View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarlyCommons@Penn

- %
cnn - y University of Pennsylvania

Libraries ,_
 UNIVERSITY 0f PENNSYLVANIA Scholarlycommons
Technical Reports (CIS) Department of Computer & Information Science
January 1998

On-the-Fly Programmable Hardware for Networks
llija Hadzi¢
University of Pennsylvania

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
llija Hadzi¢ and Jonathan M. Smith, "On-the-Fly Programmable Hardware for Networks", . January 1998.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-98-04.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/49
For more information, please contact repository@pobox.upenn.edu.

https://core.ac.uk/display/76387888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/49
mailto:repository@pobox.upenn.edu

On-the-Fly Programmable Hardware for Networks

Abstract

Ongoing research in adaptive protocols and active networks has presumed that flexibility is offered
exclusively through software systems, and the performance implications have generated considerable
skepticism. The programmable Protocol Processing Pipeline (P4) exploits the dynamic reconfigurability
of RAM based Field Programmable Gate Arrays (FPGAs) to provide both hardware performance and
dynamic functionality to network components.

We use forward error correction (FEC) as an example of a protocol processing function. Our
measurements show that P4 is able to process the data stream at OC-3 (155 Mbps) link rate, and
consequently improve TCP performance in noisy environments.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-98-04.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/49

https://repository.upenn.edu/cis_reports/49

On-the-fly Programmable Hardware for Networks

llija Hadzic and Jonathan M. Smith
Distributed Systems Laboratory, University of Pennsylvania*
ihadzic@ee.upenn.edu, jms@cis.upenn.edu

Abstract

Ongoing research in adaptive protocols and active net-
works has presumed that flexibility is offered exclusively
through software systems, and the performance implica-
tions have generated considerable skepticism. The Pro-
grammable Protocol Processing Pipeline (P4) exploits
the dynamic reconfigurability of RAM based Field Pro-
grammable Gate Arrays (FPGAs) to provide both hard-
ware performance and dynamic functionality to network
components.

We use forward error correction (FEC) as an example
of a protocol processing function. Our measurements
show that the P4 is able to process the data stream at
0OC-3 (155 Mbps) link rate, and consequently improve
TCP performance in noisy environments.

1 Introduction

A desire for flexible network infrastructures has stim-
ulated research into adaptive protocols and active net-
works. This research[14] has presumed that flexibility
is offered exclusively through software systems, and the
performance implications have generated considerable
skepticism. In particular, a number of researchers[9]
have proposed that programmability be restricted to the
control plane, as they believe that high data through-
put cannot be achieved concurrently with dynamically
interposed functions.

However, flexibility is not exclusive to software sys-
tems: new programmable logic devices can be repro-
grammed rapidly enough so that network components
can operate at hardware speeds while providing dy-
namic functionality. The growth in size and speed
of state of the art programmable logic devices has
stimulated new fields of research, e.g., reconfigurable
computing[15].

We are exploring the application of dynamically re-
configurable hardware to adaptive protocols and active

*This research was supported DARPA under Contracts
#NCR95-20963 and #DABT63-95-C-0073. Additional support
was provided by the AT&T Foundation, the Hewlett-Packard Cor-
poration, the Intel Corporation and the Altera University Grants
Program. This paper has been submitted to IEEE GLOBECOM
98 for review.

networks. To explore the design space where high speed
requirements make software implementation a bottle-
neck, we have constructed an FPGA-based architecture
called the Programmable Protocol Processing Pipeline
(P4)[7]. We thus achieve functional acceleration with
special purpose hardware while maintaining a software-
like flexibility of the system.

We focus on the example of TCP/IP performance in
a noisy environment. We protect against noise-induced
errors with the FEC, and demonstrate the convolu-
tional encoder and Viterbi decoder operating at OC-
3 (155Mbps) data rates on the P4. The next section
briefly describes the P4 architecture.

2 P4 Architecture

header fields forwarding

bypass FIFO

InE Switching Array —=| OIF
< -

| |
ATM | i $ | ATM
link . link
- [efre] e [B[E]
| |
I Vo Vv
A
v
‘ Controller ‘
—= - - - = Control paths
Data paths

Figure 1: P4 Architecture

The architecture of the P4 is shown in Figure 1. It
composes a set of RAM based FPGA devices (Altera
FLEX8000[1]) in a pipeline, with a switching array se-
lecting which devices are engaged in processing a data
stream. FPGA devices allow implementing protocol
processing algorithms in hardware, while providing dy-
namic functionality through the run time reconfigura-
tion.

Processing elements in the P4 are organized into a

pipeline of programmable logic devices interconnected
by the switching array. Each device has a FIFO buffer
associated with it. A processing element reads the data
from its FIFO buffer, performs its processing, and writes
into the FIFO buffer associated with the next device in
the chain. Connection to the next device is achieved via
the switching array. The switching array can dynami-
cally include or exclude processing elements, or reorder
them on an as-needed basis.

When needed, a protocol processing function (in the
form of an FPGA configuration) is added by down-
loading a free device, and inserting this device into the
pipeline chain. Unnecessary functions are switched out
of the processing chain and the device becomes free.
Altera’s Flex 8000 devices require about 100ms to be
reloaded, but can be switched in and out of the data
path within a microsecond. The gate arrays can thus
be viewed as a cache for selected protocol processing
functions.

The P4 prototype uses ATM cells as a convenient
unit of processing. While the architecture is not ATM-
specific, use of ATM allows interoperation with existing
systems and validation of performance in 100+ Mbps
operating regimes.

3 FEC Booster

The P4 prototype has been constructed as part of the
Protocol Boosters project[6], which takes the approach
of dynamically adding and deleting protocol functions.
The P4 illuminates a design subspace where high speed
requirements force the implementation of certain func-
tions in hardware.

We have chosen an FEC as an example protocol pro-
cessing function which might operate on an as-needed
basis for greater efficiency. A convolutional encoder and
Viterbi decoder were implemented to allow experimen-
tal evaluation. Our goal was not to construct a highly
optimized code for a given link, but rather to explore the
feasibility of performing a complex protocol processing
function using the limited set of resources offered by the
P4. Thus, the FEC was optimized for implementation
on the P4 and operation at the P4’s OC-3 data rate.

3.1 Implementation

Bits of each data octet are grouped in four chunks of
two bits and encoded independently using four parallel,
rate 1/2, constraint length 3, convolutional encoders.
Each encoder accepts two bits from the current octet
and produces four output bits. Four parallel encoders
thus produce two octets of data which are clocked out at
19.44 MHz, resulting in the output bit rate of 155Mb/s.

On the decoder side, four parallel decoders operate
independently on the groups of two bits producing one

bit of original data stream. Figure 2 illustrates this
procedure. Input data is clocked in at 19.44MHz, so
the input bit rate is 155Mb/s. Due to the complexity
of the Viterbi decoder, each decoder had to be located
on a separate processing element. The first processing
element (Decoder 1 in Figure 2) takes two bits of the
encoded octet and produces one output bit. The other
six bits are passed to the next processing element un-
modified. So the output octet of the first processing el-
ement, consists of six original encoded bits, one decoded
bit and one unused bit. At the output of the fourth
decoder each octet contains four decoded bits and four
unused bits. Finally, two such octets are combined to
reconstruct the original data.

Encoded bits Unused bits Decoded bits ch[cectmstructed
o

i

[]

Two encoded Eight bits decoded

octets accepted scattered in two octets
Decoded bits combined
in signle octet

Figure 2: Decoding process on P4

3.2 Robustness

An important issue in protocol design is robustness. Al-
though it protects user data from bit errors, convolu-
tional encoding may increase the risk of other impair-
ments such as cell losses and cell misinsertions if no
countermeasures are applied. In general, the output of
the Viterbi decoder depends on the history of its inputs.
If a cell is lost, missing data may cause unpredictable
behavior, and the error can propagate far into the fu-
ture. To improve robustness in such cases, the encoder
resets its state every 24 bytes (half the ATM cell) and
the decoder resets its state after every cell.

The encoder generates two cells for each input cell.
Both cells have the same value for the user indication
bit in the ATM header. If the encoded cell within the
AAL-5 protocol data unit (PDU) is lost, there will be
a mismatch in the user indication bit at the end of the
AAL-5 PDU. Prior to decoding, data are passed through
the front end processing unit which checks for matching
user indication bits. Only pairs of cells that match are
passed for further decoding. If a mismatch is found, an

all-zero cell with the appropriate user indication bit will
be inserted as shown in Figure 3. This will, of course,
result in a series of bit errors after decoding, but will
prevent any error propagation that might otherwise re-
sult. Only the AAL-5 PDU whose cell has been lost will
be affected. It can be easily verified that the front end
processing unit will also successfully isolate bad AAL-
5 PDUs in the case of cell misinsertion, thus avoiding
error propagation.

<-Original AAL-5unit = <—Next AAL-5 unit

o Jlo I Jlo | """ User indication bit

Nding
o Jlo I flo 1 ["\] [+] o]

Encoded AAL-5unit —— = =

b Jlo Tl J L Jh Il]
N

OK'! Mismatch !
Insert al-zero cell

]]] Wl L] G L

- Decodedintobad AAL-5PDU,
but error does not propagate !

Cdl loss!

Figure 3: Protection from error propagation due to cell
loss

4 Application

An important motivation for the Protocol Boosters con-
cept is the problem encountered when protocols opti-
mized for certain conditions operate outside those con-
ditions; they perform extremely poorly. Flexible adap-
tive protocols and active networks cope with this prob-
lem by dynamically adapting the protocol stack to one
appropriate for the current conditions in the network.

Wireless ATM[11] is an example where the protocol
requires modification, as the original assumptions for
ATM link reliability are no longer met. In an effort to
improve the link quality, modifications of the link layer
that incorporate strong FEC in combination with ARQ
have been suggested[4, 10, 3, 16]. It is, of course, un-
likely that an optimal error control scheme meeting the
needs of all applications under all possible conditions
exists. In [12] the author of the NEC Wireless ATM
prototype[5] has pointed out that each service type will
require an appropriate error control scheme, implying
that the error control is not a static mechanism. [10]
considered protecting only the header of the ATM cell to
prevent extensive cell losses and misroutings, and leav-
ing the protection of the payload to the higher layers
depending on the desired quality of service.

In addition to the different error control schemes
needed for different service types, the bit error rate on
a wireless link is changing over time.

For adaptive protocols, FEC can be viewed as the
functional element of the protocol stack which can be
added, removed or changed on an as needed basis.
With the spectrum of FEC implementations of varying
strengths and complexities available, dynamic protocol
can select the implementation that best fits the current
conditions and QoS requirements. In the enhanced net-
work infrastructure provided by the P4, different FEC
implementations are available as FPGA configurations.
When an appropriate coding scheme is selected, pro-
cessing elements in the P4 are configured and the result
is P4 operating as specialized hardware in the network.
If the FEC algorithm must be replaced, the processing
element is reconfigured and new specialized hardware is
activated, reusing the same physical device.

5 Experiments

Our experimental work evaluates the effect on link
throughput of the FEC implemented on the P4. With a
tunable bit error rate induced on the link, we measured
the TCP throughput seen by the application with and
without the FEC booster described in Section 3.

5.1 Test Setup

The experimental setup is shown in Figure 4.

Workstation
Rx Tx
P4 Encoder

cal Ry
Protocol F ATM
Processor . Switch 4

Network

Impairment

P4 Emulator
Decoder

Figure 4: Experimental setup used in testing the FEC
booster

The host is an Intel Pentium PC running Linux ker-
nel, release 2.0.29, with the “ATM on Linux”[2] patch
and a Fore Systems PCA200E ATM adaptor. Through-
put testing is done with ttcp. For convenience, we used
single test machine with source and sink running as two

separate processes. Since we were interested in testing
the impact of the P4 on TCP throughput and not the
impact of the workstation, this setup can deliver useful
results.

Cells transmitted by the workstation are encoded us-
ing the first P4 in the test setup. At the output of the
first P4, the utilized bandwidth is twice the bandwidth
generated by the workstation due to the additional cells.
To prevent buffer overflows in the operating P4, the de-
vice driver in the workstation must be rate controlled.
Our rate limiting mechanism forces an idle period be-
tween the transmission of two consecutive packets so
that the encoder in P4 has an opportunity to insert all
generated packets. There are tradeoffs among the buffer
size on the P4, the maximum segment size for IP run-
ning over the link, and the length of the enforced idle
period.

Encoded cells are passed through a noisy link, emu-
lated by inserting bit errors with the Network Impair-
ment Emulator[13]. We vary the bit error rate and mea-
sure the TCP throughput seen by the receiving process
on the workstation with and without the FEC booster
in place.

The second P4 board decodes the cells and corrects
any correctable bit errors. Decoded data are passed
through the Cell Protocol Processor[8] which acts as
the passive monitoring device. We use the Cell Protocol
Processor to monitor the link traffic and the error rate
after decoding.

5.2 Results

We ran the ttcp throughput tests for four cases: (1)
without P4 boards in the data path; (2) with P4 boards
doing no processing; (3) with P4 boards doing no pro-
cessing, rate control on; and (4) with P4 boards config-
ured as FEC encoder and decoder.

We varied the bit error rate (BER) from 107!2 to
10~* with an exponentially distributed time between
two consecutive bit errors (i.e., a Poisson error distri-
bution). Results from the first case provide a baseline
measurement. In the second case we tested if inactive
P4 hardware had any impact on the results. The first
two cases exhibit almost identical results: an enormous
dropoff in TCP/IP performance (the throughput is on a
logarithmic scale in Figure 5). This is due to TCP/IP’s
strategy in the face of packet loss, which is to assume
that the loss was a result of congestion rather than
noise. The result is that the TCP/IP congestion win-
dow is rapidly reduced to the point where the protocol
becomes “stop-and-wait”, with the consequences shown
in Figure 5. The third case shows the effect of rate con-
trol, namely that the throughput starts off considerably
lower (a factor of 4 less) but drops off as rapidly as the
first two cases in the face of error. The reason this test

was performed was to separate the costs of rate control
from the costs associated with the FEC processing.

In the last experiment, we measured TCP throughput
with the FEC in place, and rate controlled, as before.
As expected for the low BER region, the FEC booster
does additional processing and uses extra bandwidth for
the redundancy, beyond the cost of rate control, taking
its throughput to about 8 Mbps. In the high BER re-
gion, the TCP protocol stack benefits from FEC in re-
ducing the number of retransmissions and keeping the
value of TCP window size larger. Without FEC, TCP
completely stalls at BER below 10~%, while it is still
able to operate with FEC in place.

Figure 5 shows the logarithmic plot of the mean value
of measured throughput as a function of BER and Table
1 shows 90% confidence intervals for measured through-
put. Log plots are used since BERs of interest covers
many orders of magnitude. The upper solid line presents
the throughput without the P4 in the datapath; the
dashed line following it is the throughput with an idle
P4. The overhead introduced by the P4 hardware is
negligible. The lower solid line shows the TCP through-
put with rate control and an inactive P4. Finally, the
dashed & dotted line shows the measured throughput
with P4 running the FEC booster. For BERs greater
than 1078, TCP gains from FEC. Given our earlier ex-
planation of TCP’s response to packet loss, it should
be clear that the FEC, in reducing the impact of noise,
reduces the probability of the incorrect assumption of
congestion. Thus, the performance is improved.

10

[N
S,

Throughput (Mb/s)

,ﬁ
=5
T

10 L L I

Figure 5: Mean value of measured throughput

The graph in Figure 5 illustrates an opportunity for
an adaptive protocol. In particular, the intersecting
curves at a BER of ca. 1077, suggest that FEC be
employed only when the BER exceeds 10~7. Thus, a

BER | without P4 | with P4, no FEC | no FEC, choking | with P4, with FEC
0 45.46,46.09 43.80,43.95 [10.36,11.50] 6.96,8.90
10712 | [45.23,45.85 43.68,43.86 9.43,10.42 7.15,7.98
10—1T | [45.11,45.90 43.83,44.06 9.96,10.93 6.57,8.14
10710 | [45.59,46.18 42.59,44.18 9.30,10.16 7.26,8.87
1079 | [45.87,46.55 41.19,43.51 9.98,11.16 6.59,8.24
108 | [34.50,40.40 33.02,37.94 8.07,9.54 7.82,9.42
1077 6.48,7.15 6.72,9.11 4.63,5.43 6.95,8.22
10— 1.12,1.19 1.27,1.36 1.21,1.27 4.71,5.44
107° 0.15,0.16 [0.145,0.155] 0.17,0.18 1.43,1.51
104 N/A N/A N/A 0.35,0.37

Table 1: Confidence intervals for measured throughputs

protocol booster’s policy module would constantly mon- ample, to insert the FEC booster, the following mecha-
itor the conditions on the link (e.g., using AAL-5 CRC nisms are necessary:

or IP checksums), and switch on the FEC as needed. In

Figure 5, the line followed by an ideal adaptive protocol e determine the type of the code to be used

is marked by an “O”. In the Protocol Boosters frame-

work, the FEC processing is mechanism, under control e decide when to activate the booster

of the aforementioned “Policy”.

e signal to the other end to prepare the appropriate
decoder and if necessary to the host (as in the case

6 Generahzmg Adaptive FEC in where the host needs to activate the choking mech-
Hardware anism inside the device driver)

The P4 demonstrates near-software flexibility and per- ¢ download P4 processing elements on both ends

formance comparable to special purpose hardware. We

used the example of a convolutional code for FEC which e activate the encoder and signal to the other end to

is used as a mechanism for an FEC Booster. Two gen- activate the decoder

eralizations can be drawn from this example. First, the

mechanism is neither limited to a particular coding rate Selecting the appropriate booster and when to acti-

nor a single coding algorithm. Sets of codes appropri- vate it are the two central roles of the policy module. In

ate for different BERs or burst lengths can be made a realization, the policy module is a combination of the

available, and the best code for current conditions in software running on the controller and the configured

the network can be selected by a policy. If conditions hardware running on the P4 assigned to monitoring the

change, the code can be adapted at run time by recon- conditions on the link and collecting the information

figuring the P4. Second, the P4 architecture can be used necessary for policy decisions.

for much more than FEC. Any functional element (e.g., We intend to design a second generation of the P4.

encryption, data compression, traffic shaping modules, The main limitation of the current version is the lack

etc.) implementable on P4 can be used as a protocol of buffering for local processing. There are also some

booster and added to a protocol stack on an as-needed small dependencies on ATM. Local buffering is essential

basis. in supporting transparent boosters, which do not mod-

ify the original packet. An example of a transparent
booster is an FEC booster that sends the FEC pack-

7 Next Steps ets in addition to the original packets. The price paid

here is in the memory resources where the FEC packet
We are developing a policy module for the FEC boost- is stored during its construction. Due to lack of local
ers, and designing the signalling protocol which would memory resources on the P4, implementation of trans-
enable P4 boards distributed over the network to syn- parent boosters is limited. In the second generation of
chronize their activities. OQur design will have the policy P4, we are also planning to move processing to a higher
module as part of the controller which manages the P4 level of object than the ATM cell, and process data
board and configures its processing elements. For ex- blocks independently of the underlying protocol.

8 Conclusion

Our goal with the Programmable Protocol Processing
Pipeline (P4) architecture was a demonstration that
modern hardware allowed a novel investigation of the
design space of programmable network infrastructures.
In particular, the P4 demonstrated flexibility by load-
ing an FEC into its pool of FPGAs, and this flexibil-
ity was employed in end-to-end throughput tests using
TCP on an ATM-attached workstation. The TCP re-
sults showed that the FPGA-resident code allowed TCP
performance in a BER regime where the protocol was
previously inoperable.

The performance tradeoffs of the system with and
without the FEC suggest the use of a hybrid strategy,
using the FEC as-needed, a scheme to which to P4 is
well-suited. We believe that among the uses for such a
scheme are wireless ATM applications.

The important result of this demonstration is that
schemes such as Protocol Boosters and Active Network-
ing for flexible network infrastructures are not limited
to poor performance regimes. For functions which can
be implemented within the area limitations of FPGAs
at any point in time, hardware performance levels can
be achieved. Thus, this refutes much of the skepticism
which exists in the networking community about the
performance of these approaches, and hence their im-
pact on real networks.

9 Acknowledgements

We would especially like to thank to Bill Marcus of Bell-
core for providing us with many useful suggestions dur-
ing the course of this work and for making the Bellcore
OC-3 interface boards available for the P4 project.

References

[1] Altera, Corporation, 2610 Orchard Pkwy., San
Jose, CA 95134. FLEX8000 Programmable Logic
Device Family - Data Sheet, 8 edition, June 1996.

[2] Atm on linux home page and source code. URL
http://lrcwww.epfl.ch/linux-atm/.

[3] M. Barton. Unequal error protection for wireless
atm applications. In IEEE Globecom 1996, Pro-
ceedings, volume 3, pages 1911-1919, November
1996.

[4] J.B. Cain and N. McGregor. A recommended error
control architecture for atm networks with wireless
links. IEEE JSAC, 15(1):16-28, January 1997.

[5] D. Raychaudhur, et. al. Watmnet: A prototype
wireless atm system for multimedia personal com-
munication. IEEE JSAC, 1(15):83-95, January
1997.

[6] D. C. Feldmeier, A. J. McAuley, J. M. Smith,
D. Bakin, W. S.Marcus, and T. Raleigh. Protocol
boosters. to appear in IEEE JSAC Special Issue on
Protocol Architectures for the 21st Century, 1998.
also U. Penn CIS TR MS-CIS-96-34.

[7] I. Hadzic and J. M. Smith. P4: A platform for
fpga implementation of protocol boosters. In Field-
programmable logic and applications: 7th Inter-
national Workshop, FPL’97, Proceedings, LNCS,
1304, pages 438—-447. Springer, September 1997.

[8] Hewlett Packard Company, IDACOM Telecommu-
nications Operation, 11120-178 Street, Edmonton,
Alberta, Canada T5S 1P2. AAL Users Guide, 3
edition, August 1994.

[9] A. A. Lazar, K.-S. Lim, and F. Marconcini. Real-
izing a foundation for programmability of atm net-
works with the binding architecture. IEEE JSAC,
pages 1214-1227, September 1996.

[10] Y. Nakayama and S. Aikawa. Cell discard and tdma
synchronization using fec in wireless atm systems.
IEEE JSAC, 1(15):29-34, January 1997.

[11] K. Pahlavan, A. Zahedi, and P. Krishnamurthy.
Wideband local access wireless lan and wireless
atm. IEEE Communications Magazine, pages 34—
40, November 1997.

[12] D. Raychaudhuri. Atm based transport architec-
ture for multiservice wireless personal communica-
tions. In IEEE ICC 1994, Proceedings, volume 1,
May 1994.

[13] R.W. Dmitroca, et. al. Emulating atm network im-
pairments in the laboratory. Hewlett-Packard Jour-
nal, 48(2):45-50, April 1997.

[14] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie,
D. J. Wetherall, and G. J. Minden. A survey of
active network research. IEEE Communications,
35(1):80-86, January 1997. FEarlier version MIT
LCS TR #MIT/LCS/TM-557, 1996.

[15] W. H. Mangione-Smith, et. al. Seeking solutions
in configurable computing. IEEE Computer Mag-
azine, pages 38-43, December 1997.

[16] M. Yoshida. High-quality subchannel for wireless
atm transmission. In IEEE Globecom 1996, Pro-
ceedings, volume 3, pages 1892-1896, November
1996.

	On-the-Fly Programmable Hardware for Networks
	Recommended Citation

	On-the-Fly Programmable Hardware for Networks
	Abstract
	Comments

	tmp.1161804699.pdf.Tc1zd

