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I Introduction 

In order to have a deeper and hopefully more intuitive understanding of various typed A-calculi 
and their logical properties, it is useful to define and study classes of models for these calculi. 
Typically, given some typed A-calculus, we are interested in reduction or conversion properties of 
this calculus, and the crucial properties of reduction and conversion are axiomatized by a proof 
system for deriving equations or rewrite rules (for example, 0-conversion). Models will be useful 
only if they are sound with respect to the given proof system, in the sense that provable equations 
(or rewrite rules) must be valid. Then, models can be helpful for showing that a certain equation 
M & N is not derivable from a given set E of equations: it is sufficient to exhibit a model in which 
all equations in E are valid and in which M N is falsified. Conversely, we can better calibrate the 
strength of a proof system if we can prove a completeness theorem. For example, we say that we 
have strong completeness if we can show that for any set E of equations and any equation M L N, 
if M t N is valid in every model of the equations in E, then M t N is provable from E. Then, we 
know that if M + N is not a consequence of E ,  then there is a model of E that falsifies M A N. 
One can also consider refinements of strong completeness theorems where completeness is shown 
for classes of models with certain required properties. 

For the simply-typed A-calculus, models inspired by Henkin models [7] were defined by Friedman 
[2], who proved a strong completeness theorem, as well as another interesting completeness theorem. 
Plotkin [13] and Statman 1151, [16], also proved some refinements of the strong completeness theorem 
for the simply-typed A-calculus. 

So far, we have assumed that the models under considerations have nonempty carriers for all 
types. However, in computer science applications, the assumption that carriers are nonempty may 
be unreasonable, because too restrictive. This fact was first observed by Goguen and Meseguer [5] 
in the framework of many-sorted algebras, and later on, by Meyer, Mitchell, Moggi, and Statman 
[lo], for the second-order A-calculus. Unfortunately, the usual proof systems that are complete for 
models with nonempty carriers, are not complete in the more general situation where carriers may 
be empty, and even though complete proof systems can be designed, they are quite complicated, 
since they involve reasoning by cases (see [lo]). Furthermore, the existence of the minimal model of 
a set of equations is lost: there exist sets of equations that are not the theory of any single model. 

Mitchell and Moggi (121 observed that after all, proof systems for typed A-calculi are intuition- 
istic (in most cases), and that the semantics in terms of Henkin-like models with possibly empty 
carriers is just too classical in nature, in the sense that arguments where we assume that a carrier 
is either empty or nonempty, may be used freely. Thus, Mitchell and Moggi suggested to consider 
intuitionistic semantics such as Kripke-style semantics. Indeed, a Kripke-style semantics forces an 
intuitionistic interpretation of the connectives, and extended completeness holds again for the usual 
proof system, regardless of the fact that carriers may be empty. Also, in the Kripke semantics, for 
any set E of equations, there is a Kripke model A such that, an equation M G N is valid in A iff 
M G N is provable from E. Besides having the virtue that these desirable completeness properties 
are regained in the Kripke semantics, from a categorical point of view, Kripke models are essentially 
equivalent to arbitrary CCC's, as sketched in Mitchell and Moggi [12]. However, this relationship 
will not be considered in the present paper. 

In this paper, we define a new class of Kripke structures for the second-order A-calculus, and 
investigate the soundness and completeness of some proof systems for proving inequalities (rewrite 



rules) or equations. Actually, we consider a more general class of structures. The Kripke struc- 
tures considered in this paper are equipped with preorders that correspond to  an abstract form of 
reduction, and they are not necessarily extensional. This approach allows us to consider models of 
sets of rewrite rules, as well as sets of equations. We obtain soundness and completeness theorems 
that generalize some results of Mitchell and Moggi [12] to the second-order A-calculus, and to  sets 
of inequalities (rewrite rules). 

Although we were not expecting to use any category theory in this paper, we realized that 
this was almost unvoidable in order to come up with the "right" concepts. In particular, we don't 
believe that we would have come up with the right notion of dependent product for interpreting 
typed A-abstraction, if we had not known that categories of presheaves are Cartesian-closed. Thus, 
we found it convenient to  define these structures directly as functors A: W 4 Preor equipped 
with certain natural transformations corresponding to  application and abstraction (where W is a 
preorder, the set of worlds, and Preor is the category of preorders). We make use of an explicit 
construction of the exponential of functors in the Cartesian-closed category preorW, and we also 
define a kind of exponential no(AS),ET to take care of type abstraction. However, our use of 
categorical concepts is minimal, and we do not appeal to  any fancy machinery. 

In order to  understand what motivated our definition of a Kripke structure for the second-order 
A-calculus, it is useful to review the usual definition of an applicative structure for the simply-typed 
A-calculus (for example, as presented in Gunter [6]). For simplicity, we are restricting our attention 
to arrow types. Let 7 be the set of simple types built up from some base types using the constructor 
-+. Given a signature C of function symbols, where each symbol in C is assigned some type in 7, 
an applicative structure A is defined as a triple 

where 

(AQ)uET is a family of nonempty sets called carriers, 

(appu*T),,TE7 is a family of application operators, where each appulT is a total function 
appu*T: Au+T x Au + AT; 

and Const is a function assigning a member of Au to every symbol in C of type a. 

The meaning of simply-typed A-terms is usually defined using the notion of an environment, 
or valuation. A valuation is a function p: X -, U(Au),E7, where X is the set of term variables. 
Although when nonempty carriers are considered (which is the case right now), it is not really 
necessary to  consider judgements for interpreting A-terms, since we are going to consider more 
general applicative structures, we define the semantics of terms using judgements. Recall that a 
judgement is an expression of the form I' D M: a, where I', called a context, is a set of variable 
declarations of the form X I  : ol, . . . , x,: a,, where the xi are pairwise distinct and the ai are types, 
M is a simply-typed A-term, and a is a type. There is a standard proof system that allows to type- 
check terms. A term M type-checks with type a in the context I' (where I' contains an assignment 
of types to all the variables in M)  iff the judgement I' b M: a is derivable in this proof system. 
Given a context I', we say that a valuation p satisfies I' iff p(x) E An for every x: a E I' (in other 
words, p respects the typing of the variables declared in I?). Then given a context I' and a valuation 
p satisfying I', the meaning [I' D M: a lp  of a judgement I' D M: a is defined by induction on the 
derivation of I' D M: a, according to the following clauses: 



[I' D x: a l p  = p(x), if x is a variable; 

[I' D c: a l p  = Const(c), if c is a constant; 

[I' D MN: r]p = appuvT([I' D M: ( a  -+ T)]p, [I' D N: alp), 
[I'D Ax: a. M: (a -+ r)]p = f ,  where f is the unique element of A"" such that appUsT( f ,  a) = 
[I', x: a D M: T]P[X: = a], for every a E Au. 

Note that in order for the element f E A"'T to be uniquely defined in the last clause, we 
need to make certain additional assumptions. First, we assume that we are considering extensional 
applicative structures, which means that for all f, g E A"'T, if app( f ,  a)  = app(g, a) for all a E A", 
then f = g. This condition garantees the uniqueness of f  if it exists. The second condition is more 
technical, and asserts that each A" contains enough elements so that there is an element f E 
such that appUlT(f, a)  = [I',x: U D  M: ~]p[x:  = a], for every a E A". 

Note that each operator app"pT: A"+T x A" 4 AT induces a function f unulT: + [Au e- AT], 
where [A" 3 AT] denotes the set of functions from A" to AT, defined such that 

funu" ( f )(a) = appUTT( f ,  a), 

for all f E AUdT, and all a E A". Then, extensionality is equivalent to the fact that each funOIT is 
injective. Note that f ~ n " 7 ~ :  A+" + [A" + AT] is the "curried" version of app"lT: A"" x A" -, AT, 
and it exists because the category of sets is Cartesian-closed. For the category of sets, the fact that 
[Au + AT] is an exponential object is a triviality, but for more general categories, as this will be 
the case when we define Kripke structures (categories of presheaves), the existence of exponentials 
is no longer a trivial fact (but not a difficult one). 

The clause defining [I'D Ax: a. M: (a  + r)]p suggests that a partial map abst"jT: [Au + AT] + 
AU-T , u abstracting" a function cp E [A" + AT] into an element ab~t"*~(cp) E A"-, can be defined. 

For example, the function cp defined such that cp(a) = [I?, x: a P M: r]p[x: = a] would be mapped to 
[I'D Ax: a. M: (a -t r)]p. In order for the resulting structure to be a model of @-reduction, we just 
have to require that fun61T and abstalT satisfy the axiom 

whenever cp E [A" + AT] is in the domain of abst"lT. But now, observe that if pairs of operators 
funUvT, abstUsT satisfying the above axiom are defined, the injectivity of funulT is superfluous for 
defining [I' P Ax: o. M: ( a  -+ r)]p. 

Thus, by defining a more general kind of applicative structure using the operators funOIT and 
abstuyT, we can still give meanings to  A-terms, even when these structures are nonextensional. In 
particular, our approach is an alternative to the method where one considers applicative structures 
with meaning functions, as for example in Mitchell [Ill. In particular, the term structure together 
with the meaning function defined using substitution can be seen to be an applicative structure 
according to  our definition. In fact, this approach allows us to go further. We can assume that 
each carrier Au is equipped with a preorder A", and rather than considering the equality 

fun"lT(abst"~T(cp)) = cp, 



we can consider inequalities 
f ~ n ~ > ~ ( a b s t ~ ~ ~ ( c p ) )  9. 

This way, we can deal with intentional (nonapplicative) structures that model reduction rather than 
conversion. We learned from Gordon Plotkin that models of /?-reduction (or Pq-reduction) have 
been considered before, in particular by Girard [4], Jacobs, Margaria, and Zacchi [B], and Plotkin 
[14]. However, except for Girard who studies qualitative domains for system F, the other authors 
consider models of the untyped A-calculus. We now show how to construct Kripke structures along 
the ideas sketched above. First, we review Mitchell and Moggi's definition [12]. The main new 
ingredient is that we have a preordered set (W, A) ,  intuitively, a set of worlds. Then, a Kripte 
applicative structure is defined as a tuple 

where, 

W is a set of worlds preordered by 3, 

(AL)uE7,wEW is a family of (possibly empty) sets called carriers, 

(app$T)u,,ET,wEw is a family of application operators, where each appzT is a total function 
appzT: A",+T x A: + AL; 

i",,,,,: Ag, -+ A:, is a transition function, whenever wl 5 wz. 

Furthermore, certain conditions hold, making each Au into a functor from W to Se ts ,  and each 
appu,T into a natural transformation between the functors AU+ x Au and AT. For example, we 
have 

U T  'U+T 

iX,w, (apF;:(f7 a)) = aFFd2 ((Wl,W2(f I? i", ,w2 (a)), 

for all f E A;;' and all a E A:, .' 
If we want to adapt this definition to give a more general definition in terms of the operators 

funUtT and a b ~ t ~ ! ~ ,  we need to define funupT as the "curried" version of the natural transformation 
appOvT between the functors A"+ x Au and AT. This is where we use a bit of category theory. 
Each A" can be viewed as a functor A": W -+ Sets from the preorder W viewed as a category, and 
the category of sets, and these functors together with the natural transformations between them 
form a category, a presheaf category, which is known to be Cartesian-closed (in fact, a topos, see 
Mac Lane and Moerdijk [9]). Furthermore, it is possible to give an explicit construction of the 
exponential [Au +- AT] (see definition 3.5) between two functors Au and AT, and to define fun 
as curry(app). Then, it is easy to define a Kripke applicative structure in terms of the natural 
transformations funujT and a b ~ t O > ~ .  

In order to  deal with second-order types, first, we need to provide an interpretation of the type 
variables. Thus, as in Breazu-Tannen and Coquand [I], we assume that we have an algebra of types 
T ,  which consists of a quadruple 

(T,+, [T +- T I J ) ,  

where T is a nonempty set of types, i: T x T + T is a binary operations on T ,  [T j TI is a 
nonempty set of functions from T to T, and V is a function V: [T + TI -+ T .  

'Constants can be handled too, but for simplicity, they are dropped. 



Intuitively, given a valuation 8: V 4 T (where V is the set of type variables), a type a E I will 
be interpreted as an element [a10 of T. Then, a second-order applicative structure is defined as a 
tuple 

(T, (AS)s,T, ( a ~ ~ s ' t ) s , t € ~ ,  ( t a ~ ~ e ) @ s [ ~ + q ) ,  

where 

T is an algebra of types; 

(AS) ,€~ is a family of nonempty sets called carriers, 

(apps*t)s,tET is a family of application opemtors, where each app'ft is a total function 
a p p ~ * ~ :  As't x As + At; 

(taPP')~E~T,q is a family of type-application opemtors, where each tappo is a total function 
tappo: A'(") x T + U(A@'(~))~~T, such that tappe(f, t )  E for every f E A'('), and 
every t E T. 

In order to define second-order applicative structures using operators like fun and abst,  we 
need to define the curried version tfuno of tappg: A'(@) x T -t U ( A @ ( ~ ) ) ~ ~ T .  For this, we define 
a kind of dependent praluct no(As)sET (see definition 3.8). Then, we have families of operators 
t f  me: A'(@) *e(As)sET, and tabst"  : no (As)sET -+ A'(@), for every @ E [T + TI. 

Now, if we want to  adapt the above definition to define Kripke applicative structures, we 
have to view A'(@) x T and U ( A @ ( ~ ) ) , ~ ~  as functors, and tappe: A'(") x T -, J J ( A ~ ( ~ ) ) ~ ~ ~  as 
a natural transformation between them. Then, we need to define some form of exponential of T 
and U ( A @ ( ~ ) ) , ~ ~ .  Such an exponential can indeed be constructed as a functor JJo(As)seT defined 
in terms of the dependent products no(A&)sET (see definition 3.8). We also need to show that 
the functor no(As)sET satisfies a universal property analogous to the property satisfied by the 
functor [As +- At]. For this, we define the set Natg(H x T, U ( A @ ( ~ ) ) ~ ~ T )  as the set of natural 

transformations 7: H x T + IJ(A@(~)).~T, such that, %(a, t) E for every a E Hu and every 
t E T (see definition 3.9). Then, we can prove a lemma (lemma 3.11) that shows that na(AS)sET 
is indeed a certain kind of exponential. Thus, at the level of presheaf categories, we have the 
usual maps curry and uncurry that set up a (natural) bijection between Nat(H x F, G) and 
Nat(H, [F GI), but also some maps curryo and uncurryo that set up a (natural) bijection 
between the sets of natural transformations ~ a t @ ( H  x T, U(A"(~)),~T) and Nat(H, na(As)sET). 

Armed with the definition of the functors [As =+ At] and ng(As)seT, and the natural trans- 
formations fun, abst ,  tfun, and t abs t ,  we can define Kripke applicative structures (see definition 
4.1). In fact, the definition also applies to the product and sum types, and to  carriers Ab, equipped 
with preorders. This way, we can define models of sets of rewrite rules, as well as models of sets of 
equations. 

The paper is or anized as follows. Section 2 is a review of the syntax of the second-order typed 
A-calculus A'vX*+*'. Section 3 contains a review of some elementary notions of category theory. 
An explicit construction of the exponential of functors F, G: W 4 Preor, where W is a preorder, 
and Preor is the category of preorders, is given. The dependent product na(AS)sET is also defined. 
Kripke pre-applicative structures are defined in section 4. In section 5, we show how to interpet 
second-order A-terms using Kripke applicative structures. A number of proof systems for proving 
inequalities (rewrite rules) and equations are defined in section 6. Satisfaction and validity (in a 



Kripke structure) is also defined. Some soundness and completeness results are proved in section 
7. The results of section 7 are adapted to equations in section 8. Section 9 contains the conclusion 
and some suggestions for further research. 

2 Syntax of the Second-Order Typed X-Calculus A'.'>+ 2v2 

In this section, we review quickly the syntax of the second-order typed X-calculus X ' ~ X * + ~ ~ ~ .  This 
includes a definition of the second-order types under consideration, of raw terms, or the type- 
checking rules for judgements, and of the reduction rules. For more details (on the subsystem 
x '*~),  the reader should consult Breazu-Tannen and Coquand [l]. 

Let 7 denote the set of second-order types. This set comprises type variables X ,  type constants 
k ,  and compound types ( a  -+ T), ( a  x T), ( a  + T), and VX. a. It is assumed that we have a set 
TC of type constants (also called base types of kind *). We have a countably infinite set V of type 
variables (denoted as upper case letters X, Y, Z),  and a countably infinite set X of term variables 
(denoted as lower case letters x, y, z). We denote the set of free type variables occurring in a type a 
as FTV(a). We use the notation *for the kind of types. Since we are only considering second-order 
quantification over predicate symbols (of kind *) of arity 0, this is superfluous. However, it will 
occasionally be useful to consider contexts I' in which type variables are explicitly present, since this 
makes the type-checking rules more uniform in the case of X-abstraction and typed X-abstraction. 
Thus, officially, a context r is a set {xl: al, . . . , x,: a,}, where X I , .  . . , x, are term variables, and 
al,. . .,a;, are types. We let dom(I') = {xl,. . .,x,}. As usual, we assume that the variables x j  
are pairwise distinct. We also assume that x 4 dom(r) in a context I?, x: a. Informally, we will 
also consider contexts {XI: *, . . . , X,: *, 21: 01, . . . , 2,: a,}, where XI, . . . , X, are type variables, 
and 21, . . . , x, are term variables, with the two sets {XI, . . . , X,} and (xl, . . . , x,} disjoint, the 
variables Xi pairwise distinct, and the variables xj  pairwise distinct. We assume that X 4 dom(I') 
in a context I?, X :  *. For the sake of brevity, rather than writing typed X-abstraction as AX: *. M ,  
it will be written as AX. M. 

It is assumed that we have a set Const of constants, together with a function Type: Const + 7, 
such that every constant c is assigned a closed type Type(c) in 7. The set TC of type constants, 
together with the set Const of constants, and the function Type, constitute a signature E. Let us 
review the definition of raw terms. 

Definition 2.1 The set of mw terms is defined inductively as follows: every variable x E X is a 
raw term, every constant c E Const is a raw terms, and if M, N are raw terms and a, T are types, 
then (MN), (MT), Ax: a. M ,  AX. M, nl(M), KZ(M), (M, N), inl(M),  inr(M),  and [M, N], are 
raw terms. 

We let FV(M) denote the set of free term-variables in M. Raw terms may contain free variables 
and may not type-check (for example, (22)). In order to define which raw terms type-check, we 
consider expressions of the form I'D M: a, called judgements, where I' is a context in which all the 
free term variables in M are declared. A term M type-checks with type a in the context I' iff the 
judgement I? D M: a is provable using axioms and rules summarized in the following definition. 

Definition 2.2 The judgements of the polymorphic typed X-calculus X*x*+lv2 are defined by the 
following rules. 

I' D x: a ,  when x: a E r, 



I? D c: Type(c), when c is a constant, 

~ D M : ( u ~ T )  r ~ N : a  
(application) 

D (MN): r 

r o M : a x r  r b M : a  x T 
(projection) (projection) r D 7r1(M): a r D 7r2(M): T 

r ~ M : a  ~ D M : T  
(injection) ( injection) 

I' D inl(M): a + r I' D inr(M): a + T 

r b M : ( a +  6) r b N : ( r - + 6 )  
( co-pairing) 

r b [ M ,  N] : (o+r )  --+ 6 

r ,X:*bM:a 
(V-intro) 

I' D (AX. M): VX. a 

provided that X 4 UG:7ETI FTV(r); 

The reason why we do not officially consider that a context contains type variables, is that 
in the rule (V-elim), the type r could contain type variables not declared in I?, and it would be 
necessary to have a weakening rule to add new type variables to a context (or some other mechanism 
to add new type variables to a context). As long as we do not deal with dependent types, this 
technical annoyance is most simply circumvented by assuming that type variables are not included 
in contexts. 

Instead of using the construct case P of inl(x: a )  + M 1 inr (  y: T) + N, we found it more 
convenient and simpler to use the slightly more general construct [M, N], where M is of type 
a 6 and N is of type T -t 6, even when M and N are not A-abstractions. This will be especially 
advantageous for the semantic treatment to follow. Then, we can define the conditional construct 
case P of inl(x: a )  j M I inr(y: T) =+ N, where P is of type a + 7, as [Ax: a. M, Xy: T. NIP. 

Definition 2.3 The reduction rules of the system X'*Xj+*V are listed below: 

(Ax: a. M)N + M[N/x], 

m((M,N)) - M, 

r2((M, N)) ---+ N, 
[M, N]inl(P) - MP, 

[M, N]inr(P) - NP, 
(AX. M ) r  - M[r/X]. 



The reduction relation defined by the rules of definition 2.3 is denoted as -p (even though 
there are reductions other that P-reduction). From now on, when we refer to a A-term, we mean a 
A-term that type-checks. In order to define Kripke models for x ' * ~ * + * ~ ,  we need to review a few 
concepts from category theory. 

3 Exponentials and Dependent Products in the Category preorW 

In this section, we define an algebra of polymorphic types, and review some elementary notions of 
category theory. We give an explicit construction of the exponential of functors F, G: W -, Preor, 
where W is a preorder, and Preor is the category of preorders. We also define the dependent 
product no(AS) ,ET,  and show that this functor is a certain kind of exponential, if the right set of 
natural transformations is considered. 

Definition 3.1 An algebra of (polgrrnorphic) types is a tuple 

where T is a nonempty set of types, +, x,  +: T x T -+ T are binary operations on T ,  [T j T] is a 
nonempty set of functions from T to T, and V is a function V: [T 3 TI + T. 

Intuitively, given a valuation 6: V -, T, a type a E 'T will be interpreted as an element [a16 of 

We need to define two categories of preorders. 

Definition 3.2 The category Preor is the category whose objects are preordered sets (W, i), and 
whose arrows f: Wl + W2 are monotonic functions (with respect to A1 and A2). The category 
Preor, is the category whose objects are preordered sets (W, i), and whose arrows f:  Wl 4 W2 
are monotonic partial functions (with respect to  and 52). 

It is obvious that Preor and Preorp are categories. Given a monotonic function f: Wl -, W2, 
where Wl and W2 are preorders, we say that f is isotone iff f (wl) 5 f(w2) implies that wl 5 w2, 
for all wl, wg! E Wl. 

Any preordered set (W, 5 )  can be viewed as the category whose objects are the elements 
of W, and such that there is a single arrow denoted wl -, w2 from wl to w2 iff wl 3 w2. We 
will be interested in functors F: W -+ Preor. Such a functor assigns a preorder F(w) to every 
w E W, and an arrow F(wl + w2):F(wl) + F(w2) to every pair such that wl 5 w2. The 
preorder F(w) is also denoted as (F,, A:), and the arrow F(wl -+ w2) is a monotonic function 
denoted as iE1,,: Fwl -+ F .  The fact that F is a functor means that i;,, = id,  and that 
iE1 ,w3 = iE2,w3 o iEl,w2, whenever wl 5 wz 5 w3. 

Recall that a natural transformation 7: F + G between two functors F,G: W -+ Preor is a 
family q = ( w ) , ~ ~ ,  where qw:Fw + G ,  is an arrow in Preor, and such that the following 
naturality conditions hold whenever wl 3 w2: 



Definition 3.3 The set of natural transformations between two functors F, G: W + Preor is 
denoted as Nat (F, G). The set of natural transformations between two functors F, G: W + Preorp 
is denoted as Natp(F, G). Functors F: W -+ Preor and natural transformations between them form 
a category (of pmsheaves), denoted as preorw. Similarly, we have the category ~ r e o r r .  

The categories preorW (and ~ r e o r r )  are Cartesian-closed (in fact, they are topos, see Mac 
Lane and Moerdijk [9]), and we will be interested in an explicit description of the exponentials. 

Given an indexed family of sets (Ai);EZ, we let n(Ai)iEI be the product of the family (Ai);EZ, 
and U(Ai)iGI be the coproduct (or disjoint sum) of the family (Ai)iEI. The disjoint sum ~ ( A ; ) ; € I  
is the set U{(a ,  i) I a E Ai}iEI. If the sets A; are preorders, then n(Ai)iEz is a preorder under the 
product preorder, where ( u ~ ) ~ ~ ~  5 (bi);EZ iff aj 5; b; for all i E I, and U(Ai)iEz is a preorder under 
the (disjoint) sum preorder, where (a, i) 5 (b, i) iff i = j and a 5; b. When I = {1,2}, we also 
denote ~ (A; ) ;€ I  as Al x A2, and U(Ai)iEz as A1 + A2. 

Definition 3.4 Given a family of functors (Fi)iEZ, where F;: W -t Preor, we define the functors 
n(Fi)iEI: W -+ Preor and U(Fi)icI: W + Preor as follows. In order to abbreviate the notation, 
let PI = n(F;);Er, and SI = U(F;)iEz. Then 

(i) For every w E W, Pz(w) = ~ ( F ; ( W ) ) ; ~ ~ ,  and arrows are defined in the following way: 
i P ~  wl ,WZ - ' Pz(wl) -t PI(w2) is the I-indexed family n(i~l,,)iEz, where wl 5 w2. 

(ii) For every w E W, SI(w) = U(Fi(w))iEI, and arrows are defined in the following way: 
~ S I  wl,wz: S z ( q )  -+ Sz(w2) is the I-indexed family ~ ( i ~ ~ , ~ , ) ~ ~ ~ ,  where wl 1' wz. 

It is immediately verified that n(Fi)iEI and JJ(Fi)ieI are functors fl(Fj)iGI: W -+ Preor and 
U(F;)iEI: W Preor. Thus, the category of functors F: W + Preor has products and coproducts. 
It also has a terminal object, the constant functor from W to the one object preorder (and an 
initial object). We will now define a notion of exponential, showing that the category of functors 
F: W + Preor (with natural transformations between them) is Cartesian-closed. This can be 
shown using the Yoneda lemma (see Mac Lane and Moerdijk [9]), but we will give an explicit 
construction. 

Definition 3.5 Given a preorder (W, 5) and two functors F: W + Preor and G: W + Preor, we 
define the functor [ F  + G] as follows: For any u E W, [F + GI, is the set of families cp = (cp,),?,, 
where each cpw is an arrow 9,: Fw -+ G, (in the category Preor), such that the following naturality 
conditions hold whenever w2 2 wl k w: 

OF - . G  
cpwz O 2 w 1 , q  - =w,,w2 O Vw1. 

The preorder on [F + GI, is defined as follows: Given two families cp = (cpw)wk, and .II, = ($,),?,, 
3, $iff pw 5, .II,, for all w u . ~  Whenever wl 5 w2, we define iEzg: [ F  + GIwl -i [ F  =+ GIw2 

as follows: 

For every family cp = (cpw)wkwl in [F + GI,, (where cp,: Fw -t G,), 

Thus, iEZ2 is the restriction function that restricts every family (cpw)wkwl in [F GI,, to the 
subfamily (cp,),?, in [F + GI,, where wl 5 w2. 

'Given two functions f ,  g: Fw -+ G w ,  f 5w g iff f (a) 5: g ( a )  for all a E Fw. 



It is clear that [F GI is a functor [ F  + GI: W -+ Preor. In fact, [ F  + GI is an exponential 
in the category of functors F: W -+ Preor, and this makes this category Cartesian-closed. To make 
this precise, we have to define the evaluation map eval: [F j G] x F -+ G. 

Definition 3.8 Given a preorder ( W ,  5 )  and two functors F: W -+ Preor and G: W 4 Preor, we 
define the evaluation map e ~ a l ~ ? ~ :  [F + GI x F + G as follows: 

For every u E W, for every family cp = (cp,),?, in [F + GIu (where cp,: Fw -+ G,), for every 
a E Fu, 

~ v ~ ~ ~ ~ ( ( v W ) W ~ U ,  a)  = cpu(a). 

Given any functors F, G ,  H: W + Preor, for any natural transformation 7: H x F -, G ,  we define 
the natural transformation curry(7): H -+ [F + GI as follows: 

For every u E W ,  curry(q),: Hu -+ [F + GIu is the arrow (in the category  reo or) such that, 
for every a E H,, 

where ~ u r r y ( ~ , ) ( i ~ ~ ( a ) ) : F ,  -+ Gw, is the arrow (in the category Preor), such that, for every 

b E Fw, curr~(qw)( i :~(a))(b)  = Vw(i?,(.), b). 

Lemma 3.7 Given any two functors F, G: W -, Preor, evalFpG: [F G] x F + G is a natural 
tmnsformation. Furthermore, Given any functors F,G, H: W + Preor, for any natuml t m s -  
formation 7 :  H x F -+ G,  curry(q): H -+ [F + G] (as in definition 9.6) is the unique natural 
tmnsformation such that 

7 = evalF*G o (curry(q) x i d F ) .  

If 6: H -+ [F + G] is a natuml tmnsformation, then 6 = c ~ r r y ( e v a 1 ~ ~ ~  o (8 x i d F ) ) .  

Proof. It is easily verified that evalFtG: [F + GI x F -+ G and curry(q): H -t [F + GI are 
indeed natural transformations. It can also be checked that for any 7: H x F + G ,  the natural 
transformation curry(q): H + [F + G] is the unique natural transformation such that 

Finally, letting 7 = evalFpG o (6  X i d F ) ,  since 8 satisfies the property 7 = evalKG o (8 X  id^), by 
uniqueness of curry(q), we have 8 = curry(evalFIG o ( 8  X  id^)). 

Thus, the category of d functors F: W -+ Preor is Cartesian-closed. Given a natural transfor- 
mation 8: H -+ [F =+ GI, if we define the natural transformation uncurry such that uncurry(8) = 
evalqG o (8 x i d F ) ,  then we have immediately that 

uncurry o curry = i d  and curry o uncurry = i d ,  

which shows that curry and uncurry set up a (natural) bijection between Nat(H x F, G )  and 
Nat(H, [F =+ GI). 

We view T as the constant functor T :  W -+ Preor such that Tw = T for every w E W, the 
preorder on T being the identity relation. Before defining a Kripke pre-applicative structure, we 
need to  define the notion of a dependent product. The construction is quite similar to that of 
definition 3.5. 



Definition 3.8 Given an algebra of types T ,  and a T-indexed family of preorders (As, S ) ,  for ev- 
ery function 9 E [T + TI, the dependent product nO(As)sET is the cartesian product ~ ( A ' ( ~ ) ) ~ € T ,  

T which is also described explicitly as the set of functions in ( u ( A @ ( J ) ) , ~ ~ )  defined as follows: 

~ ( A " ) . E T  = {f: T + U(A@(')).,T I f ( t )  E A@('), for all t E TI. 
0 

The set n@(As)sET is given the preorder d@ defined such that, f 5' g iff f ( t )  5@(t) g(t), for every 
t E T. 

Given a preorder (W, A) ,  an algebra of types T ,  and a family of functors A": W + Preor 
(where s E T), for every 9 E [T + TI, we define the functor na(AS)sET: W -, Preor as follows: 
for any u E W, nO(A:)sE~ is the set of families cp = (cp,),?,, where pW E n o ( A L ) s E ~ ,  such that 
the following naturality conditions hold whenever w2 wl 2 w: 

for every t E T. The preorder on n@(At)sET is defined as follows: Given two families cp = 
(cpw)wku and + = (+w)wku, cp 3, + iff cpw 5: +w for all w k u. Whenever wl 3 wa, we define 
ifJlqwa: ~ @ ( A & ) s € T  * ~ @ ( A & ) S C T  as f~h'k's: 

Thus, i::,, is the restriction function that restricts every family ( v ~ ) ~ ~ , ,  in no(ALl)sET to the 
subfamily (cpw)Wtw2 in ~ @ ( A & . ) ~ E T ,  where WI 3 w2. 

It is clear that na(As)seT is a functor no(As),ET: W + Preor. The functor no(As)sET is 
universal in a certain sense that makes it a kind of exponential with respect to  certain natural 
tranformations. This universality is made precise in what follows. 

Definition 3.9 Given any functor H:  W + Preor and any family of functors As: W -t Preor  
(where s E T) ,  we define the set of natural transformation Nat@(H x T, U ( A @ ( " ) ) ~ ~ ~ )  as the set 

of natural transformations 7: H x T + u ( A @ ( ~ ) ) ~ ~ ~ ,  such that, %(a, t) E A:('), for every a E Hu 
and every t E T. 

Definition 3.10 Given a preorder (W, S ) ,  and a family of functors As: W + Preor  (where s E T), 
we define the polymorphic evaluation map eval;: (n@(A:)sET) X T + U(A:(~)).~T as follows: 

For every u E W, for every family p = ( Y ~ ) , ~ .  in no(A:)ssT (where cpw: T + u(A:(~))~~T), 
for every t E T, 

eval;,,((cpw)w~u, t)  = cpu(t)- 

Given any functor H: W + Preor and any family of functors As: W + Preor (where s E T), for 
any natural transformation 7 E Nat@(H x T, u ( A @ ( ~ ) ) ~ ~ ~ ) ,  we define the natural transformation 
curry@ (7): H -t n@ (AS),ET as follows: 



For every u E W, curry@(q),: H, -+ fla(Ai)sET is the arrow (in the category Preor), such 
that, for every a E Hu, 

where c ~ r r ~ ~ ( q ~ ) ( i ~ ~ ( a ) ) : ~  -3. u(A$(~)).~T is the arrow (in na(AL)sET) such that, for every 

t E T, curr~@(qw)(i:~(a>)(t) = 7w(iEw(a),t). 

Lemma 3.11 Given an algebm of types T and family of functors As: W --) Preor (where s E T), 
eval;: (na(As)sET) x T - U(A:(~)),~T is a natuml tmnsformation. Furthermore, Given any 
functor A: W 4 Preor and any family of functors As: W -3. Preor (where s E T), for any natuml 
transformation q E lat.(H x T, U ( A * ( ~ ) ) , ~ ~ ) ,  curry@(q): B -3. na(As)sET (as in definition 3.10) 
is the unique natuml tmnsformation such that 

If 0 E Nato(H x T, U(A*(~)),~T), then 0 = curryB(eval$(O x idT)). 

Proof. The calculations are straightforward. 

Thus, given a natural transformation 8 E Nato(H x T, u ( A @ ( ~ ) ) ~ ~ T ) ,  if we define the natural 
transformation uncurryo such that u n c ~ r r y ~ ( 8 )  = eval; o (8 x  id^), then we have immediately 
that 

uncurry* o curry* = i d  and curry* o uncurry* = id, 

which shows that curry* and uncurry* set up a (natural) bijection between the sets of natural 
transformations Nat@(H x T, J J ( A * ( ~ ) ) ~ ~ T )  and Nat(H, ~@(A'),€T). 

4 Kripke Pre- Applicative Structures 

In this section, we define Kripke pre-applicative structures, as suggested in the introduction. The 
basic version (see definition 4.1) is intentional (i.e. nonextensional). We also consider a version 
with 7-like rules, and an extensional version. An important example of a Kripke pre-applicative 
structure is given in definition 4.4. Definition 4.8 contains an example also satisfying the 77-like 
rules. We conclude this section with a characterization of extensionality, showing the equivalence 
between our definition of extentionality and Mitchell and Mogi's definition [12], in the case of 
first-order applicative structures. 

Definition 4.1 Given a preorder (W, 3 )  viewed as a category, and T an algebra of types, a Kripke 
pre-applicative p-structure is a structure 

A = (A, fun, abst,  tfun, t abs t ,  TI, (-,-), i n l ,  i n r ,  [-, -I), 
where 

A = (AS),ET, a family of functors As: W -f Preor (recall that for every w E W, we write As(w) 
as A:); 
funSlt: ASdt -+ [As * At], a family of natural transformations in ~at(A"'~,  [AS * At]); 



abstsst: [As + At] + As-Ct, a family of natural transformations in NatP([As =+ At], As't); 

tfun': A'(') + nr(As)sET, a family of natural transformations in Nat(~'('), nO(As)sET), for 
every @ E [T TI; 
t ab s tq :  na(As)sET + A'('), a family of natural transformations in ~at,(n,(A') . ,~,  A'(')), 
for every @ E [T + TI; 
IISit: ASXt -, As x At, a family of natural transformations in Nat(ASXt, As x At), 

(-, As x At + ASXt, a family of natural transformations in Nat,(As x At, AsXt); 
[-, - ] ~ * ~ 7 ~ :   AS'^ x 4 A(.+~)+~, a family of natural transformations in ~ a t , ( A . + ~  x 
~ t + d  ~ ( s+ t )+d  1; 
inlslt: As 4 a family of natural transformations in Nat(AS, As+t); 
inrslt: At -+ AS+t, a family of natural transformations in ~ a t ( A ~ ,  As+t). 

For every u E W ,  we define c in l ,  : A, (s+t)'d 4 [As + Ad]. and cinr.: Au (s+L)+d + [ ~ t  -+ ~ d l ~  

as follows: For every h E A, (s+t)4d, for every w t u, 

for every a E A;, and 

for every b E A:. 

Furthermore, the following conditions are satisfied for every w E W: 

(1) For all s , t  E T, if A; # 0 and A: # 0, then A;" # 0, and funzt(abstzt(cp)) t_, cp, 
whenever abstzt(cp) is defined, for cp E [As + At],; 

(2) If A$(') # 0 for every t E T, then A:") # 0, and tfun:(tabst:(cp)) t, p, whenever 
tabst$(cp) is defined, for cp E JJo(A;)sET; 

(3) For all s , t  E T, if A; # 0 and A: # 0, then Akxt # 0, and IIzt((a, b)) >, (a,b), for all 
a E A;, b E A:, whenever (a, b) is defined; 

(4) For all s, t E T, if A; # 0 and A: # 0, then A;+t # 0, and cinl,([f, g]) k, funw( f ) ,  and 
cinrw([f,  g]) kw funw(g), whenever [ f ,  g] is defined, for f E A;"~ and g E A:~~. 

We say that a Kripke pre-applicative p-structure is an applicative p-structure iff in conditions 
(1)-(4), k, is replaced by the identity relation =,. 

We think of W as a set of worlds. When A is a Kripke applicative p-structure, then, in definition 
4.1, conditions (1)-(4) amount to 

(1) f et o abs t z t  = id, on the domain of definition of abst,; 

(2) t f d  o tabst: = id,,, on the domain of definition of tabst,; 

(3) IIzt o (-, -)zt = id, on the domain of definition of (-, -),; and 

(4) (cinl,, cinr,) o [-, -1 = funzd x funkd on the domain of definition of [-, -1. 



In view of (I), from (4), we get 

(cinl,, cinr,) o ([-, -1, o (abstzd x abstkd)) = id, on the domain of definition of [-, -1, o 

(abstzd x abstkd). 

In this case, abst, is injective and fun, is surjective on the domain of definition of abst, 
(and left inverse to abst,), tabst,  is injective and tfun, is surjective on the domain of definition 
of tabst,  (and left inverse to tabst,), (-, -), is injective and II, is surjective on the domain 
of definition of (-, -), (and left inverse to (-, -),), [-, -1, o (abst:* x abstkd) is injective 
on its domain of definition, and (cinl,, cinr,) is surjective on this domain (and left inverse to 
[-, -1, o (abstzd x abstkd)). 

When we use a Kripke pre-applicative P-structure to interpret A-terms, we assume that (-, -) 
and [-, -1 are total, and that the domains of abst  and t a b s t  are sufficently large, but we have 
not elucidated this last condition yet. 

Using lemma 3.7, given fundvt: As't + [AS + At], we can define a natural transformation 
appdpt: A*" x Ad + At, by 

Since 8 = curry(evalFvG o (8 X idF)), from lemma 3.7, we also have 

Thus, appsJ and fundst correspond to each other in the isomorphism between ~ a t ( A ~ ' ~  x Ad, At) 
and ~at(A*'~,  [As j At]) set up by curry, uncurry. Thus, we could have used appdlt instead of 
funSvt in definition 4.1. More explicitly, appzt( f, a)  is defined such that, for every f E and 
every a E A;, 

app2t( f ,  a) = evalAs*At(fun2t( f),  a). 

Then, the functions cinl,  and cinr, of definition 4.1 can be expressed in terms of app as 
(s+t)-+d follows: For every h E A, 9 

for every a E A;, and 

for every b E A;. 

Using lemma 3.11, given tfunSvt: A'(') + na(Ad),ET, we can define a natural transformation 
tappe: A'(") x T -t U ( A @ ( ~ ) ) ~ ~ T ,  by 

tappe = e v a l i  o ( t f  un' X idT), 

Since 0 = currye(evalg o (8 x idT)), from lemma 3.11, we also have 

0 tfun" = curryo(tapp ). 



Thus, tappo and tfuno correspond to each other in the isomorphism between the sets of natural 
transformations  at.(^'(') x T, JJ(A~(~)),,T) and ~ a t ( ~ ' ( 4 ,  no(As)bET) set up by curry@, 
uncurryo. Thus, we could have used tappo instead of tfuno in definition 4.1. More explicitly, 
tappt(f ,  t) is defined such that, for every f E A:('(') and every t E T, 

s t  The projection operators IIw induce projections xi:',: ALxt + A; and 7r2;w: ALxt 3 A:, such 
that for every a E ALxt , if ITzt(a) = (al, a2), then 

Ts , t  s t  I,w(a) = a1 and x2;,(a) = as. 

Let us now unravel the naturality conditions. 

Definition 4.2 The following conditions hold whenever wl 3 w2. 

(1) f ASdt 3 [Ab + At]. The naturality conditions are 

These can be rewritten as follows: for any g E A;;', if fuq,,(g) = (cpw)wk,l, then 

In terms of the operators app (recall that app = evalA'tAt o (fun x idAs)), the condition is written 
as 

~ P P ~  (iL;LJ9), iL1,w (b)) = iLl ,,2 (aPPwl (g7 b)), 

for every g E A&yt, and every b E A&, . 
(2) abstsf: [AS + At] + AS". The naturality conditions are 

abst, o iL,=& = iL'h o abst,, . 

These can be rewritten as follows: 

for every cp = (cpw)whwl E [A5 * At],, - 
(3) t f d :  A'(@) + nq,(As)sET. The naturality conditions are 

These can be rewritten as follows: for any g E A:\@), if tfunw,(g) = (cpw)wtwl, then 

tf unw2(i:::.(s)) = (vw)wtw2 - 
In terms of the operators tapp (recall that tappa = eval<o(tfuno x idT)), the condition is written 



for every g E A:?), and every t E T. 

(4) tabst@: na(AS)sET A'('). The naturality conditions are 

tabst, o i?,, = iLyi2 o tabsty,. 

These can be rewritten as follows: 

t a b s t w ( ( c p , ) w t w 2 )  = i;\:L2 (tabstw, ( (vwlwt , ,  I), 

for every 9 = ( O W ) W ~ W ,  E ~ @ ( A & , ) s E T -  

(5) TIStt: AsXt -t AS x At. The naturality conditions are 

These can be rewritten as 

. t 
nw(~L::w(b)) = ( ~ L 1 , w 2 ( ~ 1 , w 1  (b)), zw1,w2 (7r2,Wl (b))7 

for all b E A&;t. 

(6) (-, -)'v~: A S  x A t  -, AsXt. The naturality conditions are 

(-7 -)w2 O (iL1,w2 X itwlrW2) = iL;fw2 0 ( - 9  -)w1. 

These can be rewritten as 

(iL17W2(b1), 'L1,W2(b2))w = ik.fw2((b~7 b2)w1 1, 
for all bl E A&, and al l  bz E A$,. 

(7) inlsvt: As + AS+t and inrsjt: A t  + As+t. The naturality conditions are 

'S .t - - is+t - is+t o idwl and inr, o z,, ,, wl ,w2 o inrwl. i n l w 2  O Zw1 , w  - W l  ,w2 

These can be rewritten as 

idw2 (a;, ,,, (a)) = is+t I W 2 w  a ) )  and i m w 2  (iLl ,w2(b)) = iL::w2 ( i m w l  (b)),  

where in the first case, a E A:, , and in the second case, b E A$, . 
(8) [-, -]s*tjd: x A ~ - + ~  -, A ( ~ + ~ ) - + ~ .  The naturality conditions are 

-s+d .t+d -(s+t)+d 
[ -7  -1w O (2Wl,W2 X zw1,w2) = 2WltW2 O [-7 -1w1- 

These can be rewritten as 

where f E A & ' ~  and g E 



Let us give an (important) example of a Kripke pre-applicative structure. First, we review the 
notion of a substitution. 

Definition 4.3 A substitution cp is a function cp: V U X + 7 U Terms, such that cp(X) E 'T 
if X E V, cp(x) E T e r n  if x E X, and cp(x) # x only for finitely many variables. We let 
dom(cp) = {x E V U X I p(x) # x). We say that cp is a type-substitution if dom(cp) E V. Given two 
contexts I' and A, we say that cp satisfies I' at A, denoted as A H- I'[cp], iff A D  cp(x): a[cp], for every 
x: a E I' (Compare with definition 5.4: cp is a valuation, the type-substitution part of cp being a 
type valuation). 

Definition 4.4 Let (W, 5 )  be the poset of all type assignments I' = XI: 01,. . . , x,: a, ordered by 
inclusion, T be the free algebra of second-order types, and let A; be the set of all provable typing 
judgements I' D M: a. For [T + TI, we can take the set of all functions @ of the form T t-, a[r/X], 
where U,T E T are any types, and X is any fixed variable that does not occur in I?. Then, 
V(8) = VX. The map iFlVr2 : AFl + AF2 is the function such that iFl ,r2 (rl D M: a )  = D M: a. 

We let II, (-, -), inl, inr, and [-, -1, be the obvious. For example, (I' D MI: a, I' b M2: r )  = 
I' D (MI, M2): a x T. Define I' D N: o 3 I' D M: a iff M Ap N. Finally, we need to  define fun, 
abst, t fun,  and t abs t .  

We define funr(I' D M:o -, T) as the family of functions ([I'D M:a  + T ] ~ ) ~ ~ ~ ,  - where the 
function [I' D M: a + 7IA is from A% to AL , such that 

for every A D  N:o E A i .  

We define t f  unr(I' D M: VX. a) as the family of functions ([I' D M: VX. u ] ~ ) ~ ~ ~ ,  - where the 
function [I' D M:VX. aIA is from T to  ~ ( A ~ ) u E T ,  such that 

[I' b M: vx. u ] ~ ( T )  = A b MT: u[T/X], 

for every T E T. In this case, the @ in tfun: is the function from T to T induced by a, such that 
@(r)  = a[r/X] for every T E T. 

For every (type and term)-substitution cp, every judgement I', x: u D M: T, and every context A 
such that A I t  (I?, x: o)[cp], consider the family of functions (cp[I', x: a b M: T ] ~ I ) ~ ~ ~ ~ ,  - where the 

function cp[I', x: a D M: T ] ~ .  is from A::] to A$], defined such that, 

cp[I', X: u b M: T ] ~ I ( A '  D N: ~[cp]) = A' D M[cp[x: = N]]: ~ [ p ] ,  

for every A' D N: a[cp] E A*]]. Given any such family (cp[I', x: a D M: r ] A ~ ) A c A ~ ,  - we let 

For every (type and term)-substitution cp, every judgement I?, X:  *D M: u, and every context A 
such that A k (I', X: *)[cp], consider the family of functions (cp[I', X:  * D M: ~ ] ~ l ) ~ ~ ~ l ,  - where the 
function cp[I', X:  * D M: U ] ~ I  is from T to U(Ail),ET, defined such that, 

p[r ,x:+D M : U I ~ ~ ( T )  = A I D  M[P[X: = T I ~ : u [ ~ ~ [ x :  = TI], 

3The choice of X is irrelevant as long as X does not occur in I', since X is bound in VX. a. 



for every 7 E T. 

Given any such family (cp[r, X :  * D  M :  ~ ] ~ l ) ~ ~ ~ l ,  - we let 

t a b s t ~ ( ( c p [ r ,  X:*D M :  ~ ] ~ l ) ~ ~ ~ l )  = A D (Ax. M)[cp]: V X .  ~ [ c p ] .  

The Kripke pre-applicative P-structure just defined is denoted as LTp. 

It is clear that (cp[r, x: U D  M :  r ] A ~ ) A c A ~  - is in [AU[V] =$- A ~ [ ~ ] ] ~ .  Let us verify that 

f u n ~ ( a b s t ~ ( ( c p [ r ,  z: a D M :  T ] A ~ ) A ~ A ~ ) )  2 ( ( ~ [ r ,  X :  u D M :  T ] ~ ~ ) ~ ~ ~ ~ .  

Since 

f ~ n ~ ( a b s t ~ ( ( ~ [ r ,  X: a b M :  T ] ~ , ) ~ ~ ~ ! ) )  - = f u n ~ ( A  D ( X Z :  0. M ) [ v ] :  ~ [ c p ]  + ~ [ v ] ) ,  
( A  (AX:  a-  M)[v]:  U[V]  + ~ [ y ] )  = ( [ A  b ( A X :  0. M)[v] :  a[V] -+ T [ Y ] ] A ' ) A ~ A ~ ,  

[A D (Ax: a. M)[cp]: a[cp] -+ r[p]lA1(A1 D N :  a[cp]) = A' P ((Ax: a. M)[cp])N: r[cp], 

q[r, x: a b M :  rIAl(A' D N :  a[cp]) = A' D M[cp[x: = N ] ] :  r[cp], 

and 
((Ax:  a. M)[cp])N -p M[cp[x: = N ] ] ,  

the inequality holds. Indeed, (Ax: a. M)[cp] is a-equivalent to ( A  y: a. M [y/x])[cp] for any variable y 
such that y 4 dom(cp) and y 4 q ( z )  for every z E dom(cp), and for such a y, (Xy: a. M[y /x ] ) [p]  = 
(Xy: o[q]. M [ y / x ] [ q ] ) .  Then, for this choice of y, 

Regarding the definition of t a b s t ,  letting @ be the function from T to T induced by a ,  such 
that @(T) = u [ r / X ]  for every 7 E T, it is clear that ((p[r,X:*D M : o ] ~ I ) ~ ~ ~ I  - is in na(Ai)sET. 
Let us now verify that 

t funA( tabs tA((cp[r ,  X:*D M :  a]A~)AcAl ) )  2 (cp[r, X :  *b M :  a]A~)aGAr.  

Since 

tfunA(tabsta((cp[I', X :  *b M :  o ] ~ , ) ~ ~ ~ ! ) )  = t f u n A ( A  b (AX .  M)[cp]:VX. O[d), 
t f u n ~ ( A  b (Ax. M)[cp]: V X .  a[cp]) = ( [ A  D (AX .  M)[cp]:VX. U [ ~ ] ] ~ I ) ~ ~ ~ I ,  

[A D (AX.  ~ ) [ c p ] :  V X .  0[cp]lA~(r) = A' b ((AX. M ) [ c p ] ) ~ :  a[cp][r/X],  

cp[r,X: * D  M :  U ] ~ I ( T )  = A' D M[(p[X: = T I ] :  a[cp[X: = r]] ,  

o[cpl[.r/Xl = a[(o[X: = 711, 

(by a suitable a-renaming on X ) ,  and 

( (AX .  M)[cpl)r +p M[cp[X: = 7.11, 

the inequality holds (the details of the verification using a-renaming are similar to the previous 
case). 

The other conditions of definition 4.1 are easily verified. 

We now define extensional Kripke pre-applicative p-structures and Kripke pre-applicative pq- 
structures. 



Definition 4.5 A Kripke pre-applicative @-structure (W, T, A) is extensional iff fun,,,, t fun , ,  II,, 
and (cinl,, cinr,), are isotone, and the following conditions hold for every w E W: 

(1) ran(f%) C_ dom(abst,); 

(2) ran(tf%) C dom(tabst,); 

(3) ran@,) C dam((-, - ) w ) ;  

(4) r a n ( ( c i n l ~ ' * ~ ,  cinrztld)) C don([-, -1, o (abstzd x abstkd)). 

When A is an applicative Kripke @-structure, conditions (1)-(4) hold, and the functions fun,, 
tfun,,,, II,, and (cinl,, cinr,), are injective, we say that we have an extensional Kripke applicative 
,f3-structure. 

When A is a Kripke extensional pre-applicative /?-structure, by condition (I),  abst,(fun,( f ) )  
is defined for any f E A&"t. Observe that by condition (1) of definition 4.1, we have fun,(f) -( 
f un,(abst,(f un,,,( f ))), and since fun, is isotone, this implies that 

Similarly, we can prove that 

(2) tabst,(tfun,,,(f)) t, f ,  for all f E A:"); 

(3) (?rl(a), n2(a)), ?, a,for all a E ALXt; and 
(s+t)-rd (4) [abst,(cinl,(h)), abst,(cinr,(h))], h, h, for all h E A, 

We will call the above inequalities the q-like rules. 

In many cases, a Kripke pre-applicative p-structure that satisfies the q-like rules is not exten- 
sional. This motivates the next definition. 

Definition 4.6 A Kripke pre-applicative @-structure (W, T , A )  is a ,@-structure if the following 
conditions hold for every w E W: 

(1) ran(f%) C dom(abst,), and abst,(f%(f)) k, f ,  for all f E 

(2) ran(tf%) C_ dom(tabst,), and tabst,(tfun,,,(f)) 2, f ,  for all f E A:"); 

(3) ran(&) C dam((-, -),), and (m(a), m(a)), 2, a,  for all a E A;xt; and 

(4) ~an((c in l :~ l~ ,  cinrztld)) C dom([-, -1, o (abstzd x abstkd)), and 
(s+t)+d [abst,(cinl,(h)), abst,(cinr,(h))], h, h, for all h E A, 

When A is an applicative Kripke @-structure and in conditions (1)-(4), h, is replaced by =,, 
we say that we have a Kripke applicative Pq-structure. 

From the remark before definition 4.6, an extensional Kripke pre-applicative P-structure is a 
pq-structure. When A is a Kripke applicative pq-structure, conditions (1)-(4) of definition 4.6 
amount to: 

(1) abstzt o f unzt = id,; 



(2) tabst: o tfun: = id,,,; 

(3) (-, -)zt o IIzt = id,; and 

(4) ([-, -1, o (abstzd x abstkd)) o (cinlztvd, c i n r ~ ~ ' ~ )  = id,,,. 

This implies that f w ,  t f w ,  IT,, and (cinl,, cinr,), are injective. Thus, a Kripke ap- 
plicative Pq-structure is extensional. In this case, (together with conditions (1)-(4) of definition 
4.1 in the case of a Kripke applicative P-structure), we have dom(abst,) = f~n,(A&+~), fun, 
is a bijection between A&+t and a subset of [Ad + At], (with inverse abst,), dom(tabst,) = 

t f ~ ( A ~ ( @ ( ' ) ) ,  tfun, is a bijection between A:('(') and a subset of n@(A&)dET (with inverse 
tabst,), II, is a bijection between ALXt and a subset of A& x Af, (with inverse (-, -),), and 

(s+t)'d and a subset of [As + Ad], x [At j A~] ,  (cinlztsd, cinrztld) is a bijection between A, 
(with inverse [-, -1, o (abstzd x abs ty ) ) .  

We now show how the structure L T p  of definition 4.4 can be made into a pre-applicative 
pq-structure. First, we recall the 7-like rules. 

Definition 4.7 The set of q-like reduction rules is defined as follows. 

Ax: a. (Mx) - M, if x 4 FV(M), 
AX. (MX) ---, M, if X 4 FTV(M), 

(~rl(M),  nz(M)) ---, M, 
[Ax: a. (Minl(x)),  Xy: T.  (Minr(y))] - M. 

We will denote the reduction relation defined by the union of the rules of definition 2.3 and of 
definition 4.7 as --+p, (even though there are reductions other that @-reduction and q-reduction). 

Definition 4.8 We define a Kripke pre-applicative structure as in definition 4.4, except that I' b 
M: a 5 I'D N: a iff N Ap, M, and that abst  and t a b s t  have a larger domain of definition. First, 
recall the definition of families of functions used in defining fun and tfun. 

funr(I' D M: a 4 T) is defined as the family of functions ([I'D M: o -, T ] ~ ) ~ ~ ~ ,  - where the 
function [I' D M: a + rIA is from A% to AL, such that 

for every A D N: o E A%. 

tfunr(I' D M: VX. a )  is defined as the family of functions ([I' D M: VX. u ] ~ ) ~ ~ ~ ,  - where the 
function [I' D M :  VX. is from T to U ( A i ) , E T ,  such that 

for every T E T. In this case, the @ in tfm: is the function from T to T induced by a, such that 
@(T) = a[r /X]  for every T E T. 

Then, we define 

abstr(([I' D M: a -, T ] A ) ~ ~ ~ )  - = I' D Ax: a. (Mx): a -t T, 



where x  4 F V ( M ) ,  and 

t a b s t r ( ( [ r  D M :  V X .  0 1 ~ ) ~ ~ ~ )  - = I' D AX. ( M X ) :  V X .  a,  

where X  4 F T V ( M ) .  The structure just defined is denoted as Lip,. 

We need to  check that L7p, is a Kripke pre-applicative pq-structure. Let us first verify that 

Since 

f u ~ ( a b s t r ( ( [ r  D M :  a  4 T ] A ) ~ c A ) )  - = funr(r D Ax: a. ( M x ) :  a  -+ r ) ,  

funr(I' D Ax: a. ( M x ) :  a  -+ T )  = ( [ I ' D  Ax: a. ( M x ) :  a  + rIA)rcA, 

[I? D A X :  a. ( M x ) :  u 4 T]A(A  D N :  a )  = A D ( A X :  a. ( M x ) ) N :  T ,  

and 
(Ax: a. ( M x ) ) N  -p M N ,  

since x  4 F V ( M ) ,  the inequality holds. 

Let us now verify that 

Since 
t f u n r ( t a b s t r ( ( [ r  D M :  VX. ulh)rcA))  - = t funr(I '  D AX. ( M X ) :  V X .  a ) ,  

t f  unr(I' D AX. ( M X ) :  V X .  a )  = ([I '  D AX. ( M X ) :  V X .  u ] ~ ) ~ ~ ~ ,  - 

[r D AX.  ( M X ) : V X .  u ] ~ ( T )  = A D ( A X .  ( M X ) ) T :  U [ T / X I ,  

and 
(AX. ( M X ) ) r  -p M T ,  

since X  4 F T V ( M ) ,  the inequality holds. 

We also need to verify the conditions of definition 4.6. 

We have abstr(funr(I '  D M :  a -, T ) )  = abs t r ( ( [ r  D M :  a  -, T ] ~ ) ~ ~ ~ ) ,  - and since 

where x  4 F V ( M ) ,  and by the q-like rule, Ax: a. ( M x )  -p, M ,  we have 

Similarly, we have t a b s t r ( t f  unr(r D M :  V X .  a ) )  = tabstr(([I '  D M :  V X .  u ] ~ ) ~ ~ ~ ) ,  and since 

t a b s t r ( ( [ r  D M :  V X .  ~ 1 ~ ) ~ ~ ~ )  - = I' D AX. ( M X ) :  V X .  a ,  



where X 4 F T V ( M ) ,  and by the 77-like rule, AX. ( M X )  -p, M ,  we have 

The other conditions of definition 4.6, are immediately verified. We now give a convenient 
characterization of the isotonicity of fun, and tfun,. This lemma shows the equivalence between 
our definition of extentionality and Mitchell and Moggi's definition [12], in the case of first-order 
applicative structures. 

Lemma 4.9 Given a Kripke pre-applicative ,f3-structure A, then the following properties hold for 
every u E W :  (1) fun, is isotone if for every f,g E A;+t, if app,(i;zt(f),b) 3 a ~ p , ( i ; ; ~ ( ~ ) ,  b) 
for all b E A: and all v >- u,  then f 5 g.  

(2) tfun,, is isotone i ' f o r  every f ,g  E A?'), i f  t a P P , ( i ~ ~ f ) ( f ) , t )  j t a p p v ( i ~ ! ~ ) ( g ) , t )  for all 
t E T and all v t u ,  then f 5 g.  

Proof. ( 1 )  First, assume that fun, is isotone. Recall that the naturality condition for fun is 

for any g E A&+t, if f-, ( g )  = (cpw)wkw, .  Let f u n u ( f )  = (cpw),ku and f w ( g )  = (+w)wk,. If 
ap~ , ( i ; ;~ ( f ) ,  b) -( appv(i tz t (g) ,  b) for all b E A: and all v >- u ,  since app is defined from fun as 
app = e ~ a l ~ ' . " ~  0 ( f u n  x i d A * ) ,  and e ~ a l ~ ' ~ " ~  ( ( c p w ) w t u ,  a )  = cpu(a), we have 

Similarly, we get 
app,(i;;'(g), b) = +u(b). 

Thus, the hypothesis implies that cp,(b) 5 &(b) for all b E A:, and thus cp, 5 +,,. Since this holds 
for all v 5 u ,  we have (cp,),ku 5 (+v)vku, that is, f u n u ( f )  5 f u n , ( f ) ,  and since fun,  is isotone, we 
have f 5 g. 

Now, assume that f 5 g whenever a~p,(i;;~( f ), b) 5 ap~,(i;;~(g), b) for all b E A: and all 
v 5 u.  Again, let f q ( f )  = (cp,),?, and fun,(g) = (+w)wk,, and assume that f u n , ( f )  5 f m ( g ) .  
Then, we have (cp,),hu 5 (+v),Lu, that is, cpv 5 7C?, for every v >- u. By the calculations above, we 
have 

aP~,(i:;~(f ), 6)  = cpv(b) and app,(i:;'(g), b) = +v(b), 

and so, we have app,(i;-$( f ) ,  b) 5 a~p , ( i&~(g ) ,  b) for all b E A: and all v u. Then, f 3 g. 

(2) First, assume that t fun ,  is isotone. R e c d  that the naturality condition for t f u n  is 



for any g E A:!@), if tf%, (g) = (cpw)wt, Let t f m u ( f )  = (cpw)wtu and tfulu(g) = (+w)wtu. 
If tapp,(i:!f)(f), t) 5 tapp,(i:!:)(g), t) for all t E T and all v t u, since tapp is defined from t f u n  
as tapp = evalg o ( tfun x  id^), and e ~ a l ~ , ~ ( ( ~ , ) ~ ~ ~ ,  t) = cpu(t), we have 

Similarly, we get 

ta~~, tC:e ' (9)?  t) = +u(t). 

Thus, the hypothesis implies that cp,(t) 3 &(t) for all t E T, and thus cp, 3 +,. Since this holds 
for itll v 5 21, we have (cpu),tu 5 (.lllu),ku, that is, tfun,,(f) 5 tfun,( f ) ,  and since t fun ,  is isotone, 
we have f 5 g. 

Now, assume that f j g whenever t app, (i:!f)( f ), t) j tapp,(i:r)(g), t) for all t E T and all 
v u. Again, let t f w ( f )  = (cpW),ku and tfun,(g) = ($w)whu, and assume that tfun,(f) 3 
t f ~ ( g ) .  Then, we have (cp,),ku 3 (+,),ku, that is, cp, 3 +,, for every v >- u. By the calculations 
above, we have 

and so, we have tapp,(i:!:)(f), t) 5 tapp,(i:ff)(g), t) for all t E T and all v h u. Then, f 3 9. 

For the sake of brevity, we will abbreviate Kripke pre-applicative (P or @.q)-structures as Kripke 
pre-applicative structures. We now show how to interpret X-terms in a Kripke pre-applicative 
structure. For this, we will use valuations. 

5 Interpreting X-Terms in Kripke Pre-Applicative Structures 

In this section, we show how to  interpet second-order X-terms using Kripke applicative structures. 
Then, we prove several basic lemmas that will be needed in section 7, in particular, lemma 5.10 (and 
lemma 5.11), the "substitution lemma", which is crucial in proving the soundness of P-reduction 
and typed P-reduction. 

Definition 5.1 Given an algebra of polymorphic types T, it is assumed that we have a function 
TI: T C  + T assigning an element TI(k) E T to every type constant k E TC. A type valuation is 
a function 8: V -t T. Given a type valuation 8, every type a E I is interpreted as an element [ale 
of T as follows: 

[XI@ = O(X), where X is a type variable, 

[k]O = T I ( k ) ,  where k is a type constant, 

[U -+ 718 = [u]@ -+ [TI@, 
[a x 718 = [a]@ x [TI@, 
10 + 718 = [ale + [TI@, 
VX. a]@ = V(At E T. [a]d[X: = t]). 



In the above definition, At E T. [a]O[X:= t] denotes the function from T to T such that 
@(t) = [u]O[X:= t] for every t E T. We say that T is a type interpretation iff @ E [T + TI for 
every type a and every valuation 0. 

In other words, T is a type interpretation iff [a]O is well-defined for every valuation 0. The 
following lemmas will be needed later. 

Lemma 5.2 For every type a E 7, and every pair of type valuations O1 and 02, ifB1(X) = 02(X), 
for all X E FTV(a) ,  then [a]O1 = [a]02. 

Proof. A straightforward induction on a. 

Lemma 5.3 Given a type interpretation T, for all a, r E I, for every type valuation 0, we have 

Proof. The proof is by induction on a. The case where a = X is trivial, since then X [ r / X ]  = T, 

and 
[X]%[X:= [r]O] = O[X: = [rj%](X) = [.lo. 

The induction steps are straightforward, and we only treat the case where a = VY. a]. In this case, 

[(VY. u1)[r/X]]B = V(At E T. [al[r/X]]OIY: = t]), 

(where the bound variable Y is renamed in a suitable fashion if necessary), and where At E 
T. [al[~/X]]OIY: = t] denotes the function @ from T to T such that @(t) = [al[r/X]JJOIY: = t ]  
for every t E T . By the induction hypothesis, we have 

@(t) = [o1[r/X]]O[Y: = t] = [u1]0[X: = [.no, Y :  = t]. 

Then, since 
IVY. al]0[X: = [T]O] = v(At E T .  [~~]o[x: = [TI%, Y: = t]), 

we have 
[(VY. a1)[r/X]]O = [VY. a1]0[X: = [r]O]. 

Definition 5.4 Given a type interpretation T, given a Kripke pre-applicative structure A, a val- 
uation is a pair p = (0, q), where 0: V -+ T is a type valuation, and q: X x W + U(AL)tET, w E ~  

is a partial function called an environment satisfying the following condition: 

For every x E X, whenever wl 5 202, if q(x, wl) is defined and q(x, wl) E A:, (where t E T )  
then q(x, .w) is defined and 

.t 
rl(x, w2) = 2w1,w2(~(x,wl )I. 

We denote q(x ,u )  as qZL(x). Given a valuation p = (8, q), for any s E T and a E A: we let 
p[X: = s ,  s: = a] = ( d [ X :  = s], q[x: = a ] )  be the valuation, such that, O[X: = s](Y) = %(Y) for 
every Y # X and O[X: = s](X) = s, and qw[x: = a](y) = %(y) for all w E W and all y # x, and 

qw[x: = a](x) = i;,,(a), for all w > U ,  



and undefined otherwise. 

A global element of A* is a function a: W + U(Ak)wEW,  such that, a,  E A: and a, = ii,v(a,) 
whenever v u. 

Given a context I', we say that w E W satisfies r at p, written as w H- r [p]  (where p = (8,  7 ) )  
iff 

~ ~ ( x )  E Akle  for every x: a E r. 
Given a valuation p = (8,  q ) ,  we often denote 8 as [p] (or pt), and 7 as p or 

Note that if wl 5 w2, by the definition of a valuation p = (8,  q)  (the condition q(x, w2) = 
i~,,,(q(x, w l ) ) ) ,  if wl H- I'[p], then w2 H- I '[p].  Also, conditions (1)-(4) of definition 4.1 imply that 
the following conditions hold: 

For all w E W ,  for all types a,  r E I ,  if At1' # 0 and AEle # 0,  then # 0,  .AkxT18 # 0,  
# 0 ,  and if ~ k [ ~ ' ~ ~ ~ ~  # 0 for every r E I ,  then A ~ ~ * ~ ~ ~  # 0.  

We are now ready to interpret A-terms. 

Definition 5.5 Given a type interpretation T and a Kripke pre-applicative structure A, let 
A I :  Const -+ A be a function assigning a global element A I ( c )  of ~ ~ I ( ~ y p ~ ( ~ ) )  to every constant 
c E Const. For every valuation p = (8,  q ) ,  every context r ,  and every world u E W ,  if u tt- r [ p ] ,  
we define the interpretation (or meaning) A[I' D M: a]pu of a judgement I' D M :  a ,  inductively as 
follows: 

Air D x: a]pu = rl,(x) 

d[I' D c: Type(c)]pu = AI (c ) ,  

Air D M N :  T ] ~ U  = app,  [ r 1 8 ( ~ [ r  D M :  a + T ] P U ,  A[T D N :  

CuIe, c71e A[I' D Ax: a. M :  a -+ r]pu  = abst,  (v) ,  
where cp = (cp,),?, is the family of functions defined such that, 

Iule cp,(a) = A[r, x: a D M :  r]p[x:  = a]w, for every a E Aw 

A[r D M r :  u [ r / X ] ] p u  = taPP:(d[r  D M :  V X .  olpu, [r]8) ,  

where @ is the function such that *( s )  = [a]O[X: = s] for every s E T 

A[I' D AX. M : V X .  o]pu = tabst:(cp), 

where cp = (cp,),?, is the family of functions defined such that, 
cpw(s) = A[r, X :  *D M :  u ] p [ X :  = s]w, for every s E T, and where @ is the function such that 
@(s)  = [a]B[X: = s] for every s E T 



We are assuming that (-, -) and [-, -1 are total, and that the domains of abst and tabst  
are sufficently large for the above definitions to be well-defined for all p, I' r M: a, and u E W. In 
this case, we say that A is a Kripke pre-interpretation. 

In the special case where W = (0) consists of a single world, and A is an extentional applicative 
structure, it is not difficult to show that definition 5.5 is equivalent to Breazu-Tannen and Coquand's 
definition of a polymorphic A-interpretation, or pli (see [I]). 

In order to be sure that in definition 5.5, A[I' r M: ulpu is a well defined element of Ak", we 
need to verify that (Y,),~. E [A[~]' + AM'], in the case of A-abstraction, and that (q,)wtu E 
nQ(AE)sET, in the case of typed A-abstraction. For this, we show the following lemma. 

Lemma 5.6 Given a type interpretation T and a Kripke pre-applicative (P or i3l.l)-structure A, 
for every valuation p = (6,  v), every context I', and every world u E W, if u H- I'[p], then for every 
judgement I' P M: a, whenever v k u, 

Proof. We proceed by induction on typing derivations. Except for the cases of A-abstraction 
and typed A-abstraction, the induction is straightforward and uses the naturality conditions of 
definition 4.2. Let us consider the case of A-abstraction. We need to  show that the family of 
functions cp = (cpw)wk, defined such that, 

for every a E A t l e y  satisfies the naturality condition 

for every a E AFI', whenever v k u. Thus, we need to show that 

By the induction hypothesis applied to p[X: = a] and I?, x: a D M: T, which is legitimate, since 
u H- I'[p] implies that u I t  (I?, x: a ) [ p [ X :  = a]], since a E A!'", we have 

However, by definition 5.4, r),[x: = a](z) = i t j6(a)  and thus, 

and thus, we have 



Thus, we know that A[I' D Ax: a. M: a -, r]pu is well defined, and we have 

A[I' D Ax: a. M: a + T ] ~ U  = a b s t ~ I e ~  [71e((cpw)wtu), 

and 
A[r D Xz: a. M: a - r]pv = abstF1lsv rT1e((cpw)wk.). 

Recalling that the naturality condition (2) of definition 4.2 is 

we have 
A[I' D AX: o. M: o -+ rlpv = i ~ ~ T ] e ( ~ [ I '  D AX: a. M: a -+ T]~u) .  

Let us now consider the case of typed A-abstraction. We need to show that the family of 
functions cp = (cp,),?, defined such that, 

for every s E T,  satisfies the naturality condition 

for every s E T, whenever v t u, where @ is the function such that 9(s)  = [a]B[X: = s] for every 
s E T. Thus, we need to show that 

However, this follows directly from the induction hypothesis applied to p[X: = s] and I', X: +D M: a, 
which is legitimate, since u H- r[p] obviously implies that u H- (I?, X:  *)[p[X: = s]]. 

Thus, we know that A[I' D AX. M: V X .  a]pu is well defined, and we have 

A[r  D AX. M: VX. a]pu = t a b ~ t : ( ( c p ~ ) ~ ~ , ) ,  

and 
A[I' D AX. M: VX.  a]pv = tabst:((cpw)wtv), 

where @ is the function defined above. Recalling that the naturality condition (4) of definition 4.2 
is 

j"(@) tabstw((cpw)wtw2) = w,,w2(tabstw,((cpw)w~w, )I, 
since by definition 5.1, V(@) = WX. 018, we have 

A[r D AX. M: VX. o]pv = i r : .ole(~[~ D AX. M: VX. olpu). 

Consider the pre-applicative structure C T p  of definition 4.4. Note that, according to definition 
5.4, a valuation is a pair p = (8, q), where B is an infinite type substitution, and q is a partial 
function 7: X x W -P U(Ak)tET, w E ~ .  Thus, recalling that worlds are contexts, vA(x) = I' D M: a 
for some judgement I' D M: a, when defined. Furthermore, the condition for p to satisfy a context 



I' at a world A, is q n ( x )  E AT), that is, 7;)n(x) = A D M,: @(a) ,  for some M,, for every x: u E r. 
Thus, if p = (8,  7 )  satisfies a context I' at A ,  the valuation p defines a substitution cp such that 
p ( X )  = 8 ( X )  for every X E U ( F T V ( U ) ) , : , ~ ~ ,  and cp(x) = Mx for every x E dom(I') (where 
qA(x )  = A D Mx: 8(0) ) ,  and we have A It I '[cp], as in definition 4.3. Then, we have the following 
useful property. 

Lemma 5.7 For the pre-applicative structure L T D  of definition 4.4, for every pair of contexts I' 
and A, for every valuation p = (8, q) ,  if A H- I'[p], then for every judgement I? D M :  a ,  we have 

and A H- I'[cp], where cp is the substitution defined by the restriction of p~ to I?, as explained just 
before stating this lemma. The same result holds for the 07;)-structure C T p ,  of definition 4.8. 

Proof. A straighforward induction on the derivation of I' D M :  a .  

The following lemmas will be needed later. 

Lemma 5.8 Given a type interpwtation T and a Kripke pre-applicative (0 or pq)-structure A, for 
every pair of contexts I'l and r2, for every world u E W ,  for every pair of valuations pl = ( d l ,  q l )  
and p2 = (92, 112)) for every pair of judgements rl D M :  a and r 2 b M :  a ,  if u ti- rl [ p l ]  and u H- r2 [p2] ,  
r l ( x )  = r 2 ( x ) ,  for all x E F V ( M ) ,  O1(X) = B2(X), for all X E U ( F T V ( T ) ) , , , ~ ~  U F T V ( M ) ,  and 
q l ( z )  = q2(x),  for all x E F V ( M ) ,  then 

Proof. A straightforward induction on typing derivations (and using lemma 5.2). 

Lemma 5.9 Given a type interpretation T and a Kripke pre-applicative (0 or 07;))-structure A, 
for every context I', for every world u E W ,  for every pair of valuations pl = (81, 7;)l) and p2 = 
(82, q2), for every judgement I' D M : u ,  if u It r [p l ]  and u It I'[p2], B1(X)  = O2(X),  for all 
x E u ( F T v ( ~ ) ) , : , ~ r  U F T V ( M ) ,  and 7;)1(x) 3 ~ ( x ) ,  for a11 x E F V ( M ) ,  then 

Proof. A straightforward induction on typing derivations. [7 

The following "substitution lemma" is needed to  establish the soundness of Kripke interpreta- 
tions with respect to 0-reduction and typed 0-reduction. 

Lemma 5.10 Given a type interpretation T and a Kripke pre-applicative (j3 or pq)-structure A, 
for every context I', for every world u E W ,  for every valuation p = (8,  7;)), the following properties 
hold: (1) for every judgements I?, x: a D M :  T and I' P N :  a ,  i f  u It I'[p], then 

(2) for every judgement r ,  X :  * D  M :  a and every r E 7, if u I t  I '[p],  then 



Proof. We proceed by induction on typing derivations. 

(1) When M = x, we have x[N/x] = N, and by definition 5.5, 

The induction steps are straightforward, except for A-abstraction and typed A-abstraction. 

( la)  Consider the judgements r, x: U P  Ay: 6. MI: (6 + r) and I'D N: a, and assume that u It r[p]. 
Recall that 

A[r D Ay: 6. (Ml[N/x]): (6 + r)]pu = abstL61'~ 

where cp = (cp,),?, is the family of functions defined such that, 

for every a E A!]'. Since u It r[p] implies w It rip] when u j w, and a E ALa', we have 
w I t  (I', y: S)[p] for every w u. Thus, we can apply the induction hypothesis to (I?, y: 6), w E W, 
p = (8, q[y: = a]), and the judgements I',x:u, y : 6 ~  M1:r, and r, y : 6 ~  N:o, and we have 

By lemma 5.8, since y 4 dom(F), we have 

and so, we have 

that is, 
cpw(a) = A[I',x: a, y:Sb Mi: r]p[x: = A[r D N: o]pw, y: = a]w. 

However, we also have 

A[r, x: a D Xy: 6. MI: (6 -t r)]p[x: = A[r D N: u]pu]u = abstL611B' El8($), 

where $ = ($w)wk,  is the family of functions defined such that, 

for every a E A!]'. However, letting b = A[I' D N: slpu, by definition 5.4, for any valuation p, we 
have p,[x: = b](x) = i:,,(b) for all w k u, and since by lemma 5.6, 

we have 
$,(a) = A[r, x: a, y: 6 D MI: r]p[x: = AEI' D N: u]pw, y: = a]w, 

for every a E A:". Thus, v,(a) = $,(a), for every a E A!" and all w 2 u, that is, c p  = $, and 
thus 

A[r D Xy: 6. (M*[N/x]): (S -, r)]pu = A[)?, x: o D Xy: 6. MI: (6 -, r)]p[s: = d[I' D N: u]pu]u. 



( lb)  Consider the judgements I', x: a D XY. Ml:W. a1 and I' b N: a, and assume that u tt- I?[p]. 
Recall that 

A[r D XY. (Ml[N/x]): W. al]pu = tabstt(cp), 

where cp = (cpw)wk, is the family of functions defined such that, 

for every s E T, and where iP is the function such that @(s) = [ul]8[Y: = s] for every s E T. Since 
u I t  I?[p] implies w H- r[p] when u 5 w, and s E T,  we have w H- (I', Y: *)[PI for every w u. Thus, 
we can apply the induction hypothesis to  (I?, Y: *), w E W, p = (8[Y: = sl, v), the judgements 
l ? , x : a , Y : * ~ M ~ : a ~ ,  and F D  N:o,and we have 

By lemma 5.8, since Y 4 dorn(l?), we have 

and we get 
cpw(s) = A[r,  X: o,Y: * b  MI: ullp[x: = A[I' D N: alpw, Y: = s]w. 

However, we also have 

A[r, x: a b XY. MI: VY. al]p[x: = d[I? D N: alpuju = tabst:($), 

where II, = (lC,w)wk, is the family of functions defined such that, 

for every s E T, and where + is the function such that @(s) = [al]BIY: = s] for every s E T. As in 
case (la),  by lemma 5.6, we get 

for every s E T. Then, as in (la),  we have cp = $, and thus 

A[I' D XY. (Ml[N/x]): VY. ul]pu = A[r,  x: o b XY. Ml:VY. al]p[x: = Air D N :  U]~U]U. 

(2) The only cases worth examining are X-abstraction and typed X-abstraction. 

(2a) Consider the judgement F,X:*D XY. Ml:W. a, and assume that u H- I'[p]. Recall that 

A[I? D XY. (Ml[r/X]): VY. (u[~/X])]pu = tabstt(cp), 

where cp = (cpw),t, is the family of functions defined such that, 



for every s E T, and where @ is the function such that @(s) = [a]B[Y: = s] for every s E T. Since 
u tk r[p] implies w I t  r[p] when u 5 w, and s E T, we have w lk (I' , Y: *) [p] for every w 2 u. Thus, 
we can apply the induction hypothesis to (I',Y:*), w E W, p = (O[Y: = s], q) ,  the judgement 
I ' , x : * , y : * ~ M l : u ,  and s E T, and we have 

d [ r , Y :  *D Ml[r/X]: a[r/X]]p[Y: = s]w = A[r,X:  *,Y: *a MI: a]p[X: = [r]@[Y: = s], Y: = s]w. 

By lemma 5.2, since Y # dom(r), we have 

and so, we have 

that is, 
9 4 s )  = A[r, X: *, Y: * D MI: a ] p [ ~ :  = [TIB, Y: = s]w. 

However, we also have 

where $ = ($w)wk, is the family of functions defined such that, 

for every s E T, and where @ is the function such that @(s) = [a]O[Y: = s] for every s E T. Thus, 
qw(s) = $J,,,(s), for every s E T and all w u, that is, cp = $, and thus 

A[r B AY. (Ml[r/X]):W. (u[~/X])]pu = d[r, X:*b AY. MI: W. a]p[X: = [r]@]u. 

(2b) Consider the judgement r, X: *D Xy: 6. MI: (6 + 7), and assume that u I t  R e c d  that 

A[I' b Xy: d[r/X]. (Ml[r/X]): (6 -+ y)[r/X]]pu = abst~6[T/x]le'[7~Tlxlle(cp), 

where cp = (cp,),?, is the family of functions defined such that, 

Ist./xlle, we for every a E A E ~ ~ ~ ~ ~ ~ ~ .  Since u H- I'M implies u C I'[p] when u j w, and a E A, 
have w H- (I?, y: S[r/X])Lp] for every w k u. Thus, we can apply the induction hypothesis to  
(I?, y: S[r/X]), w E W, p = (8, q[y: = a]), the judgement I', X :  *, y: 6 D M I :  y, and T E 7, and we 
have 

and so, we have 
cpw(a) = A[I', X: *, y: S D MI: y]p[X: = [TI@, y: = a]w. 



However, we also have 

where $ = (+,),+, is the family of functions defined such that, - 

$Jw(a) = A[r, X: *, y: 6 b MI: y]p[X: = [r]8, y: = a]w, 

for every a E A ~ ~ ~ [ ~ : = [ ~ ~ ~ ~ .  By lemma 5.3, we have 

[ & [ ~ / X ] j e =  [6]8[X:= [r]8] and [7[r/X]]e= [-y]e[X:= [r]8], 

[s]e[x:=[~]e] and so we have cpw(a) = $w(a), for every a E Aw and all w t u, that is, (P = $. We also 
have 

abstk~s[x:=[~lelt [71s[x:=[71@l(+) = abst$S[~/Xlle9 [7[7/xll~(v), 

and thus, 

A[r D Xy: S[T/X]. (Ml[r/X]): (6 -, 7)[r/X]]pu = A[I', X: * P Xy: 6. MI: (6 -+ 7)]p[X: = [r]B]u. 

Actually, the following generalization of lemma 5.10 will also be needed. 

Lemma 5.11 Given a type interpretation T and a Kripke pre-applicative ((P or (Pv)-structure A, 
for every pair of contexts I?, A, for every world u E W ,  for every valuation pl = (0, r ) ) ,  the 
following property holds: for every judgement I' D M: 0, for every substitution cp, if A H- I'[(P] and 
u H- A[pl], then 

A[A b M[cp]: a[cp]]plu = A[I' D M: n]pau, 

where, if I' = {XI:*, ..., X,:*, x ~ : u l ,  . . ., x,:~,}, for 15 i 5 m, we let si = Icp(X;)]B, and for 
1 5 j 5 n, we let a j  = A[A b cp(xj): uj[cp]]plu, then 

p2 = pl[Xl:= sl ,..., Xm:= sm,xl:= a l , .  . .,x,:= a,]. 

Proof. It is very similar to that of lemma 5.10, but the notation becomes quite formidable. CI 

We will now consider inequalities on Kripke pre-applicative structures and equations on Kripke 
applicative structures, and prove some soundness and completeness theorems. 

6 Proving Inequalities (Rewrite rules) in X +, x ,+,v2 

In this section, we define a number of proof systems for proving inequalities (rewrite rules) and 
equations. We also define satisfaction and validity (in a Kripke structure). There are three varia- 
tions of satisfaction and validity, depending whether we consider Kripke applicative p-structures, 
Kripke applicative p17-structures, or extensional Kripke applicative p-structures. 

Inequalities and equations are only defined between terms M and N such that I' D M: a and 
I' b N: a for some common I' and a. An inequality is denoted as I' b M -( N: a, and an equation as 
I' b M A N: a, and provability is defined as follows. 



Definition 6.1 The axioms and inference rules of the inequational /?-theory of A'px*+ lv are defined 
below. 

Axioms: 
I' D M 5 M :  a (reflexivity) 

r D M [ T / X ]  5 (AX.  M ) T :  u [ T / X ]  (type-@) 

I' D M P  5 [ M ,  N ] i n l ( P ) :  6 ( i n l )  

I' D N P 5 [ M ,  N] inr (P) :  6 (inr) 

Inference Rules: 
r b M 1  5 M ~ : u  

(addvar) 
A p M l 5  M2:a  

where I' E A 
r b M 1  5 M 2 : a  r b M 2  5 M3:u 

(transitivity) 
r D M l  5 M3:a 

I ' ,X:*bMl 5 M2:a  

I' D AX. MI 5 AX. M2:VX. cr 
( t y p - 0  

r D M 1  5 M z : a  I ' D N ~  5 N2:7 
( x -congruence) 

r D ( M i ,  N i )  5 (M2, N2): 0 x 7 

r b M 1  5 M ~ : U X T  
(?rz-congruence) 

r D ~ 2 ( M l )  5 ~ 2 ( M 2  ): 7- 

r b M l 5  M 2 : ( a + 6 )  I ' P N ~ ~ N ~ : ( T - + ~ )  
(copair-congruence) 

I' D [ M I ,  Nil 5 [M2, N2I: (0 + 7 )  -+ 6 

r b M 1  5 M2:a (id-congruence) 

I' D i n l ( M l )  5 in l (M2) :  a + T 



r b M 1  5 M Z : r  
( inr-congruence) 

I' D i n r ( M l )  5 inr (M2):  a + r 

I'DM1 5 M2:a 
(substitution) 

A D MI [cp]  5 M2[cp]: ~ [ c p ]  

for every substitution cp such that A tk r[cp]. 
The notation I-@ I' D M j N :  a means that the inequality I' D M 5 N :  a is provable from the 

above axioms and inference rules. 

The inequational @q-theory of the system x ' * x * + * ~  is obtained by adding the following 7-like 
rules to the axioms and inference rules of the P-theory: 

where x 6 F V ( M ) ;  
I' D M 5 AX. ( M X ) :  V X .  a (type-7) 

where X 4 F T V ( M ) ;  
I' D M 5 ( lr l (M),  ?rz(M)): a x r (pa i r )  

I' D M 5 [Ax: a. ( M i n l ( x ) ) ,  Xy: r.  (Minr (y ) ) ] :  ( a  + r )  -, 6 (copair)  

The notation I-@, I' D M 5 N :  a means that the inequality r D M 5 N :  a is provable from all 
the axioms and the inference rules of the @q-theory, including the q-like rules. 

The extensional inequational Pq-theory of the system X - " X I + ' ~  is obtained b y  adding the fol- 
lowing inference rules (extensionality rules) to  the axioms and inference rules of the P-theory of 
x--+,x,+,V: 

I ' , x : u D M ~ x  5 M2x:7 
( f  un-extentionality) 

I' b MI 5 M2: ( a  -, r )  

where x 4 F V ( M l )  U FV(M2) ;  

I', X: * D  M I X  5 M 2 X :  a 
(tf un-extentionality) 

I' D Ml 5 M2:VX. a 

where X 4 F T V ( M l )  U FTV(M2);  

I', x: a D M l i n l ( x )  3 M2in l ( x ) :  6 I?, y: r D Ml inr(y)  5 M2inr(y):  6 
( in l ,  inr-extentionality) 

I ' D  MI 5 M2: ( a  t T )  --t 6 

where x ,  y 6 F V ( M l )  U FV(M2) .  

The notation Fep, I? D M 3 N :  a means that the inequality I' D M 5 N :  a is provable from all 
the axioms and the inference rules of the extensional @-theory, including the extensionality rules. 



By rule (addvar), if I-p I' D M -( N :  a ,  then I-p A P M  5 N :  a ,  for any A such that I' C A, and 
similarly for I-p, and Actually, this rule is only needed when we consider deductions from 
nonempty sets of inequalities other than the axioms. Otherwise, due to  the form of the axioms, by 
induction on the structure of proofs, it is easily shown that rule (addvar) is a derived rule. 

The following lemma shows the relationship between the q-like rules and the extensionality 
rules. Given an inequality I' P M  5 N :  a ,  its converse is the inequality I' D N  -( M :  a .  

Lemma 6.2 In the expq-theory, the q-like rules are provable from the extensionality rules. If we 
add the converse of each q-like rule to the pq-theory, then the extensionality rules are provable. 

Proof. First, we prove that in the expq-theory, the q-like rules are provable from the exten- 
sionality rules. 

If x  4 F V ( M ) ,  observe that 

is a consequence of axiom ( P ) ,  since ( M x ) [ x / x ]  = M s .  Thus, by the first extensionality rule, we 
have 

I' D M  5 Ax: a. ( M x ) :  ( a  -+ T )  

where x  4 F V ( M ) .  We prove in a similar fashion that 

where X 4 F T V ( M ) .  Proving 

is easy, and we prove that 

I' D M  3 [Ax: a. ( M i n l ( x ) ) ,  Xy: T .  ( M i n r ( y ) ) ] :  ( a  + T )  -+ 6. 

Assume that x  4 F V ( M )  and y  4 F V ( M ) .  Then, by axioms (P),  ( i n l ) ,  and (inr), we have 

M i n l ( x )  -( (Ax: a. ( M i n l ( x ) ) ) x  -( [Ax: a. ( M i n l ( x ) ) ,  Ay: r. ( M i n r ( y ) ) ] i n l ( x ) ,  

and 
M i n r ( y )  3 (Xy: T. ( M i n r ( y ) ) ) y  3 [Ax: a. ( M i n l ( x ) ) ,  Xy: T .  (Minr (y ) ) ] in r (y ) .  

We conclude using the last extensionality rule. 

Conversely, we prove that from the q-like rules and their converse, we obtain the extensionality 
rules. We consider the first rule, the others being similar. 

Assume that I-pq I', x: a  D Mlx  5 M2x: T ,  where x  4 F V ( M l )  U FV(M2) .  Then, by (0, we get 

I-p, I' D Ax: a. (Mix) 5 Xz: a. (M2x):  ( a  -f 7). 

Since x  4 F V ( M l )  U FV(M2) ,  using (q ) ,  we get 



and using the converse of (q), we get 

and by transitivity (twice), we have 

The following lemma shows the relationship between the ([)- rule, the (substitution)-rule, and 
the converse of the (p)-axioms. If I' = {XI : *, . . . , X,: *, XI: 01, . . . , x,: a,), given an inequality 
I' b M 5 N:a,  we let 

D AX1.. . AX,. Axl: 01 . . .AX,: a,. M 5 AX1.. .AX,. Axl: 01.. .AX,: a,. N :  6, 

where 6 = VXl . . .VXm. (al + (. . .(on + a ) .  . .)), be the closure of I' D M 5 N: a, and we denote 
- _ t  it as D X ? . A T : ~ . M  j AZ.A?:b. N:VX. a .  

Lemma 6.3 If we add the converse of the P-rule and the converse of the (type-@-rule to the ,f3- 
theory, then the following properties hold: (1) the substitution-rule is provable; (2) an inequality 

D M j N: a is P-provable ifl its closure is p-provable. 

Proof. (1) Let cp be a substitution such that A H- I'[cp], and assume that I-p I' D MI 5 M2: a. 
By applications of the (t)-rule and the (type-[)-rule, we get 

Fa D A?. AZ: 7'. Ml j A?. A T ' :  2. M~:v?. d. 

Thus, by a previous remark, we also have 

ko A D A?. A T ' :  d. MI 5 A?. A t :  d .  M~:v?. d. 

We can make sure that Xi 4 U(FVT('fJ(Xk)))l<k<m, and that X j  4 U ( F V ( c p ( x r ) ) ) ~ ~ r ~ ~ ,  using 
a-conversion, and since A H- I'[cp], by applications-of the (congruence)-rules for -+ and V, we get 

__)d -__$ 

k, A D ((A?. A?: 2. Ml)p(X;))~(xj) 2 ((A?. A 2 :  7'- M ~ ) ~ ( X , ) ) P ( X ~ ) :  U[P]. 

Then, by applications of the ( P ,  type-P)-rules and their converse, and using transitivity, we get 

(2) By applications of the ([)-rule and the (type-[)-rule, if I-p I' D MI 3 M2: a, then 

Conversely, if 
+ +  - + k p D ~ ? . ~ t : d . ~ l  ~ X ~ . X X :  o .M2:VX. o ,  



then 
to I' D h z .  X g :  d. MI 5 AT. X f :  d. M ~ : v ? .  d, 

and by choosing cp to be the identity substitution on I', by the previous argument, we have 

since MI [cp] = MI, NI [cp] = Nl, and ~ [ p ]  = a. 

We now define provability from a set of inequalities, and the the notions of satisfaction and 
validity. Let C be a set of inequalities (of the form I' D M 5 N: a). 

Definition 6.4 An inequality I' P M 5 N:a is @-provable from a set 8 of inequalities, denoted 
as & I-p I' D M 5 N:a,  iff I' D M 5 N: a is ,f3-provable from the system obtained by adding all 
inequalities in f to  the axioms of the system of definition 6.1. Note that when & = 0, this notion 
coincides with tp I' D M 5 N: a. An inequality I' D M 5 N: a is pq-provable from a set C of 
inequalities, denoted as & kp, I' D M 5 N: a, iff I' D M 5 N: a is @q-provable from the system 
obtained by adding all inequalities in C to the axioms of the Pq-system of definition 6.1, and 
I I -  I '  M 5 N: a is defined similarly for the expq-theory. Note that when C = 0, these notions 
coincides with I-p, I' D M -( N: a and I-,,p, I' D M 5 N: a, respectively. 

We also define the notion of satisfaction and validity. 

Definition 6.5 Given a type interpretation T and a Kripke pre-applicative @-structure A, for 
every I?, for every world u E W, for every valuation p = (8 ,  q), we have the following definitions: 

(1) For every inequality I'D M 1: N: a, we say that I' P M 5 N: a holds at u and p in A, denoted 
as A, zc kp (I' D M  5 N: a)[p], iff whenever u H- I'[p], then 

(2) A satisfies I'D M 5 N: a, denoted as A Itp I 'b  M 5 N: a, iff A, u tkp ( X '  D M 5 N: a)[p] for 
every world u and every valuation p for A. 

(3) Given a set C of inequalities, A satisfies C, denoted as A I t p  C, iff A Itp I' b M 5 N: a for 
all I'D M 5 N: a E C; We say that I' P M -( N: a is a semantic consequence of C, denoted as 
I Itp I' D M 5 N: a, iff A Itp I' b M 5 N: a whenever A k p  C, for every Kripke @-structure 
A. 

(4) Wesaythat I 'DM 5 N : a  is ualid,denotedaskpI'bM 3 N : a , i f f A H - ~ I ' D M  Ii_ N:afor  
every A. 

The above notions are defined in a similar fashion for Kripke ,077-structures and extensional 
Kripke @q-structures, in which case we use I t p ,  and H-,,p, instead of tkp. 



7 Soundness and Completeness Results for Rewrite rules 

In this section, we prove some soundness and completeness results. Soundness is shown in lemma 
7.1. Lemma 7.2 shows the existence of a Kripke model associated with a set of inequalities (rewrite 
rules). Extended compeletenes is shown in theorem 7.3. We also consider completeness with 
respect to  Kripke structures with nonempty carriers. By adding the rule (nonempty), we obtain 
completeness (theorem 7.7). 

First, we show a soundness lemma. 

Lemma 7.1 For any set I of inequalities, for every inequality I' D M < N: a, the following prop- 
erties hold: (1) if & I' D M < N: a, then & Itp I' D M < N: a; (2) if £ I-p, I' D M 3 N: a, then 
& k p , ~ ~ M ~ N : a ; ( 3 ) i f & k , , ~ , ~ ~ M ~ N : a , t h e n f k , , ~ , I ' ~ M - ( N : u .  

Proof. (1) We proceed by induction on the structure of the proof £ k p  I' D M 5 N: a. 

Axiom (P ) .  Assume that u ti- r[p]. Recall from definition 4.1 that app is defined from fun as 
app = evalASiAt o (fun x idA.), and from definition 3.6, that e ~ a l ~ " ~ ~ ' ( ( c p , ) , ~ ~ ,  a) = cpu(a), for 
any cp = (cp,),?, E [Aa + AtIu and any a E A:. Also, recall from condition (1) of definition 4.1 
that we have, fq,(abstU(cp)) ku cp, for every cp E [Aa j AtIU. Thus, we have 

that is, app,(abst,(cp), a) hu cp,(a). From definition 5.5, we have 

and 
A[I' D Ax: u. M: a -* rlpu = abs t t l e1  [+IB(97), 

where cp = (cp,),?, is the family of functions defined such that, 

for every a E AE]'. Then, 

A[I' D (Ax: a. M)N: ~ ] p u  = appfple* [r]e(~[I' D Ax: a. M: a + rlpu, A[r D N: alpu), 

and letting a = A[I' D N: o]pu, by the definition of A[I' b Ax: a. M: a + r]pu and the fact that 
app,(abstu(cp), a)  ?u cpu(a), we have 

with a = A[I' D N: a]pu. However, by lemma 5.10, we have 

and thus, 
A[I' D (Ax: a. M)N: r]pu A[r D M[N/x]: rlpu. 



Axiom (type-/?). Recall from definition 4.1 that tapp is defined from t f u n  as tapp = eval; o 

( tfun x idT), and from definition 3.10, that eva l~ ,u ( (cpw)w~u,  s) = cpu(s), for any cp = ((P,),~, E 
n G ( A t ) , E ~  and any s E T. Also, recall from condition (2) of definition 4.1 that we have, 
tf&(tabst,(cp)) kucp, for every cp E no(At)sET. Thus, we have 

that is, tappu(tabstu(cp), s) ku cpu(s). From definition 5.5, we have 

and 
A[r P AX. M: VX. olpu = tabst:(cp), 

where cp = (cp,),+, - is the family of functions defined such that, 

for every s E T, and where 9 is the function such that @(s) = [a]O[X: = s] for every s E T. Then, 

A[I' D (AX. M)T: u[T/X]]~U = tapPf(A[I' D AX. M: VX. u ] ~ u ,  [TIO), 

and letting s = [r]O, by the definition of A[r P AX. M: VX. a]pu and since tapp,(tabst,(cp), s )  2, 
(P,(S), we have 

A[I' D (AX. M)T: a[r/X]]pu t All?, X: *D M: a]p[X: = s]u, 

where s = [TI@. However, by lemma 5.10, we have 

and thus 
A[r D (AX. M)r: a[r/X]]pu A[r M[r/X]: a[r/X]]pu. 

The other axioms are treated easily, and so are the inference rules. As an illustration, we treat 
the rule ( 5 )  and the (substitution) rule. 

Rule (0. Assume that tp I?, x: a D Ml 5 M2: T. By the rule (0, we have 

Fp  I' D Ax: a. MI 5 Ax: a. M2: ( a  -, 7). 

By the induction hypothesis, we have 

which means that 
A, w kp  ( r ,  2: a D M~ 3 M ~ :  T)[P~I  

for every world w E W and every valuation pl .  We need to  show that 

A kp  I? D Ax: a. MI 5 Ax: a. M2: ( a  4 T) 

for every Kripke pre-applicative @-structure A. 



Let A be any Kripke pre-applicative P-structure, u E W any world, and p2 any valuation, and 
assume that u b I'[p2]. By definition 5.5, we have 

A[r D Ax: u. MI: a + r]p2u = abs t t le*  [r]e(cp), 

where cp = (cp,),>, is the family of functions defined such that, 

for every a E Akle, and similarly 

where 
$,(a) = A[r,z: a D M2: r]p2[x: = a]w, 

for every a E ~ k " .  Since u b I'[p2], for every a E AkIe, and every w t u, we have w tl- 
(I', x: 6)[p2[X: = a]], and since 

for every w E W and every valuation pl, by definition 6.5, we have 

Since this holds for every o E AE", we have rp, j $, for all w t u, and thus p j $, that is, 

A[r D AX: a. MI: a 4 rlppu j A[r D Ax: a. Mp: a -+ ~ 1 ~ 2 %  

This shows that 
A, u b p  (I' D AX: a. MI j AX: a. M2: ( a  4 r))[p2], 

for every u E W and every valuation pp. Thus, we just showed that 

A kp I' D Ax: a. MI 3 Ax: a. M2: (a -+ T) 

for every Kripke pre-applicative p-structure A, as desired. 

Rule (substitution). Let cp be a substitution such that A b r[(p], and assume that I-p J? B Ml 5 
Mp: a. By the induction hypothesis, 

for every Kripke pre-applicative p-structure A. We need to prove that 

for every Kripke pre-applicative &structure A. 

Let I' = {Xi: *, . . . , X,: *, xi: 01, . . . , 2,: an}, and let A be any Kripke pre-applicative P- 
structure, u E W any world, pl any valuation, and assume that u tt- A[pl]. By lemma 5.11, we 
have 

A[A D M[cp]: a[cp]]plu = A[I' D M: a]ppu, 



where s; = [cp(X;)]B, for 1 5 i 5 m, a j  = A[A D cp(xj): aj[cp]]plu7 for 1 5 j 5 n, and 

p2 = pl[X1: = sl,.. .,Xm: = s,, XI: = al ,  . . . ,x,: = a,]. 

Note that u It- I'[p2], and since we assumed that A H-p I' D Ml 5 M2: a holds, we have A, u I t p  
(I' D MI 5 M2: a)[p2], which means that 

A[r D Mi: u]pzu 5 A[I' D MI: a]p2u, 

which, in view of previous identities, is equivalent to 

that is 

4 4 7  u K-p (A D Ml[cp1 i Mz[cpl: o[cpl)[~ll. 

The above holds for all u E W and all pl, and thus 

for every Kripke pre-applicative p-structure A, as desired. 

(2) We proceed by induction on the structure of the proof & I-@, I' D M 3 N: a. The only new 
cases are the qlike axioms. 

Axiom ( r ) ) .  Assume that u It I'[p]. As in the case of axiom ( P ) ,  we have app = e~a l" '*"~  o 

(fun X idas) and eval~'~At((cpw)wku,a) = cp,(a), for any cp = (pw)wk, E [AS + At], and any 
a E A:. For any f E if fun,(f) = (cpw)wtu, for every a E A;, we have 

This shows that ( f ~ ( f ) ) ,  = cpw is the function such that (fun,(f)),(a) = appw(it",t(f), a) ,  for 
every a E A&. By definition 5.5, we have 

A[I' P Ax: a. (Mx): a -+ T ] ~ U  = abstFlB' 

where cp = (cp,),?, is the family of functions defined such that, 

cpw(a) = d[r, x: a D Mx: r]p[x: = a]w, 

for every a E A ~ I ' .  Again, by definition 5.5, we have 

A[r, x: a D Mx: T]PW = a P P ~ I B '  [TIB(d[I', x: a D M: a + T]pW, AI[I', x: a D X: a]pw), 

and since A[I', x: a D x: a]p[x: = a]w = a, we have 

A[r, x: a D Mx: r]p[x: = a]w = app(A[r, x: a D M: a + rlp[x: = a]w, a). 

Since x $! FV(M), by lemma 5.8, we have A[r, x: a D M: a -+ ~]p[x:  = a]w = A[r D M: a + rlpw, 
and so 

A[r, x: a D Mx: TIP[%: = a]w = app(A[I' D M: a -+ ~ ] p w ,  a), 



for every a E A ~ I ' .  Since (f m( f)),(a) = appw(i:zt( f), a), for every a E A:, letting 

f = A[rDM:a + r]pu, 

since by lemma 5.6, A[I' D M: a -r r]pw = ~ ~ Z ~ ] ' ( A [ I '  D M: a -+ rlpu), the above shows that 
fun(A[I' D M: a -, r]pu) is the family of functions cp = (cp,),?, defined such that, 

cpw(a) = A[r, x: a D Mx: r]p[x: = a]w,  

for every a E A ~ I ' .  However, by condition (1) of definition 4.6, we have, abst,(funu(f)) ku f ,  for 
every f E and since 

abst,(f=(A[r D M: a -+ rppu)) = abst,(cp) = A[I' D Ax: o. (Mx): a -t ~ ] p u ,  

we have 
A i r  D M: a --+ T I ~ U  5 ~ [ r  D AX: a. (MX): a -+ T B ~ U ,  

which shows that A, u Itp, (I' D M 5 Ax: a. (Mx): a -+ r)[p], as desired. 

The other 7-like rules are treated in a similar fashion. 

(3) We only have to consider the extensional rules. Consider the rule 

~ , x : u D M ~ x  5 M2x:r 
(f un-extentionality) 

I'D MI 5 M2:(o + T) 

where x # FV(Ml) U FV(M2). By the induction hypothesis, we have 

Thus, for every extensional Kripke pre-applicative /3~-structure A, every w E W, and every valua- 
tion pl, if w It (I?, x: a)[pl], then 

A[r, x: a D M1x: T ] ~ ~ w  5 All?, x: a D M2x: r]plw. 

Consider any u E W and any valuation p such that u lt I'[p]. The proof for the soundness of the 
axiom ( q )  showed that fun(A[r D M: a + r]pu) is the family of functions cp = (cpw)wku defined 
such that, 

cp,(a) = Ail?, x: a D Mx: r]p[x: = a]w, 

for every a E A!'?'. Thus, letting pl = p[x: = a], for any w 2 u, we have w t (I?, x: a)[pl], and so 

A[r, x: a D Mlx: r]p[x: = a]w 3 A[I', x: a D M2x: r]p[x: = a ] ~ ,  

which shows that 

Since A is extensional, fun is isotone, and then 

A[r D MI: a + r]pu 5 A[r D Mz:  a + rlpu, 

which shows that A, u It-,,p, (I? D MI 3 M2: a -+ ~) [p ] ,  for every u E W and every p, as desired. 

The proofs for the other extentionality rules are similar. 

Next, we turn to completeness results. 



Lemma 7 . 2  For any set & of inequalities, the following properties hold: (1) There is a Kripke 
pw-applicative p-structure A, such that for e v e y  inequality I' D M 5 N:a,  & tp I' D M 5 N: a 
ifl A Itp I' D M 3 N: a; (2) There is a Kripke pw-applicative pq-structure A, such that for 
every inequality I' D M N:a,  & I-p, I' D M 5 N:a  ifl  A kp, I' D M 5 N:a; (3) There is an 
extensional Kripke pre-applicatiue P-structure A, such that for every inequality I' D M 5 N: a, 
& I ' D  M 5 N:a  i f l d  keXp, r D  M 5 N:o. 

Proof. ( 1 )  We modify the construction of definition 4.4. Rather that defining A6 as the set of 
all provable typing judgements I' D M: a, we define A; as the set of equivalence classes [I' D M: a] 
of the equivalence relation . g  induced by the precongruence 58 defined such that 

~ D M : u ~ E I ' D N : u  iff & k p I ' a M 5  N:a, 

The congruence rules of definition 6.1 ensure that fun, abet, t fun,  t abs t ,  II, (-, -), in l ,  
inr, and [-, -1, are well-defined. Rule (addvar) is used to show that if [I' P M: a] E A;, when 
I ' ~ M ~ N : a ~ f , t h e n [ A ~ M : a ] ~ A ~ , f o r a n y A s u c h t h a t I ' ~ A .  

Recall that, according to definition 5.4, a valuation is a pair p = (8, q), where B is an infinite 
type substitution, and q is a partial function q: X x W + U(Al)tET, w , = ~ .  Thus, recalling that 
worlds are contexts, qA(x) = [I' D M: a] for some judgement I' D M: a, when defined. Furthermore, 
the condition for p to  satisfy a context I' at a world A (since worlds are contexts), is qA(x) E AT), 
that is, qA(x) = [A D M,: @(a)], for some M,, for every x: a E I'. Thus, if p = (8, 7) satisfies 
a context I' at A, the valuation p defines a substitution cp such that cp(X) = @(X) for every 
X E U ( F T V ( T ) ) , , , ~ ~ ,  and cp(x) = M, for every x E dom(I') (where qA(x) = [A D M,: 8(a)]), and 
we have A H- I'[cp], as defined just before definition 4.4. Note that such a substitution c p  depends on 
the selection of representatives chosen from the classes [A b M,: @(a)], but as we will see, this does 
not matter. Then, the following property can be shown by induction on the derivation of typing 
judgements. 

Claim: For the pre-applicative structure A just defined, for every pair of contexts I' and A, for 
every valuation p = (8, q ) ,  if A H- I'[p], then for every judgement I? D M: a, we have A It- I'[cp] and 

where cp is the substitution defined by the restriction of p~ to I?, as explained above. 

One also verifies easily that if cpl and cpz are two substitutions constructed by selecting repre- 
sentatives chosen from the classes [A D M,: 8(0)], as explained above, then 

To prove that A Itp I' D M 5 N: a implies & I' D M -( N: a, we choose a particular valuation 
p = (0, 7) as follows: 9 is the identity, and q is defined such that, for every I' and A such that 
I' E A, for every x E X, 

tlr(x) = { [A D x: a] 
if x: a E r, 

undefined otherwise. 



Then, the substitution cp associated with p is the identity, and by the above claim, we have 

A[I' D M :  a ] p A  = [A D M :  a ] ,  

and 
A[I' D N :  a ] p A  = [A b N :  a] .  

I f  A I t p  I 'D  M 5 N :  a ,  since by definition of p, I' It r [p] ,  we have 

and by the definition of SE, we have & I-, I' D M 5 N :  a.  

Assume that & tp  I' D M 5 N :  a.  Consider any A and any p such that A It I'[p]. Then, by the 
claim, we have A It I'[cp], 

A[I' D M :  o]pA = [A  P M[cp]: ~ [ c p ] ] ,  

and 
A[I' D N :  a ] p A  = [A D N[cp]: a [q]] ,  

where cp is the substitution defined by the restriction of pd to I', as explained earlier. Since we 
have A H- I'[cp], by the (substitution) rule, we get 

which, by the definition of 58, means that 

that is, A[I' D M :  a ] p A  58 A[I' D N :  a ] p A ,  which shows that A, A tkp (I' D M 5 N :  a)[p].  Since 
this holds for all A and p, we have A Ito I' D M 5 N :  a.  

( 2 )  The proof is similar to that of (I), except that we define j& such that 

T D M : U ~ & ~ D N : U  i f f  & t - p , r ~ M j N : a .  

The argument showing that the resulting Kripke pre-applicative structure is a pv-structure is 
identical to  the argument given just after definition 4.8. 

(3) The proof is similar to  that of (2) ,  except that we define such that 

I ' D M : U ~ + I ' ~ N : U  iff & l - , , p , I ' ~ M 5 N : a .  

We also need to verify that the resulting Kripke pre-applicative structure is extensional, that is, 
that the functions fun, t f  un, T I ,  and ( c i n l ,  c inr ) ,  are isotone. 

Assume that 
f-([I' b MI:  u + T]) d E  funr@ D M2: u -+ TI). 

Since f unr([I' D MI : a -t T I )  is the family of functions ([I' D MI :  a + T ] ~ ) ~ ~ ~ ,  - such that 



for every [A D N1: a] E A%, and similarly for funr([r b M2: a -t TI), letting A = I',x: a, where 
x 4 FV(Ml) U FV(M2), we have 

[r D MI : a -+ ~ ] r , ~ : ~  5~ [I' D M2: a -+ T]~ , , :~ ,  

and thus, in particular, 
[r, 5: a D M ~ X :  TI 5~ [r, 3: D M ~ X :  TI. 

This means that & I-,,p, I', x: a D M1x 5 M2x: r, and since x 4 FV(Ml) U FV(M2), by the first 
extensionality rule, we get & t-,,p, I'D MI 5 M2: a + T. Then, [I'D MI: a -+ r ]  E [I'D M2: a -t r], 
showing that fun is isotone. The proofs for the other cases are similar. 

As a corollary of lemma 7.2 and lemma 7.1, we obtain the following soundness and completeness 
theorem. 

Theorem 7.3 For any set & of inequalities, the following properties hold: (1) & Itp I' D M 5 N: a 
ifl& I-p I'DM 5 N: a; (2) & Itp, I'DM 5 N: a iff& I-p, I'DM 5 N: a; and (3) & Itexp, I'oM 5 N:  a 
i#E I-,,p, r D M 5 N:a.  

Proof. (1) The direction (+) is just lemma 7.1. Conversely, & Itp I' D M 5 N: a means that 
A Itp I' D M 5 N: a whenever A Itp I ,  for every Kripke /?-structure A. By lemma 7.2, for any 
&, there is some Kripke pre-applicative structure A such that for every inequality I' D M 5 N: a, 
& I-p I' D M 5 N: a iff A Itp I' D M 5 N: a. Then, in particular, we have A Itp rl b MI 5 Nl: a1 
for every I'l D MI 5 Nl: a1 E &, which implies that A Itp I .  Then, we have A Itp I' D M 5 N: a, 
which implies that & I-p I' D M 3 N: a, by the definition of A. Cases (2) and (3) are similar. 

Another interesting corollary of lemma 7.2 which shows the correspondence between provability 
and inhabitation, is the following lemma, which generalizes a result of Mitchell and Moggi [12]. 

Lemma 7.4 Given a signature C and a set & of inequalities over C, there is a Kripke pre- 
applicative /?-structure A such that A Itp & and the following property holds: Ab, is nonempty 
for every w E W ifl the type a, when viewed as a second-order proposition, is intuitionistically 
provable fmm the types of constants in C. The same result holds for a /?q-structure when A Itp, &, 
and for an ex/?q-structure when A Itezp,, & 

The special case where we consider soundness and completeness with respect to  Kripke struc- 
tures where A& # 0 for all s E T and all worlds w E W, is of particular interest. First, observe 
that the proof system of definition 6.1 is incomplete in this case. Consider the set of inequalities 

where f :  ( a  -, r ) ,  T, F: r, and a # T. Clearly, we can prove x: a D T 5 F: T from &. However, in 
Kripke structures with nonempty carriers, D T 5 F: T is valid, whereas we have no way of proving 
it. However, if we had a constant c: a, then by the (substitution)-rule, we would be able to prove 
b T 5  F : r .  

The above discussion suggests adding a new rule to the system of definition 6.1. 



Definition 7.5 The rule (nonempty) is defined as follows. 

r , x : a ~ M ~  5 M2:o 
(nonempty ) 

I ' D M ~  5 M2:a 

provided that x # FV(Ml) U FV(M2). 

The notation & kp+ I' b M 5 N: a means that I'D M 5 N: a is provable from E using the axioms 
and rules of the inequational P-theory of definition 6.1, plus the rule (nonempty), and similarly for 
& Fp,+ I' D M 5 N: a and E I-,,p,+ I' D M 5 N: a. The notation E H-p+ I' D M 5 N: a means 
that E kp I' D M 5 N: a in all Kripke pre-applicative p-structures with all carriers nonempty, and 
similarly for £ I tp,+ I' D M 3 N: a and £ H-,,p,+ I' D M 5 N: a. 

It is easily verified that the rule (nonempty) is sound with respect to Kripke structures with 
nonempty carriers. Completeness also holds. Unfortunately, lemma 7.2 does not immediately yield 
this result, because some of the carriers of the Kripke structure used in the proof of that lemma 
may be empty. There is an easy way around, which consists in adding new constants, as we now 
explain. 

Let us expand our signature C by adding new constants c, such that Type(c,) = a, for every 
closed type a E 7. If the original signature is C, the new signature is denoted as C,. Then we have 
the following lemma. 

Lemma 7.6 Given any set £ of inequalities and any inequality I' D M N: cr over the original 
signature C, if E I-p I' P M 5 N: a using any terms over the ezpanded signatuw C,, then there is 
some A such that dom(A) n dom(I') = 0, and & F p  I' U A P M 5 N: a, using only terms over the 
original signature C. The same result holds for I-p, and F,,p,. 

Pmf. We proceed by induction on the structure of proofs. The only interesting cases are the 
axioms and the (substitution) rule. The idea is the following: whenever a term N containing new 
constants is used, we replace every new constant c, in N by a new variable x, and we add x: a to 
the context. This way, every term N involving new constants is replaced by a term N' over the 
original signature C. For example, if we are dealing with the axiom I' D M[N/x] 5 (Ax: a. M)N: r, 
letting I" be the declaration of all the new variables needed to eliminate new constants from M and 
N,  we obtain the new axiom I ' U  F'D Mf[N'/x] (Ax: a. M')Nf: r. In the case of the (substitution) 
rule, 

where cp is a substitution such that A H- I'[cp], let A' be the set of declarations needed to convert 
every term p(x) to a term cpl(x) over the signature C, for every x E dom(I'). Then, it is immediate 
that A u A' H- I'[cpf], and we have I-p A U A' D MI [cp'] 5 M2[cp1]: a[cpq. 

Since a proof is finite, and we have infinitely many variables, we can always use fresh variables 
that do not clash with the variables occurring in the original proof. 

We can now prove the following soundness and completeness theorem. 



Theorem 7.7 For any set & of inequalities, the following properties hold: ( I )  & kp+ I'b M 5 N :  a 
i f l &  r~ M 5 N:u;  (2) & kp,+ I ' b M  5 N : a  i f f &  For)+ I ' D  M 5 N : a ;  and (3) & Itezp,+ 
I ' D M ~ N : U ~ ~ ~ & I - ~ , ~ , + I ' D M ~ N : ~ .  

Proof. (1 )  We go back to the proof of lemma 7.2. Given the set & over the signature C, we define 
the structure A, but this time, over the expanded signature C,. Thus, A; is the set of equivalence 
classes [I 'D M :  a ]  of the equivalence relation =& induced by the precongruence 5 ~ ,  where the terms 
M are over the expanded signature C,. For every type a ,  if F V T ( o )  = {XI , .  . . ,X , ) ,  letting 

A 5 = VXl . . .VXm. a be the closure of a ,  there is a new constant c; such that Type(c;) = a ,  and so, 
we have X I :  *, . . . , X,: b c;X1 . . . X,: a, which shows that every carrier is nonempty. The rest of 
the proof is unchanged. Thus, we have constructed a Kripke structure with nonempty carriers such 
that, & tp I' D M 5 N :  a using any terms over the expanded signature C, iff A kp+ I' b M 3 N :  a .  
Using the reasoning of theorem 7.3, if & I t p +  I' D M 5 N :  a, then & I-p r D M 5 N :  a ,  using any 
terms over the expanded signature C,. 

Now, given any set I of inequalities and any inequality r D M 5 N :  a over the original signature 
C, we observe that if & F p  I' b M -( N :  a using any terms over the expanded signature C,, then 
& Fp+ I 'D M 5 N :  a.  Indeed, by lemma 7.6, we have & I-p I' U AD M 5 N :  a, using only terms over 
the original signature C, for some A such that dom(A) n d o m ( r )  = 0, and we eliminate all variables 
in A using the rule (nonempty). This shows the compeleteness part of (1). The soundness part is 
trivial. The proof for (2 )  and (3) is similar. 

We now consider equations. 

8 Proving Equations 

In this section, we adapt the results of section 7 to equations. Some simplifications take place. 

Formally, an equation r b M N :  a is equivalent to the pair of inequalities I' b M 5 N :  a and 
I' D N 3 M :  a ,  which amounts to adding the (symmetry) rule 

r D M 1  -( M2:a 
(symmetry) 

r D M 2  5 M1:d 

to the rules of the system of definition 6.1. 

In view of lemma 6.2 and lemma 6.3, the (substitution) rule becomes redundant, and the Pq- 
theory is equivalent to the ezpq-theory. Some of the other congruence rules also become redundant, 
for example for nl, ~ 2 ,  i n l ,  inr ,  (-, -) and [-, -1. For example, from Fp  I'P Ax: a. Xy: T. (x, y) f 
Ax: a. Xy: T.  ( x ,  y): a x T ,  t-p I' D MI G Nl: a ,  and I-p I' D M2 N2: T, we can show that F p  
I'b(M1, Nl) A ( M z ,  N2):  a x  r ,  using (-+congruence) and ( P ) .  The resulting simplified equational 
proof system is given next. 

Definition 8.1 The axioms and inference rules of the equational P-theory of X ' y x ~ + j P  are defined 
below. 

Axioms: 
I' D M G M :  a (reflexivity) 



Inference Rules : 

where I' E A 

I' D M[N/x] A (Ax: a. M)N: T (P) 
I' D M[r/X] (AX. M)T: a[r/X] (type4) 

I' D M 5 nl((M, N)): u (A*) 

r D N A r2((M, N)): T (1~2) 

I' D M P A [M, N]inl(P): 6 (inl) 

I' D N P [M, N]inr(P): 6 (inr) 

I ' D M ~  = M2:a 
(addvar) 

A D M ~ G M ~ : ~  

rDMl 2 M2:a I'pM2 M3:a 
(transitivity) 

I?bMl A M3:a 

I',X:*D MI M2:a 

r D AX. MI G AX. M2: VX. a (type-0 

The notation bp I' D M + N: a means that the equation I' D M + N: a is provable from the 
above axioms and inference rules. 

The equational extensional Pq-theory of the system A'iX7+~v2 is obtained by adding the following 
q-like rules to the axioms and inference rules of the P-theory: 

where x 4 FV(M); 
r b M G AX. (MX): VX. (type-q) 

where X $ FTV(M); 
I' D M (nl(M), n2(M)): a x T (pair) 

I' D M [Ax: a. (Minl(x)), Xy: T. (Minr(y))]: (a + T) -t 6 (copair) 

The notation Fp, I' D M I N: a means that the equation I' b M & N: a is provable from all the 
axioms and the inference rules of the Pq-theory, including the q-like rules. 



Definition 6.4 can be restated for equations rather than inequalities, using the proof system of 
definition 8.1. Similarly, definition 6.5 can be restated for equations, but (1) has to be redefined in 
terms of =, instead of 3: 

(1) For every equation I? D M  N :  u,'we say that r D M  N :  a holds at u and p in A, denoted 
as A, u k p  (I' b M  I N :  a ) [ p ] ,  iff whenever u It r[p], then 

We have the following soundness and completeness theorem. 

Theorem 8.2 For any set E of equations, the following properties hold: (1) E I t p  I? D M  A N :  a 
i f l E b p I ' b M & N : a ;  ( 2 ) E k p , r ~ M G N : a  i f l E k p , r D M G  N : a .  

Proof. (1) We consider the set E' of inequalities obtained from I by adding the converse of 
every axiom and the converse of every equation in E. It easily verified that E  I-p I' D M A N :  a iff 
£' I-p I' b M  5 N :  a and 8' I-p I' D N  .i M: a.  Then, we apply theorem 7.7. The proof for (2) is 
similar. 

The equational version of rule (nonempty) is shown below: 

I ' , x : a a M 1  M 2 : u  
(nonempty ) 

r b M l  2 M 2 : a  

provided that z 4 FV(Ml) U FV(M2). Then, we also have the following equational version of 
theorem 7.7. 

Theorem 8.3 For any set C  of equations, the following properties hold: (1) E Ito+ I' D M 2 N :  a  
i # E k p + r b M ~ N : a ; ( 2 ) & k p , + r b M ~ N : a i f l ~ k p , + r b M ~ N : a .  

Proof. Immediate from theorem 7.7, in view of the proof of theorem 8.2. 

9 Conclusion and Suggestions for Further Research 

A new class of Kripke structures for the second-order A-calculus was defined, and the soundness 
and completeness of some proof systems for proving inequalities (rewrite rules) or equations was 
investigated. The Kripke structures considered in this paper form a more general class of structures 
than the applicative structures introduced by Mitchell and Moggi, since they are equipped with 
preorders that correspond to an abstract form of reduction, and they are not necessarily extensional. 
This approach allows us to consider models of sets of rewrite rules, as well as sets of equations. We 
obtained soundness and completeness theorems that generalize some results of Mitchell and Moggi 
to the second-order A-calculus, and to sets of inequalities (rewrite rules). 

Since this paper is already quite long, we have not considered Kripke second-order logical 
relations and their applications, which have been considered by Mitchell and Moggi [12] in the 
first-order case. We are confident that some of the basic results will go through, for example the 
construction of quotient structures, but the well-known problem of finding useful ways of construct- 
ing second-order logical relations remains. We also believe that it would be worth investigating 



whether Breazu-Tannen and Coquand's extensional collapse construction ([1]) can be adapated to 
our class of Kripke structures. It would also be interesting to see if the definition of HROz and 
HE02 models can be recast in our formalism (Girard [3]). We believe that this is possible. Finally, 
it would be interesting to see if the structures of this paper can be extended to richer type theories, 
such as generalized type systems (in particular, the theory of constructions). 

Acknowledgment: I would like to thank Philippe de Groote for some very helpful comments. 

References 

[I] V. Breazu-Tannen and T. Coquand. Extensional models for polymorphism. Theoretical Com- 
puter Science, 59:85-114,1988. 

[2] H. Friedman. Equality between functionals. In R. Parikh, editor, Logic Colloquium, volume 
453 of Lecture Notes in Math., pages 22-37. Springer-Verlag, 1975. 

[3] Jean-Yves Girard. Interpre'tation fonctionnelle et Llimination des coupures de l'arithm~tique 
d'ordre supe'rieur. PhD thesis, Universitd de Paris VII, June 1972. These de Doctorat d'Etat. 

[4] Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical Computer 
Science, 45(2):159-192,1986. 

[5] J. Goguen and J. Meseguer. Completeness of many-sorted equational logic. SIGPLAN Notices, 
417:9-17, 1982. 

[6] C. A. Gunter. Semantics of Programming Languages. Foundations of Computing. WIT Press, 
1992. 

[7] L. Henkin. Completeness in the theory of types. J. Symbolic Logic, 15(2):81-91,1950. 

[8] B. Jacobs, I. Margaria, and M. Zacchi. Filter models with polymorphic types. Theoretical 
Computer Science, 95(1):143-158, 1992. 

[9] S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic. Springer Verlag, New York, 
1992. 

[lo] A.R. Meyer, J.C. Mitchell, E. Moggi, and R. Statman. Empty types in polymorphic lambda 
calculus. In P m .  14th ACM Symp. on Principles of Programming Languages, pages 253-262. 
ACM, 1987. 

[ l l ]  J. C. Mitchell. A type-inference approach to reduction properties and semantics of polymorphic 
expressions. In ACM Conference on LISP and Functional Progmmming, pages 308-319. ACM, 
1986. Reprinted in Logical Foundations of Functional Programming, G. Huet, Ed., Addison 
Wesley, 1990, 195-212. 

[12] J.C. Mitchell and E Moggi. Kripke-style models for typed lambda calculus. Annals of Pure 
and Applied Logic, 51:99-124, 1991. 



[13] G.D. Plotkin. Lambda definability in the full type hierarchy. In J. P. Seldin and J. R. Hindley, 
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, 
pages 363-373, London, 1980. Academic Press. 

[14] G.D. Plotkin. A semantics for static type inference. Theoretical Computer Science, 1993. To 
appear. 

[15] R. Statman. Completeness, invariance, and A-definability. J. Symbolic Logic, 47(1):17-26, 
1982. 

[16] R. Statman. Equality between functionals, revisited. In Harrington, Morley, Scedrov, and 
Simpson, editors, Harvey Friedman's Research on the Foundations of Mathematics, pages 331- 
338. North-Holland, 1985. 


	Kripke Models for the Second-Order Lambda-Calculus
	Recommended Citation

	Kripke Models for the Second-Order Lambda-Calculus
	Abstract
	Comments

	tmp.1184335560.pdf.cNJKC

