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Force-Closure Grasps with Two Palms 
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University of Pennsylvania 
GRASP Lab - Room 301C 

3401 Walnut St. 
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Abstract 

This payer studies force-closure grasps of rigid objects by using two palms. The 
two palms are instrumented with tactile sensors capable of detecting the presence of 
contacts, and are assumed to be respectively installed on two robotic manipulators 
capable of motion and force control. Established in this paper is an existence conditioil 
under which the two palms form a force-closure grasp. The salient feature of this 
condition is that it does not require the informastion on the shape of the object a.nd 
the contact locations. A configuration of the two palms in contact with the object 
satisfying this condition is called a force-closure grasp configuration (FCGC). Further, 
an algorithm is developed to check the condition for FCGC in terms of the position 
and orientation of the palms. 

1 Introduction 

Grasping in robotics is a study of kinematics, dynamics, and control of mechanical hands 
(or grippers) for manipulating objects. Due to the fact that motions of the fingers of a hand 
are generally slow while manipulating an object, the major effort in the study of grasping 
has been focused on static analysis, e. g., [l, 2, 3, 4, 51, with a few exceptions dealing with 
dynamics [6, 7, 8, 91. A challenging issue in grasping is the determination of the stability 
of a grasp, tha t  is, determining force equilibrium given all the information such as contact 
points, surface normals of the contact points, and friction coefficients. T h e  work dealing 
with this issue includes [2, 5 ,  7, 10, 11, 121, among others. 

Modeling of contacts is a primary concern in the study of the grasp stability. Various 
models have been considered, including point contact, line contact, surface contact, and 
soft contact [I, 13, 141. In terms of the occurrence of contact points on hands/grippers, 
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connected 

Figure 1: Two Handed Grasping - Palm Pushing 

there are finger-tip grasps analyzed in most of the works, and enveloping grasps (or wl-lole 
finger grasps) treated in a few works, e. g., [15]. 

In dealing with grasping stabilit,y, most of the existing approaches assume the ava.ilabi1- 
ity of the complete contact information, including the contact locations, surface normals 
of the object a t  the contact points (or equivalently the shape of the object), and friction 
coefficients at the contacts. The information assumed in these approaches may not be 
available at  the required accuracy, or not available at all, in an unstructed environment. 
To remedy the problem, an alternative approach is to investigate the grasping issues based 
on partial information. Towards this direction, Nguyen [16] proposed an algorithm to find 
the independent regions of contacts on the polygonal and polyhedral objects. ,4s long as 
the contacts on the object occur in the regions, a force-closure grasp is possible (however, 
the contact locations on the gripper are assumed to be known). Faverjon and Ponce have 
extended the Nguyen's algorithm to piecewise smooth curved objects [17]. 

In this paper, the requirement on the available information is further relaxed. Using 
two palms to grasp a rigid object, this paper establishes an existence condition for force- 
closure grasp, which does not require any information about the shape of the object and the 
contact locations on the object. Furthermore, the coiltact locations on each palm are not 
required either, as long as the contacts occur at  the interior of the palms. Nevertheless, the 
coefficients of friction are needed in this study. A typical scenario of the two palms grasping 
an irregularly-shaped object is illustrated in Figure 1. The palms considered in this study 
are flat surface in shape. Attached to the surface of each palm is an Interlink Force Sensing 
Resistor (FSR1) sensor which is used to detect the presence of contacts with objects. By 
using flat surface palms, the common contact normals can always be obtained from the 
orientation of the palms. In seeking conditions for force-closure grasps, the approach taken 
in this study is to establish useful sufficient conditions, rather than necessary and sufficient 
conditions, since the latter requires the complete knowledge of the contact parameters. 

The motivation of using two palms in this study, compared with a single hand with 
multiple fingers, is that a hand is limited to grasp relatively small objects, and objects with 
special features such as handles. A task as simple as picking up a relatively large carton can 
not be achieved by a single arm/hand. However, such a task can be easily perforllled 11); 

'FSR is a trademark of Interlink Electronics, P.O. Box 40760, Santa. Barbara, C:A 93103 



using two palms to push from two opposite sides. Owing to this motivation, the treatment 
on force-closure grasps in this paper is targeted to relatively large objects. 

Background 

Grasping an object is the process of exerting contact forces on it with the purpose of 
gaining control over its movement. The whole grasping process involves: (1) approaching 
the object, (2) detecting contacts, (3) evaluating the capability of the contact configuration 
to grasp the object, (4) determining the grasping forces required to manipulate it, and (5) 
applying the required contact forces. The focus of this work is on step (3 ) .  

This section provides some definitions and results from previous works which are relevant 
to this study. The precise problem of this study is also defined 

A palm can be considered as a very primitive type of hand. Therefore the definitions 
that follow are applicable to grasps using two palms. However, in order to generalize the 
concepts explained, the term hand is used instead. 

A set of contacts between the hands and the object are established in order to constrain 
the movement of the object. To be able to move the grasped object in any direction, the 
hands must be able to apply arbitrary forces and moments to it. 

Definition 2.1 A force-closure grasp is a set of contacts able t o  apply arbitrary force and 
moment  t o  the object through the set of contacts. 

A force-closure grasp completely con~tra~ins the movement of the grasped object,, there- 
fore there is no direction in which the object can move freely. 

Define matrix G as the matrix whose columns are the contact wrenches. Denote by 
tS the spatial transpose of the twist t .  From the concept of virtual work of a wrench W, 
a,gainst a twist t ,  if the system of linear inequalities GTtS 2 0 has no other solution than 
the null vector, a force-closure grasp has been obtained. Otherwise, there is a direction 
along the solution twist t # 0 in which motion is not opposed by any force. 

The following theorem states the requirements for vector-closure in an n-dimensional 
space [18]: 

Theorein 2.2 (Goldman and Tucker) In  an  12-dimeizsio~zal vector space, a set of vec- 
tors  V is vector closure if and only if V has at least n + 1 vectors ( v l , .  . . ,v,+l) such 
that  

I .  n of the 12 + 1 vectors are linearly i~tdependent.  

2. A strictly positive combination of the n + 1 vectors is the zero vector. 



At each contact with the object, a palm can only apply unidirectional force (it can only 
push, but cannot pull the object) further, if the contact is a point contact, the palm can 
not apply torque to the object. 

Theo rem 2.3 (Nguyen) In two-dimensional (2-D) space, the necessary and suflcient 
conditions for force closure with point contacts is that there exist four forces suck that: 

1. Three of the four forces have lines of action that do not intersect at a com,mon point 
or at infinity, 

2. Let ul ,  . . . , uq be the force directions of wrenches W1,. . . , W 4 .  Let p;, be the inter- 
section point of the nonparallel lines of action of W; and W j .  There exists a ,  P ,  y 
and S all greater than zero, such that: 

These coilditions are the same as those expressed in the Goldman-Tucker theorem stated 
before. They were derived by Nguyen [16] by applying the force-closure requirement: no 
t # 0 solution to the system GTtS  > 0. The first condition corresponds to no honlogeneous 
solution, and the second condition implies no particular solution to the system. 

For two point contacts with friction, Theorem 2.3 leads to the following corollary [16]. 

Corollary 2.4 Two point contacts ,with friction at pl and p2 f o ~ m  a planai- force-clos,urt 
grasp if  and only if the segment points strictly out of the friction cone at pl and 
strictly into the friction cone at p2. 

Two point contacts form a planar force-closure grasp if and only if the line segment 
joining the two point contacts is inside the cone of friction of each of the point contacts. 

Based on the fact that (1) each soft finger contact can generate four independent 
wrenches; (2) two soft finger contacts are able to generate six independent wrenches; and 
(3)  if two soft finger contacts are inside of each other's friction cone, a strictly positive 
combination of all eight wrenches applied to the object add to zero; Nguyen [16] proved 
that: 

Theo rem 2.5 A grasp with at least two distinct soft finger contacts is foi-ce closure i f  it i5 
in  equilibrium, with contact .forces pointing strictly into the friction cones at the respective 
points of contact. 

The problem of this study is precisely characterized in the following two definitions. 

Definition 2.6 A grasp configuration of two hands is the relative positioiz and orieiztatio.rz 
of the two hands in contact with the object to be grasped. 

Definition 2.7 Two hands are in a force-closure grasp configuration (FCGC) if they can 
apply arbitml-y force and moment to the object at the grasp configuration. 



Figure 2: Example of Two Palms in an Identical Grasp Configuration 

The definition above is a natural extension of force-closure grasps defined in Defini- 
tion 2.1. A FCGC is a grasp configuration able to apply to the grasped object a resultant 
wrench with any line of action. 

The objective of this paper is to establish a condition for FCGCs, and to develop an 
algorithm verifying this condition. 

It is noted that a. grasp configuration is independent of contact locations. Therefore, 
the two grasps illustrated in Figure 2 correspond to the same grasp configuration. Also, 
from the definition of grasp configuration, the condition obtained for FCGC is independent 
of the shape of the object to be grasped. 

Friction Cones 

The idea of friction cone of a point is associated with the range of directions that contact 
forces can have when exerted at that point. Because of the constant proportionality between 
the normal force applied to an object and its maximum applicable friction force, no contact 
force can be applied with a direction outside the friction cone of the contact point. If a 
friction force bigger than the maximum applicable for a given normal force is intended, 
sliding will occur and contact at that point will be lost. 

For the study of grasps in this paper, a set approach to the concept of friction cones is 
introduced in this section. Instead of focusing on the directions of the permissible contact 
forces, the friction cone of a point will be associated to all the points in the space touched 
by vectors representing exertable contact forces. 

3.1 2-D Friction Cones 

3.1.1 Friction Cone of a Point 

Assuming C)oulomb friction model, the maximum tangential force exertable through a point 
contact is proportional to the normal force, with the proportionality coefficient p being the 
friction coefficient. All the forces (or wrenches) exertable through the contact point form 
a cone (or a cone and its reflected image) which is the friction cone of the cont;act point. 
Due to the extensive use of wrenches, the friction cone of a contact point in this discussion 
includes the cone itself and its reflected image. 



Figure 3: Friction Cone of a Point 

In the point-set representation used here, the friction cone is represented by two con- 
vex cones including all the points through which lines along the contact forces lie. This 
representation does not convey information about the direction of the contact force; this 
must be specified separately. Contact forces are line vectors having magnitude, directioii 
and moment. 

Definition 3.1 The friction cone of a contact point is the set of points belonging to lines 
of action of forces exertable through the contact point. 

Since the palms are flat surfaces in shape, in 2-D space a ~ a l m  is modeled by a straight 
line segment, denoted by Pi wit11 the subscript i designated to indicate the specific palrn 
of concern. 

To represent the position and orientatioil of a ~ a l m  in 2-D space, a world coordinate 
frame (xw, yw)  with origin at  a fixed point, and a palm (or tool) coordinate frame (xt, y t )  
located at the center of the palm, c ,  with y t  being normal to the palm and pointing towards 
the object, are defined. 

Let p be a point on the palm and p its friction coefficient. Denote the set of contact 
forces exertable at point p as r,. Let cordinate frame (x t , y t )  be the reference frame. 

A contact force f, = f,u, of magnitude f ,  > 0 and unit vector up,  exerted at point p, 
T can be expressed as f, = f, [u,,, up,] . 

The set r, is given by 

According to Definition 3.1, the friction cone V, of point p is 

That is, the friction cone of point p comprises all the lines of action of wrenches exertable 
at p. For a point p, shown in Figure 3, its friction cone is 

V, = S, u s; 
S, and Sk are the two convex cones: 

s, = {s = P + $ 1 ~ "  + $2ub I $1 > 0, 42 > o),  ( 6 4  



St  P = { s  = P - $lua - $ 2 ~ ~  141 2 0,$2 > 01, (6'4 

Sb is said to be the image of S, .  Unit vectors ua and ub  obtained after rotating vector y, 
by an angle of -0 and 0 respectively, with 0 = arctan p ,  denote the extreme directions of 
forces f, E r,. 
Remark 3.2 Each point s E V ,  is associated with a directed line Us: ,  passing through it. 
Us: ,  is the line of action of the force fp exerted through the contact at point p.  

Using Pliicker coordinates, Us:,  is expressed as 

T u = [up,  ( s  x up) 

3.1.2 Friction Cone of a Palm 

Based on the concept of friction cone of a point, we can define the friction cone of a palm. 

Definition 3.3 The friction cone of a palm is the intersection 0.f friction cones of all the 
points on the palm. 

Denoting the friction cone of a palm by V ,  according to Definition 3.3,  

where Sc  and S i t  are as shown in Figure 4. 

The two vertex points of the friction cone of a palm, labeled C and c' in Figure 4, are 
called focal points. Their coordinates are 

and 

C' = C - bytr 

with b = a l p ,  and a being half of the palm's length. 
Geometrically, the friction cone of a palm is the friction cone of its center point c shifted 

away from the palm by a distance b = a l p  i.e., Sc, is S, shifted by a distance b along yt 
direction, and S;, is S: shifted by a distance b along -yt direction. 

Remark 3.4 Each point s E V is a.ssociated with a set of directed lines, U s  connecting it 
with all p E P .  U s  corresponds to all possible lines of action of contact forces e x e r t e d  b y  
the palm- passing through s .  Each line has the same direction as its coi-responding contacl 
force. U s  is expressed by 

u9 = u us:, (10) 
PEP 

The size of the palms represents the level of resolution with which the contact location 
can be specified. 



Figure 4: Friction Cone of a Palm 

3.1.3 Mult ip le  Contac t s  on  a P a l m  

Since the palm is modeled as a straight line segment, and no contact is assumed at the 
edge of the palm, the normal directions of the points on the palm (contact normals) are all 
parallel. Both the object and the palms are considered rigid, therefore, the direction of the 
force exerted by a palm on one contact point will be parallel to the direction of all other 
contact forces exerted by the same palm on the object. If there is more than one contact 
point on the palm, the equivalent to the total force exerted by the palm on the object, 
can be placed at  sonie point p. The force f ,  placed at point p equivalent to contact forces 
applied at m different points in the palm has the properties: 

All contact forces are parallel and with the same direction. Let us denote by f; the 
magnitude of f;, and u its unit. vector, hence 

also 

All points pi belong to the same line segment along axis xi. Espressing p ,  in terms of 
point p ,  

t Pi = P + (p i ,  - p:)xt = p + vixt 

where pl,, and p: represent the ordinate value of the points p!, and p t  respectively in the 
palm coordinate fra.me t ,  v; = pf, - p; represents the directed distance between the points 
p and pi. It follows that 



which means that point p is such that 

Since the abscissa value for all points of the palm in coordinate frame t is equal to zero, 

i.e., the coordinates of pt are obtained through a weighted sum of the position vectors of 
each contact point. 

Then, the equivalent contact force will always be  laced at  a point p between the two 
extreme points of a palm contacting the object. This force will also have a direction inside 
the friction cone of point p ,  hence, all properties derived here for ollly one contact point, 
are valid for the case of multiple contact points on a palm. 

3.2 3-D Friction Cones 

In this subsection, the definitiolls stated for the 2-D case are extended to the 3-D case. 
To represent the position and orientation of the palm in 3-D space, a world coordinate 

frame (xw, yw, zw) with origin at a fixed point, and a palm (or tool) coordinate frame 
(xt ,y t ,z t )  located at  the center of the palm, c ,  with zt being normal to the palm and 
pointing towards the object, are defined. 

Similarly to  the 2-D case, let p be a point on the palm and p its friction coeficient. Denote 
the set of contact forces exertable at point p as r,. Cordinate frame (xt, y,, zt)  will be the 
reference frame. A contact force f, = fpup of magnitude fp > 0 and unit vector up, exerted 
at point p ,  can be espressed as f, = fp[up,, up,, upZIT. 

The set rp is given by 

The friction cone Vp of point p can be defined on the basis of its geometry as 



where S, and Sk are the two convex cones: 

Each point s E V ,  is associated with a directed line Us;,  defined as in 7, but now using 
the new definitions of r,, S,, and Si .  

3.2.2 Friction Cone of a Palm 

The friction cone of a palm in 3-D space can be defined as the intersection of the friction 
cones of all points contained in that palm. It represents the set of all points l~elonging 
to lines of action of any force exertable on an object by the palm when the palm and the 
object are in contact. 

Two points: C a.t the front, a.nd C' at the ba,cli of a palm, both inside the friction cone 
of the palm, and closest to the palm contact surface are called focal points of the palm. 
From the focal points, the friction cone of the palm is projected. 

For the purposes of this study, flat palms with circular shapes are considered. The char- 
acteristics of the 3-D friction cone of a circular palm, with diameter 2a, can be mathemat- 
ically stated in basically the same way as expressed in Section 3.1.2. The only exception 
being the substitution of zt instead of yt as the vector normal to the palm. Therefore, 
Equations 9a, and 9b must be read as 

and 
6' = C - bzt 

Similarly to the analysis given in section 3.1.3, for the 3-D case, when multiple contacts 
occur on a palm, their effect can be expressed as the effect of a single contact in the same 
palm placed at an equivalent point. 

4 FCGC Condition 

This section establishes a condition for FCGC. The following theoreill is for two palnls in 
2-D space. 

Theorem 4.1 In  2-D space, a grasp configuration of two palms is a FCGC zf 

For an outside-in grasp, Pj c SCi,i ,  j = 1,2 , i  # j. 
. . For an  inside-out grasp, Pj C S;,i, z, 1 = 1,2, z # j 



P r o o f  
We first prove it for outside-in grasps. 
Let pl E PI and p 2  E P2 be two contact points on the two palms respectively. All that 

is needed is to  show that  p l  is in the friction cone of p2 ,  and vice versa. 
Since SC2 is the intersection of friction cones of all points in P2, the condition PI C SC2 

implies that  PI, and thus p l ,  is in the friction cone of p2 .  
Similarly, we c,a,n show tha t  p2  is in the friction cone of p l .  Therefore, from Corollary 2.4, 

the grasp configuration is a FCGC. 
The  case of inside-out grasps can be proved similarly. 
Extending the results t o  the 3-D case requires to consider soft finger (compliant) con- 

tacts: 

T h e o r e i n  4.2 In 3-D space, a y~*asp c ~ ~ t f i ~ ~ ~ r n t i o ~ z  of two palms i s  a FCGC if it satisfies 
tlze conditio7z of Theorem 4.1 ,  arzd th,e contacts beteueelz tlze palms and the object are soft 
fi~ager contacts. 

P r o o f  
By using Theorem 2.5, the proof is similar to  that  of Theoreln 4.1. 
Geometrically, the requirement for a FCGC is that  all the points on each palm are 

defined in the friction cone of the other palm. 

Position and Orientation of Two Palms in a FCGC 

In this section, an algorithm to test the FCGC coi~dition is developed in terms of the 
relative position and orient ation of the two palms. 

5.1 The 2-D Case 

Denote the frame coordinates of palm i as (x,, y,) with y, normal to  palm z and pointing 
towards the object. Assume both palms having the same length 2a, and the same friction 
coefficient p. Use palm 1 coordinates as the reference frame. Denote by /3 the angle, from 
palm 1 to  palm 2. The  coordi~lates of the center of palm 2 will be given by c2 = [x, ylT. 

In this subsection, relationships between the extreme values of x, and /3 for a FCGC 
will be founcl in terms of y. The strategy used here to determine the actual bounds of the 
variables will be to take y as a constant value, then specify (1) the variation of the extrenie 
values of as a function of x ,  and (2)  the variation of the extreme values of x as a functioil 
of p. Therefore, for each different value of y sets of extreme values of x and p will be found. 

Assuming a l  = a2  = a ,  and pl  = p2 = p,  the permissible values for x ,  y, and B ,  in a 
FCGC, satisfy the following inequalities 



Figure 5: Minimum Value of P in a FCGC 

I131 < 28 

5.1.1 Permissible Range of Values for ,B 

In a FCGC the position of c2 is constrained by the friction cone of palm 1, and the range of 
values for ,i3 is determined according to the position of c2.  The extreme permissible values 
of the angle /? will be called P,;,, and /Im,,, for the minimum and maximum values of P 
respectively. 

The angles and distances shown in Figure 5 are: p1 = atan2(a-r, y ) ,  7 - 1  = d m .  
and 71 = P l  - Pmi,. 

Using sine's law 
b 

sin al = -sin Q 
1'1 

(26) 

Note that la1 1 < 4. It follows that, 

al = arcsin (: sin 0) 

Pmin = 01 - Q + PI 

A similar approach yields the value of /Im,, 

where 
p2 = atan2(-a + z, y )  



Figure 6: Relationship Between x and /3 at  their Extreme Values in a FCGC 

5.1.2 Extreme Values for x for Permissible Values of P in a FCGC. 

Figure 6 shows palm 2 inside the friction cone of palm 1, having one of its edges touching 
the border of the same friction cone. Using Figure 6, a relationship between the extreme 
values of x as a function of ,f3 can be obtained. 

The distance cl shown in Figure 6 can be obtained using sine's law. Its value is given 
by: 

Therefore, the maximum absolute value attainable by x at  a given P and y satisfy the 
following equation 

Ixlmas = P[Y - b - d]  (33) 

Note that the sign of x at  its maximum absolute value for given /? and y ,  has a sign opposite 
to that of p. 

These results allow us to test if for a given y ,  the pair of values z and P correspond to 
a FCGC. 

5.1.3 Extreme Values for x and B in a FCGC 

The maximum values for the magnitude of both, x and P, can be obtained from the two 
triangles that the palms and friction cones form, as illustrated in Figure 7. The internal 
angles of both triangles are -0 + 7r/2, 20 - JPI, and ID] - 0 + 7r/2, one of the sides of each 
triangle is 2a, therefore the other two sides of each other's triangle are equal. Name v and 
w to the unknown length of the sides of the triangles, and rl and rz to the distance between 
the extreme points of the palms, as illustrated in Figure 7. Note that,  



Figure 7:  Relationship Between the Maximum Values of x and ,8 

There is symmetry in the positive and negative extreme values of x with respect to /3. 
Therefore, the following relationship can be found for x and ,8 

1x1 5 lxlmax = Y 
sin IPI 

1 + cos p 

5.1.4 Features of the Extreme Values for /3 

From the analysis performed in Section 5.1.1, it can be noted that 

For a given value of y ,  let 

lp,max={"-x f < O >  
- P ~ ,  otherwise. 

,4n implication of Equations 33 and 35 is that, when y t a, the extreme values of ,8 
at extreme values of x are such that 

lim sin l,!31max = ~ C L  -- - sin 28 
y- 'X  1 + ,12 

Therefore, 

Another interesting feature of the relationship between the variables x ,  y and ,8 is that, 

for y 2 b ( 2 +  e), if 1x1 = a(1 +cosO) then I @ I m a x  = 0, i.e., for an 1x1 = a(1  +cosB), 

having a FCGC requires that y > b 2 + ( $3) , and for those values of x and y, the value 

of IPIrnax = 0. 
Figure 8 shows curves with the maximum permissible values of x and /3 corresponding 

to different values on the y axis, in a ECGC. The values of P are given in radians, and the 
values of x,  y and u are in any length units. For the example shown in the figure, a. = 1 
and p = 1. The narrower boundaries for z and /3 correspond to the smaller values of y .  



Figure 8: Boundary values for x and ,B corresponding to  different values of y 

Summarizing the results obtained, to  verify if a grasp configuration is a FCGC, the proce- 
dure applied can be described as follows: 

1. Choose one palm as palm 1. 

2. Obtain values x, y and P.  

3. Verify if Illequalities 25 a.re satisfied. If not, exit with failure. 

4. Verify if P,;, < /3 < Pmax where ,&,in, and are given by Eq11atioi1s 28, and 29, 
respectively. If not, exit with failure. 

5. Verify if 1x1 is s~naller than or equal to the value obtained on Equation 33. If not, 
exit with failure; otherwise, the grasp configuration is a FCGC. 

5.2 The 3-D Case 

As stated in Section 4, to  get a FCGC using two palms, the two palms must be in the 
friction cone of each other. Here, an equivalent corlditio~l will be obtained in terms of 
relative position and orientation of the two palms. 

Figure 9 shows palm 2 being inside the friction cone of palm 1. The coordiilate frame 
of palm 1 is (xl ,yl ,  zl) ,  in this coordinate frame, the center of palm 2, c2, is expressed as 
[X, If, ZIT. In the figure, c, is the focal point of palm 1, I. represents the distance from c2, 
to the zl axis. 

Define plane G as the plane passing through point c2 and zl axis. The orientation of 
G varies according to the values of X and Y (abscissa and ordinate values of the center of 
palm 2). As it can be seen in Figure 9, due to the axial symmetry of the friction cone of 
a palm, if the characteristics of a grasp configuration are described having as a reference 
plane G, all different positions of palm 2 hearing t,he same relative position and orientation 
with respect to G ,  are equivalellt for the purpose of its force-closure analysis. Hence, the 



Figure 9: Palm 2 Inside the 3-D Friction Cone of Palm 1 

Figure 10: Unit vector in Spherical Coordinates 

conclusions drawn for one case are valid for all other grasp configurations having palm 2 
with the same relative position and orientation with respect to G. 

Therefore, the analysis that follo\vs has as a reference the coordinate frame (xu, yo, zO) 
which is obtained through a rotation of the coordinate frame of palm 1: (xl, yl ,  z l )  along 
its z axis by an angle II, defined as: 

The frame coordinates (xO, yo, zO) are such that the center of palm 2 lies in the x:-z,0 pla.ne, 
with zy normal to palm 1 and pointing inwards the object. 

Name palm 1 to the palm with the smallest friction cone. Vector z 2  is dcfined as 

Z 2  = [ ~ 2 z ,  a y ,  z 2 z l T  

Using spherical coordinates, angles cx and P are the two required parameters to specify 
the unit vector z 2 .  Figure 10 illustrates the meaning of these parameters in the context of 
this study. 

The center of palm 2 is expressed, in the reference frame coordinates, as: 

c2 = [r, 0, 2IT 



Tlic angle P is given by 
p = atan2(-z2,, -zZz) 

and a is given by 
a = as in(^^^) 

i.e., p is a rotation of palm 2 with an axis of rotation parallel to y l ,  and a is a rotation of 
palm 2 with an axis of rotation along the intersection of plane XI-zl and the palm's plane. 

In this section, relationships between the extreme values of I., P, and a,  for a FCGC, 
will be found in terms of 2. Tlle strategy used here to determine the actual bounds of the 
variables will be to take Z as a constant value, then specify (1) the variation of the extrenie 
values of a and /3 as a function of r ,  and (2) the variation of the extreme values of 1- as m 

function of a and p. Therefore, for each different value of Z sets of extreme vt~lue5 of I-, a 
and O will 11e found. 

5.2.1 Extreine Values for a and f l  

The extreme values of the a.ngles a a.nd f l  can be obtained for each value of 7. a.t a constant 
Z as described in this section. 

As it call be seen from Figure 9 ,  in a FCGC' the position of c2 is constrai~~ed by the 
friction cone of palin 1. Having palm 2 in the friction cone of palm 1, the rangc o f  values 
of a and p a,re b o ~ ~ n d  according to the position of c2. 

Assuming a l  = C L ~  = a, and pl = p2 = p,  the permissible values for r ,  2, c\: ant1 /j, in a, 
FCC: C, satisfy the following inequalities 

In Figure 11 it call be noted that for extreme values of a and P at a given position of 
c2 ,  if a cross section of the friction cone of palm 2 is drawn passing througl~ the a.xis of 
the cone ancl through the tangency point between palm 1 and the cone, that cross sectiori 
also goes througl-i the center of pa.lm 1 (origin of (xO, zO) coordinate a,xis). T l ~ e  reasoil 
for this is that the tangent to a circle at sorl-le poirlt is always norlna.1 to the radius of the 
circle touclling t ha.t point. 

Figure 12 will be used to obtain the extreme values for the angles a and ,O caracteriziug 
the orientation of lmlm 2 as a function of its position with respect to palm 1, in the reference 
frame coordinates. 'The tangent point between palin 1 and the friction cone of palm 2, is 
expressed as point e with coordiilates (xl ,  yl, 0). The origin of the coordinate fra.me is given 



Figure 11: A Cross Section of the Friction Cone of Palm 2 at the Tangency Between Palm 
1 and the Cone 

Figure 12: Geonietrical Relationships for Extrenie Values of cu and P at a Given Position 
of ca 



by 0. The triangle formed by points e ,  c2, and C2 lies on a plane that also passes through 
0. The relatiol~ship between angles and distances in Figure 12 are as follows. 

Usine: sine's law 

Then, we have that since 
0 < 8 < 7r/2 

the value of S can be obtained as follows: 

In Figure 12, defining the unit vectors 

e - c  
p = -  

h 

and 

and naming the angle between p and w as P, we have that 

The angle R is, therefore, given by 
R = S - P  

note that the angles P, R, and S are all non-negative. Define frame A, a new set of 
coordinates (xA, yA, zA) such that 

zA = W (54) 

and 
A A 4 y = z  x x -  

i.e., the unit vector zA has the sallle direction as vector -c.L; and points e,  CZ,  C2,  and 0 
all lie on the y-s plane of frame A. 

Finally, define coordinate frame B, a coordinate frame obtained after rotating coordi- 
nate frame A about xA by an angle R. 

The basis vector zB, of coordinate frame B, is the normal vector to palill 2 when the 
orientation of palm 2 is such that its friction cone touches the edge of palm 1 (at point e ) ,  
hence, zB yields an extreme vector for FCGC. 



From zB, it is possible to obtain the corresponding extreme values of a and /?, through 
Equations 43, and 44. 

The orthogonal matrix that represents the rotation from the base frame (palm 1 frame), 
to coordinate frame A, is given by 

The matrix representing the rotation from coordinate frame A to coordinate frame B 

R; = 0 cos R -sin R [: i COSR 1 
In frame B coordinates, vector zB is expressed as z" = [0,0, 1IT.~herefore, the repre- 

sentation of the vector zB in global frame coordinates is given by: 

0 
(zB)' = R.;FL$zB = [xA4, yA1 z A  ] [ ] 1-91 

The extreme values of a and P: aeXt, and PeXt,, respectively, are implicit in the evaluatioi~ 
of (2")'; i.e., aeXt, and PeXt,, for given values of n: and 2, are such that: 

- sin cos crest, 

sin a,,,, = [ -(sin R)yA + (cos R)zA ] (60)  
- cos Pextr cos a e x t r  

5.2.2 Extreme Values r for Given Values of 2, cr and /3 in a FCGC 

Define a new coordinate frame, fra,me H with origin at OH = <,, and basis vectors 
(xH, yH,  z H )  such that: 

Z H  = z0 (61)  

if z2 1 1  Z l  
zz xz '  otherwise 

By expa.nding the respective values of the vectors, it can be concluded that the orien- 
tation of coordinate frame H is obtained by rotating the base frame about its z axis by an 
angle p = atan2(- sin a ,  sin /3 cos a). 

The matrix describing the translation from base frame to H frame is given by 

T; = 1 R' % 1 
0 0 0 1  

- sin 0 cos cu sin a 

&Z p cos2 a+sin2 a 
0 0 -  

- sin a sin p cos a 

&in2 0 cm2 .+sin2 a Jsin2 pcos2 cx+sin2 a 
0 0 

1 b  0 0 
0 0 0 1 -  - 

(64) 



Resolving vector z2 in the H coordinate frame: 

I - Jsin2 p cos2 a + sin2 a 
Z; = (R&) - 'Z~  = 0 

- cos p cos a! 

Similarly, the center of palm 2 can be resolved in the H coordinate frame as: 

- T sln p cos a 

d s i n 2  p cos2 ol+sin2 a 
T sin cu 

d s i n 2  p cos2 a+sin2 a 

2 - b  
1 - 

The friction cone of palm 1 is drawn from the focal point c,, with an axis of symmetry 
along the vector z H .  The equation representing the external points of this friction cone in 
H frame coordinates is 

2 2 
X ~ + ~ ~ - , % Z  = o  (6'7) 

The condition for a FCGC is that palm 2 must be entirely included in that cone. To 
determine if this is true, the equa.tion of the extreme points of the friction cone intersecting 
the plane on which the palm j is placed, will be found. 

In H frame coordinates, the plane containing palm 2 is given by: 

where D is a constant. The center of the palm is in that plane, therefore the value of D is 
given by 

D = (2-  b)cos~cosa+1-s in /3cosa  (69) 

Another coordinate frame, frame I, will be defined such that its plane 2-y is parallel 
to the plane given by Equation 69, and its y axis is the sanle as the y axis of frame H. 
Coordinate frame I is obtained by rotating fra.me H about its y axis by a.n angle 4 such 
that 

H H  $ = a t a n 2 ( - ~ ~ ~ ,  -z2*) (70) 

The matrix describing the rotation from H frame to I frame is given by 

cos 4 o sin 4 cos p cos a o Jsin2 p cosZ a + sin2 n 
0  1 0 

- sin 4 o cos 4 - Jsin2 p cos2 a + sin2 a o cos P cos a 

For a given vector z2, and a given 2, it is possible to find the maximum value that r 
(shift from the z0 axis between the center of the two palms) can have in a FCGC'. 



The composite translation from the global frame to I frame is given by 

sin P cos a cos 4 & 
sin4 sin 4 sin p cos a O 1 

By using matrix Ty, it is possible to find the maximum value of r for given 2, P and a 
(the vector z2 is expressed in terms of ,O and a) .  The center of palm 2 can be expressed in 
I frame coordinates as: 

T: = T ~ T ?  = 

~sin/3cosacos 4 
sin d - (2 - b)  sin 4 1 r c.iz 1 

sin a cos 4 sin /3 cos a 
sin 4 sin 4 

- sin 4 0 cos 4 b 

* 
sin 4 

r s i npcosa  + (2 - b)cosq5 

The new set of coordinates can be used to describe the intersection of the cone and 
the plane expressed in H frame coordinates, respectively, by Equations 67 and 69. The 
equations of the cone and the plane are represented in terms of these new coordinates 
respectively as: 

(x cos 4 + z sin $)2 + y2 - CI?(-X sill $ + z cos $)2 = 0 (74 ) 

and 
z = D  

substituting the value of s in the equation of the cone yields 

y2 + (1 - sill2 $(1 + p2))x2 + 2 0  sin dcos $(1 + CI*)X - D ~ ( ~ ~  - sin2 $(I + p 2 ) )  = 0 

When M = 1 - sin2 $(I + > 0, the curve represented by the equation is an ellipse (the 
particular case for which A1 = 1, i.e., when q5 = 0, is when the curve is a circle). When 
M = 0, then sin 4 = cos 8; ,  and the curve is a parabola. Finally, when M < 0 the curve is 
a hyperbola. 

The points (x,  y )  for which q < 0 are interior points of the curve, they represent points 
on the plane inside the friction cone of pa l~n  1, the points ( :c ,  y )  for which q > 0 a.re exterior 
poiilts to the curve, and they are points outside the friction cone of palm 1. If the center 
of palm 2 is inside of the friction cone of palm I ,  there is a possibility that the whole palill 
is entirely included in it. This condition can be verified by evaluating q at the coordinates 

I (x = cZz, y = I&), which axe coordinates of the center point of palm j along the a,xes .z- and 

Y. 
The minimum distailce between point c2, and the extreme points of the friction cone of 

palm 1 along the p1.ane of palm 2, will then be determined. The problem can be stated as: 



subject to: q = 0 (78) 

If the minimum distance between those extreme points and point c2 is greater than or equal 
to  u, then palm 2 is completely included in the friction cone of palm 1, otherwise the grasp 
configuration is not a FCGC. 

Applying Lagrange multipliers, the solution to the optimization problem can be found. 
The strategy used here to determine the boundary value for r in a FCGC will be to set 

fixed values of a ,  P, and Z,  and increment the value of r until the maximum I. is reached 
in a FCGC. Initially, values of r and Z will be chosen in such a way that the friction cone 
of palm 1 includes palm 2. 

Figure 13 shows incomplete overlapped boundaries of permissible values r ,  a, and ,# 
for different values of Z,  except for Z = 3.12 in which the whole boundary is shown. 
The parameters a,  and p ,  a,re equal to 1 for the case shown in Figure 13. The conlplete 
bounds are symmetrical with respect to the plaae P - r. To bett,er describe their features, 
the faces correspollding to negative values for a. have been omited except for the top of 
each boundary surfa,ce, a.nd lines e~rlpha,sizing the intersection between plane ,!3 - 7% arid 
the boundary surfaces have been dra,wn on top of the surfaces corresponding to the values 
shown. For cr = 0, the values of r and /3 for a given Z ,  are respectively the same as tlie 
values of x and -/3 for a given y in the 2-D case (Figure 8). 

An interpretation of the previous subsections can be given as follows. In Subsection 5.2.1, 
finding the extreme values of a and /3 at given I -  and Z ,  is the same as finding the extreme 
orientation, given the position, of palm 2 relative to palm 1, for which palm 1 is in the 
friction cone of palm 2. In Subsection 5.2.2, finding the extreme values for I. for given 
values of Z ,  a and p is the same as finding the extreme position, given the orientation, of 
palm 2 relative to palm 1, for which palm 2 is in the friction cone of palm 1. Therefore, 
the problem of verifying if a grasp configuration is a FCGC, has been decomposed into two 
parts. 

However, the results obtained in Subsection 5.2.1 cannot be directly applied, since the 
coordinates of the position vector e were assumed instead of derived, and from it the values 
for cre,tr and were obtained. 

To make these results useful, note tha.t, if Z > 2b, i.e., if w # z2,  where w is a,s given 
by Equation 51: 

angle R (shown in Figure 12) can be obtained from: 

cos R = w . zz (80) 

zz is the unit normal to palm 2; if Z = 2b, the only solution is that a ,  (3, and r be all zero. 



Figure 13: Bou~ldary values for a,  j3 and r corresponding to different values of Z 



From this values of e ,  and R, values for a,,,, and P,,,, can be obtained. If their 
absolute values are bigger than the absolute values of a and ,8, respectively obtained from 
Equations 43 and 44, palm 1 is in the friction cone of palm 2. 

Therefore, to  verify if a grasp configuration is a FCGC, the procedure applied can be 
described as follows: 

1. Choose one of the palms as palm 1 

2. Obtain values 2, r, a and p, as expressed in Equations 41, 42, 43, and 44. 

3. Verify if Inequalities 45 are satisfied. If not, exit with failure. 

4. Verify if for given r, and 2, the values of cr and ,B are such that,  by using position 
vector e and angle R, obtained in Equations 79 and 80, the respective values of a 
and p have absolute values of magnitude smaller than or equal to  the absolute values 
of the angles a,,,, and pest, satisfying Equation 60. If not, exit with failure. 

5 .  Verify if I- is such that the solution to  the minimization problem of Expression 77, 
under the condition given by Equation 78, is greater than or equal to a ,  the radius of 
the plate. If not, exit with failure; otherwise, the grasp configuration is a FCGC'. 

6 Conclusions 

We established a condition and a computational algorithm for force-closure grasps by using 
two flat-surface palins. The result is particularly useful for determining force-closure grasp 
of relatively large objects. The condition may not be satisfied when grasping a small 
object though a force closure clearly exists. It is noted that the study is based on static 
analysis. Dynamic properties such as mass are not considered. This implies that t,he result 
is applicable to lightweight objects. 

The simplicity of the FCGC condition is made possible by taking advantage of the 
flat-surface palms and their intended applications (grasping large objects). On one hand, 
the palm is "viewed closely" as a flat surface to provide the contact normal. On the other 
hand, since the object is relatively 1a.rger than the pal~n,  the p a l ~ n  is "viewed renlotely" as 
an equivalent point'. Thus the FCGC condition for the two palms is similar to that of the 
two-point contacts. The practical assumptions and the simplicity of the resulting condition 
make it promising to implement it in real time. An experimental setup, using two PUh/1.4 
250 robots, and based on the theoretical result of this paper, is currently being developed 
in the GRASP Laboratory, University of Pennsylvania. 
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