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Optical Cerebral Blood Flow Monitoring of Mice to Men

Abstract

This thesis describes cerebral hemodynamic monitoring with the optical techniques of diffuse optical
spectroscopy (DOS) and diffuse correlation spectroscopy (DCS). DOS and DCS both employ near-infrared
light to investigate tissue physiology millimeters to centimeters below the tissue surface. DOS is a static
technique that analyzes multispectral tissue-scattered light intensity signals with a photon diffusion approach
(Chapter 2) or a Modified Beer-Lambert law approach (Chapter 3) to derive tissue oxy- and deoxy-
hemoglobin concentrations, which are in turn used to compute tissue oxygen saturation and blood volume
(Section 2.13). DCS is a qualitatively different dynamic technique that analyzes rapid temporal fluctuations in
tissue-scattered light with a correlation diffusion approach to derive tissue blood flow (Chapter 4). Further, in
combination these measurements of blood flow and blood oxygenation provide access to tissue oxygen
metabolism (Section 7.6).

The new contributions of my thesis to the diffuse optics field are a novel analysis technique for the DCS signal
(Chapter S), and a novel approach for separating cerebral hemodynamic signals from extra-cerebral artifacts
(Chapter 6). The DCS analysis technique extends the Modified Beer-Lambert approach for DOS to the DCS
measurement. This new technique has some useful advantages compared to the correlation diffusion
approach. It facilitates real-time flow monitoring in complex tissue geometries, provides a novel route for
increasing DCS measurement speed, and can be used to probe tissues wherein light transport is non-diffusive
(Chapter S). It also can be used to filter signals from superficial tissues. For separation of cerebral
hemodynamic signals from extra-cerebral artifacts, the Modified Beer-Lambert approach is employed in a
pressure modulation scheme, which determines subject-specific contributions of extra-cerebral and cerebral
tissues to the DCS/DOS signals by utilizing probe pressure modulation to induce variations in extra-cerebral
hemodynamics while cerebral hemodynamics remain constant (Chapter 6).

In another novel contribution, I used optical techniques to characterize neurovascular coupling at several
levels of cerebral ischemia in a rat model (Chapter 7). Neurovascular coupling refers to the relationship
between increased blood flow and oxygen metabolism and increased neuronal activity in the brain. In the rat,
localized neuronal activity was increased from functional forepaw stimulation. Under normal flow levels, I
(and others) observed that the increase in cerebral blood flow (surrogate for oxygen delivery) from forepaw
stimulation exceeded the increase in cerebral oxygen metabolism by about a factor of 2. My measurements
indicate that this mismatch between oxygen delivery and consumption are more balanced during ischemia
(Chapter 7).

In Chapters 2 and 3, I review the underlying theory for the photon diffusion model and the Modified Beer-
Lambert law for DOS analysis. I also review the correlation diffusion approach for analyzing DCS signals in
Chapter 4. My hope is that readers new to the field will find these background chapters helpful.
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ABSTRACT

OPTICAL CEREBRAL BLOOD FLOW MONITORING OF MICE TO
MEN

Wesley Boehs Baker
Arjun G. Yodh

This thesis describes cerebral hemodynamic monitoring thi¢é optical techniques of diffuse
optical spectroscopy (DOS) and diffuse correlation spscwopy (DCS). DOS and DCS both
employ near-infrared light to investigate tissue physiglmillimeters to centimeters below the
tissue surface. DOS is a static technique that analyzedspettral tissue-scattered light in-
tensity signals with a photon diffusion approach (Chap)eorZza Modified Beer-Lambert law
approach (Chapter 3) to derive tissue oxy- and deoxy-hesboglconcentrations, which are in
turn used to compute tissue oxygen saturation and bloogns($ection 2.13). DCS is a quali-
tatively different dynamic technique that analyzes rapmoral fluctuations in tissue-scattered
light with a correlation diffusion approach to derive tissblood flow (Chapter 4). Further, in
combination these measurements of blood flow and blood owatge provide access to tissue
oxygen metabolism (Section 7.6).

The new contributions of my thesis to the diffuse optics fesld a novel analysis technique
for the DCS signal (Chapter 5), and a novel approach for séipgrcerebral hemodynamic sig-
nals from extra-cerebral artifacts (Chapter 6). The DC3yaistechnigue extends the Modified
Beer-Lambert approach for DOS to the DCS measurement. Ehnigechnique has some useful
advantages compared to the correlation diffusion apprdaécilitates real-time flow monitor-
ing in complex tissue geometries, provides a novel routnfaeasing DCS measurement speed,
and can be used to probe tissues wherein light transpornigliflusive (Chapter 5). It also can
be used to filter signals from superficial tissues. For sejparaf cerebral hemodynamic signals
from extra-cerebral artifacts, the Modified Beer-Lambgmpraach is employed in a pressure
modulation scheme, which determines subject-specificribotipns of extra-cerebral and cere-

bral tissues to the DCS/DOS signals by utilizing probe pressodulation to induce variations



in extra-cerebral hemodynamics while cerebral hemodyosm@main constant (Chapter 6).

In another novel contribution, | used optical techniquesharacterize neurovascular cou-
pling at several levels of cerebral ischemia in a rat modékfifer 7). Neurovascular coupling
refers to the relationship between increased blood flow alyden metabolism and increased
neuronal activity in the brain. In the rat, localized newloactivity was increased from func-
tional forepaw stimulation. Under normal flow levels, | (anithers) observed that the increase
in cerebral blood flow (surrogate for oxygen delivery) froandpaw stimulation exceeded the
increase in cerebral oxygen metabolism by about a factor f2measurements indicate that
this mismatch between oxygen delivery and consumption ame roalanced during ischemia
(Chapter 7).

In Chapters 2 and 3, | review the underlying theory for thetphdaliffusion model and the
Modified Beer-Lambert law for DOS analysis. | also review tloerelation diffusion approach
for analyzing DCS signals in Chapter 4. My hope is that readew to the field will find these
background chapters helpful.
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Chapter 1

Introduction

Diffuse correlation spectroscopy [37, 79, 84, 182, 269] §)@nd diffuse optical spectroscopy
[99, 115, 166, 175, 193, 219, 231, 248] (DOS) are opticalnegles that employ near-infrared
light (NIR) to monitor cerebral blood flow, oxygen saturati@and blood volume continuously
and non-invasively at the bedside. In adults, the surfadkeo€erebral cortex is about 1-1.5 cm
below the surface of the scalp, which is optically deep #@sslo investigate tissue physiology
centimeters below the tissue surface, DCS/DOS relies oNlRespectral window{ 650 — 950
nm) wherein light absorption from water and hemoglobin ligtreely low (Figure 1.1). Although
the overall low light absorption enables NIR photons to @étadeep in tissue, the spectra of
dominant NIR tissue chromophores, i.e., oxy-hemoglobib@ or Hb0O5), deoxy-hemoglobin
(HbR or Hb), and water, still differ significantly across the specwaidow (Figure 1.1). Thus,
these tissue chromophore concentrations can be separatedihe another and quantitatively

resolved with multi-spectral spectroscopy measurements.

Conversely, tissue scattering is high in the NIR window, pindtons will scatter thousands of
times before they are absorbed. While most traditionalkcappectroscopy techniques sample
optically thin media where photons scatter no more than ,ooeeebral tissue measurements
are in the opposite, optically thick regime. In the high npldt scattering limit, light transport
through tissue is very well approximated as a diffusive pssqChapter 2). The photon diffusion
model of light makes the inverse problem of determininguésabsorption, scattering, and blood

flow from measurements of light intensity tractable (Chepg 4).
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Figure 1.1: Absorption(,) spectra of main tissue chromophores over a large wavéleagge.
The inset shows the so-called “physiological window” in thear-infrared where water and
hemoglobin absorption are relatively low. Notice in thesinthat the water and lipid absorption
are not multiplied by 100. In this NIR spectral window, ligtdgn penetrate several centimeters
into tissue. Furthermore, there are clear features in teetspwhich enable estimation of chro-
mophore concentration from diffuse optical measuremerds\eeral wavelengths. This figure is
a reprint of [79, Figure 1]
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Figure 1.2: A single DCS/DOS source-detector pair (sejmarat = 3 cm) in the remission
geometry for brain tissue measurements.



A very basic DCS/DOS cerebral measurement with a singleceedetector pair is depicted
in Figure 1.2. NIR light delivered to a point on the scalp uis through tissue randomly
in all directions. A fraction of this diffusing light emerget the light detector located a few
centimeters away from the source point. This detected haltprobed (i.e., interacted with) a
“banana shaped” volume of tissue that spans millimeterctiuple centimeters below the scalp
surface (Section 2.12).

The DOS and DCS technigues use the same measurement gediaethey measure the
detected light intensity on different time scales (Figuw®.1DOS is a static technique that mea-
sures slow@.1 — 1 s) variations in the detected light intensity induced bgues absorption.(,)
and scatttering,(,) changes. DCS is a qualitatively different dynamic techaithat measures
the rapid (microsecond scale) speckle light intesity flatns induced by blood flowf(). Tis-
sue absorption in the NIR spectral window depends predartiinan HbO», Hb, water, and
lipids. Multispectral DOS measurements can quantitativekolve the concentrations of these
chromophores through using the photon diffusion model fzasde absorption from scatter-
ing (Section 2.13). The primary chromophores of interestoxy- and deoxy-hemoglobin, from
which the tissue oxygen saturation, i.8t0, = HbO,/(HbO2+ Hb), and tissue blood volume,
i.e., BV « (HbO, + Hb), can be calculated (see Section 2.13).

DCS obtains a tissue blood flow indek, that is directly proportional to tissue blood flow,
from the decay of the intensity autocorrelation functiontlod speckle intensity fluctuations
(Section 4.9). Further, a tissue compartment model (Se@ti6) can be employed to compute
an index of tissue oxygen metabolism (or oxygen consumptg) from measurements 6f
andStOs.

As might be anticipated, this information about cerebrabblflow, blood oxygenation and
oxygen metabolism has clinical value. All three parametersexample, are important biomark-

ers for brain diseases such as ischemic stroke [127,229].

1.1 Ischemic Stroke

Ischemic stroke is among the leading causes of death andditgrand occurs irY00 thousand

people each year in the U.S. alone [110]. In an ischemic stralblood clot blocks a cerebral
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Figure 1.3:(A) Schematic for a homogeneous tissue model of the head withoal fflow index,
absorption coefficient, and reduced scattering coeffiadnt, 1., and ., respectively. The
incident source intensityl;, remains constant over time. Blood cell motion (e.g., resksliat
timet and light-red disks at time+ 7) induces fast temporal fluctuations (i.e., speckle intgnsi
fluctuations) in the detected light intensity on the timelesad 1S, while absorption and scat-
tering changes modify mean light intensities (e.g., avedagn time scales of ms or greater).
(B) Schematic of detected intensity fluctuations for a baseigseie state (red curve) and a per-
turbed state from baseline with higher blood flow and absamptblue curve). The horizontal
black lines are the mean intensities for the two states, tddras/® and .

artery (e.g., middle cerebral artery (MCA)), causing arelintption in blood flow supply to
a localized region of the brain (Figure 1.4). The strokedess comprised of a core and a
penumbra [11,127,229]. The core is almost entirely depenole the blocked artery for blood
flow supply, and consequentially, blood flow in the core ispew (< 20% of normal flow).
This tissue region does not remain viable long, and is usg@lbmed. Surrounding the core is
the penumbra, which is partially dependent on the blockeztyafor blood flow supply. Thus,
blood flow in the penumbra is lon<( 50% of normal flow), but substantially higher than the
core due to perfusion from collateral vessels. Therefdre, genumbra remains viable on a

longer time scale than the core.

The volume of stroke-related dead tissue is the infarct. Rbrtdime scales, the infarct
mostly consists of the core, but on longer time scales, tineipéra will also succumb to low
blood flow conditions (Figure 1.4). Importantly, the penumkissue does not die all at once,
but is recruited in a complex infarction process that resltgradual infarct growth until well

perfused tissue is encountered (Figure 1.4).

Since the recruitment of penumbra tissue into the infalkgdaime, an acute therapeutic
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Figure 1.4: Exemplar schematic of acute ischemic strokgrpssion. Blood flow supply is
interrupted to a localized region of the brain (i.e., thelstrlesion) by occlusion of the middle
cerebral artery (MCA) (left). The ischemic stroke lesiomsigts of a core that depends almost
entirely on the MCA for blood flow supply, and a surroundingieabra that is partially perfused
by collateral vessels. On short time scales, the infargelgirconsists of the core. Atlonger time
scales, the infarct expands into the penumbra until weflged tissue is encountered. Since the
recruitment of penumbra tissue into the infarct takes titmere is an acute therapeutic window
in which interventions can be prescribed to reduce thecahfgrowth by maximizing perfusion.
DCS is a promising technique for determining the efficacyrofervention’s ability to increase
penumbra blood flow. This figure is courtesy of Turgut Durdura

window should exist where effective treatment intervemgioan halt infarct growth. Thus, treat-
ments for acute ischemic stroke aim to minimize neuroldgieaage by maximizing perfusion
to the brain lesion [86,97,259]. Of course, the most obvieag restore blood flow is to remove
the clot blocking the cerebral artery. Indeed, on short tatees within a few hours of stroke

onset, rtPA infusion is typically prescribed, which is aglthat dissolves the clot.

However, on longer time scales after stroke onset, rtPAsinfucan be harmful. If the core
has been dead long enough, the vasculature in the core israftionger intact. In these cases,
a sudden restoration of blood flow to the core results in hddegding that leads to death.
Paradoxically, restoration of blood flow to the core houtsradtroke onset can also exacerbate
tissue damage through mechanisms such as increased edgmar@n swelling from a leaky
vasculature) and the production of injurious free oxygeticas [229]. Thus, on time scales of
several hours to days following stroke onset, the treatraeategy is to maximize perfusion to

the penumbra to halt infarct growth without restoring flovitte core.

Numerous acute treatment interventions for stroke ardadolaj but variability in response-
to-treatment has been observed [86, 97, 155], and an @Hdciatment for one patient may be

ineffective, or even harmful, for another patient. Thusr@pising clinical application for DCS
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and DOS is rapid patient-specific assessment of treatmicd@f. An effective treatment will

increase perfusion to the penumbra, which DCS and DOS/NHRSmeasure in real time. In-
deed, DCS and DOS enable detection of hemodynamic chanfpge bew neurological symp-
toms emerge [84,192,277]. Crucially, DCS and DOS/NIRS ceted an ineffective treatment
on a faster time scale than the time it takes for new neurcddgymptoms from an ineffective

treatment to develop.

1.2 Thesis organization

Although DCS and DOS show strong potential for ischemick&rveatment management, a
well-known drawback for optical monitoring of cerebralsti® is its significant sensitivity to
blood flow and oxygenation in thextra-cerebraltissues (scalp and skull) [26, 184, 221, 237,
238]. Traditional diffuse optics analyses approximatehiibad as a homogeneous medium (Fig-
ure 1.3A). The homogenous model is simple and does not eguiriori anatomical informa-
tion, but it ignores differences between extra-cerebraddaynamics and cerebral hemodynam-
ics in the brain. Because extra-cerebral blood flow and bmgdenation are non-negligible,
their responses contaminate the DCS and DOS signals. Spdlgjfextra-cerebral contributions
can lead experimenters to incorrectly assign cerebraliplogscal responses [64, 237, 239],
which raises questions about the accuracy of optical carefwnitoring.

A big part of my thesis was the development of a new analysiscgeh for filtering extra-
cerebral contamination in the DCS measurements of cerbluadl flow. This approach utilizes
a novel DCS Modified Beer-Lambert law for analysis of DCS ailgr{Chapter 5), and employs a
two-layer model of the head with pressure modulation tosgpdhe cerebral and extra-cerebral
contributions to the DCS signal (Chapter 6). Importantlis tilgorithm does not requigepriori
anatomical informatior(though it's helpful if available), and can be implementadéal-time.
Further, this algorithm extends to the DOS measurement r&beal blood oxygenation and
blood volume (Chapter 6). My hope is that this algorithm wheplemented in clinical settings
will lead to more reliable cerebral hemodynamic monitoring

In another major part of my thesis, | utilized optical teahrés to assess neurovascular cou-

pling at different levels of cerebral ischemia, includingnpmbral levels and core levels, in a
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rat model (Chapter 7). Neurovascular coupling is the gfieation of hemodynamics due to

increase neuronal activity. To increase neuronal actitliy forepaw of the rat was stimulated.
For normal flow, this resulted in a localized blood flow in@edwhich is a surrogate for oxy-

gen delivery) that substantially exceeded the localizeghewr consumption increase by about
a factor of 2 (Chapter 7). If forepaw stimulation continuedricrease oxygen delivery more

than oxygen consumption during ischemia, then stimulatmuid be an effective treatment for

locally increasing oxygen to the penumbral region of thek&mregion. The oxygen delivery and

consumption increases from functional stimulation areenfi@lanced at the penumbral levels of
ischemia, but the oxygen delivery increase is still sligtmiigher. This suggests that functional
stimulation may be neuroprotective in the penumbra.

Additionally, 1 have extensively reviewed the underlyirtieory for the photon diffusion
and Modified Beer-Lambert law approaches for analyzing D@8as¢s in Chapters 2 and 3,
respectively. | also have reviewed the underlying theontlie correlation diffusion approach
for analyzing DCS signals in Chapter 4. My hope is that readerw to the field will find these
background chapters helpful.



Chapter 2

Diffuse Optical Spectroscopy (DOS):
Photon Diffusion Approach

2.1 Introduction

Light in the near-infrared (NIR) spectral window ( 650-95Mninteracts with tissue via two
fundamental processes: absorption and scattering (FayliyeAbsorption is the light interaction
with matter resulting in the conversion of light energy tbestforms of energy (e.g., thermal
energy). Thus, absorption irretrievably removes lightfriissue via the destruction of photons.
The energy of these vanished photons is not lost, but traedféo tissue in the form of heat.
Scattering is the light interaction with matter where lightaken up by matter and re-emitted.
The re-emitted, or scattered, light may have both a diffeesrergy and momentum than the
original light. As illustrated in Figure 2.1B; = 27 /\k; andks = 27/\k, are the wave
vectors and\; and A\, are the wavelengths of the incident and scattered lighpetively. The
scattering interaction in principle could impart both aemy changefw = hiv(|ks| — |ki|); v

is the speed of light through matter) and a momentum chabge=( (ks — k;)) between the

scattered and incident light.

Elastic (or Rayleigh) scattering is a commonly used terntugisg scattering interactions
where light energy is conserved (i.8, = );), but light momentum is not necessary conserved

(i.e., the directions ok; andkg are different). In Raman scattering and fluorescence, tbrygn
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Figure 2.1: Photon absorption (A) and scattering (B) irdoas within tissue. A tissue absorber
completely transforms the photon’s energy into internatiial energy, thus halting any further
propagation of the photon through tissue. A tissue scattakes up the incident photon with
wave vectork; and reemits a scattered photon with wave vektor The scattering interaction

can induce changes in both the magnitude and direction ketkeandk;.

of the scattered light is different from the incident lighithe energy shifts in Raman scattering
are caused by photon interactions with vibrational andtimtal degrees of freedom in matter,
while the energy shifts in fluorescence are caused by photerections with electronic degrees
of freedom in matter. Energy shifts in fluorescense are &llyienuch larger, and thus easier to
detect, than energy shifts in Raman scattering. For ndaréd light propagating in endogenous
tissue, elastic scattering is dominant. However, if exogsrcontrast agents such as fluorescent
dyes (e.g., Indocyanine Green) are added to tissue to imapontrast, fluorescent scattering

will obviously need to be considered as well [59].

Elastic light scattering in tissue reveals structural infation about cells and surrounding
fluids [74, 189, 248]. This is because light scattering oaggs from spatial variations in the re-
fractive index on the length scale of the light waveleng®][1n most cases, the refractive index
is directly proportional to the molecule number densityJll@nd light scattering measurements
therefore provide information on the spatial heteroggneftmolecule density. Pure water is
a non-scattering medium because the number density of wadkscules is homogeneous on
the length scale ok. Tissue, in contrast, is a highly scattering medium for fierared light
because it has heterogeneous regions of greater and |lessgiycdn a length scale comparable
to NIR wavelengths. Examples of these heterogeneous egictude interfaces between cells

and extracellular space and interfaces between cellutaplasm and cellular organelles.

Tissue light absorption measurements provide complemeirittbormation on the concen-

trations of various tissue chromophores. In the nearfieétaspectral region, the strongest
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Figure 2.2: A single DOS source-detector pair (separatien3 cm) in the remission geometry
for brain tissue measurements. Detected light travels adistribution of pathlengths between
source and detector to probe a “banana shaped” volume oktigd0]. As a rough rule of

thumb, the mean penetration depth is of ord& = 1 cm.

absorbing endogeneous tissue chromophores are oxy- amg-demoglobin and water (Fig-
ure 2.20) [144]. From using the well-known spectra of thdgemophores [207], tissue absorp-
tion measurements at multiple wavelengths permits theidgaalculation of the chromophore

concentrations (Section 2.13) [79, Section 2.8].

Diffuse optical spectroscopy (DOS) uses near-infrarelt lig measure absorption and scat-
tering in tissue. For example, a very basic DOS measurenrebing brain tissue is depicted
in Figure 2.2. Near-infrared source light is delivered taopon the scalp surface via an opti-
cal fiber. Another optical fiber is employed to detect the saakered component of the source
light emerging from tissue at a different point on the scalfexce. This detected light has probed
(i.e., interacted with) a “banana shaped” volume of tisbiag $pans millimeters to a couple cen-
timeters below the scalp surface (Section 2.12) [200]. inigortant to recognize, though, that
the attenuation in the detected light relative to the sodegends on both the absorption and
scattering properties of tissue. In order to separateesoait effects from absorption effects in

the detected light signals, a quantitative model of ligah&port through tissue is required.

In this chapter, | will first show that light transport ovembp distances in tissue is well
approximated as a diffusive process [123, 266]. Then, | éiftuss in detail how to use the
diffusion model of light transport in practice to separassue absorption from tissue scattering

in DOS measurements [10, 79].
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Figure 2.3: The light radiancé is defined such that the radiant power transported across an
element of aredo at pgsitionr and timetAin directions confined to an element of solid angle
dS) centered around the direction isL(r, §2, t, \) cos Ododf.

2.2 Radiative Transport Theory

Maxwell's equations correctly describe light transporbtigh all media, including tissue. How-
ever, because of their complexity, solving Maxwell's equat over long distances in tissue
is an intractable problem that must be addressed numegridatbm numerical solutions, it is
very difficult to gain physical insight on light transportalugh tissue. For these reasons, | will
use radiative transport theory as the starting point forthleeretical description of diffuse op-
tics, which is an excellent approximation of Maxwell’s etjoas for describing light transport
through tissue [46, 51, 142]. The notation for importanhligransport parameters is shown in
Table 2.1.

In radiative transport theory, light with wavelengtipropagating through tissue with refrac-
tive indexn is characterized by its light radianck(r, Q, ¢, \) [Wem~2sr~1], which is the light
power per unit area traveling in ti§¢ direction at positiorr and timet. The amount of radiant

power, W (£2) [W], which is transported across an element of atean directions confined to

an element of solid anglé? (see Figure 2.3) is
W(Q) = Lcos dod, (2.1)

wheref is the angle betweef and the area element’s normal vector,
The interactions of light with tissue are in turn charaatedi by an absorption coefficient,

1a(Q, 1, ¢, \) [1/cm], and a scattering phase functipi2, V', r, ¢, \) [1/cm]. These parameters
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are wavelength-dependent probability densities for lggorption in the? direction and for
light scattering into the directiof given the incident directiof)’ at (r,t), respectively. To
understand their physical meanings, consider a radiﬁ(m;eﬂ, t, \) incident on an infinitesimal
spherical volume of diametédr| (Figure 2.4). The amount of the incident radiance absorlyed b
this volume isuq (€, r, ¢, \) L(r, Q, ¢, \)|dr|, and the amount of the incident radiance scattered
into the(Y’ direction isp(<', 0, r,t, \)L(r,Q, ¢, \)|dr|.

Often of interest is the total amount of incident radianctsced by the tissue volume in all
directions. This is determined by a tissue scattering aoeff, MS(Q,r,t, A) [1/cm], which is

simply the integral of the scattering phase function ovetalsteradians of spate

(S, t,\) = / p(Y,Q,r ¢, \)dY. (2.2)
4
From the definition of the scattering phase functioni, (2, r, ¢, \) L(r, {2, t, \)|dr| is the total
amount of incident radiance scattered by the infinitesimmale volume, and; is the probability
density for tissue scattering in any direcfion
The typical light transport length scales between absmmpéind scattering events are the
multiplicative inverses of, and us, respectively. To understand why, let us use the patrticle
description of light as a packet 8f, photons propagating through a homogeneous medium. Let
N (r) be the number of photons that hawat been scattered after traveling a distanaeside the
medium. The probability of a single photon being scatteredistancedr is usdr. Therefore,
sinceN (r + dr) is less thanV (r) by the number of photons that have scatteredrinwe have
the equation
N(r+dr) = N(r) — N(r)usdr,

which is a differential equation:

dN (r)
dr

= _,usN(r)'

The above equation describes exponential decay, and hagthenown solution [100, Section

!In spherical coordinated,, _ F()dQ = Iy 02” f(0, ¢) sin 6dOd¢ [240, Section 14.4].

2If the tissue volume consists of discrete scattering gegiwith number density and a scattering cross section
of o, [cm?], thenpus = oo, [240, Section 14.2]. Here, the total scattered light powemfa single particle is the
product ofos and the incident radiance on the particle. Thus, a particteipies an effective area, where light
impinging on this area is scattered. Similarly, the scattephase functionp, is related to the particle differential
scattering cross-sectionp, viap = gop [240, Section 14.4]
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Figure 2.4: The radiancg(r + dr, QO,t+ dt, A) emerging from an infinitesimal spherical vol-
ume of tissue is different from the radiantér, O, t, A) incident on the volume because of the
interactions between light and tissue. The portion of tleedent radiance absorbed by the tissue
volume isiq (€2, r,t,A\)L(r, Q,t, \)|dr|. The portion of the incident radiance scattered by the
tissue volume into th€)’ direction isp(',Q,r, ¢, \)L(r,€2,t, \)|dr|. Here,|dr| denotes the
magnitude of the vectatr, i.e., |dr| = vdt, wherev = c/n is the speed of light through the
volume element.

43-1]
N(r) = Noexp[—psr] = Noexp[—r/ls],

wherel; = 1/ is the scattering length. Note that the probability denfityction for a photon
to scatter after traveling a distancevithout scattering, i.e.P;(r)dr, is equal to the probability
that a photon travels a distancevithout scattering (i.e.V () /Ny) multiplied by the probability
of scattering in distancér (i.e., usdr):

N(r)

Ny dr = pis exp[—psr]dr.

Py(r)dr =

Consequentially, the mean distance a photon travels bataesdtering events is the scattering
length, i.e.,
1

)= [ rRoar = [ rexplorlar = o <. 23)

Using exactly the same logic, the absorption length= 1/u,, is the mean distance photons
travel before they are absorbed.

Transport theory is valid when the characteristic scatteend absorption lengthg, and
L., are much greater than the light wavelength. In other wagaldstons travel distances of many
wavelengths between interactions with tissue. This isfion@ear-infrared light, where typical
values for/, and/, are on the order of 0.1 and 10 cm, respectively. Under thesdittans,

light transport is adequately described by the geometdptts (or small wavelength) limit of
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Table 2.1: Parameters affecting light transport througute

Quantity Symbol Units
Light radiance (Equation 2.4) L Wem2 srt
Scattering phase function (Figure 2.4) P 1/cm
Absorption coefficient (Figure 2.4) I 1/cm
Absorption length o =1/1q cm
Scattering coefficient (Equation 2.2) Ibs 1/cm
Scattering length by =1/us cm

Total transport coefficient i = g + fs 1/cm
Normalized scattering phase function f=p/us dimensionless
Refractive index n dimensionless
Speed of light in tissue v=c/n cm/s
Radiant source power per volume (Equation 2.7)  Q Wem=3 srt

Maxwell's equations [31, Chapter 3], where the light eliectield propagates in straight lines
between tissue interactions as a local quasi plane wave.lidtiteradiance in terms of these

propagating electric fields3g116, Section 9.3.1]:

, unpolarized light

2
L(r,$,t) ‘

_ ‘EH(r,Q,t)‘Z + ‘EL(r,Q,t) 20

(E(r,fz,t)f

, polarized light

whereE(r, Q, t) is the complex representation of the electric fieldrat) that is transported as
a quasi plane wave with wave veclo, = (27m/)\)§2, amplitudeEq, and angular frequenacy,
ie.,

E(r,Q,t) = Eg(r,t) exp [i(kq - T — wt)]. (2.5)

For unpolarized light, the light radiance is the sum overititensities of the two orthogonal
polarization components, i.¢&) > = BE\Ej and|E,|> = E, E*%. Another key result from
geometrical optics is that light interference effects argligible, which results in additive light
intensities.

Changes in the light radiance are described by the radiaweport equation, which is a
conservation equation for the radiance in each infiniteksirnlume element within the tissue.
Referring again to Figure 2.4, the change in radiance as ¥emacross an infinitesimal tis-

sue volume element in the direction is given by a convective (or material) derivatofethe

*Here and in some of the remaining equations, Xhdependence of. is implict to make the notation less
cumbersome.
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radiance [240, Section 16.12]:

AL(r,, 1)
ot

- Wdt +odtQ - VL, Q1) (2.6)

dL = L(r 4 dr,Q,t + dt) — L(r,Q,t) = dt + dr - VL(r,,t)

Because interference effects are negligible, this chamgadiancelL also must be equal to

dL = —pa(©, v, ) L(x, O, 8)]dr| — L(r, 0, 1) / (€, 0, x, )AY |dr|+
O £Q
/ (O, v ) Lr, ¥, )dY|dr| + Q(r, O, ). @2.7)
EAY)

Here, Q(r, Q,t) [Wem—3sr~1] is the light power per volume emitted by sources at position
and timet in the Q) direction with wavelengtf\. The change in radianc#. is decreased by the
losses in the incident radiance due to absorption (first,téght-hand side) and due to scattering
in all directions(Y’ different than{2 (second term, right-hand sidejL is also increased by the
gains in radiance scattered irfofrom all incident directions?’ different than(} (third term,
right-hand side) and the gains from light sources insidevtii@me element (fourth term, right-
hand side). Substitutingudt for |dr|, and adding zero, i.ep(2, Q,r,t, A\)L(r, Q, ¢, \)|dr| +
p(Q,Q,r,t, N\ L(r,, t, \)|dr|, to the right-hand side of Equation 2.7, we obtain

dL = — [,ua(@,r,t) + us(, 1, t) | L(r, Q, t)vdt+

/ (L, x, ) L(x, Y, )dQvdt + Q(r, Q, t)vdt, (2.8)
47

where i, is given by Equation 2.2. Combining Equations 2.6 and 2.8ltge$n the radiative
transport equation (RTE) [46, Section 1.3],

%W = =0 VL, Q4 0) = pe(Q,r, £ A)L(r, 2,8, 0) + Q(r, Q. 8, )+
pe@r ) [ L0 5(@ 0 1 0a, (2.9)
47

“To understand the gain in radiance from light sources, raeQ(r, 0.t A)dt is the light energy per volume
generated in timel that is propagating in the direction. The increase in the light radiance emerging fthen
volume element due to sources is then the product of thisrgestelight energy with the speed of light through the
volume element.
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Here, | have introduced a total transport coefficigint,[1/cm], and a normalized scattering

phase functionf, which are defined as:

e (S48 0) = pa (1,6, N) + ps (1,6, N) (2.10)
" _p(Q,Qr, N
FELQ 8, \) = —(Q T (2.11)

Note from Equations 2.2 and 2.11 that
/f A)dQ = 1. (2.12)

The RTE (Equation 2.9) is the main result of this section,clwHi derived using the geo-
metrical optics limit of Maxwell’s equatiods A hidden assumption in this derivation of the
RTE is that the radiation field propagating through mattewripolarized. In principle, both
the absorption coefficient and scattering phase functigemi on the polarization state of the
radiation field, and aector radiative transport equation is required to account foapption
effects [188]. In the vector RTH, is replaced by @ x 1 vector of the four Stokes parameters

describing the intensity and polarization of the light field.,

L
peL
€<—E||Ej_ - EJ_E|T>

e(i(ELEf — B|EY))

~
Il

wherepg, is the degree of polarizatios,is a proportionality constanty; and £/, denote the or-
thogonal polarization states of the electric field (see Egn&.4), and the angle brackets denote
time averages [51, 188]. Additionally,, us, and f are replaced by x 4 tensors. The vector
RTE simplifies to the scalar RTE (Equation 2.9) when the ligHt is completely unpolarized,
i.e.,,pg = 0. In many practical DOS tissue measurements, the light feelohpolarized because
of the rapid depolarization of light via multiple scattegifi8, Chapter 14].

To summarize, the scalar RTE is valid when

®In a more rigorous approach, Jorge Ripoll also recentlyguiesi a step by step derivation of the RTE directly
from Maxwell's equations [211].
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e The characteristic scattering length,= 1/, and the characteristic absorption length,
l, = 1/u,, are both much greater than the light wavelengthThe photon propagation

distances within the medium also need to be much greaterthan
e The light field propagating through tissue is unpolarized.

e The tissue refractive index is homogeneous, meaning thatelea tissue interactions,
the light field travels with constant velocity = ¢/n. This condition can be relaxed by

replacingv with v(r, Q. t, A) in the RTE (Equation 2.9).

Though it is considerably simpler than Maxwell's equatiotiee RTE is still complex enough
that it must be solved numerically in most cases of inter@si§2]. Numerical schemes to
solve the RTE are computationally time consuming and diffituimplement in data fitting

algorithms. Fortunately, for many cases of practical ingoore, near-infrared light transport
through tissue is well approximated as a diffusive processch reduces the complexity of the

RTE significantly.

2.3 Photon Diffusion Equation

Under diffusive light transport, individual photons exeewandom walks through tissue, wan-
dering about in all directions without having a prefererdigection of travel. As with Brownian
motion of diffusing particles in general, the net movemedrame numbers of photons through
tissue is driven by the concentration gradient of thesequ®ot Macroscopically, the concen-
tration of photons is directly proportional to the photoreryy concentration (also called the
light energy density)l'(r, t) [Jcm—3], which is the light energy per volume @t, t). The photon
energy concentration is in turn dependent on the light raial. (Table 2.1 To understand
how, note thatl(r, Q,t)/v, wherew is the speed of light, is the component of the photon en-

ergy concentration traveling in tHe direction [100, Section 43-5]. The total photon energy

5To make the notation less cumbersome in this section, | wilbnger explicitly label the wavelength dependence
(i.e., ) in L, uq, ps, and f. The wavelength dependence is not important in the deoivaif the photon diffusion
equation, but it will be very important later on when | disswliffuse optical spectroscopy.
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concentration is thus the integral bf v over all solid angles, i.e.,

1 A 1
[(r,t) = ;/L(r,Q,t)dQ = ;(I)(r,t). (2.13)
4
In Equation 2.13, | have introduced the photon fluence rate, t) [Wcm~—2], which is defined
as the total light power per area moving radially outwardrfithe infinitesimal volume element

centered afr, t):

B(r,t) = / L(r, 0, 1)d0. (2.14)

4

Clearly, the photon energy concentration and fluence ratdiegctly proportional to each other
(Equation 2.13). The rest of this section presents a ddtakézivation of the diffusion model
for the photon fluence rate (Equation 2.46). A summary of irgya optical parameters in this

diffusion model are given in Table 2.2.

2.3.1 Continuity relation between the photon fluence rate aththe photon flux

The transport of the fluence rate through tissue is desctilyeal continuity equation obtained
from integrating the radiative transport equation (Ecpra@.9) over all solid angles:

10 A
vat/L(r,Qt /v L(r, (1) )dQ—

4

/Mt(Q,r,t)L(r,Q,t)dQJr/Q(r,Q,t)dQ+
47

/ s(Q, 1, ) / L(r, 0, t) £(, €, r, )dQdQ. (2.15)

A

The photon diffusion model is only applicable in isotropiedia, wherein the scattering and

absorption coefficients do not depend on the direction ot licavel:
assumption 1:,(Q,1,t) = ps(r,t),  pa(QL1,t) = pa(r, t). (2.16)

Physically, Equation 2.16 means that on both the scattemujabsorption length scales, =

1/ps andf, = 1/u,, respectively, the medium looks the same to incident pteofmm every

"Because is a constant direction vectds, - VL(r, 2, t) = V - (L(r Q,6)Q ) [116, Section 1.2.6]
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direction. Under this condition, Equation 2.15 simplifies t

o o
% (gl;t) - _v'/L(RQJ)QdQ—,ut(f,t)q)(r,t) + S(r,t)+
am
s (r, 1) { f(Q,Q’,r,t)dQ] L(r,Q, t)dQ. (2.17)
1

Here, S(r,t) [Wecm~3] is the concentration of radiant source power, or the totalgr per

volume emitted radially outward from positiarat timet, i.e.,
S(rt) = / Qr, O, 1)d0. (2.18)
47

Another assumption of photon diffusion theory is that thenmalized scattering phase func-
tion, f, is rotationally symmetric. Mathematically, this meanattfi depends only on the angle

between incident and outgoing scattering wave vectors:

~ ~ N

assumption 2: f(Q, Y, r,t) = f(,Qr,t) = f(Q- Y, x,t). (2.19)

Assumptions 1 (Equation 2.16) and 2 (Equation 2.19) go hamdund in that they are generally
either both true or both false. Applying Equations 2.10 ari 20 Equation 2.17, along with
using assumption 2, results in a continuity equation fofflinence rate,

O] G 300) 4 palr D00 1) = S(r0), (2.20)
where the photon fluxJ(r,¢) [Wecm~2], is the vector sum of the radiance emerging from the
infinitesimal volume element centered(at¢), i.e.,
J(r,t) = / L(r,Q,t)QdQ. (2.21)
4

Note thatJ(r,t) - ndo [W] is the net light power crossing an element of arka (with
normal vectom) in the# direction (see Figure 2.3). This physical meaning of theig@idlux is
understood from the definition of the light radiance (Equaf.1). The light power crossing the

area elemenio from light traveling in the) direction is
W(Q) = L(r,Q,t)dQdo cos 6 = L(r,Q,t)Q - idodS).
Thus, the total net light power crossidg, i.e., [, W(Q)dSQ, isJ(r,t) - Ado.
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2.3.2 Fick’s law relation between the photon fluence rate anthe photon flux

Another relation between the photon fluence rate and theophiix is derived from approxi-
mating the light radiancd,, as a series expansion of spherical harmonigs,(with coefficients

bum), truncated at = N

14

Z >, 2“ 1¢Em (r, ) Yo (). (2.22)

{=0 m=—¢

Equation 2.22 is the so-calldely approximation of the light radiance [46,134,142]. Substiiy
Equation 2.22 into Equation 2.14, and noting that spheheaatonics form an orthonormal set,

we obtain

= doo(r,t). (2.23)

Similarly, substituting Equation 2.22 into Equation 2.2%ults i¥

2041 - .
E E + Gom (r / Yo (2) [sin 0 cos ¢& + sin 0 sin ¢ + cos 2] A
=0 m=—¢

ﬁz > \/2“1% 0 [ int
Z\/; (Yl*—l(Q)+Y11(Q)) +Y75(Q)2

= \/g (<l~51—1( t) — i (r, )) T — Z\/g (¢~51_1(F,t) + 5511(1"775)) J+ ro(r, )2

(2.24)

dQ2

8 wrote O in terms of the Cartesian unit vectors (i#,, andz), wheref and¢ (not to be confused Witbhm)
are the polar angle and azimuthal angle, respectivelyarsginerical coordinate system [116, Section 1.4.1].
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In terms of the coefficients,,,, the net power per area traveling in telirection is

J-O= Jysinf cos ¢ + J, sinfsin ¢ + J, cos 0

= % (431—1 - <511> sinf cos ¢ — % (&1_1 + 4311) sin 0 sin ¢ + 10 cos 0

= 1o cosf + %(COS ¢ —ising)g1 1 — Si;l; (cos ¢ + isin @)1y

= $19cos + % sin fe" 9, | — % sin 0c®dy,

N \/% (éloYm(Q) +d1a Vi () + <511Y11(Q)> : (2.25)

In Equation 2.25, there is still implicit position and timependence in the coefficients,, and
J.
For diffusive light transport[. is accurately described by tli& approximation, wherein the

series expansion in Equation 2.22 is truncatey at 1:

1 - 3 /- A ~ - ~ ~
L(r,Q,t) = Etﬁoo(r,t) A\ (¢1—1(r7t)Y1—1(Q) + ¢10(r, 1) Y10(2) + <2311(r7t)Y11(Q)>
(2.26)
From combining Equations 2.23, 2.25, and 2.26, we see thaPttapproximation of the light

radiance is a linear combination of the photon fluence ratdlan, i.e.,

L(r,Q,t) = %(I)(r,t) + %J(r,t) Q. (2.27)

A necessary condition for diffusive light transport is ttaidity of Equation 2.27. For nearly
isotropic light, i.e.,
assumption 3:®(r,t) > |J(r,t)|, (2.28)
the dominance of the isotropic fluence rate term inffReexpansion ensures the accuracy of the
P, approximation.

Substituting Equation 2.27 into the radiative transpotatipn (Equation 2.9), we ha¥e

199 30

o +;at(J-Q):—Q-V@—BQ-V(J-Q)—(ut—ys)<1>—3mJ-Q+

4 Q(Q) + 3 / F(-Q)T-Qdq. (2.29)
4

°For simplicity, ther and¢ dependence is implicit fob, J, y, us, f, andQ.
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The last term on the right-hand side in Equation 2.29 is &rrgimplified by evaluating the

integral in a spherical coordinate system defined such(thsipointing in thez direction:

/f QYA = /f cos @) [sin 0 cos ¢'2 + cos 0’ cos ¢'fj + cos §'2] dQY' - J
:/f (cos @) cos 0'dV2 - J
/fQQf)Q 003
_ 0.7 (2.30)

Equation 2.30 introduces the scattering anisotropy fagtowhich is the ensemble average of

the cosine of the scattering andlgi.e.,

r,t)= /f(Q e, ) AQY = (cos §). (2.31)

The closerg is to unity, the more probable it is for a photon to be scattarethe forward
direction, i.e.§ = 0. Reported near-infrared tissue measuremengsfiadm the literature vary a
lot, but in generalg is high (> 0.7) [144].

Substituting Equation 2.30 into Equation 2.29, we obtain

1909 30

sat o™ Q) = —~Q-Vo-30-V (J : Q)—(ut—us)®—3(ut—usg)J-Q+4wQ(Q). (2.32)

Multiplying Equation 2.32 by and integrating over all solid angles results in a simplitien

between the fluence rate and flux:

15‘1’/9(19__5% Q[J-Q}dﬁ—/Q[Q-Vﬂ—B/Q[Q'V(J‘Q)]dg_

v Ot v
4T 47 47
(1 — o) /mm 31 — m@/ +M/Q 6 (2.33)
Equation 2.33 is further simplified through noting that fayaectorA,
PN 47

/Q (Q : A) dQ=SA (2.34)

4
/Q[Q-V(A-Q)}d@:o. (2.35)

4
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Equation 2.34 is derived through evaluating the integral #pherical coordinate system defined

such thatA is pointing in theZ direction,

/Q(Q-A) a0 = \A\/Qcosecm
4m 4m
:27T|A|2/ cos® 0 sin 0df
0
= —A, (2.36)

To derive Equation 2.35, note th&{116, Section 1.2.6]

N N

Q-V(Q.A):Q-(Qx(VXA)+A><(VXQ)+(Q-V)A+(A-V)Q)
o DA,
=0 (2 V)A =T, (2.37)

where the last line uses spherical coordinatds= A,# + Agf + Agh andQ = 7. From

Equation 2.37,

/Q [Q.v (A.Qﬂ a0 = a;r /QdQ —0. (2.38)
4 47

Substituting Equations 2.34 and 2.35 into 2.33, as well :t:i15|<_qulhatf47r QdQ = 0, we have

VO = —Z=2= — 3(us — psg)J + 3/Q(Q)fzd§z. (2.39)
4

For diffusive light transport, two additional assumpti@re now made:

assumption 4:Light sources are isotropic, i.eQ,(Q) =Q (2.40)
assumption 5:Slow temporal photon flux variations, i.e., (2.41)
30J
st T 3(pt — psg)I = (e — p1sg)J. (2.42)

Applying these two assumptions to Equation 2.39 resulthénveell known diffusive relation

between the fluence rate and flux, i.e., Fick’s first law ofudiibn [17, Chapter 2]:

1
1) = S+ ) )
_.D (Z’t)Vq)(r,t) — _D(r,t)VT(r, ) (2.43)

R 1°Siqce§2 is a constant unit vectofA - V)Q = 0 andA x (V x 2) = 0. Further, by the nature of cross products,
Q andQ2 x (V x A) are perpendicular vectors; thus their dot product is zero.
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Table 2.2: Relevant optical parameters in diffusion modéibht transport

Quantity Symbol Units
Speed of light in tissue v=c/n cm/s
Photon fluence rate (Equation 2.14) ) W cm™2
Photon energy concentration (Equation 2.13) r=ao/v Jent?
Absorption coefficient (Figure 2.4) o =1/, 1/cm
Scattering coefficient (Equation 2.2) s = 1/4 1/cm
Scattering anisotropy factor (Equation 2.31) g dimensionless
Reduced scattering coefficient ph = ps(1—g) 1/cm
Photon transport mean-free path (random walk step)¢;,. = 1/(u + pa) cm
Photon diffusion coefficient D = vl /3 cn?/s
Photon flux (Equation 2.21) J=—-DVI W cm—2
Concentration of radiant source power (Equation 2.18) S W cm3

Here,I'(r, t) is the photon energy concentration, which is given in Equiei. 13, (r, t) [1/cm]

is the reduced scattering coefficient, i.e.,

/‘;(rv t) = ﬂs(r> t) [1 - g(I‘, t)] ) (2-44)

andD(r,t) [cm?s~1] is the photon diffusion coefficient, i.e.,

_ v _1
D(r,t) = S D) 3U€tr. (2.45)

The photon diffusion coefficient is directly proportionalthe photon transport mean-free path,

by = 1/(ul, + 11q) [cm], which is the random walk step of diffusing photons [Chapter 1].

2.3.3 Photon diffusion model

Substituting the diffusive relation between the fluence @td flux (Equation 2.43) into the
continuity relation (Equation 2.20) results in the photdfudion equation for the photon fluence

rate [123,210]:

V- [D(r,)Vo(r, t)] — via(r, )D(r, ) — 8@((91;,t) = —vS(r,1). (2.46)

Microscopically, the photon diffusion equation (Equat@®46) is a consequence of many in-
dividual photons executing random walks through tissue 497. In this random walk visu-
alization, photons move in straight-line segments withdsundinterruptions wherein either the

propagation direction is randomly changed or the photobseded. The average length of the
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Figure 2.5: Schematic of a photon taking two random walksstpough tissue. Each random
walk step involves many photon scattering events. This édsiradopted from Figure 2.2 in
David Busch’s thesis [39].

straight-line segments is the transport mean-free gath,For near-infrared light propagating
through tissue, the scattering anisotropy fagt¢2.31) is typically close to unity, which means
that 1, < us (Equation 2.44), which in turn means that the transport rfese path,/;,., is
much greater than the scattering length= 1/us. Thus, photons scatter many times over the
length scale o¥;,., and each scattering event produces a “kink” in their patihsugh tissue
(Figure 2.5). However, because of the high bias for forwasaldtering in tissue, the direction of
travel of photons is not fully randomized until they have mdwver a length scale éf.. Thus,
over large length scales, individual photon dynamics régemandom walks with step sizg,.
(Figure 2.5).

To summarize, the validity of the photon diffusion model (&tjion 2.46) rests on the validity

of several assumptions about the nature of light transport:

Light radiance is nearly isotropic (Equation 2.28): Nearly isotropic light radiance (i.ed >
|J]) is well modeled by the®; approximation (Equation 2.27). If, >> u, (i.e., a typical
photon takes many random walk steps of length~ 1/, before it is absorbed), and
the photon propagation distances within the medium are laigtive to/;,., then the light

radiance will be nearly isotropic.

Rotational symmetry (Equations 2.16, 2.19)):The photon diffusion model assumes that the
tissue optical propertieg,, is, and f are independent of the direction of light travel.
Physically, this means that tissue should be rotationgifgraetric on the absorption and

scattering length scales &f = 1/u, and?, = 1/us, respectively.
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Radiative Transport Equation (Equation 2.9) is valid: As discussed at the end of Section 2.2,
the RTE is valid for unpolarized light propagating in medibenein/; and/, are much

greater than the light wavelength

Slow temporal variations in photon flux (Equation 2.42): The implication of this assumption
is that the variation in photon flux occurs on a time scale mMawder than the time it takes
photons to move one transport length, itg. = ¢ /v. The left-hand side of Equation 2.42
can be rewritten as

Etr 8_J J:|

=+ 3(u — psg) = 3(ps + pa) | —
+ 3(pe — ps8) (“S+“)[v6t+

v Ot

AJ
~ 34!+ o [tr—+J]
(s + ta) " AD,

— 3(4, + pa), if tor < (A),. (2.47)

Here, (At); is the time scale over which the change in fluxJ, becomes significant
relative toJ. Equation 2.47 is valid provided that < (At) ;. For frequency space, i.e.,
J = Jet,

—— T+ 3(:“15 - ,usg)'] = 3(/‘; + ﬂa)(ttriw + I)J

_ 3(//3 + ,ua) 1+ (wttr)Qeiarctan(wttr)J

= 3(ps + pa)J, if wty < 1. (2.48)

For typical tissue properties @f, = 0.1 1/cm, p’. = 10 1/cm, andn = 1.4, t, ~ 5
ps. Thus, from Equation 2.48, the slowly varying flux coratitis satisfied if the linear

frequencies in the signal (i.ef,= 27w), satisfy the conditiory <« 32 GHz.

Homogeneous refractive index:More precisely, this means that photons travel with corstan
velocity, v, between scattering eventswlflepends on position and time, then this assump-
tion is relaxed by replacing with v(r, ¢) in the photon diffusion equation (Equation 2.46).
In complex media where also depends on the direction of light trav@l, the diffusion

model is no longer valid.
Light sources are isotropic (Equation 2.40).
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These assumptions are valid in thear-infrared spectral windoW~ 650 — 950 nm) for many

tissues, wherein light transport is dominated by scatjefii > 1,)''. For example, in brain
and breast tissug, is roughly two orders of magnitude greater than(see Table 2.3). Muscle,
skin, fat, and a variety of other tissues are also highlytsdag, low absorbing media in the
near-infrared [144]. Many researchers have shown expetaty that the diffusion model is a

good approximation of light transport in these tissues, [ 80, 96, 201, 266].

The photon diffusion model (Equation 2.46) is a major sifigaition of the radiative trans-
port model (Equation 2.9), and in several relevant tissuagaries, the diffusion model can
be solved analytically With analytical solutions in hand, it is much easier to gghysical
insight and intuition on tissue light transport. The anabjtsolutions further facilitate the im-
plementation of data fitting algorithms to extract tissumbglobin concentrations from fluence
rate measurements. Even when numerical solutions arereggtine photon diffusion model is

considerably more tractable than the full radiative tramsmodel.

Keep in mind, though, that the diffusion model also has &tniins in tissue measurements.
In anisotropic tissues such as axon fiber bundles, the osotdtsymmetry assumption may no
longer be reasonable. To account for anisotropy, Heinal proposed an anisotropic diffusion
model that relaxes the isotropic assumption for the scatfgghase function (Equation 2.19),
but keeps the isotropic assumption for the scattering coefii (Equation 2.16) [126]. Although
this model is an improvement over the isotropic diffusiondelq Equation 2.46), it is likely that
in tissue where the phase function is anisotropic, theetadf coefficient will be anisotropic as

well.

In tissues that contain very high concentrations of blooel.,(ihighy, ), as in the liver,
or in applications wherein the photon propagation distarame comparable t4, (e.g., finger
joint measurements), the photon propagation directionsotifully randomize to create a nearly
isotropic radiance. Further, some heterogenous tissues liath “diffusing regions” such as
brain tissue, where the diffusion model assumptions haid,“aon-diffusing regions” such as

cerebrospinal fluid, where the diffusion model assumpttmesik down [63,196]. In all of these

cases, approximations beyond tAe(Equation 2.27) are needed for optimal data analysis. One

MRecall thatu), ~ 1/¢;. (in diffusion regime) and., are probability densities for isotropic light scatteringa
light absorption, respectively (see Figure 2.4, Equati@) &nd Equation 2.45)
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Table 2.3: Optical properties (meanSD) of brain and breast tissue at= 780 nm compiled
from Tables 2 and 3 in Jacques’ review of tissue optical ptmxe[144].

Tissue Brain Breast Number of sample$ (
e (€M) 0.154+0.04 0.05+ 0.02 5
wl (cmh) 12+8 11+6 8

approach is to use the higher ordey approximation (Equation 2.22 with N = 3) of the light
radiance in the radiative transport equation (Equatioipt®.enhodel the photon fluence rate [21,
135]. Another approach is to solve the radiative transpquaéion directly using numerical
methods such as Monte Carlo simulations or finite elememinigaes [9, 79, 124, 162, 254].
Compared to the diffusion model, these more complex appesaare computationally time
consuming.

The rest of this chapter mostly follows the tutorial apptoaaken in Durduraret al to
present how the diffusion model is used in practice to pradsué absorption and scattering
with near-infrared light [79]. Section 2.13 then discudsew to convert measurements;of at
multiple wavelengths into measurements of oxygenated arolkgilgenated tissue hemoglobin

concentrations.

2.4 Source Types

To apply the diffusion model for measuring tissue absorpéind scattering, one typically detects
light at known distances from point sources. Figure 2.6 shiwo source-detector pairs; one in
the reflection geometry and the other in the transmissiomgéy. In the reflection geometry
(also see Figure 2.2), light injected into the tissue by aciiber (usually coupled to a laser)
is detected a distange away with another fiber (usually coupled to a photomultiptigbe or
avalanche photodiode). In the transmission geometryt tigtection is facilitated using either a
fiber or a lens/CCD camera system. At first glance, the doeatilight from a fiber violates the
isotropic source assumption for the diffusion model (Emuma2.40). This light source, however,
can be very well approximated by an isotropic light sourcdegith/;, inside the tissue [96].
In practice, the source-detector separations should éxdfgeto apply the diffusion model and

expect accurate~ 5%) results [154].
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Increasing Information Content per Measurement Pair
>
—_

Sources Detector 1. Continuous Wave- 2. Intensity Modulated - 3. Time Pulsed -
CW Measurement Frequency Domain Time Domain
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Figure 2.6: Three common types of sources are employed. ©fatleft are schematic “banana
patterns” showing the sampled volumes in the reflection amastission geometries. As a
rough rule of thumb, the mean light penetration depth in &fkection geometry ip/3 (for a
more precise relation, see [200]). For continuous wave (8djces (panel (1)), the input light
intensity, Iy, remains constant, and slow.{ — 1 s) variations in the detected light intensity
(I(p)) induced by changes in tissue absorption and tissue dogtte measured. For intensity
modulated (FD) and time-resolved (TR) sources, the sounpeit) and detected (output) light
intensities resemble panels (2) and (3), respectivelyhérRD measurement, the amplitude and
phase ) of the detected signal are related to the absolute tisstigabproperties.

Three types of light sources commonly used in diffuse otiesee Figure 2.6): continuous
wave (CW), intensity modulated (FD), and time resolved (TR)e simplest source type is
CW light, where the intensity remains constant over time $4398, 228]. CW sources enable
fast data acquisition and the use of simple detectors arettitm electronics, but as | will
discuss furtheru, andy/, cannot be determined simultaneously from a single CW measemt

(Sections 2.5).

Intensity modulated sources (the frequency-domain tegckeniFD) are more complex but
also give more information about the medium [10, 47, 80, 133, 253]. Here, the light inten-
sity of the source is sinusoidally modulated with angul@gérencyw (of order 100 MHz or
larger, up to~ 1 GHz), producing a diffusive wave in the medium oscillatingre same fre-
quency (Section 2.5). At a given source-detector separdbioth the amplitude and phase of the
diffusing wave are measured. The additional informatiamiithe phase, in principle, permits

simultaneous determination pf, and ...

Time resolved light sources (the time-domain technique) d@iver short light pulses<

100 ps) to the medium, which will temporally broaden as they pgaie through the medium.
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At the detector, the temporal pulse shape contains the segeisformation to determing, and

D from a single source-detector pair. Time resolved lightlated to intensity modulated light
via a Fourier transform (Section 2.7), and it contains thmesanformation content as intensity
modulated sources scanned over the wide range of modufagiguencies present in the source

light pulse [10, 16, 143,201, 203].

2.5 Diffuse photon density waves

In the frequency-domain, the source is radio frequency Haveld light delivered to the medium

at positionr, such thatS(r, ¢) in the diffusion model (2.46) {2
S(r,t) = So (14 Me™") 5(r — 1), (2.49)

whereS, [W] is the time averaged power emitted by the sourfdeldimensionless] is the depth
of modulation of the sourcd) < M < 1, w is the angular frequency of modulation, i.e.—=
2m f wheref is the frequency of modulation in [Hz], aridr) [cm~3] is the three-dimensional
Dirac delta function. This light source produces a photoarfae rate with a continuous wave

(CW) component and an oscillating ac component at the sagdarfrequencyw:
D(r,t) = Py (r) + Ppe(r, t)
= O (r) + U(r)e™t. (2.50)
Here,U (r)e™! is the complex representation of the frequency-domaingshidtience rate. Both
d., andU are described by diffusion equations obtained from sulistg Equations 2.50 and
2.49 into Equation 2.46:
V- (D(r)vq)cw(r)) - vﬂa(r)q)cw(r) = _USO(S(I‘ - rs) (251)
V- (D(r)VU(r)) — (vt (r) + iw)U(r) = —vM Spd(r — r). (2.52)

For homogeneous media, these equations simplify to

(V? = k§) ®ew(r) = —%5(1’ —ry) (2.53)

_UMSQ

(V=) U(r) = S(r —ry), (2.54)

2For simplicity, | am employing the complex representatieft () for sinuosoidal oscillations in the source and
fluence rate. The actual source and fluence rate will be theaem of their complex representations.
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wherek? = v, /D andk? = (vju, + iw) /D23
The general solution to Equation 2.54 is a damped wave-lienfle rate “disturbance” in

the turbid medium, which is called a diffuse photon densigvev

2.5.1 Solutions in infinite, homogeneous turbid media
2.5.1.1 Frequency domain solution

Conceptually, diffuse photon density waves are easieshéenstand in the infinite, homoge-
neous medium with a single intensity modulated point sowaicthe origin (i.e.,rs = 0 in

Equation 2.49). In this geometry, the solution to Equaticsdyiven the boundary condition
that the fluence rate falls to zero at infinity is well known ,[4B]. It has the form of a simple

damped spherical wave with complex wave veétet k, + ik;, i.e.,

- UMS(]
- 4xDr

U(r) exp(—kr), (2.55)

wherer = |r|. To determiné:, andk;, note that

. 1/2
2 _ Vha tW0 vz,ug+w2 . w
k= o) = < 2 exp |iarctan o) | (2.56)

and therefore

022 + w? 1/4 1 w

k, = <T> cos {5 arctan < Na>:| = acos[b/2], (2.57)
v?pk + w? Yo w .

k; = <T> sin [5 arctan < Ma)] = asin[b/2], (2.58)

wherea = ((v2p2 + w?)/D?)'/*, andb = arctan(w/(vu,)). Equivalent expressions to Equa-

tions 2.57 and 2.58 are

1/2 SPRTICLIN R
_ (VHa w
Ky — (2D) <1+ o ) +1 (2.59)
- 1 11/2
 (VHa\1/? w 1?2
ki = (2D) <1+ | . (2.60)

13Some authors use slightly different definitions fdrandU, e.g.,k* = (vpa — iw)/D With &, = Ue™**;
E? = (—vpta + iw)/D with @, = Ue ™" k? = —(vpa + iw)/D with &, = Ue™*. The latter two definitions
enable us to write Equation 2.54 in Helmholtz form, which tresadvantage of more obvious analogies with waves.
| chose the definitions used by Arridge al in their classic paper deriving solutions to Equation 2.64 deveral
useful geometries [10], i.ek? = (vua + iw)/D with ®,. = Ue™*. Of course, regardless of the way terms are
defined, the solutions are the same.
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The complete diffuse photon density wave is given by
D,o(r,t) = A(r) exp [i(wt — 6(r))], (2.61)

where A(r) andé(r) are the amplitude and phase of the diffuse photon densitewagpec-

tively:
. UMSQ
A(r) = Dr exp(—k,r) (2.62)
O(r) = k;r. (2.63)

From measurements df andd atonesource-detector separationEquations 2.62 and 2.63 can
be solved for the optical propertigs, and x, only if v and the produci// S, are known. We
typically do assume a tissue index of refractiomof 1.4 for calculatingv = ¢/n in the near-
infrared spectral range [29, 144]. However, the produd is unknown in practice. Even if the
modulation depth and power of the source laser are carafudlgsured initially, small changes
in any elements of the fluence rate measurement (e.g., desaatsitivity, fiber coupling with
tissue) will effectively changd/.S, [96]. | will discuss these fluence rate measurement effects
in detail in Section 2.11.

The determination of optical properties with diffuse photensity waves, then, requires
measurements of their amplitude and phasmaltiple distances from the source. Figure 2.7
outlines the procedure for extracting andy/, from measured changes in wave amplitude and
wave phase with distance from the source. Briefly, the slapésg(Ar) vs. r andé vs. r
are—Fk, andk;, respectively, from which, and/, can be calculated using Equations 2.57 and
2.58 [93].

Specifically, from using trigonometry relations,

kr ki 1+4+cosb—1+cosb 2 2vpu,

orooo ™ = = 2.64
ki k, sin b tanb w ( )
and
k2 — k? = a’cosb = P Ry (2.65)
W (opa)? D
Rearranging Equations 2.64 and 2.65, we obtain
w kr ki
Mo = 5= <k_z - k_r> ; (2.66)
2 2
:u/s = _vkrkz — Ha = _vkrki- (267)
3w 3w
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Figure 2.7: A radio-frequency modulated light sourcesat 0 induces a diffuse photon density
wave, d,.(r,t) (Equation 2.61), which is characterized by its amplitudeand its phase shift
from the sourced (a). Some researchers uée-= —6 (also depicted in panel (a)) to characterize
the phase shift of the diffuse photon density wave instead, ®,. = Aexpli(wt + 6)]. In
the homogeneous infinite geometid,. is a simple spherical wave. Par{e) shows constant
phase contourg)(in degrees) as a function of position for a typical set of paaters in tissue
measurementsi, = 0.1 1/cm, u, = 10 1/cm,w = 27 x (70 MHz) and an index of refraction
n = 1.4. Note that the wavelengti2€/k; ~ 19 cm) is roughly a factor of 20 greater than the
attenuation lengthl(/k, ~ 1 cm). For this same set of parameters, pdagplotslog(Ar) (blue
solid line) andd (green dashed line) as a function of the radial distance tl@sourcey. The
slopes reveat-k, andk; (see Equations 2.62 and 2.63), from whjghand ., can be calculated
using Equations 2.66 and 2.67i6 assumed). Note that the slopefofs. r is —k; instead ofk;.
Therefore, phase measurements from instruments that ®palf show decreasingphase with

increasingr.
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The approximation in Equation 2.67 is equivalent to makhegapproximatiorD ~ v/(3u.,).
Equations 2.59 and 2.60 reveal why frequency domain soaeesadio-frequency modu-
lated. Ifw < vuq, thenk; is very close to zero, resulting in unmeasurable phase esangh
increasingr. As w increases, the instrument will have an improved sengitiaitphase changes
with increasingr at the cost of higher attenuation in the amplitude. The ratthn frequency
should be chosen to balance the trade off between havinghaskigsitivity to phase with in-
creasingr and having a large range of separatiensver which the amplitude signal is above
the noise floor of the detector. Thus, radio frequencies déior 100 MHz up to 1GH z are
used for modulating light sources in frequency domain megsants of tissue. Note that instru-
ment measurements cannot differentiate between phase shif 27, 47, etc. Source-detector
separations in multiple distance measurements, then|dhewchosen such that the phase does
not change by more thatwr between adjacent separations. In practice this is not ae s
frequencies less thanGHz because the wavelength of the diffuse photon densite\@av/ &;)
is much greater than the attenuation length of the wayeé,{, as is evident from Figure 2.7.
Therefore, at separations wherein the phase has changeaibs wavelength, the amplitude is

essentially zero.

2.5.1.2 Continuous wave solution

The CW fluence rate is the solution to Equation 2.53 in the hgameous infinite geometry,

which is the special case of the ac solution (Equation 2ts5}a 0:

US(]

(I)m(r) - 47 Dr

exp(— [vpa/ D) 7). (2.68)

The optical propertieg,, and, cannot be uniquely determined from measurement.gfr)
alone, regardless of the number of distancésat are measured. In a classic paper, Arridge and
Lionheart theoretically proved that it is impossible toquely separate absorption from scatter-
ing with CW light [8]. Consequentially, in order to obtaiy from CW light measurementg)
must beassumegdwhich is a major drawback. Errors in the assumed tissuéestag coefficient
will result in systematic errors in the measured absorptimetficient.

Some frequency domain instruments, such as the ISS Imd§Smedical, Urbana-Champaign,

IL), measure both the ac and dc fluence rates. In the same masinkescribed in Figure 2.7,
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1te @nd D can be determined from measurements of dc amplitude ane phasultiple source-
detector separations. The dc amplitude (Equation 2.6&sks attenuated than the ac amplitude
(Equation 2.62) at a given separationwhich in principle means the signal to noise ratio of the
dc amplitude is higher than the ac amplitude. However, trengalitude and phase combination
for determining optical properties is less sensitive taystimbient light. In typical measure-
ments, the phase is substantially noisier than the ac or gditanes. This suggests that it may
be best to bypass the phase measurements by using the ac amplitades to obtain the tis-
sue optical properties. However, although the ac and dakidgare less noisy than the phase,
the extracted optical properties from ac and dc amplitudasmements are very susceptible to
instrument noise because of the similarity in changes oathand dc amplitudes with increas-
ing r [93, Section 2D]. In practice, Equations 2.68 and 2.62 aténutependent, meaning they

cannot be uniquely solved far, andy.,.

2.5.1.3 Time domain solution

The time-domain and frequency-domain solutions to Equalid6 are Fourier transform pairs

(Section 2.7). Therefore, the inverse Fourier transforfaaiation 2.55 gives the homogeneous
infinite medium fluence rate solution to Equation 2.46 in ttespnce of a pulsed point source of
the formS(r,t) = Spd(r)d(t), whereSy [J] is the total energy of the light pulse. The resulting

fluence rate is

72

VS|
03/2 exp [_ﬁ — ,uafut] . (2.69)

O(r,t) = W

Here, instead of using fluence rate measurements at mutligtences to derive optical prop-
erties, one measures the fluence rate at multiple times $onghe source-detector separation
Equation 2.69 (convolved with an “instrument response tiont) is then fit to this measured
time-domain data to extradd and y, [39, 191]. Alternatively, if it is only necessary to deter-
mine 1, the full nonlinear fit can be avoided by noting tdbg ®(r,¢)/0t — —pug,v ast — oo.
Thus, i1, is given by the slope of the natural log of the fluence rate rag kimes (i.e., typically

only a few nanoseconds) [201].

The major advantage of using time-resolved pulsed soumrapared to intensity modulated
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sources is that only one source-detector separation issddedneasure absolute optical prop-
erties. Also, by employing time-gating and moments analgsithe detection end, it is possible
to pathlength resolve the detected light in order to rejectrtbutions from superficial tissue

layers [172, 222]. However, time-resolved instrumentai® considerably more complex and

expensive than frequency-domain instrumentation.

2.6 Boundary Conditions

While conceptually useful, the infinite homogeneous medisimot a good appoximation for

practical tissue geometries. Most realistic geometrie® laterfaces between different media.
For example, in the DOS measurement depicted in Figurel#®ge is the interface between the
scalp and the probe. A particularly useful geometry is thaat interface wherein a semi-infinite
turbid tissue is bounded in the other half-space by air (f€igi8). Another commonly used
geometry is the slab geometry wherein tissue is bounded bylanar interfaces (Figure 2.8).
The diffusion model can still be applied near these intesaprovided appropriate boundary
conditions on the fluence rate are used. In this section,|ld&iive the partial-flux boundary

condition (also known as the Robin boundary condition) drel éxtrapolated-zero boundary
condition on the photon fluence rate at the interface betvaeeighly scattering medium (e.qg.,
tissue) and aon-scatteringnedium (e.g., air) [7,123]. These boundary conditions ppdieable

at a given pointr; on any turbid-nonscattering interface. In this derivatitns necessary to

consider the light radiance (see Table 2.1) again.

2.6.1 Partial-Flux Boundary Condition

Photons escaping from the tissue into air will almost negeenter the tissue medium because
non-scattering media do not alter the direction of lightéta Therefore, if all light sources are
inside the tissue, the incoming irradiance (i.e., totditligower per area traveling into the diffuse
medium at the boundary) at positiopon the interface, i.eJ;,, (r, t), is due to Fresnel reflections

of the radiance in the diffuse medium that travels out towhedinterface (see Figure 2.8):
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Figure 2.8: Common geometry used to model tissue with ref@mdexn that is bounded by

a non-scattering medium with refractive indey,;. In the semi-infinite geometry, w, h, and d
all go to infinity, while in the infinite slab geometry, w and rednfinite but d is finite. Both
geometries have azimuthal symmetry about the z-axis, mgahie photon fluence rate only
depends on the radial and axial cylindrical coordinateend z. On the left, a single source-
detector pair (with separatiop) in the remission geometry is shown. Note that for the slab
geometry, detectors can also be used for transmission mepasnts by being placed on the
z = d plane. On the right is a cross-section showing that the madianoving into the turbid
medium at a point; on the boundary is due to the Fresnel reflection of the radiamzddent on
the boundary.
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Jin(ri,t) = / L(r;, Q,6)QdQ - 2 (2.70)
0-2>0
= / Rpresnel(Q)L(r;, Q,6)QdQ - (—2). (2.71)
-2<0
RF,nesnel(Q) is the familiar Fresnel reflection coefficient for light ideint upon the boundary in
a direction{) from within the tissue [116, Chapter 9], amgdenotes a point on the boundary.
Note thatJ;, is also called the partial flux because the integration inafiqua 2.70 is oveRr
steradians in the > 0 hemisphere, whereas the integration in the full photon fluxEqua-
tion 2.21), is over allir steradians of spaée All of the light power crossing the boundary into
the tissue is from Fresnel reflections, and consequentiladypartial flux is the total reflected

power into the tissue from light traveling inside the tistmwards the boundary (Equation 2.71).

To convert Equations 2.70 and 2.71 into a boundary condiiothe fluence rate, we use
the P, approximation of the radiance (Equation 2.27), which we aised to derive the photon
diffusion equation. Substituting Equation 2.27 into Equa.70 and evaluating the integral in

spherical coordinates results in

w/2 2w
Jin(ri, t) = / / (%‘ID + %J - [sin 6 cos ¢T + sin O sin ¢y + cos 973]) cos 6 sin 6dpd o
0 0 s 7

1 w/2 3 w/2
= 5<I>(rz-,t)/ cos 0 sin 6d6 + §Jz(ri,t)/ cos? fsin A
0 0

I(ri7t) Jz(rbt)
4 2 ( )

whereJ, (r;, t) is thez—component of the photon flux.

¥J(r;,t) - 2 is thenet light power per area crossing the boundary. The Fresnelctigltes in Equation 2.71
determine theotal light power per area crossing the boundary into the tisshé&lwis the partial flux.

38



Similarly, substituting Equation 2.27 into Equation 2.@%ults in
w/2 2w
Intwist) = [ [ Reveana®)L(ri, 7 6,6,0)[- cos( — 6)]sin(r — 6)doao
0 0
w/2 2w ) 1 o 3 . ; A
= /0 0 RFresnel( ) <E + EJ : [SIH(TF - )COS ¢$+

sin(m — ) sin ¢y + cos(m — 6)Zz]) cos 0 sin #dpdd

w/2 2w 1 3
= / / RFresnel(e) <—(I) — —JZ Ccos 9) cos 0 sin 9d¢d9
0 0 47 47

e O(ri,t) R, J.(ri, 1) (2.73)
4 2
where
/2
Re E/ 2sin 6 cos O Rpresner(0)do (2.74)
0
w/2
Ry = / 3sin 0 cos? HRFresnel(e)de' (2.75)
0

~

In arriving at Equation 2.73, we used the fact tii&t,.,.;(2) depends on the polar angle
(Figure 2.8) but not the azimuthal angte For the case of unpolarized light with> n,,, the

reflection coefficient for light incident on the boundaryrfréhe tissue is [116, 123]

9 2
%(M) +1(M) if 0<6<8é,,

n cos 0’ +neoyt cos 0 2 \ ncosO+neoyt cos 6’

RFresnel (9) = (276)

1 if 0. <0 <m/2,
where the angle of incidendg and the refracted angl¢ satisfy Snell’s law, i.e.nsinf =
newt sin @', and the critical anglé, for total internal reflection is given by sin 6. = n4y;.

Combining Equations 2.72 and 2.73, we obtain

1+ Ry

(I)(I'Z‘,t) = 1_ Rq>

(—2J,(x4,1)). (2.77)

Equation 2.77 is commonly rearranged in terms of an effeat@flection coefficient.;, to

account for the refractive index mismatch between tissuetlam non-scattering medium:

1 e
(i, ) = LI (o g e 1) (2.78)
1 - Reff
with
Rs + Ry
Ry = feths 2.79
2 2—Re+ Ry ( )
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n Nout R<I> RJ Roﬁ ’(I)/Jz’
140 1.40 0 0 0 2.0
1.33 1.00 0.472 0.328 0.431 51
140 1.00 0.529 0.389 0.493 6.0

Table 2.4: Ratios of the fluence rate to the flux at the surfacadhary, as given by Equation 2.77,
for some typical index refraction

Given refractive indices andny¢, Refy ~ —1.440 (n/nom)_2 +0.701 (n/nout)_l +0.668 +
0.0636 (n/noyt) [88,118]. However, it is best to solve the integrals ¢ (Equation 2.74)
and R; (Equation 2.75) numerically using Equation 2.76 for theshkes reflection coefficient.
Table 2.4 lists the exad®, ;r and ratio|®/.J | for some typical index of refraction mismatches.
The partial flux boundary condition is obtained from sulnsitiig Fick’s law of diffusion

(Equation 2.43) in fotJ, in Equation 2.78:

8¢(I'Z',t)
D(rj,t) = zp———2, 2.80
(riyt) = 2 P (2.80)
where
2 1+ Reyy
= {4 2.81
Zb 3£t 1— Ry ( )

2.6.2 Extrapolated-Zero Boundary Condition

The partial-flux boundary condition is exact, but it is difficto use in practice, especially if
analytical solutions to the diffusion equation with intarés are desired. The extrapolated-zero
boundary condition is an approximation of the partial-flsubdary condition that makes solv-
ing the diffusion equation more tractable. It is derived laylor expanding the fluence rate to
first order around the boundary (at= 0, with the first derivative term taken from the partial-flux

boundary condition (Equation 2.80), i.e.,

P(z) = @(0) + g—fz = 0(0) + ®(0)

. (2.82)

2p
As shown in Figure 2.9, if we use this line to approximate therice rate outside of the turbid
medium ¢ < 0), then

O(z=—2) =0, (2.83)

which is the extrapolated-zero boundary condition.
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Figure 2.9: The fluence rate curve is approximated by itsdaniine atz = 0, where thed = 0
intercept of this curve is = —z;,. This figure is adapted from Li [170, Fig. 1.6].

2.7 Green'’s function solutions

An age old strategy [6, 15] employed to solve the time-donaaid frequency-domain diffusion

equations (Equation 2.46 and Equation 2.52) is to first fird ttespective Green'’s functions,
and then to use these Green’s functions to construct moer@esolutions. We will first focus on

the special case of homogeneous media. In the time-donha@mamogeneous photon diffusion
equation is

<v2 _ U 12) B(r,t) = ——S(r,t). (2.84)

The homogeneous time-domain Green’s functig(r(r,,¢,t,) [cm~2s7!]) is defined as the
solution of Equation 2.84 for a normalized infinitesimallgrrow light pulse emitted at position

r, and timet,, i.e.,
(72 e - 55 )otematit) =~ polr—r)ae ), (289

that satisfies the boundary condition (e.g., Equation 2&3)he geometry of interest. For an
arbitrary source distribution$(r, ¢), the photon fluence rate solution to Equation 2.84 is the

convolution of the Green'’s function withi(r + rg, t + ¢5), i.e.,
O(r,t) = /g(r', rg,t' t)S(r +r, — v/, t +t, —t)d>dt, (2.86)
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where the spatial integration is done over the entire volohtissue, and the temporal integration
is from —oo to co. Notice that the photon fluence rate from a point source, §ér,t) =
So0(r —rg,t —ts),ISP(r,t) = Sog(r,rs,t,ts).

Similarly, the frequency-domain homogeneous Green'stfandG(r,r,) [cm~2]) is the

solution of Equation 2.54 for a normalized oscillating gaaurce at positiomy, i.e.,
(V2= k) G(r,r,) = —%5@ — 1), (2.87)

that satisfies the boundary condition for the geometry @fregt. The solution to the homoge-
neous frequency-domain photon diffusion equation (Equai54) for an arbitrary distribution

of oscillating point sources (i.eS..(r,t) = S(r)e™?) is
Ulr) = /G(r’, rs)S(r +rs — r')d%, (2.88)

where the spatial integration again is over the entire velaftissue. As with the time-domain,
the frequency-domain fluence rate for a point sousge) = Spd(r—r), isU(r) = SoG(r,ry).

Notice that Equation 2.86 can also be used to find the photendkirate®,.(r, t) (Equa-
tion 2.50), for the same arbitrary distribution of oscitat sources. Substituting,. into Equa-
tion 2.86, we obtain

Due(r,t) = ei“’t/ </ g(r’, rs,t/,ts)e_iw(t,_ts)dt/> S(r+ry —r')d3r. (2.89)

Recalling thatb,.(r,t) = U(r)e™! (Equation 2.50), Equation 2.89 is equivalent to
U(I‘) — / </ g(r/’ rs, t,, ts)e—iw(t/_ts)dt/> S(r _|_ rs — I,/)dg,r,/‘ (290)

Comparing Equation 2.90 with Equation 2.88, it is evideat the frequency-domain Green’s

function, G(r, ry), is the Fourier transform of the time-domain Green’s futi.e.,

G(r,r,) = / g(r, v, t,tg)e @) qs, (2.91)

Correspondingly, the time-domain Green'’s function is tieise Fourier transform of(r, r):

g(r,rg,t,ts) = 1/ G(r,r,)e™ 1) dy, (2.92)

T o
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Importantly, Equations 2.91 and 2.92 can be utilized to edr& time-domain Green'’s function
to its corresponding frequency-domain Green'’s functiom) @ice versa. The time-domain and
frequency-domain fluence rates are then given by Equati@tsahd 2.88, respectively.

Finally, the Green’s function for a continuous-wave ligbuse (i.e.,G.,(r,r)) is the
special case of the frequency-domain Green'’s functionsfer 0. The CW analogue of Equa-

tion 2.88 for the CW fluence rate is
Bou(1) = [ Geult' 1S (x 41, — 1), (2.93)

Exactly the same approach can be used for heterogeneousgiesnas well. The key
difference is that the definition of time-domain and freqryedomain Green’s functions are the

heterogeneous analogues of Equation 2.85 and Equation 2.87

2.8 Semi-infinite Frequency-Domain Green’s Function for Pdial-

Flux Boundary Condition

I will now utilize the method of images [35] to derive the fremcy-domain Green’s function
of the photon diffusion equation for the semi-infinite getiméFigure 2.8) and the partial-flux
boundary condition (Equation 2.80). The method of imagesists of adding infinite medium
Green’s functions (e.g., arising from a light source andd@ym sources”) together in a way that
satisfies the appropriate boundary condition.

First, recall from Section 2.4 that light from the incideram in Figure 2.8 is well approx-
imated as an isotropic point source at position (in cylicalricoordinatesys = (ps = 0,25 =
4). The frequency-domain Green’s function for this point seuin the infinite geometry is

(see Equation 2.55)

GI([p7 2]7 [ps =0,z = gtr]) exp(—krl), (294)

- 47w Drq
wherer; = +/(z — 4)? + p?. The partial-flux Green’s function for the semi-infinite geetry
(i.e., Ggf) is the sum of the infinite geometry Green’s function and aemion termG, that

arises from the presence of the boundary:
Ggf = GI([P7 Z], [ps = 07 Rs = etr]) + Gc([p7 Z], [ps = 07 Rs = gtr])- (295)

43



The partial-flux boundary condition (Equation 2.80) for Btjon 2.95 is

G aGC} : (2.96)
z2=0

(GI + GC)ZZO =2p [g + a2

Substituting Equation 2.94 into Equation 2.96, we obtain

(26 1) o (% 1)
0z & 220 0z 2z 2=0
v —kr 28 gt?” v —kr
— Ulk(z — 4, 1
<47TDT‘%e [ (z Et ) + T1 :| * 47TDZlee >z:0

v exp [—kn/ﬁ?r + pﬂ o s 1 097
—kby — ——= 1+ — |, .
4rD(62. + p?) ! /2 %2 % (2.97)

wherez;, is given by Equation 2.81.

The next step is to consider the infinite Green’s functiondorimage point source (Fig-

ure 2.10) atfs = 0, zs = — ¥y, I.€.,

Gimage .

I = m exp[—krg], (298)

wherery = /(2 + £4-)2 + p2.

Notice at the interface; = 0, that

0 1 image v —kro z 4 Uy v k
-t — =|{- "2k Ly T2
K@z * zb> G 220 471Dr%e (24 o) + ) * 47TDZb7°2e =0

B v exp [—k

] Ly 1
—kly — —+— | . 2.99
4rD(62. + p?) ( ! J02 5 2 zb> (2.99)

The right hand sides of Equations 2.97 and 2.99 are identiddth means that a solution for

G, that satisfies

8Gc 1 . g i image
o Zch = (82 + Zb) GY (2.100)

will also satisfy the partial-flux boundary condition.

To solve Equation 2.100, multiply both sides dyp|[—z/z;] and then integrate the resulting
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equation, i.e.,

<0 —2'/Ls >0 v —(kro+2'/z2
| g (e as = [ (e e

3 > Le_(kﬁ‘iﬂzl/zb)dz/
2y ], 4mDrg ’
v —kr 2 o v —(kore+[2'—2]/Ls) 3./
= —G = —-— 2 _ - 072 s d
N 47TD7“2e Zp /z 47TD7“2€ o

v 2 [ v
— _ =z —(kor2(u)tu/z) g 2101
= Ge AnDry 2 /0 471Dr2(u)e Y ( )

where a change of variables= 2’ — z was made between lines 2 and 3.

Substituting Equation 2.101 into Equation 2.95 resultshie Green’s function that satis-

fies the diffusion equation inside the semi-infinite mediwm>{ 0) as well as the partial-flux
boundary condition:

f_
GY =

v |:e—k7'1 e—sz

4w D T1 + T2 B

2 [ . P [—k:\/(z + by 4+ u)? + p2]
= e~ U/ %
/0 V(2 + by +u)? + p?

du . (2.102)

22

We know that Equation 2.102 satisfies the photon diffusiamatign (Equation 2.54) in ad-
dition to the partial-flux boundary condition because it Isxaar sum of infinite media Green’s
functions (Equation 2.94). Each infinite Green’s functiatisfies the photon diffusion equation,

and therefore their sum will also satisfy the photon diffimsequation.

As illustrated in the left panel of Figure 2.10, the first tveorhs in Equation 2.102 are the
infinite medium Green’s functions from a point sourceat£ 0, z; = ¢;.) and an image source
at (os = 0, z; = —44,.). The integral in Equation 2.102 represents a continuaesdr infinite
Green'’s functions from image sinks (i.e., image sinks dbate negatively taGs) that starts

at (ps = 0, z = —¥) and extends tog; = 0,2 = —o0). The magnitudes of the sinks are

exponentially damped as— —oo with a characteristic decay length of (Figure 2.10).
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Figure 2.10: Analytical Green’s functions in homogeneoemisinfinite media for both the
partial-flux (Equation 2.80) and extrapolated-zero (EiquaR.83) boundary conditions can be
derived using the method of images. The method of images firesuperposition of infinite
media Green'’s functions (Equation 2.94) that satisfies fipeagriate boundary condition. One
term in the superposition is the infinite Green’s functiconirthe “real light source”. The other
terms arise from image sources (e.g., positive terms) aaddmsinks (e.g., hegative terms). The
image source and sink distributions for the partial-fluit (f@nel) and extrapolated-zero (right
panel) boundary conditions are shown. For the partial-flasec the infinite line of sinks is ex-
ponentially damped as — —oo with a characteristic decay length gf. This figure is adapted
from Haskell [123, Fig. 4].
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2.9 Semi-infinite Frequency-Domain Green’s Function for Exrapolated-
Zero Boundary Condition

In the semi-infinite geometry, the extrapolated-zero bampdondition (Equation 2.83) is satis-

fied by a superposition of only two infinite medium Green'sdiions (Equation 2.94), i.e.,

v [exp(—kr1) exp(—krp)

Gs(lp,2): lps = 0,25 = bl) = - - , (2.103)

where
1= (z = ly)? + p? (2.104)
o = /(2 + 22 + Ly )2 + p.. (2.105)

The first term is from the source gi,(= 0, z; = ¢;,) and the second term is from an image
sink at s = 0, z; = — (¢ + 22)) (Figure 2.10). Obviously, the extrapolated-zero sohutio
(Equation 2.103) is more tractable than the partial-fluxisoh (Equation 2.102) because there

is no integral to evaluate.

2.9.1 Extrapolated-zero and partial-flux multipole expangon

The extrapolated-zero image configuration (Figure 2.1@hésbest single-point image repre-
sentation of the partial-flux configuration, differing ontyoctupole and higher multipole mo-
ments [123]. Thus, far away from the image configurations, ghrtial-flux and extrapolated-
zero solutions are virtually the same. The semi-infinitegBi® functions Equation 2.102 and
Equation 2.103 have the samhédr—r,| dependence as the electrostatics Coulomb potential [116,
Section 3.4].

Therefore, a multipole expansion on the semi-infinite phdtoence rate solutions can be
done, and it's useful to compare the “image configuratiorldipnoments” for the partial-flux
and extrapolated-zero fluence rates. Recall from eleatiostthat two charge distributions with
the same dipole moment have virtually the same electrogtatential at distances far from the
the distribution [116]. Similarly, two image configuratomvith the same dipole moment have

virtually the same fluence rate at distances far from the enthstribution.
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Figure 2.11: Simulated amplitude and phase data as a fanatisource-detector separatign,
was generated using the exact semi-infinite Green’s fumdtmuation 2.103) withs,, = 0.1
cmt, ph =10em™, n = 1.4, ngw = 1, andf = w/27 = 70 MHz. Equations 2.110 and
2.111 were employed to calculatg (left) and ., (right) from linear fits to five equally spaced
source-detector separations spaced over the ranges epexifthe horizontal axis, i.e., [1, 1.5,
2,25,3cm,[1.5,2,25,3,3.5]cm,., [6,6.5,7,7.5, 8 cm.

I will first compute the dipole moment of the partial-flux imegonfiguration in Figure 2.10:

2
D~ (2@ + 2 (2.106)

o
ze_z/zb> e krs = 2(zp + Btr)e_k”i.
zy Jo

Here, | made the approximation thatp[—k|r — rs|] ~ exp[—kp|, which is the case on the
planar interface for largg. Also, | used the image source position as the origin for ipeld

calculation.

The dipole moment of the extrapolated-zero image configuram Figure 2.10 is

kp

p =~ 2(ly + zp)e” Pz, (2.107)

which is the same as Equation 2.106. It also turns out thattbémage configurations have the

same quadrupole moments for the origin on the planar irteffe23].

The main point to remember is that for measurements with sangce-detector separations
compared td;,, the extrapolated-zero fluence rate is an excellent appation of the partial-

flux fluence rate [123].
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2.9.2 Extrapolated-zero Green’s function at the boundary large p limit)

In diffuse optical measurements, the fluence rate is tylyicltected at the tissue-air interface,
i.e.,z = 0. Equation 2.83 can be fit exactly, butin the limit> (¢;.+2z;), the extrapolated-zero
Green'’s function simplifies considerably. Following Li'ssdussion [170, Sec. 1.6], at= 0

andp > (¢4 + 22,) (see Equations 2.104 and 2.105),

1 /4, \>
““ﬂk+5<%>]’

Ty = p 9 P
_L%1F_1<@>1
roop 2\p 7
_%1P_1<%+%§1.
T p 2 p

Applying these approximations to Equation 2.83 and drappit terms of order higher than

1/p?, we obtain
Gllpsz = 0], [ps = 0,24 — £y]) e~ Y (L[] -
P2 = Ul |Ps = U, s = Lir N47TD p exp 2p 2 p
2 2
o <_k<£tr+2zb) > (1_1 Vtrmzb} )]
2p 2 P
v e ke 1_k‘€t2r 1_} Eﬁz _
~ 4rD 0 2p 2| p
ol +22)° (1 [l +22)
2p 2 p ’

—kp 2 2
v 1_k‘€tr_1+k‘(€tr+2zb) 7
4D p 2p 2p
—kp
v oe 9
= anD 7[2]6(2(,6“» + 2y )] (2108)

For an oscillating point sourcg(r) = M Spe™'§(z—£4-)d(p), the frequency-domain photon

fluence rate is obtained from substituting Equation 2.168 2188, i.e.,

M Sov e~ ke
Up,z =0) ~ 4ﬂ°) — [2k (20 + 2] - (2.109)
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Figure 2.12: Two orthogonal cross-sections of the cylealrgeometry A, B) and one cross
section of the spherical geometi@)( For the infinite cylindrical geometry, — oo.

The amplitude and phase of this diffuse photon density weeg U (p, z = 0) = A(p)e ?0);
see Equation 2.61) satisfy

log(p*A(p)) = —krp +log(Ao), (2.110)

0 = 0y — kip, (2.111)

wherek, andk; are given by Equations 2.59 and 2.60, respectively. Thexefo the largep
limit of the semi-infinite geometry;,. andk; are determined from linear fits to measurements of
log(p?A(p) andf(p) at multiple source-detector separations. Thepandy/, are determined
from k, andk; via Equations 2.66 and 2.67.

Equations 2.110 and 2.111 are an approximation of the sgfimite fluence rate, which can
lead to a systematic error of up16% in the calculated absorption coefficient (Figure 2.11).sThi
systematic effect approximately divides out when compufiactional changes in hemoglobin

concentration or the tissue oxygen saturation with mudtis@al measurements.

2.10 Extrapolated-zero Green’s Functions in Spherical, Cndri-
cal, Slab, and Two-layer Geometries

Tables 2.5 and 2.6 show the frequency-domain and time-do@gen’s functions subject to the

extrapolated-zero boundary condition for cylindricalgiie 2.12), spherical (Figure 2.12), and

slab (Figure 2.8 homogeneous geometries [10]. Again, tlmtophfluence rates are calculated

from the Green’s functions using Equations 2.88 and 2.86.
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Case

Green’s function (frequency-domain)

Infinite

Semi-infinite

Infinite Slab

Infinite Cylindrical

Finite Cylindrical

Spherical {5 < r < a)

G(r,rg) = m exp(—k|r — rs|)

v exp(—kr exp(—kr,
G([f)v Z}a [ps =0,25 = étr}) = InD [ p(m D P(Tb b)]

o & (eplkrim]  explobr]
Gllp. 2 los = 0.2 = fl) = iy 30 (2feel —enllrnl)
\ v =2l K2A BB Jr (B p) on (Brnips)
Gllp: 8,21 lps 2 = sy | 30 cosmé 3 & e S e

o0
Glp, 0, 2], [ps, 25]) = 7pmasy 2o Singhas sin 7552 %

—
Zoo In(pkm) [In(apkm) Kn (pskm)—In(pskm)Kn(apkm)]
n=-—00 In(ﬂbkm)

cos ng

, X K (kr)I, (kap)—1, (kr)K, (kay)

_ v n+1/2 n+1/2 b n+1/2 n+1/2 b

Gl glms) = AnD\/r7s Zo Iyy1/2(kay) x
n—

(2n + 1)1y 1y2(krs) Py (cos ¢)

k= +/(pqv +iw)/D

1=/ (2 = ly)? + p?

ry = /(2 + 2z + 0 )2 + p?
2 = 2l 3

m, an integer

Tom = /P2 + (2 — 26.m)?

Zpm = 2m(d + 22) + Uy

2o m = 2m(d + 22p) — 22p — by

d, slab thickness (Fig. 2.8)

I (2) mt" order Bessel function,sikind
I,(z) m*" order modified Bessel function$kind
K (2) m* order modified Bessel function"®kind

Regp ~ =140 (2 )72+0.701<,12t>71+0.668+0.0636< =)

Nout n, Nout
Pp.(z) m* order Legendre polynomial
a, cylinder/sphere radius (Fig. 2.12)
ap = a + z, i.e., extrapolated-zero boundary (cylinder/sphere)
Bm, a positive root of/,,, (By,ap) = 0
¢, angle between input/output light beams (cylinder/spheig 2.12)

km = /K2 + m2m2/(h + 2z)2
r, radial spherical coordinate

p, radial cylindrical coordinate
h, finite cylinder axial length (Fig. 2.12)

Table 2.5: Frequency-domain Green'’s functions (EquatiBid)dn several homogeneous geome-
tries subject to the extrapolated-zero boundary cond{imuation 2.83). Notation is defined in
the lower part of the Table, and for more details about thergdoes, refer to Figures 2.8 and
2.12. The sum oveg,, for the infinite cylindrical Green’s function explicitly na@s to sum
over all positive roots of then!” order Bessel function/,,,(z), and.J! (z) is the derivative of
Jm(2). In practice, the infinite sums are truncated after a desicediracy has been reached.
Further, note that the special case= 0 corresponds to the continuous-wave Green'’s functions
(Equation 2.93).
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Case Green’s function (time-domain)

. . r—rg|?
Infinite g(r,re,t,ts) = (47rD(tit5))3/2 exp [74‘130,—45) — pau(t — ts)]
. xpl—prav(t—ts 2 2
Semi-infinite g([p, 2], [ps = 0, 25 = Liy), E, ts) = w <exp [_WLL)} — exp [—%])
Infinite Slab g([ps2)s [ps = 0,25 = Liy], t, ts) = W m;oo <6XP {*%} — exp {*ﬁ})

vewp |- (avte-t+ 57205 )|
) = 27r(z§\/1rD(t—t5) x
o] A
S cosmeg S exp[—DBZ(t — ts)]—i—‘lm(d”p)‘/’”(ﬁ’”ps)

Infinite Cylindrical g([p; b, 2], [ps, 25, t, ts

m=—o00 B [ (Bmay)]
ini i i 2ue—Hav(t—ts) & —Dm?72(t—ts . . 3
Finite Cylindrical 9([p, 0, 2], [ps, zs), t, ts) = W mzﬂ exp [ (7;+;z£)2 )] sin T2 sin 12

o0
O — D2 (t—ts) Jn(Bnp)In(Bnps)
3 cosng x e DAl )W
n=-—oo ﬁn n\Pnap

: - - - & Jint1/2(Bm Jint1/2(Bmg1/27s
Spherical ¢ < r < a) g([r, @], 7s,t,ts) = vcx;:r[a;ta:ﬁ ts)] DS 117208 +1/2T3 11/2( 2+1/27 >><
bVTTs M=0 Bt/ [Jm+3/2(ﬂm+1/2ab)]

(2m + 1) Py, (cos qﬁ)e*DBm’H/ﬂ(t*ts)

Table 2.6: Time-domain Green’s functions (Equation 2.8%dveral homogeneous geometries
subject to the extrapolated-zero boundary condition (Egna2.83). Notation is defined in
Table 2.5. As with the frequency-domain Green’s functidngpractice, the infinite sums are
truncated after a desired accuracy has been reached.
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Analytical Green’s functions also exist for heterogesitsuch as spherical [22] and cylin-
drical inclusions [252] in homogeneous media as well as foltidayer media [129, 157,212].

| have used the Green’s function for the two-layer geomettgresively to distinguish be-
tween cerebral and superficial tissue layers (Figure 2TI3.two-layer geometry is comprised
of a semi-infinite bottom layer (e.g., corresponding to tbeical regions of the brain) with a
distinct absorption coefficient and scattering coefficefnt,, . and N;,c' respectively, and a su-
perficial top layer (e.g., corresponding to extra-cerebealp and skull tissue) with thickness
¢, and distinct tissue properties denoted /y.., and i ... The frequency-domain Green's

function for this geometry at the = 0 plane is [157]

1 R
Gllp.z =0 lpu = 0.2 = 20 = 5 [ Gls)so(spds, (2.112)
0
Gi(s) = vsinh[ke.(zp + 20)] Deckec coshlkecl] + Dk sinhke ) B
N Deckee Deckee coshkee (€ 4 zp)] + Deke sinh[kee (€ + 2p)]
v sinh[keczo]
‘Deckec ’

whereD; = v/[3(u}, ; + paj)], k2 = (Djs* + vpa j + iw)/D; (with subscriptj denotingc
(cerebral) orec (extra-cerebral))z, = 2(Dec/v)(1 + Reff)/(1 — Ress), 20 = 3Dec/v, and
R. sy is defined by Equation 2.79 (this solution assumes the tofbattdm layers have the same
optical index of refraction).

Although an analytical solution for the time-domain twgéda Green’s function does not
exist, it can be determined numerically from substitutirguétion 2.112 into Equation 2.91 and

evaluating the resulting expression with a fast Fouriersfarm technique [108, 157].

2.11 Relationship Between the Fluence Rate and the Detect&il-

nal

From the previous sections, | presented the photon diffusiodel and its solutions in several
geometries for the photon fluence rate. | will now discussrétationship between the photon
fluence rate and the detected light intensity [52, 123]. Tammon methods for light detection
are depicted in 2.14.

Let’s first consider the case of optical fiber based detectigositionr on the boundary. The
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Figure 2.13:(A) Two-layer tissue model of the head a(i)) parallel plane two-layer tissue
geometry.
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Figure 2.14: Diffusing light can be detected with both ceh&nd non-contact probes. Contact
probes typically use an optical fiber (with numerical aperth A ) to transport light emerging
from a pointr to a light detector (e.g., photomultiplier tube). Non-amitprobes typically
utilize a lens (with numerical aperturg€ A;) to image the light emerging from a poing onto

its corresponding point on the detector plane, t.ggcp. As in Figure 2.87 is the tissue index
of refraction andh,,; is the refractive index of the non-scattering medium bongdhe tissue.
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detected light intensity (r, ¢), is the light radiance integrated over the collection safidle and

detection aread(iner) Of the fiber, i.e.,

I(r,t) = / d?r / dQT (r,Q, t)L(r, Q,t). (2.113)
Ofiber NAp
Here, T'(r, ), ¢)d2 is the probability that a photon at positienand timet traveling in the(
direction is detected. To relate the detected signal to trendle rate, thé” approximation of

the light radiance (Equation 2.27) is employed in Equatidi 3, i.e.,

Ve 21
I(r,1) = / 2 /O a9 sin /O dqﬁT(r,Q,t)i [o(e.0) +330)- 0], (211

Ofiber
where the half-angle of the maximum cone of light that carppgate through the fibef,., is
determined from the fiber's numerical aperture #¥ja= arcsin(N Ar/n). With the additional
assumptions thdf’ is spatially homogeneous across the fiber detection are#&sagynmetric
about the central optical axis of the fiber, i.€.,= T'(9,t) (see Figure 2.14), Equation 2.114

simplifies to

5 Ve 27 1
I(r,t) = /d T/o dﬂsinz?T(ﬂ,t)/O dgbg [®(r, 1)+

Ofiber

3J(r,t) - (sin(?) cos(¢)& + sin(F) sin(¢)y — cos(¥)z]]

Ve
= / d2r/ dﬂT(vﬂ,t)% [@(r,t) — 3J,(r,t) cos(V)] sin(D). (2.115)
Ofiber 0
Since the fluence rate is proportional to the flux at the boynde., the partial-flux boundary
condition (Equation 2.78), Equation 2.115 is equivalent to
Ve 1 31— Reff 9
I(I‘,t) = |:/0 T(’l9,t)§ <1 + 5@) d’L9:| / (I)(I',t)d T. (2116)

Ofiber
If the fluence rate is approximately constant over the afga, then the detected signal is di-

rectly proportional tob(r, t), i.e.,

Je _
I(r,t) = |:O'ﬁber/0 T(Q?,t)% <1 + g%g:;jj d19:| O(r,t) = C(t)P(r,t). (2.117)

Here, the multiplicative factor in brackets is the so-dahllight coupling coefficient(C, which

is the proportionality constant between the detected bigtensity and the photon fluence rate.
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It depends on many factors, such as the Fresnel transmissédficient from the tissue to the
fiber, the light sensitivity of the detector, “fiber-detactmupling”, and physical properties of
the tissue surface (e.g., hair follicles, melanin conternihé skin, thin layers of dust and/or water
droplets, etc.). If any of these aspects of the measurenmamges with time, thed’ will also
change with time. It is very difficult to predict theoretically, so in practical measuremerdts,
is regarded as an unknown.

Equation 2.117 applies to the non-contact detection aeraegt in Figure 2.14 as well, i.e.,
I(rgccp,t) = Cr®(rq,t). Non-contact detection has a different light coupling Goefnt
wherein the critical angl®. in Equation 2.117 is given by the numerical aperture of tims,le
i.e., 9. = arcsin(NAL /ny), and the fiber detection aresier is replaced by, which is
the area of the “resolution cell” just resolved by the lenaging the surface. Further, the
probability density function for light detection, i.€(«}), for the lens/CCD scheme is different
from the fiber/PMT scheme. Note that the lens detection seheorks best if the detection
point of interestr, is not too far from the central optical axis of the lens. Airpe far from the
axis, larger aberrations could induce significant contation atr,; - p from light emerging at
neighboring positions te,; on the tissue surface. Effectively, aberrations increbsedsolution
cell area and affeat., thus altering the light coupling coefficie6t;. Finally, beam vignetting
decreases the light coupling coefficiefi,, at detection points on the tissue surface far from the

lens axis [52].

2.11.1 Strategies for Estimating Light Coupling Coefficiets

For a frequency-domain measurement with a single sounestde optical fiber pair (e.g., Fig-
ure 2.8), there are two equations, i.e., one for the measumgiitude (Equation 2.110) and one
for the measured phase (Equation 2.111), but four unknownsddition to tissue absorption
and scattering, there are also two light coupling coefficierknowns for amplitude and phase,
i.e.,C, andC,, whereC = C, exp(—iC),) (see Equation 2.117). Thus, for accurate estimates of
e @ndyl, frequency-domain measurements at multiple source-etseparations is preferred.

If the source fiber is physically translated across the nredising a translation stage [121], then
to a decent approximatiord;, andC), will be the same at every separation. In this case, Equa-

tions 2.110 and 2.111 can be directly applied to linearlyhi measured amplitude and phase
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Figure 2.15:(A) Multiple source-detector separations are highly pirefgfor accurate measure-

ments of tissue absorption and scattering with intensitgdutaded light sourcegB) Top view of

an exemplar self-calibrating probe. Both the self-catingaprobe and the linear probe in panel
(A) have four source-detector separations. A self-cdiibgaprobe requires at least two sources
and two detectors (see text).

data for—k, andk;, which are then used to calculatg and, via Equations 2.66 and 2.67.
However, physically translating a single fiber places aigelimit on time resolution, and
the measurement is also prone to motion artifacts and lggitdge since the moving fiber is not
fixed to the tissue. Another, more practical approach eslimultiple fibers secured to the tissue
of interest (Figure 2.15A). The drawback here, though, & #ince each fiber has its own light
coupling coefficient, there will be two additional unknowfios each additional fiber used. Two
methods are commonly employed to address this problem. gpreach uses calibration phan-
toms with known optical properties to determine the couptinefficients before and after each
experiment [36, 133, 253]. A second approach employs séilirating probes [268]. The first
method assumes the coupling coefficients will be the samtisfame and phantom; the second
method assumes axially symmetric tissue. The subsequsnusdions of these approaches are

for optical fibers, but the results are also applicable far-nontact detection.

2.11.1.1 Phantom Calibration

The phantom calibration technique estimates the fiber tighpling coefficients from measure-

ments on a homogeneous semi-infinite phantom with knowrcaptiroperties 4%, 1/"). For

a
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an arbitrary source-detector pair (i.e., source fibe&oupling coefficient’ ;; detector fiber,
coupling coefficientC; ;) with source-detector separatigg;, the measured signal intensity is

given by (Equation 2.117)
If;- = \If;-] exp[—z’pg] = Cs,4iCa,aj €xp [—1(Cs pi + Capj)] AP(pij)exp[—iHP(pij]. (2.118)

Here, A (p;;) and thed” (p;; are the calculated amplitude and phase obtained from gutivg

the known phantom optical properties into the frequenayraio semi-infinite diffusion Green'’s
function (e.g., Equation 2.103)45 is the measured phase difference between the intensities
detected by fiber and delivered by fibei on the phantom, and the measured amplitude is

|1I5/| = /1;*I]]. Equation 2.118 is a system of two equations, i.e.,

Cs.aiCaaj = I 1/AT (pij), (2.119)

Cspi + Capj = PZ — 0" (pij).- (2.120)

After the phantom calibration, the probe is attached toitiseie of interest, and the measured

amplitude and phase on the tissue are

13| = Cs,0iCa,aj Alpij), (2.121)

pij = Cspi + Capj + 0(pij), (2.122)

where A(p;;) andf(p;;) are the amplitude and phase predicted by the photon difiusiodel
(Equation 2.52). To correct the measured amplitude andedioashe light coupling coefficients,
substitute Equations 2.119 and 2.120 into Equations 2.48Pd 22, i.e.,

AP (pii
A(pij) = ,I(ﬁ i) Zijl, (2.123)
]

0(pij) = pij — (pi; — 0" (pij)) - (2.124)

The tissue optical properties can then be extracted frodithese corrected amplitude and
phase measurements at all source-detector separatidresgbdton diffusion model.

A big advantage of the phantom calibration technique is déslfility. It can be utilized for
any arrangement of source and detector fibers. With phansdiration, it is even possible

to estimate absolute absorption and scattering with onlingles source-detector separation.
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Equations 2.123 and 2.124 form a system of two equationsteirhéhe two unknowns arg,
and i,. However, the single separation frequency-domain meamntis not recommended

because it is highly prone to cross talk induced by measurenuse.

The phantom calibration technique also has drawbacksntsnying assumption is that the
fiber coupling coefficients calculated on the phantom rerttersame when the probe is moved
to tissue. This assumption is not always valid. Hair fodlgktrongly effect the coupling coeffi-
cients, and can easily have a heterogeneous effect acftmsimti fibers. If this is the case, the
phantom calibration technique will not work. Another ertie case is if there is any liquid un-
derneath the fibers. The light coupling coefficients on algaiantom are different than they are
on a liquid (e.g., intralipid), which is why the phantom &adition approach usually fails when
using a probe calibrated on a solid phantom to measure optigeerties of a liquid. Finally, the
phantom calibration technique assumes temporally conkgguh coupling coefficients. In prin-
ciple, the coupling coefficients will change with time if anfithe factors they depend on changes
with time (see Equation 2.117). Although it is feasible teatethe calibration with additional

phantom measurements, it is not possible to monitor thelcmupoefficients continuously.

2.11.1.2 Self Calibrating Probes

Self-calibrating probes rely on tissue symmetry to estitiae light coupling coefficients with-
out phantom calibration. Specifically, the underlying asgtion is that the tissue is appro-
priately symmetric such that the fluence rate predicted kyphoton diffusion model (i.e.,
Aexp(—i60)) is the same for equidistant source-detector pairs. Sefinite/slab (Figure 2.8),
spherical (Figure 2.12, and two-layer geometries (Figut8)2have this symmetry on the tissue-
air boundaries. This assumption also applies in the cyittatigeometry (Figure 2.12) if the
equidistant source-detector pairs on the boundary alse th@/same z-component separations.
More generally, the self-calibrating technique is appiatprfor N-layered planar, spherical, and

cylindrical geometries/{ is an integer). They are best understood by example (Figat2.

Light coupling coefficients are estimated from ratios of signals from equidistant source-

detector pairs. Using the same notation defined in Equatiit8Xor the probe in Figure 2.15B,
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these ratios are

r = ﬁ = Cs,a1C4d,a1 exp[—i(C s,pl T Cd,pl] A(p)e_lje(P)
Ly Csa1Cq a2 exp[—i(Cs p1 + Capa] A(p)ei0(0)’
ro = ﬁ = Cs,a1Cd7a1 exp[ i(C s,pl T Cd,pl] A(p)e_lie(f’)
It~ CoatGam [ iCop + Cap] Alp)e 00
r3 = & = Cs,alcdﬂQ eXp[ Z( s,pl + Cd,pg] A(p)e_lz‘g(/’)
Iy Cs,a2Ca,a2 exp[—i(Csp2 + Capa] A(p)e=i0(r)’
Y= Lo Cs,a1Ca,02 €xp[—i(Cs p1 + Cq po] A(p)e—@(p)’ 0195)
I3y Cs43Cq a2 exp|—i(Cs p3 + Cypo) A(p)e=if(P)

wherep = 3cm. Separating these ratios into their amplitude and phas@aoents (e.gs1 =

1,0 €xp(—ir1,p)), We obtain

T,a = Ca,a1/Caa2, m,p = Cap1 — Capo,
T2,a = Cs,al/Cs,a4, T2.p = Cs,pl - Cs,p4a
T3,a = Cs,al/Cs,a% r3p = Cs,pl - CS,an
T4,a = s,al/Cs,a?n Tap = C's,pl - Cs,p?r (2126)

The self-calibrating probe in Figure 2.15B has four didtseparations. The measured sig-

nals at these separations are

|L12| = Cs,04Ca.a2A(pa2), P42 = Cs pa + Capa + 0(pa2),
[I11| = Cs,01Ca.a1A(p11), P11 = Csp1 + Cap1 + 0(p11),
|I21] = Cs,02Ca.a1A(p21), P21 = Cs p2 + Cap1 + 0(p21),
|I31] = Cs,03Cq.a1A(p31), P31 = Csp3 + Cap1 + 0(p31)- (2.127)

The signal measurements given by Equation 2.127 are cedréat light coupling using Equa-
tion 2.126, i.e.,

A(pa2) = %H@L 0(paz2) = paz — (Csp1 + Cap1) +12p + r1p,
Alpn) = m!hl!, 0(p11) = p11 — (Csp1 + Cap1),
A(par) = m!bl! 0(p21) = p21 — (Csp1 + Cap1) + 73,
Alps1) = m! I1], 0(ps1) = p31 — (Cop1 + Cap1) + Tap.  (2.128)
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Notice that there are only two unknowns from light couplingtie system of equations given by
Equation 2.127, which ar€; ,1Cy .1 andC; 1 + Cg 1. Thus, Equation 2.128 is readily solved
for the tissue optical properties.

In addition to the self-calibration technique not requgrishantom calibration, its other big
advantage is that it can be applied for every measuremeatgoimt. Thus, unlike the phantom
calibration technique, the self-calibration techniqueuaately handles time-varying light cou-
pling coefficients. However, self-calibrating probes amgér in size than corresponding probes
using phantom calibration (compare Figure 2.15A with FéegRrl5B). Self-calibrating probes
also require very accurate source-detector separati@rmstoe equidistant source-detector pairs.
A difference in separation of 1 mm between two pairs that are supposed to be equidistant is
enough to induce significant errors. For this reason, sgib@ting probes work best for rigid

probes.

2.11.2 Validity of P, Approximation at Tissue Boundary

The key step in relating the detected signal to the photomdieate is using th&; approxi-
mation for the light radiance (i.e., Equation 2.114). Theapproximation is accurate for nearly
isotropic light wherein® > |J| (Equation 2.28). On examination of Table 2.4, though, the
fluence rate is not a lot greater than the photon flux at the demyn especially for the index-
matched case wherem = n,,;. This consequentially raises questions about the accwfcy
the P, approximation at the boundary. Specifically, does the baonderturb incident diffusive
light enough to induce light anisotropy beyond theapproximation?

To answer this, | used the MCML Monte Carlo software pack&b] to solve the linear
transport equation (Equation 2.9) directly at a semi-itéimdex-matched tissue boundary. This
Monte Carlo solution is compared to the continuous-wave-ggfinite photon diffusion fluence
rate solution (i.e., Equation 2.103 with = 0) in Figure 2.16A. Recall that the photon diffu-
sion equation is thé? approximation to the linear transport equation. Therefenece there
is excellent agreement between the Monte Carlo and phoffusidin solutions, theé’; approx-
imation is accurate at the boundary. Intuitively, this tesuakes sense because the detected
signal is sensitive only to light propagating in directiomghin the fiber's numerical aperture.

The light radiance in these “incident directions” is mucsslaffected by the boundary than the
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Figure 2.16:(A) Comparison of Monte Carlo and continuous-wave photon siiffiul solutions
as a function of source-detector separatipnfor the detected light signal at the boundary of
an index-matched semi-infinite medium,(= 0.1, x., = 10 cm™t, n = noy = 1.4; see
Figure 2.8). The Monte Carlo simulation utilized 10 milliphotons to numerically solve the
linear transport equation (Equation 2.9), while the phaddfusion model is theP; approxi-
mation of the linear transport equation. In the photon diffa model,/(p)/I(p = 2.5 cm) =
®(p)/®(p = 2.5 cm) (Equation 2.117), where the fluence rdté) is given by the continuous-
wave semi-infinite Green’s function (i.e., Equation 2.16&hw = 0). (B) Simulated “normal-
ized” detected signald,(p)/I(p = 2.5 cm), for detection fiber core diameters @f= 1 mm
andd = 3 mm, plotted against. The simulated detected signals were computed by spatially
integrating®(p) (i.e., continuous-wave semi-infinite Green’s functiongothe detection fiber
areas (see Equation 2.116). The normalizatior/ gy = 2.5 cm) was done to divide out the
light coupling coefficient in Equation 2.116.

light radiance traveling in opposite directions back irtie tissue. Therefore, even though the
light radiance at the boundary is not nearly isotropic olYatigections, it is nearly isotropic over
the incident directions that are detected, provided thatrthident light is diffusive. Thus, the
photon diffusion model is valid at the boundary for the detdcsignal if the incident light on
the boundary is diffusive. At short separations, the intidight is not diffusive, and there is

deviation between the Monte Carlo and photon diffusion neoflegure 2.16A).

2.11.3 Signal Detection with “Large-diameter” Optical Fibers

In the derivation of Equation 2.117, | assumed that the fleeate is approximately constant over
the detection area of the fiber. In practical measuremdmsigh, large-diameter optical fibers
with diameters of 1 mm or 3 mm are often used. These fibers grertmugh for the fluence rate

to change significantly over their area. However, the spatiagral of the fluence rate across the
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fiber detection area for these two diameters is still propoal to ®(p) (Figure 2.16B). Thus,
Equation 2.117 is still valid for large-diameter opticaldiltdetection. The spatial integration
over the fiber area is another factor perturbing the lightpting coefficient C'(¢)) from its

theoretical value, which is corrected for by the calibmnatschemes discussed above.

2.12 Penetration Depth of Diffusing Light

As illustrated in Figure 2.6, for a basic DOS measurementpr@®d of a point source and a
point detector, the detected light interacts with a “banstmgped” volume of tissue. In this sec-
tion, | quantitatively characterize this “banana shapealume of tissue sampled by a single
source-detector pair in homogeneous media. The key to stagheling the sampled tissue vol-
ume is knowledge of the probability that a detected photsiissi.e., passes through) a point
inside the tissue [200]. I will first focus on the simpler caseontinuous-wave light.

Let’s consider a point source at positipnwith source powen, i.e., S(r) = Spd(r — ry).

The fluence rate at poimtinside the tissue is given by (Equation 2.93)
(I)cw(r) = SOGcw(r> I'S), (2.129)

whereG,,(r,rs) is the continuous-wave Green'’s function for the geometrintefrest. Since
diffusive light is nearly isotropic®.,,(r) can be regarded as another point source with a light
power of SyG.,(r,rs) [146]. The photon fluence rate at the detector positign,from this
“point source” atr is then given bySyG.y, (r,rs)Gew(rg, r), which is the contribution to the
total fluence rate at the detector from photons that haveedishe tissue point.

Consequentially, the probability that a detected phot@oaitionr; has visited the infinites-
imal tissue volumel®r centered at is

Gew(1,15) Gy (rg, r)d3r

P dr = ’
(rd’r’r ) " chw(r; rS)Gcw(r(hr)dgr
|4

(2.130)

where the spatial integration is over the entire tissuemelld/. Note that becaus®(r,, r,ry)
is a “photon visitation” probability density function, thgobability that a detected photon has

visited a volume of tissu& within the total volume of tissue is

Prob(ry =V —rg) = /P(rd, r,r,)d3r. (2.131)

|4
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Figure 2.17: (A) Cross-section of the photon visitation probability dendiinction (Equa-
tion 2.130) for a semi-infinite mediunu{ = 0.1, ., = 10 cm™, n = 1.4, ny = 1.0)
probed with a source-detector separatiop ef 2.5 cm. Only15% of the detected light has vis-
ited tissue depths greater than= 1 cm (black horizontal line)(B) Photon probability density
function isosurface at the = 0.2 level for the same semi-infinite geometry.

In the semi-infinite geometry?(ry, r, r,) has a “banana shaped profile” (Figure 2.¥hat
is weighted towards superficial tissue depths. The mearhdggihoton visitation (or penetra-
tion depth),(z), given by

(z) = /zP(rd, r,r,)dr, (2.132)
v
is substantially less than the source-detector separéfigure 2.18A). However, the width of

the banana shaped profile (e@,,= ((z%) — (2)?)'/?) encompasses greater tissue depths. Since
a typical scalp/skull thickness in adult humans-id cm, the fraction of detected photons that

have visited tissue deeper than a depth ef 1 cm, i.e.,

Prob(z > 1cm) :/ d:n'/ dy'/ dz'P(rg,r,ry), (2.133)

is informative. Although this fraction is significant, theajarity of the detected light has only
visited tissue at depths shallower than 1 cm (Figure 2.1BB).example, ap = 2.5 cm, only
15% of the detected light samples tissue below depths of 1 cm.ifffhence of optical prop-
erties on the fraction of detected light sampling depthatgrethan 1 cm is investigated in Fig-
ure 2.18C. Bothy, and ., influence this fraction, though the absorption influencetrsrger.

Since the detected light is heavily weighted towards supalftissue, cerebral monitoring in

15To compute the photon visit probability density functiommerically in the semi-infinite geometry, it is help-
ful to use the relatiorG(r,rs) = G(rq,r). Explicitly, evaluate the semi-infinite Green’s functioimsCartesian
coordinates, e.9G(rq,r) = G([p,0,0], [z,y, 2])
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Figure 2.18: For a typical semi-infinite mediup,(= 0.1, i, = 10cm™!, n = 1.4, nyy = 1.0),
the mean depth of detected photon visitatigh){, the fraction of detected photons visiting tissue
depths greater than 1 cr(B(), and the standard deviations of detected photon visitdtiothe
two orthogonal directions to the “source-detector lin€C)), are plotted against the source-
detector separatiom, (D) Contour plot of the fraction of detected photons visitiiggue depths
greater than 1 cm as a function of tissue scattering (véetieg) and tissue absorption (horizontal
axis).

adults is prone to superficial tissue contamination. | disctrategies for filtering this superfi-
cial tissue contamination in Chapter 6.

Finally, notice that the banana shaped profile has a narrawagh than depth, i.eq, < o,
(Figure 2.18D).

2.12.1 Photon Visitation Probability Density Function for Frequency-Domain Light

The frequency-domain analogue of Equation 2.130 for irtyensodulated light is

3
P(rg,r,ry)d?r = |G(r, rs)G(rg, )| d°r , (2.134)

[ Gew(r,1r5)Gey(rg, r)d3r
|4

whereG(r,r;) is the frequency-domain Green'’s function for the geomefrinterest (Equa-

tion 2.87). Equation 2.134 can in turn be used to compute ribguéncy-domain analogues
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Figure 2.19: For a typical semi-infinite mediupa,(= 0.1, . = 10cm™, n = 1.4, nyy = 1.0)
probed with a source-detector separationpof= 2.5 cm, the signal modulation depth (i.e.,
the ratio of the detected signal amplitude divided by the Giylgude) (A)), the mean depth
of detected photon visitation(§)), and the fraction of detected photons visiting tissue liept
greater than 1 cm(C)), are plotted against intensity modulation frequernfcy; w/(2).

of Equations 2.132 and 2.133. Interestingly, although theas amplitude (i.e.|G(rq,rs)|) is
strongly attenuated with increasing modulation frequeffrdgure 2.19A), the mean photon pen-
etration depth remains the same (Figure 2.19B). Howeverstiindard deviation of the photon
visitation depth in the frequency-domain decreases witheimsing frequency (Figure 2.19B),
and thus the fraction of detected photons visiting tissystttegreater than 1 cm also decreases

with increasing frequency (Figure 2.19C).

2.12.2 Photon Visitation Probability Density Function for Time-resolved Light

I will now briefly present the photon visitation probabiliiensity function from an infinitesi-
mally narrow light pulse emitted at positiang = 0 and timet = 0, i.e., S(r,t) = Spd(r)d(t).
From applying the argument presented in the previous setditime-resolved data, the proba-
bility that a detected photon at positiep and timet has visited the infinitesimal tissue volume

d3r centered at is

<f\t\_/|£d_r‘/v g(r,0,t 0)9(fd,r,t,t’)dt’d3r)

J Ve fi T g(r,0,17,0)g(xg, v, £, #)dt!

The temporal integration limits in Equation 2.135 corragpto the shortest and longest possible

Py (rg,r, rs,t)dgr =

(2.135)

times for a detected photon at tim&o reach the position in the tissue. The shortest time is the
time it takes a photon to travel in a straight line from soure, i.e.,r/v. The longest time is
the detection time subtracted by the time it takes a photon to travel in a sttdigé fromr to

the detector, i.e, — |[rg — r|/v. One intuitive result arising from Equation 2.135 is tliat at
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longer detection timeg, is more sensitive to deeper tissue depths [200].

2.13 Spectroscopy for Determination of Tissue Chromophor€on-

centrations

The tissue absorption depends linearly on the concemsatbtissue chromophores. In partic-

ular, the wavelength-dependent absorption coefficieniengoy
pa (A) =1og(10) Y e (M) @i, (2.136)

Heree;(\) [M~tem~!] is the wavelength-dependent extinction coefficient (Uiguaown for
typical tissue chromophores, see Figure 2.20M] represents the concentration of tH& chro-
mophore, andog(10) is the natural logarithm of tel. We have seen above that the diffusion
approximation enables us to separate the scattering andgdibs contributions in the detected
light signals. Thus, by measuring, at multiple optical wavelengths, we generate a system of
coupled equations (Equation 2.136) that can be solved td tfie unknown chromophore con-
centrations. Generally, to estimate the concentration§ eghromophores, one must determine
1te @t N or more wavelengths.

DOS is most typically employed to measure oxygenated anoxgigenated hemoglobin;
thus a bare minimum of phase and amplitude measurement® avdawelengths are required.
Use of more wavelengths permits inclusion of other tissuerolophores such as water and lipid,
and also improves the accuracy of the hemoglobin measuterhenbause measurement redun-
dancy reduces systematic errors. Of course, more wavékengtrease the cost and complexity
of the instrument and require longer data acquisition times

For tissue spectroscopy, if the water concentration is regtsured, then it should be assumed
(e.g., a 75 water volume fraction corresponds to a water concentraifdh75 x 55 M) and
incorporated in Equation 2.136. In some tissues such astbrizéd contributes significantly

to the absorption coefficient, especially at longer wavglles in the near-infrared around 900

15The absorption coefficient is defined such that the tranant# through a non-scattering homogeneous medium
isT = I/1Is = exp[—pap|, Wherep is the distance between source and detector. Thusg(7T) = pap. Tab-
ulated extinction coefficients, though, are determinednftbe base 10 logarithm of the transmittance [207], i.e.,
—log,(T") = pap/log(10). This explains the presence of the fadigg(10) in Equation 2.136.
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Figure 2.20: Extinction coefficient spectra in the neardrdd spectral window for oxy-
hemoglobin (HbO), deoxy-hemoglobin (HbR), and water, telibtas a function of wavelength,
A [207]. The values plotted for water are the actual extimcoefficients multiplied by 700
thousand. | chose this scaling factor because the contientdd water in tissue is typically 700
thousand times higher than the oxy-hemoglobin conceatrati

nm [52,144]. As with water, lipid content should be assunmeghiplications where its absorption

coefficient contribution is significant [52]. Equation 26113 equivalent to [144]
pa(N) = foinhi V), (2.137)

where f, ; is the tissue volume fraction of th&" chromophore, ang/ is the absorption
coefficient of that pure chromophore. For some chromoph(p@%e is tabulated as a function
of wavelength rather than the extinction coefficient [207].

Finally, melanin content in the skin affects the detectgdaii (e.g., a higher melanin content
corresponds to a lower signal). Assuming that melanin ig onthe skin, its effect is similar
to hair follicles in that it influences the light coupling ¢beient for the detected signal (2.117).
As with hair, the phantom calibration technique for estinmtight coupling coefficients (Sec-
tion 2.11.1.1) does not take into account melanin contentvéver, it is typically reasonable to
assume uniform melanin content in the skin across the artdeeaiptical probe. For this case,
the component in the coupling coefficient from melanin is shene for every source-detector
separation, and melanin will not affect the slopes in amgétand phase given by Equations
2.110 and 2.111.

DOS provides quick estimates of bulk chromophore conckotrsin large tissue volumes.
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These estimates are often accurate enough to be useful ywmmamitoring applications. Imag-
ing schemes employ Equation 2.136 on a volume-elemenbhyne-element basis to assign
chromophore concentrations to particular voxels in theugssample. The oxy- and deoxy-
hemoglobin concentrations measured by DOS (i.e., HbO arr) ldke per volume of tissue, not
per volume of blood. Normal hemoglobin concentration indolas around 230Q: M. How-
ever, blood typically occupies only5#% volume fraction of tissue, meaning that the hemoglobin
concentration in tissue is around 1@@/. Typically, the total hemoglobin concentration in
blood remains constant, i.e., the hematocrit remains aohstConsequentially, changes in the
measured total hemoglobin concentration with DOS, Y] = HbO + HbR, correspond
to changes in tissue blood volume. If the hematocrit is @nistthe tissue total hemoglobin

concentration is proportional to tissue blood volume, i.e.

HbT = HbO + HOT « Tissue Blood Volume [mL Blood / mL Tissue] (2.138)

Further, the tissue oxygen saturation,

HbO
StOy = 0T (2.139)

is equivalent to the blood oxygen saturation.

The DOS measurements of tissue blood volume and tissue wgagaration are bulk av-
erages weighted towards the microvasculature (e.g.,laaed, small venules, arterioles). The
reason DOS is most sensitive to the microvasculature igti@bn absorption in larger vessels is
much higher than it is in smaller vessels. Since the totaldggomin in blood is~ 2300 p M, the
photon absorption length when it is actually traveling desa blood vessel is about 2.5 mm. For
small vessels, the photon exits the vessel well before dlnigth scale. In large vessels, though,
it is more likely for photons to travel this length scale bref@xiting. Thus, photons passing
through large vessels are preferentially absorbed, whiganms that detected photons have pref-
erentially visited smaller vessels, making the DOS measeant predominantly sensitive to the

tissue microvasculature.
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2.13.1 Optimal Wavelengths for Diffuse Optical Spectrosqay

Determination of tissue chromophore concentrations regquhe separation of tissue absorp-
tion from tissue scattering at more than one optical wawglenThe optimal choice of wave-
lengths for chromophore concentration determination igrgeortant topic in its own right, with
an interesting history that involved careful consideratid measurement type, i.e. frequency-
domain, time-domain, CW, and measurement signal-to-néigesimple, two-wavelength time-
and frequency-domain instruments, early experimentersdeed about which wavelengths to
choose to minimize cross-talk between chromophores whemting Equation 2.136. Superfi-
cially, one might expect that at least one wavelength witheaNIR window should be below
the isosbestic point of hemoglobin and one should be abaséstisbestic point. The isosbestic
point is the wavelength wherein the extinction coefficienftoxygenated and de-oxygenated
hemoglobin are the same 800 nm, see Figure 2.20); wavelengths below the isosbegitit @are
thus more sensitive to deoxy-hemaoglobin, while wavelengthove are more sensitive to oxy-
hemoglobin. However, such wavelength selection procemsebmited. Yamashitat al [263],
Strangmaret al [235], and Boast al [26] have shown theoretically and experimentally that
when using only two wavelengths, a pair6ah — 760 nm and830 nm provides superior oxy-
and deoxy- hemaoglobin separation by comparison to what measibre commonly used choice

of 780 nm and830 nm.

A formal evaluation of the optimum wavelength selectiondararbitrary number of wave-
lengths was carried out by Corkt al [58, 60]; they introduced a general procedure for find-
ing those wavelengths which best differentiate tissueralophores using CW and frequency-
domain light. These results built on a theoretical approdeteloped in a classic paper by
Lionheart and Arridge [8]. That paper [8] theoretically ped that it is impossible to uniquely
separate scattering from absorption in a diffuse opticalgimg experiment employing CW light.

In an attempt to circumvent this uniqueness problem for C\Agimg, Corluet al demonstrated
that a multi-spectral approach can be employed to uniguegnstruct the chromophore con-
centrationsg;. In a key advance, Corlet al [58, 60] abandoned the two-step approach of deter-

mining u, at each wavelength first and then inverting Equation 2.188tekd, they introduced
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a multi-spectral approach that exploits known spectraperties of the mediura priori to di-
rectly reconstruct chromophore concentrations with bditielity than the traditional two-step
method. Specificallya priori assumptions about the form of the scattering (g/g.\) = aA™?)
and wavelength-dependent absorption extinction factars Equation 2.136) are used, and the
wavelength independent variables a, andb are reconstructed directly from all of the data si-
multaneously. Because the data from all wavelengths andaiameously used, the inverse prob-
lem is better-constrained than the traditional approaek [58] for details). The multi-spectral
technique is now commonly used, and has been extended &ureiney domain sources [232],
for including uncertainties in the hemoglobin extinctiametficients [34], and for spectral win-

dow optimization when using broadband sources [87].

71



Chapter 3

Diffuse Optical Spectroscopy (DOS):
Modified Beer-Lambert Law Approach

3.1 Introduction

In Chapter 2, | presented the photon diffusion approachratysis of DOS signals to separate
tissue absorption from tissue scattering. Multi-speatmabhsurements of tissue absorption then
enable estimation of blood volume and blood oxygen saturdti the tissue microvasculature.
In this chapter, | discuss an alternative approach for DC#yars, which is the Modified Beer-
Lambert law [10, 67, 130]. The Modified Beer-Lambert law iguably the most widely used
approach for analysis of DOS signals [99,122,166,175248), in large part because of its sim-
plicity. With this approach, researchers have monitoretptgral changes in blood oxygenation
and blood volume with CW light, using only one source-deteseparation.

The Modified Beer-Lambert law scheme relates differentgitltransmission changes (in
any geometry) to differential changes in tissue absorptibmessence, this scheme accounts for
tissue scattering by using the mean pathlength traveledhbtops through the highly scattering
sample as a best estimate for the actual photon pathlengjtiess.mean pathlength provides a
natural constant of proportionality between the measuiterential intensity and the sample’s

differential absorption.

1The term differential refers to a comparison between a basstate and a perturbed state.
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The Modified Beer-Lambert law is well suited for monitorirepporal variations in blood
oxygenation and blood volume with respect to some pertinpags in brain mapping. Im-
portantly, it is also valid in tissues/geometries wheraghtl transport is not diffusive, which
facilitates accurate absorption monitoring for small seutletector separations typical of endo-
scopic probes, for visible light wherein tissue absorptowery high, and for tissue that contain
very high concentrations of blood, as in the liver. A drawbatthis approach, though, is that
it cannot determine absolute tissue hemoglobin concémrsat Most of this chapter (Sections
3.3 - 3.3.7) focuses on utilizing the Modified Beer-Lambavt in homogeneous media for both
diffusive and non-diffusive light transport. The heterngeus media Modified Beer-Lambert

law is discussed briefly in Section 3.4.

3.2 Beer-Lambert Law for Optically Thin Homogeneous Media

In optically thin (i.e., non-scattering) homogeneous raglijht travels in a straight line between

source and detector, and is exponentially attenuated kg, i.e.,

I = I exp|—piap], (3.1)

where I is the source intensity delivered to the samglds the detected intensity emerging
from the sample, angd is the straight line distance between source and detecigur@=3.1).
Thus, the sample optical densi® D), which is defined as the negative logarithm of the ratio of

transmitted to incident light intensity, is proportionalthe absorption coefficient:
OD = —log[l/Is] = pap- (3.2

Equation 3.2 is the Beer-Lambert law, which utilizes mafiectral measurements of the op-
tical density to measure absolute chromophore concemtisag;) in optically thin homogeneous

media via the system of equations

OD()) = plog(10) ) ei(Nei. (33)
wheres; () is the wavelength-dependent extinction coefficient fooawphore.. Chromophore

extinction coefficients can be calculated from multi-spaclight transmission measurements
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Figure 3.1: Schematics of an optically thin homogeneousiunedleft) and an optically thick
turbid homogeneous medium (right).

through pure solutions with a known chromophore concedotrat;, i.e.,

= MY 0D
sih) = g5 1ot (IS(A)> = aplog(10)° (3.4)

()

3.3 Modified Beer-Lambert Law for Turbid Homogeneous Media

When light scattering within the sample is significant, tlight attenuation is affected by both
absorption and scattering, and the Beer-Lambert law (Emu&t.2) is no longer applicable.
As discussed in Chapter 2, photon trajectories throughduitsues are well approximated as
random walks, and photons therefore travel over a distdbubf pathlengths from source to
detector (Figure 3.1), wherein the average length of a phpeth is much greater than the
straight-line distance between source and detegtor,

In turbid media, the effects of scattering are tangled wittse of absorption. Although the
photon diffusion model can be employed to separate saagténom absorption (Chapter 2), an
alternative paradigm is the Modified Beer-Lambert law [I4, Gvhich is readily derived from

the first order Taylor expansion of the optical density:

0 0
OD ~ 0D° + 00D Apg + aO—DA,u;, (3.5)
Opta oJTA
where the optical densitie®D = —log(I/I;) andOD® = —log(I°/I;) correspond to a

“perturbed” tissue state (e.g., at timpwith optical properties of i, 1) and a “baseline”

tissue state (e.g., at tim&) with optical properties ofu, u’0), respectively. Furtherdu, =
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o — 1O and Ay, = pl, — 10 are the differential changes in absorption and scatteratgyden
the perturbed and baseline tissue states. The Modified [Bambert law is a rearrangement of

Equation 3.5 wherein the source intensifyis assumed to remain constant, i.e.,

0
AOD = —log (ﬁ%) ~ L(p)Apa + (%) L(p)Apy = L(p)Apta. (3.6)

Here,L(p) = 00D /0, [cm] is the so-called differential pathlength, which is egppmately
the mean pathlength that diffusing photons travel throdghrhedium from a point source to
a point detector with separatign[10], and0OD° /oy, ~ (u/u®)L(p) (Section 3.3.1). Itis
often reasonable to neglect the scattering term in Equa&iérbecause (1), the multiplicative
factor 0 /10 for many tissues is much less than one, and (2), tissue sogtiehanges that
accompany hemodynamic variations are often negligiblg [12

Notice that whereas the Beer-Lambert law (Equation 3.2feshbsoluteoptical densities to
absoluteabsorption coefficients, the Modified Beer-Lambert law (@&upn 3.6) relateslifferen-
tial changesn the optical density tdifferential change# the absorption coefficient. Implemen-
tation of Equation 3.6 requires knowledge of the differaingiathlength,L(p), which not only
depends on the source-detector separajipbyt also the tissue geometry and the wavelength-
dependent baseline tissue absorption and scatteringriespe? and./C. The differential path-
length can be measured with time-resolved [67] or frequatmpain techniques [10, 75]; or
computed with a diffusion model [94] or radiative transporbdels [162, 255]. Direct mea-
surements of.(p) do not requirea priori knowledge of the baseline optical properties or tissue
geometry, but light transport must be diffusive, and therumentation is considerably more
complex and expensive than CW measurements. Converselyothputation of_(p) from
light transport models permits accurate tissue absorgtionitoring with the Modified Beer-
Lambert law for non-diffusive light transport and for sjgdlit extended light sources (e.g., plane
waves), but utilization of the light transport models regaa priori knowledge of the baseline

optical properties and tissue geometry.

3.3.1 Time-resolved Measurement of Differential Pathlenip

For continuous-wave, diffusive light traveling througtetmedium from a point source to a

point detector, the differential pathlength is the speetightt through tissue multiplied by the
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mean time of flight of photons in tissue, i.d.(p) = v(t — t5). Here,t, is the time that an
infinitesimally narrow source pulse of light is emitted asjionr,, ¢ is the photon detection time
at positionr,, andv is the speed of light through tissue. Thus, the differeqtéhlength can be
measured via direct measurement of the mean time of flightaiime-resolved instrument [67].
I will now explicitly derive this relationship betweeh(p) and(t — ¢s). The probability that
a photon emitted atr(, t,;) reaches the detector g} in a time intervaldt around the detection
time t is proportional to the time-domain photon diffusion Greehinction (see Section 2.12

and Equation 2.85), i.e.,

g(rda rs, t> ts)dt

P([t ts,Ts]) = —=5 . 3.7
([ 7I'd]>[ r ]) f_oog(rd,rs,t7ts)dt ( )
Therefore, the mean time of flight is
o Joo(t = ts)g(ra,rs, b t)dt
t—t,) = t —t)P([t,rql, [ts,rs))dt = —2 ) 3.8
=t = [ ¢ =t)P(tral ftr) T (3.9
From Equation 2.91, the mean time of flight is alternativalyeg by
;0 [0 —iw(t—ts) .
b S7t7 tS dt S —
(¢ — 1y = B e Sa T L) _ 106/ Wluny  (3)

Gew(ra,rs) Gew(ra,rs)
Here,G.y(rg4,rs) andG(ry, ry) are the continuous-wave (Equation 2.93) and frequencyaitom
(Equation 2.87) photon diffusion Green'’s functions, respely, evaluated at the baseline tissue
optical propertieg:? andu?. The frequency derivativé)G'/dw, is additionally evaluated at the
modulation frequency = 0.
For continuous-wave diffusive light transport, the detedight intensity is proportional to

Gew(rg, rs) (Section 2.11). Consequentially, the differential patgth is

80D0 . 8 -1 aGcw(rda rs)

B BlGeu(ra )l = S

3.10
Otta Otta ’ (310)

L(p) =

where againG.,,(rq, rs) is evaluated at the baseline tissue optical properties.h@ony Equa-

tions 3.9 and 3.10, we obtain

(t —t) = ‘ S w=0 (3.11)

From examining the homogeneous frequency-domain photfusidin equation (Equation 2.54),

the modulation frequency dependence(iry, r,) is contained in the variablg? = (vu, +

76



iw)/D, while the absorption dependence @f,,(r4,1s) is contained in the variablé? =

vjia/D. Thug,

2
2 G  0Ge(ra,rs) | Ok

) 0t rs) 0K
a—luaGcw (ra,rs) = (9]178 X Ot (3.13)

Substituting Equations 3.12 and 3.13 into 3.11 revealsttimatlifferential pathlength is approx-

imately the mean photon pathlength traveled from sourceteator, i.e.,

 (t—t)Ok3 /0. ud N
L(p) = S0 1+ i vt —ts) = v(t — tg). (3.14)

s

The latter approximation in Equation 3.14 is equivalenti® approximatiorD ~ v/(3).

An advantage of measuring(p) directly with a time-resolved technique is that a@riori
knowledge of baseline optical properties for the homoges@oedium is required. Compared to
continuous-wave measurements, though, time-resolvédiimentation is complex and expen-

sive.

3.3.2 Frequency-Domain Measurement of Differential Patléngth

If the time-domain Green'’s function for homogeneous meadiag(ry, rs, t—ts), is symmetrical
about the mean time of flight{ — ¢,), then the phase of the corresponding frequency-domain
Green’s function i®¥ = w(t — ts) [10]. To derive this, consider an infinitesimal pulse of tigh
emitted att; = 0. If g is symmetrical about the mean time of flight, i.g(r4,rs,t + (t)) =
g(rq,rs, (t) — t), then the frequency-domain Green’s function is determiineh substituting

g(rq,rs,t + (t)) into Equation 2.91:

G(re,rs) = / g(ra,rs,t+ (1))~ ar
— o~ iw(t) </ g(rg,rs,t+ (t)) cos(wt)dt — 2/ g(rg, T, t + (1) Sin(wt)dt)

= e i) / 9(ra,rs,t + (t)) cos(wt)dt,

—0o0

= A(ry, rs)e_iw<t>. (3.15)

2Note thatdG (r4, rs)/Ok>| =0 = OGew(ra,rs)/Ok3.
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Figure 3.2: For a semi-infinite medium with, = 0.1, p, = 10 cm1, Repp=0.493,n = 1.4,
andp = 2.5 cm, the mean photon time of flight (see Equation 3.23) andréguéncy-domain
phase shiftp (as a function otv), were calculated using the semi-infinite frequency-demai
Green’s function (Equation 2.103). Batlandw(t) are plotted against the oscillation frequency.

Thus, from Equation 3.15, the phase shift acquired by iitienmsdulated light propagating from
a point source to a point detectordis= w(t), provided thay(rg, rs, t) is sSymmetrical about the
mean time of flight,(¢). The second term in line two of Equation 3.15 is zero becahse t
integral is over the product of an even function (igx,, rs, t + (t))) and an odd function (i.e.,
sin(wt)). Further, since is real, the integral in the third line is the frequency-damamplitude,
A(rg,rs). Althoughyg is not truly symmetrical, it is nearly symmetrical, afié= w(t) is a good
approximation for modulation frequencies less than 200 MHgure 3.2). The differential

pathlength is then (Equation 3.14)

L(p) = vl(p)/w. (3.16)

The drawback of using Equation 3.16 to measure the diffedgpdithlength is its sensitivity
to the assumption that the phase light coupling coefficidathioed from phantom calibration
(Section 2.11.1.1) remains the same on tissue. Nonethetsssonable measurementsidp)
have been made using this approach in a variety of tissuégs IfAdulti-separation frequency-
domain measurements are not practical, the phase infaimfitm a single separation can be
used to measure the differential pathlength, enablinggis®sorption monitoring with the Mod-

ified Beer-Lambert law (Equation 3.6).

78



3.3.3 Scattering Weighting Factor in Modified Beer-LambertLaw

For diffusive light, the scattering factor weighting facto the Modified Beer-Lambert Law, i.e.,

Ly(p) = 00D°/9y, is determined from evaluating

1 OGey(rg,rs)
Gcw (I‘d, rs) 8Ng ’

at the baseline tissue optical properties. Combining Egu& 17 with Equation 3.9, we obtain

t —ts)(Ok2 /O, 0

Ls(p) ==

(3.17)

which in the limity, > p, is
0
Hq
Lilp) ~ L5 L(p). (3.19)
In tissue, the ratig.? /10 is typically small, and consequentiallit(p) > Ls(p).

3.3.4 Computing Differential Pathlength from Tissue Optial Properties

The differential pathlength can also be computed for anydgeneous geometry through eval-

uating the absorption derivative of the optical densityhat baseline tissue optical properties,

0 1 I,S—Aa2, ;O
L(p) = — -2 TogT(p, 13, u%)] ~ l%[@“ ta/ “q (3.20)

Ota T Apa [ T(p, 4 Apra/2, 9
where Ay, /pY = 1075, For continuous-wave (CW) diffusive light, is proportional to the
continuous-wave photon diffusion Green’s functi6h,, (p, 14, 1), for the appropriate geome-

try, i.e.,

1
log[Gew (p: o, 115)] & 5 —log (3.21)

Gcw pa/j’g - A/j’a 27“{90
Lip) == [ ( [2,15) ]
Ha Ha

Gew(p 1 + Apia/2, 1
Substitution of the semi-infinite continuous-wave Greduigction (Equation 2.103 ab =
0) into Equation 3.21 and taking the analytical absorptionvdéve results in a simple expres-

sion for the differential pathlength in terms of the baselaptical properties:

(3.22)

B 3rirppd [ ghort _ gkors }

Lip) = 2k riekort — py ekors

whereko = \/3ud (ud + 1), 11 = /(W0 + 1) 72+ p% 1o = /(1 + pd) ™1 +22)% + p?,
zp = 2(1+ Repp) /B2 4+ 13)(1— Resr)], andR. s is an effective Fresnel reflection coefficient
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defined by Equation 2.79. The corresponding mean time ofgphflight in the semi-infinite
geometry is given by (Equation 3.9)

0 10 —kor1 _ ~—korp
(t) = 3(pa + 1Y) (e e~hors) (3.23)

—kor —kgr
21}]{70[0 01_0 Ob:|

1 Ty

For more complex geometries, it is usually easier to compytg by evaluating the derivative
in Equation 3.21 numerically.

Importantly, the Modified Beer-Lambert law is applicable fon-diffusive light transport.
In this regime, the differential pathlength is determinemhf evaluating Equation 3.20, whefe
is modeled with solutions of the radiative transport equra{Equation 2.9) for the tissue optical
properties and tissue geometry of interest. The radiataresport equation can be solved with a
Monte Carlo method [25, 145, 255] or with finite differencefioite volume methods [162].

Additionally, the Modified Beer-Lambert law can be utilizid applications with spatially
extended light sources. For example, the so-called optiwading of intrinsic signals (OIS) tech-
nigue uses the Modified Beer-Lambert law to obtain 2-dinm@radi maps of hemoglobin con-
centration changes from intensity images of a surface ithated with planar light [77,78, 163].
Although the source-detector separation no longer has imgamthis context, the differential

pathlength is still evaluated via

1 I(pg — Apa/2, 1)
L~ —1 a o s 3.24
Apia 2 [ T(W0+ Dpiaf2, 10 |7 (3.24)

wherel (uq, 1) is the detected signal from the spatially extended sour@nwife tissue optical
properties arei(,, (15). I(uaq, ) is obtained from solving the photon diffusion equation for
the appropriate source and geometry (e.g., Equation 2d3olving the radiative transport

equation. | discuss OIS further in Chapter 7.

3.3.5 Differential Pathlength Factor

In the large source-detector limit (i.e2,> 2z, + (2 + p2)~1), the semi-infinite differential

pathlength (Equation 3.22) simplifies to [94]

3 ;0 2
L(p) ~ “OPIO . (3.25)
2 (p Sgpts + 1)
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Figure 3.3: Comparison of the exact semi-infinite diffel@npathlength (Equation 3.22) plot-
ted against source-detector separatipnwith (A), the “large p dpf’ approximation (Equa-
tion 3.26), and with(B), the “empirical dpf’ approximationL(p) ~ 7.3278p, i.e., dpf =
L(p = 3cm)/(3cm) = 7.3278. (C) Ratio of the exact semi-infinite differential pathlength
divided by the source-detector separation, plotted agairs all three panels, the semi-infinite
medium properties are, = 0.1, p, = 10cm™!, n = 1.4, andR.;y = 0.493. The empirical dpf
approximation is in good agreement with the exact diffae¢pathlength for separations close
to the “calibration separation”, i.e3,cm. Further, the ratid.(p)/p slowly approaches a constant
value (i.e.dpf = 8.66 from Equation 3.26) ag increases.

A more severe approximation than Equation 3.25 is
3

2/ 3G

a

L(p) = p=dpf x p. (3.26)

Here, the differential pathlength is proportional to tharse-detector separation, and the propor-
tionality coefficient is the so-called differential pathégh factor, i.e.dpf. Thep—independence
of dpf makes it more convenient to tabulate in the literature asation of wavelength for a
given tissue type, and it is in large part for this reason tthatlp f is commonly used. Typically,
the differential pathlength is measured using a time-kesbtechnique (Equation 3.14) at mul-
tiple wavelengths and then divided by the source-deteejparstion, to empirically compute
the differential pathlength factor. In addition to depemdbn wavelength, thép f depends on
age and tissue type, since the tissue optical propertigswtr age and tissue type. Scholkmann
and Wolf have recently reviewed the wavelength and age digmee of thelp f for the frontal
human head [220]. Differential pathlength values have bé&smn published for other regions of
the adult human head [272], and in muscle [243].

However, even when accounting for age and tissue type, ihstil considerable variability
across human subjects in thief, because the tissue optical properties are heterogenemssa
different subjects [144]. Further, Equation 3.26 only rolygapproximates the true differential
pathlength (Figure 3.3), which could be a source of systieneaitor. When employing thép f
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Figure 3.4: For a semi-infinite medium with, = 0.1, x, = 10 cm™!, R,y = 0.493, and
n = 1.4, the differential pathlength for intensity modulated ti§¢h(p), Equation 3.27) is plotted
against the source-detector separagidar several different intensity modulation frequencjes
Thedpf values in the legend at&(2.5 cm) /(2.5 cm).

approach for analysis, it is of course best to use publishades of thelp f that were measured
in a sample of statistically similar tissue types with a &#msource-detector separation and sim-
ilar wavelengths. It is even more preferable to use timetves or frequency-domain instru-
mentation to measure subject-specific differential pattles for the Modified Beer-Lambert

law.

3.3.6 Differential Pathlength with Intensity Modulated Light

The Modified Beer-Lambert law (Equation 3.6) can also be egywal for intensity modulated
light. For this case, the optical density is the negativatigm of the detected intensity modu-

lated amplitude, and the differential pathlength is

P
L(p) = ~on log[|G(p, 12, u0)]], (3.27)

where |G (p, 13, 1) is the amplitude of the frequency-domain Green’s functidiar lower
modulation frequencies<( 100 MHz), the differential pathlength is roughly equivalentthe
CW differential pathlength (Figure 3.4). Thus, for lower dadation frequencies, it is a decent
approximation to utilize the measured CW differential pextlyth given by Equation 3.14 or
Equation 3.16 in the frequency-domain Modified Beer-Larhlzev.
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3.3.7 Spectroscopy for Determination of Tissue Chromopha& Concentration Changes

Recall that the absorption coefficient depends on the tisBt@mophore concentrations (Equa-
tion 2.136), and therefore multi-spectral measurementsedtissue optical density enables mon-
itoring of differential changes in chromophore concerdreg (Ac;) with the Modified Beer-

Lambert law, i.e.,

AOD()) = — log ( ﬁ&’%) ~ L(p, \) log(10) Z ei(N)Ac. (3.28)
The Modified Beer-Lambert law is most typically employed teasure changes in oxy-hemoglobin
concentration A HbO) and deoxy-hemoglobin concentratioch b R).

Since the Modified Beer-Lambert law is the first order Taykmies expansion of the optical
density, it is expected to be accurate in the lithjt, /) < 1. However, simulations show that
Equation 3.28 remains accurate for substantial changéshin and HbR (Figure 3.5). Even
for £50% changes, the Modified Beer-Lambert law still recovers the tremoglobin changes
within ~ 5% (Figure 3.5). Notice also that the Modified Beer-Lambert @renerroneous for
decreases i/ bO and HbR than increases.

As | mentioned previously, the main drawback of EquatiorB32its inability to estimate
absolute “basline” hemoglobin concentrations. Furtheit;si not feasible to measure the dif-
ferential pathlengths directly, then the baseline hemuglooncentrations along with the base-
line tissue scatteringu(’(\)) are needed for calculating the differential pathelengtkis, \)
(e.g., Equation 3.22, wherg’ ()\) is obtained from the baseline chromophore concentrations
(Equation 2.136). Often, the baseline hemoglobin conag&atrs and tissue scattering must be
assumed, which leads to errors in the differential pathtengsed for hemoglobin monitoring.

Simulations, however, show the computed hemoglobin cdretern changes with the Mod-
ified Beer-Lambert law to be fairly robust to differentialtpiength errors (Figure 3.6). Recall
that wavelengths above the hemoglobin spectral isobegiit pf A = 800 nm are more sensi-
tive to HbO, while wavelengths belo®00 nm are more sensitive tHbR. Thus, computation of
AHbO is more sensitive to errors ib(830 nm) than in (690 nm), and vice versa for compu-
tation of AHbR (Figure 3.6). Further, the simulations show that underesting the differential

pathlengths induce larger errors in the computed hemaglaincentrations than overestimating

the differential pathlengths does. For example, undenasiion of the differential pathlengths by
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Figure 3.5: Contour plots @A), the fractional error between the oxy-hemoglobin computital

the Modified Beer-Lambert lawHbO g, = HbO® + AHbO g1, AHbO )1, determined
from Equation 3.28) and the actual oxy-hemoglotifbQ,rua = HbO° + AHOyeryal), 1.€.,
HbOprpr/HbO4euat — 1, and(B), the fractional error between the deoxy-hemoglobin com-
puted with the Modified Beer-Lambert lawlpRy 5, = HbR® + AHbRypr; AHVRyBIL
determined from Equation 3.28) and the actual deoxy-heobiyl(HbRycina = HbORC +
AHbRctual), 1.€., HbRypr/HbRyerwar — 1. FOr both panels, the contour levels are plot-
ted as a function of the actual fractional oxy-hemoglobiargfe (vertical axis) and the actual
fractional deoxy-hemoglobin change (horizontal axis)e3dnplots were generated from apply-
ing the Modified Beer-Lambert law to simulated multi-spaculata § = 690, 786, 830 nm)

at a source-detector separationpof= 2.5 cm. The simulated data was generated from vary-
ing HbO and HbR from baseline hemoglobin concentrations representafitaeobrain (i.e.,
Hb0" = 58 uM, HbR® = 27 uM) while tissue scattering remained constamt() = 10
cm~1) [86]. Equation 2.136, with an assumed water volume fractb80%, was employed

to convert each oxy-hemoglobin and deoxy-hemoglobin auination pair to multi-spectral ab-
sorption coefficientsi(,(\)). Then, the semi-infinite continuous-wave diffusion Gredanc-
tion (Equation 2.103 withv = 0) was utilized to compute simulated detected intensitiés )
from u,(\) and a constant tissue scattering coefficient/of= 10 cm~!. The multi-spectral
differential pathlengths were computed with Equation 3.25
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~ 25% induces underestimations in the computed hemoglobin cdrat®ns of~ 10%, while
overestimation of the differential pathlengths by25% induces< 5% errors in the computed

hemoglobin concentrations (Figure 3.6).

3.4 Modified Beer-Lambert Law for Turbid Heterogeneous Media

The homogeneous Modified Beer-Lambert law discussed abss@rees that the absorption
change Apu,, is homogeneously distributed across the sampled lighinvel This has the ad-
vantage of simplicity, but realistically, tissue is heggaeous; it contains multiple compartments
with different optical properties due to vasculature, &g bone. Often these regions arise as
“layers” below the tissue surface such as scalp, skull, angx. Under these conditions, a Tay-
lor series expansion of the optical density can also be usddrive the Modified Beer-Lambert
law for heterogeneous media [130]. Assuming that the hgéreous tissue can be divided into
N piecewise homogeneous regions, then the first-order Tagoes expansion of the optical
density is

d0D° 00D
OD ~ 0D° + Z i N

Ty Bk Aus " (3.29)

Here, 1, andy, , are the tissue absorption and scattering foritrehomogeneous region in
the tissue, and\ i, 1, = o1 — Ng,k andApg = iy — Mfk denote the differential changes in
absorption and scattering from baseline. Rearrangingtitouad.29, the Modified Beer-Lambert

law for heterogeneous media is:

N 0

e,
AOD ~ Z Li(p)Apia g + —5= #, PYALL, Z Li(p)Apta,k, (3.30)
k=1 s,k

where the partial pathlength$.L,.(p) = 0OD°/du, .}, are the mean pathlengths that de-
tected photons travel in theth region [130, 235]. In other words, theh partial pathlength
is the photon mean time of flight in thieh region multiplied by the speed of light in thgh
region, i.e.,Lx(p) = vi(tx). As in Equation 3.6, the scattering temﬁ)DO/au’s’kAu;k R~
Lk(ﬂg,k/u{gkmu;’k is often negligible compared to the absorption term.

In addition to the partial pathlengths depending on sodetector separatiom, they also
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Figure 3.6: Semi-infinite simulated data sets imitatingebeal signal changes induced by fin-
ger tapping (panels A, B) and induced by ischemic strokedlsa@, D), were utilized to make
contour plots showing the sensitivity of the computed helminig concentration changes from
Equation 3.28 X = 690, 830 nm; p = 2.5 cm) to errors in the differential pathlength)at= 830

nm (horizontal axis) and at = 690 nm (vertical axis). The contour levels are the fractional er
rors in the Modified Beer-Lambert law calculations (using ¢énroneous differential pathlengths
specified on the horizontal and vertical axesjAf oxy-hemoglobin HbOy; g1,/ HbO ety — 1;
HbO), 1, defined in Figure 3.5) angB) deoxy-hemoglobin (HbRypr/HbRactuar — 1;
HbR);p1, defined in Figure 3.5). Here, the actual oxy- and deoxy-héotay concentration
changes are representative of the finger tapping task-@tobanges in the motor cortex, i.e.,
AHO4etuar = 15 uM, AHbRyruat = —5 M [85]. Contour plots are also generated for
the fractional errors in the Modified Beer-Lambert law c#tions of (C) oxy-hemaoglobin
and (D) deoxy-hemoglobin for a different set of actual concentratthanges that mimic the
changes induced by an ischemic stroke in the core of thenegs®, A HbO 100 = —15 uM,
AHbR, 1wt = 15 uM [62]. The baseline tissue state is the same for all contaats (l.e.,
HbOy = 58 uM, HbRy = 27 uM, 2 = 10 cm™!), and the actual differential pathlengths,
L°(830 nm) = 13.2 cm andL®(690 nm = 14.1 cm, were computed with Equation 3.25. Tissue
scattering was not varied. Additional details on geneggtite simulated data are provided in the
caption for Figure 3.5. The reason that the zero-level agstdo not intersect the point (1,1) is
because of errors in the Modified Beer-Lambert law itseB).3The Modified Beer-Lambert law
is a first-order Taylor series approximation, so it will nataulate the true hemoglobin changes
with perfect accuracy.
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depends on tissue geometry and the baseline tissue pespértf ., 1., }. The partial path-
lengths cannot be directly measured, but they can be nuatigricomputed with the hetero-
geneous analogue of Equation 3.20, which requargsiori knowledge of the baseline tissue
optical properties and tissue geometry.

The heterogeneous analogue of Equation 3.28 for specpypsath Equation 3.30 is

N
AOD()) = —log (II()(([)’A))> ~ log(10 Z
k=

whereAc; ;. is the differential concentration change for ttie chromophore in théth region.

Li(p, A) Y ei(MAci | (3.31)

3.4.1 Two-layer Modified Beer-Lambert Law

The simplest heterogeneous model for tissue is the twa-lggemetry (Figure 3.7), which
many researchers use to model the brain as a compromisedresirmaplicity and accuracy
[55,91,108,120,172,208,215]. The two-layer Modified Begmbert law is the special case of

Equation 3.30 forV = 2 homogeneous layered regions, i.e.,

AOD = ~log ( fo(fp))) ~ Lo(p)Mtase + Lec(p) Mtage. (3.32)

Here,Ap, . andAyp, .. are the differential absorption changes in the cerebrakatrd-cerebral
layers, respectively, anbl.(p) andL..(p) are the cerebral and extra-cerebral partial pathlengths,
which depend om, baseline optical properties, and the extra-cerebral ldnyekness/.

| presented the two-layer photon diffusion Green’s funtfior the planar two-layer geom-

etry in Section 2.10 (Equation 2.112), which can be utilitedtompute the two-layer partial

pathlengths:
D’ 1 G (P, pae = Dhae/2 Mo ees Moo Hooe: ¢
Lc(p)za() - log (p, fha,e/2: 110 ces e e i ecs €) (3.33)
a:“'ac Alua,c G(pnuac + A:U’CL 0/2 :U’a ecnus cnus ecO E)
DO 1 G y Ma,cr Pa,ec -A aec2 EN sec?é
Lec()zaO (puo,uo, Haee/2: Hee Haee: £) C @39)
a,ua ec A,ua,ec G(P> Ha.cr Maec T A/La,ec/z :“’s,cv /Ls,ecov E)

whereAjigc/pd . = Apaec/po .. = 107°. Alternatively, a Monte Carlo technique [255] can
be utilized to evaluate Equations 3.33 and 3.34fgfp) and L..(p).
The two-layer partial pathlengths for representative lxasdissue optical properties of the

head are plotted as a function of source-detector separmtigigure 3.8. The extra-cerebral
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Figure 3.7:(A) Two-layer tissue model of the head afR8) parallel plane two-layer tissue ge-
ometry.

partial pathlength is substantially greater than the catgtartial pathlength, which confirms
that the detected light is weighted towards superficiau@issFurther, the partial pathlengths
are significanlty influenced by even small changes in therlélyiekness, e.g.A¢ = 2 mm
(Figure 3.8B).

The two-layer model is useful in many tissues for distinginig between superficial tissue
(e.g., scalp/skull) and the tissue of interest (e.g., braitowever, the problem in general with
heterogeneous tissue models is that there are too many wnknoEven with the two-layer
model, the partial pathlength computation requires 5 inarameters (i.eud ., (19 cor poe
M;?ec, £) that are potentially unknowns. Heterogeneous modelsralgmn the “finer features”
of the detected signal to distinguish between the diffetisatie regions, and are consequentially
less robust to measurement noise than the homogeneous isiodel

In chapter 6, | will discuss how probe pressure modulatiod multiple source-detector
separations can be utilized to add constraints to the tyerlamodel, making cerebral absorption

monitoring with the two-layer model more tractable.
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Figure 3.8:(A) Computed cerebrall(.; Equation 3.33) and extra-cerebrdl.{; Equation 3.34)
partial pathlengths, plotted as function of source-detestparationp, for a two-layer medium
representative of the head [55], i.gy) . = 0.16, u) .. = 0.12, . = 6, p?.. = 10 cm™1,

¢=1cm,n =14, andR.s; = 0.493. (B) The ratioL.(p)/Lc.(p) is plotted as a function g
for different extra-cerebral layer thicknessés,
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Chapter 4

Diffuse Correlation Spectroscopy

(DCS): Correlation Diffusion Approach

4.1 Introduction

Diffuse optical spectroscopy (DOS) (Chapters 2, 3) is acstathnique that measures slow (0.1
- 1 s) variations in the detected light intensitf) (nduced by changes in tissue absorptiag)(
and tissue scattering:{). Diffuse correlation spectroscopy (DCS) is a qualitdyivéifferent
dynamic light scattering technique that measures the (@pjd microsecond scale fluctuations)
speckle light intensity fluctuations induced by red blood o®tion (Figure 4.1) [24, 37, 84].
DCS is a variant of the diffusing wave spectroscopy techmigged in condensed matter physics

to study particle dynamics [179, 204, 257].

To probe blood flow, DCS uses the same measurement geom@@Sswherein NIR light
travels diffusively through tissue over a distribution a@ftipiengths from source to detector. At
the detector, the light electric fields from the differenttpengths interfere constructively or de-
structively to produce a bright or dark spot, or speckle. Traion of red blood cells within
the tissue slightly alters these light pathlengths, indgapeckle intensity fluctuations between
constructive and destructive interference. Higher bloodsslcorrespond to faster speckle fluc-

tuations.
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Quantitatively, these speckle intensity fluctuations draracterized by computing the nor-
malized intensity autocorrelation function, i.e.,

_{I@®It+T))
at multiple delay-timesr, where!(t) is the detected light intensity at timeand the brackets
() represent time-averages (for experiments) or ensemblage® (for calculations) [18]. It is

straight forward to show that [18]

 (GI@)SI(t + 7)

where the fluctuatiorg1(¢t) = I(t) — (I(t)), represents the deviation of the intensity from its
average value. At “long delay-times” wherein the intenfliigtuation at time is not predictive

of the fluctuation at time + 7, (61 (t)6I(t + 7)) = (61(t))? = 0, andga(7) = 1. At 7 = 0,

+1=1+A2=1+5, (4.3)

whereA = o;/(I) is the speckle contrast of the speckle fluctuations, @me A%. Thus,gs(7)
decays froml + 5 to 1 asr increases. Faster intensity fluctuations, which are aat&mtiwith
higher blood flow, correspond to steeper decayg () (Figure 4.1C).

For “fully developed” speckle, the speckle contrast isynie., g2(0) = 2, which indicates
that the speckle intensity fluctuations are of the same @sl#ine average intensity (Section 4.2)
[112]. However, in practice there are a number of measureneéated factors that can reduce
speckle contrast, such as source coherence and experiroeltgation optics. If the width of
the pathlength distribution (i.e., the spread of diffengathlengths) is comparable to or exceeds
the coherence length of the source, then the speckle coigmashstantially reduced. The phase
of the source light needs to remain constant on a length scaftparable to the spread of light
pathlengths between source and detector for the detedtatbléerence that underlies a high
speckle contrast to exist [100, Section 32-4]. On the dietedtide of the measurement, the
detected signal is typically a sum over independent spankémsities with the same statistics
[168]. For example, these independent speckle intensitirsrise from orthogonal polarization
states and optical fiber modes. The effect of summing ovepaddent speckle intensities is a

reduction in speckle contrast [112,168] (Section 4.2).
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Figure 4.1:(A) Schematic for a homogeneous, semi-infinite model of the hdtdda blood flow
index, absorption coefficient, and reduced scatteringficosit of F', 11, andy’,, respectively.
The incident continuous wave source intensity, is assumed to remain constant over time.
Blood cell motion (e.g., red disks at timand light-red disks at tim&+ 7) induces fast temporal
fluctuations (i.e., speckle intensity fluctuations) in tleedted light intensity on the time scale
of us, while absorption changes modify mean light intensitieg.(e@veraged on time scales of
ms or greater).(B) Schematic of detected intensity fluctuations for a basdigseie state (red
curve) and a perturbed state from baseline with higher bftmyd and absorption (blue curve).
The horizontal black lines are the mean intensities for wedtates, denoted d8 andI. (C)
The fast speckle intensity fluctuations in the two statechagacterized by normalized intensity
autocorrelation functions (i.e59(7), g2(7)). The decay of the intensity autocorrelation function
curves is related to tissue blood flow.

For DCS, low speckle contrast is bad. The clgsés to zero, the more difficult it is to ascer-
tain blood flow from the decay ig (7). With no speckle contrast (i.€3,= 0), there is no decay
in the autocorrelation function at all, making it impossilhb estimate blood flow. To maximize
speckle contrast in the DCS measurement, a high-cohergintesdurce (e.g., coherence length
> 5 m) and single-mode fiber detection should be used (SectiB).4However, since single
mode fibers have low numerical apertures and small core diseahe detected light intensi-
ties are quite low at longer source-detector separatiags, @cm), and the DCS signal suffers
from low SNR. Several strategies for improving SNR in the D@&surement are discussed in
Section 4.10.

To quantitatively relate the measurementsgefr) to blood flow, a correlation diffusion
approach (Section 4.5) is employed to calculate the etefigid autocorrelation function, i.e.,
g1(T) = (E*()E(t+7))/{I(t)) (I(t) = |E(t)|?), as a function of a blood flow index describing
the dynamics of red blood cellg'([cm?/s]) [23, 24, 79]. The blood flow index is ascertained by

fitting the calculated; (7) to the experimentally measuregl(7) using the Siegert relation [168]:

g2(7) = 1+ Blgr ()P, (4.4)
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with 5 defined in Equation 4.3. The Siegert relation is valid&ift) is a Gaussian variable with
zero mean. This is the case for any linear combination ofyfdeveloped” speckle electric
fields (Section 4.2) [112]. For DCS measurements of tisdqwee Siegert relation is generally a
good approximation (Section 4.10).

Although the blood flow index does not have absolute blood tloits, it is directly propor-
tional to tissue blood flow (Section 4.9), and has been sgtusvalidated against a plethora
of gold-standard techniques [149, 182]. Further, it isifdado calibrate DCS for absolute blood
flow monitoring with an “initial” measurement of absoluteobd flow from another technique
such as time-domain measurements of the contrast agentA@G [

Two key approximations of light transport make the caldatatof ¢, (7) tractable. The
first approximation is the photon diffusion model of lighatisport (Chapter 2), wherein each
path from source to detector involves many scattering eyamd the photon directions of light
transport are completely randomized. The second appréximases the phase change from an

average scattering event as the phase change for eachdiraiphoton scattering event.

4.2 Speckle Statistics

Speckle fluctuations, which appear in a signal that is coegbo$ a large number of independent
phasors [112], are fundamental to the DCS measurement ofi Blow. For many scattering
media, including tissue in the NIR spectral regime, the mzéa light electric field at a point in

space and time, i.ef(ry, t), is described by a random phasor sum:

N
E(rg,t) = Zanei‘z’”. (4.5)
n=1

Here,N > 1is the number of phasor components, aagl ¢,,) denote the amplitude and phase
of the nth phasor in the sum. For “fully developed” speckle fieldg $hatistics of the phasor

components satisfy the following three fundamental assiomg

e The amplitudes and phasesandq,, are statistically independent af, and¢,,, provided

n % m.
e For anyn, a, and¢,, are statistically independent of each other.
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e The phases,, are uniformly distributed on the intervé-r, ), i.e., all values of phase

are equally likely.

Recall that two parameters are statistically independdmtawledge of one parameter conveys
no knowledge of the other parameter. Equation 4.5 conasitatrandom walk in the complex
plane, and it is straight forward to show thatr, ¢) is a Gaussian-distributed variable with zero
mean [112]. The probability density function for the amydié of the electric field is therefore

given by the Rayleigh distribution [112], i.e.,

E| |E?
Pe(|E]) = 902 eXp T 952 | (4.6)

whereo? = (a?)/2.

Dynamic light scattering techniques generally measuréntie@sity, I (ry, t) = |E(rq,t)|?,
instead of the electric field. The probability density fuastfor the intensity of a fully developed
speckle field is the negative exponential distribution [112.,

d|E|

PI(I):‘ dl

Pp(VI) = <—}> exp <—<—§>> : (4.7)

Thus, a histogram of intensities measured over many timetpeait the spatial location; is
characterized by an exponential distributionOne characteristic of the exponential distribu-
tion is that there are many more intensities below the medark‘spots”) than above the mean
("bright spots™). Another property is that the standardideen of intensities is equal to the
mean, and the speckle contrast is therefore unity. Recaliuthity speckle contrast is expected
for polarized light detected at one spatial point. In p@atithe detected light intensity is typi-
cally a sum over multiple independent fully developed speikensities, each governed by the
same statistics (Equation 4.7).

For example, consider the case of partially polarized ligttgre, the detected light intensity
is the sum of two independent speckle intensities corraedipgrto the two orthogonal polariza-

tion states, i.eJ = I; + I, which reduces the speckle contrast to [112, 168]

VI (B)? VP
A= (L) + (L) — 147"’ (4.8)

The exponential distribution also applies for intensiesnpled over many spatial locations at one time point,
i.e., animage.
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wherer = (I5)/({I;). For completely unpolarized light, i.e.,= 1, A = 1/4/2, and the intensity
autocorrelation intercept 8 = g2(0) — 1 = 0.5 (see Equation 4.3).
More generally, if there ar@V fully developed speckles present in the detected signal, th

speckle contrast is [112, 168]

/~N

S {In)
where(7,,) is the mean intensity of theth speckle. For light detection with a multimode fiber
that supportd/ independent modes of light propagation, the number of $eed&kN = M for
polarized light, andV = 2M for unpolarized light (discussed further in Section 4.10)the
special case wherein the mean speckle light intensitiesqual (i.e.,(I,,) = I for all n), then

Equation 4.9 simplifies to

A=/B= \/% (4.10)
As a brief digression, for an imaging detection scheme wittna and CCD camera (Fig-
ure 2.14), the spatial size of a specKigis roughly the diffraction-limited spot size on the CCD
from the lens, i.e.b =~ 2.44\/N A, where) is the wavelength of light, an®/ A is the numeri-
cal aperture of the lens [112]. The number of speckles dadday a pixel on the CCD is then
N = Apizer/[(m/4)b?] for polarized light, andV ~ 24,1/ [(7/4)b?] for unpolarized light. In

this detection scheme, Equation 4.9 is still valid.

4.3 Dynamic Light Scattering in the Single-scattering Limt

Before developing the theory of DCS in the high multipletsardng limit, it is useful to review a
simple traditional dynamic light scattering (DLS) (sommagis called quasi-elastic light scattering
(QELS)) experiment in the single-scattering limit (Figut€). In the experiment, coherent,
polarized light illuminates a dilute sample of scatterditte in the sense that an incident photon
is scattered once or not at all as it traverses the sampld-(gaee 2.1B for the definition of a
scattering event). From the classical electromagnetie@waint of view, each scatterer develops

an induced dipole moment in the presence of the incident ¢glen by
p = (X -my)E;(t), (4.11)
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Figure 4.2: lllustration of a single scattering experimfemta dilute solution ofV independent
scatterers. Light with polarizatiom; and wavevectok; is scattered in all directions. The com-
ponent of the scattered light with polarizatiam, and wavevectokg, i.e., E(ry, t), is detected
in the far field. The scattering wavevectqr= k, — k;, is proportional to the momentum trans-
ferred from the incident light to the detected light. Forsélascattering|q| = 2|k;|sin(6/2).

wherey is the polarizability tensor of the scatterer [116]. Theilteting dipole moment in the
scatterer, in turn, emits scattered light in all directiowhich at the detector is given by [206,

Chapter 15]

fo| Eil
Amlrq — r;(t)|
Here,r, is the detector position;; is the position of theth scatterery;s = m, - x - m;, and

Ey(rq,t) = w? X (t)e 1T () il mamet), (4.12)

q = k, — k; (Figure 4.2). The terre—“@™:() varies in time because of translation, while the
termy;s(t) varies in time because of rotation or vibration.

In the single-scattering limit, only the incident light émacts with the scatterers, and there-
fore, the total light electric field at the detector is the emgosition of the dipole contribution

from each scatterer (i.e., Equation 4.12). Therefore, erfdin field limit,

N(t)

E(I‘d, t) X Z Xis (t) eXp[_iq R (t)]v (413)
j=1

where N (t) is the number of scatterers within the scattering volumenae t. Notice that if

N > 1 and the scatterer positions are independent, Equationig.A3andom phasor sum
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that describes speckle fluctuations (Section 4.2). Thdraldield autocorrelation function of
Equation 4.13 is related to the scatterer displacemeht$;) = r;(t + 7) — r;(t), via [18,
Chapter 5]

01 (") <E*“)f[<f T (expliq - Ar(r)]), (4.14)

provided the scatterers satisfy the following two assuonsti
1. The scatterer size is small compared to the light wavéteng
2. The scatterer positionsr; }, are statistically independent.

Assumption two is usually valid in dilute liquid solutionsherein scatterers rarely encounter
each other, but violated in solids wherein the scatterezsfiged in placed. Assumption one
ensures that the decay @f(7) is only due to translational motion (i.e¢;s does not depend on
time). This assumption is discussed further in Sectiord4.3.

Again, recall that the) brackets in Equation 4.14 indicate an ensemble averagehéor t

calculation ofg; (7), i.e.,
g1(1) = /P(Ar(T))exp[z'q - Ar(7)]d3(Ar), (4.15)

where the integration limits are fromoo to oo in all dimensions, and®(Ar(r)) is the proba-
bility density function for a particle to travel a distanckAr in time 7. Calculation ofg; (1)

thus requires knowledge @f(Ar(7)).

4.3.1 Brownian Motion

A very important and common type of particle motion is Brommimotion. The underlying

equation describing Brownian motion is the Langevin equaf9, 50], i.e.,

((11—1; = —yu+F(1). (4.16)

Here, u is the velocity of the particley [s~'] is the frictional drag coefficient of the particle
moving through the medium divided by the particle’s masg,[2Ad F(¢) is a stochastic term
accounting for collisions between the Brownian particld arolecules in the surrounding fluid

(e.g., water molecules). The key assumptions of Browniatianare (1),F(¢) is independent
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of u, and (2),F(¢) varies extremely rapidly compared with[49, 50]. Physically, the second
assumption means that there exist time intenvalks during which the Brownian particle velocity
changes inifinitesimally while the particle experienceseayMarge number of collisions with
molecules of the surrounding fluid.

On time scales > ~~!, the probability distribution for the Brownian particlesplace-
ment, which can be derived from Equation 4.16, is Gaussigybf, i.e.,

_ |Ar(t)]”
- (47 Dyt )3/2 P |:_ 4Dyt ] . #.17)

P(Ar(t))

Here, the Brownian particle’s diffusion coefficietd,, is [17, 49, 50] (see Equation 2.45)

vl

Dy = s feos )y’

(4.18)

whereuy is the constant speed of the Brownian particle along a $irditge trajectory (or run),
¢, is the mean run length (i.e., mean distance traveled betdigection changes), angos )
is the average of the cosine of the angle between successise r

Substituting Equation 4.17 into Equation 4.15, we obtain

g1(T) = exp |:—%q2<’AI'(T)’2>:| ) (4.19)

The particle mean-squared displacement is also deterrfrioedEquation 4.17:
(|Ar(T)?) = / |Ar(7) > P(Ar)d3Ar = 6D, . (4.20)

Thus, in the single-scattering limit for Brownian motiohgtelectric-field autocorrelation func-
tion is

g1(1) = exp[—qubT]. (4.22)

Since the patrticle positions are independent, and the nuofhearticles in the scattering
volume is assumed to be much greater than one, the deteetgdcefield (Equation 4.13) is a
fully developed speckle field, and the Siegert relation @iqun 4.4) is valid. Thus, the measured

intensity auto-correlation function for Brownian motia i
g2(7) = 1+ Bexp[—2¢° Dyr]. (4.22)
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4.3.2 Brownian Motion with Drift

If Brownian particles are exposed to a constant externakf¢e.g., gravity, pressure gradiant,
centrifugal), the particles still diffuse similarly to hadvey would in the absence of the external
force, but with a small persistent directional bias [17].isTimotion is Brownian motion with

drift (or diffusion with drift). The extension of the Langevequation (Equation 4.16) to include

an external forcel'.,;, IS

du qu:t
— = —yu+F(t)+ = 4.23
1t v () ) ( )

wherem is the particle’s mass. On the same time s¢ate v~!, the probability distribution for

Brownian particle displacement derived from Equation 4s239]

Ar(t) — vgt|?
P(Ar(t)) = m exp [—%] . (4.24)

Here,v, is the terminal drift velocity obtained from the externatde, i.e.,vy = F¢../(m~).
Substituting Equation 4.24 into Equation 4.15, the eledtdld autocorrelation function for

diffusion with drift is

g1(T) = exp(iq - vqT) exp(—qubT), (4.25)

and the corresponding intensity autocorrelation funcigofiequation 4.4)
g2(7) = 1+ B exp[—2¢*Dy7] (4.26)

Equations 4.26 and 4.22 are identical, indicating that tbasured intensity autocorrelation
function cannot distinguish between isotropic Browniartioroand Brownian motion with drift.
This is also true for the high multiple-scattering limit. portantly, the measured DCS/DLS
signal is only sensitive to the relative motions betweettsdag particles. Uniform motion that

is present in all of the scattering particles is not detected

4.3.3 Random Flow

Random flow is the opposite of Brownian motion in the senskeitlzplies to very dilute solu-
tions (e.g., ideal gas) with scattering particles that@ml@xperience collisions. In this case, the

scattering particles move ballistically with velociiybetween collisions. For a ballistic process,
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Ar;(t) = u,t. Ideal gases are accurately modeled with the Maxwell-Budian distribution,

such that the distribution function for random flow displaemt is

i m|Ar(?)

P(Ar) =t [2771{7371

whereT is the temperaturen is the particle mass, arig is Boltzmann'’s constant. Substitution

of Equation 4.27 into Equation 4.15, we obtain

n(r) = exp |- 1)) | = exp |- (4.28)
Here,(u?) = 3kpT/m is the mean square velocity of the moving particles.

Of course, on small enough time scales, all motion is b&llifLS probes particle motion,
though, on the length scale gf '. Looking at Equations 4.28 and 4.19, it is evident that sig-
nificant decays i, (7) occur on a particle displacemenk¥) length scale of~!. Thus, if the
mean free path between collisions is long compared o then the measured particle dynamics
are ballistic. Conversely, if the mean free path betweelisams is short compared o !, then

the measured particle dynamics are Brownian.

4.3.4 Large Particle Scattering

Equation 4.14 assumes that the scatterer size is small cethfzathe wavelength. However, red
blood cells, with a typical size of roughly k@n, are substantially bigger than the wavelength.

For this regime, Equation 4.13 is [18, Chapter 8]

N
E(rg.t) o< Y Wj(a,t) exp|—iq - R;(1)], (4.29)
j=1

whereR () is the particle center of mass, aqg(q, t) is a particle form factor, i.e.,

Vi(q,t) = /Xis(rrel,t)eiq'r7‘€ld3rr8l. (4.30)

Here, the integral is over the particle volume, ang = r — Ry, is a position in the particle
relative to the center of mass. The origin of the time-depend iny;; is particle rotation and

particle morphology changes. For rigid spheres, the miatisymmetry ensures that the form
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factor is time-independent, and the electric field autadation function is determined from the

translational motion of the spheres:
91(7) = (exp[iq - AR(t)). (4.31)

However, many particles, including red blood cells, are mgitl spheres. If significant
rotational and morphologial motion occurs over the lengthles of ¢!, then the changes in
atomic form factor from these motions will significantly edt ¢, (7). For elastic scattering,
q = 2k; sin(#/2) (see Figure 4.2) and the length scale is approximately the light wavelength
\. Therefore, for\ = 785 nm, ¢! ~ 0.1 micron. If rotational and/or morphological changes
are minimal over this length scale, then Equation 4.31 iscggpproximation for large particle

motions, and the results derived above for small scatt&zersmain applicable.

4.4 Static and Dynamic Light Scattering in Tissue

In tissues, some scatterers are static (or very slowly ngwand some scatterers move (e.g., red
blood cells). Photon scattering from static tissue elemérigure 4.3A) does not contribute to
the decay ofj; (1), but photon scattering from dynamically moving tissue edata (Figure 4.3B,
C) does. In tissue, red blood cells are usually the predamighgnamic light scatteret430, 79,
190].

The tissue blood volume is typically a small fraction ¢%) of the tissue volume, and red
blood cells account for only a small fraction of tissue sty [30]. Thus, the scattering cross
section for static elements in the tissue is much greater that for moving red blood cells,
which in turn means that the vast majority of scattering $suk is static (type A; corresponds
to Figure 4.3A). However, on their journey from source toed&dr, photons will encounter
red blood cells, and these encounters are dynamic scadftevients (type B; corresponds to
Figure 4.3B).

A typical photon path through tissue consists of many stiadtering steps prior to encoun-
tering a red blood cell (e.g., in a capillary), and then margremstatic scattering steps prior

to encountering another red blood cell (e.g., in anotheillagg, and so on. Mathematically,

%A notable exception is in exercising muscle, wherein theiomodf muscle fibers has a big effect on the(r)
decay [226].
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A. Static B. Dynamic C. Sequential Dynamic

Figure 4.3: Photon scattering within tissue can be reptedess a series of scattering steps of
types A, B, or Ck; andk, are the incident and scattered light wavevectors,aaénotes the
velocity of moving scatterers (red circles), which are assd to be red blood cells.

this path is written agA, A,..., A, B, A,..., A, B, A,...), which means that there are many
static scattering steps between each dynamic scattering.eMere, the red blood cells (RBC)

contributing to the decay af; (7) are independent particles.

Itis also possible for photons to sequentially scatter af¥img red blood cells (Figure 4.3C),
which mainly occurs within larger vessels (50 microns) [30]. Mathematically, this type of
scattering i A, A,...,A,B,B,A,...)or (A,A,...,A,B,B,B,A,...), etc. Akey assump-
tion for deriving the multiply scattered light electric fiehutocorrelation function is scatterer
independence (Section 4.5). Moving red blood cells withingame vessel, though, may not be

independent.

Carpet. al. argued that the majority of photon-RBC interactions occularger vessels
wherein sequential RBC scattering is likely, because thrnita of the tissue blood volume
(~ 70%) is contained in these larger vessels [44]. However, asdudised in Section 2.13,
light that propagates inside large vessels is prefergnt@isorbed because of the high light
absorption in blood. Then, the photons that are actuallgaiet! preferentially only encounter
small vessels. The contributions to the decaydfr) as a function of vessel size is not well

understood, and is an interesting problem for future work.
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4.5 Dynamic Light Scattering in the High Multiple-scattering Limit

(Diffuse Correlation Spectroscopy)

I will now derive the electric field autocorrelation funatiin the high multiple-scattering limit
(i.e., correlation diffusion limit) [23, 24,179, 204, 257he starting point is to consider a single
photon passing through tissue from source to detector tadtess/V times along an arbitrary

light pathp (Figure 4.4). The total pathlength of this photon is

N N
k.
D DEELED ol (L) RORES) (4.3
j=0

j=0
wherek; is the wavevector of the light aftgrscattering events;; is the position of scattergr
attimet for j < 1 < N, rg = r; is the light source position, anty,; = r, is the detector
position. The light scattering is assumed to be quasiieJashich means that all wavevectors
have the same magnitudéf| = . = 2mn/A, for all j). Therefore, the total phase shift, (¢),

acquired by the photon after traveling from the source tadlttector along path is
N
Gp(t) = Kosp(t) = > K;(t) - [y (t) — x;(t)]. (4.33)
j=0

Further, the contribution to the polarized detected dledield from this light path isEpe"‘i’(t),
whereE,, is the amplitude of the field from paghat the detector. The field amplitude depends
primarily on the optical absorption and scattering coedfits of the medium. In tissue, these
optical properties change on a much slower time scale traphiase fluctuations. ThuB,, is
temporally constant, and it is the phase fluctuations ttthtaa the speckle fluctuations.

The total polarized detected electric field is the sumFgé®®) over all light paths from
source to detector, i.e.,

E(t) =) B, (4.3)
p

Equation 4.34 represents a fully developed speckle fietabifdllowing assumptions are satisfied

(see Section 4.2):
e £, andg, are statistically independent &f, and¢,, for p # p/,
e For any light pathp, E, and¢,, are statistically independent of each other,
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Laser

kn_1
/ Detector

Figure 4.4. A single light patly from source to detector in a turbid medium. The scattering is
quasi-elastic, such that the magnitudes of the waveve€lorsare the same. Furthét,; points

in the propagation direction for light scattered from gtie particle, and:; is the position of the
jth particle.

e The phases, are uniformly distributed on the interval-r, ).

All three of these assumptions are valid if (1), the dynarsatterers are independent, and
(2), the contribution ta¥(t) from photons that have only experienced static scattenmtheir
path from source to detector is negligible [14, 168]. Sig¢er) does not decay from static
scattering, the physical meaning of point two is that thedfelitocorrelation functiom; (7)
fully decays to zero over a time scale much shorter than thatidn of the measurement [14].
From scatterer independence, Equation 4.34 can be intedpas a random walk in the complex
plane. Ifg;(7) fully decays to zero over a shorter time scale than the measent duration,
then many random walks will be sampled, and the distributib@(¢) over the time course of
the measurement is Gaussian with zero mean. For tissuendass that the red blood cells
contributing to the decay af; (7) are independent, and that all photons in the detected signal
have interacted at least once with a red blood cell.

The electric field autocorrelation function of Equation4i8
_(Er)Eft+T) 1 ity (t) « b (1+T)
gr)=s ———=>-=— ZEpe P ZEp,e P , (4.35)
(1) MA\\5 ~
where (I) is the average detected intensity. From the speckle fieldngstions, terms with

p # p’ do not contribute, i.e.,

<E;Ep’e_i¢p (t) ei¢p/ (t+T)> — <E;> <Ep’> <e—’i¢p (t) > <ei¢p/ (t+7’)> =0. (436)
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Om it +7)

ri(t+1) ki(t+1)

k;(t)
Figure 4.5: Sincé;(t + 7) is in the same direction d8;1 (¢t +7) — r;(t)], Ak;(7) - [rj+1 (¢t +

7) —r;j(t)] o sind. To leading ordersind ~ 0, and the second term in Equation 4.38 is
negligible compared to the first term.

Thus, Equation 4.35 simplifies to

a1(7) = { 3 1Bl itono-on4m)
)
= ) iay(r)y (4.37)
p

where(I,) = (|E,|?) is the average intensity from path andA¢, (1) = ¢,(t + 7) — ¢p(t).
Definingq; = k;(t) —k;_1(t) andAk;(7) = k;(t+7) — k;(t), we obtain from Equation 4.33

that
N

N
Apy(T) = Z q; - Arj(1) + Z Ak (1) - [rjp1(t+7) —rj(t + 7)), (4.38)
5=0

j=1
whereAr;(7) = r;(t + 7) — r;(t) is the scatterer displacement in time

Notice that sincgr; 1 (t +7) —r;(t 4 7)] is in the same direction ds;(t + 7) (Figure 4.4),
Ak;(7) - [rjp1(t +7) —rj(t + 7)] o< sind, (4.39)

where? is the angle betweek; (¢ + 7) andk;(¢) (Figure 4.5). For the time scales associated
with the decay ofy; (1), the angled is small, and to leading ordetin ¢ ~ 0. Thus, neglecting

the second sum in Equation 4.38, we obtain
N

Agy(1) =) q;- Ary(7). (4.40)
j=1

Along a given light path in tissue, both static scatterind dpnamic scattering occurs (Sec-
tion 4.4). LetN, and Ny = N — N, denote the number of static scattering events and humber

of dynamic scattering events, respectively. Sitag(7) = 0 for static scattering events, they
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will not contribute to the sum in Equation 4.41, i.e.,

Ay (T Z qj - Arj(t (4.41)

From the central limit theorem\¢,(7) is a random Gaussian variable because it is a sum
of Ny independent random variables wherdipis assumed to be large (Equation 4.41). For the

special case of isotropic particle dynanficg\¢, (7)) = 0, and

(507 / G860 op |- A% |4 Ady) = o—(AEEN/2,
(A2 (r) AT “2(8R3(7)
(4.42)
Taking the ensemble average of the square of Equation 4&lbptain
Ng Ng Ng
(Adp(1)) =Y (lai - Ari(n)][q; - Ary(7)]) = Y (lay - Ary(7)]?), (4.43)
=1 j=1 7=1

where again, the latter equality is true because of scatiedependence. Additionally, the
scattering vectory; and displacement vectakr;(7) are assumed to be independent, and for
isotropic dynamics{Ax?) = (Ay?) = (Az?) = (Ar?)/3, where(Ar?) is the magnitude of the
mean-square dynamic scatterer (e.g., red blood cell)atispient. Therefore,

Ny

(Ag2(r)) = (la; - Ar;(r)])

j=1
= Ny(lqj - Ar;(7)]?)
alN

= - {@)(Ar¥(n), (4.49)

wherea = Ny /N is the fraction of photon scattering events that occur froovimg particles in
the medium (e.g., red blood cells).

For quasi-elastic light scattering,
(%) = ([260 sin(9/2)]%) = 263(1 — {cos VD)) = 262Lspi, (4.45)

where 9 is the scattering angle (Figure 4.5); is the reduced scattering coefficient (Equa-

tion 2.44),¢, is the scattering length (i.e., mean photon distance teavbetween scattering

3Deterministic motion is briefly discussed in Section 4.7
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events), andi, = 27n /) is the magnitude of the light wavevectors propagating thhothe
medium. Substituting Equation 4.45 into Equation 4.44 aotihg thatN = s//, for large NV,
we obtain

2a2

(Agy(r)) = 36 Zon2lupil (Ar¥(r)) = 3 S(AT? () pgs. (4.46)

Importantly, <A¢f,(r)> does not depend on any other path-dependent property babiglpath-
length s. Consequentially, the sum over paths in Equation 4.37 caredest as a sum over
pathlengths. In the sum over pathlengths,)/(I) is replaced by the pathlength distribution
function P(s), which is the fraction of the detected scattered light istigmin paths of lengtts.
Recasting Equation 4.37 this way and combining it with Equest4.46 and 4.42, we find that

the electric field autocorrelation function in the high nplé-scattering limit is
= ZP(S) exp (——/{ (AT (1)) /s) . (4.47)
S
In the continuum limit, Equation 4.47 becomes

g1(r) = /000 P(s)exp (——/{ (AP2(T)) ;s) ds, (4.48)

whereP(s) can be calculated from the photon diffusion model of lighhsport (Section 4.5.1).
Equation 4.48 assumes that the decaydf-) is dominated by translational motion from red
blood cells. Rotational and morphological internal motinmed blood cells can contribute to
the decay of; (1) (Section 4.3.4), but this type of motion is not accountedridéquation 4.48.

The DCS autocorrelation function measured in tissue deoaythe order of 10Qus (e.qg.,
Figure 4.6). Therefore, in addition to assuming scatteréependence, isotropic dynamics, and
that N; > 1 for all photon paths from source to detector, Equation 4<&imes that blood
cell morphology remains constant and that rotation is gége on time scales of 100 us.
Finally, the blood cell dynamics are assumed to remain inlibgum over the time scale of the
measurements to seconds).

Importantly, the autocorrelation function decay timesoai&ted with long light paths are
relatively short, while the decay times associated withitslight paths are relatively long [186,
221,257]. This is due to the factpf,s in the exponent in Equation 4.48. At short delay-times,
the small particle displacemetr?(7)) is obviously amplified more by'’.s at long light paths

than short light paths, and thus the long light paths comtgilmore to the exponential decay at
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short7. Consequentially, the DCS autocorrelation measuremesihaterr in the remission
geometry (Figure 4.1A) is inherently more sensitive to dedissue depths [12,221].

Since Equation 4.34 is a fully developed speckle field (eeGaussian variable with zero
mean), the Siegert relation (Equation 4.4) can be emplayedvertg; (7) (Equation 4.48) to

the intensity autocorrelation functiogs(7) (Equation 4.1).

4.5.1 Calculation ofg,(7)

The calculation ofy; (7) given by Equation 4.48 is greatly facilitated through atiig the photon
diffusion model. Recall that the photon diffusion equationa point source is (Equation 2.46)

g@(r,t) = —0vS,0(r)d(t), (4.49)

DV2®(r,t) — vpa®(r,t) — y

and that the photon fluence rat@(r,t), is proportional to the “time of flight” distribution
function&(¢), i.e., &(t)dt is the probability for a photon to reach positierat timet (see Sec-
tion 2.12.2). Analogously, the pathlength distributiomdtion P(s) is directly proportional to
the photon fluence rate as a function of light pathlength, &é, s) = ®(r, s/v). Explicitly,

P(s) = ®(r, s)//oC><J d(r, s)ds, (4.50)

and the field autocorrelation function (Equation 4.48) ituim

[ @(r, s)e™v*ds

JoC @(r, s)ds (4-51)

g1(r,7) =

wherev = apul,k2(Ar%(7))/3.
Note that the diffusion equation describiﬁgr, s) is easily obtained from introducing the

change of variables = s/v into Equation 4.49:
o ; 0 ¢ :
DV ®(r,s) — vpu,P(r,s) — 21%@(1", s) = —vSyd(r)o(s/v). (4.52)

Therefore, one approach for determinigdr, 7) is to substitute the solution of Equation 4.52
(for the appropriate geometry) into Equation 4.51. Angthewsre versatile approach is the cor-

relation diffusion approach described in the next section.
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4.6 Homogeneous Correlation Diffusion Equation

The correlation diffusion equation formally modéls(r, 7) = (E*(r,t)E(r,t+7)) [W cm~2],
which is the so-called unnormalized electric field autoglation function. By definition, the

normalized field autocorrelation function is
g1(r,7) = Gy(r,7)/G1(r,7 = 0). (4.53)
Comparing Equation 4.53 with Equation 4.51, it is evidest th
1 - —vs
Gi(r,7) = E/ o(r,s)e”"*ds, (4.54)
0

whereh [cm] is a proportionality constant.
The homogeneous correlation diffusion equation is the d@ptransform of Equation 4.52,

ie.,
o T —vs o a T —vs _
/0 (DV? — v1,)®(r, s)e " ds — v/o (%CI)(I" s)) e ds =
— v/oo Spd(r)d(s/v)e " ds, (4.55)
0

which is (Equation 4.54)

v

D

o

V3G (r,7) — 3

[+ S (AT ()] G, ) = —5S03(x). (4.56)

Here, | substituted invu x2(Ar2(7))/3 for v, and Sy = Shv/h [W]. Recall thats}, from
Equation 4.49 has units of energy, and theref6gehas units of power.S, can be regarded
as the power of the continuous-wave light source, whichdéisiout in the normalization of
G, (i.e., Equation 4.53). Further, as the correlation diffasequation is the Laplace transform
of the photon diffusion equation, the correlation diffusisoundary conditions are the Laplace

transform of the photon diffusion boundary conditions (&tpns 2.80, 2.83):

Gi(r,7) = 22V Gy (r,7) Partial-flux (4.57)

Gi(z = —z,7) = 0. Extrapolated zero (4.58)

Since Equation 4.56 with its boundary conditions has theestorm as the homogeneous

photon diffusion equation (Equation 4.49) for CW sourchse,&reen’s function solutions of the
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correlation diffusion equation will also have the same foffor example, the continuous-wave
photon diffusion Green’s functions listed in Table 2.5 aneverted to the correlation diffusion

Green’s functions by replacing= (,v/D)'/? with

_ Q2 A2 v

K@) = (ko + Srimtiario)) o (4.59)
For the important special case of the homogeneous semiténfaometry, the explicit solution
to Equation 4.56 subject to the extrapolated-zero boundanglition (Equation 4.58) is (see
Equation 2.103)

vSy [exp(=K(7)r1) exp(—K (7))

Gl (I’,T) - 47D T1 Ty

(4.60)

4.6.1 Heterogeneous Correlation Diffusion Equation

Equation 4.56 is only applicable for homogeneous media. heterogeneous media, the cor-
relation diffusion equation is derived from the steadytesteorrelation transport equation for

continuous-wave sources and systems in equilibrium [3, 73]

N

V- GF (e, 0, )0+ Gl (r,Q,7) = Q(xr, Q)+

/GT r, Y, 1)l (r, Q, QY 7) f(r, 2, Q)dSY. (4.61)

Here,GT (r,Q,7) = (E*(r,Q,t)E(r,Q,t + 7)) is the autocorrelation function of the polar-
ized electric field (with arbitrary polarization state) aisgion r and timet propagating in the
Q) direction (see Equation 2.4); (r,(2,{Y,7) is the normalized temporal field autocorrelation
function for single scattering (Equation 4.14)(,r,Q,Q’) is the normalized differential single
scattering cross-section (see Table 2C){r, Q) is the light source distribution (see Table 2.1),
andus = g + fis-

Given Equation 4.61, one can implement a set of steps foyritehtical to the steps used to
derive the photon diffusion equation from the radiativeng@ort equation (Section 2.3). That is,
using aP; approximation forGT, the correlation transport equation reduces to the cdivela

diffusion equation [23, 24]:

V. (DE)VGi(r,7) — v (ﬂa(r) + 2 ()R (AR, T)>) Gi(r,7) = —vS(r). (4.62)

3
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Here, G (r,7) is the “total” electric field autocorrelation function mdeeé in Equation 4.56,
ie.,

Gi(r,7) = /GIT(r,Q,T)dQ = (E*(r,t)E(r,t + 7)), (4.63)
4m

where E(r, t) is the total light electric field with arbitrary polarizaticat (r, t), andS(r) is an
isotropic CW source term (Equation 2.18). FurthB(r), p,(r), i.(r), andv = ¢/n are the
photon diffusion coefficient, absorption coefficient, reeld scattering coefficient, and speed of
light in tissue, respectively (see Table 2.2),= (27n /) is the light wavevector in tissue,rep-
resents the fraction of photon scattering events that dooor moving particles, anéAr2(r, 7))
is the mean-square displacement in timef the moving scattering particles at position Of
course, for the special case of homogeneous media, Equati@rbecomes Equation 4.56. Fi-
nally, the correlation diffusion boundary conditions giviey Equations 4.57 and 4.58 remain
valid for heterogeneous media.

As with the radiative transport equation, in geometriesditions where light transport is
non-diffusive, it is necessary to solve the correlatioms@ort equation directly with Monte

Carlo techniques [24, 25, 186)].

4.7 Diffuse Correlation Spectroscopy for Shear Laminar Flov

Brownian motion (Section 4.3.1) and random flow (Section3}.8re examples of stochastic
dynamics. Here, | will very briefly discuss the DCS field aaioelation function obtained for
deterministic laminar shear flow in the high multiple-sesttg limit [260]. A special case of

laminar shear flow is planar couette flow, where the veloditycatterers is described by
u=1_Izz, (4.64)
and the DCS field autocorrelation function is [260]

[e%) 2
g1(1) = /0 P(s)exp (—%F%’z) ds. (4.65)

Note that the decay af; (7) for laminar shear flow depends on tiiadientof the flow velocity,
i.e.,0u/0z = T, not the absolute flow velocity. For uniform flow velocity (= ugz), there
would be no decay ig; (7). Thus, as in the single-scattering limit (4.3.2), the DC®eorrela-

tion signal is only sensitive to the relative motions betwseatterers [19, 260].
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4.8 « is proportional to tissue blood volume fraction

To derivea (Equation 4.44), leiVy be the number of incident photons on an infinitesimal volume
of tissue. The total number of these incident photons seatteithin the infinitesimal volume

is Nousd3r, wherep, (not ) is the tissue scattering coefficient (see Section 2.2). h@a
scattered photons, the number that have been scatterecMirygned blood cells isV . 25¢ d3r,
where the scattering coefficienf?¢ is the blood cell contribution tp,. Therefore, the fraction

of photon scattering events that occur on red blood cells is

RBC
o = Hs _ O-RBCQRBC’ (466)
s s

whereogpc [cm?] is the scattering cross-section of a red blood cell (RB@Y @rpc is the
number density of red blood cells in the tissue sample. Nw@e t

(Het)(BV)

, 4.67
VRBC Vtissue ( )

ORBC =

where Hct is the hematocrit (i.e., volume fraction of red blood cetidlood), BV [mL] is the
blood volume,Vggc [mL] is the volume of a red blood cell, andissue [ML] is the total tissue

volume. Substituting Equation 4.67 into Equation 4.66, Wweam

ORBC Hct > < BV )
o= . 4.68
< Hs > (VRBC Viissue ( )

Thus, unsurprisinglyq is proportional to the tissue blood volume fractiBV/Vissue If there

is more blood, then there are more scattering interactiottsbdood, andx increases.

4.9 Tissue Blood Flow Index

DCS is most sensitive to the motion of blood cells in the miaszulature (i.e., capillaries,
arterioles, venules), since the diffusing light is mosthsarbed when traversing large arteries
and veins (Section 2.13). Since the microvasculature isatoted, the correlation diffusion
model (Equation 4.56) assumption of isotropic RBC dirawics reasonable. The red blood cell
dynamics are incorporated into the correlation diffusiqonaion via their mean-square displace-
ment, (Ar2(7)). For the case of Brownian motion (Section 4.3.M)%(7)) = 6D,, where

Dy is the particle diffusion coefficient. For the case of randoatlistic flow (Section 4.3.3),
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Figure 4.6: Exemplar autocorrelation measurements fronoase tumor, a piglet brain, an
adult human calf muscle, and an adult human brain. The ddstesddenote the fits to the semi-
infinite correlation diffusion solution (Equation 4.60)tWi(Ar2) ~ 72 (random flow), and the

solid lines denote the fits withAr?) ~ 7 (Brownian). This figure is reprinted from [79].

(Ar?(7)) = (u?)7%, where(u?) is the second moment of the particle speed distributionerExt
sive DCS autocorrelation measurements collected over a midge of tissue types and length
scales all fit the correlation diffusion solution with Broian dynamics better than the correlation

diffusion solution with ballistic dynamics (Figure 4.6)g&ation 4.59 for the Brownian model is

K(r) = \/(ua + 2pk2F) %, (4.69)

where

F =aD, (4.70)

is the tissue blood flow index [chs].

A standard approach for blood flow monitoring with DCS is toiekeg; (1) (Equation 4.53)
from measurements @k (7) (Equation 4.1) via the Siegert relation (Equation 4.4). Witbe
correlation diffusion solution for the geometry of interés.g., Equation 4.60 for semi-infinite
geometry) is fit tay; (7) using a nonlinear minimization algorithm, and an estimét&e blood
flow index (F) is obtained from the fit. We (and others) have found that thedflow index
correlates well with other blood flow measurement modalifi49, 182]. Additionally, Dur-
duranet al [79] and Nincket al [190] directly demonstrated that the observed decay; ()
measurements on tissue arise from red blood cell motion. rasut, it is natural to identifyf’

as a flow index that is directly proportional to blood flow.
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49.1 Brownian Motion of Red Blood Cells

Recall from Section 4.3.2 that particles with velocitiedlweodeled by Equation 4.23 exhibit
Brownian motion on time scales of> 4!, wherey is the linear drag coefficient of the particle
divided by the particle’s massy. Equation 4.23 assumes that the drag force on the particle
depends linearly on particle velocity, which is valid forifls at low Reynolds number [240,
Chapter 2]. The Reynolds number of a fluid is [17, Chapter 6]

R= Uk (4.71)
0

wherew is the particle’s speed moving through the flubds the size of the particlg; is the
mass density of the fluid, angdis the viscosity of the fluid. For blood in the microvascutatu
n~2x1072g/(cm 9 [32], u ~ 0.05 cm/s (in capillaries) [249]h ~ 10 microns, and; ~ 1
g/mL, which results in a Reynolds number®f= 0.003. In arterioles, the blood cell speed is
considerably faster than capillaries, but even for a blagtspeed of. = 1 cm/s, the Reynolds
number is still onlyR = 0.05. SinceR « 1 for blood in the microvasculature, the drag force on
red blood cells is linear, i.ef,= ymu.

An important time scale for assessing blood cell dynamicsis for blood cells. If we

approximate the blood cell as a sphere of radiughen from Stoke’s law, the linear drag on the

blood cell is
f = 6mna,
and
2 2
At I SSRBCY 3 (4.72)
f 9In

The estimate of 3s was obtained from using= 5 um, a blood cell mass density ofpc = 1
g/cn?, and a blood viscosity of = 2 x 1072 g/(cm s). The time scale on which the autocorre-
lation function decays is on the order of 50-10%) so the red blood cells in the microvasculature

plausibly undergo a biased random walk, wherein the diffusioefficient is (Equation 4.18)

vl rRBC 1
Dy = —JRBC 2 ek 4.73
bT 31— (cosv)) 3 v RBC (4.73)

Here, v, is the average speed of the red blood céllg;- is the mean run length of red blood
cells (i.e., mean straight-line distance traveled betvgbettion changes)cos ) is the average

of the cosine of the angle between successive runs{gpd = (rpc/(1 — (cos V).
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Figure 4.7: An arbitrary tissue volum@ssyels comprised of a vascular compartment (with blood
volume BV) and a tissue compartment. The blood fla&H) in the vascular compartment is
the total blood flow supplyindissue

Note that the motion of blood cells is highly biased in thenfard direction, i.e.y} is very
small. Further, tissue blood flow is not in thermal equilifon, and the diffusion coefficient given
by Equation 4.73 is a few orders of magnitude higher than iffiegsétbn coefficient given by the
Einstein-Smoluchowski relation, i.€2, = k,T'/f [79]. This is analogous to bacteria swimming
in water (via flagellar propulsion), which have a diffusiasetficient three orders of magnitude

higher than dead bacteria in water [17, 209].

4.9.2 Relation Between Blood Flow Index and Blood Flow

A compartment model of tissue (Figure 4.7) is commonly elygadioto obtain bulk estimates of
average tissue blood flow and oxygen consumption [42, 62,2482 246, 273]. In this model,
the tissue is comprised of a vascular compartment and &t@supartment, and red blood cells
with number density)rpc (i.e., # RBC per blood volumeHKV)) move with speedy, through
the vascular compartment. The compartment model is oblyi@msunrealistic geometry for the
actual vasculature, but it still provides a reasonablarege of bulk blood flow in the tissue
volume Vissue (discussed further in Section 7.6).
From Equations 4.73 and 4.66, the blood flow index (Equati@d)is

F=aD, = (%) (orBCS). (4.74)

Note that the RBC number density per volume of tissugz o, is related to the RBC number

density per volume of blood) gz, via
Viissue
— [ISste ) 4.75
YRBC = 57 CRBC (4.75)
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Multiplying both sides of Equation 4.74 B¥issue/ BV and utilizing Equation 4.75, we find that

BV URBCg*RBC)
F = . 4.76
<Vtissue> ( 30 (YrBCUD) (4.76)

Here,yrpcvy [# RBC / (s cnt)] is the flow of red blood cells per vascular cross-secti@meh

per time. The blood volumeHV) is related to the number of red blood cells (# RBC) via

Vepc(#RBC)

BV =
v Hct ’

4.77)

whereVzpe is the volume of a red blood cell, ardct is the hematocrit. From multiplying both
sides of Equation 4.76 byrpc/Hct, we see that' is proportional to tissue blood flow, i.e.,
BV Hct URBCg*RBC)
F= BF. 4.78
<Vtissue> <VRBC> < Slbs ( )
Here, BF = (YrpcVrpce/Het)vy [(ML blood) / (s (cn? tissue)] is the tissue blood flow in

units of blood volume per time per cross-sectional area@Wtscular compartment. Thus, the
blood flow index,F, is proportional to tissue blood flow. The proportionaliyefficient depends
directly on the tissue blood volume fractio®{/Vissud, hematocrit {ct), RBC scattering
cross-sectionArpc), and RBC transport mean free pa#},f.), and inversely on the RBC
volume (Vrpc) and the tissue scattering coefficiept (not 1,).

Clinically, absolute blood flow is reported in confusing tsrf blood volume per time per
tissue volume, e.g., [(mL blood) / (min (100 mL tissue))].€Bl units are understood through the
compartment model of tissue (Figure 4.7). The “clinicalddlow”, BF,, is the total volume
of blood flowing intoVissueper time, divided byWissue BF. andBE (Equation 4.78) are related

by the expression

tissue

A .
BF, = BF ( “SS“e> : (4.79)
where Ajissueis the total cross-sectional area of the tissue volume oféiseular compartment

Supplyingvtissue

4.10 DCS Signal Measurement

4.10.1 Validity of the Siegert Relation

DCS estimates the tissue blood flow indéxfrom a nonlinear fit of the measured intensity

autocorrelation function signadx(7), to the electric field autocorrelation function correlatio
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diffusion solution,g; (7). A key step in this fit is using the Siegert relation (Equatib4) to
derive g; (7) from the go(7) measurement. The Siegert relation is valid if the deteclectréec
field is a Gaussian distributed variable with zero mean. ihike case if the detected electric
field is a sum of fully developed speckle fields (see Sectig@in 4.

For tissue measurements, it is feasible for a componenteodi¢tected signal to arise from
light paths that have only experienced static scatteriegt{&n 4.4). In this scenario, the detected

electric field can be written as
E(r,t) = E(r) + Ey(r, 1), (4.80)

where E¢(r,t) is the fully developed speckle electric field arising fromhli paths that have
encountered at least one moving scatterer, &r(@) is a constant term arising from light paths
that have encountered no moving scatterdrs(r) is cleary not a speckle field, and therefore
the Siegert relation is not valid for Equation 4.80. The tietabetweengs(7) andg;(7) for
Equation 4.80 is [168]

By

T L7 [17191(7)1* + 21 L|a (T)]] (4.81)

gg(T):l-l-

Here, Iy = (E}Ef>, I, = E;E,, andj; is the speckle contrast arising from the fluctating
component of the electric field (i.e., Equation 4.9). Theiio¢pt of Equation 4.81 is
I7 4 Iy,

g2(0) =1 +5fm>

(4.82)

so the effect of the static scattering field component isdoice the speckle contrast. For single
mode fiber detection of unpolarized light, 4f = 0.5, then the static scattering component is
negligible. However, if the speckle contrast is lower thapexted, one potential explanation for
it is that E.. in the detected signal is significant. The expectation isttlia problem is more of
a risk for short separations than long separations. In nmagtipal tissue measurements with
single mode detection, we have found thatfreoefficient is about 0.5, even at short separations
around0.7 cm. This suggests thdt. is typically small in practice.

However, recall from Section 4.5 that one of the assumptimesl in the derivation of the
correlation diffusion equation is that the detected ligaths from source to detector encounter

a large number of red blood cells. Therefore, even if theSteglation is valid, the correlation
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diffusion model may still break down if a significant fraatiof the photon paths involve only a
few RBC scattering interactions. This will not be an issudldng separations, but it could be a

problem for short separations.

4.10.2 Fiber Detection with DCS

I mentioned in Section 4.2 that for detection with opticakfly each mode propagating through
the fiber is a fully developed speckle field. The electric Bditdhm all of the modes have iden-
tical statistics (i.e., Gaussian-distributed with zercame but they are independent fields that
add incoherently. The incoherent sum of independent spdiettls results in reduced speckle
contrast (i.e., Equation 4.9). From a geometrical optiastpaf view, various rays propagate
down a multimode fiber at different angles to the axis of therfifFigure 4.8). Each angle of
propagation is a fiber optic mode, and the fiber optic modesdapendent because the quasi
plane wave electric fields incident on the fiber from différangles are independent (see Equa-
tion 2.4). The numerical aperturé&V(4) of the fiber specifies the acceptance cone of incident
light angles allowed into the fiber, i.6,< ¥, = arcsin(NA/n) (n is the refractive index of
the medium in contact with the fiber). However, not every &t enters an optical fiber within
its acceptance cone can propagate successfully througtibre Only certain ray directions
(modes) are allowed that satisfy a “resonance conditioeé {202, Section 10-5]). The number
of modes supported by a multimode step-index fibeVlis~ (2rn/A\)(N A)a, where is the
light wavelength in air and is the radius of the fiber core [112]. For a 62.5 micron fibehvait
NA=0.22,n=14,and) = 785 nm, M ~ 80 modes. . Further, for unpolarized light, there
are two independent speckle fields for each mode that camesip the two orthogonal polar-
ization states. Thus, the detected intensity from the 62c¢sam fiber for unpolarized light is a
sum of2M = 160 speckle fields. This corresponds t@ aoefficient of 0.006, i.e., essentially
no speckle contrast.

Single mode fibers have very low numerical apertures sudhotiig thed = 0 mode can
propagate through the fiber (Figure 4.8). With only one mdtisgeckle fields for unpolar-
ized light), single mode fibers maximize the contrast of thtedted signal, but they also have
drawbacks. Because of their very small size and numericattae (5 micron core diameter,

0.13 NA), single mode fibers do not collect much light, and kgnal-to-noise is a commonly
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Figure 4.8: Schematics of a multimode and single mode fibeultiMode fibers have high
numerical apertures, enabling light propagation at migl#mgles (i.e., modes) to the axis of the
fiber. Single mode fibers have very low numerical apertunegd therefore light only propagates
in thed = 0 mode. This figure is adapted from [1].

Single Mode Fiber Core

encountered problem in the DCS measurement at longer sdateetor separations (e.g., 3
cm) [37]. The “hair problem” is also a bigger issue for DCSrtliis for DOS, because it is
easier for single mode fibers to be completely blocked bytd kdpsorbing hair follicle than the
multimode fibers used for DOS detection [37, 84].

There are several strategies for ameliorating the DCS ktgraoise problem. First is to use
high quantum efficiency single-photon detectors, such@aSPCM-AQ4C (Excelitas, Canada)
APD detector array. Second is to incorporate multiple detechannels in the DCS instrument.
For example, with 8 detection channels, DCS signals can kected in parallel from 8 single
mode fibers bundled together at nearly the same positionsendi Averaging across these 8
channels to derive a single autocorrelation curve will iower SNR by~ /8. For N detection
channels, the improvement in SNRAs v/N. However, the single photon detectors used for
DCS detection are currently expensive, placing a pradiicat on the total number of detection
channels. In the future, DCS would benefit greatly from thveelocosts permitted by economies
of scale in the production of single-photon counting detexc{84].

A third strategy is to increase the light source power dedigleto tissue, but the maximum

power is limited by ANSI standards for maximum permissittexposure. For continuous
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exposure (i.e., laser is always on), the maximum permisgiblver delivered to a point on the
skin for A = 785 nm is P = 28 mW, though higher powers are permissible if the laser isqulils
(Section 4.10.4).

A fourth strategy some researchers have pursued is the ussvahode fibers for DCS
detection [69, 125,169]. The light intensity itself is ofuree greater with few-mode detection.
If N modes can propagate through the fiber, then the detectetitytes

N
(1) = O _Ij) = N(I), (4.83)
7j=1

which is a factor ofN higher than the single mode intensity. However, as discliabeve, the
summation ovefNV independent modes reduces theoefficient by a factor ofv (4.10). If the
DCS signal decays exponentially (i.g2(7) — 1 = exp[—2I'7]), then the SNR of the signal
measurement is [274, 276]

_gam) =1 exp[—2I'7]
SN = i) = PV Ty T (59

wheret,,,, is the DCS signal averaging time, aiids the correlator delay-time bin width. The
DCS signal typically is well approximated by an exponentlatay, and therefore 4.84 is a
reasonable model for the SNR [274, 276]. For few-mode fib¢éeadien then, the gain from
increased signal intensity is canceled by the reductiofi, iand the SNR is about the same as
single-mode fiber detection. However, few-mode fibers ae jptone to modal noise (e.g., from
fiber bending) [112], which is an additional source of noiséaccounted for in Equation 4.84.
For these reasons, single-mode fibers are usually optimd &S detection, though perhaps
few-mode fibers can obtain better SNR through hair. Finafilg, SNR will increase with the

square root of the averaging timg,(; in Equation 4.84) at the cost of a lower time resolution.

4.10.3 Source Coherence

As | already discussed, the coherence length of the soumddshe substantially greater than
the spread of light pathlengths through tissue to ensurectit speckle fluctuations with high
speckle contrast. The width of the pathlength distributiepends on the separation and optical
properties, but for practical measurements, it is less thaeter [201]. The source itself, though,

has to have a greater coherence length than this (rougtslyn) if a mulitmode fiber is utilized
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for light delivery. This is because light propagation ttghwa multimode source fiber effectively
reduces the coherence length of the light source. The titagslmtroduced by the differences in
pathlength between the different light modes propagatirtge fiber induce speckle fluctuations
at the end of the fiber that interrupt the constant phase ofreoofmomatic source.

An alternative way to understand coherence effects is indesf the power spectrum of
the light, I(w). The power spectrum is defined as the Fourier transform oklbetric field
autocorrelation function [18]:

l(w) = % / " dre= T (B () E(t + 7). (4.85)

—00

Consequentially, the field autocorrelation function isitherse Fourier transform ofw):

(E*(t)E(t+71)) = /_OO dwe™TI(w). (4.86)
Note that
(|E*) =) = /_OO dwl(w), (4.87)

S0 l(w)dw is the “amount” of the light intensity in the frequency intel (w,w + dw). The
decay of the field autocorrelation functiofi{(7)) is related to the width of the power spectrum.
If G1(7) decays exponentially with decay timg, the half-width at half maximum of{w) is
Aw, = Tgl. In fact, blood cell motions could be estimated from the meaments of the power
spectrum as an alternative to measurements of the inteaugibcorrelation function. However,
the autocorrelation function measurement is preferalts Eourier counterpart in the low signal
limit, because the photon correlation instrumentationsggle photon counting device [81].
The power spectrum of the light source is close to monochtiomand thus very sharply
peaked atv = 27¢/\. As light travels through tissue from source to detectag, time delays
from the different light paths increases the spectral lidéwof the power spectrunyw.. The
longer the source-detector separation, the greater thee distays between the different path-
lengths become. These greater time delays in turn incrbaseitlth of the power spectrum and
decrease the decay time of the autocorrelation functions iBhwhy the DCS autocorrelation
signals decay substantially faster at longer source-ttgtseparations than they do at shorter

separations.
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Analogously, the time delays from the different light paith& multimode fiber broaden the
power spectrum. The longer the optical fiber is, the greditesd time delays are, and corre-
spondingly, the broader the power spectrum is. Thus, thereole of the source light delivered
to the tissue will depend on the fiber length. For optimal gisfty to blood flow, the broadening
of the light power spectrum from this loss of coherence néeti® much less than the broaden-
ing of the light power spectrum from the blood cell motiontHé broadening from coherence
loss is comparable to the broadening from blood cell motioen coherence effects “wash out”
the speckle fluctuation effects from blood cell motion, alne signal is not sensitive to blood
cell motion.

The speckle contrast is clearly sensitive to the coherefiteesource. Thus, if the speckle
contrast is fluctuating (i.e., the(7) intercept is unstable during the measurement integration
time), this could indicate that the coherence of the sowsagnstable. This source instability
could arise from Fresnel reflections back into the laser fimproper probe contact with the
tissue (e.g., air gaps often lead to big Fresnel reflectiols)unstable contrast could also arise
from light leakage into the probe from room light, since rnagéctral light affects the power
spectrum of the detected signal. Finally, if the probe iswetl-secured to tissue, any sort
of movement could lead to sampling of different tissue lmecet (i.e., different speckle fields)

during the integration time of the measurement, which iglarosource of instability.

4.10.4 ANSI standards for Maximum Permissible Light Powers

For the DCS measurement, the total light power deliveretiddissue must be below the ANSI
standards for maximum permissible skin exposure to light46cording to Table 7 of the ANSI

regulation [5], the long term maximum permissible skin esqre is
Ey =0.204 [W/cm?], (4.88)

where the constarfy, = 1 W / cm? for A < 700 nm and102(*/1000-0.7) \/ / em? for A > 700
nm. The ANSI standard clearly states the limiting apertimengter for skin exposure to account
for scattering once it penetrates the skin. This value cafobed in Table 8a of the ANSI
standard [5], and it is 3.5 mm for exposures ranging from 1ar&0t000 s and for wavelengths

lying between 400 nm and 1400 nm. For a fiber-coupled laséd#iaers a light poweP [W]
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continuously to a point on the skin, the experimental skiposxire is
Bl exp = P/(7(0.35/2)% [W / cm?]. (4.89)

Comparing Equations 4.89 to 4.88, the maximum permissitWeep that can be delivered con-
tinuously (i.e., laser is always on) to a point on the skin at 785 nm is P = 28.4 mW.
However, the permissible power can be higher for non-caotis light power delivery, e.g.,
the laser is on for time,,,, off for time t,¢,, on for timet,,, off for time ¢,;;, and so on.
From Table 7 of the ANSI regulation [5], for exposungs between 107 and 10 seconds, the

maximum permissible skin exposure is given by

E =1.1C4t%% [3/ cnd), (4.90)

mn

whereC4 is defined below Equation 4.88. The experimental skin ex@oBom a single laser

pulse with powerP and duratiort,,, is
— 2
Eezp = Pton/(7(0.35/2)% [3/ cn?), (4.91)
and the average long-term experimental skin exposure frivairaof these laser pulses is

Elt,avg = Ee:cp/(ton + ZL/off) [VV / Cm2]7 (492)

where againt, s is the time interval between laser pulses. The ANSI reguiatiare satisfied
when E., (Equation 4.91) is less thah' (Equation 4.90) andv; .., (Equation 4.92) is less
than Ey; (Equation 4.88). Thus, the duty cycle of the laser needs tchbsen appropriately to
ensure these two conditions are not violated.

As a concrete example, let’s suppose that = 2.5 s. Setting Equation 4.91 equal to
Equation 4.90, the maximum permissible power for a pulsé difration 2.5 s i = 79 mW.
For Ej; 4.4 to be less thaiky, for a train of pulses witft,,, = 2.5 s andP = 79 mW, ¢, has to

be greater thad.5 s.
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Chapter 5

Diffuse Correlation Spectroscopy
(DCS): Modified Beer-Lambert Law
Approach

5.1 Introduction

Here, | present an alternative approach to the correlaiftustbn approach for analysis of DCS
signals, which is a Modified Beer-Lambert law for flow. Thisthmd linearly relates measured
changes of a newly-defined “DCS optical density” to the tamaof tissue blood flow, tissue
scattering, and tissue absorption. The novel algorithralleds the DOS/NIRS Modified Beer-
Lambert law, but it has interesting differences that shdadldiseful for applications that require
continuous monitoring of blood flow. It also has similar achegges to the DOS Modified Beer-
Lambert law. The rest of this chapter is essentially a varbatprint of my biomedical optics
express paper on the Modified Beer-Lambert law for flow [13thédugh some of the introduc-
tion material here has been covered in previous chapteeptitke introduction material in to
keep this chapter self-contained.

Traditional optical spectroscopy measures the attenuatidight traveling through a sam-
ple as a function of wavelength. In cases where scatterimggdigible, i.e., in which the re-

duced scattering coefficient) is zero, light attenuation is dominated by absorption, ted
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transmitted intensity((¢)) at timet is related to the sample absorption coefficignt)(via the
Beer-Lambert law:I(t) = I;exp[—uq.p]. Here, I is the incident light intensity, and is the
sample length. The sample optical dens®y}) is defined as the negative logarithm of the ra-
tio of transmitted to incident light intensity; it is progimmnal to the absorption coefficient, i.e.,
OD = —log[I(t)/Is] = pnap.- When scattering within the sample is significant, howetrexn
light attenuation is affected by both absorption and sgate In these situations, the effects
of scattering become tangled with those of absorption [7pically, the photon trajectories
through tissue samples with significant scattering are agroximated as random walks, and
the average length of a photon path through tissue is muectiegrihan the straight-line distance
between source and detector.

Among the most widely used approaches for analysis of sucB8/NORS reflectance signals
is the so-called Modified Beer-Lambert law [10,67,130]. Madified Beer-Lambert paradigm
is an algorithm that derives changes in tissue optical ptigscbased on continuous-wave (CW)
diffuse optical intensity measurements. In its simplestfahe scheme relates differential light
transmission changes (in any geometry) to differentiahglea in tissue absorption. Here the
term differential refers to a comparison between a basstite and a perturbed state. In essence,
the Modified Beer-Lambert law accounts for tissue scatjebiy using the mean pathlength
traveled by photons through the highly scattering sampéelaesst estimate for the actual photon
pathlengths. The mean pathlength provides a natural ganstgroportionality between the
measured differential intensity and the sample’s diffae¢mbsorption.

The Modified Beer-Lambert law is readily derived from thetfseder Taylor expansion of
the optical densityOD ~ OD° + (00D /0p,) Apa + (00D /0ul,) Ay, wherein the partial
derivatives are evaluated in the “baseline” state € 10, i/, = p'%), OD® = —log[I°/I,] is the
baseline optical density, and the differential changedsogption and scattering are denoted by
Apg = pa(t) — pd andApl, = pl(t) — 42, respectively. Note that the superscript indicates
baseline. Within this approximation, the change in optitEisity from baseline is

200 = ~tog (1) = (0 8tt) + (18 ) (01800 = W B0, 61
Here, (L) = 00D°/dy, is the so-called differential pathlength, which is appnoately the

mean pathlength that diffusing photons travel through tleeiom from source to detector [10].
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Notice that whereas the traditional Beer-Lambert law eslabsoluteoptical densities t@b-

soluteabsorption coefficients, the Modified Beer-Lambert law (&#@pn 5.1) relatesdlifferential

changesn the optical density tdifferential changes the absorption coefficient. This algorithm
has proved useful for many reasons; it is simple, fast, ainlg feccurate. To date the Modified
Beer-Lambert algorithms have been applied predominantipanitor hemoglobin concentra-
tion changes in the brain; within this context, it has bedemed from semi-infinite geometries
to two-layer geometries [91, 130, 215, 234, 235] charastierof many tissues, especially the

human head.

Herein, we derive a Modified Beer-Lambert law for measurenoéiblood flow based on
the DCS technique in turbid tissues, and we validate theoagpr The Modified Beer-Lambert
law for blood flow linearly relates changes in tissue bloo@flissue scattering, and tissue ab-
sorption to variation of a newly-defined “DCS optical deyisitO Dpcs). The new algorithm
parallels the DOS/NIRS Modified Beer-Lambert law, sincetthasport of both the light fluence
rate and the electric field autocorrelation function thitoigghly scattering tissues is well ap-
proximated as a diffusive process [79]. Importantly, hogrethe diffusion equation for the DCS
signal is sensitive to the movement of red blood cells irugssicrovasculature, and therefore
the precise form of the Modified Beer-Lambert law for bloodiflis different from the tradi-
tional (DOS/NIRS) form. The weighting factors in the new Jdar example, are not as easily
interpreted in terms of a mean pathlength. We derive getfezaltetical results for measurement
of flow changes in any geometry, and then we obtain specificesgns for two common tissue
models: homogeneous semi-infinite turbid media and twerléyrbid media. We demonstrate
the new approach with simulations and withiasvivo pig-brain experiment. In the future, we
expect the Modified Beer-Lambert law for flow to offer incredCS measurement speed, sim-
pler DCS instrumentation, and, importantly, access to hme@asurement paradigms based on
differential blood flow signals. Ultimately, these deveaiognts should lead to improvements in

characterization of cerebral flow and metabolism, with conicant clinical impact.
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5.2 Diffuse Correlation Spectroscopy

Diffuse correlation spectroscopy (DCS) employs NIR lightnon-invasively measure tissue
blood flow. Since early work witin-vitro phantoms anéh-vivo tissues [23, 24,179, 204], it has
been used in a variety of clinical applications such as st{6R, 86, 97, 224], brain injury [159,
160], muscle disease [183,185,225], cancer [54,83,28%,ard in functional activation studies
[85,147,169,213]. In addition, the DCS blood flow index hastbsuccessfully validated against
a plethora of gold-standard techniques [149, 182]. Sevecant reviews highlight the theory,
implementation and applications of DCS [37, 79, 84, 182]28Ad therefore our background
discussion will be brief.

DCS detects tissue blood flow using speckle correlatiomigcies. It measures the temporal
intensity fluctuations of coherent NIR light that has saatiefrom moving particles (red blood
cells) in tissue (Figure 5.1(A)). These temporal fluctuagidFigure 5.1(B)) are quantified by
computing the normalized intensity temporal autocori@hatunction at multiple delay-times,
7, i.e., we computen (1) = (I(t)I(t + 7))/(I(t))?, wherel(t) is the intensity of the detected
light at timet, and the angular bracket§, represent time-averages. An index of tissue blood
flow is then provided by the temporal decay of the detecteehsity autocorrelation function
(Figure 5.1(C)).

Formally, the transport of the electric figli(¢)) autocorrelation functionG; (1) = (E*(¢)-
E(t + 7)), is well modeled by the so-called correlation diffusion a&iipn [23, 24], which can
be solved analytically or numerically for tissue geometrid interest [24, 79]. Tissue blood
flow can be ascertained by fitting the solution for the noreealielectric field autocorrelation
function, g;(7) = G1(7)/G1(7 = 0), to the measured (normalized) intensity autocorrelation
function via the Siegert relation [168§x(7) = 1+ 8|g1(7)|?, wheres is a constant determined
primarily by the experimental collection optics.

As an example, for the simple case of point illumination anthpdetection on the surface
of semi-infinite homogeneous tissue (Figure 5.1(A)) witls@ption coefficientu,, reduced
scattering coefficient’,, and tissue blood flow indek, the solution to the correlation diffusion
equation is [24, 79]:

_ 3 exp (—K(1)r1) B exp (=K (7)ry)
47l 1 Ty

Gi(7) (5.2)
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Figure 5.1: (A) Schematic for blood flow monitoring in a homogeneous, setfirite turbid
tissue (see text for details). Blood cell (e.g., red disksirae ¢ and light-red disks at time

t + 7) motion induces temporal fluctuations in the scatteredt ligtensity, 7(¢), at the light
detector (paneB). These intensity fluctuations are characterized by thenalized intensity
autocorrelation functiongt(7)). (C) The decay of the intensity autocorrelation function curves
is related to tissue blood flow.

Here, K (1) = [Bua(ta + 1) (1 + 2Wk3F T /ua)]V2, 11 = (. + p*)V2, 1y = (22 + L) +
p?]1/2, p is the source-detector separation, &pd= 1/(u, + i4). Furtherky = 27n/\ is the
magnitude of the light wave vector in the medium, ape= 2, (1+R.r¢)/(3(1—Res¢)), where
R.;y is the effective reflection coefficient that accounts for tiiematch between the index of
refraction of tissuer() and the index of refraction of the non-scattering mediumariling the
tissue {,.¢), SUCh as air [123].

A standard approach for blood flow monitoring with DCS in tiéometry is to derive; (1)
from measurements gt (7) via the Siegert relation. Then, the semi-infinite correfadiliffusion
solution (Equation 5.2) is fit tg; (7) using a nonlinear minimization algorithm, and an estimate

of the blood flow index £') is obtained from the fit.

5.3 Modified Beer-Lambert Law for Flow

We now develop a “Modified Beer-Lambert law” for tissue bldtmv based on the DCS mea-
surement. The first step in this process is to define a “DC8atensity” O Dpcs), in analogy
with the OD for DOS/NIRS. For source-detector separatioand delay-timer, we define the
DCS optical density asD Dpcs (1, p) = —log(ga2(7, p) — 1). Notice that in addition to delay
time and source-detector separation, the DCS optical ifealsio implicitly depends on tissue

absorption, scattering, and blood flow (e.g, Equation 5.2).

128



5.3.1 DCS Modified Beer-Lambert law for homogeneous tissue

We first derive a general expression for homogeneous tidsaiacterized by a blood flow in-
dex, F', an absorption coefficient,, and a reduced scattering coefficient, The DCS Modi-
fied Beer-Lambert law is obtained by truncating the Tayloreseexpansion of the DCS optical
density to first order i, p,, andyl, i.e.,

00DY, g

O

ODDcs(T, p) ~ ODODCS(T, p) + OF Ot

Ao + Al (5.3)

Here,ODY 4 (7, p) = —log(¢3(r, p) — 1) is the “baseline” DCS optical density with a base-
line blood flow index,F°, and with baseline optical propertig§ and x°. Correspondingly,
ODpcs(T, p) = —log(gz(7, p) — 1) is the DCS optical density for the intensity autocorrelatio
function in the “perturbed” state with blood flow inddX, and with optical propertieg, and
w.. The differential changes from baseline of tissue blood flasorption, and scattering are
AF =F — F° Apg = pg — 1, andApl, = s — 1’2, respectively.

Comparing Equation 5.3 with Equation 5.1, the DCS analogfitee differential pathlength
aredp(r,p) = 00DYg/OF, do(1,p) = d0ODY,g/0uq, andds(r,p) = 00DY, o/,
which can be estimated analytically or numerically usirgydbrrelation diffusion model applied
to the appropriate geometry (Section 5.7). All three of ¢hesighting factors depend anand
p, on tissue geometry, and on the baseline paramé&tgrg?, andyC. Rearranging Equation 5.3,
we arrive at the “DCS” Modified Beer-Lambert law for homogeue tissue:

,p)—1
AODpes(r,p) = — log (%) ~ i (7, p)AF+do (7, p) Apta+dy (1, p) AL, (5.4)
2\ -

If the blood flow and optical properties change only slighihen the perturbation in the DCS
optical density is small, and the first order expansion (Eqngb.3) is a good approximation.
Notice, however, that even for large tissue hemodynamingdsAO D pos can still be small at
short delay-timesbecause in this limit/r, d,, andd, are close to zero (Figure 5.2). Analytical
and numerical computation of these weighting factats, (d,, d;) are described and given in
Section 5.7.

Equation 5.4 is a general result that describes the chan@Ch optical density for ho-

mogeneous tissue. For a given tissue/measurement geothetighange in blood flow can be
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computed by evaluating the weighting factors for the geoynietquestion, and then inserting

these resultant weighting factors into Equation 5.4.

5.3.2 DCS Modified Beer-Lambert law for homogeneous semi-fimite geometries

It is straightforward to evaluate the weighting factors muBtion 5.4 for the special case of the
homogeneous semi-infinite geometry (Figure 5.1(A)). Réaah Equation 5.2 that the normal-
ized electric field autocorrelation function is

() = exp(—K (7)r1)/r1 — exp(—K(T)ry) /b
! exp(—Kory)/r1 — exp(—Korp) /7

(5.5)

where K (1), r1, andr, are as defined itsection 5.2and Ky = K(7 = 0) = [3uq(ua +
1)]*/2. The multiplicative weighting factors in the semi-infiniggometry can be computed
from substitution of Equation 5.5 into Equations (5.11) &nd?2), e.qg.,

60 (40 + ) Kir [ exp (—K°(7)r8) — exp (=K(r)r)
K@) |exp (“KO()r) /rf — exp (~KO(r)rd) /]

dp(T,p) = (5.6)

In Figure 5.2,dp, d,, andd, in the semi-infinite geometry are plotted as a functionrof
using typical tissue properties. Note that all three weightfactors are small in magnitude
for short delay-times. Further, the weighting factor fosaiption is negative, i.e., an increase in
absorption is accompanied by a decrease in the DCS flow bg#oaity (compared to baseline),
and the weighting factors for flow and scattering are pasitiv

Because the weighting factors are small at shorter detagsti(Figure 5.2), the DCS optical
density perturbation will also be small, which in turn inggdihigher accuracy for the DCS Mod-
ified Beer-Lambert law (Equation 5.4). ldeally, in the sénfinite geometry, the delay-times
used for Equation 5.4 should satisfy the ling, k3 F'r/p, < 1 and2u0k2FOr/ul < 1to
obtain the most quantitatively accurate results (see @ebtB). From our experience with simu-
lations and real data, we have found that a good “rule of thdortaccurately using Equation 5.4
is to utilize data whereig?(7) > 0.5, which corresponds tg)(7) > 1.1 for 3 = 0.5.

Figure 5.2(B) shows that for the sarfractional changes {0%) in blood flow, tissue scat-
tering, and tissue absorption, the change in DCS opticaditieis greatest due to scattering,

followed by flow; changes in absorption have the least intteesn the DCS signal. In practice,
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Figure 5.2:(A) The semi-infinite multiplicative weighting factors (seeuatjon 5.4) for tissue
scattering {;), for tissue absorptioni(,), and for tissue blood flowi, right vertical-axis). They
are plotted as a function of the correlation timefor source-detector separatiogn= 3 cm, and
optical wavelength) = 785 nm, given a typical set of cerebral tissue properties, i+ 0.1
cm !, 0 =8 cem !, FO = 1078 cnm?/s,n = 1.4, nywy = 1. (B) The semi-infinite DCS
Modified Beer-Lambert componends (7, p)AF, ds (7, p) Awl,, and|d, (T, p) Apg|, plotted as a
function of r for a10% increase in blood flow, tissue scattering, and tissue abiearpespec-
tively. On the right vertical-axis is the intensity autoeation function,g9(7), for 3 = 0.5.
Given the same fractional change in tissue properties, B8 Bignal is most sensitive to scat-
tering changes, followed by flow changes, and finally absmmpthanges. In many applications,
however, the scattering changes associated with hemodgymemurbations are negligible, e.g.,
such as an increase in blood flow and blood volume; in thesatiins the scattering component
can be neglected (see text).
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concurrent frequency-domain or time-domain DOS/NIRS eand (should) be employed to di-
rectly measure tissue absorption and scattering [79, Q] ,@hd account for their effects. This
mode of operation, i.e., with concurrent optical measuresjas always desirable. Importantly,
however, the tissue scattering changes that typically rapaay hemodynamic concentration
variations are often negligible; the origin of hemodynamwaciation is blood, but the origin of
tissue scattering is predominantly from interfaces betwesls and the extracellular space, or
between cellular cytoplasm and cellular organelles [5He Tissue blood volumeHV) is typi-
cally a small fraction € 4%) of the tissue volumel{;ssuc), @and red blood cells account for only
a small fraction of the tissue scattering [30]. Scatteriragf blood @’valood) is proportional
to the blood volume, i.e./,/&blood = Oplood(1 — 9)(Hct/Vrpe ) (BV/Viissue ), Whereopiood,

g, andVypc are the scattering cross-section, scattering anisotraqtprf and volume of a red
blood cell, andH ¢t is the hematocrit. Consequentially, while tissue scattpdan change with

variation in blood volume, the magnitude of this change isrofjuite small, because the overall

volume fraction of blood in tissue is quite small.

As an example, the finger tapping functional task inducescalied increase in cerebral
blood volume of roughlyl0% [85], which corresponds approximately to18% increase in
scattering from blood. However, the fractional increasmial scattering is much less tha0%
because blood only accounts for a small fraction of tissagtestng. If we assume that blood
accounts for less thait% of total tissue scattering [57], then the tissue scattecimange due to

increased blood volume from finger tapping is less thaf.

5.3.3 DCS Modified Beer-Lambert law for heterogeneous tisgu

Tissue is perhaps too often approximated to be opticallydgeneous for hemodynamic mon-
itoring, an approach which has the advantage of simplicRgalistically, however, tissue is
heterogeneous; it contains multiple compartments witfeidiht optical properties due to vas-
culature, fat, and bone. Often these regions arise as Yayeiow the tissue surface such as
scalp, skull, and cortex. Under these conditions, a Taydes expansion of the DCS optical
density can also be used to derive the DCS Modified Beer-Lartave for heterogeneous media.

Assuming that the heterogeneous tissue can be divided\Ving@ecewise homogeneous regions,
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then the first-order Taylor series expansion of the DCS aptiensity is

N
00 DY 00D? 00D?
ODpces(1,p) =~ ODDCS T, p)+ Z —— _DCS ARy #Ap AA
=1

OF}, Ottak ok 14 &
(5.7)
Here, Fy,, piq k, andu’s,k denote the blood flow index, tissue absorption, and tissatesing
for the k&th homogeneous region in the tissue, respectively, AkQ = Fj — F,S Apg =
Hak — ugk, andApl, , = iy, — Mfk denote the changes in these parameters from baseline.

Rearranging Equation 5.7, the DCS Modified Beer-Lambertftaviheterogeneous media is:

N

—1

—log <%> ~ Z [dp (T, p)AFy + da i (T, p) Apia g + ds (7, p) Aty ] . (5.8)
2V P k=1

where{dr; = 00DY bes/OFk, doi = = 00DY bes/Oak, dsi = 8ODDCS/8M8,€} are DCS
analogues of the partial pathlengths from DOS/NIRS [130hese multiplicative weighting
factors depend on tissue geometry, on the baseline tisspenies, i.e. {F,S #a it M } and
on 7 andp. They account for the relative importance of the variousoreg hemodynamic
changes in the DCS optical density perturbation, and theyoeaestimated in the same manner

as described in 5.7.

5.3.4 DCS Modified Beer-Lambert law for two-layer media

The simplest heterogeneous model for tissue is the twa-lggemetry, an important special
case (Figure 5.3). Researchers have used this geometrgen tor distinguish cerebral tissue
from extra-cerebral tissue in optical measurements of &aal 55, 85, 106, 120,172, 208, 215],
to model tissue burns [24], to distinguish skin from fat/iclag[95, 156], to distinguish fetal
from maternal tissues [53], and in other applications. Foelbral applications, the two-layer
geometry is comprised of a semi-infinite bottom layer (cerresponding to the cortical regions
of the brain) with a distinct blood flow index, absorption ffiméent, and scattering coefficient of
Fe, pa,c, @andyy ., respectively, and a superficial top layer (i.e., corresjiunto extra-cerebral
scalp and skull tissue) with thickneésand distinct tissue properties denotedmy, 1iq e., and
1 e

The two-layer DCS Madified Beer-Lambert law is the speciakoaf Equation 5.8 folN = 2
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Figure 5.3:(A) Two-layer tissue model of the head afR8) parallel plane two-layer tissue ge-
ometry.

piecewise homogeneous (layered) regions, i.e.,
AODpcs(t,p) = —log <M> R dp (T, p)AF. + dpec(T, p) AFec+
95(1.p) — 1
dac(T, ) Aptase + daec(T, p) Mptasec + dis,o(T, )AL, o + dsec(T, P) AR, o

(5.9)

Again, the multiplicative weighting factoréy.; = 00 DY, ¢ /0F;, dy; = 00DY,g/Opa,i, and

dei = 80D%CS /aug,i (with subscript; denotingc (cerebra) or ec (extra-cerebrd)), indicate

the relative sensitivity of the DCS optical density vaoatito cerebral versus extra-cerebral

hemodynamic changes. All six parameters depend on detey/+tj source-detector separation

p, top layer thickness, and baseline tissue propertigs, FY., 19 ., 19 cer o, andpl,.. They

can be computed by numerically taking the appropriate daves of the two-layer solution to

the correlation diffusion equation. For the parallel plame-layer geometry (Figure 5.3(B)), the

solution is [24, 106]:

g1(1) = G1(7)/G1(0),

Gi(r) = % /OOO él(T)sJo(sp)ds,

G (r) = sinh[kec(2p + 20)] Deckiee cosh[kecl] + Deke sinh|ke /] B sinh|[Kec20]
= Deckee Deckiee coshlkee(€ + zp)] + Deke sinh[kee (€ + 2p)] Deockee

whereD; = 1/[3(/‘;,1"’/‘&,0]1 "’%2 = (Di32+/‘a,i+2ﬂls,ik8Fi7')/Di1 2p = 2Dec(14 Resy)/(1—

Regyt), 20 = 3Dec, andR. sy andky are defined irection 5.4this solution assumes the top and

)
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bottom layers have the same optical index of refraction).

The two-layer weighting factors for a typical set of extexabral/cerebral tissue properties
are plotted in Figure 5.4. Importantly, for a source-deteseparatiorp = 3 cm, the change in
the DCS optical density is more sensitive to changes in fladvadosorption in the cerebral layer
than in the extra-cerebral layer (except for at very longgdimes). This sensitivity is especially
prominent at the shorter delay-times (Figs. 5.4(B), 5.4(ld)practice the situation is helped by
differences in magnitude of cerebral versus extra-celdloa (e.g., cerebral flow is quite often
10 times larger than extra-cerebral flow) [250]. We note tieaéthe sensitivity to cerebral flow
changes (Figure 5.4(C)) depends on the specific ratio obralréo extra-cerebral flow [221].

For example, iff = 6F)

ec’

the ratio of the cerebral flow componeni-(.AF,) to extra-cerebral
flow component dr..AF:.) is 0.7 at short delay-times fop = 3 cm (compared td.15 for
F? = 10F2, in Figure 5.4(C)). Further, this ratio depends on the egé&bral layer thickness,
because the NIR light intensity is exponentially attendiatath increasing tissue depth. For
example, if the extra-cerebral layer thickness is incréde¢ = 1.1 cm, then the ratio of the

flow components in Figure 5.4(C) at short delay-time.8sfor p = 3 cm.

The increase in the influence of the extra-cerebral layamragdr delay times (Figure 5.4(C))
can be explained from consideration of the pathlengthsgbit lispecifically their association
with short versus long correlation decay timesBriefly, in the temporal autocorrelation func-
tion, long light paths contribute to rapid decays of the algfshort7) and short light paths
contribute to slow decays of the signal (large[186, 257]. Short source-detector separations,
e.g.,,p = 0.5 cm, mostly sample the superficial layer, and the DCS optieakiy perturba-
tion is predominantly sensitive to the superficial layerhis ttase (Figure 5.4(C)). Interestingly,
a comparison of Figs. 5.4(C) and 5.4(D) reveals that the Dtffa density is more sensi-
tive to cerebral changes than the DOS/NIRS optical densipgistent with findings of Selb
et al [221]). Again, this effect arises in part because cerebi@dflow is much greater than
extra-cerebral blood flow, and in part because DCS is effegtia time-resolved technique that
permits separation of long light paths (shorter delay-ijpfeom short light paths (longer delay-
times) [221].
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Figure 5.4:(A) The two-layer multiplicative weighting factors (see Eqoat5.9) fordr . and
drec (right vertical-axis); and fod, ., dy ec, ds ., andd, ... They are plotted as a function of the
correlation time;r, for source-detector separatign= 3 cm, and optical wavelength, = 785
nm, given a set of typical extra-cerebral and cerebral ¢éiggoperties [55], i.e./,tg,c = 0.16,
[ = 012, p?. =6, pd,, = 10em™; F) = 1078, FY, = 107% cm?/s; £ = 1 cm,

n = 1.4, andn,, = 1. (B) The two-layer DCS Modified Beer-Lambert componetis A Fr,
dpecAFec, |da,cApa,cl, and|dg ccApiq cc|, plotted as a function of for a10% increase in each
parameter. On the right vertical-axis is the intensity aateelation functiong(7), for 3 = 0.5.
Notice that at shorter delay-times for= 3 cm, the change in DCS optical density is equally
sensitive to changes in cerebral blood flow, extra-cerdiitadd flow, and cerebral absorption.
The change in DCS optical densit§ Dpcys) is less sensitive, however, to changes in extra-
cerebral absorptior(C) The ratio of the cerebrat) and extra-cerebrak¢) flow components in
the DCS optical density perturbatiodODpcs(7) (Equation 5.9), for 4 separations,= 0.5,

1, 2, and3 cm. These data are plotted as a functiom assuming d40% increase in cerebral and
extra-cerebral blood flow. For the shorter separationg®and1 cm, the ratio is substantially
less than one; in this case, the DCS optical density is predortly sensitive to the extra-
cerebral layer. At theg cm separation, the DCS optical density is more sensitiveetelrral
blood flow than extra-cerebral blood flow at the short delmges, i.e., the ratio is greater than
one. However, at longer delay-times, the ratio decred®8sTlhe ratio of the cerebral and extra-
cerebral absorption components in the two-layer ModifiedrBeambert law for DOS/NIRS,
plotted as a function gf for a10% increase in cerebral and extra-cerebral absorptidh, and
(L), are the cerebral and extra-cerebral partial pathlengthslf]. Notice from panels (C)
and (D) that the DCS optical density is more sensitive to #relaral layer than the NIRS optical
density is, consistent with findings in work of referencelp2
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5.4 Results

5.4.1 Validation with simulated data

We tested the semi-infinite DCS Modified Beer-Lambert lam@apn 5.4) using simulated data
(Figure 5.5), as well as real data collected from a juvenidge(pigs. 5.7, 5.8). The simulated
DCS data was generated from semi-infinite analytical smhstof the correlation diffusion equa-
tion (Equation 5.5) with added noise [276]. Baseline tidsloed flow and optical properties in
the simulated data were chosen to be representative of ek [h21], and perturbations from
baseline were induced by varying blood flow)(from +50% to —50%, with constant tissue
optical properties. Figure 5.5(A) shows the simulatedrisity autocorrelation functions for
these baseline and perturbed conditions, plotted as adanat delay-time. The DCS Modified
Beer-Lambert law (Equation 5.4) was then applied to thisutated data set to calculate the flow
change as a function of delay-time (Figure 5.5(B)). Goo@egrent between the calculated and
actual flow changes is found for a wide range of delay-times.

We next quantified the range of delay-times for which the DG&lifled Beer-Lambert law
can be accurately employed. First, recall that the semiitefiDCS Modified Beer-Lambert
law is expected to be accurate in the lijt,k3F7/p, < 1 (5.8). The simulations show
that it will remain fairly accurate even whelu,k3Fr/u, ~ 1. In order to appreciate the
simulation results more generally, we introduce the direnisss delay-time7~°F°, which
depends on baseline blood flo&), correlation time-delayr(), and° = K§(u2/ud)k3r!
(see Equation 5.17). When this dimensionless delay-time i$, then the baseline electric
field autocorrelation function has decayed by1/e. In terms of this dimensionless delay-
time, the limit2u.k2F7/u, < 1 corresponds to the baseline condition’ F* < «, where
a =+l /(2uk3). For the “typical” conditions chosen for Figure 5&= 2.3.

Figure 5.5(B) plots the calculated DCS Modified Beer-Lanifiernv change for each di-
mensionless delay-time. The difference (error) betweercéiculated flow change and the true
flow change (simulated value) is relatively small, even fionehsionless delay-times approach-
ing o = 2.3. We also see that for 30% increasein flow, the DCS Modified Beer-Lambert
law is accurate over a narrower range of dimensionless dietey than for a50% decrease

(Figure 5.5(B)). The latter behavior is a consequence ofdbethat when flow is increased,
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Figure 5.5:(A) Simulated semi-infinite intensity autocorrelation curggant SD acrossV =
10k curves) plotted as a function of the delay-timfor a—50% and+50% change in flow while
tissue optical properties were held constant. The soustectbr separation, light wavelength,
and baseline tissue properties are= 3 cm, A = 785 nm, andul = 0.1 cm™!, 40 = 8
cm !, FO = 1078 cn?/s, n = 1.4, now = 1, respectively. The simulated DCS data were
generated from the semi-infinite solution of the correlatffusion equation (Equation 5.5)
with added noise derived from a correlation noise model J2781e correlation noise model
was evaluated at a baseline DCS intensity@f photons a second and an averaging time.bf
seconds(B) Fractional blood flow changes (mearSD) estimated by applying the semi-infinite
DCS Modified Beer-Lambert law, i.exhf(7) = AODpcs(t)/(dr(7)FP) (Equation 5.4), to
the simulated data. To appreciate the simulated resultg gemerally, these fractional blood
flow changes are plotted against the dimensionless detag+ti/° F°. Here,(y'F°)~!, where
7 = K12/ ud)kEr? (see Equation 5.17), is approximately the characteristizag time of
the baseline electric field autocorrelation function (seeti6n 5.8).
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the intensity autocorrelation function decays more rgpidfhen the autocorrelation curves are
close to fully decayed, then the DCS Modified Beer-Lambentifapredominantly sensitive to
correlation noise instead of flow. For a perturbed state fraseline (e.gzbf = 50%), the limit
2uLk3FT /e < 1 corresponds to’ FO < o(FY/F) (assuming constant optical properties).

Thus, a larger value af reduces the value of the dimensionless delay-time uppét lim

5.4.2 Noise consideration

At very short delay-times, there is little difference betnehe intensity autocorrelation curves
corresponding to different blood flows (Figure 5.5(A)). mstlimit, the changes to the DCS
optical density are heavily influenced by correlation npised flow calculations at the very
short delay-times in Figure 5.5(B) are noisy. In generalyfiapplying error propagation rules to
Equation 5.4, the noise in the calculated flow charigei(f (7))) as a function of- for constant
tissue optical properties is

1 6(ga(r)—1)

e = ~dr(MF Jgo(r) — 1]

d(AODpcs(T))

A correlation noise model can be used to accurately estitifatér) — 1) [276]. AsT increases,
the correlation noise decreases, aprdr)F, increases (Figure 5.2(A)). Both trends reduce the
noise inrbf. However, wheng, (7)—1| goes to zero asincreases, an accompanying increase in
noise is expected. From Figure 5.5(B), the noisebififalls with increasing delay-time and then
levels off aroundry* F° ~ 0.3; the noise then remains constant for a large range of ditagst

As one would expect, the flow change computed with a singtethe DCS Modified Beer-
Lambert law is more sensitive to noise than the flow changaeted from nonlinear fits to the
semi-infinite correlation diffusion solution across mamjay-times. To ameliorate sensitivity
to noise, multiple delay-times can also be used for the DCSHifiéal Beer-Lambert law. Then
Equation 5.4 becomes a system of linear equations, i.eg@umtion for each delay-time, which

can very rapidly be solved to derive flow changes.

5.4.3 In-vivo validation

Finally, we validated the semi-infinite DCS Modified Beemhlaert lawin-vivo. In this case, the

scalp of a juvenile pig was reflected and 2.5-mm burr holegwahled through the skull down
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Figure 5.6:(A) To monitor hemodynamics in the semi-infinite geometry, a&pike pig’s scalp
was reflected, and 2.5 mm burr holes were drilled through kbt for placement of 90-degree
optical fibers. A DOS/NIRS source-detector pair (red csLimeasured cerebral tissue absorp-
tion, and a DCS source-detector pair (black circles) measaerebral blood flow. The source-
detector separation of both pairsgds~ 1.5 cm. (B) Schematic showing the timeline of the
experiment in minutes. Venous infusion of dinitrophenoN@® 9 mg/kg) dramatically stim-
ulated cerebral oxygen metabolism and inducex@% increase in cerebral blood flow. The
DCS and DOS techniques were interleaved to measure bloodgfidiissue absorption every 7
seconds(C) Anterior-posterior slice of an anatomical MRI scan of a pighvsimilar weight to
the juvenile pig used in this measurement. The burr holethitwo optical fibers closest to the
midline in panel (A) have been artificially overlayed on thizn.
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to the dura (Figure 5.6). Optical fibers were inserted intlibles to comprise a single DCS
source-detector pair for measurement of cerebral blood #md a single DOS/NIRS source-
detector pair for measurement of cerebral tissue absorigure 5.6(A)). The source-detector
separations of both pairs were approximately 1.5 cm, antldkeline cerebral optical properties
of the pig were assumed to (785 nm) = 0.2 and x°(785 nm) = 8 cm~! [140]. Impor-
tantly, in this measurement the semi-infinite geometry is@dgapproximation for the true tissue
geometry, because the optical fibers are very close to the. bra

Figure 5.6(B) is a schematic showing the timeline of the expent. While monitoring
with DOS and DCS, 200% increase in cerebral blood flow was induced in the pig via usno
infusion of 9 mg/kg of the drug dinitrophenol (DNP). DNP is @@n transporter across cell
membranes which disrupts the mitochondrial proton gradie8il]. In an effort to restore the
proton gradient, cells stimulate cerebral oxygen metabo[iL81], which in turn leads to a large
increase in cerebral blood flow. Additional details aboatahimal preparation and measurement
are in Section 5.9.

The calculated temporal cerebral blood flow changes in tipédnie to DNP) using the DCS
Modified Beer-Lambert law are in good agreement with theuwtated changes from nonlinear
fits to the semi-infinite solution of the correlation diffasi equation (Figure 5.7). Measured
cerebral absorption changes (Figure 5.8(B)) were incatpdrin the blood flow calculations.
Note, when using multiple delay-times in the DCS Modified Beambert law, the noise in
temporal blood flow estimates is comparable to the nonlidé&rsion fit (Figure 5.7(A)). For
single  blood flow monitoring, the temporal blood flow noise is lardgaut the average blood
flow changes are the same (Figure 5.7(B)); this behavior detrates the feasibility of accu-
rate singler blood flow monitoring with DCS. In Figure 5.7(B), the dimemsliess delay-time
7Y FY = 0.33 (corresponding t@9(7) = 1.3) was used for single delay-time monitoring.

The estimated cerebral blood flow changes from the DCS MaldBieer-Lambert law are
also plotted as a function of dimensionless delay-time gufé 5.8(A) for two quasi steady-
state temporal intervals. During these temporal flow irgksvthe blood flow changes were also
determined from nonlinear fits to the semi-infinite corrielatdiffusion solution. The average
blood flow changes from the nonlinear fit estimatesia&®% and64% (solid black lines). The

horizontal dashed lines in Figure 5.8(A) indicate the noigthe nonlinear fit estimates of blood
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Figure 5.7: Temporal fractional cerebral blood flow chanigesiced by injection of the drug
dinitrophenol (DNP) in a juvenile pig. The baseline flowfi8 = 5.34 x 10~8 cm?/s, which is
the average blood flow index over the 18 minute time intere@iveen the vertical dashed lines.
Cerebral blood flow changes were calculated from nonlinéatdithe semi-infinite correlation
diffusion solution (Equation 5.5) and from the semi-intnDCS Modified Beer-Lambert law
(Equation 5.4) usingA) multiple delay-times, i.es < 5.5 us, which corresponds t@)(7) >
1.25, and(B) a single delay-time, i.er, = 3.8 us, which corresponds @) (7) = 1.3. Measured
tissue absorption changes (Figure 5.8(B)) were incorpdrat both the correlation diffusion fit
and the DCS Modified Beer-Lambert law. Tissue scatteringasasmed to remain constant at
1, = 8 cm~!, and the red and blue shaded regions indicate quasi stéatéytsmporal intervals
that are analyzed further in Figure 5.8.
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Figure 5.8: (A) Mean fractional cerebral blood flow changes (averaged sdrmicated time
intervals in the legend) as a function of the dimensionlesdaydtime 7+ F° (see Figure 5.5
caption) in a juvenile pig.(B) The pig’s cerebral absorption over time, which was caleadlat
from applying the semi-infinite Modified Beer-Lambert lawg(ition 5.1) to the measured
DOS/NIRS intensity changes from baseline. Note that theesthaegions in panel (B) indicate
the temporal intervals averaged over in panel (A). The catdidood flow changes in panel
(A) were obtained from applying the semi-infinite DCS ModifiBeer-Lambert law (Equa-
tion 5.4) to the measured intensity autocorrelation cuar@sthe measured cerebral absorption
changes. The horizontal solid and dashed black lines inl gAhéndicate the fractional blood
flow changes (Mear: SD) obtained from fitting the intensity autocorrelationvasg to the non-
linear semi-infinite correlation diffusion solution (Edicm 5.5).
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flow (constant because the nonlinear correlation diffugibnses all delay-times). Note that
the average value of the DCS Modified Beer-Lambert law eséméthe larger flow increase
is within the noise of the nonlinear correlation diffusiondstimate for the delay-time interval
0.16 < ™F% < 0.82, which corresponds to the baseline intensity autocoicglgunction
rangel.15 < ¢9(r) < 1.40. The smaller flow increase in Figure 5.8(A) is accurate foewen
wider range of delay-times, because the intensity autelaion function associated with this

increase requires a longer delay-time to completely desagSection 5.4.1L

5.5 Discussion

The Modified Beer-Lambert approach has been employed éxébni the biomedical optics
community [99, 122,166, 175, 219, 248], in large part beeanfsits simplicity. With this ap-
proach, researchers have monitored temporal changesaod bkygenation and blood volume
with CW light, using only one source-detector separatiarthé present paper, we have extended
the Modified Beer-Lambert approach to the DCS measuremedtywa have demonstrated the
accuracy of this extension in both simulations (Figure &ualin-vivo data (Figs. 5.7, 5.8).
The DCS Modified Beer-Lambert approach offers some advastagmpared to the traditional
analysis scheme of fitting intensity autocorrelation datadnlinear solutions of the correlation

diffusion equation.

5.5.1 Real-time estimates of blood flow changes

The DCS Modified Beer-Lambert law is a linear equation retatthanges in blood flow to
changes in signal foany tissue geometry. Although the correlation diffusion sioltin the
semi-infinite geometry is closed form, the correlation ukfbn solutions in more intricate ge-
ometries (e.g., curved, layered) are vastly more complekcansequentially quite time-consuming
when fitting data. With the DCS Modified Beer-Lambert appmadhe correlation diffusion so-
lutions are needed only once to evaluate the multiplicatregghting factors at the “baseline”
tissue state, e.g., Equation 5.13. We emphasize that evgadmetries where closed form solu-
tions are not available, these multiplicative weightingtéais can still be evaluated numerically.

Then, blood flow changes from baseline are rapidly deterdlyesolving a linear equation (Eq.
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(5.4) or (5.8)). Consequentially, the DCS Maodified Beer-lbam law is well suited for real-time

blood flow monitoring, especially in tissue geometries #ratnot semi-infinite.

5.5.2 Blood flow monitoring in tissues wherein light propagéon is non-diffusive

Diffusive light transport is not required for using the DC®dfied Beer-Lambert approach. In
blood flow monitoring applications wherein the photon difan model is not valid, the mul-
tiplicative weighting factors can be evaluated using sohg of the correlation transport equa-
tion [3,73] instead of the correlation diffusion equatised Section 5.7). For the tissue geometry
of interest, the correlation transport equation can beesbhumerically with Monte Carlo tech-
niques [24, 186]. Thus, the DCS Modified Beer-Lambert apgidacilitates accurate blood
flow monitoring for the small source-detector separatigpictl of endoscopic probes, for com-
plex tissues that contain “non-diffusing” domains suchaagably) cerebral spinal fluid inside
the head [63, 148, 196], and for tissues that contain verk b@ncentrations of blood, as in
the liver [144]. In all three of these examples, the assumngtunderlying the photon diffusion
model are violated, and therefore the photon diffusion risd®ot expected to be accurate. An-
other potential application of the non-diffusive DCS MoelifiBeer-Lambert approach is blood

flow monitoring with visible light.

5.5.3 Improved depth sensitivity

The DCS Modified Beer-Lambert law permits blood flow monigriwith intensity autocor-
relation measurements at a single delay-time, in conteatet traditional correlation diffusion
approach wherein blood flow estimates are obtained by anguand fitting a full, nearly contin-
uous, intensity autocorrelation curve. It is now well efitdied that the autocorrelation function
decay times associated with long light paths are relatisiebrt, while the decay times associated
with short light paths are relatively long [186, 221, 257hug, the autocorrelation function at
shorter delay-times will be inherently more sensitive tekr tissues in remission geometries
(Figure 5.4), which in turn means that the sensitivity of @S measurement to blood flow at

deeper tissue depths is improved by using short delay-timéme DCS Modified Beer-Lambert
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law. Conversely, using long delay-times improves the s$iitgiof the DCS measurement to tis-
sue blood flow at shallow depths. This same effect can beathigy fitting different parts of the
intensity autocorrelation curve to the correlation diffusmodel. In practice, these correlation
diffusion fits still require several delay-times spanningignificant portion of the autocorrela-
tion curve. By using a single delay-time, the experimenges finer control of the measurement
depth sensitivity for DCS measurements. Note that for DC8sumeements in transmission ge-
ometries [40], the autocorrelation function at longer gdlmes (short light paths) will be more

sensitive to tissue adjacent to the straight line betwearcecand detector.

5.5.4 Increased temporal resolution of DCS measurements

The DCS Modified Beer-Lambert law offers new routes for iasexl DCS measurement speed
and for simpler instrumentation. Underlying these adwgedais again blood flow monitoring
with a single delay-time. We and others have used multiplerdware correlators to mea-
sure the intensity autocorrelation function [72, 218] dagdimes spanning several orders of
magnitude from~ 100 ns to~ 10 ms. Achieving sufficient SNR for deep tissue DCS mea-
surements (e.g., as in the brain) typically requires avegamany (Vv > 100) of these 10-ms
autocorrelation curves. The single delay-time cerebrabdbiflow monitoring in the pig shown

in Figure 5.7(B) was done at= 3.8 us. Thus, in this example,250 blood flow measurements
can be acquired in 1 ms, which can then be temporally averameeduce noise. In 10 ms,
which is roughly the time required to measure a single autetaiion curve with a multiple-

T correlator,~2500 blood flow measurements can be acquired and averaged. Otesrefen
though singler blood flow monitoring with the DCS Modified Beer-Lambert lasvnnore sensi-
tive to correlation noise than multiptemonitoring (Figure 5.7), the substantial improvement in
the blood flow sampling rate with singlemonitoring means that enough averaging can be em-
ployed to compensate for this additional noise while stiélintaining high DCS measurement
speeds. Blood flow measurements at high acquisition rateadwantageous in several appli-
cations, including schemes to filter out motion artifactexercising muscle [226]. Single-
monitoring also makes it possible to use singlbardware correlators, which are cheaper than
multiple-r hardware correlators. Alternatively, software corralafd@?] for a single delay-time

could be implemented.
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5.5.5 Filtering contamination from superficial tissues in eep tissue flow moni-

toring

The same paradigms that have been developed with the MoBiiedLambert law to filter con-
tamination from superficial tissues in blood oxygenatiorasugements of the tissue of interest
(e.g., the brain) [91, 197, 215, 217, 235] can also be usedarDICS Modified Beer-Lambert
formulation for blood flow monitoring. In fact, these parglis are likely to work even better
with DCS, because DCS is more sensitive to deep brain heraotigs than continuous-wave
DOS/NIRS (Figs. 5.4C, 5.4D) [221].

Building on work done with the DOS/NIRS Modified Beer-Lamtblenw [91, 215], a use-
ful scheme for filtering superficial tissue contaminationthe DCS signal is to employ two
source-detector separations. One source-detector fiepashould be long and the other short.
Detected light from the long separation travels througltnisoperficial and deep layers of tissue,
but detected light at the short separation is predominamthfined to the superficial layer. Two
two-layer DCS Modified Beer-Lambert law equations (coroggjping to the two source-detector
separations) can then be employed to better isolate thetsege blood flow component from
the superficial blood flow component. Ideally the experiraemtould acquire “initial/baseline”
measurements wherein only superficial blood flow is changing

In cerebral monitoring, one way to change superficial blooa flvithout affecting cerebral
blood flow is to vary the pressure of the optical probe agaimsthead [184]. Initial measure-
ments acquired during probe pressure modulation can thesdzbto derive the patient-specific
weighting factors in the DCS Modified Beer-Lambert law. Ténaseighting factors would sub-
sequently be used to filter superficial contamination inlmeieblood flow monitoring. We will

develop this idea further in a future paper.

5.6 Conclusion

The Modified Beer-Lambert extension to the DCS measurerseatdurate enough to be useful
for blood flow monitoring. It facilitates real-time flow mdoring in complex tissue geometries,
provides a novel route for increasing DCS measurement speddcan be used to probe tissues

wherein light transport is non-diffusive. It also can bedise filter signals from superficial
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tissues.

5.7 Appendix 1

The multiplicative weighting factorgr, d,, andd, in Equation 5.4 can be estimated by taking
the appropriate derivative of the solutions to the corighatliffusion equation applied to the

appropriate geometry (e.g., semi-infinite homogeneous). €tirst, using the Siegert relation,

we have:
dF(TaP)E% (;;[ log(g3(r,p) = 1)] = ai?[ log(Blgt (7, p)]?)]
ai”[ log(ﬂ)—210g(9?(ﬂp))]—23%[ log(g7 (7. p))] - (5.11)
Similarly,
talrop) = 25— [ 10g(40(7. )]
) = 25 [~ oE(at(r )] 512

Here,g: (7, p) is the solution to the correlation diffusion equation fae teometry of interest [24,
79], and the derivatives of the solution are evaluated atllvaesconditions. In conditions where
an analytical solution for the correlation diffusion edqaatdoes not exist, the multiplicative

weighting factors can be computed numerically:

dn(r.p) = 210 91(T,p,F°—AF/2,u2,u’s°)
PP ="AF 5\ g1 (7, p, FO+ AF /2,140, p9) )’
2 91(1, 0, FO, 1) — Apua /2, i )
= 1 a
a(7: P) T < 1(7,p, F' ,ua+Aua/2 1)
2 gi(7, p, FO, pd, pl — Ayl /2)
ds : — 1 a s s
() A Og( 1(7, 0, FO, ud, 1 + Ap/2)

whereAF/F° = Apo/pl = Apl,/p® = 1075, Equations (5.11), (5.12), and (5.13) are impor-

(5.13)

tant intermediate results, which provide generalized esgions for the analytical and numerical
computation of the multiplicative weighting factors in tB€S Modified Beer-Lambert law for
any homogeneous geometry.

Evaluating these equations requires knowledge of the inastissue optical properties and

the baseline flow index. The baseline flow index can be obdafram a nonlinear fit of the
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Figure 5.9: Fractional blood flow changes (i.B/,F" — 1) computed from applying the semi-
infinite DCS Modified Beer-Lambert law (Equation 5.4) withsamed baseline optical prop-
erties ofu (vertical axis) andu’’ (horizontal axis) to semi-infinite simulated data with mois
(IV = 1k curves). The actual blood flow and absorption change§9r80% and15%, and(B)
—50% and—15%, respectively. Tissue scattering was constant, and theldsaseline proper-
ties (including simulated noise parameters) are identa#hose in Figure 5.5, e.gu) = 0.1,

p? =8 cm~! (denoted by dashed lines). To compute the absorption chdraa the simulated
data, the Modified Beer-Lambert law (Equation 5.1) was eggao The differential pathlength
((L)) in Equation 5.1 was calculated from the assumed baselitieabproperties [94]. Finally,
the baseline flow indexF, was extracted from a nonlinear fit of the simulated basediaia

to the semi-infinite correlation diffusion solution (Egioat 5.5) evaluated at the assumed base-
line optical properties. Errors in the assumed baselinealgiroperties only have small effects
on the computed fractional flow change. Note that the contpigestional blood flow changes
are not exactlyp0% and—50% when the exact optical properties are assumed because bf sma
errors arising from truncating the tissue absorption teinrthe Taylor Series expansion of the
DCS optical density (Equation 5.3) to first order.
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baseline intensity autocorrelation curve to the correfatiiffusion solution (se&ection 5.2
The baseline tissue optical properties can either be asbktdirom the literature (e.qg., [144])
or measured with time-domain or frequency-domain DOS/NJRH, 201]. For typical tissue
measurements wherein scattering does not change, theidgngi the computed fractional
blood flow change to assumed baseline optical propertienadl $Figure 5.9). For the example
of flow changes shown in Figure 5.9,50% errors in the assumed baseline optical properties
affected the estimated fractional flow change by ofily percentage points (e.g., from 0.50 to
0.45). Thus, for many applications, errors in the assumedlivee optical properties have little
effect on calculated changes in blood flow. Computed fraelidlow changes are a little more
sensitive to errors in baseline flow than to errors in basediptical properties. Specifically, for
the example of flow changes in Figure 54910% errors in baseline flow affected the estimated
fractional flow change by-5 percentage points, ant25% errors in baseline flow affected the
estimated fractional flow change Byl0 percentage points (results not shown).

An important assumption in this approach is that the caigelaliffusion equation accurately
models the electric field autocorrelation function in tessiihis assumption is valid when using
large source-detector separatiops> 1/(u, + 15), to measure highly scattering media with
isotropic dynamics [24]. The DCS Modified Beer-Lambert |&guation 5.4, however, can also
be used for correlation transport conditions wherein theetation diffusion equation breaks
down. In this case, the derivatives in Equations (5.11) &t will have to be applied to the
solutions of the so-called correlation transport equatdpm3], which can be solved numerically

with Monte Carlo techniques [24, 186].

5.8 Appendix 2

The semi-infinite solution to the correlation diffusion atjon (Equation 5.5) is approximately
exponential in the small delay-time limit, i.@x,(7) ~ exp(—yF7), with v = Ko (1,/pa) k371
Normalizing the delay-time by the characteristic decayetii.e.,7. = (yF)~!, is a meaningful
dimensionless way to express delay-times (Figs. 5.5, 8.8),g1 ~ 0.4 for 7vF = 1. Further,
the DCS Modified Beer-Lambert law (Equation 5.4) is a goodagmation in the small delay-
time limit because- log(g2(7) — 1) = —log(Bg?) = 2y7F — log(pB) is linear with respect to
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F. To derive the small delay-time limit of the semi-infinitercelation diffusion solution, first
note that if the source-detector separatj@ris much greater than the photon transport mean-free

path through tissué,., then (see Equation 5.2)

1 1 T
1.1 (1 _ _2> 7 (5.14)
wherex = 2z,(z;, + ¢4,). Substituting Equation 5.14 into Equation 5.2, we see that

Gr(r) = o P 1o (B2 (12 5)] 6

47 ly, 71 1 1

In the limit K'(7)x/r1 < 1, which is satisfied at small delay-times, Equation 5.15 &fiep

further to

3 xexp(=K(1)r) 1
Gi(1) = It 2 <K(T) + 7“_1> . (5.16)

In the more stringent limi2(,/u,)k3 FT < 1, the electric field autocorrelation function in

Equation 5.16 is approximately exponential:

G1(1)

g1(1) = Gi(0) ~ exp(—yF'T) (1 + T

rmKy+1

) ~ exp(—vF'1), (5.17)

wherey = Ko(ul/pa) kg1 and Ko = K(0) = [3pa(pa + 14)] 2.

5.9 Appendix 3

All animal procedures were in accordance with guidelingaldished by the National Institutes
of Health and approved by the Institutional Animal Care ars# Committee of the University
of Pennsylvania. Diffuse optical measurements were padron a male Yorkshire juvenile
pig (28 kg). The animal was anesthetized with an initialantuscular injection of ketamine (25
mg/kg), dexmedetomidine (0.025 mg/kg), and glycopyro{@8te2 mg/kg), intubated, and then
mechanically ventilated with a mixture ef 3% isoflurane in pure oxygen gas. To prepare for
hemodynamic monitoring in the semi-infinite geometry, thigspscalp was reflected over the left
hemisphere of the brain, and a dental drill was used to foBmn burr holes through the skull
down to the dura for the placement of optical fibers (see EiguB). One DCS source-detector

pair and one DOS/NIRS source-detector pair were used fotdgmamic monitoring. The
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positions of these fibers, denoted as (lateral distance finencenter of the eye, lateral distance
from midline), are (10 mm, 5 mm), (21 mm, 15 mm), (26 mm, 15 mamg (37 mm, 5 mm)
for the DCS source, DCS detector, DOS/NIRS source, and DRSS Nletector, respectively.
Thus, the source-detector separations for both the DOSSMIRI DCS pairs are approximately

15 mm.

Upon completion of the surgical preparation, the ventilatof the pig was switched to a
mixture of oxygen and nitrogen (3:7) with no isoflurane. Ahesia was maintained instead
with intravenous administration of ketamine (20-60 mgig/Throughout the rest of the study,
arterial oxygen saturation and end-tidal CO2 were conlipnnaonitored with blood gas samples
from the femoral artery and with a capnograph, respectivEhe ventilation rate was initially

adjusted to maintain an end-tidal CO2 between 40 and 50 mm Hg.

After inserting ninety-degree bend terminated opticalrBlq&iberoptic Systems, Simi Val-
ley, CA) in the burr holes, a 5-pound sandbag weight was ebyeaiflaced on top of the fibers to
secure them in place. Two 1-mm diameter multi-mode borzg#i fibers (Fiberoptic Systems)
delivered source light to the cerebral tissue, and a thimhi diameter multi-mode fiber received
diffusing light from the tissue for DOS/NIRS detection. HOCS detection, @ x 1 bundle of
780HP single-mode fibers (Fiberoptic Systems) was usedseTtilgers interfaced to a portable
custom-built instrument designed for hemodynamic moimitprwhich is described in detail
elsewhere [36, 158]. In the DCS measurement, a continuous,wang coherence length 785
nm laser (CrystaLaser Inc., Reno, NV) was employed to debeeirce light, and the outputs
from an array of 4 high sensitivity avalanche photodiodeBGBI-AQ4C, Excelitas, Canada)
operating in photon counting mode were connected to a nedtifnardware correlator (Corre-
lator.com, Bridgewater, NJ). In the DOS/NIRS measurenténge lasers (690 nm, 785 nm, 830
nm; OZ Optics, Canada) intensity modulated at 70 MHz werglaalto an optical switch (Di-
Con Fiberoptics, Richmond, CA), which sequentially cydled source light between the three
wavelengths. A heterodyne detection scheme using a phdiphen tube (R928, Hamamatsu,
Bridgewater, NJ) was employed for DOS/NIRS detection. Téta @cquisition was interleaved
between DOS/NIRS and DCS to measure blood flow and blood ogfige with a sampling
rate of 0.15 Hz.
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After ten minutes of baseline cerebral hemodynamic manigon the pig, the drug dinitro-
phenol (DNP, 9mg/kg) was injected intravenously over arr hmdramatically increase cerebral
oxygen metabolism and blood flow [181] (see Figure 5.6(Blje ©xygen content in the ven-
tilated gas was increased as needed to maintain the ax&ygen saturation in the pig above
95%. Ketamine was also supplemented as needed with boluseazzfpdim (0.1-0.2 mg/kg) to
ensure adequate sedation as the oxygen metabolism indreéfter two hours of hemodynamic

monitoring, the pig was euthanized with pentobarbital.
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Chapter 6

Pressure Modulation Algorithm to
Separate Cerebral Hemodynamic

Signals from Extra-cerebral Artifacts

6.1 Introduction

Diffuse correlation spectroscopy [37,79,84,182,269] @)@nd near-infrared or diffuse optical
spectroscopy [99,115,166,175,193,219,231,248] (DOSAY Are important optical techniques
that employ near-infrared light (NIR) to measure cerebiabth flow, oxygen saturation, and
total hemoglobin concentration continuously, non-invaly;, and at the bedside. Further, in
combination these measurements of blood flow and blood owatgm provide access to the
oxygen metabolic status of the brain [28, 62, 233].

As might be anticipated, this information about cerebrabbl flow, blood oxygenation and
oxygen metabolism has clinical value. All three parameferexample, are important biomark-
ers for brain diseases such as ischemic stroke [127, 228htments for ischemic stroke (and
other diseases) aim to minimize neurological damage bymaixig perfusion to the brain le-
sion [86, 97, 259]. Numerous treatment interventions forket are available, but variability in
response-to-treatment has been observed [86, 97, 1554 ragifiective treatment for one patient

may be ineffective, or even harmful, for another patientud,ta promising clinical application
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for DCS and DOS/NIRS is rapid patient-specific assessmeinéatfment efficacy. Indeed, DCS
and DOS/NIRS enable detection of hemodynamic changesebatw neurological symptoms

emerge [84,192,277].

Unfortunately, the optical techniques have limitations.wall-known drawback for opti-
cal monitoring of cerebral tissue is its significant semgitito blood flow and oxygenation in
the extra-cerebraltissues (scalp and skull) [26, 184, 221, 237, 238]. Trad#iaiffuse optics
analyses approximate the head as a homogeneous meslgnmo a priori anatomical knowl-
edge is used. The homogenous models ignore differences&et@xtra-cerebral hemodynam-
ics and cerebral hemodynamics in the brain, and because-@xtebral blood flow and blood
oxygenation are non-negligible, their responses contaiaithe DCS and DOS/NIRS signals.
Specifically, extra-cerebral contributions can lead eixpenters to incorrectly assign cerebral

physiological responses [64, 237, 239].

The DOS/NIRS community has, of course, developed/adaptaarder of approaches to
ameliorate the extra-cerebral tissue problem. Time sanadysis techniques, for example, use
filtering schemes to minimize superficial tissue contaniimain functional brain mapping mea-
surements [26, 90, 109, 137, 161, 216, 237, 238, 262, 271]agsamption that underlies these
techniques is that superficial tissue contamination afiees systemic effectse(g, heart rate)
that do not correlate with cerebral response because dgstamations are typically damped
by cerebral autoregulation. However, for numerous braseases, including ischemic stroke,
cerebral autoregulation is impaired [65, 111]. In fact, gnatroke treatment interventions are
based on the notion of impaired cerebral autoregulationamadesigned to increase cerebral
blood flow through systemic mechanisnesg, increased blood pressure). Thus, it is preferable
not to filter systemic components from the measured sighaks different vein, more complex,
computationally intensive models have been proposed tdlbaxtra-cerebral heterogeneities
directly, including layered models [148, 171, 173, 174,228, 234, 255, 261], Monte Carlo
techniques in realistic geometries of the head [25, 92,238, and imaging [26, 89, 114, 258].
The complexity of these models, however, can make them ictiped to implement for real-
time monitoring. Further, these models often reqaingriori anatomical information about the

patient’s head, as well as knowledge of the optical progexif different tissue types.
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In this contribution, we report on a hovel implementatiohesme for real-time cerebral mon-
itoring with the two-layer model. The two-layer model in ebral monitoring offers a com-
promise between simplicity and accuracy [55, 85, 91, 108, 120, 172, 208, 215]. The two-
layer model consists of a homogeneous superficial (extebeal) layer above a homogeneous
cerebral layer. The key to our new approach is to acquire DE@SXOS/NIRS measurements
at multiple optical probe pressures and at multiple sodetector separations. Variations in
probe pressure against the head induce variations in egtedsral hemodynamics, while cere-
bral hemodynamics remain constant [184]. We will show hois ififormation can be utilized
to derive patient-specific analysis parameters that heteparate cerebral hemodynamics from
extra-cerebral blood flow and oxygenation signals. For D@&asurements of blood flow, we
employ the pressure modulation scheme and a two-layer Mdd&eer-Lambert framework for
analysis [12]. For DOS/NIRS measurements, we extend Fabbral's two-layer Modified
Beer-Lambert formulation [91] to include a pressure caliion stage prior to monitoring.

After describing the theory, we demonstrate the abilityhtd hew measurement paradigm/algorithm
to filter extra-cerebral contamination in simulations amdunctional activation experiments in
healthy adult humans. Ultimately, these developmentsldHead to improved accuracy in real-

time monitoring of cerebral flow and oxygen metabolism.

6.2 DCS and DOS/NIRS Monitoring (Homogeneous Tissue Model)

Traditionally, diffuse optical monitoring utilizes homegeous tissue models of the head, which
we review first. The basic measurement geometry for diffyical monitoring consists of point
illumination and point detection on the tissue surface;diséance between source and detector
is p (Figure 6.1A). DOS/NIRS is a static technique that meassi@s (0.1 — 1 s) variations

in the detected light intensity induced by changes in tisgusorption f,) and tissue scattering
(u%). DCS is a qualitatively different dynamic light scatteyitechnique that measures the rapid
(e.g, microsecond scale fluctuations) speckle light intensugttlations induced by red blood
cell motion. DOS/NIRS measurements are most commonly aedlyvith photon diffusion
models [96,266] and the Modified Beer-Lambert law [10,6Makgously, correlation diffusion
models [23, 24] and the so-called DCS Modified Beer-Lambmxt [[12] can be employed for
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analysis of DCS measurements.

The Modified Beer-Lambert law is arguably the most widelydisemogeneous tissue model
for analysis of DOS/NIRS measurements [10, 67]. The ModiBedr-Lambert law relates
changes in tissue optical properties to changes in conigi@ve diffuse optical intensity mea-
surements for light that has been multiply scattered inrdfettory through tissue (Figure 6.1).
Specifically, the measured difference in optical densityken a “perturbed” state and a “base-
line” state is related to tissue scattering and tissue akisordifferences of the corresponding

perturbed and baseline states,

AOD = —log (%) ~ LApg + Z_ELAM; ~ LAug. (6.1)
Here, the tissue optical density is defined as the negatyerithm of the ratio of the detected
and incident light intensities (time-averagedg., OD = —log(1/I;) for the perturbed state,
andOD" = —1og(1°/1) (Figure 6.1B) for the baseline state; the incident ligheisty, I,

is assumed to remain constal¥OD = OD — OD°, Ap, = pg — p2, and Ay, = ply — p?

are the differential changes in tissue optical densitgutisabsorption, and tissue reduced scat-
tering, respectively, between a perturbed stat®( p,, 1) and the baseline stat&®D°, 1.2,
©?). The multiplicative factor = 90D° /0y, is the so-called differential pathlength, which
is approximately the mean pathlength that diffusing phsttsavel through the medium from
source to detector [10]. The Modified Beer-Lambert law (Eigua6.1) is a first order Taylor
series expansion of the tissue optical density about tigbgerption and tissue scattering. It is
often reasonable to make the additional approximationttigascattering term in Equation 6.1 is
negligible compared to the absorption term, because Ebydi scattering changes that accom-
pany hemodynamic variations are often negligible [12], é)dthe multiplicative factop.$ /u”

for many tissues is much less than one. Multispectral tishsorption changes determined
from Equation 6.1 are then readily converted to estimateisefie oxy-hemoglobin {bO)
and deoxy-hemoglobinHbR) concentration changes using the well-known spectra cfethe
molecules [79, 207]. The total hemoglobin concentratifidq) is the sum of these two chro-
mophore concentrations, and the tissue oxygen saturaffi@m is the ratio of oxy-hemoglobin

to total hemoglobinHbT = HbO + HbR, StOy = HbO/HbT.
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Figure 6.1:(A) Schematic for a homogeneous, semi-infinite model of the haihda blood flow
index, absorption coefficient, and reduced scatteringfictsit of F', 1., and ., respectively.
The incident source intensityy, is assumed to remain constant over time. Blood cell motion
(e.g., red disks at time and light-red disks at time + 7) induces fast temporal fluctuations
(i.e., speckle intensity fluctuations) in the detectedtligtensity on the time scale fs, while
absorption changes modify mean light intensities (e.@rayed on time scalesofs or greater).
(B) Schematic of detected intensity fluctuations for a basdismie state (red curve) and a
perturbed state from baseline with higher blood flow and gdigm (blue curve). The horizontal
black lines are the mean intensities for the two states, tddnas/® and I. The fast speckle
intensity fluctuations in the two states are characterizeddomalized intensity autocorrelation
functions (i.e.g3(7), g2(7)). (C) The decay of the intensity autocorrelation function curges
related to tissue blood flow.

Equation 6.1 is valid for any homogeneous geometry, pravttie correct differential path-
length is used. The differential pathlength depends on ¢hece-detector separatiop)( the
tissue geometry, and the baseline tissue optical prope(tie 1) [10, 79]. For the important
special case of the semi-infinite homogeneous geometryur@&ig.1A), the differential path-
length is given by [94]

I~ 3y p* (6.2)

2 (p\/ 3usu? + 1) .

A drawback of the Modified Beer-Lambert law is that it onlyefehines changes in hemoglobin
concentrations. For measurement of absolute oxy- and deemoglobin concentrations, a pho-
ton diffusion model is commonly used. Formally, the detédight intensity is directly propor-
tional to the photon diffusion equation Green’s functiontfee appropriate tissue geometry [79],
i.e, ®(p), which depends on the tissue optical propertjes f(..). Note that the proportionality
constant between the measured light intensitfp), and the photon diffusion Green'’s function,
®(p), is the so-called light coupling coefficient to tissue foe #ource-detector pair. For semi-

infinite homogeneous tissue, the continuous-wave photibusthn equation Green’s function
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is [79, 123]

1 |exp (—r1\/3ua/€tr> exp (—rb\/m)

®(p) = I " - o - (6.3)

Here, by = 1/(pa + ph), r1 = (2. + p2)V2, 1y = [(22 + £ir)? + p?)V/?, andz, = 20,,.(1 +
Rerr)/(3(1 — Reyyr)), whereR. ;s is the effective reflection coefficient that accounts for the
mismatch between the index of refraction of tissug &nd the index of refraction of the non-
scattering medium bounding the tissug,;), such as air [123]. A standard approach for abso-
lute tissue absorption monitoring in this geometry is to soeal (p) at multiple source-detector
separations, and then obtain an estimate,dfom fitting these measured intensities to the semi-
infinite Green’s function solution (Equation 6.3). Reqditaputs for this fit are the light cou-
pling coefficients for each source-detector pair and tleuéiscattering coefficient,,. Knowl-
edge of the light coupling coefficients is typically obtadrfieom phantom calibration [133,253],
and ./, is assumed. The assumption df is an obvious source of error for continuous-wave
DOS/NIRS. In more complex frequency-domain [101] and tisoerain [201] DOS/NIRS mea-
surements, botp, andyx/, can be uniquely determined from fitting these measuremeriteetr
respective frequency-domain and time-domain Green'stiomeg [79].

To estimate blood flow, DCS quantifies the fast speckle iitiefilsictuations of multiply
scattered coherent NIR light (coherence lengtth m) induced by red blood cell motion (Fig-
ure 6.1). Specifically, the normalized intensity temponaloaorrelation functiongs(7) =
(I(t)I(t +7))/{I(t))?, is computed at multiple delay-times, wherel(t) is the detected light
intensity at timet, and the angular brackets), represent time-averages. A DCS blood flow
index, F', is ascertained from the decay @f(7) (Figure 6.1C, discussed in more detail below).
The DCS blood flow index is directly proportional to tissuedd flow, and has been successfully
validated against a plethora of gold-standard techniqL43, [L82].

In analogy to DOS/NIRS, a DCS Modified Beer-Lambert law [Eltes differential changes
in a “DCS optical density,i.e, ODpcs = —log(g2(7) — 1), to differential changes in tissue
blood flow index §), tissue absorptiory,), and tissue scattering:():

AODpcg = —log <gg(7’,¢> ~ dp(T)AF + do(7)Apg + ds(T) Ap,. (6.4)
g3(1,p) — 1
The multiplicative weighting factordp(r) = 00DY,¢/0F, do(1) = 00DYg/0u,, and
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ds(1) = 00DY,,4/04, can be estimated analytically or numerically using theredation
diffusion model applied to the appropriate geometry [12]eyl are analogues of the differential
pathlength in the Modified Beer-Lambert law, but note theipehdence on delay-time, The
DCS optical density is about equally sensitive to blood flowl sissue scattering changes, but
less sensitive to tissue absorption changes [12]. If tissadtering remains constant, and the
fractional absorption change is small compared to the bftmwd change, themMMODpeg =~
dr(T)AF. This is a system of equationise., one equation for each, that can be solved for
AF in a least squares sense. For the special case of the semiteiffbmogeneous geometry,
the multiplicative weighting factor is given by [12]

6 (9 + pg) kot | exp (K°(r)r}) — exp (~K°(7)rp)

KO(T) exp (—KO(T)T‘?) /’I"? — exp (_KO(T)’I"I?) /TI()] ) (6.5)

dF(Tv p) =

where KO(r) = [3ul(ul + p0)(1 + 2u kG FOT/u)]" /2, 1 = (6, + p*)'/%, ko = 27n /X is
the magnitude of the light wave vector in the medium, andndr, are defined in Equation 6.3.
The DCS Modified Beer-Lambert law has a similar drawback tdSINORS in that it only
determines blood flow changes. To estimate the absolutel flow index, F', a correlation dif-
fusion approach is used. Formally, the electric fid{#)) autocorrelation function(z,(7) =
(E*(t)-E(t+7)), is well modeled by the so-called correlation diffusion aipn [23,24], which
can be solved analytically or numerically for tissue geaiastof interest [24, 79]. Tissue blood
flow is ascertained by fitting the solution for the normalizd€ectric field autocorrelation func-
tion, g1 (1) = G1(7)/G1 (7 = 0), to the measured normalized intensity autocorrelatiortfan

using the Siegert relation [168Jy2(7) = 1 + Blgi1 ()|, wherej is a constant determined

primarily by experimental collection optics and sourceearamce.
For semi-infinite homogeneous tissue, the solution to theetadion diffusion equation is

[24,79]:

_ 3 [exp(=K(r)r1) exp(—K(r)r)
47‘('&,» 1 Ty ’

G1(7)

(6.6)

whereK (1) is defined in Equation 6.5, and, r;, and/,, are defined in Equation 6.3.

A standard approach for blood flow monitoring with DCS in tiometry is to derive; (1)
from measurements gt (7) via the Siegert relation. Then, the semi-infinite correfadiiffusion
solution (Equation 6.6) is fit tg; (7) using a nonlinear minimization algorithm, and an estimate

of the blood flow index ') is obtained from the fit. As discussed above, these homaogesne
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head models do not distinguish cerebral hemodynamics fsdra-eerebral hemodynamics, and

are thus prone to extra-cerebral contamination.

6.3 Probe Pressure Modulation Algorithm for Cerebral Blood Flow

Monitoring with DCS

Here we introduce our pressure modulation algorithm. Themse employs DCS measure-
ments of the brain tissues at two probe pressures and twoesdetector separations to reduce
extra-cerebral contamination in cerebral blood flow maiitp To distinguish extra-cerebral
flow from cerebral flow, the head is modeled as a two-layer orad4, 91, 106, 215], and the
source-detector separations are chosen such that deligbtaat the long separatior(, p; = 3
cm) travels through both layers, but detected light at tretsteparationd.g, ps = 1 cm) is
predominantly confined to the extra-cerebral layer (FiguA). Underlying this approach is
our previous work which showed that an increased probe yressn the head is accompa-
nied by a decrease in extra-cerebral flow; cerebral blood ownchanged by probe pressure
variation [184]. Thus, the pressure-induced variationhia lbng-separation DCS signad.(,
Figure 6.2B) is due only to changes in extra-cerebral flowis Eitra-cerebral flow change, in
turn, is readily determined by the pressure-induced charegesured in the short DCS separation
signal €.g, Figure 6.2C) which can be analyzed using the semi-infinigeiom approximation
(Equation 6.6).

We will show that the subject-specific relative contribntoof extra-cerebral and cerebral
tissues to the long separation DCS signal can be deternioettiie measured pressure-induced
changes in the DCS signal at the long and short separatiomzortantly, this patient specific
calibration with pressure modulation permits separaticih@® cerebral and extra-cerebral blood
flow components in all subsequent measurements.

The results derived in Sections 6.3.1 and 6.3.2 are for tkeiagpcase of constant tissue
absorption and tissue scattering. In practice tissueesaait often remains roughly constant
during hemodynamic changes. Further, for many cerebralegses, blood flow changes by
a substantially larger fraction than absorption. For eXammfor the finger tapping functional

response [85]F./F° ~ 1.5, Ma,c/ugc ~ 1.1 (at A = 785 nm); in this case the flow contribution
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Figure 6.2:(A) Two-layer tissue model of the head, which is comprised ofai-$efinite bottom
layer (i.e., corresponding to the cortical regions of thairgrwith a distinct blood flow index,
absorption coefficient, and scattering coefficient/of 1, ., and ,u;’c, respectively, and a su-
perficial top layer (i.e., corresponding to extra-cerelalp and skull tissue) with thickneés
and distinct tissue properties denoted By, ji4,cc, andy ... The head is probed with a long
source-detector separatign, (yellow shading), and a short source-detector separgtiofred
shading), and the probe pressure against the head is vin@dasing the probe pressure from
PV (blue curves) taP (red curves) induces a change in the DCS sigggl() at both the long
separation (pandB)) and the short separation (parf€l)). These signal changes arise entirely
from pressure-induced changes in extra-cerebral flow [184]

dominates the DCS signal change [12]. We derive the genasl wherein tissue absorption

and scattering vary in Appendix 6.10.

6.3.1 Two-layer Modified Beer-Lambert Laws for Flow at Long and Short Sepa-

rations

To filter contamination from extra-cerebral tissues in bldkow measurements of cerebral tis-
sue, we use a two-layer Modified Beer-Lambert formulatianbiood flow based on the DCS
measurement [12]. In analogy with the DOS/NIRS Modified Blesmbert law [10, 67, 130],
a “DCS optical density” for the long and short source-deteseparations at delay-timeis
defined asOD'ggS = —log(g2(7, p1) — 1) andODNIL = —log(go(, ps) — 1), respectively.
Here, go(T, p;) and gz (7, ps) are the measured long and short separation intensity autteco
tion functions with cerebral and extra-cerebral DCS bloow/findicesF,. and F,... Assuming

constant tissue absorption and scattering, the two-layetifiéd Beer-Lambert laws for the long
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and short separations are [12]:

-1
AODlong = —log [M] = ch T, Pl AFC + dFec T, Pl AF‘eca (67)
bes 99(m,p) — 1 (1) eelror)
—1
AODShort = — IOg [M] = dFec T Ps AFECa (68)
bes 99(1, ps) — 1 el

wheregd(r, p;) and g3 (, ps) are the “baseline” intensity autocorrelation functionshat long
and short separations with cerebral and extra-cerebral @®! flow indicesF? and F2, (note
that the superscript0” indicates baseline). The differential changes from basebf cerebral

and extra-cerebral blood flow afeF,. = F. — F? andAF,. = F,. — F)

ec’

and the multiplicative
weighting factorsiy (7, p1) = 0D JOF, anddp c.(r, pi) = DOD'SY /HF... indicate the
relative sensitivity of the long separation DCS optical signvariation to cerebral versus extra-
cerebral blood flow changes. For the short separation, th&itsgty of DCS optical density
variation to extra-cerebral blood flow changeslis..(, p;) = 90Dy /9F,., and we as-
sume that because the short separation predominantly esatigl extra-cerebral layer, the short
separation signal is not sensitive to cerebral blood flowgha.
Solving the system of Egs. (6.7) and (6.8) fdF., we obtain

1

dF ec(T Pl)
-~ _|Aop"O9, _ Zheedh U Agpshott | 6.9
dp,e(T, p1) bes bes (6.9)

Ak dpee(T, ps)

Notice that Equation 6.9 is a linearized implementatiorheftivo-layer head model (Figure 6.2)
that enables rapid monitoring of cerebral blood flow chariga®gal time. This implementa-
tion requires only one DCS delay-timefor cerebral monitoring, but to ameliorate sensitivity
to noise, multiple delay-times can also be used. Then, kquét9 becomes a system of linear
equations, i.e., one equation for each delay-time, whichbearapidly solved foA F... Utilizing
Equation 6.9 in both the single and multiple delay-time iempéntations requires knowledge of
dpc(t,p1) anddp ec(7, p1)/drec(T, ps). A key result of this paper is that these weighting fac-
tors can be estimated from “initial/baseline” DCS measu@eis acquired during probe pressure

modulation against the head.

6.3.2 Probe Pressure Modulation Calibration of DCS

A simple way to calibrate DCS for cerebral flow monitoring égsacquire long and short sep-

aration DCS measurements of the brain tissues at two prassymes (i.e.P, PY). It is not
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necessary to know the exact magnitudes of the probe presageenst the head, and neither
probe pressure has to be high enough for there to be risk @npatiscomfort. The key is
that changing the probe pressure fréthto P induces a large enough change in extra-cerebral
blood flow such that both the long and short separation DQ&ghange measurably (e.g., as
in Figure 6.2B,C).

6.3.2.1 Determination ofdg c.(7, p1)/dFcc(T, ps)

Recall that probe pressure modulation against the heactaffgtra-cerebral blood flow, but not
cerebral blood flow [184], i.eAF,. = 0 from probe pressure changes. Thus, for relating DCS

measurements acquired at two different probe pressurss,(&d) and (6.8) simplify to

P
AOD'MSP = _log [M} = dpeo(r, p) AFE, (6.10)
(. )
AODI = _1og [%} = dpee(T, ps) AFL, (6.11)

whereg? (1, p;) and gt (7, ps) are the long and short separation intensity autocorreldtiac-
tions acquired at pressui@ wherein the cerebral and extra-cerebral flow indices Fteand
FFP andAFE = FP — F0 is the pressure induced extra-cerebral flow change. Diyifigua-

ec? ec —

tion 6.10 by Equation 6.11 enables direct measurement obti®i s (7, p;)/dFcc(T, ps), 1.€

|
dF,ec(Ta pl) _ AODBanSP

= . (6.12)
dF,ec(T7 ps) AOD%‘S{;P
Substituting Equation 6.12 into Equation 6.9, we obtain
long, P
1 long AODDCS short

AF, = ———— |AODpcs — —rap AODDCs | - (6.13)

tP

dp,e(7, p1) AODPOS

To the extent that the two-layer model (Figure 6.2) acclyateodels the head, cerebral blood
flow monitoring obtained from Equation 6.13 will not be afied by extra-cerebral blood flow
changes. The assumptions used to derive Equation 6.13)amrdhe pressure modulation has
no effect on cerebral blood flow, and (2), tissue absorptimh scattering remain constant. In
Appendix 6.10, Equation 6.13 is extended to the more gemaise wherein tissue absorption
and scattering are changing, i.e., Equation 6.34. For atemeasurements of the magnitude of

the cerebral blood flow change, knowledgelef. (7, p;) is also required.
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6.3.2.2 Determination of the weighting factordr. .(7, p;)

As we described previously [12], the multiplicative weiiglatfactord (7, p;) can be computed
by numerically taking the appropriate derivative of the #ager correlation diffusion solution

(G1) [24, 106]:

aODlong,O B
aTDCCS _ 28—Fc (—1log [GY(r,p)])

2 log Gy (7_7 P, F’cO - AF’C/27 Feom lu’g,cv /Lg,ecv /Llso,cv /L,s(?em E)
AFC Gl (T7 plchO + AFC/27Feoc7Mg,caugecaugcaugec?ﬁ) ’

dF,C(Tv Pl)

Q

(6.14)

where AF,/F? = 107°. Evaluating Equation 6.14 requires knowledge of the exénabral
layer thickness 4), the baseline flow levelsi, F), and baseline tissue optical properties
(10, c+ Haeer Haler 1 cc)-

Ideally, the extra-cerebral layer thickness is known frarpriori anatomical information
(e.g., MRl scan), and the baseline tissue optical progeatie measured with concurrent frequency-
domain or time-domain DOS/NIRS [108, 120, 156, 157, 208]em;hestimates of?’ and F2,
are determined from simultaneously fitting the long sepamantensity autocorrelation curves
measured at two pressureg) (7, o), g5 (7, p;)) to the two-layer correlation diffusion solu-
tion [24, 106]. Important constraints used in this fit are tterebral blood flow is the same for
both probe pressures, i.eAFCP = 0, and that the pressure-induced fractional extra-cerebral
blood flow change AFL /FY, is determined from the short separation measurements (i.e
93(, ps), g5 (7, ps)) via semi-infinite methods (Section 6.2). These constsaprbvided by
the pressure calibration data make the nonlinear optiiizan the fit more tractable and less
sensitive to noise.

Note that if it is not feasible to measure baseline tissuealproperties concurrently, then
they need to be assumed based on published cerebral/exétar@l measurements in the liter-
ature [55, 108, 144, 221]. For some patieryriori anatomical information may also not be
available, in which case the extra-cerebral layer thickngéscould be a third free parameter in
the two-layer fit. Although fitting for three free parameterstead of two clearly makes the fit
more susceptible to noise and cross-talk, the fitting caimt provided by pressure calibration

still enable reasonable estimatesiif, F., and/.

ec’
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An alternative approach for using the short separation idatia fit the semi-infinite corre-
lation diffusion solution tay9(r, ps) for FY. and togd (r, p,) for X (see Section 6.2). When
using these absolute extra-cerebral flow indices as camstria the two-layer fit to the long
separation data, there are only two free parameféfs/) to fit for instead of threeK?, F2,, /).
However, the absolute extra-cerebral flow indices are Bem$0o errors in extra-cerebral tissue
optical properties [141], source-detector separatioadhmirvature, and heterogeneities within
the scalp. From our experience, the first approach thazesilrobust fractional extra-cerebral

flow change measurements is more reliable.

6.3.3 Summary

Figure 6.3 is a flow chart depicting the steps in the probespresmodulation algorithm for
filtering superficial tissue contamination in cerebral flownitoring with DCS. In the “calibra-
tion stage” of the algorithm, intensity autocorrelationasgrements at two probe pressures and
two source-detector separations are used to compute b fat. (7, p;)/drec(T, ps) (“calibra-
tion term 1”) and the long separation weighting facter.(r, p;) (“calibration term 27). These
calibration terms are then employed in the “monitoring stag permit the rapid estimation of
cerebral flow changeg\Z£..). To obtain the fractional cerebral flow change from basglaimply
divide A F, by the baseline cerebral flow indek?, obtained in the calibration stage. Although
two probe pressures is usually sufficient, acquiring DC& daimore than two probe pressures
constrains the nonlinear optimization in the two-layer dit £, FC,, and/ even further. Pro-
vided that the probe pressures remain less than the venessupe in the scalp (i.ef.. > 0),
then there is a distinct long separation autocorrelatianector each probe pressure to simulta-
neously fit the two-layer model to. Thus, additional probesgures yield additional data for the
two-layer fit in the calibration stage. To determine theadli ..(7, p;)/dF.ec(T, ps) With more

than two probe pressures (“calibration term 1), evaluajadtion 6.12 for each probe pressure

and then take the average ratio over all pressures.
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Figure 6.3: Flow chart of probe pressure modulation alborifor cerebral blood flow mon-
itoring (AF.) with DCS. In the “calibration stage”, baseline long andrsts@paration inten-
sity autocorrelation functions measured at probe presBbrg) (7, p1), ¢3(r, ps)) and at probe
pressureP # P° (¢4’ (7,p), g5 (7, ps)) are used to caIcuIatAOD'B”Cg’éP (Equation 6.10) and
AOD%’grS‘P (Equation 6.11). These parameters are in turn used to eégdicelibration term 1”
(Equation 6.12). “Calibration term 2” is the numerical exation ofdy (7, p;) (Equation 6.14),
which requires knowledge of the baseline cerebral and-@erebral flow indicesK?,F%,) and
the extra-cerebral layer thicknesd.( F?, F2,, and/ are extracted from a simultaneous fit of
g9(7, pi) and g¥ (1, p;) to the two-layer correlation diffusion model given the doasits that
pressure modulation does not change cerebral flaw( = 0) and that the pressure-induced
fractional extra-cerebral flow changA (2 /F) is determined from the short separation mea-
surements using semi-infinite methods (Section 6.2). Feesavhere priori knowledge of
the extra-cerebral layer thickness is available, this layer fit is even more constrained. In the
“monitoring stage”, calibration terms 1 and 2 are employedanvert subsequent measurements
of differential long and short separation DCS optical dgnshanges, i.e.AOD'B”CgS (Equa-
tion 6.7) andAOD,S—jgg (Equation 6.8), to differential cerebral flow changes viai&igpn 6.13.
Note that the baseline used for the calibration stage anthéomonitoring stage is the same.
Finally, for this paper, we utilized all of the delay timegistying the limit g3 (7, p;) > 1.25 to
solve Equation 6.13.
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6.3.4 Correlation noise sensitivity

The probe pressure modulation scheme depicted in Figuris @ 3ast, patient-specific imple-
mentation of the two-layer model for cerebral flow monitgtidbut a big drawback is a high
sensitivity to correlation noise, especially at short gdlemes. This sensitivity arises from the
fact that correlation noise is largest at short delay-tifi2¥6], while the DCS optical density
perturbations are typically small. Combined, these opmpsiiends with decreasing delay-time
imply that the measured DCS optical density perturbati@mseasily be dominated by correla-
tion noise instead of flow changes for non-optimal measunérmenditions. Specifically, let's
consider a key step in the algorithm wherein calibratiomtdr (Equation 6.12) is computed.
Compared to longer delay-times, the perturbaﬂbﬁDB’&P at shortr is less sensitive to the
superficial blood flow changes induced by probe pressure latoln This is because the rapid
decays of the temporal autocorrelation signal at shate mostly due to long light paths that
spend less time in superficial tissues than the short lighispaontributing to slow decays (long
7) [186, 221]. Therefore, the computation of calibrationrielr at short is prone to correlation

noise. Substantial noise contamination can lead to a signifisystematic error in subsequent

cerebral flow monitoring via Equation 6.13.

Another noise-related issue is that the autocorrelatignads at the long and short separa-
tions decay at substantially different rates. Thus, atydgfaes where the long separation signal
has decayed significantly, the short separation signal beaygd much less. At these delay-
times, the differences in short separation decays indugetoa-cerebral flow changes are less
pronounced than they are at longer delay-times, which miém@nsieasurement (zinDthgg is

also prone to correlation noise.

One way to address the correlation noise issue is to evakguation 6.13 forAF,. only
using longer delay-times where the DCS optical densityupleations are larger. However, ex-
cluding shortr is not desirable because it is the shothat are most sensitive to cerebral flow.
Further, the noise-related improvements associated wiigdr = are partially canceled from

using fewer delay-times to solve Equation 6.13.

A more robust approach for handling correlation noise isolwesEquation 6.7 directly for
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AF,:
1

AF, = ———
dF,C(Ta Pl)

[AODIBanS - dF,BC(Tv pl)AFec ) (6.15)

wheredr.(r, p;) is given by Equation 6.14df...(r, p;) = dODIAL /OF,, is given by the
extra-cerebral analogue of Equation 6.14, @n#,. is obtained from short separation measure-
ments via semi-infinite techniques (Section 6.2). Presganation is still used in the imple-
mentation of Equation 6.15 via the two-layer fit t8f, FC., and/ (Figure 6.3). These baseline
properties are inputs in the evaluation &f .(7, p;) anddg ..(, p;). Then, to determine the
extra-cerebral flow change, use the relatidf,. = FC, x rF.., whererF,. = AF,./FY. is the
fractional extra-cerebral flow change obtained from fittihg semi-infinite model to the short
separation autocorrelation curves. Equation 6.15 is kessitbve to correlation noise, but more
reliant on the accuracy of the baseline tissue propertiefitiering superficial tissue contamina-

tion.

6.4 Probe Pressure Modulation Algorithm for Cerebral Blood Flow

Monitoring with DCS: Practical Example

As a practical example for using this pressure modulatigoréhm in the clinic, let’s consider
cerebral blood flow monitoring during head-of-bed (HOB)ifios changes in stroke patients
[86, 97] (Figure 6.4). To maximize perfusion at the stroke sind the surrounding ischemic
penumbra, flat head-of-bed positioning (Figure 6.4B) ismftised at the clinic. Changing the
head-of-bed angle from a baseline position36f (Figure 6.4A) to a flat position of° does
increase flow in the majority of patients. However, in a digant minority of patients 25%),
a paradoxical decrease in flow was observed [86, 97]. Thugabgerebral flow monitoring
with the probe pressure modulation algorithm has potefarabptimizing head-of-bed position
in individual patients.

To determine cerebral flow changes induced by HOB positi@ngbs, the first step in the
calibration stage is to acquire long and short separatitamgity autocorrelation measurements
at the30° HOB position with a probe pressuie (e.g., P = 20 mm Hg) applied against the

scalp, i.e..g? (1,p), g% (1,ps). Step 2 is to decrease the probe pressure against the scalp to
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(A) (B)
Baseline HOB Position Flat HOB Position

Figure 6.4: Head-of-bed (HOB) positioning @) the baseline condition df0° and (B) the
perturbed condition of° (flat). (C) Schematic of two-layer geometry of the head probed with
a long separatiory;, and two short separations,. The downward and upward pointing arrows
indicate DCS source and detector positions, respectively.

P° (e.g.,P° = 5 mm Hg). Then, at the new probe pressute and the30° HOB position,

acquire a second set of long and short separation intensibca@rrelation measurements, i.e.,
(7, ), g9(7, ps). Using these two sets of measurements, compute calibrioms 1 and

2 from Figure 6.3. These calibration terms are employed enmntlonitoring stage to determine
cerebral flow changes from baseline (Figure 6.3). Contmuwiith our example, change the
HOB position from30° to 0°, and acquirey, (7, p;) andgz (7, ps), which are the long and short
separation autocorrelation measurements aitt¢OB position. The cerebral flow change from

the HOB change, i.eAF,. = F.(0°) — F2(30°), is given by Equation 6.13.

To the extent that the two-layer model accurately modelfiézal, the cerebral flow changes
calculated in this manner will not be contaminated by flow upexficial tissues. The two-
layer model approximates the head as a spatially unifornerfigl tissue layer above a semi-
infinite cerebral layer. In practical measurements of tredh¢éhough, interference from super-
ficial tissues in cerebral monitoring is often spatially anfogeneous across the surface of the
scalp [105, 109]. One way to reduce error from these suparfigiterogeneities is to probe the
superficial tissue volume above the cerebral region ofdéstarith multiple short separations, as
shown in Figure 6.4C. As with using more than two probe press(Section 6.3.3), it is straight-
forward to extend the probe pressure modulation algorithirandle multiple short separations.
In our measurements, we followed the steps outlined in EigLu8 for each short separation sep-

arately to obtain an estimate of the cerebral flow change.néfe averaged the two estimates of
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AF, obtained from using the two short separations together.

6.5 Probe Pressure Modulation Algorithm for Oxygenation Mai-

toring with DOS/NIRS

In Section 6.3, we developed a probe pressure modulati@udiggn for DCS that filters contam-
ination from superficial tissues in cerebral blood flow measments. An analogous probe pres-
sure modulation scheme can be used to calibrate continuaws BOS/NIRS for monitoring of
cerebral oxy-hemoglobin{b0..) and deoxy-hemoglobinH{bR,) concentrations. This scheme

employs a two-layer Modified Beer-Lambert framework whetésue scattering is constant.

6.5.1 Two-layer Modified Beer-Lambert Laws for Absorption a Long and Short

Separations

Following analogous steps to those outlined for flow momrn Section 6.3, DOS/NIRS
measurements of light intensity are made at a long souretde separatiory,(p; ), and a short
source-detector separatiofp,). Using a two-layer model of the head, the DOS/NIRS two-
layer Modified Beer-Lambert law analogues of Egs. (6.7) @&@)(are [91, 130]:

I
AODE™ = —log [IO((pplz))} = Le(p1)Apia,c + Lec(p1) Apia e, (6.16)
AODHO= 1o { I{f(ﬂ;))] = Lee(ps) Mtace: (6.17)

The cerebral and extra-cerebral tissue absorption antésogtcoefficients that give rise to the
measured intensitie p;) and1 (ps) aréfia c, fa,ec» s o ANAiL .., respectively. Similarly, at the
baseline measured intensiti€¥p;) andI°(p;), the baseline cerebral and extra-cerebral tissue
absorption and scattering coefficients afe., 10 ... p2., andp. ., respectively. The differen-
tial changes of cerebral and extra-cerebral absorptiom traseline are\ i, . = fiq,c — Mg,c

and Aptgec = faec — My Finally, the partial pathlength.(p) = d0D"°"80 /9y, .,
Lec(pr) = 00D"°"90 /01, o, and Leo(ps) = 00D /9y, .. are the mean pathlengths that
the detected light travels through the cerebrgland extra-cerebrak¢) layers [91, 130, 215].

It is assumed that detected light from the short separati@s chot sample the brain, and con-

sequentially,L.(ps) = 0 and L..(ps) is approximately the semi-infinite differential pathlemgt
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given by Equation 6.2.
Solving Egs. (6.16) and (6.17) fdx., ., we obtain

1 plong _ Lec(pl) AODshort (6.18)

A ac = 7T 7 N
Ha, Lc(pl) Lec(ps)

The key advantage of using probe pressure modulation witB/DIORS is that it enables direct

measurement of the ratid..(p;)/Lec(ps)-

6.5.2 Probe Pressure Calibration of DOS/NIRS for Cerebral Asorption Moni-

toring

Analogously to Section 6.3.2.1, the rafiQ.(p;)/L.(ps) can be directly measured from differ-
ential short and long separation optical density changesdas perturbed and baseline states
wherein only the extra-cerebral absorption is differerit][9Probe pressure modulation is a
simple way to induce controlled extra-cerebral absorptbanges without affecting cerebral
absorption. For relating a perturbed state at probe pred3uo the baseline state at probe

pressureP’, Egs. (6.16) and (6.17) simplify to

AOD""SP = _1og [[P(p ) ] = Lec(p1) Al e (6.19)
%) ’
P

AODShortP = — 10g [%} = Lec(PS)Aﬂiec> (620)

wherel” (p;) andI” (p,) are the measured intensities at probe presBuendA )., = pf ..—
Mg,ec is the pressure-induced extra-cerebral absorption change

Dividing Equation 6.19 by Equation 6.20 and then substituthe result into Equation 6.18,
we obtain

1 A Dlong7P
Apige = ——— |AOD"" — O

short
T Ao srorp 20D (6.21)

Here, intensity measurements at long and short separalong with initial calibration mea-
surements at two probe pressures determings . within a multiplicative proportionality con-
stant,1/L.(p;). For accurately estimating the magnitude of the cerebrabrgtion change,

L.(p;) is calculated by numerically computing the derivative & ttontinuous wave two-layer
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photon diffusion Green’s functio®(p;) [157,212], evaluated at the baseline tissue optical prop-

erties:
L (pl) _ (9 (_ 10g[(b0 (pl)]) ~ 1 ]og (P(pla /’Lg,,c - AMG,C/27 lug,ec7 :u;(?(ﬁ :u/s?ec’ 6)
¢ 8#(1,0 A,U/a,c <I>(pla /Lgc + Alu’(lyc/27 ,Ug,w Mls?a :“'/s(?ecv E) ’
(6.22)

WhereAua,C/ugc = 1075. The Green’s functiom(p;) can be evaluated using the analytical
two-layer solution, or it can also be evaluated numericasiing Monte Carlo techniques [255].
The computation of..(p;) requires knowledge of ., 110 e, p1. 112, andl. As described
in Section 6.3.2.2, ideally the extra-cerebral layer th&ds is knowra priori from anatomi-
cal information, and the tissue baseline optical propew’ie measured (e.g., with time-domain
techniques). Ifa priori anatomical information and instrumentation for measuliageline op-
tical properties is not available, then the baseline oppecaperties need to be assumed. The
extra-cerebral layer thickness can either also be assumestimated from the two-layer fit of
DCS data at multiple probe pressures (Section 6.3.2.2).

Cerebral absorption determined from Equation 6.21 will Inetaffected by extra-cerebral
absorption changes to the extent that the two-layer modekately models the head. Figure 6.5
is a flow chart summarizing the DOS pressure modulation gkgorfor monitoring cerebral
absorption changes. Note that this algorithm can be gepedafor calibration with more than
two probe pressures and monitoring with multiple short ssfEns in an exactly analogous

manner to that described in Sections 6.3.3 and 6.4.

6.5.3 Hemoglobin Monitoring with Multispectral DOS/NIRS

The cerebral tissue absorption coefficient depends lnearthe concentrations of tissue chro-
mophores. With NIR light, changes in cerebral absorpticgdpminantly arise from changes
in cerebral oxygenated hemoglobiA §O.) and de-oxygenated hemoglobid §R.) concentra-

tions, such that [79]
A,ua,c(pl, )\) ~ EHbo()\)AHbOc + EHbR()\)AHbRC. (6.23)

Here,egpo(A) andegpr(A) are wavelength-dependent extinction coefficients for exygged

hemoglobin and de-oxygenated hemoglobin, which are bodwkrand tabulated as a function
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Calibration Stage

DOS Calibration term 1

Lec(pl) . AODlong,P
Lec(ps) ~ AQDshort,P

Calculation
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DOS Calibration term 2
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)
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DOS Calibration
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Figure 6.5: Flow chart of probe pressure modulation algorifor cerebral tissue absorption
monitoring A, ) with DOS/NIRS. In the calibration stage, baseline long ahdrt separa-
tion intensities measured at probe pressbfe(1°(p;), I°(ps)) and at probe pressui@ # PO
(IP(pr), IP(ps)) are used to calculatAOD'O"%” (Equation 6.19) andAODS"” (Equa-
tion 6.20), which are then used to estimétg(p;)/L..(ps) (‘DOS Calibration term 1). “DOS
Calibration term 2” is the numerical evaluationiof(p;) (Equation 6.22), which requires knowl-
edge of the baseline tissue optical properties and the-egtebral layer thicknesd)( Ide-
ally, these baseline tissue properties are measured (ster5€.5.2). In the monitoring stage,
DOS Calibration terms 1 and 2 are employed to convert suleseguieasurements of differential
long and short separation optical density changes,A€.D'°"9 (Equation 6.16) andhO DSt
(Equation 6.17), to differential cerebral absorption @emvia Equation 6.21. Note that the
baseline used for the calibration stage and for the mongastage is the same.
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of wavelength\ [207], andA HbO,. andA HbR,. are differential changes in cerebral oxygenated
and de-oxygenated hemoglobin concentration from basdliaemultispectral cerebral absorp-
tion monitoring with Equation 6.21, Equation 6.23 becomesystem of equations, i.e., one
equation for each wavelength, which can then be solved\igbO,. andA HbR.. A minimum

of two wavelengths is required to solve for these two chranooes.

Finally, the baseline cerebral hemoglobin concentratidh®? and Hb R can be calculated
from multispectral measurements;rzﬁc(/\), which in turn enables the computation of cerebral

tissue oxygen saturatiostO- . [79]:

HbO? + AHHO,
HbO? + HbRY + AHVO,. + AHbR,

StOy,. =

As many researchers have discussed, combining DOS/NIRSumgaents o6t0- . with DCS
measurements of cerebral blood flow.) permits monitoring of cerebral oxygen metabolism
[28,62].

6.6 Experimental Methods

The pressure modulation algorithms described above waeessfully applied to both simu-
lated data with noise and vivo measurements in healthy adult volunteers to measure e¢rebr
hemodynamic changes. Each of the two adults measured prbwidtten consent, and all pro-
tocols/procedures were approved by the Institutional &eBoard at the University of Pennsyl-
vania. One adult was asked to do finger tapping, which indadesalized cerebral blood flow
increase in the motor cortex along with a more global exénaeloral flow increase from systemic
effects [26,166,237]. The other adult sat comfortably whik acquired data at several different
probe pressures against the scalp to induce graded schimige As discussed above, probe
pressure modulation changes extra-cerebral flow whilebcalrélow remains constant [184].
The instrumentation used for tlievivo measurements are described in Appendix 6.11, and the
measurement protocols are explained in Sections 6.6.1.ar#l /e then discuss the generation

of simulated data in Section 6.6.3.
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6.6.1 Finger Tapping Protocol

Throughout the finger tapping measurement, the subjectupins on a bed. First, absolute
baseline optical properties over the subject’s motor gqfffggure 6.6A) were measured with a
multiple-distance frequency domain technique [133, 25pkcifically, a commercial frequency-
domain ISS Imagent (ISS Medical, Champaign, IL, USA) waseated to a multiple-distance
probe (ISS Medicalp = 2, 2.5, 3, 3.5 cm). Prior to the motor cortex measurementinisteu-
ment was first calibrated on a solid silicon phantom (ISS Majliwith known optical prop-
erties [133, 253]. We used these measurements of the butkgeveptical properties over the
sampled tissue volume for both the cerebral and extra-carizyers.

Then, the cerebral blood flow response to finger tapping wastored with a DCS optical
probe f; = 3.0 cm, p, = 1.0 cm) secured over the motor cortex (Figure 6.6A) with dowgided
medical tape (3M 1509, Converters Inc., Huntingdon Val%, USA) and an ACE bandage
wound around the head. The subject’s heart rate was alsdonetin parallel with a pulse ox
(Radical TM, Masimao, Irvine, CA, USA) attached to his leftiax finger.

With the probes in place, an initial “pressure calibratigfigure 6.3) was performed by
gently pressing down on the probes with the palm of the handepicted in Figure 6.6B. Then,
the subject executed five finger tapping trials consistinge$econd intervals of finger tapping
separated by 60-second rest intervals (Figure 6.6B). Duimger tapping, the subject tapped
all four fingers of the right hand against the thumb at 3 Hzinretwith an audible cuing signal

provided by a metronome.

6.6.2 Graded Scalp Ischemia Protocol

As with the finger tapping measurement (Section 6.6.1), tisgest’'s baseline absolute optical
properties over the left forehead were measured first. Téeithe subject sat comfortably, an
optical probe (Figure 6.4C) with one long separatipn= 3.0 cm) and two short separations
(ps = 1.0 cm) was placed on the subject’s left forehead and securdd aviilood pressure
arm cuff (Soma Technology, Bloomfield, CT, USA) wound arotimel head (Figure 6.7A). The
pressure cuff was inflated and maintained at the desiredesispre with a Zimmer ATS-1500

tourniquet system (Soma Technology). DCS measurementsagquired at five different probe

176



(B) 10 minutes

Heart Rate Monitoring (Pulse Ox)
Continuous DCS Acquisition (0.2 Hz)
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Figure 6.6:(A) To measure the cerebral blood flow response to finger tappim¥;S optical
probe @, = 3.0, ps = 1.0 cm) was secured over the hand knob area of the motor cortex,
which is slightly anterior to the C3 position in the 10-20 EEGordinate system [150]. The
C3 position lies2/5 of the distance between the vertex and the preaurical pioinf (3-4 cm
down from vertex), and the vertex is the halfway point on theve connecting the nasion to the
inion ( 17-18 cm from nasion). The subject’s heart rate was alonitored with a pulse 0XB)
Schematic showing the timeline of the finger tapping (FT) sueament. The subject did five
blocks of finger tapping (i.e., tapping all four fingers of tight hand against the thumb) at 3 Hz.
Prior to finger tapping, baseline absolute optical propsnivere measured over the measurement
location depicted in part (A) (see main text), and the profesgure was temporarily increased
by gently pressing down on the probes with the palm of the hand

pressures against the scalp (i.e., five different extrabrat blood flow levels) ranging from 15
mm Hg to 40 mm Hg (Figure 6.7B). Here, the calculation of ceakflow involved averaging

over the measured signals acquired at both short separatismescribed in Section 6.4.

6.6.3 Simulated Data

For light wavelengthA = 785 nm, we generated simulated intensity autocorrelation -func
tions (DCS) and light intensities (DOS/NIRS) at sourceed&ir separations gfy = 3 cm and

ps = 0.7 cm for two types of hemodynamic perturbations. SimulatedSDiata sets were
obtained for the special cases of (1), varying cerebral fldvilenextra-cerebral flow remains
constant, and (2), varying extra-cerebral flow while cesitBow remains constant. Similarly,
simulated DOS/NIRS intensity data sets were obtained ®special cases of (1), varying cere-
bral absorption while extra-cerebral absorption remaimstant, and (2), varying extra-cerebral

absorption while cerebral absorption remains constang shimulated intensity autocorrelation
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Figure 6.7:(A) A blood pressure cuff wound around the head was used to omifadjust the
pressure of the optical probe against the forehg®).DCS measurements were made at five
different probe pressures against the scalp.

functions were generated from adding correlation nois@][&7 2-layer solutions of the corre-
lation diffusion equation [24, 106], while simulated DO$R$ intensities were generated from

adding Gaussian noise to 2-layer solutions of the photdogidn equation [157,212].

Specifically, baseline tissue optical properties and ¢éiddood flow levels in the simulated
data were chosen to be representative of the headugg.,: 0.16, ugvec = 0.12, M/s?c = 6,
foee =10cm b F) = 1.4 x 1078, FY), = 1.4 x 107? cm?/s ; £ = 1.2 cm (see Figure 6.2;
optical properties from Ref. [55], extra-cerebral flow frétef. [184], cerebral to extra-cerebral
flow ratio from Ref. [250], and the extra-cerebral layer kimess from averaging across MRI
measurements in 9 adult volunteers (Durduearal, unpublished)). In the DCS simulations,
tissue optical properties remained constant, and the aclofeelation noise was derived from a
correlation noise model [276] evaluated at DCS intensiie30k and 100k photons a second
for the long and short separations, and an integration tifrie5oseconds. The DCS signal for
each pair of cerebral and extra-cerebral flow levels in thie slets were obtained from averaging
acrossV = 100 simulated autocorrelation functions with noise. Finatyysimulate an increased
probe pressure during the calibration stage of the measunie(Rigure 6.3), the extra-cerebral

blood flow was decreased B9% from baseline.

In the DOS/NIRS simulations, tissue optical scattering aieved constant, and the added
light intensity noise was derived from a Gaussian noise mp8& R = /o0 = 100). The

DOS/NIRS signal for each pair of cerebral and extra-ceteissue absorption coefficients in
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the data sets were obtained from averaging achdoss 100 simulated intensities, and the extra-
cerebral tissue absorption was decreased¥y from baseline to simulate the increased probe

pressure during the calibration stage (Figure 6.5).

6.7 Results

6.7.1 Validation with simulated data

We tested the pressure modulation algorithms (Figs. 65, dh the simulated data sets de-
scribed in Section 6.6.3. The cerebral blood flow and tistasermtion changes computed with
the pressure modulation algorithms are compared to the-isdimite blood flow and tissue ab-
sorption changes (Section 6.2) in Figure 6.8. Since thd skparation measurements predomi-
nantly sample the extra-cerebral layer, the semi-infirgi@bdynamic changes obtained from the
short separation data agree well with the true extra-catdtemodynamic changes. The long
separation measurements, however, sample both cerelora@xéa-cerebral tissues. Substan-
tial signal contamination from the extra-cerebral tissimesiced substantial errors in the long
separation semi-infinite estimates of cerebral flow and rptism (Figure 6.8). The pressure
modulation algorithms, though, successfully filtered matkhis extra-cerebral contamination
from the measured signals, and consequentially recovemebi@al hemodynamics with higher
accuracy (Figure 6.8). Note that in the flow pressure moutulatigorithm, we utilized 42 delay-
times ranging fromr = 0.2 us toT = 35 uS to evaluate Equation 6.13 fdtF,.. All of these
delay-times satisfied the limi€ (r, p;) > 1.25.

Interestingly, comparing panels (A) and (B) with (C) and {®)-igure 6.8, it is evident that
the semi-infinite DOS/NIRS calculation is less sensitivéhi brain than the semi-infinite DCS

calculation [12,221].

6.7.2 Validation with graded scalp ischemia

As described in Section 6.6.2, we acquired DCS measureroenite forehead of a healthy adult
volunteer during graded scalp ischemia. The subject’slin@sserebral flow, extra-cerebral flow,
and extra-cerebral layer thickness obtained from the redidn stage of the pressure modulation

algorithm wereF? = 4.53 x 107 cm?/s, FY. = 2.23 x 107Y cm?/s, and/ = 1.35 cm,
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Figure 6.8: The DCS and DOS/NIRS pressure modulation dlgos (Figs. 6.3, 6.5) were
utilized to calculate cerebral blood flow and tissue absmmpthanges from simulated measure-
ments on the head acquired at long and short separatigns-08 cm andp; = 0.7 cm. These
pressure algorithm results are then compared with the heneagis semi-infinite model esti-
mates of blood flow and tissue absorption computed from thg keparation data and from
the short separation data. The simulated data sets wereaggohérom adding noise to two-
layer solutions of the correlation diffusion equation (DG@G®d the photon diffusion equation
(DOS/INIRS) (see Section 6.6.3A) Calculated fractional cerebral blood flow changes plotted
against the actual cerebral blood flow change in “DCS siredldata set 1” (i.e., extra-cerebral
blood flow remains constant)B) Calculated fractional cerebral flow changes plotted agjains
the actual extra-cerebral blood flow change in “DCS simdlatata set 2” (i.e., cerebral blood
flow remains constant)C) Calculated fractional cerebral absorption changes pl@ttginst the
actual cerebral absorption change in “DOS/NIRS data seitd.; €xtra-cerebral absorption re-
mains constant)D) Calculated fractional cerebral absorption changes mattminst the actual
extra-cerebral absorption change in “DOS/NIRS data set.&’, (cerebral absorption remains
constant). Notice that the pressure algorithm calculatimincerebral changes are substantially
less sensitive to extra-cerebral hemodynamics than theie@nite calculations.
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Figure 6.9: DCS measurements were acquired on the foreHemthanlthy adult volunteer at
multiple probe pressures against the hedd-{ 40 mm Hg). The optical probe (Figure 6.4C)
consisted of one long source-detector separatipn=( 3 cm) and two short source-detector
separationsg; = 1 cm). (A) Measured intensity autocorrelation curves employed inctie
bration stage of the probe pressure modulation algorithgu(E 6.3) plotted against delay-time
7. The long separation autocorrelation cury@ér, p;) andgs’ (, p;) are the temporally aver-
aged signals across the shaded gray and yellow regions ef (B)) respectively. Similarly,
the curves))(r, ps) andg? (7, ps) are temporally averaged over the same intervals and awkrage
across both short separations. The solid red lines arenidtaneous two-layer pressure cali-
bration fit (Section 6.3.2.2) t99(, p;) and g£’ (7, p;) given the constraints tha” = F? and
that . /F9. = 0.57. Note that the latter constraint was obtained from the sseparation mea-
surements using semi-infinite methods. The extracted inasphrameters from the two-layer
fit are F? = 4.53 x 1078 cm?/s, F, = 2.23 x 10~ cm?/s, and/ = 1.35 cm. (B) Temporal
fractional flow changes computed with the DCS pressure natidal algorithm and computed
with semi-infinite techniques. These fractional flow curaes smoothed via a moving average
window of size 3 frames {5 seconds). Notice that the cerebral blood flow change cordpute
with the two-layer DCS Modified Beer-Lambert law is not afetby the extra-cerebral changes
induced from varying probe pressure.
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respectively (Figure 6.9A). Further, the baseline DCS digntensities for the long and short
separations wergsk and170k photons a second, and the measured baseline optical pespert
over the forehead atx = 785 nm arep? = 0.12 and u* = 8 cm~!. We then monitored
cerebral blood flow at several different probe pressuremsgie head using the DCS pressure
modulation algorithm and the semi-infinite model (FigureéB). The extra-cerebral blood flow
determined from applying the semi-infinite model to the sBeparation data decreased steeply
with increasing probe pressure, until it was close to zer® at: 40 mm Hg. Importantly,
the long separation semi-infinite estimate of cerebral dlfiow also decreased substantially
with increasing probe pressure, though not as severelyeasxtna-cerebral flow. This apparent
change in cerebral flow is due to extra-cerebral contanunaiti the long separation signal from
the pressure-induced extra-cerebral flow changes. The DE&Syre modulation algorithm,
though, successfully filtered the extra-cerebral contation from the long separation signal,
and the computed cerebral flow was not affected by probe ymeestanges.

Important notes are that the ‘robust noise” formulation teg DCS pressure modulation
algorithm was used (Section 6.3.4) to obtain the curve inifei¢.9B. Further, pressure-induced
extra-cerebral absorption changes, determined from tbré sbparation signal intensity changes
via Equation 6.17, were incorporated into the computaticzecebral flow (e.g., Equation 6.29).
Increasing the probe pressure from baseline to 40 mm Hgaseng,, .. by 25%. Cerebral flow
monitoring with the DCS pressure modulation algorithm ve@reconstant absorption is assumed
(i.e., Equation 6.15) resulted in an erroneous calculateckase in cerebral flow d0% at 40

mm Hg.

6.7.3 Validation with in vivo finger tapping data

As anotherin vivo test, we used the DCS pressure modulation algorithm (Fi§L8eto mea-
sure the cerebral flow increase induced by the finger tappisigin a healthy volunteer (Sec-
tion 6.6.1). The measured baseline optical properties trgemotor cortex ak = 785 nm were

pd = 0.12 andp?? = 8 cm~!, the baseline DCS signal intensities for the long and shept s
arations werd 8k and 140k photons a second, and the baseline heart rate was 72 bpne In th
calibration stage of this measurement, probe pressurengesaised by manually pressing down

on the probe with the palm of the hand instead of using a bleedsprre cuff wrapped around
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Figure 6.10: DCS measurements at one long source-detesgaragion f; = 3 cm) and one
short source-detector separatign & 1 cm) were acquired over the motor cortex of a healthy
adult volunteer while he performed finger tapping (Figut@2§. (A) Measured intensity auto-
correlation curves employed in the calibration stage ofitede pressure modulation algorithm
(Figure 6.3) plotted against delay-time These curves are temporally averaged signals across
the 60 second “baseline” and “increased probe pressurefvals indicated in Figure 6.6B.
The solid red lines are the simultaneous two-layer pressaiibration fit (Section 6.3.2.2) to
g3(r, p) and gt (7, p;) given the constraints that” = F? and thatFL/F2, = 0.44, where
the extra-cerebral constraint was obtained figltr, p;) andgd’ (7, ps) via semi-infinite meth-
ods. The extracted baseline parameters from the two-layarefiF? = 1.95 x 10~8 cn?/s,

FY =3.08 x 107 cm?/s, and? = 1.05 cm. (B) Measured finger tapping functional responses
(meant SE acrossV = 5 trials) for cerebral blood flow{F,. = AF,./F?), extra-cerebral blood
flow (rF.. = AF../F.), and heart rate plotted against time. The finger tappimguitis was
between the two green vertical lines. Heré,. was computed with the DCS pressure modu-
lation algorithm (Equation 6.15);F.. was determined from applying semi-infinite methods to
the short separation signal (Section 6.2), and the heartvas measured with a pulse ox on the
finger. Further, the blue dashed lind’{(p;)) is the mean flow response computed from applying
the semi-infinite model to the long-separation signal.
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the head. The subject’s baseline cerebral flow, extra-calrébw, and extra-cerebral layer thick-
ness obtained from the two-layer fit wef€ = 1.95 x 1078 cm?/s, FY, = 3.08 x 10~ cm?/s,
and/ = 1.05 cm, respectively (Figure 6.10A). The average cerebral feoutra-cerebral flow,
and heart rate responses induced by finger tappigH 5 trials) are plotted against time in
Figure 6.10B. For comparison, the average semi-infinite flesponse for the long separation
is also plotted. Notice that the cerebral flow rapidly inse=sato a steady state value 30f%
within 5 seconds of the start of finger tapping. The extraloeal flow increase, though, is more
gradual, which roughly corresponds to the delayed heatinarease from finger tapping. As
expected, the long separation semi-infinite flow changetigden the cerebral flow change com-
puted with the DCS pressure modulation algorithm (Equaid®d) and the extra-cerebral flow

change computed from the short separation measuremegts€¢rd.10B).

6.8 Discussion

Superficial tissue contamination in optical monitoring efebral hemodynamics is a well known
issue in the DOS/NIRS community, and several methods haga peoposed to isolate the
cerebral component in the DOS/NIRS signal. Many of thesehat assume statistical in-
dependence of superficial and cerebral signals, such atedfiipering [271], principal compo-
nent/independent component analysis [26,137,199], spaiee modeling [107,109], and general
linear models [137,161,238]. The justification for thisuamgtion in brain mapping applications
is that superficial signals in the scalp arise from systerffécts that are damped by cerebral au-
toregulation in the brain. Thus, the systemic superficighais are independent from the local
activation signals in the brain. However, as we mentionefdntion 6.1, cerebral autoregula-
tion is impaired in brain diseases such as ischemic strolerrfative approaches for filtering
superficial tissue contamination include tomographic imgg68, 89, 114], time-resolved mea-

surements [108,172,222,234], and two-layer models [58B83.06, 120, 208, 215].

In the present paper, our main result is a novel implememtaif the two-layer model that
utilizes two source-detector separations and probe pregsodulation to optically monitor cere-

bral blood flow (Figure 6.3). The two-layer Modified Beer-Laent law for flow is employed to
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linearly relate DCS signal changes to changes in cerebrhkama-cerebral blood flow (Equa-
tion 6.7). Further, a patient-specific “initial” pressuraibration of the measurement substan-
tially improves the tractability of flow monitoring with thivo-layer model by reducing the
number of free parameters in the model to fit fapriori anatomical information, though help-
ful, is not required in this pressure modulation algorithim.our in vivo tests of graded scalp
ischemia (Figure 6.9) and finger tapping (Figure 6.10), veerdit use anya priori anatomical
information. Unlike with tomographic imaging and prindigamponent analysis, the two-layer
model approach does not require a large number of optodashyekrmits small area optical
probes that are easier to integrate with other monitoringcds in clinical care applications re-
quiring long-term continuous monitoring. Our optical pector thein vivo tests (Figure 6.11)
had four optodes. Finally, the linearity of the two-layer diifted Beer-Lambert law greatly facil-
itates long-term continuous real-time monitoring of ceatblood flow. An analogous pressure
modulation algorithm for cerebral absorption monitoringfmDOS/NIRS is depicted in Fig-
ure 6.5, which is an extension of Fabbti al’stwo-layer formulation [91] to include pressure

modulation.

The two-layer model is a big simplification of the true headrgetry, but it is still effective
in filtering extra-cerebral contamination, as we demoietiéan our graded scalp ischemia and
finger tapping tests. Cerebral blood flow calculated withitbeogeneous semi-infinite model
significantly depended on probe pressure, but the two-fangmsure modulation algorithm calcu-
lation of cerebral flow (Equation 6.15) did not (Figure 6.Burther, in our finger tapping test, the
pressure modulation algorithm successfully separatefbtiecerebral blood flow increase due

to brain activation from the more gradual flow increases dusystemic effects (Figure 6.10).

We measured a steady-state increase in cerebral blood ftow finger tapping of30%
(Figure 6.10B). This increase is low compared to other ghklil measurements, but not unrea-
sonable. Durduraat. al. measured a mean cerebral blood flow increask® af 10% from finger
tapping (3 Hz) [85]. Yeet. al. measured &4 + 11% cerebral blood flow increase from finger
tapping (2 Hz) with arterial spin labeling MRI [265], and Kagp et. al. measured a01 + 24%
cerebral blood flow increase from finger tapping (3 Hz) witlAdREMRI technique [2]. We sus-
pect that our optical probe was not directly centered owefitiger tapping hand knob, which is

a little less than 2 cm diameter in size [267]. The EEG 10-Z3esy (Figure 6.6) only roughly
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identifies the hand knob location, and we struggled a lot fiitting the correct position for
probe placement. We obtained assistance with probe plaxteinoen a neurosurgeon (David
Kung), which was very valuable. If the probe is not exactlgmothe hand knob area, then only
part of the sampled cerebral volume will encompass the haot krea, inducing a partial vol-
ume error in the recovered cerebral flow change not accodoted the two-layer model. This
partial volume error results in an underestimation of thgmitade of the flow increase, which

is the likely explanation for our lower than expected meedtlow increase.

Also notice that although the extra-cerebral blood flow i $kalp during finger tapping in-
creases gradually with the heart rate, the extra-cerelyatllilow and heart rate finger tapping
responses behave qualitatively differently in the pastigus interval (Figure 6.10B). Following
finger tapping, the heart rate remains elevated and grgdealirns to baseline, while the extra-
cerebral blood flow rapidly plummets, undershooting ana tipeadually returning to baseline.
There are several factors that can affect superficial tiskagd flow besides the heart rate, such
as blood pressure and skin-specific regulation mechan®8)&61]. Kirilinaet. al. investigated
the origin of task-evoked hemodynamic changes in the saahfound that task-evoked super-
ficial artifacts are co-localized with veins draining thalpd161]. The post-stimulus undershoot
in extra-cerebral blood flow we observed could potentiayelzplained by an increase in scalp

venous pressure induced by arterial vasoconstrictioovitlg cessation of finger tapping.

Another aspect of the pressure modulation algorithm issteration of the extra-cerebral
layer thickness and baseline cerebral and extra-cerebralifidices (Figs. 6.9A, 6.10A). We
regrettably do not have an independent measure of the esttedoral layer thickness in the two
adult subjects we measured to explicitly validate the esén@bral layer thickness estimates.
The pressure calibration estimate of the layer thickne#sedbrehead for the pressure variation
measurement was= 1.35 cm, while the layer thickness estimate over the motor carteke
finger tapping measurement for a different subject Was 1.05 cm. Both of these estimates
are within the range of layer thicknesses measured by Danctr al. from anatomical MRI
scans, i.e.{ = 1.20 + 0.26 cm (unpublished). Further, the pressure calibration ed@nof
the ratio of cerebral to extra-cerebral baseline blood flowhie finger tapping measurement
was F?/FY, = 6.3, which is consistent with PET measurements in healthy adu@4]. The

estimate of this ratio for the graded scalp ischemia measeme wasF? /FY. = 20.3. This
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ratio is high, but is explained by the probe pressure beingrarmegligible 15 mm Hg during
the baseline state (Figure 6.9B). At a probe pressure of 15Hgmthe extra-cerebral blood
flow is substantially lower than it would be normally, which rieflected by the higher than
normal cerebral to extra-cerebral flow ratio estimate. Irtgodly, we have demonstrated that
pressure calibration can be done successfully througlsipgedown on the probe with the palm
of the hand (Figure 6.10A), facilitating its implementatim a clinical setting. In our pressure
algorithm, it is not necessary to know the quantitative gues being applied to the probe. All
that is required is a non-negligible pressure increasediada an extra-cerebral flow change.

We emphasize that the formulation of the pressure algoritiiming Equation 6.13 (Fig-
ure 6.3) is sensitive to correlation noise (Section 6.3 high signals and/or long temporal
averaging times, this formulation is effective (Figure)6.8ut these luxuries are usually not
available for cerebral measurements. Iniowrivotests, the correlation noise was too severe for
Equation 6.13. Thus, we used Egs. 6.15 and 6.29 insteadhwhécmore robust to correlation
noise. Further, we highly recommend using multiple delmes in evaluating these equations
for the cerebral flow change to reduce sensitivity to noiseodrin vivo tests, we utilized all
delay-times whereind (7, p;) > 1.25 (~ 40 delay times).

Noise is less of a problem for the DOS/NIRS pressure algoritbrmulation (Figure 6.5),
though, because multimode detection fibers enable highealsi. During the pressure cali-
bration stage, it is important to ensure that the sourceeti@t separations remain fixed when
probe pressure is increased. In our flexible probe, thereavtasdency for the source-detector
separations to change slightly when pressing down on theeprand the signal changes were
dominated by separation changes rather than extra-césdizarption changes. This problem is
fixed if a rigid probe is used, but then making good contachhe scalp is harder. Note that
the DCS measurement is less sensitive to these small chenggsaration.

We finally point out that the DCS pressure modulation alhamit{Figure 6.3) assumes that
the coherence of the source laser remains constant overitanehes coefficient in the Siegert
relation (see Section 6.2) does not change. If this is natdle, then the DCS signal will change
from varying 8 in addition to varying flow levels. The pressure algorithnesimot account for
variations ing. If 5 is changing, then it is more appropriate to use a DCS Modifieer ambert

law for the electric field autocorrelation functiop,(7) = (E*(¢) - E(t + 7)) /(I(t)), instead of
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the intensity autocorrelation functiogs (7). The electric field formulation is exactly analogous
to Figure 6.3, except that the DCS optical dengit) pos = — log(g2(7) — 1) is replaced with
the “electric field DCS optical density) Dpcs,qg1 = —log(gi(7)). In this formulation, the
Siegert relation is used to convert the measugkesignals to corresponding, signals, wherein

the 5 coefficient for each data frame can be fit for.

6.9 Conclusion

We developed a novel DCS pressure modulation algorithmdhetessfully isolated cerebral
blood flow during graded scalp ischemia and finger tappinhaut usinga priori anatomical
information. This approach is accurate enough to be usefilfering superficial tissue con-
tamination in real-time cerebral blood flow monitoring. Amadogous pressure modulation al-
gorithm for DOS/NIRS will filter superficial tissue contaraiion in cerebral blood oxygenation

monitoring.

6.10 Cerebral Blood Flow Monitoring Pressure Modulation Algo-

rithm when Tissue Optical Properties Vary

Recall that the results derived in Sections 6.3.1 and 6. &Za the special case of constant
tissue absorption and tissue scattering. In this Appendixrelax the constant optical property
assumption and derive more general expressions for céfidmamonitoring in the pressure

modulation algorithm framework. We first focus on the casenghn tissue absorption is chang-
ing while tissue scattering remains constant (as in Se@ibh We then move on to the case

wherein both tissue absorption and scattering vary.
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6.10.1 Cerebral flow monitoring with varying absorption

The two-layer DCS Modified Beer-Lambert law analogues of. Egs7) and (6.8) that include

absorption components are [12]

AODIBnch = dF,c(T7 pl)AFc + dF,ec(T7 pl)AFec + da,c(Ta pl)A,ua,c + da,ec(T7 pl)AMa,ea
(6.24)

AODSDhgg‘ = dF,ec(Ta ps)AFec + da,ec(Ta ps)ANmea (625)

where the tissue absorption changesg, . and Ay, .. can be estimated from DOS/NIRS mea-
surements via Egs. (6.21) and (6.17), and the multiplieatweighting factorsi, (7, p;) =
DODYES Otta e dace(T, p1) = DODYES Ot cer ANdda ec(r, ps) = DODHEY /Optg cc caN
be numerically determined by evaluating the appropriatevald/e of the two-layer correlation
diffusion solution at the baseline flow levels, tissue agtigroperties, and extra-cerebral layer
thickness (e.g., Section 6.3.2.2).

For the pressure calibration stage, the analogues of E4€)(@&nd (6.11) are

AODSSL — dp o(r, p)AFE + dy oo, p) AL ., (6.26)
AOD%‘S{;P = dF,eC(ﬂ pS)AFe}Z + da,ec(7_> Ps)Aﬂiec, (627)

whereApt .= pl’ . — 1 . is the pressure induced change in extra-cerebral tissuemius.

Solving Egs. (6.24), (6.25), (6.26), and (6.27) for the bemkflow change, we obtain
1

B dr,e(T, p1)

AODPE — daee(. p) ApL

AODFE = doee(T, ps) Apil

An alternative approach more robust to correlation noise &ection 6.3.4) is to solve Equa-

AF, AODI[O)%?S - da,ec(Ta pl)Aﬂa,ec - da,c(Ta pl)Aﬂa,c_

(AODSDhgg‘ — dg,ec(T, Ps)Aﬂa,ec) . (6.28)

tion 6.24 directly forAF,, i.e.,
B 1
dF7C(T7 Pl)

da,ec(Ty pl)Aﬂa,ec] s (629)

AFC [AODIBanS - dF,ec(Ta pl)AFec - da,c(T7 pl)A//fa,c_

whereAF,. is determined from the short separation measurements wigisénite methods, as
described in Section 6.3.4. As with Equation 6.13, Eqs.86ahd (6.29) only require a single

7 for monitoring, but multiple delay-times should be usednetiorate sensitivity to noise.

189



6.10.2 Cerebral flow monitoring with varying absorption and scattering

If both tissue absorption and scattering vary significarttign the differential absorption and
scattering changes should be directly measured with com@ufrequency-domain or time-
domain DOS/NIRS [79, 101, 201]. The extensions of Eqs. (6a?dl (6.25) for varying tissue
scattering are [12]
AODPE, = dpo(r, p) AF. + dpee(T, pr) AFee + dao(T, 1) Aftae + dace(T, 1) Ata,cot
ds,o(T, 1) Aty o + ds e (T, 1) Aptl ecs (6.30)
AODFAL = dpee(T, ps) AFec + dyec(T, ps) Atasee + ds ec(T, ps) At ces (6.31)
whereAy), = pf, . — p2. andAyl, .. = i, .. — .. are the differential changes from baseline
of cerebral and extra-cerebral tissue scattering, ancctitéesing weighting factorg; (7, p;) =
DODYNS |04, o, decel, p1) = OODNE 04, o, AN o(r, pa) = DODFER [0, ., are
determined using the two-layer correlation diffusion $olu as described in Section 6.3.2.2.
Pressure-induced signal changes from the extra-cerelyel are given by
AODRE = dpeelr, )AFL + daee(T, p1) Aty ee + el pr) Al (6.32)
AODRE = dpec(7, ps) AFE + dace(, p) AL oo + dice(r, p) AL, (6.33)

Solving Egs. (6.30), (6.31), (6.32), and (6.33) for the bemkflow change, we obtain

1 long ’
A—Fc: [A D _daec ) A aec_dac ) A ac_dsec ) A -
dp.o(7, p) @ DCS ; (T, p1)Ap , , (7, p)Ap , , (7, 1) Hs.ec
dF,ec T, Pl
ds,c(Ta Pl) A///;c - dF ((7_ p )) (AOD%hg{é - da,ec(Ta pS)A,ua,ec - ds,ec(T7 ps)AN;ec) ’

(6.34)
where ona P
dF,ec(7_> Pl) o AODDC%S - da760(77 pl)A/L{;ec - d8,80(77 pl)Alu;],:,ec
Apee(T; ps)  AODPIOST — dgec(T, ps) AL oo — dis ee(T, ps) ApiE,

Alternatively, the variable scattering extension of E¢quab.29 derived from solving Equa-

tion 6.30 forAF, is

1 long
AFczi AOD _d ec 9 AFec_d(lC , A wo—
dRC(T, o) [ DCS F, (1, 0) 7 (r, p1) A |
da,ec(T: 1) Dtta,ec = ds,e(T, pr) Agy o — ds ec(T, pr) Api oc] - (6.35)

Again, AF, is determined from short separation measurements viaiséimie techniques.
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6.11 Instrumentation and Optical Probe

For in vivo cerebral blood flow monitoring during finger tapping and grqbvessure variation,
we used a custom built DCS instrument. Briefly, two contimiawave, long coherence length
(> 5 meters) 785 nm lasers (80 mW, DL785-100-30, CrystaLaser Reno, NV, USA) de-
liver source light to tissue via multimode fibers. Single matbtection fibers couple diffusive
light emerging from tissue to two arrays of four high semgitiavalanche photodiodes (SPCM-
AQA4C, Excelitas, Quebec, Canada) operating in photon e¢agymiode. The outputs from the
detection arrays are connected to a multipleardware correlator (Correlator.com, Bridgewater,

NJ, USA) that computes intensity autocorrelation curvagai time [72].

For interfacing this instrument with the head, we used aitalgpprobe consisting of one long
separationp; = 3.0 cm, and two short separations, = 1.0 cm (Figure 6.11). All four fiber
bundles in the probe are terminated with 3 mm dielectricembaght-angle prisms (PS905-E02-
SP, custom, Thorlabs, Newton, NJ, USA). The high reflegtivfithe prisms 09%) ensures high
light throughput at the skin-probe interface. Further/lastrated in Figure 6.11, the side-firing
prism fibers lay in the same plane as the probe head, whiditdses the application of uniform

pressure to the top of the probe.

All seven single mode fibers in the “DL” bundle and one attéedasingle mode fiber in
the “DS” bundle of the optical probe (Figure 6.11) were cated to the 8 detection channels
in the DCS instrument. The seven independent measuremetits mtensity autocorrelation
function acquired in parallel at the DL probe position wenbsequently averaged together to
improve SNR. For the single mode fiber in the DS bundle, a kliblocking pigtail style fiber
optic attenuator (OZ Optics, Ontario, Canada) was empléyedoid detector saturation. Each
“S” fiber in the probe was connected to a laser, and the “mi&ligosition fiber” was also
attenuated (OZ Optics) to avoid detector saturation. RUEXCS acquisition, multiplexing of
the two S positions was achieved by sequentially switchiegtivo DCS lasers on and off with
TTL pulses controlled with Labview software (National Inshents, Austin, TX, USA). For the
finger tapping measurement (Section 6.6.1), we only usedasee (i.e., one short separation

instead of two) to increase the time resolution.

To manufacture the probe, we utilized 3D printing to prodaceold (template) that securely
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Figure 6.11: Schematic of the optical probe used for colibed DCS and DOS/NIRS mea-
surements (dimensions in mm{jA) For conversion of straight ferrule endtip fiber bundles to
side-firing prism-coupled fibers, EPO-TEK 353ND epoxy walized to glue right-angle prisms
(Thorlabs, EO3 dielectric coated) to the ferrule endt{g9.The probe consists of two fused silica
multimode source fibers (800um-core/0.22NA), one long separation detection bundle (@fL)
seven single mode fibers (780HP, Thorlalism-MFD/0.13NA), and one short separation de-
tection bundle (DS) of three single mode fibers (780HP). Ehmination and bundling of these
optical fibers were done by Fiberoptic Systems, Inc. (SinieyaCA, USA). (C) Schematic
of the 3D printed probe mold used for embedding the prism diliesilicon elastomer at the
positions indicated in panel B (see main text).

192



holds the prism fibers at the desired probe positions (FigureC). Specifically, the mold design
was made in the Fusion 360 modeling software environmentoghask, CA, USA) and then
printed with VeroClear material using an Objet 500 printgirétasys, MN, USA and Rehovot,
Israel). Separately printed prism clamps with integratetdssrews secured the prism fibers in
place along grooves in the mold (Figure 6.11C). While therfibemained fixed in place, a
two-part silicone elastomer (VytaFlex-30, Smooth-On, B&SA) was mixed with a black tint
(3% volume fraction; SO-Strong Color Tint, Smooth-On), vacudegassed, and poured into
the mold. Cast as a liquid, the elastomer cures over a timecef 24 hours to form a flexible
solid probe head with the prism fibers embedded at the dgsasitions. Notice that this highly
flexible technique can be utilized not just for making flatlges, but also probes with “built
in” curvature that may facilitate measurements on neonatdso, the SO black tint we used
was not highly absorbing in the near-infrared. For a moreuwdiasg probe head in the NIR, we

recommend mixing the elastomer with india ink.
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Chapter 7

Neurovascular Coupling Varies with
Level of Global Cerebral Ischemia in a

Rat Model

This chapter is mostly a verbatim reprint of my paper pulglisin the Journal of Cerebral Blood
Flow and Metabolism [13]. However, | have added an Appen@igction 7.6) wherein the

compartment model for computing oxygen metabolism is ekpliderived.

7.1 Introduction

In healthy brains, localized increases in neuronal agtait strongly correlated, both spatially
and temporally, to localized increases in cerebral bloos {td B F") and cerebral metabolic con-
sumption of oxygen@ M RO-) [244]. Thus, quantification of hemodynamics due to inceelas
neuronal activity, i.e., neurovascular coupling, has Ibagn a topic of intense interest. In addi-
tion to being critical for the interpretation of technigumsch as functional magnetic resonance
imaging that use hemodynamic responses to map brain funateurovascular coupling also
plays a role in several diseases, including Alzheimersadis¢139] and cerebral ischemia [66].
In this study, the effects of global cerebral ischemia orreascular coupling in a rat animal

model are investigated.
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Specifically, functionalCBF, C'M RO,, oxy-hemoglobin concentrationHp0O), deoxy-
hemoglobin concentratior {b R), and total hemoglobin concentratioH §7°) responses to forepaw
stimulation on rats were measured at several levels of bistlzemia from very mild(¢ BF ~
90% of normal supply) to more sever€ BF ~ 40% of normal supply). The combined op-
tical techniques of laser speckle contrast imaging [27 ar®] optical imaging of intrinsic sig-
nals [77,117] were employed to make these measurementsharaaterize neuronal activity,
the electrical somatosensory evoked potentials (SEP) alstecollected simultaneously with
the optical hemodynamic measurements. To our knowledgristthe first study that examines

functional activation during graded ischemia.

This study is also motivated by the notion that functionahstation can be utilized as a
treatment for stroke [38, 164]. Fox and Raichle first repbrteat localizedC BF' increases
due to functional stimulation vastly exceed the localiZzetll RO, increases in healthy humans
[102]. This observation suggests that the oxygen delivecyeiase to the tissue from functional
stimulation exceeds the oxygen consumption increase [16he mismatch between tiéBF
response (surrogate for oxygen delivery) angi/f RO, response persists during ischemia, then
repeated application of functional stimulation duringhismia could increase the base level of

oxygen in the brain.

For severe ischemia(B F' supply below 40% of normal levels), no hemodynamic response
to functional stimulation was observed. For less seveteisic tissue, though, hemodynamic
and electrical responses to stimulation were present. Weskow in this paper that at these
ischemic levelsC'M RO, and SEP functional responses remained tightly coupledotiaptly,
we discovered that as the animals became ischemid,' i€’ response was more strongly at-
tenuated than thé'M RO, response. This observation suggests that oxygen delivetyan-
sumption increases due to stimulation become more balamitkedyraded ischemia. Thus, the
mechanism for the neuroprotection of functional stimolatiduring ischemia observed by oth-
ers [38,164] is probably not related €3 F' changes. This result also supports the notion that in
healthy tissue, oxygen delivery increases from functictiahulation exceed oxygen consump-
tion increases (Leithner et al, 2010; Vazquez et al, 2008)eloxygen delivery and consumption
increases were in balance, then the expectation i€’'thé” and C M RO, responses would be

attenuated at the same rate by ischemia, which was not @userv
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7.2 Materials and Methods

7.2.1 Surgical Preparation

All procedures were in accordance with guidelines estabtisby the National Institutes of
Health and approved by the Institutional Animal Care and Osenmittee of the University
of Pennsylvania (approval # 801100). Adult male SpraguedBarats (V = 46, 327 + 31 g;
Charles River, Wilmington, MA, USA) were anesthetized withi isoflurane in a bell jar, intu-
bated, and then mechanically ventilated with% isoflurane in a mixture of oxygen and nitrous
oxide (3:7). End-tidat”’ O, was monitored and the ventilation rate was adjusted to rauiai@n
arterial CO- pressure close to 40 mm Hg. Polyethylene catheters weredglacthe femoral
artery for blood pressure monitoring and the femoral veirdimg administration. Throughout
the study, body temperature was measured with a rectal prothenaintained &87.5 + 0.2° C
with a heating pad (ATC1000, World Precision InstrumentsaSota, FL, U.S.A.). In prepara-
tion for hemodynamic imaging, the rats were secured in &staxic head holder. After reflect-
ing their scalps, their skulls were uniformly thinned tonshucency over a 5 by 5 mm window
encompassing the right forepaw area of the cerebral cotentér~ 3.5 mm directly lateral to
bregma) (i.e., black square in Figure 7.1A) with a dentdl.dfio reduce specular reflections,
ultrasound gel was applied to the translucent thinned sladl a glass coverslip placed on top.
As depicted in Figure 7.1A, two 1 mm burr holes were drillegtigh the skull down to the dura
(~ 3.5 mm lateral and 3 mm anterior of bregma;2.5 mm directly posterior to lambda) for the
placement of electrodes to measure the somatosensorycepotentials resulting from forepaw
stimulation.

To induce global ischemia, animals were held in a supinetipaswhile a midline neck
incision was made. Both common carotid arteries (CCA) wsotated from the surrounding
connective tissue, and loose snares made from a polyethglatheter (PE-10) were carefully
placed around them for later remote occlusion. In orderliieze more severe ischemia, a partial
sternotomy was also performed in the last 39 animals in thdystAfter separating sterno-hyoid
muscle, the bifurcation of the right CCA and the right subigla artery (SCA) from the aorta
was carefully dissected and exposed. A snare was then pdacedd the right subclavian artery

between the first and second bifurcation of the right SCAalmto even further increase the
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Figure 7.1:(A) Diagram of the rat brain showing tliex 5 mm thinned part of the skull over
the forepaw area of the cerebral cortex for hemodynamic imgafblack square) and the burr
hole locations for electrodes to measure somatosensokgeémtentials (SEP) (filled and open
circles).(B) Schematic of instrument used for optical imaging of hemaudyics.

degree of ischemia, the lower bodies of the last 17 animathéarstudy were placed inside a
custom-made pressure chamber after the snares were iilopo3ihe pressure chamber applied
negative pressure to the rats, causing blood to pool in terlgart of the body [71]. The
shares were tightened and negative pressure was applieeigizdly to create different levels of

cerebral ischemia from mild to severe.

For functional stimulation, two needle electrodes wereiitesl subdermally in the left forepaw
of each rat, contra-lateral to the translucent imaging wind-ollowing the surgical preparation,
a-chloralose (60 mg/kg) was administered intravenously thedisoflurane was discontinued.
Nitrous oxide was also discontinued and replaced with gérogas. Anesthesia was maintained
with an intravenous infusion af-chloralose (30 mg/kg/hr). Upon completion of the study; an

mals were euthanized with an overdose of barbiturate.

A control group (N = 5) was prepared in the same manner asitledcabove with loose
shares placed around both carotid arteries and the rightastidn artery. However, these snares

were not tightened to cause ischemia.
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7.2.2 Experiment Protocol

Figure 7.2 is a timeline of the study. As described aboveatitmeof the experiment was to create
different levels of global ischemia and measure the hemaayn and electrical responses to
forepaw stimulation. We generated different levels of &ufa by right common carotid artery
occlusion (RCCAOQ), bi-lateral common carotid artery osan (RCCAO+LCCAOQO), bi-lateral
common carotid artery occlusion with right subclavian grtecclusion (RCCAO+LCCAO+RSCAO),
and three vessel occlusion with lower body negative preszpplied in a pressure chamber. Af-
ter inducing each condition of ischemia, we waited five masub allow flow to stabilize before
starting functional stimulation. The control group of aaisishared the same timeline except
that we did not occlude any arteries or apply lower body negatressure. After euthanizing the
animals, laser speckle images were collected for 5 minotebtain a biological zero correction
to the CBF measurements [275].

The forepaw stimulation paradigm, which was executed duttre time windows marked
DA (i.e., data acquisition) in Figure 7.2, consisted of antraf constant current rectangular
pulses (amplitude 1.5 mA, duration 3@3) delivered to the forepaw at 3 Hz for 4 seconds by
a commercial high voltage stimulus isolator (A360, Worlg&sion Instruments). The stimula-
tion train was repeated every 30 seconds for a total timeger 8 minutes. After letting the
animal rest for four minutes with no stimulation, the stiatidn trains were resumed every 30
seconds for another 8 minutes. During these 8 minute petiasksr speckle and spectral images
were collected sequentially for hemodynamic imaging, dadtecal somatosensory evoked po-
tentials due to the stimulation were recorded. This stitmigparadigm was repeated for every
level of ischemia, as indicated in Figure 7.2. Five minutdserpo the first data acquisition,

blood was withdrawn from the femoral artery for blood gaslgsia.

7.2.3 Optical Instrument

To obtain images of changes in blood flow and oxygenation,tébbniques of laser speckle
contrast imaging and optical imaging of intrinsic signalergzcombined [77]. As depicted in
Figure 7.1B, a 60-mm lens (Apo-Componon 2.8/40, Schneddetznach, Bad Kreuznach, Ger-

many) was used to form an image of the 5 by 5 mm forepaw regidheoterebral cortex on a
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Figure 7.2: Schematic showing the timeline of the study inutes (time axis not to scale). DA
stands for data acquisition, where we collected laser $pexid spectral images and applied
forepaw stimulation trains (1.5 mA, 0.3 ms rectangular gsildelivered at 3 Hz for 4 seconds)
every 30 seconds as described in the text. The top row of biogisate the CBF conditions,
which are baseline (i.e., pre-ischemic), right common tdrartery occlusion (RCCAQ), right
and left common carotid artery occlusion (RCCAO+LCCAOghti and left common carotid
artery occlusion with right subclavian artery occlusiorCRAO+LCCAO+RSCAOQO), and the
occlusion of the previous three arteries with the applicatf negative lower body pressure.
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12-bit TEC cooled CCD camera (UP-680CL-12B, Unig Vision.]Jriganta Clara, CA, U.S.A))
with unity magnification. Interleaved images (exposureetifn= 4 ms) under different illumina-
tion sources were then captured and recorded using a fraabégr (Grablink Avenue, Euresys
Inc., San Juan Capistrano, CA, U.S.A.) and imaging softw@teeamPix, NorPix, Montreal,

Quebec, Canada).

The illumination source used for laser speckle contrasgintpof CBF was a collimated 785
nm laser diode (Sanyo, DL7140-201S, 785nm, 70 mW, Thorldbsiton, NJ, U.S.A.) mounted
on a temperature-controlled heat sink (LDM21 Laser Diodmgerature Controlled Mount,
Thorlabs) and driven by a commercial driver (LDC 500 Lasaydei Controller, Thorlabs). The
illumination sources used for optical imaging of intrinsignals to measure changes in oxy-
hemoglobin #b0) and deoxy-hemoglobinHbR) concentrations were three collimated light
emitting diodes (LEDs) mounted on heat sinks with centraledengths of 530, 590, and 660
nm (M530L2-C1, M590L2-C1, M660L2-C1, Thorlabs) driven lynemercial drivers (LEDD1B
T-Cube LED Driver, Thorlabs).

Commercial software (SciWorks, DataWave Technologiegylds, CO, U.S.A.) was em-
ployed to program pulse sequences of digital outputs frorA/8nboard (DataWave Technolo-
gies) to control the timing for the interleaved imaging. NVihis instrument, we acquired 3

spectral images and 4 speckle images/second.

7.2.4 Somatosensory Evoked Potential (SEP) recordings

To measure the SEP response to stimulation, a 1 mm diamletv/sliver chloride ball electrode
and a reference silver screw electrode were placed on tleiduhe burr holes indicated by
the filled and open black circles in Figure 7.1A, respedfivelhe recording electrodes were
connected to a low-impedance HS4 headstage (World Pradisstruments), which amplified
and digitized the voltage difference between the two ebelets before sending the signal to a
Digital BioAmp (DB4, World Precision Instruments), whetgetsignal was further amplified
and filtered between 5 Hz and 500 Hz. SciWorks software wag teseecord the SEP signal

from the BioAmp for 200 ms after each stimulation pulse wds/éeed to the animal.

200



7.2.5 Optical Image Analysis

Laser speckle contrast imaging@B F’ has been discussed extensively in previous publications
[27], and the specific analysis used in this study to caleWlaB F' from speckle contrast images
is described by Zhoet al [275]. It was assumed that the static scattering contobuto the
speckle contrast signal from the thinned skull [198] wadigdaje, since we saw very similar
flow responses to studies where the skull was completelyved@2]. Since we were interested
in functional C B F' responses to stimulation, tlieéB F' images were averaged across stimulation
trials for each level of ischemia. A stimulation trial wadided as the 20-second time period
that begins 5-seconds before the start of a stimulatioreptdsn.

Optical imaging of intrinsic signals (or spectral imagirtg)determineHbO and HbR is
also a well-established technique [78, 163]. As witlB F', the intensity images of each LED
were averaged across stimulation trials at each level b&ésta. The averaged spectral intensity
images of the three LEDs were converted to image&/6f) and HbR via a modified Beer-
Lambert law (see Section 7.5).

As many other investigators have done, we employed a compatél model (Section 7.6)

to calculateC' M RO- images from our measurementsBF, HbO, and HbR [62,78,273]:

SaOy — HbO/HVT)

_(
CMRO, = ~5a0,

x CBF x C,. (7.1

Here, HbT is the measured total hemoglobin concentration (H&] = HbO + HbR), SaO-
is the oxygen saturation in the cerebral arterioles (takdyetl),y is the blood volume fraction
contained in the venous compartment of the vascular sysasah(', is the blood arteriolar
oxygen concentration. There is mounting evidence that exyaxtraction takes place in arteries
and arterioles, and as a result, the arterioles directlglifgethe cerebral capillary beds may
have a lower saturation than the systemic arterial saturdf251, 264]. In the present study,
all animals breathe@0% enriched oxygen resulting in high systemic arterial oxygamsions
(~ 120 mm Hg). Thus, even with oxygen extraction in the arteries,afteriolar saturation will
still be close to one throughout the study.

Equation 7.1 is a steady-state modeldat/ RO-. To estimate the errors in this model when

applying it to the dynamic situation of functional stimudat, we followed Vazquezst al[247]
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approach of applying a dynamic compartment model to solve’fd/ RO, using input mea-
surements from our previous study of cerebral tissue oxygesion and blood flow in healthy
rats during functional stimulation [4]. The increase<il/ RO, during functional activation
computed with this dynamic model were then compared to the@ses computed with the
steady-state model (Equation 7.1). This comparison shastdhe calculated peak increases
in C M RO, due to stimulation for the dynamic and steady-state modets within2% of each
other (see Section 7.6). Consequently, and as discussed, elthe present study we use the
peak increase from functional stimulation to charactettimeresponse.

Under the assumptions th8tO,, C,, and~ remain constant over time, substituting mea-
surements o HbO, HbR, andC BF' into Equation 7.1 results in an index that is proportional
to CM RO,. Although it is feasible that these assumptions may be tadlauring ischemia,
our group and others have shown the calculated metaboliegelsafrom Equation 7.1 to be
relatively insensitive (i.e.< 5%) to most of the likely physiological cases that violate thes

assumptions [62, 151].

7.2.6 Quantifying Hemodynamic and SEP Responses to Stimuian

Figures 7.3A and 7.3B contain montages of fractiofid F' and C M RO, responses to stim-
ulation for an exemplar animal averaged across all trialinduthe C BF' baseline period of
Figure 7.2. To quantify the hemodynamic responseg'&8fF" and C'M RO-, as well as the
hemoglobin concentrationdb0O, HbR, and HbT (image montages not shown), we followed
the same approach as Durdustral [82] to select a region of interest (ROM. priori informa-
tion about the stimulus paradigm was used by computing adeshporrelation coefficient at
every image pixel betweeti B F and the forepaw stimulus [82] during the pre-ischemic hasel
period denoted in Figure 7.2.

In order to apply a consistent threshold across all aninoalROI selection, the resulting im-
age of correlation coefficients was normalized by the maxinpixel, resulting in an image of
normalized correlation coefficients scaled from 0 to 1 (Fegit3C). A ROI to consist of all pix-
els with normalized correlation coefficients above 0.8 wadrarily chosen, and hemodynamic
temporal response curves at each level of ischemia wer@ettdy averaging over all pixels

within the ROI. We note here that we did not observe signiticdranges in our results when
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we tried using different correlation coefficient threstwolof 0.9 or 0.7 for the ROI, indicating
robustness to the particular ROI threshold.

At ischemic conditiori in an animal (e.g4 = RCCAO, RCCAO+LCCAOQ; see Figure 7.2),
the hemodynamic responses were quantitatively charaeteby their average peak increases
from baseline because of stimulation, i.€\z); = (Tpeak — 0)s, Wherex refers to theC' BF
index, CM RO index, HbO, HbR, or HbT. The SEP response, in turn, was characterized at
condition: by the average difference between fieandn1 peaks of the signal (Figure 7.3D),
which is denoted aéASEP);. To make the quantified responses unitless, which will itatd
comparison between the different response parameterséferedt ischemic levels, the hemo-
dynamic and SEP responses at each ischemic conditi@re normalized by their preischemic

baseline response§)z) g;, and(ASEP)py:

Normalized hemodynamic response(Az);/(Azx)pr, (7.2)

Normalized SEP response (ASEP);/(ASEP)py,. (7.3)

The level of ischemia, or fraction of the normal CBF supplyte brain, reached due to the
ith ischemic condition in an animal was determined quaiuébt by averaging the prestimulus
speckleC' BF index during conditioni, (CBFy);, and dividing this by the same average of
CBF during the baseline conditiodC' BEy) 1.

(CBFy);

CBF level = ——.
(CBFy)BL

(7.4)

Also of interest is the affect of cerebral ischemia on SEPney, which we define as the

time after stimulus onset of thel peak in the SEP signal.

7.2.7 Statistical Analysis

Across animals, the degree of ischemia attained followatheof the manipulations was quite
heterogeneous. Thus, although blood flow was lowered ombutih three artery occlusions
and negative lower body pressure, many diffe @t F’ levels ranging from very mild ischemia
(i.e., 0.94) to severe ischemia (i.e., 0.36) were achienetthé animals. A major goal of this
study was to determine whether there were differences imsenC BF, CM RO, and SEP

normalized functional responses (Equations 7.2, 7.3) asaibon of C BF level (Equation 7.4).

203



L
A 0.2
e e > b G s i it Y .
3 X \ i
0.1
02
D
=
=
[l
L
73]
. k_l.;-'l’ﬂ . .
o 50 100 150 200
Time (ms)

Figure 7.3: Image montages of fractional change€'iBF' (A) and C'M RO, (B) averaged
across stimulation trials during the baseline, or preestie, C'BF condition for an exemplar
animal. The fractional changes are relative to the meanefptrameters over the 5-second
pre-stimulus time windows. Each image in the montages isespane second apart when read
from left to right and top to bottom. The dashed double arrowigcate the 4-second forepaw
stimulus, and the letters L and A within the first image of¢hB F montage stand for lateral and
anterior, respectively, to indicate image orientationr R®I selection, a temporal correlation
coefficient was computed at every pixel betweeR F' and the forepaw stimulus during pre-
ischemic stimulation, and the resulting correlation cogdfit image was then normalized to the
maximum pixel [82]. The ROI for the animal in this figure casisiof all pixels in the animals
normalized correlation coefficient imag€)(with values greater than 0.8 (see text). The thick
black lines in panels (A) through (C) are 1 mm scale bdpg.The SEP signal averaged across
stimulation trials during the pre-ischemic baseline cbaodifrom the same animal as shown
in panels A-C. The difference between the andn1 peaks in the SEP signal was used to
characterize the electrical response to stimulation.
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To address this, a mixed effects model was used [205]. Thiseplure is conceptually similar

to repeated measures ANOVA but allows tHi& I level to be treated as a continuous variable.
Initial graphical procedures suggested that in many cdsesdsociation betweetiBF level

and the normalized functional responses was non-lineans,Tdnnatural cubic spline was used
to model the meat’ BF', C M RO,, and SEP normalized functional responses separatelylat eac

CBF level.

We additionally fit two natural cubic spline models to thelsee¢ types of normalized re-
sponses (i.e(/ BF', C M RO-, and SEP) simultaneously to determine the statisticaifsignce
of the differences in patterns ovetB F’ level that we observed between these different types of
responses. In one model, these differences were alloweallbovfa parallel, albeit non-linear
pattern oveilC BF level. In the second model, the response types were allosvedange dif-
ferently overC BF level. We applied a likelihood ratio test to these two modeltest the null
hypothesis that the three functional response types asadfedited the same by BF' level. We
also determined the significance of the differences betwleeISEP response and the other two
response types by considering the Wald statistics for efittederms in the spline of the second
model. We then repeated this analysis to compare SEP respaith theH b0, HbR, andHbT
responses as a function OfB F’ level.

The analysis described above addresses the global questidrether there were differences
inthe mearC BF,CM RO, HbO, HbR, HbT', and SEP responses as a functiod'd F' level.
Another important question is if there are differences i lemodynamic responses with the
SEP response ovérBF' level, then what are the ranges@BF’ levels where these responses
are different. To address this, we used individual mixedaff models with a natural cubic spline
to model the mean logarithms of the ratios of SEP responsethethemodynamic responses that
differed globally from SEP (i.elpg(SEP/CBF), log(SEP/HbO), andlog(SEP/HbR)) as
a function of CBF level. The hemodynamic responses weréfgigntly different from SEP at
C BF levels where th&5% Cls from these models did not overlap zero.

Lastly, we used a mixed effects model to test the hypothbatsSEP latency increased with
CBF level. As with the normalized responses, a natural cubineplas employed to model
the mean SEP latency as a function(oB F’ level, and the overall significance was assessed

using a likelihood ratio test.
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These mixed effects models were implemented with libramné) and library (splines) in
R 2.13 [241]. A Type | error rate of 0.05 a98% confidence intervals on the population mean
(95% CI) were used.

7.3 Results

Prior to ischemia, the population means and standard a@vsabf pH, PaO,, and PaCO-
determined from blood gas analysis w&té4 + 0.09, 124 + 21 mm Hg, and37 + 8 mm Hg,
respectively, and the arterial blood pressure W&+ 6 mm Hg. To aid the visualization of
the effects of graded cerebral ischemia in this animal moddblood pressure, hemodynamic
responses, and electrical responses, we discretizedisclieB F levels into bins of width 10
percentage points (i.e., 0.85-0.95, 0.75-0.85, 0.35-0.45) and determined parameter averages
across animals at' BF' levels within these bins. The arterial blood pressures (me&D) at
these binned’ BF levels werell5 9, 122 + 12, 112 + 7, 118 £ 12, 117 £ 15, and95 £ 19
mm Hg for theC BF levels 0f0.85 — 0.95, 0.75 — 0.85, 0.65 — 0.75, 0.55 — 0.65, 0.45 — 0.55,
and0.35 — 0.45, respectively.

Figure 7.4 shows average fractional hemodynamic tempesglonse curves across animals
at each binned’ BF level of ischemia. Prior to ischemi&'(BF Level 1 panel in Figure 7.4),

C BF has the largest response of the hemodynamic parametensamvdverage peak increase
of 21%, while C M RO, peaked at2%. HbO and HbR peaked a8% and —8%, respectively,
while a small2% peak increase ilHbT was observed. All the hemodynamic functional re-
sponses were attenuated as the animals became more iscaedhance th€' BE level reached
0.4, the responses essentially disappeared. Also, natiEgure 7.4 that the peaks of theB F’
andC M RO, responses approach each other as the level of ischemiasesieindicating that
global ischemia more strongly attenuateshB F' response.

Corresponding to the average hemodynamic responses ireFHiguare the average electrical
SEP responses presented in Figure 7.5. As with the hemodymasponses, the SEP response
is attenuated as the level of ischemia increases. How&eSEP response has not vanished at
the C'BF level of 0.4, whereas the blood flow response is very mucmted. Additionally,

Figure 7.5 contains the mean SEP latency at each bi6hed level. The observed increase in
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Figure 7.4: The average fractional responses of cereb@dbiflow (CBF), cerebral
metabolic consumption of oxyget’'(\/ RO), cerebral oxy-hemoglobin{bO), cerebral deoxy-
hemoglobin fbR), and cerebral total hemoglobi/$T) measured at variouS BF' levels (see
Equation 7.4) within the specified bins. Th&BF bins are labeled by their central numbers
(e.g.,CBF level 0.8 spans the range 6fBF levels from 0.75 to 0.85), and théBF" level 1
indicates the pre-ischemic responses. Here(tB& bin 0.9 is omitted since the temporal plots
look very similar to the pre-ischemic responses. The eraps indicate the standard errors of
these averages, and the 4-second forepaw stimulus isfeditathe panels by a thick black line
(omitted fromC B F' Level 1 panel for readability).
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SEP latency with ischemia relative to the pre-ischemiaiagas highly significantg < 0.0001).

Interestingly, theC' BF' response is attenuated more strongly at milder levels dfadlis-
chemia than th€’ M RO, and SEP responses (Figures 7.6, 7.7). Figure 7.6 is a bastpating
the mean normalized hemodynamic and SEP responses, agidefiigjuations 7.2 and 7.3, at
eachC BF level bin. Figure 7.6A suggests that thél/ RO, response is tightly coupled to SEP
as the animals become more ischemic, wherea€'thé' response exhibits a greater attenuation
than does SEP. This behavior is confirmed in Figure 7.7, wimstead of discretizing the data
into bins, a mixed effects model was used to model averagésixi, C M RO, and SEP re-
sponses at ead BF' level. This analysis demonstrates strong evidence ofrdiffses among
these three response types overdhBF level (p < 0.0001) as well as evidence that CBF re-
sponse differs from SER (< 0.0001) and fromC'M RO5 (p < 0.0001). However, there was no
significant difference between SEP afid/ RO» (p > 0.1). The mixed effects model analysis
comparing SEP to the hemoglobin concentratiéfi®), HbR, and HbT also provides strong
evidence of differences among these four response typesawé’ level (p < 0.0001). As with
CM ROy, there was no significant difference betwdéhl” and SEP, but the SEP response did
significantly differ fromHbO (p < 0.0001) and HbR § < 0.02).

We took the logarithms of the ratios of the SEP response wghttiree hemodynamic re-
sponsesBF, HbO, HbR) that differed from SEP ove€' BF level, and applied individual
mixed effects models to them to determine the rang€ Bff" levels where their means are dif-
ferent from zeroyk < 0.05). These models predict the me@B F, HbO, and HbR responses
first become different from SEP &tBF’ levels of 0.86, 0.83, and 0.84, respectively. The mean
CBF and HbO responses remain different from SEP at all low&B F' levels in the data set,
while the mearn{ bR response is different from SEP until th&B F' level of 0.42. We also note
here that in the control group of animals, where no occlisiware made or negative pressure
applied, the average normalized hemodynamic and SEP respacross animals did not signif-
icantly change (i.e., fluctuations less th#h) over the two hour time course of data collection

(data not shown).
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Figure 7.5: The average somatosensory evoked potentid)(8&oss animals at ea€hB F
level bin. As with Figure 7.4, th€’BF level bins are specified by their central numbers. The
error bars indicate the standard errors of these averagdgha time zero here corresponds to
the arrival of a stimulation pulse. The boxes in each panetaio the SEP latencies (mean
standard error) in milliseconds at eaCtB F' level. The latency is the time from stimulus to the
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pl peak. SEP latencies are significantly associated @i level (p < 0.0001).
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Figure 7.6: Average normalized hemodynamic and SEP respdfigjuations 7.2, 7.3) across
animals at the binned BF levels of ischemia (Equation 7.4) specified on the horidcatés.
As with Figures 7.4 and 7.5, the levels of ischemia are digee into bins with widths of 10
percentage points, such that a CBF level of 0.9 correspanttetrange of CBF levels between
0.85 and 0.95, a CBF level of 0.8 corresponds to the range &f letels between 0.75 and
0.85, etc. A) From left to right, the average normalized cerebral mdialmmnsumption of
oxygen C'M RO,), somatosensory evoked potential (SEP), and cerebratiflow (CBF)
responses. B) From left to right, the average normalized cerebral tohbglobin {bT),
somatosensory evoked potential (SEP), cerebral oxy-hlediog(H b0), and cerebral deoxy-
hemoglobin @bR) responses. The top row of numbers in panel (A) indicatestimber of
animals contributing to the averages for each CBF leveloth panels, the red lines are standard
errors to the averages, and the asterisks (*) denote staligtsignificant differencespy(< 0.05)
with SEP at a given bin, as determined from a mixed effectsahofthe mean logarithm of the
ratio of SEP with the respective hemodynamic parameterdisdistical methods). Recall that
by definition, the pre-ischemic response(dBF level 1 is 1, which is why there are no error
bars in the first bins of both panels.
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Figure 7.7: Mean normalized response (Equations 7.2, €r®@ka animals (thick lines) of SEP,
CBF,andCM RO, as a function of” BF level (Equation 7.4). Mean values shown are based
on individual mixed effects models (see statistical methadong with theird5% confidence
intervals (shaded regions)i BF differed from SEP £ < 0.0001) andCM RO (p < 0.0001),

but SEP and’ M RO- were not significantly differenty(> 0.1).

7.4 Discussion

Fox and Raichle [102] first reported that for healthy huméms Jocalized CBF increases due to
functional stimulation vastly exceed the localized CMRO&eases, although they were compa-
rable to the increases in localized cerebral glucose misainfl03]. The compartmental model
of Buxton and Frank [41] explained this observation by rptimat a large”’ BF increase could
be necessary to support a sm@lM RO, increase due to oxygen diffusion limitations. A key
assumption of their model is that all of the oxygen leavirgthsculature is metabolized, which
results in a tight coupling betweenBF' andC'M RO,. However, the direct measurements of
tissue oxygen pressure a6B I in rats by Ance®t al [4] during functional stimulation provide
evidence of an uncoupling betweéhB F' and C' M RO, in that after 1 minute of stimulation,
there was a sustained post-stimulus undershoot in tissygeoxpressure that was not present
in CBF. This is similar to the resetting of blood flow and meti#m seen following a more
generalized activation (sheltering a rat previously erpa® the environment) [178]. Leithner
et al [167] also recently presented data in rats showingtligaliargeC B F' response from func-

tional stimulation is not necessary to support small chamgé’'M RO,. Their interpretation of
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these results is that there exists a safety factor whereibltiod flow increase from functional

stimulation can deliver more oxygen than is necessary taisuthe increase in neuronal activity.

Our results show an uncoupling betwe@w F' andC' M RO- during functional stimulation
at different levels of ischemia that supports the notiorhefgafety factor described by Leithner
et al [167]. As seen from Figures 7.6 and 7.7, the attenuatidanctional C' BF' increases at
milder levels of ischemia is stronger than the attenuatiothé neuronal activity as measured
by SEPs. However, thé’M RO, response does not follow thé BF' response at the milder
levels of ischemia, but instead remains coupled to SEP.Herowords, the effect of global
ischemia is to make the safety factor between the increasgsygen supply and consumption
during functional stimulation smaller. Thus, especialtly $evere ischemia, it is likely that the
mechanism for the neuroprotection of functional stimolatiuring ischemia observed by others

[38,164] is probably not related t@ B F' changes from stimulation.

As with C BF', oxy-hemoglobin and deoxy-hemaoglobin concentrationga@more severely
attenuated with moderate ischemia than the electrical 8§pnse. However, ischemia does not
affect the total hemoglobin response significantly diffele from the SEP response. The un-
coupling between blood flow and total hemoglobin respongésischemia demonstrates that
with functional activation, using total hemoglobin as aregate for blood flow via Grubbs rela-

tion [119] could lead to inaccurate results for blood flow.

Recall that to characterize the functional hemodynamipaeses, we looked at peak in-
creases in the hemodynamic parameters (Equation 7.2).témalive approach would be to in-
tegrate the temporal responses due to functional stirounlétie., take the area under the response
curves) instead, especially since Figure 7.4 suggestssittagdmia broadens the hemodynamic
responses in addition to attenuating them. Characterthi@dgnemodynamic responses this way,
we find the same behavior as depicted in Figures 7.6 and mTortrating the robustness of
our main conclusion on the uncoupling between flow and médisabdncreases resulting from

ischemia.

Though we are not aware of previously published data on iimmat hemodynamic responses
to an identical stimulation protocol, the pre-ischemigmsses we measure are reasonable. For

4 Hz, 4-second, 1.6 mA forepaw stimulation in healthy ratsylRet al[214] observed an average

212



peakC BF increase of roughlyt7% with laser speckle imaging, while Durdurah al [82] ob-
served average pe@kBF increases with laser speckle imagingl8f4 + 2.5% and20.0 +3.0%

for 5 Hz, 4-second stimulations with amplitudes of 1 mA and 2, mespectively. Furthermore,
the ratios between the average péak F' response and the average péakl RO,, HbO, HbR,
and HbT responses in our pre-ischemic data are comparable to dmattiesponses due to a 10-
second, 3 Hz, 1 mA forepaw stimulus reported by Detral [78]. The small post-stimulus
undershoot inC'M RO5 present in Figure 7.4, as well as the simultaneous ris€ B¥' and

CM RO, is likely an artifact of the steady-state model, Equatidn[245].

In regards to somatosensory evoked potentials, experahentk involving a focal ischemia
model in baboons showed a sh&i® I threshold for electrical activity in the brain, with com-
plete electrical failure whe@ B F is approximately35% of control [33]. A similarC BF thresh-
old was observed for auditory evoked potentials in a globziiémia model in cats [227]. In our
study, we did observe severe attenuation in SEPSaB&’ level aroundd0% (Figures 7.5, 7.6,
7.7), although we did not observe the same slafpF threshold for electrical activity seen in
these non-rodent ischemia models (Figure 7.7). There isu@igc of data examining SEPs at
milder levels of ischemia. One paper examining SEPs in a hdwage ischemia rat model ob-
served SEP amplitudes betwe#h— 60% of control whenC' B F' was lowered to approximately
65% of control [230], which is reasonably close to the resultBigure 7.7. In another paper ex-
amining the effects of bi-lateral common carotid arterylosion on SEPs in rats, a steady-state
decrease in the SER amplitude to90% of control is observed, although this decrease was not
statistically significant [20]. In the present study, Wiel@l common carotid artery occlusion de-
creased CBF t80+15% (meand- SD) of control. Since in the control group, the SEP amplitude
remains stable, it is likely that the observed decreaseg &nplitude during mild ischemia
are in fact due to the reduced blood flow levels in the braine &fiect of an increased SEP
latency with ischemia (Figure 7.5) has been observed intat@dels of ischemia by others as
well [128, 256].

The mechanisms that couple changes in neuronal activitiidoges in cerebral blood flow
have been under investigation for several decades andvenvait only the neurons but also
vascular cells and astrocytes encompassing the so-cal@wvascular unit [165]. The main

mediators for the hemodynamic response to neuronal dctivatclude nitric oxide, adenosine,
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glutamate, arachidonic acid metabolites, and epoxyeiidenaic acids [139]. During and fol-
lowing cerebral ischemia, the elements that comprise theowascular unit may be altered and
vascular reactivity depressed [56], with the degree ofeepon dependent on the degree of is-
chemia [153]. However, data is lacking on changes to thesbatoes during graded ischemia.
Although a specific mechanism accounting for the decreabiod flow response as baseline
blood flow is decreased cannot be identified, reduction célrat blood flow resulting from
upstream vascular clamping or hypotension causes thevasallature to dilate with potential
negative implications for further dilation in response &uronal activation.

To summarize, we have collected a large data set of hemodgraand electrical functional
responses in rats at many different levels of global cetebchemia. All of the electrical and
hemodynamic responses are attenuated as the global isclhemomes more severe, but the
blood flow, oxy-hemaoglobin, and deoxy-hemoglobin resperge more strongly attenuated
at milder levels of global ischemia than the electrical ortabelic responses. The observed
uncoupling between flow and metabolism at ischemic levetvidence supporting the notion
that during healthy conditions, functional stimulatiorcri@ases oxygen delivery to brain tissue
more than oxygen consumption. During functional stimolatin global ischemia, though, a

higher fraction of the oxygen delivered from the vasculkatwill be consumed.

7.5 Appendix: OIS Modified Beer-Lambert Law with Light Emit-
ting Diodes

A Modified Beer Lambert law for OIS was employed to compute bgiwbin concentration
changes from intensity measurements under light emittiodedillumination:

“log (Ilﬁ—(?) = X EamoAHIOND) + AR L. (79

Here, ;;(t) is the measured intensity at time t ahg;;, is the averaged measured pre-stimulus
baseline intensity at a given ischemic condition for LERnd pixel% in the CCD camera,
emvo(N) andegpr(\) are molar extinction coefficients [207] féfbO and HbR at wavelength

A, respectively, AHbO(t) and AHbR(k) are the concentration changes #bO and HbR

from baseline at pixet and timet, respectivelyL()) is a differential pathlengthy; are weights
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indicating the contribution of wavelengtky in the spectra of LED;, and the sum is over all
wavelengths present in the LED spectra. Equation 7.5 asstimelight absorption from tissue
chromophores other thaidbO and Hb R is negligible, and that tissue scattering remains constant
over time. The LEDs had a broad spectra (widtt20 nm), which is why it was necessary to

measure the emission spectra of the three LEDs used witlcirgpleotometer.

The weightw; in Equation 7.5 is the power of wavelengtemitted by a given LED divided
by the total power emitted by the LED over all wavelengthsingsvionte Carlo simulations,
the differential pathlengths at each wavelength in the LipBcta were calculated with the
procedure described by Koht al[163] (also see Chapter 3). The mean differential pathtengt
for the 530, 590, and 660 nm LEDS we used were 0.063, 0.0870aYdl cm, respectively.
Equation 7.5 forms a system of 3 equations for each of the 34, Eihich was solved for

AHDOk(t) andAHbRy(t) using a least squares approach.

In addition to using Equation 7.5 to calculate changes in ldb@HbR due to stimulation at a
given ischemic condition, Equation 7.5 was also employaxltoculate changes in HbO and HbR
between adjacent steps of graded ischemia. For examplegasure the changes in HbO and
HbR due to unilateral carotid artery occlusid, and/ ;; in the left-hand side of Equation 7.5
are the average pre-stimulus intensities during the uardhcarotid artery occlusion and the pre-
ischemic baseline periods, respectively, for LED j and lpkx@~ig. 2). HbO and HbR changes
between unilateral carotid artery occlusion and bilatesabtid artery occlusion, bilateral carotid
artery occlusion and three vessel occlusion, and threebesslusion and negative lower-body
pressure were calculated the same way. The changes in Hb@hk#dbetween adjacent steps
of graded ischemia are small enough that the modified Beebkdrhaw (7.5) is still accurate

[152].

It was assumed during the pre-ischemic baseline periodvieryeanimal that the cortical
tissue under the imaging window is spatially homogeneouk WibOy = 60 uM, HbRy =
40 1M, and a reduced scattering coefficient of 10 ¢nfor all wavelengths emitted by the
LEDs. From this starting point, images BbhO and Hb R were then calculated for all subsequent

conditions of ischemia.
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Table 7.1: Parameters utilized in compartment model (semafitin 7.28 and Figure 7.8).

Quantity Symbol Units

Vascular D] (Eq. 7.22) C(z,t) pmol Oy / (L blood)
Plasmatic (-] (Eq. 7.12) Cp(z,t) umol O / (L blood)

Tissue Ds] Cy(t) pmol Oy /L

Arteriole [O5] (C(z = 0,t), Eq. 7.20) Co(t) umol Oy / (L blood)

Venule [05] (C(z = L,t), EqQ. 7.16) Cy(t) umol Oy / (L blood)
Vascular cross-section area (Eq. 7.21) A.(xz,t) cn?

Arteriole cross-section area (Eq. 7.19)  A,(t) cn?

Venule cross-section area (Eq. 7.15) Ay(t) cn?

Tissue compartment volume Vi mL

Total tissue volume Viissue mL

O, Permeability (Eq. 7.8) P cm/ min

surface are@®, exchange (Eq. 7.11) s(z)dz cn?

Arteriole blood flow (Eq. 7.18) CBF,(t) (mL blood) / (min cnd)

C BF,, clinical units (Eq. 7.27) CBF,.(t)  (mL blood) /(min (100 mL tissue))
Venule blood flow (Eq. 7.14) CBF,(t) (mL blood) / (min cnd)

C BF,, clinical units (Eq. 7.27) CBF,.(t)  (mL blood) / (min (100 mL tissue))
Tissue D] Metabolism (Eq. 7.26) CMRO4(t) pmol Oy / min

C'M RO, clinical units (Eq. 7.28) CMROs.(t)  pmol Oy / (min (100 mL tissue))

7.6 Appendix: Tissue Compartment Model forC' M RO,

The tissue compartment model is essentially a mass balalat®n for oxygen that is commonly
used to estimate oxygen metabolism (also known as oxygesuogstion) from measurements
of tissue blood flow and tissue oxygen saturation [41-4362,131,132,136,138,180,187,195,
242,246,273]. The so-called single compartment modeleqipiates the tortuous vasculature in
tissue as a single tube embedded in a well-mixed (i.e.,ajydtiomogeneoud), concentration)
tissue compartment (Figure 7.8) [242]. The parameters irs¢idle compartment model are

tabulated in Table 7.1.

7.6.1 Relation of Compartment Model Parameters to Tissue \&culature

The first step in deriving the compartment model is to cateulae oxygen diffusing from a sin-
gle blood vessel to the tissue volume at an arbitrary poiatong the blood vessel (see dashed
box in Figure 7.9). Letv denote the width of the vessel membrane afd denote the concen-

tration of oxygen at a poinj within the membrane (Figure 7.9). The oxygen concentratign
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Figure 7.8: An arbitrary tissue volum@&issueis comprised of a vascular compartment of length
L and a well-mixed tissue compartment. The total amount ofjeryflowing into the vascular
compartment i§A,C,) x CBF, (Equation 7.17), wher€’, is the average arteriole oxygen
concentration A, is the cross-sectional area of the vascular compartmentat), andC BF,

is the blood flow supplyind4ssue OXxygen leaves the vascular compartment via venous dminag
((A,C,) x CBF, (Equation 7.13)(, is average venule oxygen concentratidn,is the cross-
sectional area of the vascular compartment at L, C BF, is the blood flow drainind/issue
and via oxygen exchange with the tissue compartment (seetend). C () is the total concen-
tration of oxygen at positior in the vascular compartment;,(z) is the contribution ta”(z)
from oxygen dissolved in the plasma&,is the oxygen permeability of the vascular compartment
(Equation 7.8)s(x)dx is the infinitesimal surface area of oxygen exchange betieerascu-

lar and tissue compartmentsagtandC; is the concentration of oxygen in the well-mixed tissue
compartment. The tissue compartment is supplyed by oxygen the vascular compartment,
and “drained” by the consumption of oxygenWgssye(i.e., C M RO3).
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CBFv,l (Cv,lAv,l)

_____________________

Vtissue

CBFU,Z (Cv,ZAv,Z)

CBFv,3 (Cv,3Av,3)

Figure 7.9: Schematic of three vessels spanning the tissiuene V;ssue With draining blood
flows of CBF, 1, CBF, », andCBF, 3. For each vessel, the variableis understood to be the
length along the vessel from its point of entry into the tesgalume. At the “exit points” where
the vessels leav&;ssye the oxygen concentrations in the blood &gy, C, o, andC, 3, and
the cross-sectional areas of the vesselsAarg Ac», andA. 3. The dashed purple box is a
zoomed-in view of a vessel membrane.

is described by the diffusion equation

% = Dmg—zg, (7.6)
with the boundary conditions(y = 0) = Cy(z) andc(y = w) = C;. Dog is the diffusion
coefficient of oxygen in the vessel membrafg(z) is the oxygen concentration dissolved in
the blood plasma at, andC is the oxygen concentration in the tissue compartment. rABsy

steady-state, i.edc/0t = 0, the solution to Equation 7.6 is
c(y) = Cpla) + [Cy — Cp(aj)]%. (7.7)

From Fick’s law, the flux of oxygen from the vessel into theuis at positiorn, is

oc D
Joo(z) = _DO28_y = E(Cp(l“) —Cy) = P(Cp(z) — Cv), (7.8)
whereP = Dgs/w [cm / min] is the oxygen permeability of the vessel membrane.
Now, let's consider three vessels flowing throudhsye (Figure 7.9). For a single vessgl

the transport rate of oxygen from vessel to tissue at lemgtlong the vessel is the oxygen flux
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given by Equation 7.8 multiplied by the vessel’s infinitealmurface area of oxygen exchange,
sj(x)dz, i.e.,Toa(x) = Psj(x)dx[Cpj(x) — C;] [wmol / min]. The total oxygen transport rate is

the sum over the rates for each blood vessel, e.g.,
Toa(x) = (Ps1(2)[Cpa(x) — Ci] + Ps2(x)[Cpa(x) — Ci] + Ps3(z)[Cp3(z) — Cy])da
= Ps(x)dz[Cp(x) — Cyl, (7.9)
wheres(z)dz = (s1(z) + s2(z) + s3(z))dx is the total surface area of oxygen exchange, and
Cp(z) = [s1(2)Cp1(x) +s2(x)Cp2(z) +s3(x)Cp 3(2)]/s(2) is a weighted average of the vessel

plasmatic oxygen concentrations.

More generally, the total rate of oxygen transport to tifsam N vessels is

N
Toa(w) =Y Psj(z)da(Cpj(z) — Ci]
=1

= Ps(2)[Cy(z) — C4l, (7.10)
where
N
s(x) = si(x), (7.11)
j=1
1 N
Cplz) = e > si(x)Cp (). (7.12)
j=1

Also of interest is the “drainage rate” of oxygen from blooowfl exiting Vijssue i.€., ng
[zmol / min]. The oxygen transport rate out of the tissue froooll flow in an arbitrary vessel
Jis CBF, j(C, jA ), whereCBF, j, C, j, andA, j are the vessel's blood flow, oxygen concentra-
tion, and cross-sectional area, respectively, at the Vessat point from Vjissue Therefore, the

total drainage rate fronV vessels is

N
T8y =Y CBFy;(CujAv))

j=1
= CBF,(A,Cy). (7.13)
Here,
N
CBF, =) _CBF,; (7.14)
j=1

219



is the total blood flow exitind/issue
N
A, = ZAVJ (7.15)

Jj=1

is the total cross-sectional area of the blood vessels adih@oints oflissue and
1
= ———— CBF, A, C,.; 7.16
¢ CBF,A, ; ATV ( )

is a weighted average of the vessel oxygen concentratidhgiatissue exit points.

Analogously, the “supply rate” of oxygen from blood flow etitg ViissueiS

N
T8y =Y  CBF,j(CajAay)
j=1

= COBF,(A,C,), (7.17)

whereCBF, ;, C,;, andA,; are thejth vessel's blood flow, oxygen concentration, and cross-

sectional area, respectively, at the vessel's entry pototliissye Further,

N
CBF, =) _CBF,; (7.18)
j=1
is the total blood flow supplyind/issue
N
A, = Z Asj (7.19)
j=1

is the total cross-sectional area of the blood vessels arttrg points oflfissue and

1

~ CBF,A, ;

Ca CBFajAaCaj (7.20)
=1

is a weighted average of the vessel oxygen concentratighgiatissue entry points.
Finally, analogously to Equations 7.19 and 7.20, the vasadmpartment cross-sectional

area (@.(x)) and oxygen concentratioi(z)) at lengthz in the vascular compartment are

N
Ac(m) = Acj(x), (7.21)
j=1
1
Clz) = CHF@YA ; CBF;j(z)A (), (7.22)

N
whereCBF(z) = ) CBFj(z) is the total blood flow at length.
j=1
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7.6.2 Oxygen Transport Equations in Vascular and Tissue Copartments

The conservation law [176, Section 1.2] of oxygen in the usacompartment (see Figure 7.8)
is

d L L

E(}&@ﬁc@wM:T&—ﬂ%—AZ@@M@ (7.23)
where the left hand side is the temporal rate of change ofexyg the vascular compartment,
T, is the oxygen supply rate to the vascular compartmﬁgg,is the oxygen drainage rate from
vessels exiting the vascular compartment, and the integrétie right-hand side is the diffusive
rate of oxygen transport between the vascular and tissupadments. Substituting Equations
7.10, 7.13, and 7.17 into Equation 7.23, we obtain the vas@dmpartment oxygen transport

equation, i.e.,
d [T
a/0 Ac(z,t)C(z,t)de = CBF,(t)Aq(t)Cy(t) — CBE,(t)) Ay (t)Cy(t)—

/%ﬂ%ﬂ%@ﬁ—@@ﬂn (7.24)
0

For the tissue compartment, the oxygen transport equation i

d L
T (Vi(1)Ct (1)) = / Ps(x)[Cp(z,t) — Ci(t)]dz — CM RO1(2), (7.25)

0
whereV;(t) is the volume of the tissue compartment at titn@ot to be confused witlssue
which is the total tissue volume), add\/ RO+ (t) [pmol / min] is the tissue oxygen metabolism.
In words, Equation 7.25 states that the rate of change inexyjgmol/min] in the tissue com-

partment is the oxygen supply rate diffusing from the vaasituie minus the oxygen consumption

rate.

Combining Equations 7.24 and 7.25, we find that the compantmmdel expression for
CMRO; is

CMRO;(t) = CBF,(t)[Aa(t)Ca(t)] — CBF,(t) [Au(t)Cy ()] —
c(l:lt[vt( [/ Ac(z, t)C(x, t)dx| . (7.26)

As | discussed in Section 4.9.2, absolute blood flow is regbdinically in units of blood

volume per time per tissue volume, e.g., [(mL blood) / (mi@QInL tissue))]. The “clinical”
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arterial and venous blood flows, i.€BF, . andCBF, ., relate toC BF;, andCBF, via

CBF, .= CBF, ( A ) , CBF, .= CBF, (A—> : (7.27)

tissue tissue
Dividing Equation 7.26 byssue We find that the compartment model 00V RO- in terms of
CBF,.andCBF,_is
CMRO»(t)

Vtissue

CMRO,.(t) = = CBF, (t)Ca(t) — CBF, (t)Cy(t)—

Vtissue

1 <% ViB)C(0)] _1_% [/OLAC(;U,t)C’(a:,t)}> :
(7.28)

Here,CM RO; ((t) [zmol / (min (100 mL tissue))] is the tissue oxygen metabolissmmalized

by the tissue volume.

7.6.3 Steady State Compartment Model

For steady-state conditions wherein the time derivativeszaro and the arterial and venous
blood flows are equal, i.e(; BF;, . = CBF, . = CBF,, Equation 7.28 simplifies substantially
to

CMROy .= CBF_[C, —C,). (7.29)

Recall thatC BF, is proportional to the DCS blood flow index (i.e., Equatioi9). Further, if
the oxygen dissolved in the plasma is negligible compargdamxygen bound to hemoglobin,

which is usually the case (Figure 7.10), then

Cq = 45a02[HbT 4 blood = 4vSaO2Hctg, (7.30)

Cy = 4Sv02[HbT ), plood = 4vSv02Hct,,. (7.31)

Here,Sa0, andSvO, are weighted averages of the oxygen saturation in vesggidysng Viissue
(e.g., arterioles) and in vessels drainifigsye (€.9., venules), respectively. Furthg b7, piood
[wmol HbT / L blood] and HbT, piood are the total hemoglobin concentrations in the blood as-
sociated withSaO, andSvO-. Finally, H ct, andH ct,, are the corresponding hematocrit levels,
andv [pmol HbT / (RBC volume)] is the average amount of total hembijger red blood

cell volume. The factor of 4 in Equations 7.30 and 7.31 isgmébecause the concentration of
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Figure 7.10: Ratio of the dissolved oxygen in plasma overakyegen bound to hemoglobin
(Cp/Coound, plotted as a function of the hemoglobin oxygen saturafi®®, = HbO/HbT).
C), was calculated from the empirical hemoglobin dissociatiarve relating oxygen concen-
tration dissolved in the plasma to oxygen saturation, €g.= C, 50(1/SO2 — 1)~/", with
Cps0 = 36.1 uM andh = 2.73 [242]. The bound oxygen i€ound = 4502 [HbT |piood With
[HbT |blood == 2300 uM.

bound oxygen is roughly four times that of oxy-hemoglobie.(i4 oxygen molecules are bound
to each oxygenated hemoglobin protein).
For constant hematocritdct, = Hct, = Hct), the steady-state oxygen metabolism ob-

tained from substituting Equations 7.30 and 7.31 into 7529 i
CMRO; . = (4vHct)CBF, (Sa02 — Sv0s3) . (7.32)

Optical techniques sensitive (0B F,. include DCS and laser speckle contrast imaging. We know
from Chapter 2 that DOS is sensitive to tissue oxygen sabur&6tO,, see Equation 2.139).
Thus, to determin€’'M RO .. from Equation 7.32, the goal is to estimate the oxygen etitnac
Sa0y — SvO4 (or changes in oxygen extraction) frofitO, measurements. This is a difficult
task, though, because the DOS measurement samples a naiksuteriole, capillary and venule
blood oxygen saturation and does not separate venous fitenaasaturations.

To proceedStO- is assumed to be a weighted average of arteriole and venyigenysatu-
rations [62]:

StOy = (1 — v)Sa09 + vSvO04, (7.33)
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wherer is a weighting factor. Substituting Equation 7.33 into Bipra7.32, we obtain

(7.34)

CMRO,,. = (4vHet)CBF, (M) .

Fractional oxygen metabolism changes relative to a basstate are in turn given by

CMRO; . _ <CBFC> <Sa02 — St02> <E> (7.35)
CMRO%C N CBFCO SaOS — StOg v )7 ’

where the superscript “0” denotes baseline. The fractibl@d flow change can be directly
measured with DCS, and DOS can measure the tissue oxygeatiats. The arteriole oxygen
saturations are often assumed to be unity, or else estirfratacbther techniques such as a pulse
ox. Although one could estimatgfrom knowledge of the venous blood volume fraction, this
estimate is complicated by the non-trivial distributiondgtected photon paths in tissue. For
example, photons traversing larger vessels have a stradgrey to be absorbed, and therefore
even large veins with a high blood volume fraction may cbuite little to the DOS signal.
However, if the arteriole, capillary, and venule blood vokifractions remain constant between
a baseline and perturbed tissue state, then it is reasotweddsume thaty /v = 1.

Alternatively, it is feasible to monito6vO- directly with DOS by looking at hemoglobin
changes in sync with the respiration rate [177]. This is apsng approach that can be used to

estimatey. It works best if the respiration rate is regular.
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Chapter 8

Conclusions/Future Work

Diffuse correlation spectroscopy (DCS) and diffuse optsg@ectroscopy (DOS) are noninva-
sive optical techniques capable of cerebral blood floB§’), cerebral blood volume({BV),

and cerebral blood oxygenatioS#0-) monitoring. Further, a tissue compartment model (Sec-
tion 7.6) can be utilized to estimate cerebral oxygen mdigho(C M RO-) from the optical
data. In many applications, such as assessing stroke #ea#fiicacy and detecting secondary

stroke in brain-injured patients, this information prasdclinical value.

DOS signals are commonly analyzed either with a photon slffu approach (Chapter 2)
or a Modified Beer-Lambert approach (Chapter 3). Analogotsthe DOS photon diffusion
approach, DCS signals are analyzed with a correlationgidfuapproach (Chapter 4) to extract
blood flow. | extended the Modified Beer-Lambert approaclD@S to the DCS measurement,

and validated it with both simulated aimdvivo data (Chapter 5).

The novel DCS Modified Beer-Lambert approach has some uadfiantages compared to
the correlation diffusion approach. It facilitates reaté flow monitoring in complex tissue
geometries, provides a novel route for increasing DCS mieasent speed, and can be used to
probe tissues wherein light transport is non-diffusivealéio can be used to filter signals from
superficial tissues. The latter advantage is especiallpitapt, because a well-known drawback
of optical cerebral monitoring is its significant senstivio superficial tissues above the brain
(e.g., scalp and skull). This sensitivity makes the optteghniques prone to extra-cerebral

artifacts.
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Combining the DCS Modified Beer-Lambert framework with pFgtressure modulation
is a novel technique that | successfully used to remove -@drebral artifacts ifin vivo cere-
bral blood flow monitoring during graded scalp ischemia anddt tapping (Chapter 6). This
pressure modulation algorithm does not regairgriori anatomical information, and it can be
implemented for real time monitoring. The technique cathier be extended to the DOS mea-
surement utilizing the DOS Modified Beer-Lambert framew(Lkapter 6).

In another major part of my thesis, | used optical techniciwesbtain surface images of
CBF andC M RO- functional responses to forepaw stimulation in rats at ndiffigrent levels
of cerebral ischemia (i.e., conditions of lower than nordd@ F) (Chapter 7). Electrical func-
tional responses to the forepaw stimulation were also medsno order to assess neurovascular
coupling (Chapter 7) during graded cerebral ischemia. Athe electrical and hemodynamic
responses are attenuated as the global ischemia becomesevere, but the blood flow, oxy-
hemoglobin, and deoxy-hemoglobin responses are moregiratienuated at milder levels of
global ischemia than the electrical or metabolic respan3é® observed uncoupling between
flow and metabolism at ischemic levels is evidence supppitie notion that during healthy
conditions, functional stimulation increases oxygenwagl to brain tissue more than oxygen
consumption. During functional stimulation in global ischia, though, a higher fraction of the
oxygen delivered from the vasculature is consumed. Andihding is thatCBF andC BV
were affected differently by ischemia, which demonstrétesmportance of using DCS or a re-
lated technique to measu€&B F' directly rather than relying o6’ BV as a surrogate faf' BF'.

Future work will include testing the pressure algorithmraggh further in clinical settings.
Specifically, the non-invasive approach with DCS for mamitgp C' BF' will be compared in
traumatic brain-injured patients against the currenticdihstandard of” B F' monitoring with
an invasive thermodilution technique. It is further woritplering the extension of the pressure
algorithm to more complex geometries than the two-layer@gugh, such as geometries that
contain non-diffusing domains from cerebral spinal fluitheTinteractions of detected light with
the vasculature is also not well understood. Monte Carlakitions with a realistic vascula-
ture would provide useful insights on estimating theoefficient in theC' M RO, compartment
model calculation (Section 7.6) as well as on relating theSDibod flow index to absolute

blood flow.
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