation

function cannot distinguish between isotropic Brownian motion and Brownian motion with drift.

This is also true for the high multiple-scattering limit. Importantly, the measured DCS/DLS

signal is only sensitive to the relative motions between scattering particles. Uniform motion that

is present in all of the scattering particles is not detected.

4.3.3 Random Flow

Random flow is the opposite of Brownian motion in the sense that it applies to very dilute solu-

tions (e.g., ideal gas) with scattering particles that seldom experience collisions. In this case, the

scattering particles move ballistically with velocityu between collisions. For a ballistic process,
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∆rj(t) = ujt. Ideal gases are accurately modeled with the Maxwell-Boltzmann distribution,

such that the distribution function for random flow displacement is

P (∆r) = t

[

m

2πkBT

]3/2

exp

(

−m|∆r(t)|2
2kBT t2

)

, (4.27)

whereT is the temperature,m is the particle mass, andkB is Boltzmann’s constant. Substitution

of Equation 4.27 into Equation 4.15, we obtain

g1(τ) = exp

[

−1

6
q2〈|∆r(τ)|2〉

]

= exp

[

−1

6
q2〈u2〉τ2

]

. (4.28)

Here,〈u2〉 = 3kBT/m is the mean square velocity of the moving particles.

Of course, on small enough time scales, all motion is ballistic. DLS probes particle motion,

though, on the length scale ofq−1. Looking at Equations 4.28 and 4.19, it is evident that sig-

nificant decays ing1(τ) occur on a particle displacement (∆r) length scale ofq−1. Thus, if the

mean free path between collisions is long compared toq−1, then the measured particle dynamics

are ballistic. Conversely, if the mean free path between collisions is short compared toq−1, then

the measured particle dynamics are Brownian.

4.3.4 Large Particle Scattering

Equation 4.14 assumes that the scatterer size is small compared to the wavelength. However, red

blood cells, with a typical size of roughly 10um, are substantially bigger than the wavelength.

For this regime, Equation 4.13 is [18, Chapter 8]

E(rd, t) ∝
N
∑

j=1

Ψj(q, t) exp[−iq ·Rj(t)], (4.29)

whereRj(t) is the particle center of mass, andΨj(q, t) is a particle form factor, i.e.,

Ψj(q, t) =

∫

χis(rrel, t)e
iq·rreld3rrel. (4.30)

Here, the integral is over the particle volume, andrrel ≡ r − Rk is a position in the particle

relative to the center of mass. The origin of the time-dependence inχis is particle rotation and

particle morphology changes. For rigid spheres, the rotational symmetry ensures that the form
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factor is time-independent, and the electric field autocorrelation function is determined from the

translational motion of the spheres:

g1(τ) = 〈exp[iq ·∆R(t)〉. (4.31)

However, many particles, including red blood cells, are notrigid spheres. If significant

rotational and morphologial motion occurs over the length scale of q−1, then the changes in

atomic form factor from these motions will significantly affect g1(τ). For elastic scattering,

q = 2ki sin(θ/2) (see Figure 4.2) and the length scaleq−1 is approximately the light wavelength

λ. Therefore, forλ = 785 nm, q−1 ≈ 0.1 micron. If rotational and/or morphological changes

are minimal over this length scale, then Equation 4.31 is a good approximation for large particle

motions, and the results derived above for small scatterer size remain applicable.

4.4 Static and Dynamic Light Scattering in Tissue

In tissues, some scatterers are static (or very slowly moving) and some scatterers move (e.g., red

blood cells). Photon scattering from static tissue elements (Figure 4.3A) does not contribute to

the decay ofg1(τ), but photon scattering from dynamically moving tissue elements (Figure 4.3B,

C) does. In tissue, red blood cells are usually the predominant dynamic light scatterers2 [30,79,

190].

The tissue blood volume is typically a small fraction (< 4%) of the tissue volume, and red

blood cells account for only a small fraction of tissue scattering [30]. Thus, the scattering cross

section for static elements in the tissue is much greater than that for moving red blood cells,

which in turn means that the vast majority of scattering in tissue is static (type A; corresponds

to Figure 4.3A). However, on their journey from source to detector, photons will encounter

red blood cells, and these encounters are dynamic scatttering events (type B; corresponds to

Figure 4.3B).

A typical photon path through tissue consists of many staticscattering steps prior to encoun-

tering a red blood cell (e.g., in a capillary), and then many more static scattering steps prior

to encountering another red blood cell (e.g., in another capillary), and so on. Mathematically,

2A notable exception is in exercising muscle, wherein the motion of muscle fibers has a big effect on theg1(τ )
decay [226].

101



Figure 4.3: Photon scattering within tissue can be represented as a series of scattering steps of
types A, B, or C.ki andks are the incident and scattered light wavevectors, andu denotes the
velocity of moving scatterers (red circles), which are assumed to be red blood cells.

this path is written as(A,A, . . . , A,B,A, . . . , A,B,A, . . .), which means that there are many

static scattering steps between each dynamic scattering event. Here, the red blood cells (RBC)

contributing to the decay ofg1(τ) are independent particles.

It is also possible for photons to sequentially scatter off moving red blood cells (Figure 4.3C),

which mainly occurs within larger vessels (> 50 microns) [30]. Mathematically, this type of

scattering is(A,A, . . . , A,B,B,A, . . . ) or (A,A, . . . , A,B,B,B,A, . . .), etc. A key assump-

tion for deriving the multiply scattered light electric field autocorrelation function is scatterer

independence (Section 4.5). Moving red blood cells within the same vessel, though, may not be

independent.

Carpet. al. argued that the majority of photon-RBC interactions occur in larger vessels

wherein sequential RBC scattering is likely, because the majority of the tissue blood volume

(∼ 70%) is contained in these larger vessels [44]. However, as I discussed in Section 2.13,

light that propagates inside large vessels is preferentially absorbed because of the high light

absorption in blood. Then, the photons that are actually detected preferentially only encounter

small vessels. The contributions to the decay ofg1(τ) as a function of vessel size is not well

understood, and is an interesting problem for future work.

102



4.5 Dynamic Light Scattering in the High Multiple-scattering Limit

(Diffuse Correlation Spectroscopy)

I will now derive the electric field autocorrelation function in the high multiple-scattering limit

(i.e., correlation diffusion limit) [23,24,179,204,257]. The starting point is to consider a single

photon passing through tissue from source to detector that scattersN times along an arbitrary

light pathp (Figure 4.4). The total pathlength of this photon is

sp =
N
∑

j=0

|rj=1 − rj | =
N
∑

j=0

(

kj

|kj |

)

· (rj+1 − rj), (4.32)

wherekj is the wavevector of the light afterj scattering events,rj is the position of scattererj

at timet for j ≤ 1 ≤ N , r0 = rs is the light source position, andrN+1 = rd is the detector

position. The light scattering is assumed to be quasi-elastic, which means that all wavevectors

have the same magnitude (|kj | = κ◦ = 2πn/λ, for all j). Therefore, the total phase shift,φp(t),

acquired by the photon after traveling from the source to thedetector along pathp is

φp(t) = κ◦sp(t) =
N
∑

j=0

kj(t) · [rj+1(t)− rj(t)]. (4.33)

Further, the contribution to the polarized detected electric field from this light path isEpe
iφ(t),

whereEp is the amplitude of the field from pathp at the detector. The field amplitude depends

primarily on the optical absorption and scattering coefficients of the medium. In tissue, these

optical properties change on a much slower time scale than the phase fluctuations. Thus,Ep is

temporally constant, and it is the phase fluctuations that induce the speckle fluctuations.

The total polarized detected electric field is the sum ofEpe
iφ(t) over all light paths from

source to detector, i.e.,

E(t) =
∑

p

Epe
iφp(t). (4.34)

Equation 4.34 represents a fully developed speckle field if the following assumptions are satisfied

(see Section 4.2):

• Ep andφp are statistically independent ofEp′ andφp′ for p 6= p′,

• For any light pathp,Ep andφp are statistically independent of each other,
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Figure 4.4: A single light pathp from source to detector in a turbid medium. The scattering is
quasi-elastic, such that the magnitudes of the wavevectors{kj} are the same. Further,kj points
in the propagation direction for light scattered from thejth particle, andrj is the position of the
jth particle.

• The phasesφp are uniformly distributed on the interval(−π, π).

All three of these assumptions are valid if (1), the dynamic scatterers are independent, and

(2), the contribution toE(t) from photons that have only experienced static scattering on their

path from source to detector is negligible [14, 168]. Sinceg1(τ) does not decay from static

scattering, the physical meaning of point two is that the field autocorrelation functiong1(τ)

fully decays to zero over a time scale much shorter than the duration of the measurement [14].

From scatterer independence, Equation 4.34 can be interpreted as a random walk in the complex

plane. Ifg1(τ) fully decays to zero over a shorter time scale than the measurement duration,

then many random walks will be sampled, and the distributionof E(t) over the time course of

the measurement is Gaussian with zero mean. For tissue, thismeans that the red blood cells

contributing to the decay ofg1(τ) are independent, and that all photons in the detected signal

have interacted at least once with a red blood cell.

The electric field autocorrelation function of Equation 4.34 is

g1(τ) ≡
〈E∗(t)E(t+ τ)

〈I〉 =
1

〈I〉

〈(

∑

p

Epe
−iφp(t)

)





∑

p′

E∗
p′e

iφp′ (t+τ)





〉

, (4.35)

where〈I〉 is the average detected intensity. From the speckle field assumptions, terms with

p 6= p′ do not contribute, i.e.,

〈E∗
pEp′e

−iφp(t)eiφp′ (t+τ)〉 = 〈E∗
p〉〈Ep′〉〈e−iφp(t)〉〈eiφp′ (t+τ)〉 = 0. (4.36)
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Figure 4.5: Sincekj(t+ τ) is in the same direction as[rj+1(t+ τ)− rj(t)], ∆kj(τ) · [rj+1(t+
τ) − rj(t)] ∝ sinϑ. To leading order,sinϑ ≈ 0, and the second term in Equation 4.38 is
negligible compared to the first term.

Thus, Equation 4.35 simplifies to

g1(τ) =

〈

∑

p

|Ep|2
〈I〉 e−i[φp(t)−φp(t+τ)]

〉

=
∑

p

〈Ip〉
〈I〉 〈e

i∆φp(τ)〉, (4.37)

where〈Ip〉 ≡ 〈|Ep|2〉 is the average intensity from pathp, and∆φp(τ) ≡ φp(t + τ) − φp(t).

Definingqj ≡ kj(t)−kj−1(t) and∆kj(τ) ≡ kj(t+ τ)−kj(t), we obtain from Equation 4.33

that

∆φp(τ) =
N
∑

j=1

qj ·∆rj(τ) +
N
∑

j=0

∆kj(τ) · [rj+1(t+ τ)− rj(t+ τ)], (4.38)

where∆rj(τ) ≡ rj(t+ τ)− rj(t) is the scatterer displacement in timeτ .

Notice that since[rj+1(t+ τ)− rj(t+ τ)] is in the same direction askj(t+ τ) (Figure 4.4),

∆kj(τ) · [rj+1(t+ τ)− rj(t+ τ)] ∝ sinϑ, (4.39)

whereϑ is the angle betweenki(t + τ) andki(t) (Figure 4.5). For the time scales associated

with the decay ofg1(τ), the angleϑ is small, and to leading order,sinϑ ≈ 0. Thus, neglecting

the second sum in Equation 4.38, we obtain

∆φp(τ) =
N
∑

j=1

qj ·∆rj(τ). (4.40)

Along a given light path in tissue, both static scattering and dynamic scattering occurs (Sec-

tion 4.4). LetNs andNd = N − Ns denote the number of static scattering events and number

of dynamic scattering events, respectively. Since∆rj(τ) = 0 for static scattering events, they
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will not contribute to the sum in Equation 4.41, i.e.,

∆φp(τ) =

Nd
∑

j=1

qj ·∆rj(τ). (4.41)

From the central limit theorem,∆φp(τ) is a random Gaussian variable because it is a sum

of Nd independent random variables whereinNd is assumed to be large (Equation 4.41). For the

special case of isotropic particle dynamics3, 〈∆φp(τ)〉 = 0, and

〈ei∆φp(τ)〉 = 1
√

2π〈∆φ2p(τ)〉

∫ ∞

−∞
ei∆φp(τ) exp

[

−
∆φ2p(τ)

2〈∆φ2p(τ)〉

]

d(∆φp) = e−〈∆φ2
p(τ)〉/2.

(4.42)

Taking the ensemble average of the square of Equation 4.41, we obtain

〈∆φ2p(τ)〉 =
Nd
∑

i=1

Nd
∑

j=1

〈[qi ·∆ri(τ)][qj ·∆rj(τ)]〉 =
Nd
∑

j=1

〈[qj ·∆rj(τ)]
2〉, (4.43)

where again, the latter equality is true because of scatterer independence. Additionally, the

scattering vectorqj and displacement vector∆rj(τ) are assumed to be independent, and for

isotropic dynamics,〈∆x2〉 = 〈∆y2〉 = 〈∆z2〉 = 〈∆r2〉/3, where〈∆r2〉 is the magnitude of the

mean-square dynamic scatterer (e.g., red blood cell) displacement. Therefore,

〈∆φ2p(τ)〉 =
Nd
∑

j=1

〈[qj ·∆rj(τ)]
2〉

= Nd〈[qj ·∆rj(τ)]
2〉

=
αN

3
〈q2〉〈∆r2(τ)〉, (4.44)

whereα ≡ Nd/N is the fraction of photon scattering events that occur from moving particles in

the medium (e.g., red blood cells).

For quasi-elastic light scattering,

〈q2〉 = 〈[2κ◦ sin(ϑ/2)]2〉 = 2κ2◦(1− 〈cos ϑ〉) = 2κ2◦ℓsµ
′
s, (4.45)

whereϑ is the scattering angle (Figure 4.5),µ′s is the reduced scattering coefficient (Equa-

tion 2.44), ℓs is the scattering length (i.e., mean photon distance traveled between scattering

3Deterministic motion is briefly discussed in Section 4.7
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events), andκ◦ = 2πn/λ is the magnitude of the light wavevectors propagating through the

medium. Substituting Equation 4.45 into Equation 4.44 and noting thatN = s/ℓs for largeN ,

we obtain

〈∆φ2p(τ)〉 =
α

3

s

ℓs
2κ2◦ℓsµ

′
s〈∆r2(τ)〉 =

2α

3
κ2◦〈∆r2(τ)〉µ′ss. (4.46)

Importantly,〈∆φ2p(τ)〉 does not depend on any other path-dependent property besides the path-

length s. Consequentially, the sum over paths in Equation 4.37 can berecast as a sum over

pathlengths. In the sum over pathlengths,〈Ip〉/〈I〉 is replaced by the pathlength distribution

functionP (s), which is the fraction of the detected scattered light intensity in paths of lengths.

Recasting Equation 4.37 this way and combining it with Equations 4.46 and 4.42, we find that

the electric field autocorrelation function in the high multiple-scattering limit is

g1(τ) =
∑

s

P (s) exp
(

−α
3
κ2◦〈∆r2(τ)〉µ′ss

)

. (4.47)

In the continuum limit, Equation 4.47 becomes

g1(τ) =

∫ ∞

0
P (s) exp

(

−α
3
κ2◦〈∆r2(τ)〉µ′ss

)

ds, (4.48)

whereP (s) can be calculated from the photon diffusion model of light transport (Section 4.5.1).

Equation 4.48 assumes that the decay ofg1(τ) is dominated by translational motion from red

blood cells. Rotational and morphological internal motionin red blood cells can contribute to

the decay ofg1(τ) (Section 4.3.4), but this type of motion is not accounted forin Equation 4.48.

The DCS autocorrelation function measured in tissue decayson the order of 100µs (e.g.,

Figure 4.6). Therefore, in addition to assuming scatterer independence, isotropic dynamics, and

thatNd ≫ 1 for all photon paths from source to detector, Equation 4.48 assumes that blood

cell morphology remains constant and that rotation is negligible on time scales of∼ 100 µs.

Finally, the blood cell dynamics are assumed to remain in equilibrium over the time scale of the

measurement (ms to seconds).

Importantly, the autocorrelation function decay times associated with long light paths are

relatively short, while the decay times associated with short light paths are relatively long [186,

221, 257]. This is due to the factorµ′ss in the exponent in Equation 4.48. At short delay-times,

the small particle displacement〈∆r2(τ)〉 is obviously amplified more byµ′ss at long light paths

than short light paths, and thus the long light paths contribute more to the exponential decay at
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short τ . Consequentially, the DCS autocorrelation measurement atshorterτ in the remission

geometry (Figure 4.1A) is inherently more sensitive to deeper tissue depths [12,221].

Since Equation 4.34 is a fully developed speckle field (i.e.,a Gaussian variable with zero

mean), the Siegert relation (Equation 4.4) can be employed to convertg1(τ) (Equation 4.48) to

the intensity autocorrelation function,g2(τ) (Equation 4.1).

4.5.1 Calculation ofg1(τ)

The calculation ofg1(τ) given by Equation 4.48 is greatly facilitated through utilizing the photon

diffusion model. Recall that the photon diffusion equationfor a point source is (Equation 2.46)

D∇2Φ(r, t)− vµaΦ(r, t)−
∂

∂t
Φ(r, t) = −vS′

0δ(r)δ(t), (4.49)

and that the photon fluence rate,Φ(r, t), is proportional to the “time of flight” distribution

function ξ(t), i.e., ξ(t)dt is the probability for a photon to reach positionr at timet (see Sec-

tion 2.12.2). Analogously, the pathlength distribution functionP (s) is directly proportional to

the photon fluence rate as a function of light pathlength, i.e., Φ̃(r, s) = Φ(r, s/v). Explicitly,

P (s) = Φ̃(r, s)/

∫ ∞

0
Φ̃(r, s)ds, (4.50)

and the field autocorrelation function (Equation 4.48) is inturn

g1(r, τ) =

∫∞
0 Φ̃(r, s)e−νsds
∫∞
0 Φ̃(r, s)ds

, (4.51)

whereν ≡ αµ′sκ
2
◦〈∆r2(τ)〉/3.

Note that the diffusion equation describing̃Φ(r, s) is easily obtained from introducing the

change of variablest = s/v into Equation 4.49:

D∇2Φ̃(r, s)− vµaΦ̃(r, s)− v
∂

∂s
Φ̃(r, s) = −vS′

0δ(r)δ(s/v). (4.52)

Therefore, one approach for determiningg1(r, τ) is to substitute the solution of Equation 4.52

(for the appropriate geometry) into Equation 4.51. Another, more versatile approach is the cor-

relation diffusion approach described in the next section.
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4.6 Homogeneous Correlation Diffusion Equation

The correlation diffusion equation formally modelsG1(r, τ) ≡ 〈E∗(r, t)E(r, t+τ)〉 [W cm−2],

which is the so-called unnormalized electric field autocorrelation function. By definition, the

normalized field autocorrelation function is

g1(r, τ) ≡ G1(r, τ)/G1(r, τ = 0). (4.53)

Comparing Equation 4.53 with Equation 4.51, it is evident that

G1(r, τ) =
1

h

∫ ∞

0
φ̃(r, s)e−νsds, (4.54)

whereh [cm] is a proportionality constant.

The homogeneous correlation diffusion equation is the Laplace transform of Equation 4.52,

i.e.,

∫ ∞

0
(D∇2 − vµa)Φ̃(r, s)e

−νsds− v

∫ ∞

0

(

∂

∂s
Φ̃(r, s)

)

e−νsds =

− v

∫ ∞

0
S′
0δ(r)δ(s/v)e

−νsds, (4.55)

which is (Equation 4.54)

∇2G1(r, τ)−
v

D

[

µa +
α

3
µ′sκ

2
◦〈∆r2(τ)〉

]

G1(r, τ) = − v

D
S0δ(r). (4.56)

Here, I substituted inαµ′sκ
2
◦〈∆r2(τ)〉/3 for ν, andS0 ≡ S′

0v/h [W]. Recall thatS′
0 from

Equation 4.49 has units of energy, and thereforeS0 has units of power.S0 can be regarded

as the power of the continuous-wave light source, which divides out in the normalization of

G1 (i.e., Equation 4.53). Further, as the correlation diffusion equation is the Laplace transform

of the photon diffusion equation, the correlation diffusion boundary conditions are the Laplace

transform of the photon diffusion boundary conditions (Equations 2.80, 2.83):

G1(r, τ) = zbẑ∇G1(r, τ) Partial-flux. (4.57)

G1(z = −zb, τ) = 0. Extrapolated zero. (4.58)

Since Equation 4.56 with its boundary conditions has the same form as the homogeneous

photon diffusion equation (Equation 4.49) for CW sources, the Green’s function solutions of the
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correlation diffusion equation will also have the same form. For example, the continuous-wave

photon diffusion Green’s functions listed in Table 2.5 are converted to the correlation diffusion

Green’s functions by replacingk = (µav/D)1/2 with

K(τ) =

√

(

µa +
α

3
µ′sκ2◦〈∆r2(τ)〉

) v

D
. (4.59)

For the important special case of the homogeneous semi-infinite geometry, the explicit solution

to Equation 4.56 subject to the extrapolated-zero boundarycondition (Equation 4.58) is (see

Equation 2.103)

G1(r, τ) =
vS0
4πD

[

exp(−K(τ)r1)

r1
− exp(−K(τ)rb)

rb

]

. (4.60)

4.6.1 Heterogeneous Correlation Diffusion Equation

Equation 4.56 is only applicable for homogeneous media. Forheterogeneous media, the cor-

relation diffusion equation is derived from the steady-state correlation transport equation for

continuous-wave sources and systems in equilibrium [3,73]:

∇ ·GT
1 (r, Ω̂, τ)Ω̂+µtG

T
1 (r, Ω̂, τ) = Q(r, Ω̂)+

µs

∫

GT
1 (r, Ω̂

′, τ)gs1(r, Ω̂, Ω̂
′, τ)f(r, Ω̂, Ω̂′)dΩ′. (4.61)

Here,GT
1 (r, Ω̂, τ) = 〈E∗(r, Ω̂, t)E(r, Ω̂, t + τ)〉 is the autocorrelation function of the polar-

ized electric field (with arbitrary polarization state) at position r and timet propagating in the

Ω̂ direction (see Equation 2.4),gs1(r, Ω̂, Ω̂
′, τ) is the normalized temporal field autocorrelation

function for single scattering (Equation 4.14),f(r, Ω̂, Ω̂′) is the normalized differential single

scattering cross-section (see Table 2.1),Q(r, Ω̂) is the light source distribution (see Table 2.1),

andµt = µa + µs.

Given Equation 4.61, one can implement a set of steps formally identical to the steps used to

derive the photon diffusion equation from the radiative transport equation (Section 2.3). That is,

using aP1 approximation forGT
1 , the correlation transport equation reduces to the correlation

diffusion equation [23,24]:

∇ · (D(r)∇G1(r, τ)− v
(

µa(r) +
α

3
µ′s(r)κ

2
◦〈∆r2(r, τ)〉

)

G1(r, τ) = −vS(r). (4.62)
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Here,G1(r, τ) is the “total” electric field autocorrelation function modeled in Equation 4.56,

i.e.,

G1(r, τ) =

∫

4π

GT
1 (r, Ω̂, τ)dΩ = 〈E∗(r, t)E(r, t + τ)〉, (4.63)

whereE(r, t) is the total light electric field with arbitrary polarization at (r, t), andS(r) is an

isotropic CW source term (Equation 2.18). Further,D(r), µa(r), µ′s(r), andv = c/n are the

photon diffusion coefficient, absorption coefficient, reduced scattering coefficient, and speed of

light in tissue, respectively (see Table 2.2),κ◦ = (2πn/λ) is the light wavevector in tissue,α rep-

resents the fraction of photon scattering events that occurfrom moving particles, and〈∆r2(r, τ)〉
is the mean-square displacement in timeτ of the moving scattering particles at positionr. Of

course, for the special case of homogeneous media, Equation4.62 becomes Equation 4.56. Fi-

nally, the correlation diffusion boundary conditions given by Equations 4.57 and 4.58 remain

valid for heterogeneous media.

As with the radiative transport equation, in geometries/conditions where light transport is

non-diffusive, it is necessary to solve the correlation transport equation directly with Monte

Carlo techniques [24,25,186].

4.7 Diffuse Correlation Spectroscopy for Shear Laminar Flow

Brownian motion (Section 4.3.1) and random flow (Section 4.3.3) are examples of stochastic

dynamics. Here, I will very briefly discuss the DCS field autocorrelation function obtained for

deterministic laminar shear flow in the high multiple-scattering limit [260]. A special case of

laminar shear flow is planar couette flow, where the velocity of scatterers is described by

u = Γzx̂, (4.64)

and the DCS field autocorrelation function is [260]

g1(τ) =

∫ ∞

0
P (s) exp

(

− κ2◦s
15µ′s

Γ2τ2
)

ds. (4.65)

Note that the decay ofg1(τ) for laminar shear flow depends on thegradientof the flow velocity,

i.e., ∂u/∂z = Γ, not the absolute flow velocity. For uniform flow velocity (u = u0x̂), there

would be no decay ing1(τ). Thus, as in the single-scattering limit (4.3.2), the DCS autocorrela-

tion signal is only sensitive to the relative motions between scatterers [19,260].
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4.8 α is proportional to tissue blood volume fraction

To deriveα (Equation 4.44), letN0 be the number of incident photons on an infinitesimal volume

of tissue. The total number of these incident photons scattered within the infinitesimal volume

is N0µsd
3r, whereµs (not µ′s) is the tissue scattering coefficient (see Section 2.2). Of these

scattered photons, the number that have been scattered by moving red blood cells isN0µ
RBC
s d3r,

where the scattering coefficientµRBC
s is the blood cell contribution toµs. Therefore, the fraction

of photon scattering events that occur on red blood cells is

α =
µRBC
s

µs
=
σRBC̺RBC

µs
, (4.66)

whereσRBC [cm2] is the scattering cross-section of a red blood cell (RBC), and ̺RBC is the

number density of red blood cells in the tissue sample. Note that

̺RBC =
(Hct)(BV )

VRBCVtissue
, (4.67)

whereHct is the hematocrit (i.e., volume fraction of red blood cells in blood),BV [mL] is the

blood volume,VRBC [mL] is the volume of a red blood cell, andVtissue [mL] is the total tissue

volume. Substituting Equation 4.67 into Equation 4.66, we obtain

α =

(

σRBC

µs

)(

Hct

VRBC

)(

BV

Vtissue

)

. (4.68)

Thus, unsurprisingly,α is proportional to the tissue blood volume fractionBV/Vtissue. If there

is more blood, then there are more scattering interactions with blood, andα increases.

4.9 Tissue Blood Flow Index

DCS is most sensitive to the motion of blood cells in the microvasculature (i.e., capillaries,

arterioles, venules), since the diffusing light is mostly absorbed when traversing large arteries

and veins (Section 2.13). Since the microvasculature is convoluted, the correlation diffusion

model (Equation 4.56) assumption of isotropic RBC directions is reasonable. The red blood cell

dynamics are incorporated into the correlation diffusion equation via their mean-square displace-

ment,〈∆r2(τ)〉. For the case of Brownian motion (Section 4.3.1),〈∆r2(τ)〉 = 6Dbτ , where

Db is the particle diffusion coefficient. For the case of randomballistic flow (Section 4.3.3),
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Figure 4.6: Exemplar autocorrelation measurements from a mouse tumor, a piglet brain, an
adult human calf muscle, and an adult human brain. The dashedlines denote the fits to the semi-
infinite correlation diffusion solution (Equation 4.60) with 〈∆r2〉 ∼ τ2 (random flow), and the
solid lines denote the fits with〈∆r2〉 ∼ τ (Brownian). This figure is reprinted from [79].

〈∆r2(τ)〉 = 〈u2〉τ2, where〈u2〉 is the second moment of the particle speed distribution. Exten-

sive DCS autocorrelation measurements collected over a wide range of tissue types and length

scales all fit the correlation diffusion solution with Brownian dynamics better than the correlation

diffusion solution with ballistic dynamics (Figure 4.6). Equation 4.59 for the Brownian model is

K(τ) =

√

(µa + 2µ′sκ2◦F )
v

D
, (4.69)

where

F ≡ αDb (4.70)

is the tissue blood flow index [cm2/s].

A standard approach for blood flow monitoring with DCS is to derive g1(τ) (Equation 4.53)

from measurements ofg2(τ) (Equation 4.1) via the Siegert relation (Equation 4.4). Then, the

correlation diffusion solution for the geometry of interest (e.g., Equation 4.60 for semi-infinite

geometry) is fit tog1(τ) using a nonlinear minimization algorithm, and an estimate of the blood

flow index (F ) is obtained from the fit. We (and others) have found that the blood flow index

correlates well with other blood flow measurement modalities [149, 182]. Additionally, Dur-

duranet al [79] and Nincket al [190] directly demonstrated that the observed decay ing1(τ)

measurements on tissue arise from red blood cell motion. As aresult, it is natural to identifyF

as a flow index that is directly proportional to blood flow.
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4.9.1 Brownian Motion of Red Blood Cells

Recall from Section 4.3.2 that particles with velocities well-modeled by Equation 4.23 exhibit

Brownian motion on time scales oft≫ γ−1, whereγ is the linear drag coefficient of the particle

divided by the particle’s mass,m. Equation 4.23 assumes that the drag force on the particle

depends linearly on particle velocity, which is valid for fluids at low Reynolds number [240,

Chapter 2]. The Reynolds number of a fluid is [17, Chapter 6]

R =
ubς

η
, (4.71)

whereu is the particle’s speed moving through the fluid,b is the size of the particle,ς is the

mass density of the fluid, andη is the viscosity of the fluid. For blood in the microvasculature,

η ≈ 2 × 10−2 g/(cm s) [32], u ≈ 0.05 cm/s (in capillaries) [249],b ≈ 10 microns, andς ≈ 1

g/mL, which results in a Reynolds number ofR = 0.003. In arterioles, the blood cell speed is

considerably faster than capillaries, but even for a blood cell speed ofu = 1 cm/s, the Reynolds

number is still onlyR = 0.05. SinceR ≪ 1 for blood in the microvasculature, the drag force on

red blood cells is linear, i.e.,f = γmu.

An important time scale for assessing blood cell dynamics isγ−1 for blood cells. If we

approximate the blood cell as a sphere of radiusa, then from Stoke’s law, the linear drag on the

blood cell is

f = 6πηa,

and

γ−1 =
m

f
=

2ςRBCa
2

9η
≈ 3 µs. (4.72)

The estimate of 3µs was obtained from usinga = 5 µm, a blood cell mass density ofςRBC = 1

g/cm3, and a blood viscosity ofη = 2× 10−2 g/(cm s). The time scale on which the autocorre-

lation function decays is on the order of 50-100µs, so the red blood cells in the microvasculature

plausibly undergo a biased random walk, wherein the diffusion coefficient is (Equation 4.18)

Db =
vbℓRBC

3(1 − 〈cos ϑ〉) =
1

3
vbℓ

∗
RBC . (4.73)

Here,vb is the average speed of the red blood cells,ℓRBC is the mean run length of red blood

cells (i.e., mean straight-line distance traveled betweendirection changes),〈cos ϑ〉 is the average

of the cosine of the angle between successive runs, andℓ∗RBC ≡ ℓRBC/(1 − 〈cos ϑ〉).
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Figure 4.7: An arbitrary tissue volumeVtissueis comprised of a vascular compartment (with blood
volumeBV ) and a tissue compartment. The blood flow (BF ) in the vascular compartment is
the total blood flow supplyingVtissue.

Note that the motion of blood cells is highly biased in the forward direction, i.e.,ϑ is very

small. Further, tissue blood flow is not in thermal equilibrium, and the diffusion coefficient given

by Equation 4.73 is a few orders of magnitude higher than the diffusion coefficient given by the

Einstein-Smoluchowski relation, i.e.,Db = kbT/f [79]. This is analogous to bacteria swimming

in water (via flagellar propulsion), which have a diffusion coefficient three orders of magnitude

higher than dead bacteria in water [17,209].

4.9.2 Relation Between Blood Flow Index and Blood Flow

A compartment model of tissue (Figure 4.7) is commonly employed to obtain bulk estimates of

average tissue blood flow and oxygen consumption [42, 62, 132, 242, 246, 273]. In this model,

the tissue is comprised of a vascular compartment and a tissue compartment, and red blood cells

with number densityψRBC (i.e., # RBC per blood volume (BV )) move with speedvb through

the vascular compartment. The compartment model is obviously an unrealistic geometry for the

actual vasculature, but it still provides a reasonable estimate of bulk blood flow in the tissue

volumeVtissue(discussed further in Section 7.6).

From Equations 4.73 and 4.66, the blood flow index (Equation 4.70) is

F ≡ αDb =

(

σRBCℓ
∗
RBC

3µs

)

(̺RBCvb). (4.74)

Note that the RBC number density per volume of tissue,̺RBC , is related to the RBC number

density per volume of blood,ψRBC , via

ψRBC =
Vtissue

BV
̺RBC . (4.75)
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Multiplying both sides of Equation 4.74 byVtissue/BV and utilizing Equation 4.75, we find that

F =

(

BV

Vtissue

)(

σRBCℓ
∗
RBC

3µs

)

(ψRBCvb). (4.76)

Here,ψRBCvb [# RBC / (s cm2)] is the flow of red blood cells per vascular cross-sectionalarea

per time. The blood volume (BV ) is related to the number of red blood cells (# RBC) via

BV =
VRBC(#RBC)

Hct
, (4.77)

whereVRBC is the volume of a red blood cell, andHct is the hematocrit. From multiplying both

sides of Equation 4.76 byVRBC/Hct, we see thatF is proportional to tissue blood flow, i.e.,

F =

(

BV

Vtissue

)(

Hct

VRBC

)(

σRBCℓ
∗
RBC

3µs

)

BF. (4.78)

Here,BF = (ψRBCVRBC/Hct)vb [(mL blood) / (s (cm2 tissue)] is the tissue blood flow in

units of blood volume per time per cross-sectional area of the vascular compartment. Thus, the

blood flow index,F , is proportional to tissue blood flow. The proportionality coefficient depends

directly on the tissue blood volume fraction (BV/Vtissue), hematocrit (Hct), RBC scattering

cross-section (σRBC ), and RBC transport mean free path (ℓ∗RBC ), and inversely on the RBC

volume (VRBC ) and the tissue scattering coefficient (µs, notµ′s).

Clinically, absolute blood flow is reported in confusing units of blood volume per time per

tissue volume, e.g., [(mL blood) / (min (100 mL tissue))]. These units are understood through the

compartment model of tissue (Figure 4.7). The “clinical blood flow”, BFc, is the total volume

of blood flowing intoVtissueper time, divided byVtissue. BFc andBF (Equation 4.78) are related

by the expression

BFc = BF

(

Atissue

Vtissue

)

, (4.79)

whereAtissue is the total cross-sectional area of the tissue volume of thevascular compartment

supplyingVtissue.

4.10 DCS Signal Measurement

4.10.1 Validity of the Siegert Relation

DCS estimates the tissue blood flow indexF from a nonlinear fit of the measured intensity

autocorrelation function signal,g2(τ), to the electric field autocorrelation function correlation
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diffusion solution,g1(τ). A key step in this fit is using the Siegert relation (Equation4.4) to

deriveg1(τ) from theg2(τ) measurement. The Siegert relation is valid if the detected electric

field is a Gaussian distributed variable with zero mean. Thisis the case if the detected electric

field is a sum of fully developed speckle fields (see Section 4.2).

For tissue measurements, it is feasible for a component of the detected signal to arise from

light paths that have only experienced static scattering (Section 4.4). In this scenario, the detected

electric field can be written as

E(r, t) = Ec(r) + Ef (r, t), (4.80)

whereEf (r, t) is the fully developed speckle electric field arising from light paths that have

encountered at least one moving scatterer, andEc(r) is a constant term arising from light paths

that have encountered no moving scatterers.Ec(r) is cleary not a speckle field, and therefore

the Siegert relation is not valid for Equation 4.80. The relation betweeng2(τ) andg1(τ) for

Equation 4.80 is [168]

g2(τ) = 1 +
βf

(If + Is)2
[

I2f |g1(τ)|2 + 2If Is|g1(τ)|
]

. (4.81)

Here, If ≡ 〈E∗
fEf 〉, Is ≡ E∗

sEs, andβf is the speckle contrast arising from the fluctating

component of the electric field (i.e., Equation 4.9). The intercept of Equation 4.81 is

g2(0) = 1 + βf
I2f + If Is

(If + Is)2
, (4.82)

so the effect of the static scattering field component is to reduce the speckle contrast. For single

mode fiber detection of unpolarized light, ifβ = 0.5, then the static scattering component is

negligible. However, if the speckle contrast is lower than expected, one potential explanation for

it is thatEc in the detected signal is significant. The expectation is that this problem is more of

a risk for short separations than long separations. In most practical tissue measurements with

single mode detection, we have found that theβ coefficient is about 0.5, even at short separations

around0.7 cm. This suggests thatEc is typically small in practice.

However, recall from Section 4.5 that one of the assumptionsused in the derivation of the

correlation diffusion equation is that the detected light paths from source to detector encounter

a large number of red blood cells. Therefore, even if the Siegert relation is valid, the correlation
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diffusion model may still break down if a significant fraction of the photon paths involve only a

few RBC scattering interactions. This will not be an issue for long separations, but it could be a

problem for short separations.

4.10.2 Fiber Detection with DCS

I mentioned in Section 4.2 that for detection with optical fibers, each mode propagating through

the fiber is a fully developed speckle field. The electric fields from all of the modes have iden-

tical statistics (i.e., Gaussian-distributed with zero mean), but they are independent fields that

add incoherently. The incoherent sum of independent speckle fields results in reduced speckle

contrast (i.e., Equation 4.9). From a geometrical optics point of view, various rays propagate

down a multimode fiber at different angles to the axis of the fiber (Figure 4.8). Each angle of

propagation is a fiber optic mode, and the fiber optic modes areindependent because the quasi

plane wave electric fields incident on the fiber from different angles are independent (see Equa-

tion 2.4). The numerical aperture (NA) of the fiber specifies the acceptance cone of incident

light angles allowed into the fiber, i.e.,θ < ϑc = arcsin(NA/n) (n is the refractive index of

the medium in contact with the fiber). However, not every ray that enters an optical fiber within

its acceptance cone can propagate successfully through thefiber. Only certain ray directions

(modes) are allowed that satisfy a “resonance condition” (see [202, Section 10-5]). The number

of modes supported by a multimode step-index fiber isM ≈ (2πn/λ)(NA)a, whereλ is the

light wavelength in air anda is the radius of the fiber core [112]. For a 62.5 micron fiber with a

NA = 0.22, n = 1.4, andλ = 785 nm,M ≈ 80 modes. . Further, for unpolarized light, there

are two independent speckle fields for each mode that correspond to the two orthogonal polar-

ization states. Thus, the detected intensity from the 62.5 micron fiber for unpolarized light is a

sum of2M = 160 speckle fields. This corresponds to aβ coefficient of 0.006, i.e., essentially

no speckle contrast.

Single mode fibers have very low numerical apertures such that only theθ = 0 mode can

propagate through the fiber (Figure 4.8). With only one mode (2 speckle fields for unpolar-

ized light), single mode fibers maximize the contrast of the detected signal, but they also have

drawbacks. Because of their very small size and numerical aperture (5 micron core diameter,

0.13 NA), single mode fibers do not collect much light, and lowsignal-to-noise is a commonly
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Figure 4.8: Schematics of a multimode and single mode fiber. Multimode fibers have high
numerical apertures, enabling light propagation at multiple angles (i.e., modes) to the axis of the
fiber. Single mode fibers have very low numerical apertures, and therefore light only propagates
in theθ = 0 mode. This figure is adapted from [1].

encountered problem in the DCS measurement at longer source-detector separations (e.g., 3

cm) [37]. The “hair problem” is also a bigger issue for DCS than it is for DOS, because it is

easier for single mode fibers to be completely blocked by a light absorbing hair follicle than the

multimode fibers used for DOS detection [37,84].

There are several strategies for ameliorating the DCS signal-to-noise problem. First is to use

high quantum efficiency single-photon detectors, such as the SPCM-AQ4C (Excelitas, Canada)

APD detector array. Second is to incorporate multiple detection channels in the DCS instrument.

For example, with 8 detection channels, DCS signals can be collected in parallel from 8 single

mode fibers bundled together at nearly the same position on tissue. Averaging across these 8

channels to derive a single autocorrelation curve will improve SNR by∼
√
8. ForN detection

channels, the improvement in SNR is∼
√
N . However, the single photon detectors used for

DCS detection are currently expensive, placing a practicallimit on the total number of detection

channels. In the future, DCS would benefit greatly from the lower costs permitted by economies

of scale in the production of single-photon counting detectors [84].

A third strategy is to increase the light source power delivered to tissue, but the maximum

power is limited by ANSI standards for maximum permissible skin exposure. For continuous
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exposure (i.e., laser is always on), the maximum permissible power delivered to a point on the

skin forλ = 785 nm isP = 28 mW, though higher powers are permissible if the laser is pulsed

(Section 4.10.4).

A fourth strategy some researchers have pursued is the use offew-mode fibers for DCS

detection [69, 125, 169]. The light intensity itself is of course greater with few-mode detection.

If N modes can propagate through the fiber, then the detected intensity is

〈Id〉 = 〈
N
∑

j=1

Ij〉 = N〈Ij〉, (4.83)

which is a factor ofN higher than the single mode intensity. However, as discussed above, the

summation overN independent modes reduces theβ coefficient by a factor ofN (4.10). If the

DCS signal decays exponentially (i.e.,g2(τ) − 1 = β exp[−2Γτ ]), then the SNR of the signal

measurement is [274,276]

SNR =
g2(τ)− 1

σg2−1(τ)
≈ 〈Id〉β

√

T tavg
exp[−2Γτ ]

√

1 + β exp[−Γτ ]
, (4.84)

wheretavg is the DCS signal averaging time, andT is the correlator delay-time bin width. The

DCS signal typically is well approximated by an exponentialdecay, and therefore 4.84 is a

reasonable model for the SNR [274, 276]. For few-mode fiber detection then, the gain from

increased signal intensity is canceled by the reduction inβ, and the SNR is about the same as

single-mode fiber detection. However, few-mode fibers are also prone to modal noise (e.g., from

fiber bending) [112], which is an additional source of noise not accounted for in Equation 4.84.

For these reasons, single-mode fibers are usually optimal for DCS detection, though perhaps

few-mode fibers can obtain better SNR through hair. Finally,the SNR will increase with the

square root of the averaging time (tavg in Equation 4.84) at the cost of a lower time resolution.

4.10.3 Source Coherence

As I already discussed, the coherence length of the source should be substantially greater than

the spread of light pathlengths through tissue to ensure detected speckle fluctuations with high

speckle contrast. The width of the pathlength distributiondepends on the separation and optical

properties, but for practical measurements, it is less than1 meter [201]. The source itself, though,

has to have a greater coherence length than this (roughly> 5 m) if a mulitmode fiber is utilized
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for light delivery. This is because light propagation through a multimode source fiber effectively

reduces the coherence length of the light source. The time delays introduced by the differences in

pathlength between the different light modes propagating in the fiber induce speckle fluctuations

at the end of the fiber that interrupt the constant phase of a monochromatic source.

An alternative way to understand coherence effects is in terms of the power spectrum of

the light, I(ω). The power spectrum is defined as the Fourier transform of theelectric field

autocorrelation function [18]:

I(ω) ≡ 1

2π

∫ ∞

−∞
dτe−iωτ 〈E∗(t)E(t+ τ)〉. (4.85)

Consequentially, the field autocorrelation function is theinverse Fourier transform ofI(ω):

〈E∗(t)E(t + τ)〉 =
∫ ∞

−∞
dωeiωτ I(ω). (4.86)

Note that

〈|E|2〉 = 〈I〉 =
∫ ∞

−∞
dωI(ω), (4.87)

so I(ω)dω is the “amount” of the light intensity in the frequency interval (ω, ω + dω). The

decay of the field autocorrelation function (G1(τ)) is related to the width of the power spectrum.

If G1(τ) decays exponentially with decay timeτc, the half-width at half maximum ofI(ω) is

∆ωc = τ−1
c . In fact, blood cell motions could be estimated from the measurements of the power

spectrum as an alternative to measurements of the intensityautocorrelation function. However,

the autocorrelation function measurement is preferable toits Fourier counterpart in the low signal

limit, because the photon correlation instrumentation is asingle photon counting device [81].

The power spectrum of the light source is close to monochromatic, and thus very sharply

peaked atω = 2πc/λ. As light travels through tissue from source to detector, the time delays

from the different light paths increases the spectral linewidth of the power spectrum,∆ωc. The

longer the source-detector separation, the greater the time delays between the different path-

lengths become. These greater time delays in turn increase the width of the power spectrum and

decrease the decay time of the autocorrelation function. This is why the DCS autocorrelation

signals decay substantially faster at longer source-detector separations than they do at shorter

separations.
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Analogously, the time delays from the different light pathsin a multimode fiber broaden the

power spectrum. The longer the optical fiber is, the greater these time delays are, and corre-

spondingly, the broader the power spectrum is. Thus, the coherence of the source light delivered

to the tissue will depend on the fiber length. For optimal sensitivity to blood flow, the broadening

of the light power spectrum from this loss of coherence needsto be much less than the broaden-

ing of the light power spectrum from the blood cell motion. Ifthe broadening from coherence

loss is comparable to the broadening from blood cell motion,then coherence effects “wash out”

the speckle fluctuation effects from blood cell motion, and the signal is not sensitive to blood

cell motion.

The speckle contrast is clearly sensitive to the coherence of the source. Thus, if the speckle

contrast is fluctuating (i.e., theg2(τ) intercept is unstable during the measurement integration

time), this could indicate that the coherence of the source is unstable. This source instability

could arise from Fresnel reflections back into the laser fromimproper probe contact with the

tissue (e.g., air gaps often lead to big Fresnel reflections). An unstable contrast could also arise

from light leakage into the probe from room light, since multispectral light affects the power

spectrum of the detected signal. Finally, if the probe is notwell-secured to tissue, any sort

of movement could lead to sampling of different tissue locations (i.e., different speckle fields)

during the integration time of the measurement, which is another source of instability.

4.10.4 ANSI standards for Maximum Permissible Light Powers

For the DCS measurement, the total light power delivered to the tissue must be below the ANSI

standards for maximum permissible skin exposure to light [5]. According to Table 7 of the ANSI

regulation [5], the long term maximum permissible skin exposure is

Elt = 0.2CA [W / cm2], (4.88)

where the constantCA = 1 W / cm2 for λ < 700 nm and102(λ/1000−0.7) W / cm2 for λ > 700

nm. The ANSI standard clearly states the limiting aperture diameter for skin exposure to account

for scattering once it penetrates the skin. This value can befound in Table 8a of the ANSI

standard [5], and it is 3.5 mm for exposures ranging from 1 ms to 30,000 s and for wavelengths

lying between 400 nm and 1400 nm. For a fiber-coupled laser that delivers a light powerP [W]
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continuously to a point on the skin, the experimental skin exposure is

Elt,exp = P/(π(0.35/2)2 [W / cm2]. (4.89)

Comparing Equations 4.89 to 4.88, the maximum permissible power that can be delivered con-

tinuously (i.e., laser is always on) to a point on the skin atλ = 785 nm isP = 28.4 mW.

However, the permissible power can be higher for non-continuous light power delivery, e.g.,

the laser is on for timeton, off for time toff , on for time ton, off for time toff , and so on.

From Table 7 of the ANSI regulation [5], for exposureston between 10−7 and 10 seconds, the

maximum permissible skin exposure is given by

E = 1.1CAt
0.25
on [J / cm2], (4.90)

whereCA is defined below Equation 4.88. The experimental skin exposure from a single laser

pulse with powerP and durationton is

Eexp = Pton/(π(0.35/2)
2 [J / cm2], (4.91)

and the average long-term experimental skin exposure from atrain of these laser pulses is

Elt,avg = Eexp/(ton + toff ) [W / cm2], (4.92)

where again,toff is the time interval between laser pulses. The ANSI regulations are satisfied

whenEexp (Equation 4.91) is less thanE (Equation 4.90) andElt,avg (Equation 4.92) is less

thanElt (Equation 4.88). Thus, the duty cycle of the laser needs to bechosen appropriately to

ensure these two conditions are not violated.

As a concrete example, let’s suppose thatton = 2.5 s. Setting Equation 4.91 equal to

Equation 4.90, the maximum permissible power for a pulse with duration 2.5 s isP = 79 mW.

ForElt,avg to be less thanElt for a train of pulses withton = 2.5 s andP = 79 mW, toff has to

be greater than4.5 s.
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Chapter 5

Diffuse Correlation Spectroscopy

(DCS): Modified Beer-Lambert Law

Approach

5.1 Introduction

Here, I present an alternative approach to the correlation diffusion approach for analysis of DCS

signals, which is a Modified Beer-Lambert law for flow. This method linearly relates measured

changes of a newly-defined “DCS optical density” to the variation of tissue blood flow, tissue

scattering, and tissue absorption. The novel algorithm parallels the DOS/NIRS Modified Beer-

Lambert law, but it has interesting differences that shouldbe useful for applications that require

continuous monitoring of blood flow. It also has similar advantages to the DOS Modified Beer-

Lambert law. The rest of this chapter is essentially a verbatim reprint of my biomedical optics

express paper on the Modified Beer-Lambert law for flow [12]. Although some of the introduc-

tion material here has been covered in previous chapters, I kept the introduction material in to

keep this chapter self-contained.

Traditional optical spectroscopy measures the attenuation of light traveling through a sam-

ple as a function of wavelength. In cases where scattering isnegligible, i.e., in which the re-

duced scattering coefficient (µ′s) is zero, light attenuation is dominated by absorption, andthe
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transmitted intensity (I(t)) at timet is related to the sample absorption coefficient (µa) via the

Beer-Lambert law:I(t) = Is exp[−µaρ]. Here,Is is the incident light intensity, andρ is the

sample length. The sample optical density (OD) is defined as the negative logarithm of the ra-

tio of transmitted to incident light intensity; it is proportional to the absorption coefficient, i.e.,

OD ≡ − log[I(t)/Is] = µaρ. When scattering within the sample is significant, however,then

light attenuation is affected by both absorption and scattering. In these situations, the effects

of scattering become tangled with those of absorption [79].Typically, the photon trajectories

through tissue samples with significant scattering are wellapproximated as random walks, and

the average length of a photon path through tissue is much greater than the straight-line distance

between source and detector.

Among the most widely used approaches for analysis of such DOS/NIRS reflectance signals

is the so-called Modified Beer-Lambert law [10,67,130]. TheModified Beer-Lambert paradigm

is an algorithm that derives changes in tissue optical properties based on continuous-wave (CW)

diffuse optical intensity measurements. In its simplest form, the scheme relates differential light

transmission changes (in any geometry) to differential changes in tissue absorption. Here the

term differential refers to a comparison between a baselinestate and a perturbed state. In essence,

the Modified Beer-Lambert law accounts for tissue scattering by using the mean pathlength

traveled by photons through the highly scattering sample asa best estimate for the actual photon

pathlengths. The mean pathlength provides a natural constant of proportionality between the

measured differential intensity and the sample’s differential absorption.

The Modified Beer-Lambert law is readily derived from the first order Taylor expansion of

the optical density:OD ≈ OD0 + (∂OD0/∂µa)∆µa + (∂OD0/∂µ′s)∆µ
′
s, wherein the partial

derivatives are evaluated in the “baseline” state (µa = µ0a, µ′s = µ′0s ),OD0 ≡ − log[I0/Is] is the

baseline optical density, and the differential changes in absorption and scattering are denoted by

∆µa ≡ µa(t)− µ0a and∆µ′s ≡ µ′s(t)− µ′0s , respectively. Note that the superscript “0” indicates

baseline. Within this approximation, the change in opticaldensity from baseline is

∆OD = − log

(

I(t)

I0

)

≈ 〈L〉∆µa(t) +
(

µ0a
µ′0s

)

〈L〉∆µ′s(t) ≈ 〈L〉∆µa(t). (5.1)

Here, 〈L〉 ≡ ∂OD0/∂µa is the so-called differential pathlength, which is approximately the

mean pathlength that diffusing photons travel through the medium from source to detector [10].
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Notice that whereas the traditional Beer-Lambert law relates absoluteoptical densities toab-

soluteabsorption coefficients, the Modified Beer-Lambert law (Equation 5.1) relatesdifferential

changesin the optical density todifferential changesin the absorption coefficient. This algorithm

has proved useful for many reasons; it is simple, fast, and fairly accurate. To date the Modified

Beer-Lambert algorithms have been applied predominantly to monitor hemoglobin concentra-

tion changes in the brain; within this context, it has been extended from semi-infinite geometries

to two-layer geometries [91, 130, 215, 234, 235] characteristic of many tissues, especially the

human head.

Herein, we derive a Modified Beer-Lambert law for measurement of blood flow based on

the DCS technique in turbid tissues, and we validate the approach. The Modified Beer-Lambert

law for blood flow linearly relates changes in tissue blood flow, tissue scattering, and tissue ab-

sorption to variation of a newly-defined “DCS optical density” (ODDCS). The new algorithm

parallels the DOS/NIRS Modified Beer-Lambert law, since thetransport of both the light fluence

rate and the electric field autocorrelation function through highly scattering tissues is well ap-

proximated as a diffusive process [79]. Importantly, however, the diffusion equation for the DCS

signal is sensitive to the movement of red blood cells in tissue microvasculature, and therefore

the precise form of the Modified Beer-Lambert law for blood flow is different from the tradi-

tional (DOS/NIRS) form. The weighting factors in the new law, for example, are not as easily

interpreted in terms of a mean pathlength. We derive generaltheoretical results for measurement

of flow changes in any geometry, and then we obtain specific expressions for two common tissue

models: homogeneous semi-infinite turbid media and two-layer turbid media. We demonstrate

the new approach with simulations and with anin-vivo pig-brain experiment. In the future, we

expect the Modified Beer-Lambert law for flow to offer increased DCS measurement speed, sim-

pler DCS instrumentation, and, importantly, access to novel measurement paradigms based on

differential blood flow signals. Ultimately, these developments should lead to improvements in

characterization of cerebral flow and metabolism, with concomitant clinical impact.
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5.2 Diffuse Correlation Spectroscopy

Diffuse correlation spectroscopy (DCS) employs NIR light to non-invasively measure tissue

blood flow. Since early work within-vitro phantoms andin-vivo tissues [23,24,179,204], it has

been used in a variety of clinical applications such as stroke [62, 86, 97, 224], brain injury [159,

160], muscle disease [183,185,225], cancer [54,83,236,270], and in functional activation studies

[85,147,169,213]. In addition, the DCS blood flow index has been successfully validated against

a plethora of gold-standard techniques [149, 182]. Severalrecent reviews highlight the theory,

implementation and applications of DCS [37, 79, 84, 182, 269], and therefore our background

discussion will be brief.

DCS detects tissue blood flow using speckle correlation techniques. It measures the temporal

intensity fluctuations of coherent NIR light that has scattered from moving particles (red blood

cells) in tissue (Figure 5.1(A)). These temporal fluctuations (Figure 5.1(B)) are quantified by

computing the normalized intensity temporal autocorrelation function at multiple delay-times,

τ , i.e., we computeg2(τ) ≡ 〈I(t)I(t + τ)〉/〈I(t)〉2, whereI(t) is the intensity of the detected

light at timet, and the angular brackets,〈〉, represent time-averages. An index of tissue blood

flow is then provided by the temporal decay of the detected intensity autocorrelation function

(Figure 5.1(C)).

Formally, the transport of the electric field(E(t)) autocorrelation function,G1(τ) ≡ 〈E∗(t)·
E(t + τ)〉, is well modeled by the so-called correlation diffusion equation [23, 24], which can

be solved analytically or numerically for tissue geometries of interest [24, 79]. Tissue blood

flow can be ascertained by fitting the solution for the normalized electric field autocorrelation

function, g1(τ) = G1(τ)/G1(τ = 0), to the measured (normalized) intensity autocorrelation

function via the Siegert relation [168]:g2(τ) = 1+β|g1(τ)|2, whereβ is a constant determined

primarily by the experimental collection optics.

As an example, for the simple case of point illumination and point detection on the surface

of semi-infinite homogeneous tissue (Figure 5.1(A)) with absorption coefficientµa, reduced

scattering coefficientµ′s, and tissue blood flow indexF , the solution to the correlation diffusion

equation is [24,79]:

G1(τ) =
3

4πℓtr

[

exp (−K(τ)r1)

r1
− exp (−K(τ)rb)

rb

]

. (5.2)
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Figure 5.1: (A) Schematic for blood flow monitoring in a homogeneous, semi-infinite turbid
tissue (see text for details). Blood cell (e.g., red disks attime t and light-red disks at time
t + τ ) motion induces temporal fluctuations in the scattered light intensity, I(t), at the light
detector (panelB). These intensity fluctuations are characterized by the normalized intensity
autocorrelation function (g2(τ)). (C) The decay of the intensity autocorrelation function curves
is related to tissue blood flow.

Here,K(τ) = [3µa(µa + µ′s)(1 + 2µ′sk
2
0Fτ/µa)]

1/2, r1 = (ℓ2tr + ρ2)1/2, rb = [(2zb + ℓtr)
2 +

ρ2]1/2, ρ is the source-detector separation, andℓtr = 1/(µa + µ′s). Further,k0 = 2πn/λ is the

magnitude of the light wave vector in the medium, andzb = 2ℓtr(1+Reff )/(3(1−Reff )), where

Reff is the effective reflection coefficient that accounts for themismatch between the index of

refraction of tissue (n) and the index of refraction of the non-scattering medium bounding the

tissue (nout), such as air [123].

A standard approach for blood flow monitoring with DCS in thisgeometry is to deriveg1(τ)

from measurements ofg2(τ) via the Siegert relation. Then, the semi-infinite correlation diffusion

solution (Equation 5.2) is fit tog1(τ) using a nonlinear minimization algorithm, and an estimate

of the blood flow index (F ) is obtained from the fit.

5.3 Modified Beer-Lambert Law for Flow

We now develop a “Modified Beer-Lambert law” for tissue bloodflow based on the DCS mea-

surement. The first step in this process is to define a “DCS optical density” (ODDCS), in analogy

with theOD for DOS/NIRS. For source-detector separationρ and delay-timeτ , we define the

DCS optical density as:ODDCS(τ, ρ) ≡ − log(g2(τ, ρ) − 1). Notice that in addition to delay

time and source-detector separation, the DCS optical density also implicitly depends on tissue

absorption, scattering, and blood flow (e.g, Equation 5.2).
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5.3.1 DCS Modified Beer-Lambert law for homogeneous tissue

We first derive a general expression for homogeneous tissue characterized by a blood flow in-

dex,F , an absorption coefficient,µa, and a reduced scattering coefficient,µ′s. The DCS Modi-

fied Beer-Lambert law is obtained by truncating the Taylor series expansion of the DCS optical

density to first order inF , µa, andµ′s, i.e.,

ODDCS(τ, ρ) ≈ OD0
DCS(τ, ρ) +

∂OD0
DCS

∂F
∆F +

∂OD0
DCS

∂µa
∆µa +

∂OD0
DCS

∂µ′s
∆µ′s. (5.3)

Here,OD0
DCS(τ, ρ) ≡ − log(g02(τ, ρ) − 1) is the “baseline” DCS optical density with a base-

line blood flow index,F 0, and with baseline optical propertiesµ0a andµ′0s . Correspondingly,

ODDCS(τ, ρ) ≡ − log(g2(τ, ρ)− 1) is the DCS optical density for the intensity autocorrelation

function in the “perturbed” state with blood flow indexF , and with optical propertiesµa and

µ′s. The differential changes from baseline of tissue blood flow, absorption, and scattering are

∆F ≡ F − F 0, ∆µa ≡ µa − µ0a, and∆µ′s ≡ µ′s − µ′0s , respectively.

Comparing Equation 5.3 with Equation 5.1, the DCS analoguesof the differential pathlength

are dF (τ, ρ) ≡ ∂OD0
DCS/∂F , da(τ, ρ) ≡ ∂OD0

DCS/∂µa, andds(τ, ρ) ≡ ∂OD0
DCS/∂µ

′
s,

which can be estimated analytically or numerically using the correlation diffusion model applied

to the appropriate geometry (Section 5.7). All three of these weighting factors depend onτ and

ρ, on tissue geometry, and on the baseline parametersF 0, µ0a, andµ′0s . Rearranging Equation 5.3,

we arrive at the “DCS” Modified Beer-Lambert law for homogeneous tissue:

∆ODDCS(τ, ρ) = − log

(

g2(τ, ρ)− 1

g02(τ, ρ)− 1

)

≈ dF (τ, ρ)∆F+da(τ, ρ)∆µa+ds(τ, ρ)∆µ
′
s. (5.4)

If the blood flow and optical properties change only slightly, then the perturbation in the DCS

optical density is small, and the first order expansion (Equation 5.3) is a good approximation.

Notice, however, that even for large tissue hemodynamic changes,∆ODDCS can still be small at

short delay-times, because in this limit,dF , da, andds are close to zero (Figure 5.2). Analytical

and numerical computation of these weighting factors (dF , da, ds) are described and given in

Section 5.7.

Equation 5.4 is a general result that describes the change inDCS optical density for ho-

mogeneous tissue. For a given tissue/measurement geometry, the change in blood flow can be
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computed by evaluating the weighting factors for the geometry in question, and then inserting

these resultant weighting factors into Equation 5.4.

5.3.2 DCS Modified Beer-Lambert law for homogeneous semi-infinite geometries

It is straightforward to evaluate the weighting factors in Equation 5.4 for the special case of the

homogeneous semi-infinite geometry (Figure 5.1(A)). Recall from Equation 5.2 that the normal-

ized electric field autocorrelation function is

g1(τ) =
exp(−K(τ)r1)/r1 − exp(−K(τ)rb)/rb
exp(−K0r1)/r1 − exp(−K0rb)/rb

, (5.5)

whereK(τ), r1, andrb are as defined inSection 5.2, andK0 = K(τ = 0) = [3µa(µa +

µ′s)]
1/2. The multiplicative weighting factors in the semi-infinitegeometry can be computed

from substitution of Equation 5.5 into Equations (5.11) and(5.12), e.g.,

dF (τ, ρ) =
6µ′0s

(

µ′0s + µ0a
)

k20τ

K0(τ)

[

exp
(

−K0(τ)r01
)

− exp
(

−K0(τ)r0b
)

exp
(

−K0(τ)r01
)

/r01 − exp
(

−K0(τ)r0b
)

/r0b

]

. (5.6)

In Figure 5.2,dF , da, andds in the semi-infinite geometry are plotted as a function ofτ

using typical tissue properties. Note that all three weighting factors are small in magnitude

for short delay-times. Further, the weighting factor for absorption is negative, i.e., an increase in

absorption is accompanied by a decrease in the DCS flow optical density (compared to baseline),

and the weighting factors for flow and scattering are positive.

Because the weighting factors are small at shorter delay-times (Figure 5.2), the DCS optical

density perturbation will also be small, which in turn implies higher accuracy for the DCS Mod-

ified Beer-Lambert law (Equation 5.4). Ideally, in the semi-infinite geometry, the delay-times

used for Equation 5.4 should satisfy the limits2µ′sk
2
0Fτ/µa ≪ 1 and2µ′0s k

2
0F

0τ/µ0a ≪ 1 to

obtain the most quantitatively accurate results (see Section 5.8). From our experience with simu-

lations and real data, we have found that a good “rule of thumb” for accurately using Equation 5.4

is to utilize data whereing01(τ) > 0.5, which corresponds tog02(τ) > 1.1 for β = 0.5.

Figure 5.2(B) shows that for the samefractional changes (10%) in blood flow, tissue scat-

tering, and tissue absorption, the change in DCS optical density is greatest due to scattering,

followed by flow; changes in absorption have the least influence on the DCS signal. In practice,
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Figure 5.2:(A) The semi-infinite multiplicative weighting factors (see Equation 5.4) for tissue
scattering (ds), for tissue absorption (da), and for tissue blood flow (dF , right vertical-axis). They
are plotted as a function of the correlation time,τ , for source-detector separation,ρ = 3 cm, and
optical wavelength,λ = 785 nm, given a typical set of cerebral tissue properties, i.e.,µ0a = 0.1
cm−1, µ′0s = 8 cm−1, F 0 = 10−8 cm2/s, n = 1.4, nout = 1. (B) The semi-infinite DCS
Modified Beer-Lambert componentsdF (τ, ρ)∆F , ds(τ, ρ)∆µ′s, and|da(τ, ρ)∆µa|, plotted as a
function ofτ for a 10% increase in blood flow, tissue scattering, and tissue absorption, respec-
tively. On the right vertical-axis is the intensity autocorrelation function,g02(τ), for β = 0.5.
Given the same fractional change in tissue properties, the DCS signal is most sensitive to scat-
tering changes, followed by flow changes, and finally absorption changes. In many applications,
however, the scattering changes associated with hemodynamic perturbations are negligible, e.g.,
such as an increase in blood flow and blood volume; in these situations the scattering component
can be neglected (see text).
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concurrent frequency-domain or time-domain DOS/NIRS can (and should) be employed to di-

rectly measure tissue absorption and scattering [79,101,201] and account for their effects. This

mode of operation, i.e., with concurrent optical measurements, is always desirable. Importantly,

however, the tissue scattering changes that typically accompany hemodynamic concentration

variations are often negligible; the origin of hemodynamicvariation is blood, but the origin of

tissue scattering is predominantly from interfaces between cells and the extracellular space, or

between cellular cytoplasm and cellular organelles [57]. The tissue blood volume (BV ) is typi-

cally a small fraction (< 4%) of the tissue volume (Vtissue), and red blood cells account for only

a small fraction of the tissue scattering [30]. Scattering from blood (µ′s,blood) is proportional

to the blood volume, i.e.,µ′s,blood = σblood(1 − g)(Hct/VRBC )(BV/Vtissue), whereσblood,

g, andVRBC are the scattering cross-section, scattering anisotropy factor, and volume of a red

blood cell, andHct is the hematocrit. Consequentially, while tissue scattering can change with

variation in blood volume, the magnitude of this change is often quite small, because the overall

volume fraction of blood in tissue is quite small.

As an example, the finger tapping functional task induces a localized increase in cerebral

blood volume of roughly10% [85], which corresponds approximately to a10% increase in

scattering from blood. However, the fractional increase intotal scattering is much less than10%

because blood only accounts for a small fraction of tissue scattering. If we assume that blood

accounts for less than5% of total tissue scattering [57], then the tissue scatteringchange due to

increased blood volume from finger tapping is less than0.5%.

5.3.3 DCS Modified Beer-Lambert law for heterogeneous tissue

Tissue is perhaps too often approximated to be optically homogeneous for hemodynamic mon-

itoring, an approach which has the advantage of simplicity.Realistically, however, tissue is

heterogeneous; it contains multiple compartments with different optical properties due to vas-

culature, fat, and bone. Often these regions arise as “layers” below the tissue surface such as

scalp, skull, and cortex. Under these conditions, a Taylor series expansion of the DCS optical

density can also be used to derive the DCS Modified Beer-Lambert law for heterogeneous media.

Assuming that the heterogeneous tissue can be divided intoN piecewise homogeneous regions,
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then the first-order Taylor series expansion of the DCS optical density is

ODDCS(τ, ρ) ≈ OD0
DCS(τ, ρ)+

N
∑

k=1

[

∂OD0
DCS

∂Fk
∆Fk +

∂OD0
DCS

∂µa,k
∆µa,k +

∂OD0
DCS

∂µ′s,k
∆µ′s,k

]

.

(5.7)

Here,Fk, µa,k, andµ′s,k denote the blood flow index, tissue absorption, and tissue scattering

for the kth homogeneous region in the tissue, respectively, and∆Fk ≡ Fk − F 0
k , ∆µa,k ≡

µa,k − µ0a,k, and∆µ′s,k ≡ µ′s,k − µ′0s,k denote the changes in these parameters from baseline.

Rearranging Equation 5.7, the DCS Modified Beer-Lambert lawfor heterogeneous media is:

− log

(

g2(τ, ρ) − 1

g02(τ, ρ)− 1

)

≈
N
∑

k=1

[

dF,k(τ, ρ)∆Fk + da,k(τ, ρ)∆µa,k + ds,k(τ, ρ)∆µ
′
s,k

]

, (5.8)

where{dF,k ≡ ∂OD0
DCS/∂Fk, da,k ≡ ∂OD0

DCS/∂µa,k, ds,k ≡ ∂OD0
DCS/∂µ

′
s,k} are DCS

analogues of the partial pathlengths from DOS/NIRS [130]. These multiplicative weighting

factors depend on tissue geometry, on the baseline tissue properties, i.e.,{F 0
k , µ0a,k, µ′0s,k}, and

on τ and ρ. They account for the relative importance of the various regional hemodynamic

changes in the DCS optical density perturbation, and they can be estimated in the same manner

as described in 5.7.

5.3.4 DCS Modified Beer-Lambert law for two-layer media

The simplest heterogeneous model for tissue is the two-layer geometry, an important special

case (Figure 5.3). Researchers have used this geometry in order to distinguish cerebral tissue

from extra-cerebral tissue in optical measurements of the head [55, 85, 106, 120, 172, 208, 215],

to model tissue burns [24], to distinguish skin from fat/muscle [95, 156], to distinguish fetal

from maternal tissues [53], and in other applications. For cerebral applications, the two-layer

geometry is comprised of a semi-infinite bottom layer (i.e.,corresponding to the cortical regions

of the brain) with a distinct blood flow index, absorption coefficient, and scattering coefficient of

Fc, µa,c, andµ′s,c, respectively, and a superficial top layer (i.e., corresponding to extra-cerebral

scalp and skull tissue) with thicknessℓ, and distinct tissue properties denoted byFec, µa,ec, and

µ′s,ec.

The two-layer DCS Modified Beer-Lambert law is the special case of Equation 5.8 forN = 2
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Figure 5.3:(A) Two-layer tissue model of the head and(B) parallel plane two-layer tissue ge-
ometry.

piecewise homogeneous (layered) regions, i.e.,

∆ODDCS(τ, ρ) = − log

(

g2(τ, ρ)− 1

g02(τ, ρ) − 1

)

≈ dF,c(τ, ρ)∆Fc + dF,ec(τ, ρ)∆Fec+

da,c(τ, ρ)∆µa,c + da,ec(τ, ρ)∆µa,ec + ds,c(τ, ρ)∆µ
′
s,c + ds,ec(τ, ρ)∆µ

′
s,ec.

(5.9)

Again, the multiplicative weighting factors,dF,i ≡ ∂OD0
DCS/∂Fi, da,i ≡ ∂OD0

DCS/∂µa,i, and

ds,i ≡ ∂OD0
DCS/∂µ

′
s,i (with subscripti denotingc (cerebral) or ec (extra-cerebral)), indicate

the relative sensitivity of the DCS optical density variation to cerebral versus extra-cerebral

hemodynamic changes. All six parameters depend on delay-time τ , source-detector separation

ρ, top layer thicknessℓ, and baseline tissue propertiesF 0
c , F 0

ec, µ
0
a,c, µ

0
a,ec, µ

′0
s,c, andµ′0s,ec. They

can be computed by numerically taking the appropriate derivatives of the two-layer solution to

the correlation diffusion equation. For the parallel planetwo-layer geometry (Figure 5.3(B)), the

solution is [24,106]:

g1(τ) = G1(τ)/G1(0),

G1(τ) =
1

2π

∫ ∞

0
G̃1(τ)sJ0(sρ)ds,

G̃1(τ) =
sinh[κec(zb + z0)]

Decκec

Decκec cosh[κecℓ] +Dcκc sinh[κecℓ]

Decκec cosh[κec(ℓ+ zb)] +Dcκc sinh[κec(ℓ+ zb)]
− sinh[κecz0]

Decκec
,

whereDi = 1/[3(µ′s,i+µa,i)], κ
2
i = (Dis

2+µa,i+2µ′s,ik
2
0Fiτ)/Di, zb = 2Dec(1+Reff )/(1−

Reff ), z0 = 3Dec, andReff andk0 are defined inSection 5.2(this solution assumes the top and
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bottom layers have the same optical index of refraction).

The two-layer weighting factors for a typical set of extra-cerebral/cerebral tissue properties

are plotted in Figure 5.4. Importantly, for a source-detector separationρ = 3 cm, the change in

the DCS optical density is more sensitive to changes in flow and absorption in the cerebral layer

than in the extra-cerebral layer (except for at very long delay-times). This sensitivity is especially

prominent at the shorter delay-times (Figs. 5.4(B), 5.4(C)). In practice the situation is helped by

differences in magnitude of cerebral versus extra-cerebral flow (e.g., cerebral flow is quite often

10 times larger than extra-cerebral flow) [250]. We note herethat the sensitivity to cerebral flow

changes (Figure 5.4(C)) depends on the specific ratio of cerebral to extra-cerebral flow [221].

For example, ifF 0
c = 6F 0

ec, the ratio of the cerebral flow component (dF,c∆Fc) to extra-cerebral

flow component (dF,ec∆Fec) is 0.7 at short delay-times forρ = 3 cm (compared to1.15 for

F 0
c = 10F 0

ec in Figure 5.4(C)). Further, this ratio depends on the extra-cerebral layer thickness,

because the NIR light intensity is exponentially attenuated with increasing tissue depth. For

example, if the extra-cerebral layer thickness is increased to ℓ = 1.1 cm, then the ratio of the

flow components in Figure 5.4(C) at short delay-times is0.8 for ρ = 3 cm.

The increase in the influence of the extra-cerebral layer at longer delay times (Figure 5.4(C))

can be explained from consideration of the pathlengths of light, specifically their association

with short versus long correlation decay timesτ . Briefly, in the temporal autocorrelation func-

tion, long light paths contribute to rapid decays of the signal (shortτ ) and short light paths

contribute to slow decays of the signal (largeτ ) [186, 257]. Short source-detector separations,

e.g.,ρ = 0.5 cm, mostly sample the superficial layer, and the DCS optical density perturba-

tion is predominantly sensitive to the superficial layer in this case (Figure 5.4(C)). Interestingly,

a comparison of Figs. 5.4(C) and 5.4(D) reveals that the DCS optical density is more sensi-

tive to cerebral changes than the DOS/NIRS optical density (consistent with findings of Selb

et al [221]). Again, this effect arises in part because cerebral blood flow is much greater than

extra-cerebral blood flow, and in part because DCS is effectively a time-resolved technique that

permits separation of long light paths (shorter delay-times) from short light paths (longer delay-

times) [221].
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Figure 5.4:(A) The two-layer multiplicative weighting factors (see Equation 5.9) fordF,c and
dF,ec (right vertical-axis); and forda,c, da,ec, ds,c, andds,ec. They are plotted as a function of the
correlation time,τ , for source-detector separation,ρ = 3 cm, and optical wavelength,λ = 785
nm, given a set of typical extra-cerebral and cerebral tissue properties [55], i.e.,µ0a,c = 0.16,
µ0a,ec = 0.12, µ′0s,c = 6, µ′0s,ec = 10 cm−1; F 0

c = 10−8, F 0
ec = 10−9 cm2/s; ℓ = 1 cm,

n = 1.4, andnout = 1. (B) The two-layer DCS Modified Beer-Lambert componentsdF,c∆Fc,
dF,ec∆Fec, |da,c∆µa,c|, and|da,ec∆µa,ec|, plotted as a function ofτ for a10% increase in each
parameter. On the right vertical-axis is the intensity autocorrelation function,g02(τ), for β = 0.5.
Notice that at shorter delay-times forρ = 3 cm, the change in DCS optical density is equally
sensitive to changes in cerebral blood flow, extra-cerebralblood flow, and cerebral absorption.
The change in DCS optical density (ODDCS) is less sensitive, however, to changes in extra-
cerebral absorption.(C) The ratio of the cerebral (c) and extra-cerebral (ec) flow components in
the DCS optical density perturbation,∆ODDCS(τ) (Equation 5.9), for 4 separations,ρ = 0.5,
1, 2, and3 cm. These data are plotted as a function ofτ assuming a10% increase in cerebral and
extra-cerebral blood flow. For the shorter separations of0.5 and1 cm, the ratio is substantially
less than one; in this case, the DCS optical density is predominantly sensitive to the extra-
cerebral layer. At the3 cm separation, the DCS optical density is more sensitive to cerebral
blood flow than extra-cerebral blood flow at the short delay-times, i.e., the ratio is greater than
one. However, at longer delay-times, the ratio decreases.(D) The ratio of the cerebral and extra-
cerebral absorption components in the two-layer Modified Beer-Lambert law for DOS/NIRS,
plotted as a function ofρ for a10% increase in cerebral and extra-cerebral absorption.〈L〉c and
〈L〉ec are the cerebral and extra-cerebral partial pathlengths [91, 130]. Notice from panels (C)
and (D) that the DCS optical density is more sensitive to the cerebral layer than the NIRS optical
density is, consistent with findings in work of reference [221].
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5.4 Results

5.4.1 Validation with simulated data

We tested the semi-infinite DCS Modified Beer-Lambert law (Equation 5.4) using simulated data

(Figure 5.5), as well as real data collected from a juvenile pig (Figs. 5.7, 5.8). The simulated

DCS data was generated from semi-infinite analytical solutions of the correlation diffusion equa-

tion (Equation 5.5) with added noise [276]. Baseline tissueblood flow and optical properties in

the simulated data were chosen to be representative of the head [121], and perturbations from

baseline were induced by varying blood flow (F ) from +50% to −50%, with constant tissue

optical properties. Figure 5.5(A) shows the simulated intensity autocorrelation functions for

these baseline and perturbed conditions, plotted as a function of delay-time. The DCS Modified

Beer-Lambert law (Equation 5.4) was then applied to this simulated data set to calculate the flow

change as a function of delay-time (Figure 5.5(B)). Good agreement between the calculated and

actual flow changes is found for a wide range of delay-times.

We next quantified the range of delay-times for which the DCS Modified Beer-Lambert law

can be accurately employed. First, recall that the semi-infinite DCS Modified Beer-Lambert

law is expected to be accurate in the limit2µ′sk
2
0Fτ/µa ≪ 1 (5.8). The simulations show

that it will remain fairly accurate even when2µ′sk
2
0Fτ/µa ∼ 1. In order to appreciate the

simulation results more generally, we introduce the dimensionless delay-time,τγ0F 0, which

depends on baseline blood flow (F 0), correlation time-delay (τ ), andγ0 ≡ K0
0 (µ

′0
s /µ

0
a)k

2
0r

0
1

(see Equation 5.17). When this dimensionless delay-time is∼ 1, then the baseline electric

field autocorrelation function has decayed by∼ 1/e. In terms of this dimensionless delay-

time, the limit 2µ′sk
2
0Fτ/µa ≪ 1 corresponds to the baseline conditionτγ0F 0 ≪ α, where

α ≡ γ0µ0a/(2µ
′0
s k

2
0). For the “typical” conditions chosen for Figure 5.5,α = 2.3.

Figure 5.5(B) plots the calculated DCS Modified Beer-Lambert flow change for each di-

mensionless delay-time. The difference (error) between the calculated flow change and the true

flow change (simulated value) is relatively small, even for dimensionless delay-times approach-

ing α = 2.3. We also see that for a50% increasein flow, the DCS Modified Beer-Lambert

law is accurate over a narrower range of dimensionless delay-time than for a50% decrease

(Figure 5.5(B)). The latter behavior is a consequence of thefact that when flow is increased,

137



Figure 5.5:(A) Simulated semi-infinite intensity autocorrelation curves(mean± SD acrossN =
10k curves) plotted as a function of the delay-timeτ for a−50% and+50% change in flow while
tissue optical properties were held constant. The source-detector separation, light wavelength,
and baseline tissue properties areρ = 3 cm, λ = 785 nm, andµ0a = 0.1 cm−1, µ′0s = 8
cm−1, F 0 = 10−8 cm2/s, n = 1.4, nout = 1, respectively. The simulated DCS data were
generated from the semi-infinite solution of the correlation diffusion equation (Equation 5.5)
with added noise derived from a correlation noise model [276]. The correlation noise model
was evaluated at a baseline DCS intensity of50k photons a second and an averaging time of2.5
seconds.(B) Fractional blood flow changes (mean± SD) estimated by applying the semi-infinite
DCS Modified Beer-Lambert law, i.e.,rbf(τ) = ∆ODDCS(τ)/(dF (τ)F

0) (Equation 5.4), to
the simulated data. To appreciate the simulated results more generally, these fractional blood
flow changes are plotted against the dimensionless delay-time τγ0F 0. Here,(γ0F 0)−1, where
γ0 ≡ K0

0 (µ
′0
s /µ

0
a)k

2
0r

0
1 (see Equation 5.17), is approximately the characteristic decay time of

the baseline electric field autocorrelation function (see Section 5.8).
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the intensity autocorrelation function decays more rapidly. When the autocorrelation curves are

close to fully decayed, then the DCS Modified Beer-Lambert law is predominantly sensitive to

correlation noise instead of flow. For a perturbed state frombaseline (e.g.,rbf = 50%), the limit

2µ′sk
2
0Fτ/µa ≪ 1 corresponds toτγ0F 0 ≪ α(F 0/F ) (assuming constant optical properties).

Thus, a larger value ofF reduces the value of the dimensionless delay-time upper limit.

5.4.2 Noise consideration

At very short delay-times, there is little difference between the intensity autocorrelation curves

corresponding to different blood flows (Figure 5.5(A)). In this limit, the changes to the DCS

optical density are heavily influenced by correlation noise, and flow calculations at the very

short delay-times in Figure 5.5(B) are noisy. In general, from applying error propagation rules to

Equation 5.4, the noise in the calculated flow change (δ(rbf(τ))) as a function ofτ for constant

tissue optical properties is

δ(rbf(τ)) =
1

dF (τ)F 0
δ(∆ODDCS(τ)) =

1

dF (τ)F 0

δ(g2(τ)− 1)

|g2(τ)− 1| . (5.10)

A correlation noise model can be used to accurately estimateδ(g2(τ)−1) [276]. Asτ increases,

the correlation noise decreases, anddF (τ)F0 increases (Figure 5.2(A)). Both trends reduce the

noise inrbf . However, when|g2(τ)−1| goes to zero asτ increases, an accompanying increase in

noise is expected. From Figure 5.5(B), the noise inrbf falls with increasing delay-time and then

levels off aroundτγ0F 0 ≈ 0.3; the noise then remains constant for a large range of delay-times.

As one would expect, the flow change computed with a singleτ in the DCS Modified Beer-

Lambert law is more sensitive to noise than the flow change extracted from nonlinear fits to the

semi-infinite correlation diffusion solution across many delay-times. To ameliorate sensitivity

to noise, multiple delay-times can also be used for the DCS Modified Beer-Lambert law. Then

Equation 5.4 becomes a system of linear equations, i.e., oneequation for each delay-time, which

can very rapidly be solved to derive flow changes.

5.4.3 In-vivo validation

Finally, we validated the semi-infinite DCS Modified Beer-Lambert lawin-vivo. In this case, the

scalp of a juvenile pig was reflected and 2.5-mm burr holes were drilled through the skull down
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Figure 5.6:(A) To monitor hemodynamics in the semi-infinite geometry, a juvenile pig’s scalp
was reflected, and 2.5 mm burr holes were drilled through the skull for placement of 90-degree
optical fibers. A DOS/NIRS source-detector pair (red circles) measured cerebral tissue absorp-
tion, and a DCS source-detector pair (black circles) measured cerebral blood flow. The source-
detector separation of both pairs isρ ≈ 1.5 cm. (B) Schematic showing the timeline of the
experiment in minutes. Venous infusion of dinitrophenol (DNP, 9 mg/kg) dramatically stim-
ulated cerebral oxygen metabolism and induced a200% increase in cerebral blood flow. The
DCS and DOS techniques were interleaved to measure blood flowand tissue absorption every 7
seconds.(C) Anterior-posterior slice of an anatomical MRI scan of a pig with similar weight to
the juvenile pig used in this measurement. The burr holes forthe two optical fibers closest to the
midline in panel (A) have been artificially overlayed on thisscan.
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to the dura (Figure 5.6). Optical fibers were inserted into the holes to comprise a single DCS

source-detector pair for measurement of cerebral blood flow, and a single DOS/NIRS source-

detector pair for measurement of cerebral tissue absorption (Figure 5.6(A)). The source-detector

separations of both pairs were approximately 1.5 cm, and thebaseline cerebral optical properties

of the pig were assumed to beµ0a(785 nm) = 0.2 andµ′0s (785 nm) = 8 cm−1 [140]. Impor-

tantly, in this measurement the semi-infinite geometry is a good approximation for the true tissue

geometry, because the optical fibers are very close to the brain.

Figure 5.6(B) is a schematic showing the timeline of the experiment. While monitoring

with DOS and DCS, a200% increase in cerebral blood flow was induced in the pig via venous

infusion of 9 mg/kg of the drug dinitrophenol (DNP). DNP is a proton transporter across cell

membranes which disrupts the mitochondrial proton gradient [181]. In an effort to restore the

proton gradient, cells stimulate cerebral oxygen metabolism [181], which in turn leads to a large

increase in cerebral blood flow. Additional details about the animal preparation and measurement

are in Section 5.9.

The calculated temporal cerebral blood flow changes in the pig (due to DNP) using the DCS

Modified Beer-Lambert law are in good agreement with the calculated changes from nonlinear

fits to the semi-infinite solution of the correlation diffusion equation (Figure 5.7). Measured

cerebral absorption changes (Figure 5.8(B)) were incorporated in the blood flow calculations.

Note, when using multiple delay-times in the DCS Modified Beer-Lambert law, the noise in

temporal blood flow estimates is comparable to the nonlineardiffusion fit (Figure 5.7(A)). For

singleτ blood flow monitoring, the temporal blood flow noise is larger, but the average blood

flow changes are the same (Figure 5.7(B)); this behavior demonstrates the feasibility of accu-

rate singleτ blood flow monitoring with DCS. In Figure 5.7(B), the dimensionless delay-time

τγ0F 0 = 0.33 (corresponding tog02(τ) = 1.3) was used for single delay-time monitoring.

The estimated cerebral blood flow changes from the DCS Modified Beer-Lambert law are

also plotted as a function of dimensionless delay-time in Figure 5.8(A) for two quasi steady-

state temporal intervals. During these temporal flow intervals, the blood flow changes were also

determined from nonlinear fits to the semi-infinite correlation diffusion solution. The average

blood flow changes from the nonlinear fit estimates are185% and64% (solid black lines). The

horizontal dashed lines in Figure 5.8(A) indicate the noisein the nonlinear fit estimates of blood
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Figure 5.7: Temporal fractional cerebral blood flow changesinduced by injection of the drug
dinitrophenol (DNP) in a juvenile pig. The baseline flow isF 0 = 5.34 × 10−8 cm2/s, which is
the average blood flow index over the 18 minute time interval between the vertical dashed lines.
Cerebral blood flow changes were calculated from nonlinear fits to the semi-infinite correlation
diffusion solution (Equation 5.5) and from the semi-infinite DCS Modified Beer-Lambert law
(Equation 5.4) using(A) multiple delay-times, i.e.,τ < 5.5 µs, which corresponds tog02(τ) >
1.25, and(B) a single delay-time, i.e.,τ = 3.8 µs, which corresponds tog02(τ) = 1.3. Measured
tissue absorption changes (Figure 5.8(B)) were incorporated in both the correlation diffusion fit
and the DCS Modified Beer-Lambert law. Tissue scattering wasassumed to remain constant at
µ′s = 8 cm−1, and the red and blue shaded regions indicate quasi steady-state temporal intervals
that are analyzed further in Figure 5.8.
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Figure 5.8: (A) Mean fractional cerebral blood flow changes (averaged across indicated time
intervals in the legend) as a function of the dimensionless delay-timeτγ0F 0 (see Figure 5.5
caption) in a juvenile pig.(B) The pig’s cerebral absorption over time, which was calculated
from applying the semi-infinite Modified Beer-Lambert law (Equation 5.1) to the measured
DOS/NIRS intensity changes from baseline. Note that the shaded regions in panel (B) indicate
the temporal intervals averaged over in panel (A). The cerebral blood flow changes in panel
(A) were obtained from applying the semi-infinite DCS Modified Beer-Lambert law (Equa-
tion 5.4) to the measured intensity autocorrelation curvesand the measured cerebral absorption
changes. The horizontal solid and dashed black lines in panel (A) indicate the fractional blood
flow changes (Mean± SD) obtained from fitting the intensity autocorrelation curves to the non-
linear semi-infinite correlation diffusion solution (Equation 5.5).
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flow (constant because the nonlinear correlation diffusionfit uses all delay-times). Note that

the average value of the DCS Modified Beer-Lambert law estimate of the larger flow increase

is within the noise of the nonlinear correlation diffusion fit estimate for the delay-time interval

0.16 < τγ0F 0 < 0.82, which corresponds to the baseline intensity autocorrelation function

range1.15 < g02(τ) < 1.40. The smaller flow increase in Figure 5.8(A) is accurate for aneven

wider range of delay-times, because the intensity autocorrelation function associated with this

increase requires a longer delay-time to completely decay (seeSection 5.4.1).

5.5 Discussion

The Modified Beer-Lambert approach has been employed extensively in the biomedical optics

community [99, 122, 166, 175, 219, 248], in large part because of its simplicity. With this ap-

proach, researchers have monitored temporal changes in blood oxygenation and blood volume

with CW light, using only one source-detector separation. In the present paper, we have extended

the Modified Beer-Lambert approach to the DCS measurement, and we have demonstrated the

accuracy of this extension in both simulations (Figure 5.5)and in-vivo data (Figs. 5.7, 5.8).

The DCS Modified Beer-Lambert approach offers some advantages compared to the traditional

analysis scheme of fitting intensity autocorrelation data to nonlinear solutions of the correlation

diffusion equation.

5.5.1 Real-time estimates of blood flow changes

The DCS Modified Beer-Lambert law is a linear equation relating changes in blood flow to

changes in signal forany tissue geometry. Although the correlation diffusion solution in the

semi-infinite geometry is closed form, the correlation diffusion solutions in more intricate ge-

ometries (e.g., curved, layered) are vastly more complex, and consequentially quite time-consuming

when fitting data. With the DCS Modified Beer-Lambert approach, the correlation diffusion so-

lutions are needed only once to evaluate the multiplicativeweighting factors at the “baseline”

tissue state, e.g., Equation 5.13. We emphasize that even for geometries where closed form solu-

tions are not available, these multiplicative weighting factors can still be evaluated numerically.

Then, blood flow changes from baseline are rapidly determined by solving a linear equation (Eq.
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(5.4) or (5.8)). Consequentially, the DCS Modified Beer-Lambert law is well suited for real-time

blood flow monitoring, especially in tissue geometries thatare not semi-infinite.

5.5.2 Blood flow monitoring in tissues wherein light propagation is non-diffusive

Diffusive light transport is not required for using the DCS Modified Beer-Lambert approach. In

blood flow monitoring applications wherein the photon diffusion model is not valid, the mul-

tiplicative weighting factors can be evaluated using solutions of the correlation transport equa-

tion [3,73] instead of the correlation diffusion equation (see Section 5.7). For the tissue geometry

of interest, the correlation transport equation can be solved numerically with Monte Carlo tech-

niques [24, 186]. Thus, the DCS Modified Beer-Lambert approach facilitates accurate blood

flow monitoring for the small source-detector separations typical of endoscopic probes, for com-

plex tissues that contain “non-diffusing” domains such as (arguably) cerebral spinal fluid inside

the head [63, 148, 196], and for tissues that contain very high concentrations of blood, as in

the liver [144]. In all three of these examples, the assumptions underlying the photon diffusion

model are violated, and therefore the photon diffusion model is not expected to be accurate. An-

other potential application of the non-diffusive DCS Modified Beer-Lambert approach is blood

flow monitoring with visible light.

5.5.3 Improved depth sensitivity

The DCS Modified Beer-Lambert law permits blood flow monitoring with intensity autocor-

relation measurements at a single delay-time, in contrast to the traditional correlation diffusion

approach wherein blood flow estimates are obtained by acquiring and fitting a full, nearly contin-

uous, intensity autocorrelation curve. It is now well established that the autocorrelation function

decay times associated with long light paths are relativelyshort, while the decay times associated

with short light paths are relatively long [186, 221, 257]. Thus, the autocorrelation function at

shorter delay-times will be inherently more sensitive to deeper tissues in remission geometries

(Figure 5.4), which in turn means that the sensitivity of theDCS measurement to blood flow at

deeper tissue depths is improved by using short delay-timesin the DCS Modified Beer-Lambert

145



law. Conversely, using long delay-times improves the sensitivity of the DCS measurement to tis-

sue blood flow at shallow depths. This same effect can be achieved by fitting different parts of the

intensity autocorrelation curve to the correlation diffusion model. In practice, these correlation

diffusion fits still require several delay-times spanning asignificant portion of the autocorrela-

tion curve. By using a single delay-time, the experimenter has finer control of the measurement

depth sensitivity for DCS measurements. Note that for DCS measurements in transmission ge-

ometries [40], the autocorrelation function at longer delay-times (short light paths) will be more

sensitive to tissue adjacent to the straight line between source and detector.

5.5.4 Increased temporal resolution of DCS measurements

The DCS Modified Beer-Lambert law offers new routes for increased DCS measurement speed

and for simpler instrumentation. Underlying these advantages is again blood flow monitoring

with a single delay-time. We and others have used multiple-τ hardware correlators to mea-

sure the intensity autocorrelation function [72, 218] at delay-times spanning several orders of

magnitude from∼ 100 ns to∼ 10 ms. Achieving sufficient SNR for deep tissue DCS mea-

surements (e.g., as in the brain) typically requires averaging many (N > 100) of these 10-ms

autocorrelation curves. The single delay-time cerebral blood flow monitoring in the pig shown

in Figure 5.7(B) was done atτ = 3.8 µs. Thus, in this example,∼250 blood flow measurements

can be acquired in 1 ms, which can then be temporally averagedto reduce noise. In 10 ms,

which is roughly the time required to measure a single autocorrelation curve with a multiple-

τ correlator,∼2500 blood flow measurements can be acquired and averaged. Therefore, even

though single-τ blood flow monitoring with the DCS Modified Beer-Lambert law is more sensi-

tive to correlation noise than multiple-τ monitoring (Figure 5.7), the substantial improvement in

the blood flow sampling rate with single-τ monitoring means that enough averaging can be em-

ployed to compensate for this additional noise while still maintaining high DCS measurement

speeds. Blood flow measurements at high acquisition rates are advantageous in several appli-

cations, including schemes to filter out motion artifacts inexercising muscle [226]. Single-τ

monitoring also makes it possible to use single-τ hardware correlators, which are cheaper than

multiple-τ hardware correlators. Alternatively, software correlators [72] for a single delay-time

could be implemented.
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5.5.5 Filtering contamination from superficial tissues in deep tissue flow moni-

toring

The same paradigms that have been developed with the ModifiedBeer-Lambert law to filter con-

tamination from superficial tissues in blood oxygenation measurements of the tissue of interest

(e.g., the brain) [91, 197, 215, 217, 235] can also be used in the DCS Modified Beer-Lambert

formulation for blood flow monitoring. In fact, these paradigms are likely to work even better

with DCS, because DCS is more sensitive to deep brain hemodynamics than continuous-wave

DOS/NIRS (Figs. 5.4C, 5.4D) [221].

Building on work done with the DOS/NIRS Modified Beer-Lambert law [91, 215], a use-

ful scheme for filtering superficial tissue contamination inthe DCS signal is to employ two

source-detector separations. One source-detector separation should be long and the other short.

Detected light from the long separation travels through both superficial and deep layers of tissue,

but detected light at the short separation is predominantlyconfined to the superficial layer. Two

two-layer DCS Modified Beer-Lambert law equations (corresponding to the two source-detector

separations) can then be employed to better isolate the deeptissue blood flow component from

the superficial blood flow component. Ideally the experimenter would acquire “initial/baseline”

measurements wherein only superficial blood flow is changing.

In cerebral monitoring, one way to change superficial blood flow without affecting cerebral

blood flow is to vary the pressure of the optical probe againstthe head [184]. Initial measure-

ments acquired during probe pressure modulation can then beused to derive the patient-specific

weighting factors in the DCS Modified Beer-Lambert law. These weighting factors would sub-

sequently be used to filter superficial contamination in cerebral blood flow monitoring. We will

develop this idea further in a future paper.

5.6 Conclusion

The Modified Beer-Lambert extension to the DCS measurement is accurate enough to be useful

for blood flow monitoring. It facilitates real-time flow monitoring in complex tissue geometries,

provides a novel route for increasing DCS measurement speed, and can be used to probe tissues

wherein light transport is non-diffusive. It also can be used to filter signals from superficial
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tissues.

5.7 Appendix 1

The multiplicative weighting factorsdF , da, andds in Equation 5.4 can be estimated by taking

the appropriate derivative of the solutions to the correlation diffusion equation applied to the

appropriate geometry (e.g., semi-infinite homogeneous, etc.). First, using the Siegert relation,

we have:

dF (τ, ρ) ≡
∂OD0

DCS

∂F
=

∂

∂F

[

− log(g02(τ, ρ)− 1)
]

=
∂

∂F

[

− log(β[g01(τ, ρ)]
2)
]

=
∂

∂F

[

− log(β)− 2 log(g01(τ, ρ))
]

= 2
∂

∂F

[

− log(g01(τ, ρ))
]

. (5.11)

Similarly,

da(τ, ρ) = 2
∂

∂µa

[

− log(g01(τ, ρ))
]

,

ds(τ, ρ) = 2
∂

∂µ′s

[

− log(g01(τ, ρ))
]

. (5.12)

Here,g1(τ, ρ) is the solution to the correlation diffusion equation for the geometry of interest [24,

79], and the derivatives of the solution are evaluated at baseline conditions. In conditions where

an analytical solution for the correlation diffusion equation does not exist, the multiplicative

weighting factors can be computed numerically:

dF (τ, ρ) =
2

∆F
log

(

g1(τ, ρ, F
0 −∆F/2, µ0a, µ

′0
s )

g1(τ, ρ, F 0 +∆F/2, µ0a, µ
′0
s )

)

,

da(τ, ρ) =
2

∆µa
log

(

g1(τ, ρ, F
0, µ0a −∆µa/2, µ

′0
s )

g1(τ, ρ, F 0, µ0a +∆µa/2, µ′0s )

)

,

ds(τ, ρ) =
2

∆µ′s
log

(

g1(τ, ρ, F
0, µ0a, µ

′0
s −∆µ′s/2)

g1(τ, ρ, F 0, µ0a, µ
′0
s +∆µ′s/2)

)

, (5.13)

where∆F/F 0 = ∆µa/µ
0
a = ∆µ′s/µ

′0
s = 10−5. Equations (5.11), (5.12), and (5.13) are impor-

tant intermediate results, which provide generalized expressions for the analytical and numerical

computation of the multiplicative weighting factors in theDCS Modified Beer-Lambert law for

any homogeneous geometry.

Evaluating these equations requires knowledge of the baseline tissue optical properties and

the baseline flow index. The baseline flow index can be obtained from a nonlinear fit of the
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Figure 5.9: Fractional blood flow changes (i.e.,F/F 0 − 1) computed from applying the semi-
infinite DCS Modified Beer-Lambert law (Equation 5.4) with assumed baseline optical prop-
erties ofµ0a (vertical axis) andµ′0s (horizontal axis) to semi-infinite simulated data with noise
(N = 1k curves). The actual blood flow and absorption changes are(A) 50% and15%, and(B)
−50% and−15%, respectively. Tissue scattering was constant, and the actual baseline proper-
ties (including simulated noise parameters) are identicalto those in Figure 5.5, e.g.,µ0a = 0.1,
µ′0s = 8 cm−1 (denoted by dashed lines). To compute the absorption changes from the simulated
data, the Modified Beer-Lambert law (Equation 5.1) was employed. The differential pathlength
(〈L〉) in Equation 5.1 was calculated from the assumed baseline optical properties [94]. Finally,
the baseline flow index,F 0, was extracted from a nonlinear fit of the simulated baselinedata
to the semi-infinite correlation diffusion solution (Equation 5.5) evaluated at the assumed base-
line optical properties. Errors in the assumed baseline optical properties only have small effects
on the computed fractional flow change. Note that the computed fractional blood flow changes
are not exactly50% and−50% when the exact optical properties are assumed because of small
errors arising from truncating the tissue absorption termsin the Taylor Series expansion of the
DCS optical density (Equation 5.3) to first order.
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baseline intensity autocorrelation curve to the correlation diffusion solution (seeSection 5.2).

The baseline tissue optical properties can either be assumed from the literature (e.g., [144])

or measured with time-domain or frequency-domain DOS/NIRS[101, 201]. For typical tissue

measurements wherein scattering does not change, the sensitivity in the computed fractional

blood flow change to assumed baseline optical properties is small (Figure 5.9). For the example

of flow changes shown in Figure 5.9,±50% errors in the assumed baseline optical properties

affected the estimated fractional flow change by only±5 percentage points (e.g., from 0.50 to

0.45). Thus, for many applications, errors in the assumed baseline optical properties have little

effect on calculated changes in blood flow. Computed fractional flow changes are a little more

sensitive to errors in baseline flow than to errors in baseline optical properties. Specifically, for

the example of flow changes in Figure 5.9,±10% errors in baseline flow affected the estimated

fractional flow change by±5 percentage points, and±25% errors in baseline flow affected the

estimated fractional flow change by±10 percentage points (results not shown).

An important assumption in this approach is that the correlation diffusion equation accurately

models the electric field autocorrelation function in tissue. This assumption is valid when using

large source-detector separations,ρ ≫ 1/(µa + µ′s), to measure highly scattering media with

isotropic dynamics [24]. The DCS Modified Beer-Lambert law,Equation 5.4, however, can also

be used for correlation transport conditions wherein the correlation diffusion equation breaks

down. In this case, the derivatives in Equations (5.11) and (5.12) will have to be applied to the

solutions of the so-called correlation transport equation[3,73], which can be solved numerically

with Monte Carlo techniques [24,186].

5.8 Appendix 2

The semi-infinite solution to the correlation diffusion equation (Equation 5.5) is approximately

exponential in the small delay-time limit, i.e.,g1(τ) ≈ exp(−γFτ), with γ ≡ K0(µ
′
s/µa)k

2
0r1.

Normalizing the delay-time by the characteristic decay-time, i.e.,τc = (γF )−1, is a meaningful

dimensionless way to express delay-times (Figs. 5.5, 5.8),e.g.,g1 ≈ 0.4 for τγF = 1. Further,

the DCS Modified Beer-Lambert law (Equation 5.4) is a good approximation in the small delay-

time limit because− log(g2(τ) − 1) = − log(βg21) = 2γτF − log(β) is linear with respect to
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F . To derive the small delay-time limit of the semi-infinite correlation diffusion solution, first

note that if the source-detector separation,ρ, is much greater than the photon transport mean-free

path through tissue,ℓtr, then (see Equation 5.2)

rb ≈ r1(1 + x/r21),

1

rb
≈ 1

r1

(

1− x

r21

)

, (5.14)

wherex ≡ 2zb(zb + ℓtr). Substituting Equation 5.14 into Equation 5.2, we see that

G1(τ) =
3

4πℓtr

exp(−K(τ)r1)

r1

[

1− exp

(−K(τ)x

r1

)(

1− x

r21

)]

. (5.15)

In the limit K(τ)x/r1 ≪ 1, which is satisfied at small delay-times, Equation 5.15 simplifies

further to

G1(τ) ≈
3

4πℓtr

x exp(−K(τ)r1)

r21

(

K(τ) +
1

r1

)

. (5.16)

In the more stringent limit2(µ′s/µa)k
2
0Fτ ≪ 1, the electric field autocorrelation function in

Equation 5.16 is approximately exponential:

g1(τ) =
G1(τ)

G1(0)
≈ exp(−γFτ)

(

1 +
γFτ

r1K0 + 1

)

≈ exp(−γFτ), (5.17)

whereγ = K0(µ
′
s/µa)k

2
0r1 andK0 ≡ K(0) = [3µa(µa + µ′s)]

1/2.

5.9 Appendix 3

All animal procedures were in accordance with guidelines established by the National Institutes

of Health and approved by the Institutional Animal Care and Use Committee of the University

of Pennsylvania. Diffuse optical measurements were performed on a male Yorkshire juvenile

pig (28 kg). The animal was anesthetized with an initial intramuscular injection of ketamine (25

mg/kg), dexmedetomidine (0.025 mg/kg), and glycopyrolate(0.02 mg/kg), intubated, and then

mechanically ventilated with a mixture of∼ 3% isoflurane in pure oxygen gas. To prepare for

hemodynamic monitoring in the semi-infinite geometry, the pig’s scalp was reflected over the left

hemisphere of the brain, and a dental drill was used to form 2.5 mm burr holes through the skull

down to the dura for the placement of optical fibers (see Figure 5.6). One DCS source-detector

pair and one DOS/NIRS source-detector pair were used for hemodynamic monitoring. The
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positions of these fibers, denoted as (lateral distance fromthe center of the eye, lateral distance

from midline), are (10 mm, 5 mm), (21 mm, 15 mm), (26 mm, 15 mm),and (37 mm, 5 mm)

for the DCS source, DCS detector, DOS/NIRS source, and DOS/NIRS detector, respectively.

Thus, the source-detector separations for both the DOS/NIRS and DCS pairs are approximately

15 mm.

Upon completion of the surgical preparation, the ventilation of the pig was switched to a

mixture of oxygen and nitrogen (3:7) with no isoflurane. Anesthesia was maintained instead

with intravenous administration of ketamine (20-60 mg/kg/h). Throughout the rest of the study,

arterial oxygen saturation and end-tidal CO2 were continually monitored with blood gas samples

from the femoral artery and with a capnograph, respectively. The ventilation rate was initially

adjusted to maintain an end-tidal CO2 between 40 and 50 mm Hg.

After inserting ninety-degree bend terminated optical fibers (Fiberoptic Systems, Simi Val-

ley, CA) in the burr holes, a 5-pound sandbag weight was carefully placed on top of the fibers to

secure them in place. Two 1-mm diameter multi-mode borosilicate fibers (Fiberoptic Systems)

delivered source light to the cerebral tissue, and a third 1-mm diameter multi-mode fiber received

diffusing light from the tissue for DOS/NIRS detection. ForDCS detection, a4 × 1 bundle of

780HP single-mode fibers (Fiberoptic Systems) was used. These fibers interfaced to a portable

custom-built instrument designed for hemodynamic monitoring, which is described in detail

elsewhere [36, 158]. In the DCS measurement, a continuous wave, long coherence length 785

nm laser (CrystaLaser Inc., Reno, NV) was employed to deliver source light, and the outputs

from an array of 4 high sensitivity avalanche photodiodes (SPCM-AQ4C, Excelitas, Canada)

operating in photon counting mode were connected to a multiple-τ hardware correlator (Corre-

lator.com, Bridgewater, NJ). In the DOS/NIRS measurement,three lasers (690 nm, 785 nm, 830

nm; OZ Optics, Canada) intensity modulated at 70 MHz were coupled to an optical switch (Di-

Con Fiberoptics, Richmond, CA), which sequentially cycledthe source light between the three

wavelengths. A heterodyne detection scheme using a photomultiplier tube (R928, Hamamatsu,

Bridgewater, NJ) was employed for DOS/NIRS detection. The data acquisition was interleaved

between DOS/NIRS and DCS to measure blood flow and blood oxygenation with a sampling

rate of 0.15 Hz.
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After ten minutes of baseline cerebral hemodynamic monitoring in the pig, the drug dinitro-

phenol (DNP, 9mg/kg) was injected intravenously over an hour to dramatically increase cerebral

oxygen metabolism and blood flow [181] (see Figure 5.6(B)). The oxygen content in the ven-

tilated gas was increased as needed to maintain the arterialoxygen saturation in the pig above

95%. Ketamine was also supplemented as needed with boluses of diazapam (0.1-0.2 mg/kg) to

ensure adequate sedation as the oxygen metabolism increased. After two hours of hemodynamic

monitoring, the pig was euthanized with pentobarbital.
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Chapter 6

Pressure Modulation Algorithm to

Separate Cerebral Hemodynamic

Signals from Extra-cerebral Artifacts

6.1 Introduction

Diffuse correlation spectroscopy [37,79,84,182,269] (DCS) and near-infrared or diffuse optical

spectroscopy [99,115,166,175,193,219,231,248] (DOS/NIRS) are important optical techniques

that employ near-infrared light (NIR) to measure cerebral blood flow, oxygen saturation, and

total hemoglobin concentration continuously, non-invasively, and at the bedside. Further, in

combination these measurements of blood flow and blood oxygenation provide access to the

oxygen metabolic status of the brain [28,62,233].

As might be anticipated, this information about cerebral blood flow, blood oxygenation and

oxygen metabolism has clinical value. All three parameters, for example, are important biomark-

ers for brain diseases such as ischemic stroke [127, 229]. Treatments for ischemic stroke (and

other diseases) aim to minimize neurological damage by maximizing perfusion to the brain le-

sion [86, 97, 259]. Numerous treatment interventions for stroke are available, but variability in

response-to-treatment has been observed [86,97,155], andan effective treatment for one patient

may be ineffective, or even harmful, for another patient. Thus, a promising clinical application
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for DCS and DOS/NIRS is rapid patient-specific assessment oftreatment efficacy. Indeed, DCS

and DOS/NIRS enable detection of hemodynamic changes before new neurological symptoms

emerge [84,192,277].

Unfortunately, the optical techniques have limitations. Awell-known drawback for opti-

cal monitoring of cerebral tissue is its significant sensitivity to blood flow and oxygenation in

the extra-cerebraltissues (scalp and skull) [26, 184, 221, 237, 238]. Traditional diffuse optics

analyses approximate the head as a homogeneous medium,e.g., no a priori anatomical knowl-

edge is used. The homogenous models ignore differences between extra-cerebral hemodynam-

ics and cerebral hemodynamics in the brain, and because extra-cerebral blood flow and blood

oxygenation are non-negligible, their responses contaminate the DCS and DOS/NIRS signals.

Specifically, extra-cerebral contributions can lead experimenters to incorrectly assign cerebral

physiological responses [64,237,239].

The DOS/NIRS community has, of course, developed/adapted anumber of approaches to

ameliorate the extra-cerebral tissue problem. Time seriesanalysis techniques, for example, use

filtering schemes to minimize superficial tissue contamination in functional brain mapping mea-

surements [26, 90, 109, 137, 161, 216, 237, 238, 262, 271]. Anassumption that underlies these

techniques is that superficial tissue contamination arisesfrom systemic effects (e.g., heart rate)

that do not correlate with cerebral response because systemic variations are typically damped

by cerebral autoregulation. However, for numerous brain diseases, including ischemic stroke,

cerebral autoregulation is impaired [65, 111]. In fact, many stroke treatment interventions are

based on the notion of impaired cerebral autoregulation andare designed to increase cerebral

blood flow through systemic mechanisms (e.g., increased blood pressure). Thus, it is preferable

not to filter systemic components from the measured signals.In a different vein, more complex,

computationally intensive models have been proposed to handle extra-cerebral heterogeneities

directly, including layered models [148, 171, 173, 174, 212, 223, 234, 255, 261], Monte Carlo

techniques in realistic geometries of the head [25, 92, 145,235], and imaging [26, 89, 114, 258].

The complexity of these models, however, can make them impractical to implement for real-

time monitoring. Further, these models often requirea priori anatomical information about the

patient’s head, as well as knowledge of the optical properties of different tissue types.
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In this contribution, we report on a novel implementation scheme for real-time cerebral mon-

itoring with the two-layer model. The two-layer model in cerebral monitoring offers a com-

promise between simplicity and accuracy [55, 85, 91, 106, 108, 120, 172, 208, 215]. The two-

layer model consists of a homogeneous superficial (extra-cerebral) layer above a homogeneous

cerebral layer. The key to our new approach is to acquire DCS and DOS/NIRS measurements

at multiple optical probe pressures and at multiple source-detector separations. Variations in

probe pressure against the head induce variations in extra-cerebral hemodynamics, while cere-

bral hemodynamics remain constant [184]. We will show how this information can be utilized

to derive patient-specific analysis parameters that help toseparate cerebral hemodynamics from

extra-cerebral blood flow and oxygenation signals. For DCS measurements of blood flow, we

employ the pressure modulation scheme and a two-layer Modified Beer-Lambert framework for

analysis [12]. For DOS/NIRS measurements, we extend Fabbriet. al.’s two-layer Modified

Beer-Lambert formulation [91] to include a pressure calibration stage prior to monitoring.

After describing the theory, we demonstrate the ability of this new measurement paradigm/algorithm

to filter extra-cerebral contamination in simulations and in functional activation experiments in

healthy adult humans. Ultimately, these developments should lead to improved accuracy in real-

time monitoring of cerebral flow and oxygen metabolism.

6.2 DCS and DOS/NIRS Monitoring (Homogeneous Tissue Model)

Traditionally, diffuse optical monitoring utilizes homogeneous tissue models of the head, which

we review first. The basic measurement geometry for diffuse optical monitoring consists of point

illumination and point detection on the tissue surface; thedistance between source and detector

is ρ (Figure 6.1A). DOS/NIRS is a static technique that measuresslow ( 0.1 − 1 s) variations

in the detected light intensity induced by changes in tissueabsorption (µa) and tissue scattering

(µ′s). DCS is a qualitatively different dynamic light scattering technique that measures the rapid

(e.g., microsecond scale fluctuations) speckle light intensity fluctuations induced by red blood

cell motion. DOS/NIRS measurements are most commonly analyzed with photon diffusion

models [96,266] and the Modified Beer-Lambert law [10,67]. Analogously, correlation diffusion

models [23, 24] and the so-called DCS Modified Beer-Lambert law [12] can be employed for
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analysis of DCS measurements.

The Modified Beer-Lambert law is arguably the most widely used homogeneous tissue model

for analysis of DOS/NIRS measurements [10, 67]. The ModifiedBeer-Lambert law relates

changes in tissue optical properties to changes in continuous-wave diffuse optical intensity mea-

surements for light that has been multiply scattered in its trajectory through tissue (Figure 6.1).

Specifically, the measured difference in optical density between a “perturbed” state and a “base-

line” state is related to tissue scattering and tissue absorption differences of the corresponding

perturbed and baseline states,i.e.,

∆OD = − log

(

I

I0

)

≈ L∆µa +
µ0a
µ′0s

L∆µ′s ≈ L∆µa. (6.1)

Here, the tissue optical density is defined as the negative logarithm of the ratio of the detected

and incident light intensities (time-averaged),i.e., OD ≡ − log(I/Is) for the perturbed state,

andOD0 ≡ − log(I0/Is) (Figure 6.1B) for the baseline state; the incident light intensity,Is,

is assumed to remain constant.∆OD ≡ OD − OD0, ∆µa ≡ µa − µ0a, and∆µ′s ≡ µ′s − µ′0s

are the differential changes in tissue optical density, tissue absorption, and tissue reduced scat-

tering, respectively, between a perturbed state (OD, µa, µ′s) and the baseline state (OD0, µ0a,

µ′0s ). The multiplicative factor,L ≡ ∂OD0/∂µa, is the so-called differential pathlength, which

is approximately the mean pathlength that diffusing photons travel through the medium from

source to detector [10]. The Modified Beer-Lambert law (Equation 6.1) is a first order Taylor

series expansion of the tissue optical density about tissueabsorption and tissue scattering. It is

often reasonable to make the additional approximation thatthe scattering term in Equation 6.1 is

negligible compared to the absorption term, because (1), tissue scattering changes that accom-

pany hemodynamic variations are often negligible [12], and(2), the multiplicative factorµ0a/µ
′0
s

for many tissues is much less than one. Multispectral tissueabsorption changes determined

from Equation 6.1 are then readily converted to estimates oftissue oxy-hemoglobin (HbO)

and deoxy-hemoglobin (HbR) concentration changes using the well-known spectra of these

molecules [79, 207]. The total hemoglobin concentration (HbT ) is the sum of these two chro-

mophore concentrations, and the tissue oxygen saturation (StO2) is the ratio of oxy-hemoglobin

to total hemoglobin:HbT = HbO +HbR, StO2 = HbO/HbT .
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Figure 6.1:(A) Schematic for a homogeneous, semi-infinite model of the headwith a blood flow
index, absorption coefficient, and reduced scattering coefficient ofF , µa, andµ′s, respectively.
The incident source intensity,Is, is assumed to remain constant over time. Blood cell motion
(e.g., red disks at timet and light-red disks at timet + τ ) induces fast temporal fluctuations
(i.e., speckle intensity fluctuations) in the detected light intensity on the time scale ofµs, while
absorption changes modify mean light intensities (e.g., averaged on time scales ofms or greater).
(B) Schematic of detected intensity fluctuations for a baselinetissue state (red curve) and a
perturbed state from baseline with higher blood flow and absorption (blue curve). The horizontal
black lines are the mean intensities for the two states, denoted asI0 andI. The fast speckle
intensity fluctuations in the two states are characterized by normalized intensity autocorrelation
functions (i.e.,g02(τ), g2(τ)). (C) The decay of the intensity autocorrelation function curvesis
related to tissue blood flow.

Equation 6.1 is valid for any homogeneous geometry, provided the correct differential path-

length is used. The differential pathlength depends on the source-detector separation (ρ), the

tissue geometry, and the baseline tissue optical properties (µ0a, µ′0s ) [10, 79]. For the important

special case of the semi-infinite homogeneous geometry (Figure 6.1A), the differential path-

length is given by [94]

L ≈ 3µ′0s ρ
2

2
(

ρ
√

3µ0aµ
′0
s + 1

) . (6.2)

A drawback of the Modified Beer-Lambert law is that it only determines changes in hemoglobin

concentrations. For measurement of absolute oxy- and deoxy-hemoglobin concentrations, a pho-

ton diffusion model is commonly used. Formally, the detected light intensity is directly propor-

tional to the photon diffusion equation Green’s function for the appropriate tissue geometry [79],

i.e., Φ(ρ), which depends on the tissue optical properties (µa, µ′s). Note that the proportionality

constant between the measured light intensity ,I(ρ), and the photon diffusion Green’s function,

Φ(ρ), is the so-called light coupling coefficient to tissue for the source-detector pair. For semi-

infinite homogeneous tissue, the continuous-wave photon diffusion equation Green’s function
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is [79,123]

Φ(ρ) =
1

4π





exp
(

−r1
√

3µa/ℓtr

)

r1
−

exp
(

−rb
√

3µa/ℓtr

)

rb



 . (6.3)

Here,ℓtr = 1/(µa + µ′s), r1 = (ℓ2tr + ρ2)1/2, rb = [(2zb + ℓtr)
2 + ρ2]1/2, andzb = 2ℓtr(1 +

Reff )/(3(1 − Reff )), whereReff is the effective reflection coefficient that accounts for the

mismatch between the index of refraction of tissue (n) and the index of refraction of the non-

scattering medium bounding the tissue (nout), such as air [123]. A standard approach for abso-

lute tissue absorption monitoring in this geometry is to measureI(ρ) at multiple source-detector

separations, and then obtain an estimate ofµa from fitting these measured intensities to the semi-

infinite Green’s function solution (Equation 6.3). Required inputs for this fit are the light cou-

pling coefficients for each source-detector pair and the tissue scattering coefficient,µ′s. Knowl-

edge of the light coupling coefficients is typically obtained from phantom calibration [133,253],

andµ′s is assumed. The assumption ofµ′s is an obvious source of error for continuous-wave

DOS/NIRS. In more complex frequency-domain [101] and time-domain [201] DOS/NIRS mea-

surements, bothµa andµ′s can be uniquely determined from fitting these measurements to their

respective frequency-domain and time-domain Green’s functions [79].

To estimate blood flow, DCS quantifies the fast speckle intensity fluctuations of multiply

scattered coherent NIR light (coherence length> 5 m) induced by red blood cell motion (Fig-

ure 6.1). Specifically, the normalized intensity temporal autocorrelation function,g2(τ) ≡
〈I(t)I(t + τ)〉/〈I(t)〉2, is computed at multiple delay-times,τ , whereI(t) is the detected light

intensity at timet, and the angular brackets,〈〉, represent time-averages. A DCS blood flow

index,F , is ascertained from the decay ofg2(τ) (Figure 6.1C, discussed in more detail below).

The DCS blood flow index is directly proportional to tissue blood flow, and has been successfully

validated against a plethora of gold-standard techniques [149,182].

In analogy to DOS/NIRS, a DCS Modified Beer-Lambert law [12] relates differential changes

in a “DCS optical density,”i.e., ODDCS ≡ − log(g2(τ) − 1), to differential changes in tissue

blood flow index (F ), tissue absorption (µa), and tissue scattering (µ′s):

∆ODDCS = − log

(

g2(τ, ρ)− 1

g02(τ, ρ)− 1

)

≈ dF (τ)∆F + da(τ)∆µa + ds(τ)∆µ
′
s. (6.4)

The multiplicative weighting factorsdF (τ) ≡ ∂OD0
DCS/∂F , da(τ) ≡ ∂OD0

DCS/∂µa, and
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ds(τ) ≡ ∂OD0
DCS/∂µ

′
s, can be estimated analytically or numerically using the correlation

diffusion model applied to the appropriate geometry [12]. They are analogues of the differential

pathlength in the Modified Beer-Lambert law, but note their dependence on delay-time,τ . The

DCS optical density is about equally sensitive to blood flow and tissue scattering changes, but

less sensitive to tissue absorption changes [12]. If tissuescattering remains constant, and the

fractional absorption change is small compared to the bloodflow change, then∆ODDCS ≈
dF (τ)∆F . This is a system of equations,i.e., one equation for eachτ , that can be solved for

∆F in a least squares sense. For the special case of the semi-infinite homogeneous geometry,

the multiplicative weighting factor is given by [12]

dF (τ, ρ) =
6µ′0s

(

µ′0s + µ0a
)

k20τ

K0(τ)

[

exp
(

−K0(τ)r01
)

− exp
(

−K0(τ)r0b
)

exp
(

−K0(τ)r01
)

/r01 − exp
(

−K0(τ)r0b
)

/r0b

]

, (6.5)

whereK0(τ) = [3µ0a(µ
0
a + µ′0s )(1 + 2µ′0s k

2
0F

0τ/µ0a)]
1/2, r1 = (ℓ2tr + ρ2)1/2, k0 = 2πn/λ is

the magnitude of the light wave vector in the medium, andr1 andrb are defined in Equation 6.3.

The DCS Modified Beer-Lambert law has a similar drawback to DOS/NIRS in that it only

determines blood flow changes. To estimate the absolute blood flow index,F , a correlation dif-

fusion approach is used. Formally, the electric field (E(t)) autocorrelation function,G1(τ) ≡
〈E∗(t) ·E(t+τ)〉, is well modeled by the so-called correlation diffusion equation [23,24], which

can be solved analytically or numerically for tissue geometries of interest [24,79]. Tissue blood

flow is ascertained by fitting the solution for the normalizedelectric field autocorrelation func-

tion, g1(τ) = G1(τ)/G1(τ = 0), to the measured normalized intensity autocorrelation function

using the Siegert relation [168]:g2(τ) = 1 + β|g1(τ)|2, whereβ is a constant determined

primarily by experimental collection optics and source coherence.

For semi-infinite homogeneous tissue, the solution to the correlation diffusion equation is

[24,79]:

G1(τ) =
3

4πℓtr

[

exp (−K(τ)r1)

r1
− exp (−K(τ)rb)

rb

]

, (6.6)

whereK(τ) is defined in Equation 6.5, andr1, rb, andℓtr are defined in Equation 6.3.

A standard approach for blood flow monitoring with DCS in thisgeometry is to deriveg1(τ)

from measurements ofg2(τ) via the Siegert relation. Then, the semi-infinite correlation diffusion

solution (Equation 6.6) is fit tog1(τ) using a nonlinear minimization algorithm, and an estimate

of the blood flow index (F ) is obtained from the fit. As discussed above, these homogeneous
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head models do not distinguish cerebral hemodynamics from extra-cerebral hemodynamics, and

are thus prone to extra-cerebral contamination.

6.3 Probe Pressure Modulation Algorithm for Cerebral BloodFlow

Monitoring with DCS

Here we introduce our pressure modulation algorithm. The scheme employs DCS measure-

ments of the brain tissues at two probe pressures and two source-detector separations to reduce

extra-cerebral contamination in cerebral blood flow monitoring. To distinguish extra-cerebral

flow from cerebral flow, the head is modeled as a two-layer medium [24, 91, 106, 215], and the

source-detector separations are chosen such that detectedlight at the long separation (e.g., ρl = 3

cm) travels through both layers, but detected light at the short separation (e.g., ρs = 1 cm) is

predominantly confined to the extra-cerebral layer (Figure6.2A). Underlying this approach is

our previous work which showed that an increased probe pressure on the head is accompa-

nied by a decrease in extra-cerebral flow; cerebral blood flowis unchanged by probe pressure

variation [184]. Thus, the pressure-induced variation in the long-separation DCS signal (e.g.,

Figure 6.2B) is due only to changes in extra-cerebral flow. This extra-cerebral flow change, in

turn, is readily determined by the pressure-induced changemeasured in the short DCS separation

signal (e.g., Figure 6.2C) which can be analyzed using the semi-infinite medium approximation

(Equation 6.6).

We will show that the subject-specific relative contributions of extra-cerebral and cerebral

tissues to the long separation DCS signal can be determined from the measured pressure-induced

changes in the DCS signal at the long and short separations. Importantly, this patient specific

calibration with pressure modulation permits separation of the cerebral and extra-cerebral blood

flow components in all subsequent measurements.

The results derived in Sections 6.3.1 and 6.3.2 are for the special case of constant tissue

absorption and tissue scattering. In practice tissue scattering often remains roughly constant

during hemodynamic changes. Further, for many cerebral processes, blood flow changes by

a substantially larger fraction than absorption. For example, for the finger tapping functional

response [85],Fc/F
0
c ∼ 1.5, µa,c/µ0a,c ∼ 1.1 (atλ = 785 nm); in this case the flow contribution
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Figure 6.2:(A) Two-layer tissue model of the head, which is comprised of a semi-infinite bottom
layer (i.e., corresponding to the cortical regions of the brain) with a distinct blood flow index,
absorption coefficient, and scattering coefficient ofFc, µa,c, andµ′s,c, respectively, and a su-
perficial top layer (i.e., corresponding to extra-cerebralscalp and skull tissue) with thicknessℓ,
and distinct tissue properties denoted byFec, µa,ec, andµ′s,ec. The head is probed with a long
source-detector separation,ρl (yellow shading), and a short source-detector separation,ρs (red
shading), and the probe pressure against the head is varied.Increasing the probe pressure from
P 0 (blue curves) toP (red curves) induces a change in the DCS signal (g2(τ)) at both the long
separation (panel(B)) and the short separation (panel(C)). These signal changes arise entirely
from pressure-induced changes in extra-cerebral flow [184].

dominates the DCS signal change [12]. We derive the general case wherein tissue absorption

and scattering vary in Appendix 6.10.

6.3.1 Two-layer Modified Beer-Lambert Laws for Flow at Long and Short Sepa-

rations

To filter contamination from extra-cerebral tissues in blood flow measurements of cerebral tis-

sue, we use a two-layer Modified Beer-Lambert formulation for blood flow based on the DCS

measurement [12]. In analogy with the DOS/NIRS Modified Beer-Lambert law [10, 67, 130],

a “DCS optical density” for the long and short source-detector separations at delay-timeτ is

defined asODlong
DCS ≡ − log(g2(τ, ρl) − 1) andODshort

DCS ≡ − log(g2(τ, ρs) − 1), respectively.

Here,g2(τ, ρl) andg2(τ, ρs) are the measured long and short separation intensity autocorrela-

tion functions with cerebral and extra-cerebral DCS blood flow indicesFc andFec. Assuming

constant tissue absorption and scattering, the two-layer Modified Beer-Lambert laws for the long
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and short separations are [12]:

∆OD
long
DCS ≡ − log

[

g2(τ, ρl)− 1

g02(τ, ρl)− 1

]

= dF,c(τ, ρl)∆Fc + dF,ec(τ, ρl)∆Fec, (6.7)

∆ODshort
DCS ≡ − log

[

g2(τ, ρs)− 1

g02(τ, ρs)− 1

]

= dF,ec(τ, ρs)∆Fec, (6.8)

whereg02(τ, ρl) andg02(τ, ρs) are the “baseline” intensity autocorrelation functions atthe long

and short separations with cerebral and extra-cerebral DCSblood flow indicesF 0
c andF 0

ec (note

that the superscript “0” indicates baseline). The differential changes from baseline of cerebral

and extra-cerebral blood flow are∆Fc ≡ Fc−F 0
c and∆Fec ≡ Fec−F 0

ec, and the multiplicative

weighting factorsdF,c(τ, ρl) ≡ ∂OD
long,0
DCS /∂Fc anddF,ec(τ, ρl) ≡ ∂OD

long,0
DCS /∂Fec indicate the

relative sensitivity of the long separation DCS optical density variation to cerebral versus extra-

cerebral blood flow changes. For the short separation, the sensitivity of DCS optical density

variation to extra-cerebral blood flow changes isdF,ec(τ, ρl) ≡ ∂ODshort,0
DCS /∂Fec, and we as-

sume that because the short separation predominantly samples the extra-cerebral layer, the short

separation signal is not sensitive to cerebral blood flow changes.

Solving the system of Eqs. (6.7) and (6.8) for∆Fc, we obtain

∆Fc =
1

dF,c(τ, ρl)

[

∆ODlong
DCS − dF,ec(τ, ρl)

dF,ec(τ, ρs)
∆ODshort

DCS

]

. (6.9)

Notice that Equation 6.9 is a linearized implementation of the two-layer head model (Figure 6.2)

that enables rapid monitoring of cerebral blood flow changesin real time. This implementa-

tion requires only one DCS delay-timeτ for cerebral monitoring, but to ameliorate sensitivity

to noise, multiple delay-times can also be used. Then, Equation 6.9 becomes a system of linear

equations, i.e., one equation for each delay-time, which can be rapidly solved for∆Fc. Utilizing

Equation 6.9 in both the single and multiple delay-time implementations requires knowledge of

dF,c(τ, ρl) anddF,ec(τ, ρl)/dF,ec(τ, ρs). A key result of this paper is that these weighting fac-

tors can be estimated from “initial/baseline” DCS measurements acquired during probe pressure

modulation against the head.

6.3.2 Probe Pressure Modulation Calibration of DCS

A simple way to calibrate DCS for cerebral flow monitoring is to acquire long and short sep-

aration DCS measurements of the brain tissues at two probe pressures (i.e.,P , P 0). It is not
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necessary to know the exact magnitudes of the probe pressures against the head, and neither

probe pressure has to be high enough for there to be risk of patient discomfort. The key is

that changing the probe pressure fromP 0 to P induces a large enough change in extra-cerebral

blood flow such that both the long and short separation DCS signals change measurably (e.g., as

in Figure 6.2B,C).

6.3.2.1 Determination ofdF,ec(τ, ρl)/dF,ec(τ, ρs)

Recall that probe pressure modulation against the head affects extra-cerebral blood flow, but not

cerebral blood flow [184], i.e.,∆Fc = 0 from probe pressure changes. Thus, for relating DCS

measurements acquired at two different probe pressures, Eqs. (6.7) and (6.8) simplify to

∆ODlong,P
DCS ≡ − log

[

gP2 (τ, ρl)− 1

g02(τ, ρl)− 1

]

= dF,ec(τ, ρl)∆F
P
ec , (6.10)

∆ODshort,P
DCS ≡ − log

[

gP2 (τ, ρs)− 1

g02(τ, ρs)− 1

]

= dF,ec(τ, ρs)∆F
P
ec , (6.11)

wheregP2 (τ, ρl) andgP2 (τ, ρs) are the long and short separation intensity autocorrelation func-

tions acquired at pressureP wherein the cerebral and extra-cerebral flow indices areF 0
c and

FP
ec , and∆FP

ec ≡ FP
ec − F 0

ec is the pressure induced extra-cerebral flow change. Dividing Equa-

tion 6.10 by Equation 6.11 enables direct measurement of theratiodF,ec(τ, ρl)/dF,ec(τ, ρs), i.e.,

dF,ec(τ, ρl)

dF,ec(τ, ρs)
=

∆ODlong,P
DCS

∆ODshort,P
DCS

. (6.12)

Substituting Equation 6.12 into Equation 6.9, we obtain

∆Fc =
1

dF,c(τ, ρl)

[

∆OD
long
DCS − ∆OD

long,P
DCS

∆ODshort,P
DCS

∆ODshort
DCS

]

. (6.13)

To the extent that the two-layer model (Figure 6.2) accurately models the head, cerebral blood

flow monitoring obtained from Equation 6.13 will not be affected by extra-cerebral blood flow

changes. The assumptions used to derive Equation 6.13 are (1), probe pressure modulation has

no effect on cerebral blood flow, and (2), tissue absorption and scattering remain constant. In

Appendix 6.10, Equation 6.13 is extended to the more generalcase wherein tissue absorption

and scattering are changing, i.e., Equation 6.34. For accurate measurements of the magnitude of

the cerebral blood flow change, knowledge ofdF,c(τ, ρl) is also required.
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6.3.2.2 Determination of the weighting factordF,c(τ, ρl)

As we described previously [12], the multiplicative weighting factordF,c(τ, ρl) can be computed

by numerically taking the appropriate derivative of the two-layer correlation diffusion solution

(G1) [24,106]:

dF,c(τ, ρl) ≡
∂ODlong,0

DCS

∂Fc
= 2

∂

∂Fc

(

− log
[

G0
1(τ, ρl)

])

,

≈ 2

∆Fc
log

[

G1(τ, ρl, F
0
c −∆Fc/2, F

0
ec, µ

0
a,c, µ

0
a,ec, µ

′0
s,c, µ

′0
s,ec, ℓ)

G1(τ, ρl, F 0
c +∆Fc/2, F 0

ec, µ
0
a,c, µ

0
a,ec, µ

′0
s,c, µ

′0
s,ec, ℓ)

]

, (6.14)

where∆Fc/F
0
c = 10−5. Evaluating Equation 6.14 requires knowledge of the extra-cerebral

layer thickness (ℓ), the baseline flow levels (F 0
c , F 0

ec), and baseline tissue optical properties

(µ0a,c, µ
0
a,ec, µ

′0
s,c, µ

′0
s,ec).

Ideally, the extra-cerebral layer thickness is known froma priori anatomical information

(e.g., MRI scan), and the baseline tissue optical properties are measured with concurrent frequency-

domain or time-domain DOS/NIRS [108, 120, 156, 157, 208]. Then, estimates ofF 0
c andF 0

ec

are determined from simultaneously fitting the long separation intensity autocorrelation curves

measured at two pressures (g02(τ, ρl), g
P
2 (τ, ρl)) to the two-layer correlation diffusion solu-

tion [24, 106]. Important constraints used in this fit are that cerebral blood flow is the same for

both probe pressures, i.e.,∆FP
c = 0, and that the pressure-induced fractional extra-cerebral

blood flow change,∆FP
ec/F

0
ec, is determined from the short separation measurements (i.e.,

g02(τ, ρs), g
P
2 (τ, ρs)) via semi-infinite methods (Section 6.2). These constraints provided by

the pressure calibration data make the nonlinear optimization in the fit more tractable and less

sensitive to noise.

Note that if it is not feasible to measure baseline tissue optical properties concurrently, then

they need to be assumed based on published cerebral/extra-cerebral measurements in the liter-

ature [55, 108, 144, 221]. For some patients,a priori anatomical information may also not be

available, in which case the extra-cerebral layer thickness, ℓ, could be a third free parameter in

the two-layer fit. Although fitting for three free parametersinstead of two clearly makes the fit

more susceptible to noise and cross-talk, the fitting constraints provided by pressure calibration

still enable reasonable estimates ofF 0
c , F 0

ec, andℓ.
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An alternative approach for using the short separation datais to fit the semi-infinite corre-

lation diffusion solution tog02(τ, ρs) for F 0
ec and togP2 (τ, ρs) for FP

ec (see Section 6.2). When

using these absolute extra-cerebral flow indices as constraints in the two-layer fit to the long

separation data, there are only two free parameters (F 0
c , ℓ) to fit for instead of three (F 0

c , F 0
ec, ℓ).

However, the absolute extra-cerebral flow indices are sensitive to errors in extra-cerebral tissue

optical properties [141], source-detector separation, head curvature, and heterogeneities within

the scalp. From our experience, the first approach that utilizes robust fractional extra-cerebral

flow change measurements is more reliable.

6.3.3 Summary

Figure 6.3 is a flow chart depicting the steps in the probe pressure modulation algorithm for

filtering superficial tissue contamination in cerebral flow monitoring with DCS. In the “calibra-

tion stage” of the algorithm, intensity autocorrelation measurements at two probe pressures and

two source-detector separations are used to compute the ratio dF,ec(τ, ρl)/dF,ec(τ, ρs) (“calibra-

tion term 1”) and the long separation weighting factordF,c(τ, ρl) (“calibration term 2”). These

calibration terms are then employed in the “monitoring stage” to permit the rapid estimation of

cerebral flow changes (∆Fc). To obtain the fractional cerebral flow change from baseline, simply

divide∆Fc by the baseline cerebral flow index,F 0
c , obtained in the calibration stage. Although

two probe pressures is usually sufficient, acquiring DCS data at more than two probe pressures

constrains the nonlinear optimization in the two-layer fit for F 0
c , F 0

ec, andℓ even further. Pro-

vided that the probe pressures remain less than the venous pressure in the scalp (i.e.,Fec > 0),

then there is a distinct long separation autocorrelation curve for each probe pressure to simulta-

neously fit the two-layer model to. Thus, additional probe pressures yield additional data for the

two-layer fit in the calibration stage. To determine the ratio dF,ec(τ, ρl)/dF,ec(τ, ρs) with more

than two probe pressures (“calibration term 1”), evaluate Equation 6.12 for each probe pressure

and then take the average ratio over all pressures.
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Figure 6.3: Flow chart of probe pressure modulation algorithm for cerebral blood flow mon-
itoring (∆Fc) with DCS. In the “calibration stage”, baseline long and short separation inten-
sity autocorrelation functions measured at probe pressureP 0 (g02(τ, ρl), g

0
2(τ, ρs)) and at probe

pressureP 6= P 0 (gP2 (τ, ρl), g
P
2 (τ, ρs)) are used to calculate∆ODlong,P

DCS (Equation 6.10) and

∆ODshort,P
DCS (Equation 6.11). These parameters are in turn used to evaluate “calibration term 1”

(Equation 6.12). “Calibration term 2” is the numerical evaluation ofdF,c(τ, ρl) (Equation 6.14),
which requires knowledge of the baseline cerebral and extra-cerebral flow indices (F 0

c ,F 0
ec) and

the extra-cerebral layer thickness (ℓ). F 0
c , F 0

ec, andℓ are extracted from a simultaneous fit of
g02(τ, ρl) andgP2 (τ, ρl) to the two-layer correlation diffusion model given the constraints that
pressure modulation does not change cerebral flow (∆FP

c = 0) and that the pressure-induced
fractional extra-cerebral flow change (∆FP

ec/F
0
ec) is determined from the short separation mea-

surements using semi-infinite methods (Section 6.2). For cases wherea priori knowledge of
the extra-cerebral layer thickness is available, this two-layer fit is even more constrained. In the
“monitoring stage”, calibration terms 1 and 2 are employed to convert subsequent measurements
of differential long and short separation DCS optical density changes, i.e.,∆ODlong

DCS (Equa-
tion 6.7) and∆ODshort

DCS (Equation 6.8), to differential cerebral flow changes via Equation 6.13.
Note that the baseline used for the calibration stage and forthe monitoring stage is the same.
Finally, for this paper, we utilized all of the delay times satisfying the limit g02(τ, ρl) > 1.25 to
solve Equation 6.13.
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6.3.4 Correlation noise sensitivity

The probe pressure modulation scheme depicted in Figure 6.3is a fast, patient-specific imple-

mentation of the two-layer model for cerebral flow monitoring, but a big drawback is a high

sensitivity to correlation noise, especially at short delay-times. This sensitivity arises from the

fact that correlation noise is largest at short delay-times[276], while the DCS optical density

perturbations are typically small. Combined, these opposing trends with decreasing delay-time

imply that the measured DCS optical density perturbations can easily be dominated by correla-

tion noise instead of flow changes for non-optimal measurement conditions. Specifically, let’s

consider a key step in the algorithm wherein calibration term 1 (Equation 6.12) is computed.

Compared to longer delay-times, the perturbation∆ODlong,P
DCS at shortτ is less sensitive to the

superficial blood flow changes induced by probe pressure modulation. This is because the rapid

decays of the temporal autocorrelation signal at shortτ are mostly due to long light paths that

spend less time in superficial tissues than the short light paths contributing to slow decays (long

τ ) [186,221]. Therefore, the computation of calibration term 1 at shortτ is prone to correlation

noise. Substantial noise contamination can lead to a significant systematic error in subsequent

cerebral flow monitoring via Equation 6.13.

Another noise-related issue is that the autocorrelation signals at the long and short separa-

tions decay at substantially different rates. Thus, at delay-times where the long separation signal

has decayed significantly, the short separation signal has decayed much less. At these delay-

times, the differences in short separation decays induced by extra-cerebral flow changes are less

pronounced than they are at longer delay-times, which meansthe measurement of∆ODshort
DCS is

also prone to correlation noise.

One way to address the correlation noise issue is to evaluateEquation 6.13 for∆Fc only

using longer delay-times where the DCS optical density perturbations are larger. However, ex-

cluding shortτ is not desirable because it is the shortτ that are most sensitive to cerebral flow.

Further, the noise-related improvements associated with longerτ are partially canceled from

using fewer delay-times to solve Equation 6.13.

A more robust approach for handling correlation noise is to solve Equation 6.7 directly for
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∆Fc:

∆Fc =
1

dF,c(τ, ρl)

[

∆ODlong
DCS − dF,ec(τ, ρl)∆Fec

]

, (6.15)

wheredF,c(τ, ρl) is given by Equation 6.14,dF,ec(τ, ρl) ≡ ∂ODshort,0
DCS /∂Fec is given by the

extra-cerebral analogue of Equation 6.14, and∆Fec is obtained from short separation measure-

ments via semi-infinite techniques (Section 6.2). Pressurevariation is still used in the imple-

mentation of Equation 6.15 via the two-layer fit forF 0
c , F 0

ec, andℓ (Figure 6.3). These baseline

properties are inputs in the evaluation ofdF,c(τ, ρl) anddF,ec(τ, ρl). Then, to determine the

extra-cerebral flow change, use the relation∆Fec = F 0
ec × rFec, whererFec ≡ ∆Fec/F

0
ec is the

fractional extra-cerebral flow change obtained from fittingthe semi-infinite model to the short

separation autocorrelation curves. Equation 6.15 is less sensitive to correlation noise, but more

reliant on the accuracy of the baseline tissue properties for filtering superficial tissue contamina-

tion.

6.4 Probe Pressure Modulation Algorithm for Cerebral BloodFlow

Monitoring with DCS: Practical Example

As a practical example for using this pressure modulation algorithm in the clinic, let’s consider

cerebral blood flow monitoring during head-of-bed (HOB) position changes in stroke patients

[86, 97] (Figure 6.4). To maximize perfusion at the stroke site and the surrounding ischemic

penumbra, flat head-of-bed positioning (Figure 6.4B) is often used at the clinic. Changing the

head-of-bed angle from a baseline position of30◦ (Figure 6.4A) to a flat position of0◦ does

increase flow in the majority of patients. However, in a significant minority of patients (25%),

a paradoxical decrease in flow was observed [86, 97]. Thus, optical cerebral flow monitoring

with the probe pressure modulation algorithm has potentialfor optimizing head-of-bed position

in individual patients.

To determine cerebral flow changes induced by HOB position changes, the first step in the

calibration stage is to acquire long and short separation intensity autocorrelation measurements

at the30◦ HOB position with a probe pressureP (e.g.,P = 20 mm Hg) applied against the

scalp, i.e.,gP2 (τ, ρl), g
P
2 (τ, ρs). Step 2 is to decrease the probe pressure against the scalp to
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Figure 6.4: Head-of-bed (HOB) positioning at(A) the baseline condition of30◦ and (B) the
perturbed condition of0◦ (flat). (C) Schematic of two-layer geometry of the head probed with
a long separation,ρl, and two short separations,ρs. The downward and upward pointing arrows
indicate DCS source and detector positions, respectively.

P 0 (e.g.,P 0 = 5 mm Hg). Then, at the new probe pressureP 0 and the30◦ HOB position,

acquire a second set of long and short separation intensity autocorrelation measurements, i.e.,

g02(τ, ρl), g
0
2(τ, ρs). Using these two sets of measurements, compute calibrationterms 1 and

2 from Figure 6.3. These calibration terms are employed in the monitoring stage to determine

cerebral flow changes from baseline (Figure 6.3). Continuing with our example, change the

HOB position from30◦ to 0◦, and acquireg2(τ, ρl) andg2(τ, ρs), which are the long and short

separation autocorrelation measurements at the0◦ HOB position. The cerebral flow change from

the HOB change, i.e.,∆Fc ≡ Fc(0
◦)− F 0

c (30
◦), is given by Equation 6.13.

To the extent that the two-layer model accurately models thehead, the cerebral flow changes

calculated in this manner will not be contaminated by flow in superficial tissues. The two-

layer model approximates the head as a spatially uniform superficial tissue layer above a semi-

infinite cerebral layer. In practical measurements of the head, though, interference from super-

ficial tissues in cerebral monitoring is often spatially inhomogeneous across the surface of the

scalp [105, 109]. One way to reduce error from these superficial heterogeneities is to probe the

superficial tissue volume above the cerebral region of interest with multiple short separations, as

shown in Figure 6.4C. As with using more than two probe pressures (Section 6.3.3), it is straight-

forward to extend the probe pressure modulation algorithm to handle multiple short separations.

In our measurements, we followed the steps outlined in Figure 6.3 for each short separation sep-

arately to obtain an estimate of the cerebral flow change. We then averaged the two estimates of
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∆Fc obtained from using the two short separations together.

6.5 Probe Pressure Modulation Algorithm for Oxygenation Moni-

toring with DOS/NIRS

In Section 6.3, we developed a probe pressure modulation paradigm for DCS that filters contam-

ination from superficial tissues in cerebral blood flow measurements. An analogous probe pres-

sure modulation scheme can be used to calibrate continuous wave DOS/NIRS for monitoring of

cerebral oxy-hemoglobin (HbOc) and deoxy-hemoglobin (HbRc) concentrations. This scheme

employs a two-layer Modified Beer-Lambert framework wherein tissue scattering is constant.

6.5.1 Two-layer Modified Beer-Lambert Laws for Absorption at Long and Short

Separations

Following analogous steps to those outlined for flow monitoring in Section 6.3, DOS/NIRS

measurements of light intensity are made at a long source-detector separation,I(ρl), and a short

source-detector separation,I(ρs). Using a two-layer model of the head, the DOS/NIRS two-

layer Modified Beer-Lambert law analogues of Eqs. (6.7) and (6.8) are [91,130]:

∆ODlong ≡ − log

[

I(ρl)

I0(ρl)

]

= Lc(ρl)∆µa,c + Lec(ρl)∆µa,ec, (6.16)

∆ODshort≡ − log

[

I(ρs)

I0(ρs)

]

= Lec(ρs)∆µa,ec. (6.17)

The cerebral and extra-cerebral tissue absorption and scattering coefficients that give rise to the

measured intensitiesI(ρl) andI(ρs) areµa,c, µa,ec, µ′s,c, andµ′s,ec, respectively. Similarly, at the

baseline measured intensitiesI0(ρl) andI0(ρs), the baseline cerebral and extra-cerebral tissue

absorption and scattering coefficients areµ0a,c, µ
0
a,ec, µ

′0
s,c, andµ′0s,ec, respectively. The differen-

tial changes of cerebral and extra-cerebral absorption from baseline are∆µa,c ≡ µa,c − µ0a,c

and ∆µa,ec ≡ µa,ec − µ0a,ec. Finally, the partial pathlengthsLc(ρl) ≡ ∂ODlong,0/∂µa,c,

Lec(ρl) ≡ ∂ODlong,0/∂µa,ec, andLec(ρs) ≡ ∂ODshort,0/∂µa,ec are the mean pathlengths that

the detected light travels through the cerebral (c) and extra-cerebral (ec) layers [91, 130, 215].

It is assumed that detected light from the short separation does not sample the brain, and con-

sequentially,Lc(ρs) = 0 andLec(ρs) is approximately the semi-infinite differential pathlength
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given by Equation 6.2.

Solving Eqs. (6.16) and (6.17) for∆µa,c, we obtain

∆µa,c =
1

Lc(ρl)

[

∆ODlong − Lec(ρl)

Lec(ρs)
∆ODshort

]

. (6.18)

The key advantage of using probe pressure modulation with DOS/NIRS is that it enables direct

measurement of the ratioLec(ρl)/Lec(ρs).

6.5.2 Probe Pressure Calibration of DOS/NIRS for Cerebral Absorption Moni-

toring

Analogously to Section 6.3.2.1, the ratioLec(ρl)/Lec(ρs) can be directly measured from differ-

ential short and long separation optical density changes between perturbed and baseline states

wherein only the extra-cerebral absorption is different [91]. Probe pressure modulation is a

simple way to induce controlled extra-cerebral absorptionchanges without affecting cerebral

absorption. For relating a perturbed state at probe pressure P to the baseline state at probe

pressureP 0, Eqs. (6.16) and (6.17) simplify to

∆ODlong,P ≡ − log

[

IP (ρl)

I0(ρl)

]

= Lec(ρl)∆µ
P
a,ec, (6.19)

∆ODshort,P ≡ − log

[

IP (ρs)

I0(ρs)

]

= Lec(ρs)∆µ
P
a,ec, (6.20)

whereIP (ρl) andIP (ρs) are the measured intensities at probe pressureP , and∆µPa,ec ≡ µPa,ec−
µ0a,ec is the pressure-induced extra-cerebral absorption change.

Dividing Equation 6.19 by Equation 6.20 and then substituting the result into Equation 6.18,

we obtain

∆µa,c =
1

Lc(ρl)

[

∆ODlong − ∆ODlong,P

∆ODshort,P ∆ODshort
]

. (6.21)

Here, intensity measurements at long and short separationsalong with initial calibration mea-

surements at two probe pressures determines∆µa,c within a multiplicative proportionality con-

stant,1/Lc(ρl). For accurately estimating the magnitude of the cerebral absorption change,

Lc(ρl) is calculated by numerically computing the derivative of the continuous wave two-layer
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photon diffusion Green’s function,Φ(ρl) [157,212], evaluated at the baseline tissue optical prop-

erties:

Lc(ρl) =
∂

∂µa,c

(

− log[Φ0(ρl)]
)

≈ 1

∆µa,c
log

[

Φ(ρl, µ
0
a,c −∆µa,c/2, µ

0
a,ec, µ

′0
s,c, µ

′0
s,ec, ℓ)

Φ(ρl, µ0a,c +∆µa,c/2, µ0a,ec, µ
′0
s,c, µ

′0
s,ec, ℓ)

]

,

(6.22)

where∆µa,c/µ0a,c = 10−5. The Green’s functionΦ(ρl) can be evaluated using the analytical

two-layer solution, or it can also be evaluated numericallyusing Monte Carlo techniques [255].

The computation ofLc(ρl) requires knowledge ofµ0a,c, µ
0
a,ec, µ

′0
s,c. µ

′0
s,ec, andℓ. As described

in Section 6.3.2.2, ideally the extra-cerebral layer thickness is knowna priori from anatomi-

cal information, and the tissue baseline optical properties are measured (e.g., with time-domain

techniques). Ifa priori anatomical information and instrumentation for measuringbaseline op-

tical properties is not available, then the baseline optical properties need to be assumed. The

extra-cerebral layer thickness can either also be assumed or estimated from the two-layer fit of

DCS data at multiple probe pressures (Section 6.3.2.2).

Cerebral absorption determined from Equation 6.21 will notbe affected by extra-cerebral

absorption changes to the extent that the two-layer model accurately models the head. Figure 6.5

is a flow chart summarizing the DOS pressure modulation algorithm for monitoring cerebral

absorption changes. Note that this algorithm can be generalized for calibration with more than

two probe pressures and monitoring with multiple short separations in an exactly analogous

manner to that described in Sections 6.3.3 and 6.4.

6.5.3 Hemoglobin Monitoring with Multispectral DOS/NIRS

The cerebral tissue absorption coefficient depends linearly on the concentrations of tissue chro-

mophores. With NIR light, changes in cerebral absorption predominantly arise from changes

in cerebral oxygenated hemoglobin (HbOc) and de-oxygenated hemoglobin (HbRc) concentra-

tions, such that [79]

∆µa,c(ρl, λ) ≈ εHbO(λ)∆HbOc + εHbR(λ)∆HbRc. (6.23)

Here,εHbO(λ) andεHbR(λ) are wavelength-dependent extinction coefficients for oxygenated

hemoglobin and de-oxygenated hemoglobin, which are both known and tabulated as a function
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Figure 6.5: Flow chart of probe pressure modulation algorithm for cerebral tissue absorption
monitoring (∆µa,c) with DOS/NIRS. In the calibration stage, baseline long andshort separa-
tion intensities measured at probe pressureP 0 (I0(ρl), I0(ρs)) and at probe pressureP 6= P 0

(IP (ρl), IP (ρs)) are used to calculate∆ODlong,P (Equation 6.19) and∆ODshort,P (Equa-
tion 6.20), which are then used to estimateLec(ρl)/Lec(ρs) (“DOS Calibration term 1). “DOS
Calibration term 2” is the numerical evaluation ofLc(ρl) (Equation 6.22), which requires knowl-
edge of the baseline tissue optical properties and the extra-cerebral layer thickness (ℓ). Ide-
ally, these baseline tissue properties are measured (see Section 6.5.2). In the monitoring stage,
DOS Calibration terms 1 and 2 are employed to convert subsequent measurements of differential
long and short separation optical density changes, i.e.,∆ODlong (Equation 6.16) and∆ODshort

(Equation 6.17), to differential cerebral absorption changes via Equation 6.21. Note that the
baseline used for the calibration stage and for the monitoring stage is the same.
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of wavelengthλ [207], and∆HbOc and∆HbRc are differential changes in cerebral oxygenated

and de-oxygenated hemoglobin concentration from baseline. For multispectral cerebral absorp-

tion monitoring with Equation 6.21, Equation 6.23 becomes asystem of equations, i.e., one

equation for each wavelength, which can then be solved for∆HbOc and∆HbRc. A minimum

of two wavelengths is required to solve for these two chromophores.

Finally, the baseline cerebral hemoglobin concentrationsHbO0
c andHbR0

c can be calculated

from multispectral measurements ofµ0a,c(λ), which in turn enables the computation of cerebral

tissue oxygen saturation,StO2,c [79]:

StO2,c =
HbO0

c +∆HbOc

HbO0
c +HbR0

c +∆HbOc +∆HbRc
.

As many researchers have discussed, combining DOS/NIRS measurements ofStO2,c with DCS

measurements of cerebral blood flow (Fc) permits monitoring of cerebral oxygen metabolism

[28,62].

6.6 Experimental Methods

The pressure modulation algorithms described above were successfully applied to both simu-

lated data with noise andin vivo measurements in healthy adult volunteers to measure cerebral

hemodynamic changes. Each of the two adults measured provided written consent, and all pro-

tocols/procedures were approved by the Institutional Review Board at the University of Pennsyl-

vania. One adult was asked to do finger tapping, which inducesa localized cerebral blood flow

increase in the motor cortex along with a more global extra-cerebral flow increase from systemic

effects [26,166,237]. The other adult sat comfortably while we acquired data at several different

probe pressures against the scalp to induce graded scalp ischemia. As discussed above, probe

pressure modulation changes extra-cerebral flow while cerebral flow remains constant [184].

The instrumentation used for thein vivo measurements are described in Appendix 6.11, and the

measurement protocols are explained in Sections 6.6.1 and 6.6.2. We then discuss the generation

of simulated data in Section 6.6.3.
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6.6.1 Finger Tapping Protocol

Throughout the finger tapping measurement, the subject lay supine on a bed. First, absolute

baseline optical properties over the subject’s motor cortex (Figure 6.6A) were measured with a

multiple-distance frequency domain technique [133,253].Specifically, a commercial frequency-

domain ISS Imagent (ISS Medical, Champaign, IL, USA) was connected to a multiple-distance

probe (ISS Medical,ρ = 2, 2.5, 3, 3.5 cm). Prior to the motor cortex measurement, theinstru-

ment was first calibrated on a solid silicon phantom (ISS Medical) with known optical prop-

erties [133, 253]. We used these measurements of the bulk average optical properties over the

sampled tissue volume for both the cerebral and extra-cerebral layers.

Then, the cerebral blood flow response to finger tapping was monitored with a DCS optical

probe (ρl = 3.0 cm,ρs = 1.0 cm) secured over the motor cortex (Figure 6.6A) with double-sided

medical tape (3M 1509, Converters Inc., Huntingdon Valley,PA, USA) and an ACE bandage

wound around the head. The subject’s heart rate was also monitored in parallel with a pulse ox

(Radical TM, Masimo, Irvine, CA, USA) attached to his left index finger.

With the probes in place, an initial “pressure calibration”(Figure 6.3) was performed by

gently pressing down on the probes with the palm of the hand, as depicted in Figure 6.6B. Then,

the subject executed five finger tapping trials consisting of40-second intervals of finger tapping

separated by 60-second rest intervals (Figure 6.6B). During finger tapping, the subject tapped

all four fingers of the right hand against the thumb at 3 Hz, in time with an audible cuing signal

provided by a metronome.

6.6.2 Graded Scalp Ischemia Protocol

As with the finger tapping measurement (Section 6.6.1), the subject’s baseline absolute optical

properties over the left forehead were measured first. Then,as the subject sat comfortably, an

optical probe (Figure 6.4C) with one long separation (ρl = 3.0 cm) and two short separations

(ρs = 1.0 cm) was placed on the subject’s left forehead and secured with a blood pressure

arm cuff (Soma Technology, Bloomfield, CT, USA) wound aroundthe head (Figure 6.7A). The

pressure cuff was inflated and maintained at the desired air pressure with a Zimmer ATS-1500

tourniquet system (Soma Technology). DCS measurements were acquired at five different probe
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Figure 6.6:(A) To measure the cerebral blood flow response to finger tapping,a DCS optical
probe (ρl = 3.0, ρs = 1.0 cm) was secured over the hand knob area of the motor cortex,
which is slightly anterior to the C3 position in the 10-20 EEGcoordinate system [150]. The
C3 position lies2/5 of the distance between the vertex and the preaurical point (i.e., 3-4 cm
down from vertex), and the vertex is the halfway point on the curve connecting the nasion to the
inion ( 17-18 cm from nasion). The subject’s heart rate was also monitored with a pulse ox.(B)
Schematic showing the timeline of the finger tapping (FT) measurement. The subject did five
blocks of finger tapping (i.e., tapping all four fingers of theright hand against the thumb) at 3 Hz.
Prior to finger tapping, baseline absolute optical properties were measured over the measurement
location depicted in part (A) (see main text), and the probe pressure was temporarily increased
by gently pressing down on the probes with the palm of the hand.

pressures against the scalp (i.e., five different extra-cerebral blood flow levels) ranging from 15

mm Hg to 40 mm Hg (Figure 6.7B). Here, the calculation of cerebral flow involved averaging

over the measured signals acquired at both short separations, as described in Section 6.4.

6.6.3 Simulated Data

For light wavelengthλ = 785 nm, we generated simulated intensity autocorrelation func-

tions (DCS) and light intensities (DOS/NIRS) at source-detector separations ofρl = 3 cm and

ρs = 0.7 cm for two types of hemodynamic perturbations. Simulated DCS data sets were

obtained for the special cases of (1), varying cerebral flow while extra-cerebral flow remains

constant, and (2), varying extra-cerebral flow while cerebral flow remains constant. Similarly,

simulated DOS/NIRS intensity data sets were obtained for the special cases of (1), varying cere-

bral absorption while extra-cerebral absorption remains constant, and (2), varying extra-cerebral

absorption while cerebral absorption remains constant. The simulated intensity autocorrelation
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Figure 6.7:(A) A blood pressure cuff wound around the head was used to uniformly adjust the
pressure of the optical probe against the forehead.(B) DCS measurements were made at five
different probe pressures against the scalp.

functions were generated from adding correlation noise [276] to 2-layer solutions of the corre-

lation diffusion equation [24, 106], while simulated DOS/NIRS intensities were generated from

adding Gaussian noise to 2-layer solutions of the photon diffusion equation [157,212].

Specifically, baseline tissue optical properties and tissue blood flow levels in the simulated

data were chosen to be representative of the head, i.e.,µ0a,c = 0.16, µ0a,ec = 0.12, µ′0s,c = 6,

µ′0s,ec = 10 cm−1; F 0
c = 1.4 × 10−8, F 0

ec = 1.4 × 10−9 cm2/s ; ℓ = 1.2 cm (see Figure 6.2;

optical properties from Ref. [55], extra-cerebral flow fromRef. [184], cerebral to extra-cerebral

flow ratio from Ref. [250], and the extra-cerebral layer thickness from averaging across MRI

measurements in 9 adult volunteers (Durduranet al, unpublished)). In the DCS simulations,

tissue optical properties remained constant, and the addedcorrelation noise was derived from a

correlation noise model [276] evaluated at DCS intensitiesof 50k and100k photons a second

for the long and short separations, and an integration time of 2.5 seconds. The DCS signal for

each pair of cerebral and extra-cerebral flow levels in the data sets were obtained from averaging

acrossN = 100 simulated autocorrelation functions with noise. Finally,to simulate an increased

probe pressure during the calibration stage of the measurement (Figure 6.3), the extra-cerebral

blood flow was decreased by30% from baseline.

In the DOS/NIRS simulations, tissue optical scattering remained constant, and the added

light intensity noise was derived from a Gaussian noise model (SNR ≡ µ/σ = 100). The

DOS/NIRS signal for each pair of cerebral and extra-cerebral tissue absorption coefficients in
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the data sets were obtained from averaging acrossN = 100 simulated intensities, and the extra-

cerebral tissue absorption was decreased by15% from baseline to simulate the increased probe

pressure during the calibration stage (Figure 6.5).

6.7 Results

6.7.1 Validation with simulated data

We tested the pressure modulation algorithms (Figs. 6.3, 6.5) on the simulated data sets de-

scribed in Section 6.6.3. The cerebral blood flow and tissue absorption changes computed with

the pressure modulation algorithms are compared to the semi-infinite blood flow and tissue ab-

sorption changes (Section 6.2) in Figure 6.8. Since the short separation measurements predomi-

nantly sample the extra-cerebral layer, the semi-infinite hemodynamic changes obtained from the

short separation data agree well with the true extra-cerebral hemodynamic changes. The long

separation measurements, however, sample both cerebral and extra-cerebral tissues. Substan-

tial signal contamination from the extra-cerebral tissuesinduced substantial errors in the long

separation semi-infinite estimates of cerebral flow and absorption (Figure 6.8). The pressure

modulation algorithms, though, successfully filtered muchof this extra-cerebral contamination

from the measured signals, and consequentially recovered cerebral hemodynamics with higher

accuracy (Figure 6.8). Note that in the flow pressure modulation algorithm, we utilized 42 delay-

times ranging fromτ = 0.2 µs to τ = 35 µs to evaluate Equation 6.13 for∆Fc. All of these

delay-times satisfied the limitg02(τ, ρl) > 1.25.

Interestingly, comparing panels (A) and (B) with (C) and (D)in Figure 6.8, it is evident that

the semi-infinite DOS/NIRS calculation is less sensitive tothe brain than the semi-infinite DCS

calculation [12,221].

6.7.2 Validation with graded scalp ischemia

As described in Section 6.6.2, we acquired DCS measurementson the forehead of a healthy adult

volunteer during graded scalp ischemia. The subject’s baseline cerebral flow, extra-cerebral flow,

and extra-cerebral layer thickness obtained from the calibration stage of the pressure modulation

algorithm wereF 0
c = 4.53 × 10−8 cm2/s, F 0

ec = 2.23 × 10−9 cm2/s, andℓ = 1.35 cm,
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Figure 6.8: The DCS and DOS/NIRS pressure modulation algorithms (Figs. 6.3, 6.5) were
utilized to calculate cerebral blood flow and tissue absorption changes from simulated measure-
ments on the head acquired at long and short separations ofρl = 3 cm andρs = 0.7 cm. These
pressure algorithm results are then compared with the homogeneous semi-infinite model esti-
mates of blood flow and tissue absorption computed from the long separation data and from
the short separation data. The simulated data sets were generated from adding noise to two-
layer solutions of the correlation diffusion equation (DCS) and the photon diffusion equation
(DOS/NIRS) (see Section 6.6.3).(A) Calculated fractional cerebral blood flow changes plotted
against the actual cerebral blood flow change in “DCS simulated data set 1” (i.e., extra-cerebral
blood flow remains constant).(B) Calculated fractional cerebral flow changes plotted against
the actual extra-cerebral blood flow change in “DCS simulated data set 2” (i.e., cerebral blood
flow remains constant).(C) Calculated fractional cerebral absorption changes plotted against the
actual cerebral absorption change in “DOS/NIRS data set 1” (i.e., extra-cerebral absorption re-
mains constant).(D) Calculated fractional cerebral absorption changes plotted against the actual
extra-cerebral absorption change in “DOS/NIRS data set 2” (i.e., cerebral absorption remains
constant). Notice that the pressure algorithm calculations of cerebral changes are substantially
less sensitive to extra-cerebral hemodynamics than the semi-infinite calculations.
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Figure 6.9: DCS measurements were acquired on the forehead of a healthy adult volunteer at
multiple probe pressures against the head (15 − 40 mm Hg). The optical probe (Figure 6.4C)
consisted of one long source-detector separation (ρl = 3 cm) and two short source-detector
separations (ρs = 1 cm). (A) Measured intensity autocorrelation curves employed in thecali-
bration stage of the probe pressure modulation algorithm (Figure 6.3) plotted against delay-time
τ . The long separation autocorrelation curvesg02(τ, ρl) andgP2 (τ, ρl) are the temporally aver-
aged signals across the shaded gray and yellow regions of panel (B), respectively. Similarly,
the curvesg02(τ, ρs) andgP2 (τ, ρs) are temporally averaged over the same intervals and averaged
across both short separations. The solid red lines are the simultaneous two-layer pressure cali-
bration fit (Section 6.3.2.2) tog02(τ, ρl) andgP2 (τ, ρl) given the constraints thatFP

c = F 0
c and

thatFP
ec/F

0
ec = 0.57. Note that the latter constraint was obtained from the shortseparation mea-

surements using semi-infinite methods. The extracted baseline parameters from the two-layer
fit areF 0

c = 4.53 × 10−8 cm2/s,F 0
ec = 2.23 × 10−9 cm2/s, andℓ = 1.35 cm. (B) Temporal

fractional flow changes computed with the DCS pressure modulation algorithm and computed
with semi-infinite techniques. These fractional flow curvesare smoothed via a moving average
window of size 3 frames (15 seconds). Notice that the cerebral blood flow change computed
with the two-layer DCS Modified Beer-Lambert law is not affected by the extra-cerebral changes
induced from varying probe pressure.
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respectively (Figure 6.9A). Further, the baseline DCS signal intensities for the long and short

separations were35k and170k photons a second, and the measured baseline optical properties

over the forehead atλ = 785 nm areµ0a = 0.12 andµ′0s = 8 cm−1. We then monitored

cerebral blood flow at several different probe pressures against the head using the DCS pressure

modulation algorithm and the semi-infinite model (Figure 6.9B). The extra-cerebral blood flow

determined from applying the semi-infinite model to the short separation data decreased steeply

with increasing probe pressure, until it was close to zero atP = 40 mm Hg. Importantly,

the long separation semi-infinite estimate of cerebral blood flow also decreased substantially

with increasing probe pressure, though not as severely as the extra-cerebral flow. This apparent

change in cerebral flow is due to extra-cerebral contamination in the long separation signal from

the pressure-induced extra-cerebral flow changes. The DCS pressure modulation algorithm,

though, successfully filtered the extra-cerebral contamination from the long separation signal,

and the computed cerebral flow was not affected by probe pressure changes.

Important notes are that the ‘robust noise” formulation of the DCS pressure modulation

algorithm was used (Section 6.3.4) to obtain the curve in Figure 6.9B. Further, pressure-induced

extra-cerebral absorption changes, determined from the short separation signal intensity changes

via Equation 6.17, were incorporated into the computation of cerebral flow (e.g., Equation 6.29).

Increasing the probe pressure from baseline to 40 mm Hg decreasedµa,ec by 25%. Cerebral flow

monitoring with the DCS pressure modulation algorithm wherein constant absorption is assumed

(i.e., Equation 6.15) resulted in an erroneous calculated increase in cerebral flow of10% at 40

mm Hg.

6.7.3 Validation with in vivo finger tapping data

As anotherin vivo test, we used the DCS pressure modulation algorithm (Figure6.3) to mea-

sure the cerebral flow increase induced by the finger tapping task in a healthy volunteer (Sec-

tion 6.6.1). The measured baseline optical properties overthe motor cortex atλ = 785 nm were

µ0a = 0.12 andµ′0s = 8 cm−1, the baseline DCS signal intensities for the long and short sep-

arations were18k and140k photons a second, and the baseline heart rate was 72 bpm. In the

calibration stage of this measurement, probe pressure was increased by manually pressing down

on the probe with the palm of the hand instead of using a blood pressure cuff wrapped around
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Figure 6.10: DCS measurements at one long source-detector separation (ρl = 3 cm) and one
short source-detector separation (ρs = 1 cm) were acquired over the motor cortex of a healthy
adult volunteer while he performed finger tapping (Figure 6.6A). (A) Measured intensity auto-
correlation curves employed in the calibration stage of theprobe pressure modulation algorithm
(Figure 6.3) plotted against delay-timeτ . These curves are temporally averaged signals across
the 60 second “baseline” and “increased probe pressure” intervals indicated in Figure 6.6B.
The solid red lines are the simultaneous two-layer pressurecalibration fit (Section 6.3.2.2) to
g02(τ, ρl) andgP2 (τ, ρl) given the constraints thatFP

c = F 0
c and thatFP

ec/F
0
ec = 0.44, where

the extra-cerebral constraint was obtained fromg02(τ, ρs) andgP2 (τ, ρs) via semi-infinite meth-
ods. The extracted baseline parameters from the two-layer fit areF 0

c = 1.95 × 10−8 cm2/s,
F 0
ec = 3.08 × 10−9 cm2/s, andℓ = 1.05 cm. (B) Measured finger tapping functional responses

(mean± SE acrossN = 5 trials) for cerebral blood flow (rFc = ∆Fc/F
0
c ), extra-cerebral blood

flow (rFec = ∆Fec/F
0
ec), and heart rate plotted against time. The finger tapping stimulus was

between the two green vertical lines. Here,rFc was computed with the DCS pressure modu-
lation algorithm (Equation 6.15),rFec was determined from applying semi-infinite methods to
the short separation signal (Section 6.2), and the heart rate was measured with a pulse ox on the
finger. Further, the blue dashed line (rF (ρl)) is the mean flow response computed from applying
the semi-infinite model to the long-separation signal.
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the head. The subject’s baseline cerebral flow, extra-cerebral flow, and extra-cerebral layer thick-

ness obtained from the two-layer fit wereF 0
c = 1.95× 10−8 cm2/s,F 0

ec = 3.08× 10−9 cm2/s,

andℓ = 1.05 cm, respectively (Figure 6.10A). The average cerebral flow,extra-cerebral flow,

and heart rate responses induced by finger tapping (N = 5 trials) are plotted against time in

Figure 6.10B. For comparison, the average semi-infinite flowresponse for the long separation

is also plotted. Notice that the cerebral flow rapidly increases to a steady state value of30%

within 5 seconds of the start of finger tapping. The extra-cerebral flow increase, though, is more

gradual, which roughly corresponds to the delayed heart rate increase from finger tapping. As

expected, the long separation semi-infinite flow change is between the cerebral flow change com-

puted with the DCS pressure modulation algorithm (Equation6.15) and the extra-cerebral flow

change computed from the short separation measurements (Figure 6.10B).

6.8 Discussion

Superficial tissue contamination in optical monitoring of cerebral hemodynamics is a well known

issue in the DOS/NIRS community, and several methods have been proposed to isolate the

cerebral component in the DOS/NIRS signal. Many of these methods assume statistical in-

dependence of superficial and cerebral signals, such as adaptive filtering [271], principal compo-

nent/independent component analysis [26,137,199], statespace modeling [107,109], and general

linear models [137,161,238]. The justification for this assumption in brain mapping applications

is that superficial signals in the scalp arise from systemic effects that are damped by cerebral au-

toregulation in the brain. Thus, the systemic superficial signals are independent from the local

activation signals in the brain. However, as we mentioned inSection 6.1, cerebral autoregula-

tion is impaired in brain diseases such as ischemic stroke. Alternative approaches for filtering

superficial tissue contamination include tomographic imaging [68, 89, 114], time-resolved mea-

surements [108,172,222,234], and two-layer models [55,85,91,106,120,208,215].

In the present paper, our main result is a novel implementation of the two-layer model that

utilizes two source-detector separations and probe pressure modulation to optically monitor cere-

bral blood flow (Figure 6.3). The two-layer Modified Beer-Lambert law for flow is employed to
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linearly relate DCS signal changes to changes in cerebral and extra-cerebral blood flow (Equa-

tion 6.7). Further, a patient-specific “initial” pressure calibration of the measurement substan-

tially improves the tractability of flow monitoring with thetwo-layer model by reducing the

number of free parameters in the model to fit for.A priori anatomical information, though help-

ful, is not required in this pressure modulation algorithm.In our in vivo tests of graded scalp

ischemia (Figure 6.9) and finger tapping (Figure 6.10), we did not use anya priori anatomical

information. Unlike with tomographic imaging and principal component analysis, the two-layer

model approach does not require a large number of optodes, which permits small area optical

probes that are easier to integrate with other monitoring devices in clinical care applications re-

quiring long-term continuous monitoring. Our optical probe for thein vivo tests (Figure 6.11)

had four optodes. Finally, the linearity of the two-layer Modified Beer-Lambert law greatly facil-

itates long-term continuous real-time monitoring of cerebral blood flow. An analogous pressure

modulation algorithm for cerebral absorption monitoring with DOS/NIRS is depicted in Fig-

ure 6.5, which is an extension of Fabbriet. al.’s two-layer formulation [91] to include pressure

modulation.

The two-layer model is a big simplification of the true head geometry, but it is still effective

in filtering extra-cerebral contamination, as we demonstrated in our graded scalp ischemia and

finger tapping tests. Cerebral blood flow calculated with thehomogeneous semi-infinite model

significantly depended on probe pressure, but the two-layerpressure modulation algorithm calcu-

lation of cerebral flow (Equation 6.15) did not (Figure 6.9).Further, in our finger tapping test, the

pressure modulation algorithm successfully separated thefast cerebral blood flow increase due

to brain activation from the more gradual flow increases due to systemic effects (Figure 6.10).

We measured a steady-state increase in cerebral blood flow from finger tapping of30%

(Figure 6.10B). This increase is low compared to other published measurements, but not unrea-

sonable. Durduranet. al.measured a mean cerebral blood flow increase of39±10% from finger

tapping (3 Hz) [85]. Yeet. al. measured a54 ± 11% cerebral blood flow increase from finger

tapping (2 Hz) with arterial spin labeling MRI [265], and Kastrupet. al. measured a101± 24%

cerebral blood flow increase from finger tapping (3 Hz) with a FAIR MRI technique [2]. We sus-

pect that our optical probe was not directly centered over the finger tapping hand knob, which is

a little less than 2 cm diameter in size [267]. The EEG 10-20 system (Figure 6.6) only roughly
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identifies the hand knob location, and we struggled a lot withfinding the correct position for

probe placement. We obtained assistance with probe placement from a neurosurgeon (David

Kung), which was very valuable. If the probe is not exactly over the hand knob area, then only

part of the sampled cerebral volume will encompass the hand knob area, inducing a partial vol-

ume error in the recovered cerebral flow change not accountedfor in the two-layer model. This

partial volume error results in an underestimation of the magnitude of the flow increase, which

is the likely explanation for our lower than expected measured flow increase.

Also notice that although the extra-cerebral blood flow in the scalp during finger tapping in-

creases gradually with the heart rate, the extra-cerebral blood flow and heart rate finger tapping

responses behave qualitatively differently in the post-stimulus interval (Figure 6.10B). Following

finger tapping, the heart rate remains elevated and gradually returns to baseline, while the extra-

cerebral blood flow rapidly plummets, undershooting and then gradually returning to baseline.

There are several factors that can affect superficial tissueblood flow besides the heart rate, such

as blood pressure and skin-specific regulation mechanisms [26,161]. Kirilinaet. al. investigated

the origin of task-evoked hemodynamic changes in the scalp,and found that task-evoked super-

ficial artifacts are co-localized with veins draining the scalp [161]. The post-stimulus undershoot

in extra-cerebral blood flow we observed could potentially be explained by an increase in scalp

venous pressure induced by arterial vasoconstriction following cessation of finger tapping.

Another aspect of the pressure modulation algorithm is its estimation of the extra-cerebral

layer thickness and baseline cerebral and extra-cerebral flow indices (Figs. 6.9A, 6.10A). We

regrettably do not have an independent measure of the extra-cerebral layer thickness in the two

adult subjects we measured to explicitly validate the extra-cerebral layer thickness estimates.

The pressure calibration estimate of the layer thickness atthe forehead for the pressure variation

measurement wasℓ = 1.35 cm, while the layer thickness estimate over the motor cortexin the

finger tapping measurement for a different subject wasℓ = 1.05 cm. Both of these estimates

are within the range of layer thicknesses measured by Durduran et. al. from anatomical MRI

scans, i.e.,ℓ = 1.20 ± 0.26 cm (unpublished). Further, the pressure calibration estimate of

the ratio of cerebral to extra-cerebral baseline blood flow in the finger tapping measurement

wasF 0
c /F

0
ec = 6.3, which is consistent with PET measurements in healthy adults [194]. The

estimate of this ratio for the graded scalp ischemia measurement wasF 0
c /F

0
ec = 20.3. This
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ratio is high, but is explained by the probe pressure being a non-negligible 15 mm Hg during

the baseline state (Figure 6.9B). At a probe pressure of 15 mmHg, the extra-cerebral blood

flow is substantially lower than it would be normally, which is reflected by the higher than

normal cerebral to extra-cerebral flow ratio estimate. Importantly, we have demonstrated that

pressure calibration can be done successfully through pressing down on the probe with the palm

of the hand (Figure 6.10A), facilitating its implementation in a clinical setting. In our pressure

algorithm, it is not necessary to know the quantitative pressure being applied to the probe. All

that is required is a non-negligible pressure increase to induce an extra-cerebral flow change.

We emphasize that the formulation of the pressure algorithmutlizing Equation 6.13 (Fig-

ure 6.3) is sensitive to correlation noise (Section 6.3.4).For high signals and/or long temporal

averaging times, this formulation is effective (Figure 6.8), but these luxuries are usually not

available for cerebral measurements. In ourin vivo tests, the correlation noise was too severe for

Equation 6.13. Thus, we used Eqs. 6.15 and 6.29 instead, which are more robust to correlation

noise. Further, we highly recommend using multiple delay-times in evaluating these equations

for the cerebral flow change to reduce sensitivity to noise. In our in vivo tests, we utilized all

delay-times whereing02(τ, ρl) > 1.25 (∼ 40 delay times).

Noise is less of a problem for the DOS/NIRS pressure algorithm formulation (Figure 6.5),

though, because multimode detection fibers enable higher signals. During the pressure cali-

bration stage, it is important to ensure that the source-detector separations remain fixed when

probe pressure is increased. In our flexible probe, there wasa tendency for the source-detector

separations to change slightly when pressing down on the probe, and the signal changes were

dominated by separation changes rather than extra-cerebral absorption changes. This problem is

fixed if a rigid probe is used, but then making good contact with the scalp is harder. Note that

the DCS measurement is less sensitive to these small changesin separation.

We finally point out that the DCS pressure modulation algorithm (Figure 6.3) assumes that

the coherence of the source laser remains constant over time, i.e., theβ coefficient in the Siegert

relation (see Section 6.2) does not change. If this is not thecase, then the DCS signal will change

from varyingβ in addition to varying flow levels. The pressure algorithm does not account for

variations inβ. If β is changing, then it is more appropriate to use a DCS Modified Beer-Lambert

law for the electric field autocorrelation function,g1(τ) ≡ 〈E∗(t) ·E(t+ τ)〉/〈I(t)〉, instead of
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the intensity autocorrelation function,g2(τ). The electric field formulation is exactly analogous

to Figure 6.3, except that the DCS optical densityODDCS ≡ − log(g2(τ)− 1) is replaced with

the “electric field DCS optical density”,ODDCS,g1 ≡ − log(g1(τ)). In this formulation, the

Siegert relation is used to convert the measuredg2 signals to correspondingg1 signals, wherein

theβ coefficient for each data frame can be fit for.

6.9 Conclusion

We developed a novel DCS pressure modulation algorithm thatsuccessfully isolated cerebral

blood flow during graded scalp ischemia and finger tapping without usinga priori anatomical

information. This approach is accurate enough to be useful for filtering superficial tissue con-

tamination in real-time cerebral blood flow monitoring. An analogous pressure modulation al-

gorithm for DOS/NIRS will filter superficial tissue contamination in cerebral blood oxygenation

monitoring.

6.10 Cerebral Blood Flow Monitoring Pressure Modulation Algo-

rithm when Tissue Optical Properties Vary

Recall that the results derived in Sections 6.3.1 and 6.3.2 are for the special case of constant

tissue absorption and tissue scattering. In this Appendix,we relax the constant optical property

assumption and derive more general expressions for cerebral flow monitoring in the pressure

modulation algorithm framework. We first focus on the case wherein tissue absorption is chang-

ing while tissue scattering remains constant (as in Section6.5). We then move on to the case

wherein both tissue absorption and scattering vary.
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6.10.1 Cerebral flow monitoring with varying absorption

The two-layer DCS Modified Beer-Lambert law analogues of Eqs. (6.7) and (6.8) that include

absorption components are [12]

∆OD
long
DCS = dF,c(τ, ρl)∆Fc + dF,ec(τ, ρl)∆Fec + da,c(τ, ρl)∆µa,c + da,ec(τ, ρl)∆µa,ec,

(6.24)

∆ODshort
DCS = dF,ec(τ, ρs)∆Fec + da,ec(τ, ρs)∆µa,ec, (6.25)

where the tissue absorption changes∆µa,c and∆µa,ec can be estimated from DOS/NIRS mea-

surements via Eqs. (6.21) and (6.17), and the multiplicative weighting factorsda,c(τ, ρl) ≡
∂OD

long,0
DCS /∂µa,c, da,ec(τ, ρl) ≡ ∂OD

long,0
DCS /∂µa,ec, andda,ec(τ, ρs) ≡ ∂ODshort,0

DCS /∂µa,ec can

be numerically determined by evaluating the appropriate derivative of the two-layer correlation

diffusion solution at the baseline flow levels, tissue optical properties, and extra-cerebral layer

thickness (e.g., Section 6.3.2.2).

For the pressure calibration stage, the analogues of Eqs. (6.10) and (6.11) are

∆OD
long,P
DCS = dF,ec(τ, ρl)∆F

P
ec + da,ec(τ, ρl)∆µ

P
a,ec, (6.26)

∆ODshort,P
DCS = dF,ec(τ, ρs)∆F

P
ec + da,ec(τ, ρs)∆µ

P
a,ec, (6.27)

where∆µPa,ec ≡ µPa,ec−µ0a,ec is the pressure induced change in extra-cerebral tissue absorption.

Solving Eqs. (6.24), (6.25), (6.26), and (6.27) for the cerebral flow change, we obtain

∆Fc =
1

dF,c(τ, ρl)

[

∆OD
long
DCS − da,ec(τ, ρl)∆µa,ec − da,c(τ, ρl)∆µa,c−

∆OD
long,P
DCS − da,ec(τ, ρl)∆µ

P
a,ec

∆ODshort,P
DCS − da,ec(τ, ρs)∆µPa,ec

(

∆ODshort
DCS − da,ec(τ, ρs)∆µa,ec

)

]

. (6.28)

An alternative approach more robust to correlation noise (see Section 6.3.4) is to solve Equa-

tion 6.24 directly for∆Fc, i.e.,

∆Fc =
1

dF,c(τ, ρl)

[

∆OD
long
DCS − dF,ec(τ, ρl)∆Fec − da,c(τ, ρl)∆µa,c−

da,ec(τ, ρl)∆µa,ec] , (6.29)

where∆Fec is determined from the short separation measurements via semi-infinite methods, as

described in Section 6.3.4. As with Equation 6.13, Eqs. (6.28) and (6.29) only require a single

τ for monitoring, but multiple delay-times should be used to ameliorate sensitivity to noise.
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6.10.2 Cerebral flow monitoring with varying absorption andscattering

If both tissue absorption and scattering vary significantly, then the differential absorption and

scattering changes should be directly measured with concurrent frequency-domain or time-

domain DOS/NIRS [79, 101, 201]. The extensions of Eqs. (6.24) and (6.25) for varying tissue

scattering are [12]

∆ODlong
DCS = dF,c(τ, ρl)∆Fc + dF,ec(τ, ρl)∆Fec + da,c(τ, ρl)∆µa,c + da,ec(τ, ρl)∆µa,ec+

ds,c(τ, ρl)∆µ
′
s,c + ds,ec(τ, ρl)∆µ

′
s,ec, (6.30)

∆ODshort
DCS = dF,ec(τ, ρs)∆Fec + da,ec(τ, ρs)∆µa,ec + ds,ec(τ, ρs)∆µ

′
s,ec, (6.31)

where∆µ′s,c ≡ µ′s,c−µ′0s,c and∆µ′s,ec ≡ µ′s,ec−µ′0s,ec are the differential changes from baseline

of cerebral and extra-cerebral tissue scattering, and the scattering weighting factorsds,c(τ, ρl) ≡
∂OD

long,0
DCS /∂µ

′
s,c, ds,ec(τ, ρl) ≡ ∂OD

long,0
DCS /∂µ

′
s,ec, andds,ec(τ, ρs) ≡ ∂ODshort,0

DCS /∂µ
′
s,ec are

determined using the two-layer correlation diffusion solution as described in Section 6.3.2.2.

Pressure-induced signal changes from the extra-cerebral layer are given by

∆OD
long,P
DCS = dF,ec(τ, ρl)∆F

P
ec + da,ec(τ, ρl)∆µ

P
a,ec + ds,ec(τ, ρl)∆µ

′P
s,ec, (6.32)

∆ODshort,P
DCS = dF,ec(τ, ρs)∆F

P
ec + da,ec(τ, ρs)∆µ

P
a,ec + ds,ec(τ, ρs)∆µ

′P
s,ec. (6.33)

Solving Eqs. (6.30), (6.31), (6.32), and (6.33) for the cerebral flow change, we obtain

∆Fc =
1

dF,c(τ, ρl)

[

∆OD
long
DCS − da,ec(τ, ρl)∆µa,ec − da,c(τ, ρl)∆µa,c − ds,ec(τ, ρl)∆µ

′
s,ec−

ds,c(τ, ρl) ∆µ
′
s,c −

dF,ec(τ, ρl)

dF,ec(τ, ρs)

(

∆ODshort
DCS − da,ec(τ, ρs)∆µa,ec − ds,ec(τ, ρs)∆µ

′
s,ec

)

]

,

(6.34)

where
dF,ec(τ, ρl)

dF,ec(τ, ρs)
=

∆OD
long,P
DCS − da,ec(τ, ρl)∆µ

P
a,ec − ds,ec(τ, ρl)∆µ

′P
s,ec

∆ODshort,P
DCS − da,ec(τ, ρs)∆µPa,ec − ds,ec(τ, ρs)∆µ′Ps,ec

.

Alternatively, the variable scattering extension of Equation 6.29 derived from solving Equa-

tion 6.30 for∆Fc is

∆Fc =
1

dF,c(τ, ρl)

[

∆OD
long
DCS − dF,ec(τ, ρl)∆Fec − da,c(τ, ρl)∆µa,c−

da,ec(τ, ρl)∆µa,ec − ds,c(τ, ρl)∆µ
′
s,c − ds,ec(τ, ρl)∆µ

′
s,ec

]

. (6.35)

Again,∆Fc is determined from short separation measurements via semi-infinite techniques.
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6.11 Instrumentation and Optical Probe

For in vivo cerebral blood flow monitoring during finger tapping and probe pressure variation,

we used a custom built DCS instrument. Briefly, two continuous wave, long coherence length

(> 5 meters) 785 nm lasers (80 mW, DL785-100-3O, CrystaLaser Inc., Reno, NV, USA) de-

liver source light to tissue via multimode fibers. Single mode detection fibers couple diffusive

light emerging from tissue to two arrays of four high sensitivity avalanche photodiodes (SPCM-

AQ4C, Excelitas, Quebec, Canada) operating in photon counting mode. The outputs from the

detection arrays are connected to a multiple-τ hardware correlator (Correlator.com, Bridgewater,

NJ, USA) that computes intensity autocorrelation curves inreal time [72].

For interfacing this instrument with the head, we used an optical probe consisting of one long

separation,ρl = 3.0 cm, and two short separations,ρs = 1.0 cm (Figure 6.11). All four fiber

bundles in the probe are terminated with 3 mm dielectric coated right-angle prisms (PS905-E02-

SP, custom, Thorlabs, Newton, NJ, USA). The high reflectivity of the prisms (99%) ensures high

light throughput at the skin-probe interface. Further, as illustrated in Figure 6.11, the side-firing

prism fibers lay in the same plane as the probe head, which facilitates the application of uniform

pressure to the top of the probe.

All seven single mode fibers in the “DL” bundle and one attenuated single mode fiber in

the “DS” bundle of the optical probe (Figure 6.11) were connected to the 8 detection channels

in the DCS instrument. The seven independent measurements of the intensity autocorrelation

function acquired in parallel at the DL probe position were subsequently averaged together to

improve SNR. For the single mode fiber in the DS bundle, a variable blocking pigtail style fiber

optic attenuator (OZ Optics, Ontario, Canada) was employedto avoid detector saturation. Each

“S” fiber in the probe was connected to a laser, and the “middleS position fiber” was also

attenuated (OZ Optics) to avoid detector saturation. During DCS acquisition, multiplexing of

the two S positions was achieved by sequentially switching the two DCS lasers on and off with

TTL pulses controlled with Labview software (National Instruments, Austin, TX, USA). For the

finger tapping measurement (Section 6.6.1), we only used onelaser (i.e., one short separation

instead of two) to increase the time resolution.

To manufacture the probe, we utilized 3D printing to producea mold (template) that securely
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Figure 6.11: Schematic of the optical probe used for co-localized DCS and DOS/NIRS mea-
surements (dimensions in mm).(A) For conversion of straight ferrule endtip fiber bundles to
side-firing prism-coupled fibers, EPO-TEK 353ND epoxy was utilized to glue right-angle prisms
(Thorlabs, E03 dielectric coated) to the ferrule endtips.(B) The probe consists of two fused silica
multimode source fibers (S;400µm-core/0.22NA), one long separation detection bundle (DL)of
seven single mode fibers (780HP, Thorlabs,5µm-MFD/0.13NA), and one short separation de-
tection bundle (DS) of three single mode fibers (780HP). The termination and bundling of these
optical fibers were done by Fiberoptic Systems, Inc. (Simi Valley, CA, USA). (C) Schematic
of the 3D printed probe mold used for embedding the prism fibers in silicon elastomer at the
positions indicated in panel B (see main text).
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holds the prism fibers at the desired probe positions (Figure6.11C). Specifically, the mold design

was made in the Fusion 360 modeling software environment (Autodesk, CA, USA) and then

printed with VeroClear material using an Objet 500 printer (Stratasys, MN, USA and Rehovot,

Israel). Separately printed prism clamps with integrated set screws secured the prism fibers in

place along grooves in the mold (Figure 6.11C). While the fibers remained fixed in place, a

two-part silicone elastomer (VytaFlex-30, Smooth-On, PA,USA) was mixed with a black tint

(3% volume fraction; SO-Strong Color Tint, Smooth-On), vacuumdegassed, and poured into

the mold. Cast as a liquid, the elastomer cures over a time period of 24 hours to form a flexible

solid probe head with the prism fibers embedded at the desiredpositions. Notice that this highly

flexible technique can be utilized not just for making flat probes, but also probes with “built

in” curvature that may facilitate measurements on neonates. Also, the SO black tint we used

was not highly absorbing in the near-infrared. For a more absorbing probe head in the NIR, we

recommend mixing the elastomer with india ink.
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Chapter 7

Neurovascular Coupling Varies with

Level of Global Cerebral Ischemia in a

Rat Model

This chapter is mostly a verbatim reprint of my paper published in the Journal of Cerebral Blood

Flow and Metabolism [13]. However, I have added an Appendix (Section 7.6) wherein the

compartment model for computing oxygen metabolism is explicitly derived.

7.1 Introduction

In healthy brains, localized increases in neuronal activity are strongly correlated, both spatially

and temporally, to localized increases in cerebral blood flow (CBF ) and cerebral metabolic con-

sumption of oxygen (CMRO2) [244]. Thus, quantification of hemodynamics due to increased

neuronal activity, i.e., neurovascular coupling, has longbeen a topic of intense interest. In addi-

tion to being critical for the interpretation of techniquessuch as functional magnetic resonance

imaging that use hemodynamic responses to map brain function, neurovascular coupling also

plays a role in several diseases, including Alzheimers disease [139] and cerebral ischemia [66].

In this study, the effects of global cerebral ischemia on neurovascular coupling in a rat animal

model are investigated.
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Specifically, functionalCBF , CMRO2, oxy-hemoglobin concentration (HbO), deoxy-

hemoglobin concentration (HbR), and total hemoglobin concentration (HbT ) responses to forepaw

stimulation on rats were measured at several levels of global ischemia from very mild (CBF ∼
90% of normal supply) to more severe (CBF ∼ 40% of normal supply). The combined op-

tical techniques of laser speckle contrast imaging [27, 76]and optical imaging of intrinsic sig-

nals [77, 117] were employed to make these measurements. To characterize neuronal activity,

the electrical somatosensory evoked potentials (SEP) werealso collected simultaneously with

the optical hemodynamic measurements. To our knowledge, this is the first study that examines

functional activation during graded ischemia.

This study is also motivated by the notion that functional stimulation can be utilized as a

treatment for stroke [38, 164]. Fox and Raichle first reported that localizedCBF increases

due to functional stimulation vastly exceed the localizedCMRO2 increases in healthy humans

[102]. This observation suggests that the oxygen delivery increase to the tissue from functional

stimulation exceeds the oxygen consumption increase [167]. If the mismatch between theCBF

response (surrogate for oxygen delivery) andCMRO2 response persists during ischemia, then

repeated application of functional stimulation during ischemia could increase the base level of

oxygen in the brain.

For severe ischemia (CBF supply below 40% of normal levels), no hemodynamic response

to functional stimulation was observed. For less severe ischemic tissue, though, hemodynamic

and electrical responses to stimulation were present. We will show in this paper that at these

ischemic levels,CMRO2 and SEP functional responses remained tightly coupled. Importantly,

we discovered that as the animals became ischemic, theCBF response was more strongly at-

tenuated than theCMRO2 response. This observation suggests that oxygen delivery and con-

sumption increases due to stimulation become more balancedwith graded ischemia. Thus, the

mechanism for the neuroprotection of functional stimulation during ischemia observed by oth-

ers [38,164] is probably not related toCBF changes. This result also supports the notion that in

healthy tissue, oxygen delivery increases from functionalstimulation exceed oxygen consump-

tion increases (Leithner et al, 2010; Vazquez et al, 2008). If the oxygen delivery and consumption

increases were in balance, then the expectation is theCBF andCMRO2 responses would be

attenuated at the same rate by ischemia, which was not observed.
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7.2 Materials and Methods

7.2.1 Surgical Preparation

All procedures were in accordance with guidelines established by the National Institutes of

Health and approved by the Institutional Animal Care and UseCommittee of the University

of Pennsylvania (approval # 801100). Adult male Sprague-Dawley rats (N = 46, 327 ± 31 g;

Charles River, Wilmington, MA, USA) were anesthetized with4% isoflurane in a bell jar, intu-

bated, and then mechanically ventilated with1.5% isoflurane in a mixture of oxygen and nitrous

oxide (3:7). End-tidalCO2 was monitored and the ventilation rate was adjusted to maintain an

arterialCO2 pressure close to 40 mm Hg. Polyethylene catheters were placed in the femoral

artery for blood pressure monitoring and the femoral vein for drug administration. Throughout

the study, body temperature was measured with a rectal probeand maintained at37.5 ± 0.2◦ C

with a heating pad (ATC1000, World Precision Instruments, Sarasota, FL, U.S.A.). In prepara-

tion for hemodynamic imaging, the rats were secured in a stereotaxic head holder. After reflect-

ing their scalps, their skulls were uniformly thinned to translucency over a 5 by 5 mm window

encompassing the right forepaw area of the cerebral cortex (center∼ 3.5 mm directly lateral to

bregma) (i.e., black square in Figure 7.1A) with a dental drill. To reduce specular reflections,

ultrasound gel was applied to the translucent thinned skulland a glass coverslip placed on top.

As depicted in Figure 7.1A, two 1 mm burr holes were drilled through the skull down to the dura

(∼ 3.5 mm lateral and 3 mm anterior of bregma;∼ 2.5 mm directly posterior to lambda) for the

placement of electrodes to measure the somatosensory evoked potentials resulting from forepaw

stimulation.

To induce global ischemia, animals were held in a supine position while a midline neck

incision was made. Both common carotid arteries (CCA) were isolated from the surrounding

connective tissue, and loose snares made from a polyethylene catheter (PE-10) were carefully

placed around them for later remote occlusion. In order to achieve more severe ischemia, a partial

sternotomy was also performed in the last 39 animals in the study. After separating sterno-hyoid

muscle, the bifurcation of the right CCA and the right subclavian artery (SCA) from the aorta

was carefully dissected and exposed. A snare was then placedaround the right subclavian artery

between the first and second bifurcation of the right SCA. Finally, to even further increase the
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Figure 7.1:(A) Diagram of the rat brain showing the5 × 5 mm thinned part of the skull over
the forepaw area of the cerebral cortex for hemodynamic imaging (black square) and the burr
hole locations for electrodes to measure somatosensory evoked potentials (SEP) (filled and open
circles).(B) Schematic of instrument used for optical imaging of hemodynamics.

degree of ischemia, the lower bodies of the last 17 animals inthe study were placed inside a

custom-made pressure chamber after the snares were in position. The pressure chamber applied

negative pressure to the rats, causing blood to pool in the lower part of the body [71]. The

snares were tightened and negative pressure was applied sequentially to create different levels of

cerebral ischemia from mild to severe.

For functional stimulation, two needle electrodes were inserted subdermally in the left forepaw

of each rat, contra-lateral to the translucent imaging window. Following the surgical preparation,

α-chloralose (60 mg/kg) was administered intravenously andthe isoflurane was discontinued.

Nitrous oxide was also discontinued and replaced with nitrogen gas. Anesthesia was maintained

with an intravenous infusion ofα-chloralose (30 mg/kg/hr). Upon completion of the study, ani-

mals were euthanized with an overdose of barbiturate.

A control group (N = 5) was prepared in the same manner as described above with loose

snares placed around both carotid arteries and the right subclavian artery. However, these snares

were not tightened to cause ischemia.
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7.2.2 Experiment Protocol

Figure 7.2 is a timeline of the study. As described above, theaim of the experiment was to create

different levels of global ischemia and measure the hemodynamic and electrical responses to

forepaw stimulation. We generated different levels of ischemia by right common carotid artery

occlusion (RCCAO), bi-lateral common carotid artery occlusion (RCCAO+LCCAO), bi-lateral

common carotid artery occlusion with right subclavian artery occlusion (RCCAO+LCCAO+RSCAO),

and three vessel occlusion with lower body negative pressure applied in a pressure chamber. Af-

ter inducing each condition of ischemia, we waited five minutes to allow flow to stabilize before

starting functional stimulation. The control group of animals shared the same timeline except

that we did not occlude any arteries or apply lower body negative pressure. After euthanizing the

animals, laser speckle images were collected for 5 minutes to obtain a biological zero correction

to the CBF measurements [275].

The forepaw stimulation paradigm, which was executed during the time windows marked

DA (i.e., data acquisition) in Figure 7.2, consisted of a train of constant current rectangular

pulses (amplitude 1.5 mA, duration 300µs) delivered to the forepaw at 3 Hz for 4 seconds by

a commercial high voltage stimulus isolator (A360, World Precision Instruments). The stimula-

tion train was repeated every 30 seconds for a total time period of 8 minutes. After letting the

animal rest for four minutes with no stimulation, the stimulation trains were resumed every 30

seconds for another 8 minutes. During these 8 minute periods, laser speckle and spectral images

were collected sequentially for hemodynamic imaging, and electrical somatosensory evoked po-

tentials due to the stimulation were recorded. This stimulation paradigm was repeated for every

level of ischemia, as indicated in Figure 7.2. Five minutes prior to the first data acquisition,

blood was withdrawn from the femoral artery for blood gas analysis.

7.2.3 Optical Instrument

To obtain images of changes in blood flow and oxygenation, thetechniques of laser speckle

contrast imaging and optical imaging of intrinsic signals were combined [77]. As depicted in

Figure 7.1B, a 60-mm lens (Apo-Componon 2.8/40, Schneider-Kreuznach, Bad Kreuznach, Ger-

many) was used to form an image of the 5 by 5 mm forepaw region ofthe cerebral cortex on a
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Figure 7.2: Schematic showing the timeline of the study in minutes (time axis not to scale). DA
stands for data acquisition, where we collected laser speckle and spectral images and applied
forepaw stimulation trains (1.5 mA, 0.3 ms rectangular pulses delivered at 3 Hz for 4 seconds)
every 30 seconds as described in the text. The top row of boxesindicate the CBF conditions,
which are baseline (i.e., pre-ischemic), right common carotid artery occlusion (RCCAO), right
and left common carotid artery occlusion (RCCAO+LCCAO), right and left common carotid
artery occlusion with right subclavian artery occlusion (RCCAO+LCCAO+RSCAO), and the
occlusion of the previous three arteries with the application of negative lower body pressure.
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12-bit TEC cooled CCD camera (UP-680CL-12B, Uniq Vision Inc., Santa Clara, CA, U.S.A.)

with unity magnification. Interleaved images (exposure timeT = 4 ms) under different illumina-

tion sources were then captured and recorded using a frame grabber (Grablink Avenue, Euresys

Inc., San Juan Capistrano, CA, U.S.A.) and imaging software(StreamPix, NorPix, Montreal,

Quebec, Canada).

The illumination source used for laser speckle contrast imaging of CBF was a collimated 785

nm laser diode (Sanyo, DL7140-201S, 785nm, 70 mW, Thorlabs,Newton, NJ, U.S.A.) mounted

on a temperature-controlled heat sink (LDM21 Laser Diode Temperature Controlled Mount,

Thorlabs) and driven by a commercial driver (LDC 500 Laser Diode Controller, Thorlabs). The

illumination sources used for optical imaging of intrinsicsignals to measure changes in oxy-

hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentrations were three collimated light

emitting diodes (LEDs) mounted on heat sinks with central wavelengths of 530, 590, and 660

nm (M530L2-C1, M590L2-C1, M660L2-C1, Thorlabs) driven by commercial drivers (LEDD1B

T-Cube LED Driver, Thorlabs).

Commercial software (SciWorks, DataWave Technologies, Boulder, CO, U.S.A.) was em-

ployed to program pulse sequences of digital outputs from anA/D board (DataWave Technolo-

gies) to control the timing for the interleaved imaging. With this instrument, we acquired 3

spectral images and 4 speckle images/second.

7.2.4 Somatosensory Evoked Potential (SEP) recordings

To measure the SEP response to stimulation, a 1 mm diameter silver/sliver chloride ball electrode

and a reference silver screw electrode were placed on the dura in the burr holes indicated by

the filled and open black circles in Figure 7.1A, respectively. The recording electrodes were

connected to a low-impedance HS4 headstage (World Precision Instruments), which amplified

and digitized the voltage difference between the two electrodes before sending the signal to a

Digital BioAmp (DB4, World Precision Instruments), where the signal was further amplified

and filtered between 5 Hz and 500 Hz. SciWorks software was used to record the SEP signal

from the BioAmp for 200 ms after each stimulation pulse was delivered to the animal.
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7.2.5 Optical Image Analysis

Laser speckle contrast imaging ofCBF has been discussed extensively in previous publications

[27], and the specific analysis used in this study to calculateCBF from speckle contrast images

is described by Zhouet al [275]. It was assumed that the static scattering contribution to the

speckle contrast signal from the thinned skull [198] was negligible, since we saw very similar

flow responses to studies where the skull was completely removed [82]. Since we were interested

in functionalCBF responses to stimulation, theCBF images were averaged across stimulation

trials for each level of ischemia. A stimulation trial was defined as the 20-second time period

that begins 5-seconds before the start of a stimulation pulse train.

Optical imaging of intrinsic signals (or spectral imaging)to determineHbO andHbR is

also a well-established technique [78, 163]. As withCBF , the intensity images of each LED

were averaged across stimulation trials at each level of ischemia. The averaged spectral intensity

images of the three LEDs were converted to images ofHbO andHbR via a modified Beer-

Lambert law (see Section 7.5).

As many other investigators have done, we employed a compartmental model (Section 7.6)

to calculateCMRO2 images from our measurements ofCBF ,HbO, andHbR [62,78,273]:

CMRO2 =
(SaO2 −HbO/HbT )

γSaO2
×CBF × Ca. (7.1)

Here,HbT is the measured total hemoglobin concentration (i.e.,HbT = HbO +HbR), SaO2

is the oxygen saturation in the cerebral arterioles (taken to be 1),γ is the blood volume fraction

contained in the venous compartment of the vascular system,andCa is the blood arteriolar

oxygen concentration. There is mounting evidence that oxygen extraction takes place in arteries

and arterioles, and as a result, the arterioles directly feeding the cerebral capillary beds may

have a lower saturation than the systemic arterial saturation [251, 264]. In the present study,

all animals breathed30% enriched oxygen resulting in high systemic arterial oxygentensions

(∼ 120 mm Hg). Thus, even with oxygen extraction in the arteries, the arteriolar saturation will

still be close to one throughout the study.

Equation 7.1 is a steady-state model forCMRO2. To estimate the errors in this model when

applying it to the dynamic situation of functional stimulation, we followed Vazquezset al [247]
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approach of applying a dynamic compartment model to solve for CMRO2 using input mea-

surements from our previous study of cerebral tissue oxygentension and blood flow in healthy

rats during functional stimulation [4]. The increases inCMRO2 during functional activation

computed with this dynamic model were then compared to the increases computed with the

steady-state model (Equation 7.1). This comparison showedthat the calculated peak increases

in CMRO2 due to stimulation for the dynamic and steady-state models were within2% of each

other (see Section 7.6). Consequently, and as discussed below, in the present study we use the

peak increase from functional stimulation to characterizethe response.

Under the assumptions thatSaO2, Ca, andγ remain constant over time, substituting mea-

surements ofHbO, HbR, andCBF into Equation 7.1 results in an index that is proportional

to CMRO2. Although it is feasible that these assumptions may be violated during ischemia,

our group and others have shown the calculated metabolic changes from Equation 7.1 to be

relatively insensitive (i.e.,< 5%) to most of the likely physiological cases that violate these

assumptions [62,151].

7.2.6 Quantifying Hemodynamic and SEP Responses to Stimulation

Figures 7.3A and 7.3B contain montages of fractionalCBF andCMRO2 responses to stim-

ulation for an exemplar animal averaged across all trials during theCBF baseline period of

Figure 7.2. To quantify the hemodynamic responses ofCBF andCMRO2, as well as the

hemoglobin concentrationsHbO, HbR, andHbT (image montages not shown), we followed

the same approach as Durduranet al [82] to select a region of interest (ROI).A priori informa-

tion about the stimulus paradigm was used by computing a temporal correlation coefficient at

every image pixel betweenCBF and the forepaw stimulus [82] during the pre-ischemic baseline

period denoted in Figure 7.2.

In order to apply a consistent threshold across all animals for ROI selection, the resulting im-

age of correlation coefficients was normalized by the maximum pixel, resulting in an image of

normalized correlation coefficients scaled from 0 to 1 (Figure 7.3C). A ROI to consist of all pix-

els with normalized correlation coefficients above 0.8 was arbitrarily chosen, and hemodynamic

temporal response curves at each level of ischemia were obtained by averaging over all pixels

within the ROI. We note here that we did not observe significant changes in our results when
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we tried using different correlation coefficient thresholds of 0.9 or 0.7 for the ROI, indicating

robustness to the particular ROI threshold.

At ischemic conditioni in an animal (e.g.,i = RCCAO, RCCAO+LCCAO; see Figure 7.2),

the hemodynamic responses were quantitatively characterized by their average peak increases

from baseline because of stimulation, i.e.,〈∆x〉i ≡ 〈xpeak− x0〉i, wherex refers to theCBF

index,CMRO2 index,HbO, HbR, orHbT . The SEP response, in turn, was characterized at

conditioni by the average difference between thep1 andn1 peaks of the signal (Figure 7.3D),

which is denoted as〈∆SEP 〉i. To make the quantified responses unitless, which will facilitate

comparison between the different response parameters at different ischemic levels, the hemo-

dynamic and SEP responses at each ischemic conditioni were normalized by their preischemic

baseline responses,〈∆x〉BL and〈∆SEP 〉BL:

Normalized hemodynamic response= 〈∆x〉i/〈∆x〉BL, (7.2)

Normalized SEP response= 〈∆SEP 〉i/〈∆SEP 〉BL. (7.3)

The level of ischemia, or fraction of the normal CBF supply tothe brain, reached due to the

ith ischemic condition in an animal was determined quantitatively by averaging the prestimulus

speckleCBF index during conditioni, 〈CBF0〉i, and dividing this by the same average of

CBF during the baseline condition,〈CBF0〉BL:

CBF level=
〈CBF0〉i
〈CBF0〉BL

. (7.4)

Also of interest is the affect of cerebral ischemia on SEP latency, which we define as the

time after stimulus onset of thep1 peak in the SEP signal.

7.2.7 Statistical Analysis

Across animals, the degree of ischemia attained following each of the manipulations was quite

heterogeneous. Thus, although blood flow was lowered only through three artery occlusions

and negative lower body pressure, many differentCBF levels ranging from very mild ischemia

(i.e., 0.94) to severe ischemia (i.e., 0.36) were achieved in the animals. A major goal of this

study was to determine whether there were differences in themeanCBF , CMRO2, and SEP

normalized functional responses (Equations 7.2, 7.3) as a function ofCBF level (Equation 7.4).
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Figure 7.3: Image montages of fractional changes inCBF (A) andCMRO2 (B) averaged
across stimulation trials during the baseline, or pre-ischemic,CBF condition for an exemplar
animal. The fractional changes are relative to the mean of the parameters over the 5-second
pre-stimulus time windows. Each image in the montages is spaced one second apart when read
from left to right and top to bottom. The dashed double arrowsindicate the 4-second forepaw
stimulus, and the letters L and A within the first image of theCBF montage stand for lateral and
anterior, respectively, to indicate image orientation. For ROI selection, a temporal correlation
coefficient was computed at every pixel betweenCBF and the forepaw stimulus during pre-
ischemic stimulation, and the resulting correlation coefficient image was then normalized to the
maximum pixel [82]. The ROI for the animal in this figure consists of all pixels in the animals
normalized correlation coefficient image (C) with values greater than 0.8 (see text). The thick
black lines in panels (A) through (C) are 1 mm scale bars. (D) The SEP signal averaged across
stimulation trials during the pre-ischemic baseline condition from the same animal as shown
in panels A-C. The difference between thep1 andn1 peaks in the SEP signal was used to
characterize the electrical response to stimulation.
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To address this, a mixed effects model was used [205]. This procedure is conceptually similar

to repeated measures ANOVA but allows theCBF level to be treated as a continuous variable.

Initial graphical procedures suggested that in many cases the association betweenCBF level

and the normalized functional responses was non-linear. Thus, a natural cubic spline was used

to model the meanCBF ,CMRO2, and SEP normalized functional responses separately at each

CBF level.

We additionally fit two natural cubic spline models to these three types of normalized re-

sponses (i.e.,CBF ,CMRO2, and SEP) simultaneously to determine the statistical significance

of the differences in patterns overCBF level that we observed between these different types of

responses. In one model, these differences were allowed to follow a parallel, albeit non-linear

pattern overCBF level. In the second model, the response types were allowed to change dif-

ferently overCBF level. We applied a likelihood ratio test to these two modelsto test the null

hypothesis that the three functional response types are allaffected the same byCBF level. We

also determined the significance of the differences betweenthe SEP response and the other two

response types by considering the Wald statistics for each of the terms in the spline of the second

model. We then repeated this analysis to compare SEP responses with theHbO,HbR, andHbT

responses as a function ofCBF level.

The analysis described above addresses the global questionof whether there were differences

in the meanCBF ,CMRO2,HbO,HbR,HbT , and SEP responses as a function ofCBF level.

Another important question is if there are differences in the hemodynamic responses with the

SEP response overCBF level, then what are the ranges ofCBF levels where these responses

are different. To address this, we used individual mixed effects models with a natural cubic spline

to model the mean logarithms of the ratios of SEP response with the hemodynamic responses that

differed globally from SEP (i.e.,log(SEP/CBF ), log(SEP/HbO), andlog(SEP/HbR)) as

a function of CBF level. The hemodynamic responses were significantly different from SEP at

CBF levels where the95% CIs from these models did not overlap zero.

Lastly, we used a mixed effects model to test the hypothesis that SEP latency increased with

CBF level. As with the normalized responses, a natural cubic spline was employed to model

the mean SEP latency as a function ofCBF level, and the overall significance was assessed

using a likelihood ratio test.
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These mixed effects models were implemented with library (nlme) and library (splines) in

R 2.13 [241]. A Type I error rate of 0.05 and95% confidence intervals on the population mean

(95% CI) were used.

7.3 Results

Prior to ischemia, the population means and standard deviations of pH, PaO2, andPaCO2

determined from blood gas analysis were7.44 ± 0.09, 124 ± 21 mm Hg, and37 ± 8 mm Hg,

respectively, and the arterial blood pressure was106 ± 6 mm Hg. To aid the visualization of

the effects of graded cerebral ischemia in this animal modelon blood pressure, hemodynamic

responses, and electrical responses, we discretized ischemic CBF levels into bins of width 10

percentage points (i.e., 0.85-0.95, 0.75-0.85,. . ., 0.35-0.45) and determined parameter averages

across animals atCBF levels within these bins. The arterial blood pressures (mean ± SD) at

these binnedCBF levels were115 ± 9, 122 ± 12, 112 ± 7, 118 ± 12, 117 ± 15, and95 ± 19

mm Hg for theCBF levels of0.85− 0.95, 0.75− 0.85, 0.65− 0.75, 0.55− 0.65, 0.45− 0.55,

and0.35 − 0.45, respectively.

Figure 7.4 shows average fractional hemodynamic temporal response curves across animals

at each binnedCBF level of ischemia. Prior to ischemia (CBF Level 1 panel in Figure 7.4),

CBF has the largest response of the hemodynamic parameters, with an average peak increase

of 21%, whileCMRO2 peaked at12%. HbO andHbR peaked at8% and−8%, respectively,

while a small2% peak increase inHbT was observed. All the hemodynamic functional re-

sponses were attenuated as the animals became more ischemic, and once theCBF level reached

0.4, the responses essentially disappeared. Also, notice in Figure 7.4 that the peaks of theCBF

andCMRO2 responses approach each other as the level of ischemia increases, indicating that

global ischemia more strongly attenuates theCBF response.

Corresponding to the average hemodynamic responses in Figure 7.4 are the average electrical

SEP responses presented in Figure 7.5. As with the hemodynamic responses, the SEP response

is attenuated as the level of ischemia increases. However, the SEP response has not vanished at

theCBF level of 0.4, whereas the blood flow response is very much attenuated. Additionally,

Figure 7.5 contains the mean SEP latency at each binnedCBF level. The observed increase in
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Figure 7.4: The average fractional responses of cerebral blood flow (CBF ), cerebral
metabolic consumption of oxygen (CMRO2), cerebral oxy-hemoglobin (HbO), cerebral deoxy-
hemoglobin (HbR), and cerebral total hemoglobin (HbT ) measured at variousCBF levels (see
Equation 7.4) within the specified bins. TheCBF bins are labeled by their central numbers
(e.g.,CBF level 0.8 spans the range ofCBF levels from 0.75 to 0.85), and theCBF level 1
indicates the pre-ischemic responses. Here, theCBF bin 0.9 is omitted since the temporal plots
look very similar to the pre-ischemic responses. The error bars indicate the standard errors of
these averages, and the 4-second forepaw stimulus is indicated in the panels by a thick black line
(omitted fromCBF Level 1 panel for readability).
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SEP latency with ischemia relative to the pre-ischemic latency is highly significant (p < 0.0001).

Interestingly, theCBF response is attenuated more strongly at milder levels of global is-

chemia than theCMRO2 and SEP responses (Figures 7.6, 7.7). Figure 7.6 is a bar plotshowing

the mean normalized hemodynamic and SEP responses, as defined by Equations 7.2 and 7.3, at

eachCBF level bin. Figure 7.6A suggests that theCMRO2 response is tightly coupled to SEP

as the animals become more ischemic, whereas theCBF response exhibits a greater attenuation

than does SEP. This behavior is confirmed in Figure 7.7, whereinstead of discretizing the data

into bins, a mixed effects model was used to model averages ofCBF , CMRO2, and SEP re-

sponses at eachCBF level. This analysis demonstrates strong evidence of differences among

these three response types over theCBF level (p < 0.0001) as well as evidence that CBF re-

sponse differs from SEP (p < 0.0001) and fromCMRO2 (p < 0.0001). However, there was no

significant difference between SEP andCMRO2 (p > 0.1). The mixed effects model analysis

comparing SEP to the hemoglobin concentrationsHbO, HbR, andHbT also provides strong

evidence of differences among these four response types over CBF level (p < 0.0001). As with

CMRO2, there was no significant difference betweenHbT and SEP, but the SEP response did

significantly differ fromHbO (p < 0.0001) and HbR (p < 0.02).

We took the logarithms of the ratios of the SEP response with the three hemodynamic re-

sponses (CBF , HbO, HbR) that differed from SEP overCBF level, and applied individual

mixed effects models to them to determine the range ofCBF levels where their means are dif-

ferent from zero (p < 0.05). These models predict the meanCBF , HbO, andHbR responses

first become different from SEP atCBF levels of 0.86, 0.83, and 0.84, respectively. The mean

CBF andHbO responses remain different from SEP at all lowerCBF levels in the data set,

while the meanHbR response is different from SEP until theCBF level of 0.42. We also note

here that in the control group of animals, where no occlusions were made or negative pressure

applied, the average normalized hemodynamic and SEP responses across animals did not signif-

icantly change (i.e., fluctuations less than5%) over the two hour time course of data collection

(data not shown).
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Figure 7.5: The average somatosensory evoked potential (SEP) across animals at eachCBF
level bin. As with Figure 7.4, theCBF level bins are specified by their central numbers. The
error bars indicate the standard errors of these averages, and the time zero here corresponds to
the arrival of a stimulation pulse. The boxes in each panel contain the SEP latencies (mean±
standard error) in milliseconds at eachCBF level. The latency is the time from stimulus to the
p1 peak. SEP latencies are significantly associated withCBF level (p < 0.0001).
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Figure 7.6: Average normalized hemodynamic and SEP responses (Equations 7.2, 7.3) across
animals at the binnedCBF levels of ischemia (Equation 7.4) specified on the horizontal axis.
As with Figures 7.4 and 7.5, the levels of ischemia are discretized into bins with widths of 10
percentage points, such that a CBF level of 0.9 corresponds to the range of CBF levels between
0.85 and 0.95, a CBF level of 0.8 corresponds to the range of CBF levels between 0.75 and
0.85, etc. (A) From left to right, the average normalized cerebral metabolic consumption of
oxygen (CMRO2), somatosensory evoked potential (SEP), and cerebral blood flow (CBF )
responses. (B) From left to right, the average normalized cerebral total hemoglobin (HbT ),
somatosensory evoked potential (SEP), cerebral oxy-hemoglobin (HbO), and cerebral deoxy-
hemoglobin (HbR) responses. The top row of numbers in panel (A) indicates thenumber of
animals contributing to the averages for each CBF level. In both panels, the red lines are standard
errors to the averages, and the asterisks (*) denote statistically significant differences (p < 0.05)
with SEP at a given bin, as determined from a mixed effects model of the mean logarithm of the
ratio of SEP with the respective hemodynamic parameter (seestatistical methods). Recall that
by definition, the pre-ischemic response atCBF level 1 is 1, which is why there are no error
bars in the first bins of both panels.
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Figure 7.7: Mean normalized response (Equations 7.2, 7.3) across animals (thick lines) of SEP,
CBF , andCMRO2 as a function ofCBF level (Equation 7.4). Mean values shown are based
on individual mixed effects models (see statistical methods) along with their95% confidence
intervals (shaded regions).CBF differed from SEP (p < 0.0001) andCMRO2 (p < 0.0001),
but SEP andCMRO2 were not significantly different (p > 0.1).

7.4 Discussion

Fox and Raichle [102] first reported that for healthy humans,the localized CBF increases due to

functional stimulation vastly exceed the localized CMRO2 increases, although they were compa-

rable to the increases in localized cerebral glucose metabolism [103]. The compartmental model

of Buxton and Frank [41] explained this observation by noting that a largeCBF increase could

be necessary to support a smallCMRO2 increase due to oxygen diffusion limitations. A key

assumption of their model is that all of the oxygen leaving the vasculature is metabolized, which

results in a tight coupling betweenCBF andCMRO2. However, the direct measurements of

tissue oxygen pressure andCBF in rats by Anceset al [4] during functional stimulation provide

evidence of an uncoupling betweenCBF andCMRO2 in that after 1 minute of stimulation,

there was a sustained post-stimulus undershoot in tissue oxygen pressure that was not present

in CBF. This is similar to the resetting of blood flow and metabolism seen following a more

generalized activation (sheltering a rat previously exposed to the environment) [178]. Leithner

et al [167] also recently presented data in rats showing thatthe largeCBF response from func-

tional stimulation is not necessary to support small changes inCMRO2. Their interpretation of
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these results is that there exists a safety factor wherein the blood flow increase from functional

stimulation can deliver more oxygen than is necessary to sustain the increase in neuronal activity.

Our results show an uncoupling betweenCBF andCMRO2 during functional stimulation

at different levels of ischemia that supports the notion of the safety factor described by Leithner

et al [167]. As seen from Figures 7.6 and 7.7, the attenuationin functionalCBF increases at

milder levels of ischemia is stronger than the attenuation in the neuronal activity as measured

by SEPs. However, theCMRO2 response does not follow theCBF response at the milder

levels of ischemia, but instead remains coupled to SEP. In other words, the effect of global

ischemia is to make the safety factor between the increases in oxygen supply and consumption

during functional stimulation smaller. Thus, especially for severe ischemia, it is likely that the

mechanism for the neuroprotection of functional stimulation during ischemia observed by others

[38,164] is probably not related toCBF changes from stimulation.

As withCBF , oxy-hemoglobin and deoxy-hemoglobin concentrations arealso more severely

attenuated with moderate ischemia than the electrical SEP response. However, ischemia does not

affect the total hemoglobin response significantly differently from the SEP response. The un-

coupling between blood flow and total hemoglobin responses with ischemia demonstrates that

with functional activation, using total hemoglobin as a surrogate for blood flow via Grubbs rela-

tion [119] could lead to inaccurate results for blood flow.

Recall that to characterize the functional hemodynamic responses, we looked at peak in-

creases in the hemodynamic parameters (Equation 7.2). An alternative approach would be to in-

tegrate the temporal responses due to functional stimulation (i.e., take the area under the response

curves) instead, especially since Figure 7.4 suggests thatischemia broadens the hemodynamic

responses in addition to attenuating them. Characterizingthe hemodynamic responses this way,

we find the same behavior as depicted in Figures 7.6 and 7.7, demonstrating the robustness of

our main conclusion on the uncoupling between flow and metabolism increases resulting from

ischemia.

Though we are not aware of previously published data on functional hemodynamic responses

to an identical stimulation protocol, the pre-ischemic responses we measure are reasonable. For

4 Hz, 4-second, 1.6 mA forepaw stimulation in healthy rats, Royl et al [214] observed an average

212



peakCBF increase of roughly17% with laser speckle imaging, while Durduranet al [82] ob-

served average peakCBF increases with laser speckle imaging of13.4±2.5% and20.0±3.0%

for 5 Hz, 4-second stimulations with amplitudes of 1 mA and 2 mA, respectively. Furthermore,

the ratios between the average peakCBF response and the average peakCMRO2,HbO,HbR,

andHbT responses in our pre-ischemic data are comparable to functional responses due to a 10-

second, 3 Hz, 1 mA forepaw stimulus reported by Dunnet al [78]. The small post-stimulus

undershoot inCMRO2 present in Figure 7.4, as well as the simultaneous rise ofCBF and

CMRO2, is likely an artifact of the steady-state model, Equation 7.1 [245].

In regards to somatosensory evoked potentials, experimental work involving a focal ischemia

model in baboons showed a sharpCBF threshold for electrical activity in the brain, with com-

plete electrical failure whenCBF is approximately35% of control [33]. A similarCBF thresh-

old was observed for auditory evoked potentials in a global ischemia model in cats [227]. In our

study, we did observe severe attenuation in SEPs at aCBF level around40% (Figures 7.5, 7.6,

7.7), although we did not observe the same sharpCBF threshold for electrical activity seen in

these non-rodent ischemia models (Figure 7.7). There is a scarcity of data examining SEPs at

milder levels of ischemia. One paper examining SEPs in a hemorrhage ischemia rat model ob-

served SEP amplitudes between50− 60% of control whenCBF was lowered to approximately

65% of control [230], which is reasonably close to the results inFigure 7.7. In another paper ex-

amining the effects of bi-lateral common carotid artery occlusion on SEPs in rats, a steady-state

decrease in the SEPp1 amplitude to90% of control is observed, although this decrease was not

statistically significant [20]. In the present study, bi-lateral common carotid artery occlusion de-

creased CBF to70±15% (mean± SD) of control. Since in the control group, the SEP amplitude

remains stable, it is likely that the observed decreases in SEP amplitude during mild ischemia

are in fact due to the reduced blood flow levels in the brain. The effect of an increased SEP

latency with ischemia (Figure 7.5) has been observed in rodent models of ischemia by others as

well [128,256].

The mechanisms that couple changes in neuronal activity to changes in cerebral blood flow

have been under investigation for several decades and involve not only the neurons but also

vascular cells and astrocytes encompassing the so-called neurovascular unit [165]. The main

mediators for the hemodynamic response to neuronal activation include nitric oxide, adenosine,
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glutamate, arachidonic acid metabolites, and epoxyeicosatrienoic acids [139]. During and fol-

lowing cerebral ischemia, the elements that comprise the neurovascular unit may be altered and

vascular reactivity depressed [56], with the degree of depression dependent on the degree of is-

chemia [153]. However, data is lacking on changes to these mediators during graded ischemia.

Although a specific mechanism accounting for the decrease inblood flow response as baseline

blood flow is decreased cannot be identified, reduction of cerebral blood flow resulting from

upstream vascular clamping or hypotension causes the localvasculature to dilate with potential

negative implications for further dilation in response to neuronal activation.

To summarize, we have collected a large data set of hemodynamic and electrical functional

responses in rats at many different levels of global cerebral ischemia. All of the electrical and

hemodynamic responses are attenuated as the global ischemia becomes more severe, but the

blood flow, oxy-hemoglobin, and deoxy-hemoglobin responses are more strongly attenuated

at milder levels of global ischemia than the electrical or metabolic responses. The observed

uncoupling between flow and metabolism at ischemic levels isevidence supporting the notion

that during healthy conditions, functional stimulation increases oxygen delivery to brain tissue

more than oxygen consumption. During functional stimulation in global ischemia, though, a

higher fraction of the oxygen delivered from the vasculature will be consumed.

7.5 Appendix: OIS Modified Beer-Lambert Law with Light Emit-

ting Diodes

A Modified Beer Lambert law for OIS was employed to compute hemoglobin concentration

changes from intensity measurements under light emitting diode illumination:

− log

(

Ijk(t)

I0,jk

)

=
∑

i

wi [εHbO(λi)∆HbOk(t) + εHbR(λi)∆HbRk(t)]L(λi). (7.5)

Here,Ijk(t) is the measured intensity at time t andI0,jk is the averaged measured pre-stimulus

baseline intensity at a given ischemic condition for LEDj and pixelk in the CCD camera,

εHbO(λ) andεHbR(λ) are molar extinction coefficients [207] forHbO andHbR at wavelength

λ, respectively,∆HbOk(t) and∆HbR(k) are the concentration changes inHbO andHbR

from baseline at pixelk and timet, respectively,L(λ) is a differential pathlength,wi are weights
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indicating the contribution of wavelengthλi in the spectra of LEDj, and the sum is over alli

wavelengths present in the LED spectra. Equation 7.5 assumes that light absorption from tissue

chromophores other thanHbO andHbR is negligible, and that tissue scattering remains constant

over time. The LEDs had a broad spectra (width> 20 nm), which is why it was necessary to

measure the emission spectra of the three LEDs used with a spectrophotometer.

The weightwi in Equation 7.5 is the power of wavelengthi emitted by a given LED divided

by the total power emitted by the LED over all wavelengths. Using Monte Carlo simulations,

the differential pathlengths at each wavelength in the LED spectra were calculated with the

procedure described by Kohlet al [163] (also see Chapter 3). The mean differential pathlengths

for the 530, 590, and 660 nm LEDS we used were 0.063, 0.087, and0.474 cm, respectively.

Equation 7.5 forms a system of 3 equations for each of the 3 LEDs, which was solved for

∆HbOk(t) and∆HbRk(t) using a least squares approach.

In addition to using Equation 7.5 to calculate changes in HbOand HbR due to stimulation at a

given ischemic condition, Equation 7.5 was also employed tocalculate changes in HbO and HbR

between adjacent steps of graded ischemia. For example, to measure the changes in HbO and

HbR due to unilateral carotid artery occlusion,Ijk andI0,jk in the left-hand side of Equation 7.5

are the average pre-stimulus intensities during the uni-lateral carotid artery occlusion and the pre-

ischemic baseline periods, respectively, for LED j and pixel k (Fig. 2). HbO and HbR changes

between unilateral carotid artery occlusion and bilateralcarotid artery occlusion, bilateral carotid

artery occlusion and three vessel occlusion, and three vessel occlusion and negative lower-body

pressure were calculated the same way. The changes in HbO andHbR between adjacent steps

of graded ischemia are small enough that the modified Beer Lambert Law (7.5) is still accurate

[152].

It was assumed during the pre-ischemic baseline period for every animal that the cortical

tissue under the imaging window is spatially homogeneous with HbO0 = 60 µM, HbR0 =

40 µM, and a reduced scattering coefficient of 10 cm−1 for all wavelengths emitted by the

LEDs. From this starting point, images ofHbO andHbRwere then calculated for all subsequent

conditions of ischemia.
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Table 7.1: Parameters utilized in compartment model (see Equation 7.28 and Figure 7.8).
Quantity Symbol Units
Vascular [O2] (Eq. 7.22) C(x, t) µmolO2 / (L blood)
Plasmatic [O2] (Eq. 7.12) Cp(x, t) µmolO2 / (L blood)
Tissue [O2] Ct(t) µmolO2 / L
Arteriole [O2] (C(x = 0, t), Eq. 7.20) Ca(t) µmolO2 / (L blood)
Venule [O2] (C(x = L, t), Eq. 7.16) Cv(t) µmolO2 / (L blood)
Vascular cross-section area (Eq. 7.21) Ac(x, t) cm2

Arteriole cross-section area (Eq. 7.19) Aa(t) cm2

Venule cross-section area (Eq. 7.15) Av(t) cm2

Tissue compartment volume Vt mL
Total tissue volume Vtissue mL
O2 Permeability (Eq. 7.8) P cm / min
surface areaO2 exchange (Eq. 7.11) s(x)dx cm2

Arteriole blood flow (Eq. 7.18) CBFa(t) (mL blood) / (min cm2)
CBFa, clinical units (Eq. 7.27) CBFa,c(t) (mL blood) / (min (100 mL tissue))
Venule blood flow (Eq. 7.14) CBFv(t) (mL blood) / (min cm2)
CBFv, clinical units (Eq. 7.27) CBFv,c(t) (mL blood) / (min (100 mL tissue))
Tissue [O2] Metabolism (Eq. 7.26) CMRO2(t) µmolO2 / min
CMRO2, clinical units (Eq. 7.28) CMRO2,c(t) µmolO2 / (min (100 mL tissue))

7.6 Appendix: Tissue Compartment Model forCMRO2

The tissue compartment model is essentially a mass balance relation for oxygen that is commonly

used to estimate oxygen metabolism (also known as oxygen consumption) from measurements

of tissue blood flow and tissue oxygen saturation [41–43,62,104,131,132,136,138,180,187,195,

242,246,273]. The so-called single compartment model approximates the tortuous vasculature in

tissue as a single tube embedded in a well-mixed (i.e., spatially homogeneousO2 concentration)

tissue compartment (Figure 7.8) [242]. The parameters usedin the compartment model are

tabulated in Table 7.1.

7.6.1 Relation of Compartment Model Parameters to Tissue Vasculature

The first step in deriving the compartment model is to calculate the oxygen diffusing from a sin-

gle blood vessel to the tissue volume at an arbitrary pointx along the blood vessel (see dashed

box in Figure 7.9). Letw denote the width of the vessel membrane andc(y) denote the concen-

tration of oxygen at a pointy within the membrane (Figure 7.9). The oxygen concentrationc(y)
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Figure 7.8: An arbitrary tissue volumeVtissue is comprised of a vascular compartment of length
L and a well-mixed tissue compartment. The total amount of oxygen flowing into the vascular
compartment is(AaCa) × CBFa (Equation 7.17), whereCa is the average arteriole oxygen
concentration,Aa is the cross-sectional area of the vascular compartment atx = 0, andCBFa

is the blood flow supplyingVtissue. Oxygen leaves the vascular compartment via venous drainage
((AvCv)×CBFv (Equation 7.13);Cv is average venule oxygen concentration,Av is the cross-
sectional area of the vascular compartment atx = L, CBFv is the blood flow drainingVtissue)
and via oxygen exchange with the tissue compartment (see main text).C(x) is the total concen-
tration of oxygen at positionx in the vascular compartment,Cp(x) is the contribution toC(x)
from oxygen dissolved in the plasma,P is the oxygen permeability of the vascular compartment
(Equation 7.8),s(x)dx is the infinitesimal surface area of oxygen exchange betweenthe vascu-
lar and tissue compartments atx, andCt is the concentration of oxygen in the well-mixed tissue
compartment. The tissue compartment is supplyed by oxygen from the vascular compartment,
and “drained” by the consumption of oxygen inVtissue(i.e.,CMRO2).
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Figure 7.9: Schematic of three vessels spanning the tissue volumeVtissue with draining blood
flows of CBFv,1, CBFv,2, andCBFv,3. For each vessel, the variablex is understood to be the
length along the vessel from its point of entry into the tissue volume. At the “exit points” where
the vessels leaveVtissue, the oxygen concentrations in the blood areCv,1, Cv,2, andCv,3, and
the cross-sectional areas of the vessels areAc,1, Ac,2, andAc,3. The dashed purple box is a
zoomed-in view of a vessel membrane.

is described by the diffusion equation

∂c

∂t
= DO2

∂2c

∂y2
, (7.6)

with the boundary conditionsc(y = 0) = Cp(x) andc(y = w) = Ct. DO2 is the diffusion

coefficient of oxygen in the vessel membrane,Cp(x) is the oxygen concentration dissolved in

the blood plasma atx, andCt is the oxygen concentration in the tissue compartment. Assuming

steady-state, i.e.,∂c/∂t = 0, the solution to Equation 7.6 is

c(y) = Cp(x) + [Ct − Cp(x)]
y

w
. (7.7)

From Fick’s law, the flux of oxygen from the vessel into the tissue at positionx, is

JO2(x) = −DO2
∂c

∂y
=
D

w
(Cp(x)− Ct) = P (Cp(x)− Ct), (7.8)

whereP = DO2/w [cm / min] is the oxygen permeability of the vessel membrane.

Now, let’s consider three vessels flowing throughVtissue (Figure 7.9). For a single vesselj,

the transport rate of oxygen from vessel to tissue at lengthx along the vessel is the oxygen flux
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given by Equation 7.8 multiplied by the vessel’s infinitesimal surface area of oxygen exchange,

sj(x)dx, i.e.,TO2(x) = P sj(x)dx[Cp,j(x)−Ct] [µmol / min]. The total oxygen transport rate is

the sum over the rates for each blood vessel, e.g.,

TO2(x) = (P s1(x)[Cp,1(x)− Ct] + P s2(x)[Cp,2(x)− Ct] + P s3(x)[Cp,3(x)− Ct])dx

= Ps(x)dx[Cp(x)− Ct], (7.9)

wheres(x)dx = (s1(x) + s2(x) + s3(x))dx is the total surface area of oxygen exchange, and

Cp(x) = [s1(x)Cp,1(x)+ s2(x)Cp,2(x)+ s3(x)Cp,3(x)]/s(x) is a weighted average of the vessel

plasmatic oxygen concentrations.

More generally, the total rate of oxygen transport to tissuefromN vessels is

TO2(x) =

N
∑

j=1

P sj(x)dx[Cp,j(x)− Ct]

= Ps(x)[Cp(x)− Ct], (7.10)

where

s(x) =

N
∑

j=1

sj(x), (7.11)

Cp(x) =
1

s(x)

N
∑

j=1

sj(x)Cp,j(x). (7.12)

Also of interest is the “drainage rate” of oxygen from blood flow exiting Vtissue, i.e., T d
O2

[µmol / min]. The oxygen transport rate out of the tissue from blood flow in an arbitrary vessel

j is CBFv,j(Cv,jAv,j), whereCBFv,j, Cv,j, andAv,j are the vessel’s blood flow, oxygen concentra-

tion, and cross-sectional area, respectively, at the vessel’s exit point fromVtissue. Therefore, the

total drainage rate fromN vessels is

T d
O2 =

N
∑

j=1

CBFv,j(Cv,jAv,j)

= CBFv(AvCv). (7.13)

Here,

CBFv =

N
∑

j=1

CBFv,j (7.14)
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is the total blood flow exitingVtissue,

Av =
N
∑

j=1

Av,j (7.15)

is the total cross-sectional area of the blood vessels at theexit points ofVtissue, and

Cv =
1

CBFvAv

∑

j=1

CBFv,jAv,jCv,j (7.16)

is a weighted average of the vessel oxygen concentrations attheir tissue exit points.

Analogously, the “supply rate” of oxygen from blood flow entering Vtissue is

T s
O2 =

N
∑

j=1

CBFa,j(Ca,jAa,j)

= CBFa(AaCa), (7.17)

whereCBFa,j, Ca,j, andAa,j are thejth vessel’s blood flow, oxygen concentration, and cross-

sectional area, respectively, at the vessel’s entry point intoVtissue. Further,

CBFa =
N
∑

j=1

CBFa,j (7.18)

is the total blood flow supplyingVtissue,

Aa =

N
∑

j=1

Aa,j (7.19)

is the total cross-sectional area of the blood vessels at theentry points ofVtissue, and

Ca =
1

CBFaAa

∑

j=1

CBFa,jAa,jCa,j (7.20)

is a weighted average of the vessel oxygen concentrations attheir tissue entry points.

Finally, analogously to Equations 7.19 and 7.20, the vascular compartment cross-sectional

area (Ac(x)) and oxygen concentration (C(x)) at lengthx in the vascular compartment are

Ac(x) =
N
∑

j=1

Ac,j(x), (7.21)

C(x) =
1

CBF (x)Ac

∑

j=1

CBFj(x)Ac,j(x), (7.22)

whereCBF (x) =
N
∑

j=1
CBFj(x) is the total blood flow at lengthx.
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7.6.2 Oxygen Transport Equations in Vascular and Tissue Compartments

The conservation law [176, Section 1.2] of oxygen in the vascular compartment (see Figure 7.8)

is
d

dt

∫ L

0
Ac(x, t)C(x, t)dx = T s

O2 − T d
O2 −

∫ L

0
TO2(x)dx, (7.23)

where the left hand side is the temporal rate of change of oxygen in the vascular compartment,

T s
O2 is the oxygen supply rate to the vascular compartment,T d

O2 is the oxygen drainage rate from

vessels exiting the vascular compartment, and the integralon the right-hand side is the diffusive

rate of oxygen transport between the vascular and tissue compartments. Substituting Equations

7.10, 7.13, and 7.17 into Equation 7.23, we obtain the vascular compartment oxygen transport

equation, i.e.,

d

dt

∫ L

0
Ac(x, t)C(x, t)dx = CBFa(t)Aa(t)Ca(t)− CBFv(t))Av(t)Cv(t)−

∫ L

0
Ps(x, t)[Cp(x, t)− Ct(t)]dx. (7.24)

For the tissue compartment, the oxygen transport equation is

d

dt
(Vt(t)Ct(t)) =

∫ L

0
Ps(x)[Cp(x, t)− Ct(t)]dx− CMRO2(t), (7.25)

whereVt(t) is the volume of the tissue compartment at timet (not to be confused withVtissue,

which is the total tissue volume), andCMRO2(t) [µmol / min] is the tissue oxygen metabolism.

In words, Equation 7.25 states that the rate of change in oxygen [µmol/min] in the tissue com-

partment is the oxygen supply rate diffusing from the vasculature minus the oxygen consumption

rate.

Combining Equations 7.24 and 7.25, we find that the compartment model expression for

CMRO2 is

CMRO2(t) = CBFa(t)[Aa(t)Ca(t)]− CBFv(t) [Av(t)Cv(t)]−
d

dt
[Vt(t)Ct(t)]−

d

dt

[∫ L

0
Ac(x, t)C(x, t)dx

]

. (7.26)

As I discussed in Section 4.9.2, absolute blood flow is reported clinically in units of blood

volume per time per tissue volume, e.g., [(mL blood) / (min (100 mL tissue))]. The “clinical”
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arterial and venous blood flows, i.e.,CBFa,c andCBFv,c, relate toCBFa andCBFv via

CBFa,c = CBFa

(

Aa

Vtissue

)

, CBFv,c = CBFv

(

Av

Vtissue

)

. (7.27)

Dividing Equation 7.26 byVtissue, we find that the compartment model forCMRO2 in terms of

CBFa,c andCBFv,c is

CMRO2,c(t) ≡
CMRO2(t)

Vtissue
= CBFa,c(t)Ca(t)− CBFv,c(t)Cv(t)−

1

Vtissue

(

d

dt
[Vt(t)Ct(t)] +

d

dt

[
∫ L

0
Ac(x, t)C(x, t)

])

.

(7.28)

Here,CMRO2,c(t) [µmol / (min (100 mL tissue))] is the tissue oxygen metabolism normalized

by the tissue volume.

7.6.3 Steady State Compartment Model

For steady-state conditions wherein the time derivatives are zero and the arterial and venous

blood flows are equal, i.e.,CBFa,c = CBFv,c = CBFc, Equation 7.28 simplifies substantially

to

CMRO2,c = CBFc [Ca − Cv] . (7.29)

Recall thatCBFc is proportional to the DCS blood flow index (i.e., Equation 4.79). Further, if

the oxygen dissolved in the plasma is negligible compared tothe oxygen bound to hemoglobin,

which is usually the case (Figure 7.10), then

Ca = 4SaO2[HbT ]a,blood = 4υSaO2Hcta, (7.30)

Cv = 4SvO2[HbT ]v,blood = 4υSvO2Hctv. (7.31)

Here,SaO2 andSvO2 are weighted averages of the oxygen saturation in vessels supplyingVtissue

(e.g., arterioles) and in vessels drainingVtissue(e.g., venules), respectively. Further,[HbT ]a,blood

[µmol HbT / L blood] and[HbT ]v,blood are the total hemoglobin concentrations in the blood as-

sociated withSaO2 andSvO2. Finally,Hcta andHctv are the corresponding hematocrit levels,

andυ [µmol HbT / (RBC volume)] is the average amount of total hemoglobin per red blood

cell volume. The factor of 4 in Equations 7.30 and 7.31 is present because the concentration of
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Figure 7.10: Ratio of the dissolved oxygen in plasma over theoxygen bound to hemoglobin
(Cp/Cbound), plotted as a function of the hemoglobin oxygen saturation(SO2 = HbO/HbT ).
Cp was calculated from the empirical hemoglobin dissociationcurve relating oxygen concen-
tration dissolved in the plasma to oxygen saturation, i.e.,Cp = Cp,50(1/SO2 − 1)−1/h, with
Cp,50 = 36.1 µM andh = 2.73 [242]. The bound oxygen isCbound = 4SO2[HbT ]blood, with
[HbT ]blood ≈ 2300 µM.

bound oxygen is roughly four times that of oxy-hemoglobin (i.e., 4 oxygen molecules are bound

to each oxygenated hemoglobin protein).

For constant hematocrit (Hcta = Hctv = Hct), the steady-state oxygen metabolism ob-

tained from substituting Equations 7.30 and 7.31 into 7.29 is

CMRO2,c = (4υHct)CBFc (SaO2 − SvO2) . (7.32)

Optical techniques sensitive toCBFc include DCS and laser speckle contrast imaging. We know

from Chapter 2 that DOS is sensitive to tissue oxygen saturation (StO2, see Equation 2.139).

Thus, to determineCMRO2,c from Equation 7.32, the goal is to estimate the oxygen extraction

SaO2 − SvO2 (or changes in oxygen extraction) fromStO2 measurements. This is a difficult

task, though, because the DOS measurement samples a mixtureof arteriole, capillary and venule

blood oxygen saturation and does not separate venous from arterial saturations.

To proceed,StO2 is assumed to be a weighted average of arteriole and venule oxygen satu-

rations [62]:

StO2 = (1− γ)SaO2 + γSvO2, (7.33)
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whereγ is a weighting factor. Substituting Equation 7.33 into Equation 7.32, we obtain

CMRO2,c = (4υHct)CBFc

(

SaO2 − StO2

γ

)

. (7.34)

Fractional oxygen metabolism changes relative to a baseline state are in turn given by

CMRO2,c

CMRO0
2,c

=

(

CBFc

CBF 0
c

)(

SaO2 − StO2

SaO0
2 − StO0

2

)(

γ0
γ

)

, (7.35)

where the superscript “0” denotes baseline. The fractionalblood flow change can be directly

measured with DCS, and DOS can measure the tissue oxygen saturations. The arteriole oxygen

saturations are often assumed to be unity, or else estimatedfrom other techniques such as a pulse

ox. Although one could estimateγ from knowledge of the venous blood volume fraction, this

estimate is complicated by the non-trivial distribution ofdetected photon paths in tissue. For

example, photons traversing larger vessels have a strong tendency to be absorbed, and therefore

even large veins with a high blood volume fraction may contribute little to the DOS signal.

However, if the arteriole, capillary, and venule blood volume fractions remain constant between

a baseline and perturbed tissue state, then it is reasonableto assume thatγ0/γ = 1.

Alternatively, it is feasible to monitorSvO2 directly with DOS by looking at hemoglobin

changes in sync with the respiration rate [177]. This is a promising approach that can be used to

estimateγ. It works best if the respiration rate is regular.

224



Chapter 8

Conclusions/Future Work

Diffuse correlation spectroscopy (DCS) and diffuse optical spectroscopy (DOS) are noninva-

sive optical techniques capable of cerebral blood flow (CBF ), cerebral blood volume (CBV ),

and cerebral blood oxygenation (StO2) monitoring. Further, a tissue compartment model (Sec-

tion 7.6) can be utilized to estimate cerebral oxygen metabolism (CMRO2) from the optical

data. In many applications, such as assessing stroke treatment efficacy and detecting secondary

stroke in brain-injured patients, this information provides clinical value.

DOS signals are commonly analyzed either with a photon diffusion approach (Chapter 2)

or a Modified Beer-Lambert approach (Chapter 3). Analogously to the DOS photon diffusion

approach, DCS signals are analyzed with a correlation diffusion approach (Chapter 4) to extract

blood flow. I extended the Modified Beer-Lambert approach forDOS to the DCS measurement,

and validated it with both simulated andin vivo data (Chapter 5).

The novel DCS Modified Beer-Lambert approach has some usefuladvantages compared to

the correlation diffusion approach. It facilitates real-time flow monitoring in complex tissue

geometries, provides a novel route for increasing DCS measurement speed, and can be used to

probe tissues wherein light transport is non-diffusive. Italso can be used to filter signals from

superficial tissues. The latter advantage is especially important, because a well-known drawback

of optical cerebral monitoring is its significant sensitivity to superficial tissues above the brain

(e.g., scalp and skull). This sensitivity makes the opticaltechniques prone to extra-cerebral

artifacts.
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Combining the DCS Modified Beer-Lambert framework with probe pressure modulation

is a novel technique that I successfully used to remove extra-cerebral artifacts inin vivo cere-

bral blood flow monitoring during graded scalp ischemia and finger tapping (Chapter 6). This

pressure modulation algorithm does not requirea priori anatomical information, and it can be

implemented for real time monitoring. The technique can further be extended to the DOS mea-

surement utilizing the DOS Modified Beer-Lambert framework(Chapter 6).

In another major part of my thesis, I used optical techniquesto obtain surface images of

CBF andCMRO2 functional responses to forepaw stimulation in rats at manydifferent levels

of cerebral ischemia (i.e., conditions of lower than normalCBF ) (Chapter 7). Electrical func-

tional responses to the forepaw stimulation were also measured in order to assess neurovascular

coupling (Chapter 7) during graded cerebral ischemia. All of the electrical and hemodynamic

responses are attenuated as the global ischemia becomes more severe, but the blood flow, oxy-

hemoglobin, and deoxy-hemoglobin responses are more strongly attenuated at milder levels of

global ischemia than the electrical or metabolic responses. The observed uncoupling between

flow and metabolism at ischemic levels is evidence supporting the notion that during healthy

conditions, functional stimulation increases oxygen delivery to brain tissue more than oxygen

consumption. During functional stimulation in global ischemia, though, a higher fraction of the

oxygen delivered from the vasculature is consumed. Anotherfinding is thatCBF andCBV

were affected differently by ischemia, which demonstratesthe importance of using DCS or a re-

lated technique to measureCBF directly rather than relying onCBV as a surrogate forCBF .

Future work will include testing the pressure algorithm approach further in clinical settings.

Specifically, the non-invasive approach with DCS for monitoring CBF will be compared in

traumatic brain-injured patients against the current clinical standard ofCBF monitoring with

an invasive thermodilution technique. It is further worth exploring the extension of the pressure

algorithm to more complex geometries than the two-layer approach, such as geometries that

contain non-diffusing domains from cerebral spinal fluid. The interactions of detected light with

the vasculature is also not well understood. Monte Carlo simulations with a realistic vascula-

ture would provide useful insights on estimating theγ coefficient in theCMRO2 compartment

model calculation (Section 7.6) as well as on relating the DCS blood flow index to absolute

blood flow.
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[242] R. Valabrègue, A. Aubert, J. Burger, J. Bittoun, and R. Costalat. Relation between cere-

bral blood flow and metabolism explained by a model of oxygen exchange. Journal of

Cerebral Blood Flow & Metabolism23(5), 536–545 (2003).

[243] P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L.A. Potter, A. D. Edwards, J. S.

Wyatt, D. C. McCormick, S. C. Toth, E. O. R. Reynolds, and D. T.Delpy. Experimentally

measured optical pathlengths for the adult’s head, calf andforearm and the head of the

newborn infant asa function of interoptode spacing.Adv. Exp. Med. Biol.316, 143–153

(1992).

[244] I. Vanzetta and A. Grinvald. Coupling between neuronal activity and microcirculation:

implications for functional brain imaging.HFSP journal 2(2), 79–98 (2008).

[245] A. L. Vazquez, M. Fukuda, and S.-G. Kim. Evolution of the dynamic changes in func-

tional cerebral oxidative metabolism from tissue mitochondria to blood oxygen.Journal

of Cerebral Blood Flow & Metabolism32(4), 745–758 (2012).

[246] A. L. Vazquez, K. Masamoto, M. Fukuda, and S.-G. Kim. Cerebral oxygen delivery and

consumption during evoked neural activity.Frontiers in neuroenergetics2 (2010).

[247] A. L. Vazquez, K. Masamoto, and S.-G. Kim. Dynamics of oxygen delivery and consump-

tion during evoked neural stimulation using a compartment model and cbf and tissue p o2

measurements.Neuroimage42(1), 49–59 (2008).

[248] A. Villringer and B. Chance. Non-invasive optical spectroscopy and imaging of human

brain function.Trends in neurosciences20(10), 435–442 (1997).

253



[249] A. Villringer, A. Them, U. Lindauer, K. Einhäupl, andU. Dirnagl. Capillary perfu-
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