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ABSTRACT 

Modern robotic research has presented the opportunity for enhanced teleoperative systems. Teleprogramming 

has been developed for teleoperation in time-delayed environments, but can also lead to increased productivity in 

non-delayed teleoperation. 

Powered tools are used to increase the abilities of the remote manipulator. However, tools add to the complexity 

of the system, both in terms of control and sensing. Teleprogramming can be used to simplify the operators 

interaction with the manipulator/tool system. Further, the adaptive sensing algorithm of the remote site system 

(using an instrumented compliant wrist for feedback) simplifies the sensory requirements of the system. Current 
remote-site implementation of a teleprogramming tool-usage strategy that simplifies tool use is described in this 

document. 

The use of powered tools in teleoperation tasks is illustrated by two examples, one using an air-powered impact 

wrench, and the other using an electric winch. Both of these tools are implemented a t  our remote site workcell, 

consisting of a Puma 560 robot working on the task of removing the top of a large box. 
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ABSTRACT 

Modern robotic research has presented the opportunity for enhanced teleoperative systems. Teleprogramming 

has been developed for teleoperation in time-delayed environments, but can also lead to increased productivity in 
non-delayed teleoperation. 

Powered tools are used to increase the abilities of the remote manipulator. However, tools add to the complexity 

of the system, both in terms of control and sensing. Teleprogramming can be used to simplify the operators 

interaction with the manipulator/tool system. Further, the adaptive sensing algorithm of the remote site system 

(using an instrumented compliant wrist for feedback) simplifies the sensory requirements of the system. Current 
remote-site implementation of a teleprogramming tool-usage strategy that simplifies tool use is described in this 
document. 

The use of powered tools in teleoperation tasks is illustrated by two examples, one using an air-powered impact 
wrench, and the other using an electric winch. Both of these tools are implemented at  our remote site workcell, 
consisting of a Puma 560 robot working on the task of removing the top of a large box. 

INTRODUCTION 

Three major elements of teleprogramming [2, 41 (a form of supervisory control [I]) allow potential improvements 

over a direct teleoperative system. First, the operator interacts with a virtual remote site, providing opportunities 

for artificial operator aids, including visual and kinesthetic cues. Second, communication between the  master and 

remote sites is in the  form of symbols instead of signals, allowing bandwidth limited and  time-delayed teleoperations, 

as ~vell as increasing the  intelligence of communication between master and slave. Finally, t he  remote site executes 

successive commands autonomously, allowing the remote site manipulator t o  interact more intelligently with the 

environment . 

A robot manipulator is greatly limited in i ts  strength t o  accuracy ratio. For a relatively low-strength robot to  

execute tasks which require more strength, powered tools may be used in conjunction with the  robot. The  precision 

of the  low-power robot is coupled with the  strength of less-precise heavy tools. For this research, tools include a n  

impact wrench which delivers more torque than the robot, and a winch with more lifting power than the payload 

capability of the robot. 

The tool/manipulator system is complex from the  point of control and sensing. Extra  degrees of freedom lead to 

a redu~idant  system, difficult t o  control and difficult for the  operator t o  operate. Tool usage requires sensing, which 

may further complicate the system. However, using teleprogramming, a simplified tool control and sensing structure 

can be implen~ent~ed.  

IVhen a powered tool is selected for use, the teleprogramming command UseTool(too1name) is sent to  the remote 

site to select parameters and default conditions specific to  tha t  tool. A task (control) frame is created wherein the 

tAppears in the Proceedings of Telemanipulator Technology, a session of the SPIE/OE Technology '92 Conference, Boston, MA,  
November 15-20, 1992 



coordinate axes align with the natural degree(s) of freedom of the tool. The tool is then controlled instead of the 

corresponding degree of freedom of the robot manipulator, which becomes passive. Control of the tool by the operator 

is accomplished simply by motion of the master manipulator in the specific degree of freedom which the tool controls. 

The addition of sensors for each and every tool would be difficult from an engineering standpoint and would add 

unnecessary complexity t o  the system. In our system, the wrist force/torque sensor of the remote robot manipulator 

is used for tool sensing. General purpose guarded moves [5], incorporated in the teleprogramming language, are used 

to monitor tool actions, and to determine successful tool operation. 

The control and sensing structure outlined in this paper is implemented using an impact wrench and a winch. 
Experimental results are presented. 

2 CONTROL OF POWERED TOOLS 

Powered tools add degrees of freedom to the manipulator/tool system. For example, the impact wrench attached 

to the end of the manipulator adds a rotational degree of freedom to the system (the natural rotation axis of the 

wrench). The winch adds a translational degree of freedom in the direction of gravity. These extra degrees of 

freedom of the system are redundant. Choosing the directions to  control and those to  become passive is normally 

an optimization problem. A generalized redundant system would be difficult to  control in real time. However, the 
tool's functionality prescribes that control by the tool of its own natural degree of freedom is necessary for proper 

usage. This degree of freedom is automatically chosen as a direction to  control. 

M'hen using a specific tool, a task frame can be assigned that aligns one Cartesian direction of the frame with 

the natural axis of the tool, and this direction is controlled by the tool. For the robot manipulator, this direction 

becomes passive, and the system redundancy is removed. Because of the functionality of the powered tool, and the 
ability to use arbitrary task frames, control of the redundant manipulator/tool system is simplified. 

The functionality of the tool is also important in the way the passive degree of freedom is treated. For example, 

the impact wrench is a force controlled device. The corresponding passive degree of freedom in the manipulator 
must be position controlled, preventing motion. The winch, on the other hand, is a position controlled device. The 

corresponding degree of freedom in the manipulator is force controlled with a force preload, so that the manipulator 

\\-ill comply with the motion of the winch and keep the cable taut. 

From the human operator's station, the control of the manipulator/tool system requires that a specific tool is 

chosen for use1. After this is accomplished, the operator can move the master arm around and see/feel the tool 

working in the virtual remote site environment. Motions by the operator in the natural axis of the tool are used to 

control tlle tool; no additional actions are needed. Some subtle changes are imposed on the feedback to the master 

a.rm in order to aid the operator. or example, control of the impact wrench is based on rotations about the z-axis of 

the inaster manipulator's tool frame. In order to  prevent unwanted, accidental use of the wrench, a small amount 

of resistance to motion in this direction is programmed into the master arm controller. Therefore, only deliberate 
motions to control tlle tool are accepted as input. The winch control is designed similarly, with a further constraint 

t liat the velocity in the z-direction of the base frame is forced to be constant when deliberate motions in this direction 

are sensed, si~nulating tlic constant velocity of tlle winch. The human operator does not have to  specifically control 

tile tools; i11put.s of motion in tlle tool direction is all that is needed. 

After the tool has been specified for use, commands are automatically generated in the same form as for non-tool 
act.ions. Rlotions, changes in contact states, guards, etc. are in the same form. The remote site, notified that a 

specific tool is in use, interprets these commands properly for the task. 

Tool usage at  the master site has not yet been implemented in the experimental testbed. 



3 SENSING FOR POWERED TOOLS 

The addition of a new sensor brings added complexity to the system. It must be calibrated and properly implemented, 

and the system will depend on the new sensor to  work properly. Too many sensors become redundant, and sensor 

fusion techniques become necessary to correlate sensor inputs. This is expensive in terms of time and computational 

power, as well as expensive in terms of the physical sensor devices. In order to simplify the problem, and to 

reduce cost, all tool sensing feedback comes from the existing force/torque sensor of the remote manipulator, the 

instrumented compliant wrist [3]. 
The use of sensory inputs for tool control is similar t o  the implementation in the basic teleprogramming system. 

Guarded moves terminate properly when expected sensory events are encountered within the tolerance limits. Oth- 

erwise, motion is terminated in an error state. Guarded moves are generated automatically by the master system as 

required, in the same manner as a motion without tool usage. An adaptive sensing algorithm is used to  determine 

sensor events from normal operating noise, which changes with different tools and operating conditions. Therefore, 

the same algorithm can be used with or without tools in the system. 

4.1 Impact wrench 

EXPERIMENTAL RESULTS 

An impact wrench has advantages over a conventional wrench used by the robot. It can deliver much greater torque 

than the robot can by itself. The impact wrench is easier to  use than the conventional wrench, because no complex 

movements are needed (however, most robot systems that use wrenches use electric or pneumatic wrenches which 

also do not require motion of the robot). Drawbacks to  using the impact wrench include vibrations caused by the 

tool, and the need for a power source. The use of the impact wrench is characteristic of other tools the robot may 

use, such as drills and screwdrivers, which have the same natural axis of motion. 

The impact wrench used for this research is a 318" drive pneumatic wrench. Mounted internally on the instru- 

mented compliant wrist (see figure l(a)),  it creates an extra degree of freedom with the same axis of rotation as 

the z-axis of the end effector frame (T6). By specifying the wrench in the UseTool() command, rotation about the 

z-axis of T6  implies control of the wrench. The corresponding z-axis in the manipulator is position controlled with 

no specified motion, and thus acts as a locked joint (no motion allowed). 

Inserting a bolt involves either sensing torques about the axis of rotation, or sensing velocity in the bolt feed 

direction. A high torque, or zero feed velocity, may indicate a jammed bolt or a properly seated bolt, so tolerances 

must be checked. Removing a bolt requires that the outward velocity be monitored. When the outward velocity goes 

to zero, the bolt is assumed to be fully extracted. 

\+'hen the impact wrench is specified for use, the following parameters are automatically assumed: 

The z-rotation mode for the robot manipulator is set for position control. This assumes that the current task 

frame is aligned with the tool frame of the manipulator (T6). 

Gains and maximum allowable forces/velocities are changed to reflect the increase in noise when the tool is in 
use. 

hlotions in the positive z-rotation direction are transformed to  turn the impact wrench clockwise. Similarly, 

inot,ions in the negative z-rotation direction turn the impact wrench on counterclockwise. 

The folloxving is a sample program that is used to  remove a bolt from the top of a box. A program such as this 

117ould he autoil~atically generated by the master system as the operator moves the master manipulator into contact 



Figure 1: Impact wrench (a)surrounded by wrist, (b)removing bolt 

with the bolt in the virtual remote site, and turns the master manipulator in the direction of unscrewing the bolt - 
an almost automatic action. Explanation and notes on the program will follow. 

>> Execution Environment #O 

UseTool(Wrench) 
DefineVector(CP;<O.O,0.0,220.0>:EE) 

DefineVector(X;<1.0,0.O,O.O>:EE) 

DefineVector(Y;<O.O,1.O,O.O>:EE) 
DefineTaskFrame(N:EE;CP;X;Y;?) 
UseFrame(N) 
AssignMode(P,P,P,P,P,P) 
GuardForce(<0.0,0.0,-1.0>;<0.0,0.0,0.0>) 

Move(5.0;<0.0,0.0,4.0>;<0.0,0.0,0.0>) 

AssignMode(P,P,F,P,P,P) 
Force(<0.0,0.0,1.0>;<0.0,0.0,0.0>) 

1.0 >> Execution Environment #1 

1.1 GuardVelocity(<O.O,O.O,l.O>;<O.O,O.O,O.O>) 

1.2 Move(2.0;<0.0,0.0,0.0>;<0.0,0.0,-2.0>) 

Esecution environment #O contains all the information needed to move the impact wrench into contact with the 
bolt, via a guarded move. After the impact wrench is designated for use, and a task frame is created with origin at 

tlie tool tip (see figure l (b ) )  and the z-axis aligned with the rotation of the wrench, the commands generated are 

identic.al t.o a similar motion into contact without the use of a tool. 

Esecution environment #1 contains tlie necessary commands to  remove the bolt. A GuardVelocity() command 

is used to  non nit or tlie outward velocity of the bolt. The rotation indicated in the Move() command turns the impact 
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Figure 2: Velocity of robot while removing bolt 

wrench on, and the nut is removed. 

Figure l (b)  shows the robot-mounted impact wrench removing a bolt, as in the sample program above. The task 

frame coordinate system is indicated in the figure, with the origin a t  the tool tip. 

In order to  sense when the bolt is fully removed, the GuardVelocity() command is used. Shown in figure 2 is the 

actual sensed velocity (raw sensor data) in the direction of the bolt axis as the bolt is removed, as well as the mean 

velocity based on 10 time steps of data2. The mean velocity model is used by the system for detection of sensor 

events because of the noise level of the raw sensor data. Note that the velocity model is not started until 112 second 

into the motion. This is to allow for motion transients to  abate. In this run, for example, the socket did not initially 

seat over the head of the bolt. When the impact wrench is turned on, the socket moves down over the bolt head, as 

indicat.ed by the initial positive velocity in the raw sensor data; this data does not interfere with detection of bolt 

removal. As the robot complies with the force of the bolt, the feed rate of the bolt (determined by the bolt pitch) 

gives rise to a negative velocity in the robot. The mean velocity is monitored, and motion stops when the velocity 

returns t.o zero, indicating that the bolt is no longer feeding. A slight delay in sensing is caused as a result of the 

averaging of the velocity, but this  does not adversely affect the task execution. 

Each time step is 20ms, the rate that the remote site computer communicates with the robot controller 
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Figure 3: (a) System controlled winch, (b) winch removing box top 

4.2 Winch 

A winch can increase, the load-carrying capacity of the robot manipulator. The need for power to  offset the force of 
gravity on payloads, which usually accounts for a large fraction of the total power used by the robot, is eliminated. 
Because tlie payload capacity of a manipulator is usually inversely proportional t o  its accuracy, a robot with higher 
accuracy can be used for manipulation of heavy objects when a winch is used. 

The winch is sensorless, and thus relies on the robot for sensing. The winch also adds a degree of freedom to the 
system: a prismatic joint in the world z-coordinate. Motion in this direction is naturally controlled by the winch 
when the winch is specified with the UseTool() command. The corresponding degree of freedom in the manipulator 

is force co~ltrolled with a force preload to keep the winch cable taut. 

The winch used for this research, illustrated in figure 3(a) is small, and not much more powerful than the robot 

itself3. However, knowledge gained about using the winch in conjunction with the robot can be applied to much 
nlore powerful winches. The winch operates a t  a fixed speed, and therefore the motions a t  the operator's station 
must be constrained to  this motion when the operator is using the winch. 

\Yl~en the command to use the winch is parsed, the following parameters are automatically set: 

The z-direction mode for the robot manipulator is set for force control. The manipulator will then conform to 

forces in the z-direction. This assumes that a task frame aligned with the kinematic base (world) coordinates 
is used. 

A force is set in the negative z-direction, to preload the winch cable (this keeps the cable taut). 

Gains and maximum allowable forces/velocities are changed to reflect the increase in noise associated with the 

constrained system. 

R'lotions in the positive z-direction are transformed to raise the winch. Similarly, motions in the negative 

z-direction lower the winch. 

3T l~e  payload capacity of the winch is approximately 12 lbs.; the Puma robot payload is 5 lbs. 



The following is a sample program that is used to  insert the winch hook into an eyebolt on the top of a box (see 

figure 4). Explanation and notes on the program will follow. 

> > Execution Environment #O 
UseTool(Winch) 
DefineVector(X;<O.O,1.O,O.O>:KB) 
DefineVector(Z;<O.O,O.O,1.0>:KB) 

DefineTaskFrame(TF:EE;WST;X;?;Z) 
UseFrame(TF) 
AssignMode(P,P,F,P,P,P) 
GuardVelocity(<0.0,0.0,1.0>;<0.0,0.0,0.0>) 

Move(9.O;<O.O,O.O,-15.0>;<0.0,0.0,0.0>) 

1.0 >> Execution Environment #1 

1.1 DefineVector(C;<0.0,30.0,160.0>:EE) 

1.2 DefineTaskFrame(PP:EE;C;X;?;Z) 
1.3 UseFrame(PP) 
1.4 Move(l.5;<0.0,0.0,1.0>;<0.0,-0.4,0.0>) 

2.0 >> Execution Environment #2 
2.1 AssignMode(P,F,F,P,P,P) 
2.2 GuardForce(<2.0,0.0,0.0>;<0.0,0.0,0.0>) 

2.3 Move(5.0;<-12.0,0.0,0.0>;<0.0,0.0,0.0>) 

3.0 >> Execution Environment #3 

3.1 DefineVector(C;<O.O,-52.0,180.0>:EE) 

3.2 DefineTaskFrame(PP:KB;C;X;?;Z) 
3.3 UseFrame(PP) 
3.4 Move(l.S;<O.O,O.O,O.0>;<0.0,-l.O,O.O>) 

4.0 >> Execution Environment #4 

4.1 Move(9.0;<0.0,0.0,15.0>;<0.0,0.0,0.0>) 

This simple set of instructions is typical of a program that would be automatically generated by the master 

system from simple motions of the master arm by the human operator. Absent are any exploratory motions that 

may be necessary to identify the location of the eye on top of the box. 

Each execution environment in the above program contains the commands needed t o  move between successive 
steps of figure 4. In execution environment #0, command 0.1 informs the remote system that the winch is being 

used. This implicitly results in a force applied in the negative z-direction. Commands 0.2 to  0.5 define a task frame 

t.o be used by the control. It is important to  note that when using the winch, the z-direction of the task frame must 

correspond to the z-direction in kinematic base coordinates. Because the system will be moving, however, the frame 
itself is defined to be dynamic in command 0.4, by specifying the frame name TF to be with respect to the dynamic 

frame EE. After the frame has been designated, the commands are equivalent t o  commands generated without the 

use of a tool. 

The robot is controlled in force mode in the z-direction with a force preload of approximately 2 lbs. on the winch 

cable. Any   notion specified in the z-direction is assumed to have the velocity of the fixed-speed winch, and the winch 
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Figure 4: Winch experiment 
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Figure 5: Hook velocity data for guarded move a-b 

is controlled up or down as specified. The robot complies adequately t o  this motion. All other motion directions are 

controlled by the robot. 

Sensing for the winch is more difficult than expected. Because the robot/tool system is constrained, internal 
forces are greater, and more noise is produced. However, the adaptive sensing algorithm is able to determine sensor 
events from the additional operating noise produced in this example. 

Figure 5 shows the actual sensed velocity (raw data) and mean velocity (computed over 10 time steps) of the hook 

in the z-direction for the motion commanded in execution environment #1 above (notice that there are two separate 
scales on the y-axis of the graph, in order to  make the data easier to  read). The mean velocity model is not initialized 

until 112 second into the move, to avoid any irregular or transient data when the move begins. The velocity data 

is very noisy, and has a periodic frequency of approximately 3.3 Hz, which can be attributed the natural frequency 

of the wristlwinch-cable mechanical system. The mean velocity data reduces the amplitude of this vibration and 
delays the signal by about 1/10 second. Using the mean velocity data, the change in velocity caused by the collision 
with the box is easily discerned. The delay of 1/10 second is acceptable. 

Figure G shows the implicit force data  for the move into contact with the eyebolt. The datashown is in the direction 

of the motion. Note that the average force in the motion before contact (before approximately 755 timesteps on the 

s-asis of the graph) is non-zero. This is caused by internal forces built up by the constraints of the system. The 



0.60 

...- ..... --..- 
aundard deviation * 3.0 ------------ -. 
x-diition force 

Figure 6: Hook force data for guarded move c-d 

GuardForce command checks the deviation of the force data against the standard deviation model that is built up 

over the previous 30 time steps (.6 second). If the deviation of the force data is above 3 times the standard deviation 

for 4 consecutive time steps, a collision is detected. This rather stringent criteria is necessary in order to reject 

spurious, non-collision related data. It does, however, add slightly to the time delay in detecting collisions. 

5 CONCLUSIONS 

The methods presented here to control tools in a teleoperative system have the advantage that they do not increase 

the burden of work for the human operator. Except for the initial selection of a tool for use, the operation of tools 

is transparent to the operator. Because they do not require extra sensory input, the problems of sensor fusion and 

extra computational time needed to read and interpret additional signals are avoided, as well as avoiding the cost 

and implementation of another sensor in the system. 

A host of questions involving tool usage were raised during this research and not addressed. Among these are: 

\,Irha.t exploration techniques are necessary to find the bolt/eye/etc? 

This question was not addressed in the examples presented here. Obviously, with a tolerance limit larger than the 

size of the bolt (for example), some exploration will be necessary. This leads to another question: 

\Vhat tolerances are necessary to be successful at removing a bolt, mating a hook and eye, etc.? 

If the initial tolerance limits, defined by the accuracy of the initial imaging of the remote system, are not accurate 

enough to find or make contact with the bolt, some method of refining the accuracy of the model will be necessary. 

Efforts to use data collected at the remote site to refine the graphical model are currently in progress. 

These first two questions can be more easily researched when the tool implementation at the master site is 

operational. 



Other questions that may be asked include: 

Is the tool control implemented here too tooI-specific? 

Have we chosen tools that are general enough to show usage characteristics of all powered tools? 

The experiments presented here use only two powered tools. However, the methodology for tool usage appears to 
applicable to  a wide range of tools that the robot can use. However, there are certain end effectors, namely grippers 

and hands, that add extra degrees of freedom to the system that can not replace coincident degrees of freedom of 

the robot manipulator. 
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