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Abstract

BUILDING PARAMETERIZED ACTION REPRESENTATIONS FROM

OBSERVATION

Ramamani N. Bindiganavale

Norman I. Badler

Virtual worlds may be inhabited by intelligent agents who interact by performing

various simple and complex actions. If the agents are human-like (embodied), their

actions may be generated from motion capture or procedural animation. In this thesis, we

introduce the CaPAR interactive system which combines both these approaches to generate

agent-size neutral representations of actions within a framework called Parameterized

Action Representation (PAR). Just as a person may learn a new complex physical task

by observing another person doing it, our system observes a single trial of a human

performing some complex task that involves interaction with self or other objects in the

environment and automatically generates semantically rich information about the action.

This information can be used to generate similar constrained motions for agents of di�erent

sizes.

Human movement is captured by electromagnetic sensors. By computing motion zero-

crossings and geometric spatial proximities, we isolate signi�cant events, abstract both

spatial and visual constraints from an agent's action, and segment a given complex action

into several simpler subactions. We analyze each independently and build individual PARs

for them. Several PARs can be combined into one complex PAR representing the original

activity. Within each motion segment, semantic and style information is extracted. The

style information is used to generate the same constrained motion in other di�erently

sized virtual agents by copying the end-e�ector velocity pro�le, by following a similar end-

e�ector trajectory, or by scaling and mapping force interactions between the agent and an

object. The semantic information is stored in a PAR. The extracted style and constraint

information is stored in the corresponding agent and object models.
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Chapter 1

Introduction

How do you teach a new complex physical task to a group of people? As a natural

solution, you �rst demonstrate the task by breaking it into simple subtasks. The group

of people initially observe you, assimilate information about the task, and then attempt

to perform it. While the people's actions may be similar, they will not be exactly the

same. The dissimilarities are mainly due to the di�erences in sizes of the people, as well as

individual performance or stylistic variations. Also, when the people are asked to repeat

the same task in a di�erent situation, they automatically adapt to the new environment

and perform the task with subtle variations. The main objective of this thesis is to build

a system that can observe a given action, automatically abstract motion information and

build a parameterized action representation (PAR) from it. From a single PAR, we then

successfully generate the task motions for virtual human models of di�erent sizes in di�erent

situations.

The parameterized action representation (PAR) [8] gives a high level description of an

action. A PAR is parameterized because an action depends on its participants (agents

who execute the action and the objects involved in the action), and other attributes)

for the details of how it is performed. A PAR also includes applicability conditions and

preparatory speci�cations that have to be satis�ed before the action is actually executed.

The action is �nished when the termination conditions are satis�ed. Uninstantiated PARs

(UPARs) are stored hierarchically in a database, called the Actionary. During execution,

an UPAR is instantiated into an IPAR (Instantiated PAR) with speci�c information on

1



the agent, physical object(s), manner, termination conditions, etc. Our system generates a

UPAR with the necessary PAR attributes, the default preparatory speci�cations, and the

termination conditions of the observed action.

We are mainly interested in contact based complex actions involving interactions with

objects (e.g., drinking from a cup, digging with a shovel, etc.). The non-contact based

actions generally fall under gesture movements and can be handled by other systems like

EMOTE [18]. We motion capture the actions of a person, executing various complex

actions involving interaction with objects (including self) in the environment. These actions

are mapped in real-time to a same-sized virtual human model (called the primary agent).

The motion captured data is automatically segmented, parameterized and analyzed for

speci�c features used in generating a new UPAR or in recognizing an existing one. The

UPARs are now applied to imitators, referred to as secondary agents, who try to execute

the same action by interacting with the objects in a similar fashion. The thesis here is that

relationships between the world, the body, and the end-e�ectors (hands, eyes) of the primary

agent have been overlooked and are of considerable importance in reconstructing correctly

scaled motions. Often the objects being held are simply wielded for e�ect, such as holding

a shield or slashing with a sword. Keeping feet in contact with the ground plane is one

frequently encountered problem, but usually only vertical displacements are moderated:

the actual horizontal step position may be input to inverse kinematics procedures to keep

the body from oating or sinking. The issue of changing the step locations is related to

the motion mimicry problem, but we do not address it here. In this thesis, we show that

the PARs generated automatically from observing motion captured data can be used to

generate the correct actions while successfully maintaining spatial constraints for hands

and eyes, such as grasping a cup at the correct place and bringing it to the mouth for a

drink. The style, for the new motions, can be borrowed from the motion captured data or

can be newly generated using various manner parameters.

In this thesis, we �rst introduce a technique to automatically recognize spatial and

visual alignment constraints from captured motions. Maintaining these constraints is

the basis of motion mapping from the primary agent to secondary agents. We then

extend this technique to do automatic motion segmentation and parameterization of a

given action. The problem of recognizing motion events directly from (synthetic) image

2



sequences was �rst studied by Badler [7]. We update these notions to abstract information

about signi�cant events and spatial constraints from 3D motion captured data. In general,

we are interested in building complex actions out of simple components (motion primitives),

as we feel this approach accelerates learning of new tasks. Hence, we break up a given

complex action into several simpler subactions, analyze them independently, and build

individual PARs for each of them. We �nally combine all the primitive PARs into one

complex PAR representing the original activity. We test our PAR generation system on

the following examples - drink from a mug, touch an object, slide an object and pick up

the object with both hands.

We emphasize here that unlike Atkeson et al. [2, 55], we do not use any form of

\machine learning" techniques for generating motions from observation. Instead, we show

that we can abstract all required information from one sample. We prove this by testing

the motion abstraction and PAR generation methods on three di�erent sets of motion

captured data.

The task of generating a parameterized action representation from observation can be

divided into several subtasks:

Motion Generation for Primary Agent: Generate motions for the primary agent

frommotion captured data by using real-time optimization techniques [61, 67] to solve

for the kinematic constraints imposed by the data itself. This process is described in

Section 3.1.

Automatic Motion Segmentation Automatically segment the primary agent's actions

using the concepts of motion zero-crossing and co-occuring geometric spatial

proximities of end-e�ectors with interacting objects to recognize the spatial

constraints. The occurence of a spatial constraint signals the end of a motion segment.

The segmentation is done separately for each kinematic chain of the virtual human's

body. This process is described in Section 4.3.

Motion Understanding and Feature Extraction: We analyze each individual

motion segment and extract relevant features, and PAR parameters. We also

abstract the line of attention of the primary agent during signi�cant events. We

then impose this as an additional spatial constraint to be solved during motion

3



generation for the secondary agents. This alignment constraint forces the secondary

agent to look at the same objects. This provides a very natural a�ect as, in general,

people tend to look at an object while interacting with it [21]. All the extracted

features are discussed in Section 4.4.

Action Recognition: We compare the extracted features with those of pre-existing

action descriptions in the feature table. If no match is found, it is added to the

feature table and a new UPAR is also created. The process of feature-based action

recognition is described in Section 4.5 and the process of building primitive PARs is

explained in Section 4.6.1.

Building Complex Action: We combine the PARs generated for all the motion

primitives and create one complex UPAR corresponding to the performed action.

This is explained in Section 4.6.2.

Motion Generation for Secondary Agent: In the �nal stage, we generate motions

from newly created PARs for any secondary virtual agent in a given environment.

The generated motions are shown to have di�erent styles borrowed from the primary

agent. This is explained in Section 4.7.

The thesis is organized as follows. In Chapter 2, we review the di�erent approaches

and their purposes for studying human performance data with an intention to imitate it

either by a robot or by a virtual agent. In Chapter 3, we describe the process of motion

abstraction and mapping the motions directly from the primary agent to a secondary agent.

In Chapter 4, we describe our methodology for generating a parameterized representation

for the given action. In Chapter 6, we discuss the results and some future work.
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Chapter 2

Background

A common way of teaching someone to perform a movement skill is to demonstrate or

model the skill. Romack, in [53] describes imitation or observational learning as the process

by which a performer acquires a novel behavior by observing and attempting to produce

actions performed by another.

In this thesis, we are attempting to teach a virtual agent to perform a new task. To

do this, we develop a system that observes a person's actions and parameterizes it in such

a way that a virtual agent of a di�erent anthropometric size can imitate the performer's

actions. In this chapter, we discuss di�erent approaches and their purposes for studying

human performance data with an intention to imitate it either by a robot or a virtual

agent.

There are many sources of performance data: video cameras, LCD cameras, CCD

cameras, motion capture systems [41] - magnetic, optical and video, etc. The magnetic

motion capture system generates data that has six degrees of freedom (three for position

and three for orientation). The data from the optical motion capture system has three

degrees of freedom for position. The data from the rest of the sources has to be analyzed

using vision-based techniques. Human performance data in any form is a rich source of

information, and is immensely valuable for a variety of applications :

� generating animations in the virtual world [1, 13, 17, 46, 56, 57, 62, 63, 64],

� motion understanding [35, 40],

� action recognition [3, 14, 23, 24, 26, 59, 66],
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� building interactive virtual worlds [10, 15, 26],

� robot learning from demonstration [2, 55]

2.1 Generating Animations in the Virtual World

Motion capture is a very popular and e�cient technique for generating complex and natural

motions of virtual humans or any other virtual character. In most applications, sensors or

optical markers are placed on an actor's body, and the motion-capture system monitors

and records the actor's motions. The resulting data can then be used to animate many

types of virtual characters.

There are di�erent types of motion capture systems (surveyed in [42]) - magnetic,

optical, and video. We use the magnetic system, Motion Star, from Ascension Technology.

But, the methodologies and techniques described in this thesis are applicable to data from

any source.

The motion captured data can be used in several ways. One of the main purposes is

to replicate motions of the actor on di�erent sized avatars in real-time [13, 9, 46, 56, 57,

63]. For other applications, the motion-captured data can be further edited using various

techniques. Some of the techniques [1, 17, 62, 64] use signal processing methods to edit

and modify the actions for the same virtual agent. The techniques described in [22, 29]

use optimization methods to modify the original motions in the presence of space-time

constraints. As explained in [22], space-time refers to \the set of all DOF (joint angles and

�gure position) over the entire animation sequence." In [54], a new set of transition motions

are created between two basis motions using space-time constraints. All these techniques

treat the problems of mapping motions from one virtual agent to other agents, of modifying

the nature or style of the motions, and of modifying the motions while maintaining space-

time or spatial constraints as separate problems and solving them individually.

2.1.1 Motion Retargetting

The focus of our thesis is on actions involving interactions with self or other objects

in the environment. Given the motion captured data of a person interacting with the

environment, our goal is to build a system capable of understanding, abstracting, and
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parameterizing the motion data such that the data can be adapted to agents of di�erent

sizes while maintaining the constraints. This problem is commonly referred to as motion-

retargetting. In [31], constraint based motions are adapted to other agents, but interactions

between objects and self are not considered. In [30], optimization techniques are used to

retarget the motions to other agents during object interaction. But a very simple human

model is used and the problem of visual constraints is not considered. In [19], the problem

of real-time motion retargetting is addressed.

In [33], Hodgins et al., describe a technique that adapts an example behavior to the

physical characteristics of a new character. This technique works by scaling control

system parameters based on a dynamic analysis of the two characters. The original

motions of the �rst agent are computed using dynamic simulation, consisting of a dynamic

model containing equations of motion for the rigid body model, constraint equations

for the interaction with the ground and parameterized control algorithms for running or

bicycling. During each simulation step, the control algorithm computes desired positions

and velocities for each joint based on the state of the system and the requirements of the

task as speci�ed by the user. Proportional-derivative servos compute joint torques based

on the desired and actual value of the joint. The equations of motion of the system are

integrated forward in time, taking into account the internal joint torques and the external

forces and torques from interactions with the ground plane or other objects. These control

system parameters are then scaled (for both geometric and mass data) to achieve motion

for a new character that has similar dynamic properties to that of the original.

2.2 Motion Understanding

Motion understanding is the key to action recognition. Bobick [14] distinguishes between

a motion (movement) and an action as follows: a movement is the most atomic primitive,

requiring no contextual or sequential knowledge to be recognized; an action is a larger scale

event which typically includes interaction with the environment and causal relationships.

Also, understanding an action implies producing a semantically rich description of the

various action primitives and the relations between them. In this section, we describe

various techniques that use qualitative methods to understand and describe an action.
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2.2.1 Computational Scene Dynamics

In [40], Mann et al. reason about qualitative scene dynamics to understand observations

of interacting objects. They derive symbolic force-dynamic descriptions directly from

camera input. An action performed by a human is observed through a camera, focusing on

interaction between a hand and the objects. All other movements are ignored. The motions

are interpreted in terms of explicit Newtonian physics-based representations. In the very

�rst frame, the positions of all objects are assumed to be known. From this, the motions

are easily tracked over time. Based on the contact relationships and the types of forces

between the objects, various interpretations are made at each frame. Each interpretation

is checked to see if it is dynamically feasible and the most preferred one is selected. These

interpretations are used to identify the active and passive objects in an action.

In [39], the above technique was modi�ed to make interpretations over a period

of time thus removing the per-frame ambiguity. The interpretations are of the form

CONTACT(object), ATTACH(object), FLYER(object), GRASPER(object), etc. These

interpretations can be strung together to give a description of an action. But, no further

information is obtained which can help in reproducing similar actions.

2.2.2 Task understanding of polyhedral objects

In [35], Ikeuchi et al. observe a human performing an assembly task, understand the

task and generate a robot program to achieve the same task. A video camera is used for

observing the task. In this paper, the actions of a person manipulating a polyhedral object

are abstracted as a series of robot commands. The actions are initially captured on camera.

The start and end of actions are determined by the appearance and disappearance of the

person in the series of images.

An object recognition module �rst extracts the features of all objects (not the human)

in the environment and then sends them to a geometric modeler which builds the

corresponding geometric object models. These models are used to determine all the face

contact relationships. It is assumed that at any given time, there is only one manipulated

object and the rest are stationary objects. Only the objects in the environment are of

interest and not the human. So, the main focus is on what manipulative actions were done
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on the objects and not on how they were done by the person.

The di�erent con�gurations (assembly relations) for polyhedral objects in contact are

�rst pre-de�ned based on the number of faces (sides) in contact. A contacting face pair is

formed by a face from the manipulated object and a face from the environmental object,

which have the same face equations and whose surface normals are opposite in direction

to each other. These con�gurations also determine the possible motion directions - in-

contact direction (object moves but remains in contact with the environment objects) and

detaching direction (object moves breaking the face contact). Abstract task models are

de�ned for all the possible transitions between these assembly relations. Each task model

consists of an assembly relation transition, a motion macro (like move, insert-into actions)

and the necessary parameters required to expand the motion macro into a sequence of

manipulator commands.

In the instantiated environment, a geometric reasoner is used to recognize the start and

end assembly relations from the pre-action and post-action world models respectively and

to recognize the correct abstract task models. There may be several paths to transition

from the start to end assembly relation. The correct path is determined by �rst using dis-

assembly relations from the goal con�guration (i.e. going in the reverse direction). Five

motion parameters (starting con�guration, approaching con�guration, goal con�guration,

grasping con�guration and approach direction) are determined for each instantiated action.

The approach direction is determined by the contact normal of the object in the post-world

model. The approaching con�guration is determined by translating the goal con�guration

along the contact normal. Each abstract object model has several candidate con�gurations

for grasping. The correct one is calculated based on the current body con�gurations and

collisions with the environment objects.

Finally, the instantiated tasks are converted to robot text commands. The robot is

assumed to be capable of doing all the actions with no constraints.

2.2.3 Qualitative Recognition

Kuniyoshi et al. [37] developed a qualitative visual recognition system for block assembly

tasks. Here, a multi-processor vision hardware system is used for detecting various visual
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features in parallel. Qualitative changes in the movement of the tracked object together

with a directed visual search trigger attention switching and temporal segmentation.

Movements and their e�ected events are used in classifying the actions.

2.3 Action Recognition

The problem of recognizing actions has been attempted both in the robotics and graphics

domains. For e�ective action recognition, observing a performer's bodily motion is

necessary but not su�cient. A recognizer must also look for causally linked e�ects in

the performer's surroundings and relate movements and e�ects. We need information not

only of the movement of the human but also of the e�ect, which must be causally linked.

For example, reach, touch, pickup, etc, may have some similar features but they cannot be

classi�ed to be the same using only body movement information.

There are two distinct approaches to action recognition - the knowledge based or context

sensitive approach and the machine learning approach. In this section, we discuss various

techniques using the two approaches. In all these methods, newly generated actions are

matched against previously stored de�nitions of actions.

2.3.1 Knowledge Based Approach

In [3], computer vision techniques are used for security applications to recognize a few very

speci�c actions (like picking up a phone, stand/sit, and use a computer terminal). For each

action, speci�c regions of the image are tracked and the results completely depend on the

prior knowledge of the environment. The output of this system is both a textual and a

key frame description of the recognized actions.

In [26], Emering et al. address the problem of recognizing full body human actions

in real-time. A set of actions is maintained in a database from which candidate sets are

selected based on the closest match to the given new action. Each action in the database is

de�ned as a combination of action primitives - positions/velocities of the center of mass, end

e�ectors and �nal postures of the virtual skeleton. The action description process involves

2 hierarchical levels - gesture and posture. At the gesture level, the action is described in

terms of (CoM,velocity direction) or (ende�ector, velocity direction). Example of velocity
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directions are front, back, left, right, etc. which are all de�ned relative to the body. At

the posture level, the action is de�ned in terms of the �nal posture (joint angles).

In the action recognition process, the candidate data set is initialized with the database.

(i.e. all actions inside the database are initially considered as candidate actions). Then, for

each new body posture sample, the CoM velocity is �rst compared with the CoM velocities

of the actions in the database. If there is no match, the process is aborted. Otherwise,

only the few actions in the candidate set with which there is a match are retained. Next,

the EndE�ector (EE) velocities are compared. The �ltering process continues with the

CoM, EEs and the joint values. But now, the comparison is with the �nal posture's joint

angles and CoM and EE positions. Only those actions in the candidate set which di�er by

a very small amount (prespeci�ed) in value from the given new action are retained. The

joint angles are considered in the �nal stage of the recognition process.

The actions stored in the database are prototype actions - derived from a single person's

actions. Most of the actions considered are free actions and do not involve any interaction

with objects. If there is any object, the presence of the object is determined by the constant

distance between the hands. All the measurements are normalized to the agent's height.

Hence, actions of di�erent sized virtual humans can be recognized. But, if the same task is

done with di�erent styles, then it cannot be recognized. This is because a close match to

postures, joint angles and velocities is sought at each frame. The recognized actions of the

avatar can be used to activate motion generators to produce a similar or reactive action in

another agent.

2.3.2 Machine Learning Approach

In [59], Siskind et al., use a maximum likelihood approach for training models to recognize

simple spatial motion events. The event recognition task is partitioned into two subtasks -

tracking and classi�cation. In the lower level task of tracking, colored and moving objects

are tracked separately. Using the techniques of proximity clustering and region-growing,

each of the objects is �tted with a parameterized ellipse that abstractly characterizes the

position, orientation, shape and size of the object. A large feature vector, extracted from

each ellipse, is used for the upper level task of event recognition. Supervised learning
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techniques are used to train a Hidden Markov Model from a set of examples for each event

class. Then given any new sample, the HMM is used to identify the class (or event) that

has the closest correspondence with the sample. In this method, the start and end of

events is speci�ed manually. Also, only spatial motion features are recognized and not

force-dynamic ones.

In [23], Davis et al. use temporal templates for action recognition. The two components

of the temporal templates are MEI (motion-energy image) indicating the presence of motion

and MHI (motion-history image) indicating the recency of motion. Action recognition is

done by comparing the templates against a table of known actions using Mahalanobis

distance. In [15], Bobick et al. use this action recognition process along with knowledge-

based recognition to build a perceptually based interactive narrative virtual space for

children to play in.

2.3.3 Building Virtual Worlds

In [10], Balcisoy et al. describe an augmented virtual reality system in which acts of a

real person and a virtual human are portrayed in the virtual world. The virtual human's

actions are completely triggered by user input and not by action recognition.

2.3.4 Robot Learning from Demonstration

In [2], Atkeson et al. describe learning a pendulum swing up task for a Sarcos robot arm

based on a human demonstration of the same task. The human motion is measured using a

stereo vision system. The robot tries to follow the human hand trajectory, and learns a task

model and a reward function (intention model) by watching its own performance over a

few trials, using the same camera used to watch the human performance. A planner is then

used to �nd a swing up trajectory that works for the robot based on the model learned. A

parametric model is built using a knowledge-based approach and a non-parametric model

is built using locally weighted learning. In [55], Schaal extended this technique to use

reinforcement learning. In this case, the robot was able to learn pole-balancing from a

demonstration in a single trial with great reliability.
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2.4 Summary

In this chapter, we reviewed the di�erent approaches to and their purposes for studying

human performance data with an intention to imitate it either by a robot or by a virtual

agent. Some of the techniques only addressed the problem of deriving motions from motion

capture or motion retargetting. Some of the other techniques addressed the problems

of understanding motions for generating descriptive text, or of recognizing previously

generated motion types (action recognition) or teaching a robot using various learning

techniques to cause similar object motion. Also, the focus of all these techniques was on

replicating either the object motion or the agent motion but not both. In this thesis, we

address the problems of understanding motions involving interactions with other objects

or self, to abstract style and semantic features from them and to generate parameterized

conceptual representations of the actions, to e�ciently recognize previously generated

actions, to adapt extracted motion information from one agent to another, and to use

a single trial of reference motion to teach virtual models of di�erent sizes to perform the

same action while adapting to a new environment. We also replicate the motions of both

the agent and the object.
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Chapter 3

Motion Abstraction and Mapping

The �rst task in generating a parameterized action representation from observation is to

abstract all necessary semantic and motion parameters from the action. In this chapter,

we describe the initial process of abstracting motion from a primary agent's actions and

mapping it directly to a secondary agent without building a UPAR. This process is the

basis of our PAR generation system. In the next stage of generating a PAR (Chapter 4),

we deal with each motion segment separately and build a PAR which can be reused later.

This chapter is organized as follows. Section 3.1 describes the human body model

and the technique used to derive the motions for the primary agent from the motion

capture data. Section 3.2 describes the technique to recognize the spatial constraints and

Section 3.3 explains the method to compute the locations of the constraints. Section 3.4

describes the techniques for mapping the motions to other agents and Section 3.5 describes

a simple technique to recognize the visual attention of the primary agent. Section 3.6

presents the results of motion abstraction and mapping to another di�erently sized agent.

3.1 Deriving Motions from Performance Data

The human performance data used in this thesis is obtained by the motion capture process.

But, our technique can be applied to data from any source - motion capture, key-frame

or procedural. We use the MotionStar system, from Ascension Technology. It consists

of one Extended Range Controller (ERC), one Extended Range Transmitter, and 12 Bird

14



units, each controlling a single receiver (referred to as a sensor in the remainder of this

paper). Although this system is cost-e�ective, productive and e�cient in generating data,

it has one main drawback. It is an electro-magnetic tracker and is hence susceptible to

interference from neighboring external sources of �elds [50]. The interference of the power

supply frequency and its harmonics with the sampling frequency introduces noise. To

minimize this, we use a sampling frequency of 103.3 Hz.

As a preliminary, o�-line step in deriving motions from motion capture data for the

primary agent, an avatar is built to the size of the subject and is calibrated by placing

one of the sensors of the MotionStar system on the lower back of the subject roughly

corresponding to the L5 segment of the spine (sacro-iliac). In the human model, a

corresponding site1 (FOBpelvic) is created in the L5 segment of the spine. We have

implemented this technique completely within the EAI Jack R[5] software. The human

model we use is highly articulated and has 68 joints and 135 degrees of freedom. The

transformations between the MotionStar reference frame and the Jack reference frame are

calculated by positioning the pelvic sensor at the FOBpelvic site. All the sensors are then

mapped correctly onto the human model in the Jack environment. Next, using the data

from all the sensors for the �rst frame, the human model is postured correctly to match the

initial posture of the subject. Finally, sites are automatically created within the human

model at the locations where the sensors lie on the body. We refer to these sites as EE

sites.

To generate the motions, kinematic constraints are established between the EE sites

and the sensors. Subject to these kinematic constraints and reach-space constraints, our

IK routines [61] cause the EE sites to accurately follow the goal sensors. This is shown

in Fig 3.1. So, as the sensors move, the human model moves with them along newly

computed trajectories. This process easily creates motions in real-time while interacting

with an object for a similarly-sized avatar. To recreate the same motions for a di�erent-

sized agent while maintaining the spatial constraints, we �rst need to post-process the

data to recognize the spatial constraints and map the newly derived data to the secondary

agents.

1Sites are oriented co-ordinate triples.
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Figure 3.1: End-e�ector closely following the goal

3.2 Recognition of Spatial Constraints

Spatial constraints between an agent and the objects it interacts with are in general

associated with geometric spatial proximities between the end-e�ectors and the objects. In

our system, end-e�ectors (EE) correspond to the objects (segments in the human model)

containing the E sites. For example, right palm is an EE containing an EE site. As the EE

sites follow the foal sensors very closely, the sensors themselves can be used to keep track

of end-e�ector locations.

One method for recognizing spatial constraints is to use fast collision detection methods

[28, 34] between di�erent objects in the environment to compute the exact time of initial

contact. We use the V-COLLIDE ([34] method to compute the spatial proximities of each

of the end-e�ectors with the di�erent objects in the environment. A spatial constraint is

recognized when the objects �rst come in contact with each other. It would be possible,

though computationally ine�cient, to compute these collisions or proximities at every

frame of the animation. We describe the various computational simpli�cations that we use

while still being able to derive all the necessary information for recognizimg the spatial

constraints.
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3.2.1 Zero-Crossing

In computer vision, zero-crossings of the second derivative are commonly used for edge

detection [47] in static images. For example, the Marr-Hildreth operator uses the zero-

crossings of the Laplacian of the Gaussian and the Canny operator uses the zero-crossings

of the second directional derivative.

In motion analysis, we can use the zero-crossings of the second derivative of the motion

data to detect signi�cant changes in the motion. The zero-crossings in acceleration data

correspond to the local extrema of the velocity. In motion trajectories, this implies changes

in motion such as starting from rest, coming to a stop, or changing the velocity direction.

These events were noted to have descriptive signi�cance in [7]. When the zero-crossing

point also coincides with an end-e�ector's contact with another object, it implies a plausible

causal relationship between the EE and the object. In motion studies, this further implies

that the primary agent came in contact with the object and suggests creating a spatial

constraint to mark this occurrence. We record the corresponding global location of the

sensor and mark it as a constraint point for the corresponding end-e�ector of a secondary

agent. The zero-crossings enable us to compute the proximities only at possibly relevant

frames. In Section 4.3, we describe how these zero-crossings can be used e�ectively to

segment an action.

3.2.2 Tracking Sensors

For an action, it is not necessary to track the zero-crossings of all the sensors on the human

model. So, for each action, the user can specify the few speci�c sensors that are active in

an action and need to be tracked. For example, in drink from a mug, only the sensor on

the hand needs to be tracked for zero-crossings. In all actions, the sensor on the head is

used as a tracking sensor for capturing the primary agent's attention.

3.2.3 Tag Objects

For an action, it is again not necessary to compute proximities of the tracking sensors with

all the objects in the environment. As this entire technique is done as a post-process of

the motion-capture session, the speci�c objects that are involved in the action are already
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known. Using this knowledge, the user can specify the few objects in the environment that

need to be used for computing the proximities. To use these, we introduce tag objects.

A tag object is associated with an object, type and status. A tag object refers to a 3D

object or a part of the 3D object. We can de�ne tag objects on parts of the human model,

thus allowing us to track body/self interactions. Within the EAI Jack Renvironment, a

tag object refers to a segment of a �gure. For example, in drink from a mug, one of the

tag objects would refer to the mug, and another tag object would refer to the head of the

human model. Logic dictates that the correct tag object should be the mouth. But, in

our human model, there is no separate segment for the mouth. Hence, we choose the head

which is the segment containing the mouth.

The tag objects may be of di�erent types:

SELF: The tag object is a part of the human model itself - e.g., head.

FIXED: The tag object does not move in the environment - e.g., table.

MOBILE: The tag object can be moved in the environment. e.g., mug.

In our examples involving mobile objects, we assume that the agent interacts with them

by grasping or holding them and moving them to another place. In other words, for at

least part of the action, the mobile object is constrained to move with an end-e�ector of

the agent. In such cases, the status ag of the tag object indicates if the tag object is

CONSTRAINED to the agent or if it is FREE.

3.2.4 Spatial Constraint

The process of automatically recognizing a spatial constraint can be summarized as follows:

For each tracking sensor, collision-detection is applied, at every zero-crossing frame, to

check for spatial proximity between the tracking sensors and each of the tag objects. This

is done by checking for collisions between the end e�ector containing the tracking sensor

and a tag object. If there is a collision, a spatial constraint is said to exist between

the tracking sensor and the corresponding tag object. The exact location of the spatial

constraint to be used for another agent depends on the type of the tag object and its status

(if it is a mobile object). This is discussed in detail in the next section. Figure 3.2 shows
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Figure 3.2: Trajectory of the tracking sensor in the example Touch the Table

Figure 3.3: Plots of spatial proximity and zero-crossings
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the trajectory of the hand tracking sensor for the example touch the table and Figure 3.3

shows the corresponding plots of the distance between the tracking sensor (right hand of

the agent) and a tag object (table) and the zero-crossings of the accelerations. It can be

clearly seen that a spatial constraint is established when the zero-crossings coincide with

the close proximity of the tracking sensor and a tag object.

3.3 Determination of Spatial Locations of Constraints

The spatial proximity of each tracking sensor from each tag object is computed at the zero-

crossings of the tracking sensor. If a spatial constraint is recognized as outlined above, then

the global locations of the constraint need to be used as a constraint location during the

secondary agent's action. The global location of the constraint is computed based on the

type of the associated tag object. If the tag object is of type FIXED or MOBILE, then it

refers to an external 3D object and the absolute location of the tracking sensor is used as

the location of the constraint. But, if the tag object is of type SELF, then the relative global

location of the tracking sensor is used as the location of the constraint. The relative global

location is computed by taking into account the size (lengths of the di�erent segments)

of the secondary agent. For example, in drink from a mug, for the �rst spatial constraint

established during grasping the mug to pick it up, the absolute global location of the hand

sensor at the time of �rst contact with the mug is used as the location of the constraint. For

the second spatial constraint (of the same action) established during holding and bringing

the mug to the mouth, the relative global location of the hand sensor when the mug comes

in contact with the lips is used. This will cause the secondary agent to grasp the mug

at the same location as the primary agent but will hold the mug to his mouth correctly,

which may be at a di�erent global location based on the di�erence in sizes between the

two agents.

3.4 Mapping Motions to Other Agents

Once the locations of the spatial constraints are determined, a combination of di�erent

techniques may be employed to generate the movements for the secondary agent.
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Figure 3.4: Sets of joint chains de�ned in the human model

Optimization techniques [22, 31, 30] can be used to generate motions for the secondary

agent. Here, we describe a few motion generation techniques that allow us to borrow and

incorporate di�erent style parameters of the primary agent. As a �rst step, we segregate

the joints in the human body into di�erent kinematic joint chains (Fig. 3.4). We consider

each joint chain separately. For the set of joints which are not contained in the same

hierarchical chain as any of the tracking sensors, the joint angles computed for the primary

agent may be proportionally mapped to the secondary agent. This is possible as they do

not have additional constraints imposed on them. All the other joints are driven by the

new spatial constraints computed above. As each joint chain is treated separately, it is

very important to achieve global synchronization between the di�erent joint chains during

the entire action. To do this, we preserve the same timing information i.e., the second

agent takes the same amount of time as the primary agent to complete the action.

To solve for the new spatial constraints, a trajectory has to be traced for each joint in

the chain containing the tracking sensors. For this, we �rst use inverse kinematics [61] to

solve for the spatial constraints at each of the zero-crossing proximal frames. We then use

a linear or cubic spline interpolation in the joint angle space for each time period de�ned

between any two successive zero-crossing proximal frames. The interpolating factor can be

derived in various ways based on the desired style of motion.
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Figure 3.5: Comparison of computed interpolation factor, ŝ, and equispaced t

3.4.1 Maintaining Velocity Pro�le

Two motions with completely di�erent end-e�ector trajectories can share some motion

characteristics. Angular velocity is one such characteristic. Here, we de�ne style as \frame-

wise variations in angular velocity". In an e�ort to maintain this style of the primary agent,

we modify the speed transform method used in [1]. In this case, the interpolating factor

ŝ, for the second motion, is derived by computing the normalized distance moved in the

joint space by the primary agent at each frame during the corresponding time period:

s =

Z
t

0

j _�(�)jd� (3.1)

where t is time, s is the angular distance moved along the trajectory, and _�(�) is the

velocity vector of the joint. The data is normalized along the trajectory:

tv = ŝ =

R
t

0
j _�(�)jd�R

tend
0

j _�(�)jd�
(3.2)

where tend is the duration of the basic period and tv is the velocity-pro�le based

interpolating factor. Fig 3.5 clearly shows the di�erence between the common equispaced

interpolating factor, t, and the derived interpolating factor, ŝ. These interpolating values

help maintain the angular velocity pro�le (Fig 3.6) of the primary agent during the course of

the action and is independent of the di�erence in spatial distance covered during each time

period by the two agents. What is the e�ect of having similar angular velocities? During the

motion, if the �rst agent paused, started from rest slowly, increased the speed of motion,

slowed down, rested for some time, and then increased speed again, the secondary agent's
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Figure 3.6: Similarity in velocity pro�les and invariance of zero-crossing points

motion would follow the same pattern even when the trajectory is completely di�erent.

Also, as seen from the second plot in Fig 3.6, the zero-crossings of acceleration are found

to be invariant. With an equispaced interpolating factor, the angular velocity would have

been very at and unnatural. But, here, we are able to retain the characteristics of the

original motion.

3.4.2 Following End-E�ector Trajectory

Here, we de�ne style as \variations in the path". So, we use this method when we need the

trajectory of the secondary agent's end-e�ector to follow the shape of the primary agent's

end-e�ector trajectory. In [20], Choi et al. use optimization and cubic spline interpolation

techniques to correct errors in end-e�ector positions while preserving the characteristics of

the original joint angle data. But this method will be applicable only for correcting the

data of the same agent or for applying the motion to another agent of the same size. When

we consider mapping a constrained motion to a completely di�erent sized virtual model,

one of the end-points in the new motion will not match the original. For example, when

we consider mapping a \reach" motion from an adult model to a 9 year old child model,

the starting position of the two right-hand end-e�ectors will not be the same even if both

the models are in the same posture. This is due to the di�erence in their sizes. Hence

the trajectory traced by the two end-e�ectors will be di�erent. But, it is possible to have

similar-shaped trajectories.
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As mentioned in Section 3.2.1, the zero-crossings in acceleration data correspond to

local extrema of the velocity and imply changes in motion such as starting from rest, coming

to a stop, or changing the velocity direction. Above, we have used the zero-crossings to

detect occurrences of spatial constraints. In a motion segment that has constraints only at

the end-frames, we can use the zero-crossings of the acceleration data at the intermediate

frames to monitor signi�cant changes in the trajectory. We compute new constraints for the

end-e�ector at each of the intermediate zero-crossing frames, while retaining the constraints

at the end-frames as computed in Section 3.3. These constraints are again solved by our

IK techniques. The resulting joint angles are interpolated using cubic splines.

The new constraint locations of the end-e�ector at the intermediate zero-crossing frames

are computed independently in the three axial directions (x,y, and z). We only compute

new positions for the constraints and retain the original orientations of the primary agent's

end-e�ector at the corresponding frames. The new constraint positions are calculated as

follows:

x0 =

�
x� xstart

xend � xstart

�
(x0

end � x0

start) + x0

start (3.3)

where x; y; z = end-e�ector coordinates of primary agent in any frame

x0; y0; z0 = end-e�ector coordinates of secondary agent in any frame

xstart; xend = x coords of primary agent's end-e�ector in start and end frames

x0

start; x
0

end = x coords of secondary agent's end-e�ector in start and end frames

The y and z coords are computed similarly. As an example, we motion captured a

person touching a table. The person was asked to approach the table in an indirect way

- move the arm randomly before touching the table. We mapped this motion to two

secondary agents - one was a clone of the primary agent and the other was a 9 year

old child model. Fig 3.7 shows the results of applying this technique for computing the

secondary agent's end-e�ector. We �nd that when the secondary agent is a clone of the

primary agent, the end-e�ector trajectories are exactly the same. In the case of the smaller

secondary agent, the end-e�ector trajectory is not the same, but has the same shape as

the primary agent's end e�ector trajectory while maintaining all the spatial constraints.

Also, the trajectories maintain a similar velocity pro�le.
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Figure 3.7: Similarity in end-e�ectors' trajectory shape and velocity pro�le using the
\variations in the path" style for touch table action

3.4.3 Mapping End-E�ector Forces

Here, we de�ne style as \variations in the applied force". We use this method when we need

to recognize and map force interactions between the agent's end-e�ector and an object.

Our �rst goal is to recognize the occurrence and amount of force exerted by the agent on

the object. Our second goal is to map these forces to the secondary agent's action and

then compute the e�ect of the force on the object.

While mapping force, we can add additional constraints of \similar force" or \same

object motion". For the \similar force" constraint, we proportionally scale the force applied

on the object by the agent and then generate a corresponding new motion path for the

object. Here, the primary and secondary agents have similar end e�ector trajectories and

exert proportional forces while the object may have completely di�erent trajectories. The

object's new motion is a causal e�ect of the secondary agent's end e�ector exerting force

on it. So, the new trajectory is completely dependent on the exerted force. For the \same

motion" constraint, we can constrain the object to have the same motion independent of

the agent applying force on it. In this case, based on the object's motion and the agent's

size, we would need to compute both the force applied by the secondary agent and the

corresponding end-e�ector trajectory. But, it may be possible that the secondary agent

is unable to exert the required force to move the object exactly and the whole system

may fail. To remedy this, we could employ some strategic methods, like generate muscular
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forces to exert the additional forces. But, we are not interested in those approaches. Hence,

we choose to use the �rst technique of \similar force" as its results are natural.

To do this, we consider the example of the primary agent hitting a box, resting on a

table, with his hand causing the box to move. In this example, we need to recognize the

amount of force exerted by the primary agent on the box. Then, for any given secondary

agent, we need to compute the corresponding force with which the agent would hit the box

and the resulting path taken by the box after it is hit.

In [33], Hodgins et al., describe a technique that adapts an example behavior to the

physical characteristics of a new character. This technique works by scaling control system

parameters based on a dynamic analysis of the two characters. They de�ne two di�erent

types of scaling - geometric and mass. Geometric scaling is done only for geometrically

similar characters where it is assumed the scaling is uniform in all dimensions and that

densities and acceleration due to gravity are the same for the two characters. The control

system parameters are scaled based on a scaling factor which depends on the action being

performed. For walking or running, the scaling factors are based on the character's height

and leg length. For bicycling, they used the ratio of wheel radii (but, what if both agents

are riding the same bicycle?). But, geometric scaling alone may not be su�cient to scale

all actions correctly. The main problem may be attributed to a single scaling factor. A

scale factor computed based on relative leg lengths may not be appropriate for scaling the

gains that control the arm motion. To overcome this problem, they scale each gain factor

at the di�erent joints separately depending on the function of the joint. Also, if the �gures

are not uniformly scaled, the resulting behaviors may not be dynamically similar. Hence,

they also use mass scaling which corrects for di�erences in masses and relative moments

of inertia. As correctly pointed out by the authors, it is not su�cient to just scale the

motion when the action involves interaction with the environment. We need to study the

variation of motion.

In our technique, we use physics based models to generate the motion of the object.

The parameters for the model, like coe�cient of restitution and damping coe�cients, are

obtained from direct observation of the primary agent's interaction with the object. In all

our examples, we use the following steps to map and generate the action to the secondary

agent.
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1. Compute the exact time of contact between the primary agent and the object.

2. Compute the coe�cient of restitution from the primary agent's contact with the

object.

3. Compute the initial velocity of the object and the impulse force exerted by the

secondary agent's end e�ector on the object.

4. Compute the new trajectory of the object after impact.

We will now discuss each of these steps in detail.

3.4.3.1 Time of contact

As described in Section 3.2, we use the concepts of zero-crossing and spatial proximity to

determine the time of contact between the primary agent's end e�ector and the object.

3.4.3.2 Coe�cient of Restitution

We compute the coe�cient of restitution from the primary agent's end e�ector velocity

and the corresponding object's velocity. We describe the method of doing this by �rst

de�ning the concept of coe�cient of restitution as explained in [12].

When two bodies A and B with velocities vA and vB collide, they will deform under

the impact. At the end of the deformation, they will have velocities uA and uB which have

equal components along the line of impact. A period of restitution will then take place,

at the end of which A and B will have velocities v0

A
and v0

B
. If the bodies are assumed to

be frictionless, then they exert forces
R
Pdt during the period of deformation and

R
Rdt

during restitution on each other along the line of impact. The coe�cient of restitution is

de�ned as the ratio

e =

R
RdtR
Pdt

(3.4)

This can be further simpli�ed such that

e =
(v0

B
)n � (v0

A
)n

(vA)n � (vB)n
(3.5)

In our example of observing an agent's interaction with an object, we use sensors to

track both the primary agent's end e�ector and the object. Hence, we easily compute the

27



Figure 3.8: End-e�ector trajectories and velocities for the push box action, using the
\variations in path" style

velocities of the end-e�ector and the object before and after impact. We then compute the

coe�cient of restitution using equation 3.5.

3.4.3.3 Initial Velocity and Impulse Force

To compute the initial velocity of the object and the impulse forces that will be exerted

on the object by the secondary agent at the time of contact, we �rst need to compute a

new trajectory for the secondary agent's end e�ector and then calculate the velocity and

acceleration at the time of contact. We use the style of \variations in the path" (Section

3.4.2) of the primary agent's end e�ector to the object to compute the new trajectory

for the secondary agent's end-e�ector. This is done independent of any other object's

trajectory. The two motions of the primary and the secondary agents will then have

similar end-e�ector trajectories and velocity pro�les as shown in Fig 3.8. At the contact

frame, we use the velocity of the secondary agent's end e�ector, the computed coe�cient

of restitution, and equation 3.5 to determine the initial velocity of the object after impact.

We use the velocity and acceleration of the end e�ector at the time of contact to

compute the impulse force exerted by the end e�ector at the time of contact. The force

is calculated using F = ma in the direction of the velocity. As we are considering linked

manipulators, we consider the mass of the entire link and assume it to be centered at the

end-e�ector. The masses of the segments have been precomputed using anthropometric

distributions and so are more precise than simple scaling based on the limb lengths [33].
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Figure 3.9: End-e�ector forces for the push box action, using the \variations in path" style

Fig 3.9 shows the end e�ector forces at all frames for both the primary and the secondary

agents. But we are interested in the forces only at the time of impact.

3.4.3.4 Trajectory of Object

We use the impulse force computed above to compute a new trajectory for the object.

This external impulse force exerted by the agent on the object is active only at the instant

of impact. At all other instants, only the damping and the gravitational forces act on the

object.

A damping force has the form f = �kdv where kd is the called the damping coe�cient.

The e�ect of a damping force is to resist motion, make a particle or rigid body gradually

come to rest in the absence of other inuences. Here, we describe a technique to compute

the damping coe�cient from a given action.

As discussed earlier, we assume that after impact, the damping force is the only force

acting on the object till it comes to rest. We can represent this relationship as

M�x = kd _x (3.6)

where M is the mass of the object, �x and _x are the acceleration and velocity of the object

respectively. From this, we can calculate the damping coe�cient, kd as

kd =M�x= _x: (3.7)

In our example of an agent hitting the box, the box, after impact, moves on the top
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surface of the table before falling o�. We consider the path of the object while it is in

contact with the table after impact with the primary agent's end-e�ector. During this

phase, we compute the velocity and acceleration of the object. We �nd that �x= _x vs. time

is fairly linear with respect to time except at the very end. As an approximation, we

consider the linear portion of the path and �t a straight line to it using the method of least

squares regression. To do this, we consider the equation of the straight line

y = a0 + a1x (3.8)

The constants a0 and a1 can be computed from

a1 =
n
P

xiyi �
P

xi
P

yi
n
P

x2
i
� (
P

xi)2
(3.9)

a0 = ymean � a1xmean (3.10)

The slope of this straight line, a1, indicates how the damping coe�cient varies over time.

To �nd the actual damping coe�cient, kd, we need to integrate this over time. So,

kd = a1

Z
dt = a1(t2 � t1) (3.11)

Hence kd = a1. As the motion of the object on the surface of the table is in the global

x-y plane, we compute the damping coe�cients separately in the x and y directions. The

damping in the z direction is assumed to be 0.

To compute the trajectory, we consider the state space of the object. As the object

is a 3D rigid body, the state space comprises the position, orientation, linear and angular

momentums of the object and is represented as

Y (t) =

0
BBBBBBB@

x(t)

R(t)

P (t)

L(t)

1
CCCCCCCA

(3.12)

The new location of the object at each time step is calculated [11] by solving the following

ordinary di�erential equations (ODE) of motion using the Runge-Kutta method.

Linear velocity v(t) = _x(t)

_R(t) = !(t) �R(t) where !(t) is the angular velocity
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Linear Momentum P (t) = Mv(t)

_P (t) = F (t) where F is the force

Angular Momentum L(t) = I(t)!(t)

_L(t) = �(t) where �(t) is the torque (3.13)

(3.14)

The new locations are calculated at consecutive time-steps until convergence. Initially,

only the computed external force and its corresponding torque are applied as impulse force

and impulse torque. At subsequent time steps, only the damping and gravitational forces

are used. The torques are zero.

During the motion of the object, we need to consider di�erent situations:

1. The resulting motion of the object is planar - i.e. it moves only on the surface on

which it is resting. This would be the simple case and is currently implemented.

2. The resulting motion is 3D and hence may move above the surface and fall due to

gravity. In this case, we need to consider subsequent collisions of the object with

other objects/surfaces in the environment. In case of collisions, we need to prevent

penetration and hence may need to introduce more impulse moments at the points

of collision. To do this, after a new location for the object has been computed by the

ODE solver, we check for collisions against user speci�ed non-penetrable faces in the

environment. In our example of an agent hitting a box, the colliding faces are the

top of table on which the box is resting and the ground. If there is a collision, the

point on the object that has penetrated the most is identi�ed and the whole object is

moved back to the non-penetrating face by the amount of penetration. The normal

component of the object's velocity is then reversed and scaled by the coe�cient of

restitution. So,

vn = �kr � vn (3.15)

3.5 Visual Attention Tracking

Capturing and maintaining visual attention is very important for movement realism in the

secondary agent. Without it, actions appear unnatural even if all the other constraints are
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correctly satis�ed. For example, while picking up an object, the secondary agent would

look extremely unnatural if she looked at some other point in space. Here, we use the

above technique to easily address the visual attention constraint.

During interaction with objects, we tend to always look at the object that we are

interacting with (at least when we �rst come in contact with it). This direction is

automatically captured for the primary agent by the sensors on the head. If we naively

map head motions of the primary agent to a di�erent secondary agent, this gaze direction

will be lost and cannot be re-captured by simple signal processing techniques. Instead, we

de�ne the sensor on the head as a tracking sensor. The zero-crossings in the acceleration

space of the head sensor indicate a change in gaze direction or indicate gaze at a speci�c

point in space. During these zero-crossings, we check for visual attention constraints by

using the line of sight of the agent. For e�ciency, we compute the intersections of the line

of sight with the bounding boxes of the tag objects only. If there is any tagged object in

the direction of the line of sight, the global location of the point of attention is calculated

and used as the visual (alignment) constraint for the secondary agent during its motion

computation. We use a head-eye tracking model to solve for the joint angles in the eyes,

head, and neck at the gaze direction zero crossing frames. For the remainder of the frames,

we use joint angle interpolation while maintaining the angular velocity pro�le as outlined

in section 3.4.1.

3.6 Summary

In this chapter, we �rst described the process of recognizing and mapping spatial and

visual constraints. We then showed how the various style parameters could be derived and

mapped to secondary agents.

We have tested this technique by mapping the actions of an adult to the virtual model

of a nine year old child. We have captured touching a table which involves only a FIXED

tag object and drinking from a mug which involves a MOBILE object. In both cases, we

were able to successfully recognize the spatial constraints and map the motions correctly

to the second agent. Of these, the example of drink from mug is more complicated and we

discuss this in detail here.
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In the example of drink from mug, the primary agent bends over, picks up a mug from

the table, drinks from it and places it back on the table. In this case, there are two tag

objects - mug (MOBILE) and head (SELF). There are three spatial constraints - the agent's

hand grasping and picking up the mug, the mug touching the mouth of the agent, and the

agent's hand putting down the mug. The locations of the spatial constraints remains the

same for the secondary agent while picking up and putting down the mug as the mug is

of type EXTERNAL. But, a new spatial constraint based on the size of the secondary

agent has to be calculated for the constraint of the mug coming in contact with the mouth

of the agent while drinking. Figure 3.10 shows the plots of the trajectories of the hand

New trajectory after abstraction

Initial trajectory before abstraction

Figure 3.10: Trajectory plots of the secondary agent's hand end-e�ector (corresponding to
the tracking sensor on the hand of the adult) before and after abstraction

end-e�ector of the secondary agent before and after abstraction. Before abstraction, the

trajectory obtained is the result of direct mapping of the joint angles of the primary agent

to the child model. It can be clearly seen that the constraint of picking the mug cannot

be satis�ed. But after the automatic recognition of spatial constraints and subsequent

remapping of the motions as outlined in this chapter, the motion of the secondary agent

is corrected as can be seen by the modi�ed trajectory.

Figure 3.11 shows the various stages of the drinking motion as captured for the primary

agent. Figure 3.12 shows the various stages of the drinking motion for the secondary agent

after abstraction and mapping have been applied.
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Figure 3.11: Di�erent stages in drink from mug of the primary agent (adult male)

Figure 3.12: Di�erent stages in drink from mug of the secondary agent (a nine year old
child) - after mapping
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Chapter 4

PAR Generation

The main goal of this thesis is to build agent-size neutral semantic representations of

actions from observing a single trial of a person's actions. In this chapter, we introduce

the CaPAR system to achieve this. In Chapter 3, we introduced techniques to abstract

semantic (kinematic and dynamic parameters) and style information from an action and

generate similar constrained actions for di�erently sized virtual models. Now, we extend

this notion to use the extracted information to build conceptual representations of actions

in the form of Parameterized Action Representations (PAR). We describe the main features

of a PAR in Section 4.1, and we describe the architecture of the CaPAR system in Section

4.2. In the rest of the chapter, we discuss the various components of the CaPAR system

in detail.

4.1 Parameterized Action Representation (PAR)

The PAR [8] was conceptualized to bridge the gap between natural language and animation.

A PAR gives a description of an action. The PAR has to specify the agent of the action as

well as any relevant objects and information about path, location, manner, and purpose

for a particular action. There are linguistic constraints on how this information can be

conveyed by the language; agents and objects tend to be verb arguments, path is often a

prepositional phrase, and manner and purpose might be in additional clauses [51]. A parser

and translator map the components of an instruction into the parameters or variables of
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Figure 4.1: Syntactic representation of a PAR

the PAR, which is then linked directly to PaT-Nets [32] executing the speci�ed movement

generators. Natural language often describes actions at a high level, leaving out many of the

details that have to be speci�ed for animation [48]. The PAR must provide links to omitted

details. We use the example \Walk to the door and turn the handle slowly" to illustrate

the function of the PAR. Whether or not the PAR system processes this instruction, there

is nothing explicit in the linguistic representation about grasping the handle or which

direction it will have to be turned, yet this information is necessary to the action's actual

visible performance. The PAR has to include information about applicability, preparatory,

and termination conditions in order to �ll in these gaps. It also has to be parameterized,

because other details of the action depend on the PAR's participants, including agents,

objects, and other attributes. The representation of the \handle" object lists the actions

that the object can perform and what state changes they cause [25, 36]. The number of

steps it will take to get to the door depends on the agent's size and starting location. Next,

we briey describe some of the terminology and concepts used to de�ne a PAR.
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type agent representation =

(coordinate-system: site;

state: state space;

rel-dir: relative directions;

special-dir: special directions;

grasp-sites: sequence site;

capabilities: sequence actions-and-applicability;

nominals: sequence value-ranges).

type actions-and-applicability =

(action: parameterized action;

applicability: sequence disjunctive-queries).

type value-ranges =

(var: powerset parameter;

mean: powerset var-types;

standard deviation: powerset var-types;

distribution: powerset distribution).

type parameter =

(id: string).

type var-types =

(real, real vector, integer).

type distribution =

(normal, poisson, uniform).

Figure 4.2: The agent representation type

4.1.1 PAR Terminology

Some of the parameters in a PAR template are shown in Fig 4.1:

Participants:

Agent: The agent executes the action. An agent, considered as a special type of

object, has a number of properties and is stored as part of the hierarchical

object database. Fig 4.2 [6] shows all the current properties of an agent.

Objects: The object type is de�ned explicitly for a complete representation of a

physical object and is stored hierarchically in a database. Each object in the
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type object representation =

(coordinate-system: site;

state: state space;

rel-dir: sequence relative direction;

special-dir: sequence special direction;

grasp-sites: sequence site;

actions: sequence parameterized action).

type site =

(position: real vector;

orientation: real vector).

type state space =

(position: real vector;

velocity: real vector;

acceleration: real vector;

force: real vector;

torque: real vector).

type relative direction =

(name: (front, back, left, along, inside);

value: real vector).

type special direction =

(name: string; value: real vector).

Figure 4.3: The object representation type

environment is an instance of this type and is associated with a graphical model

in a scene graph. The state �eld of an object describes a set of constraints on

the object that leave it in a default state. The object continues in this state

until a new set of constraints is imposed on the object by an action that causes a

change in state. The other important �elds are the reference coordinate frame,

a list of grasp sites and their purpose, and intrinsic directions (top, front, etc.)

de�ned with respect to the object. In our example, the walking action has an

implicit oor as an object, while the turn action refers to the handle. Fig 4.3

[6] shows all the current properties of an object.

Start: This is the time at which the action begins.

Applicability Conditions: The applicability conditions of an action specify what needs
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to be true in the world in order to carry out an action. These can refer to agent

capabilities, object con�gurations, and other unchangeable or uncontrollable aspects

of the environment. The conditions in this boolean expression must be true to

perform the action. For \walk," one of the applicability conditions may be \Can

the agent walk?" If conditions are not satis�ed, the action cannot be executed. The

applicability conditions of an action have to be set explicitly by the user and cannot

be recognized or generated automatically by the CaPAR system.

Preparatory Speci�cations: This is a list of <CONDITION, action> statements. The

conditions are evaluated �rst and have to be satis�ed before the current action can

proceed. If the conditions are not satis�ed, then the corresponding action is executed;

it may be a single action or a very complex combination of actions, but it has the same

format as the execution steps described below. In our example, one of the conditions

to be checked could be posture(agent)==stand and the corresponding action could

be (\stand",agents: (\Jack")). If the agent is in a sitting posture or prone posture,

then the action causes him to change to the standing posture. The preparatory

speci�cations are completely generated by the CaPAR system at run-time.

Execution Steps: A PAR can describe either a primitive or a complex action. The

execution steps contain the details of executing the action after all the applicability

and preparatory conditions have been satis�ed. If it is a primitive action, the

underlying Pat-Net for the action is directly invoked. A complex action can list

a number of sub-actions that may need to be executed in sequence, in parallel, or as

a combination of both. A complex action can be considered done if all of its sub-

actions are done or if its explicit termination conditions are satis�ed. The CaPAR

generates the execution steps for both primitive and complex actions.

Core semantics: The core semantics represent an action's primary components of

meaning and include motion, force, path, purpose, termination conditions, duration,

and agent manner.

Motion: This speci�es the object that is being moved and the type of motion -

rotational, translational or both. It also speci�es if this is a causal motion.
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Force: This points to the a�ected object and indicates the force or torque amount

and point of contact.

Path: This contains information on the location of the object at the beginning or

the end of the motion and the directional changes that model the approximate

path of the motion.

Purpose: This speci�es the state or condition that will be achieved as a result of

this motion. It also points to the PARs that are either generated or enabled

during the course of or at the end of the motion.

Termination Conditions: This is a list of conditions that, when satis�ed, complete

the action. These can be generated from natural language or from motion

capture. From natural language, the termination condition can be determined

from the main verb or attached clauses [16]. From motion capture, the CaPAR

system generates this automatically at run-time as explained in Section 5.3.2.

Duration: This speci�es the duration of the motion.

Manner: Manner speci�cations describe the way in which an agent carries out an

action. As explained in Section 3.4, the CaPAR system abstracts and derives

an agent's style or manner of doing the action.

Post Assertions: This is a list of statements or assertions that are executed after

the termination conditions of the action have been satis�ed. These assertions

update the database to record the changes in the environment. The changes

may be due to direct or side e�ects of the action.

4.1.2 PAR Representations

A PAR takes on two di�erent forms: uninstantiated (UPAR) and instantiated (IPAR).

We store all instances of the UPAR, which contains default applicability conditions,

preparatory speci�cations, and execution steps, in a hierarchical database called the

Actionary. An IPAR is a UPAR instantiated with speci�c information on the agent,

physical object(s), manner, termination conditions, and other bound parameters. Any

new information in an IPAR overrides the corresponding UPAR default. The CaPAR

system generates UPARs for the observed actions.
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Figure 4.4: CaPAR architecture

4.2 CaPAR Architecture

In this section, we introduce and describe the CaPAR interactive system that we have

built to automatically abstract, understand, recognize and parameterize a complex physical

action into a PAR such that the actions can be reproduced by any sized virtual human

model. There are two main applications of this system. The �rst application is to generate

UPARs from an observed action and the second is to provide a means for the user to

custom generate the secondary agent's motion from the extracted UPAR.

The architecture of the CaPAR system is shown in Fig. 4.4. The actions of a person

performing a complex physical action is �rst motion captured. These actions are then

generated directly for a virtual human model built to the same size (referred to as a

primary agent) as the performing human. This process has been described in Section 3.1.

The system then uses this resulting motion in the primary agent for further abstraction and

analysis. The user interacts with the CaPAR system through a graphical user interface

(GUI) and initiates the process of generating PARs by specifying the tracking sensors

(Section 3.2.2 and the tag objects (Section section:tagobject) in the environment.

Our main goal is to automatically build a PAR for an observed complex action. As

the structure of the PAR is itself very complex, it would become an extremely large and
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di�cult problem to directly build a PAR for the entire complex action in one step. Instead,

the system segments the given action into several sub-actions. Each of these sub-actions

would correspond to a primitive action. The system �rst generates a primitive PAR for

each of these sub-actions and then combines them together to form a complex PAR.

As shown in Fig. 4.4, the �rst task after action segmentation is to extract the relevant

semantic features and store them in a feature table for the purposes of PAR characterization

and PAR generation. During PAR characterization, a speci�c UPAR is identi�ed for each

primitive action. Whenever a new action is observed, the CaPAR system extracts the

relevant semantic features and groups them together to form a feature set. Each feature

set is then compared against existing feature sets in the feature table. The feature table is

initially empty. If there is a match, then the motion segment is labeled with the matched

UPAR name. Otherwise, the system prompts the user for a new UPAR name and stores

it along with the feature set in the feature table. During this process, the user interacts

with the system to provide any missing parameters or to resolve any ambiguity that arises

from the automatic extraction and labeling of the actions. For example, the system may

�nd multiple UPARs in the feature table that match the newly extracted feature set. The

user is then asked to identify a single appropriate label. At this time, the user could also

reject the system's suggestions and prefer to create a new UPAR. In the latter case, the

extracted feature set is �rst inserted at the appropriate place in the feature table tree and

associated with the user-speci�ed UPAR name.

During PAR generation, the system creates a new UPAR, and sets some of the

parameters like execution steps, core semantics, parent action, end-e�ector, etc. It also

updates the appropriate object model with the constraint locations. Based on some of the

motion and agent characteristics at the beginning and at the end of the motion segment,

the system suggests some preparatory conditions and termination conditions. The user

can then use this information to create appropriate preparatory speci�cations, termination

and applicability conditions. Finally, at the user's request, the system stores the extracted

agent's style of action (Section 3.4) in the agent model.

During the process of motion generation for the secondary agent, the user can

interactively custom generate the motion by specifying the agent, the objects and new

parameter values for constraint locations, style of action, etc. All user speci�ed values
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override the default extracted values and new motions can be generated as described in

Section 4.7.

In the rest of this chapter, we explain the components of the CaPAR system in detail.

In Section 4.3, we explain the process of action segmentation based on correct action

perception. In Section 4.4, we describe the set of features that we isolate for unique

characterization of primitive PARs. In section 4.5, we describe the process of characterizing

a PAR from the extracted semantic features. In Section 4.6, we describe in detail the

process of generating both a primitive PAR and a complex PAR. Finally, in Section 4.7,

we describe the process of generating motions from these PARs for any given secondary

agent.

4.3 Action Segmentation

Experiments [49] show that people normally segment events into actions, even when they

are not required to do so by instructions. Also, we know by experience that it is easier

to learn complex tasks by breaking them into simpler tasks and then learning them.

Accordingly, while observing a complex action, we �rst break it up into multiple simple

or primitive actions and analyze each separately. This breakup or segmentation has to be

perceptually correct.

In Section 4.3.1, we �rst discuss related studies and techniques of action segmentation

based on visual perception. Using the results of these studies, we describe our technique

of action segmentation in Section 4.3.2.

4.3.1 Action Perception

The process of generating a PAR from observing a person's action correlates to building a

conceptual representation of an action based on visual perception. Miller [45] stated that

the analysis of perception required at least four primitive categories: objects and attributes,

states and events. We de�ne the following terminologies to help us better understand the

concepts of perception.

Change: Change denotes the perception that the pattern of simulation or a property of
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an object or motion is di�erent from the pattern of simulation or property at the

preceding moment [45]. The thing that is changed is called a state.

Event: An event is something that happens at a given place and time [27]. Events are

transient and have a temporal and spatial location. They correspond to a distinctive

local change set in a context of great redundancy from moment to moment [45].

Hence, events correspond to changes. But, not all changes are events. While building

conceptual representations, a change constitutes an event when the sensory input to

the system causes an update in the conceptual representation of the world.

Motion: Motion or movement is the most atomic primitive and involves a change in the

position or location of something [14]. It does not require any contextual or sequential

knowledge to be recognized.

Action: Action is a larger scale event which encompasses motions and typically includes

causal relationships and interaction with the environment [14].

Causality Perception: Causality is the relation between causes and e�ects [27].

Causality perception relates to recognizing causality using a few sensory inputs.

One example of causality perception is when people observe an object colliding with

another object, and perceive that the �rst object caused a motion in the second

object. Michotte [43] called this type of perception an ampliation.

Motion Perception: In motion perception, two di�erent spatially separated motions are

perceived as one coordinated movement [60]. For example, the combined motion of

the segmented parts of an arm is perceived as one single arm motion.

Action Perception: Action perception involves discrete motions of objects [60]. Here,

emphasis is as much on conditions in the beginning and ending of motions as it is with

the motions themselves. In [43], Michotte described action perception as perceiving

individual actions which may not always depend on the perception of causality.

Newston et al. [49] carried out a number of experiments to study the relation between

the segmentation of ongoing behavior sequences into their component actions and the

movement in those sequences. They determined that humans perceive an action stream
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Figure 4.5: Newston's example of a point-to-point action de�nition

as a sequence of clearly segmented \action units" with easily discriminable boundaries

between them. These boundaries, also referred to as breakpoints or action-de�nition

points, were found to have distinctive properties that di�erentiated them from other

parts of the behavior stream. The breakpoints contained de�ning information for one

action while providing a basis of discrimination from the preceding action. For their

experiments, informants watched an action sequence and were asked to indicate their

perception of when an action occured by pressing a button. They separately considered

two very simple examples of putting a cup down and picking up a cup as shown in Fig.

4.5. On observation, the informants found point B to be the breakpoint in the put-down

action. This corresponds to the instant just after the cup is put-down on the table and

the hand is released. Similarly point D, when the cup just leaves the surface of the table,

is a breakpoint in the pick-up action. From their experiments, they concluded that the

key features useful for action recognition are mainly detected during a transition from one

state to another and not during the action itself. Their �ndings were found to be consistent

with Miller and Laird's theory [45] that events are perceived when changes occur.

In [60], Thibadeau proposed building a system to computationally perceive actions

using Newston's points of action de�nition. He derived knowledge representations of

actions using logico-linguistic derivations. For this, he used detection of second order
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changes as a basis of segmenting actions, and for building schemas for recognizing actions.

Here, �rst order changes refer to changes in state like change in position. But tracking

�rst order changes does not result in correct point-to-point action de�nition points. Second

order changes refer to changes in changes in state, like changes in change of position. He

found that the use of second-order changes resulted in more stable schemas than those based

on �rst-order changes. The �nal goal of his system was to generate causal or intentional

descriptions of actions.

In [7], Badler generated conceptual descriptions, of changes in a synthesized 2D

visual scene, from object and event representations. Each object was associated with

a number of properties - type, visibility, mobility, location, orientation and size. The event

representation was hierarchical and proceeded from the lowest level of describing an object's

motion to the highest level of recognizing speci�c motion verbs. Each event node was also

associated with a number of properties - subject, agent, instrument, reference, direction,

trajectory, velocity, start and end times, etc. Changes in object locations triggered separate

processes called demons to compute trajectories and velocities of the objects. Then motion

demons observed the motions at every frame, recognizing an event only when a change in

state or motion was detected. Lower level demons placed data in event nodes which were

analyzed by higher level demons. Intermediate level event demons included directional

adverbials which were able to recognize the direction of motion in terms of across, along,

clockwise, onto, on, etc. At the higher levels, the demons could recognize repetitive actions

and �nally generate motion verbs. The temporal relations between events were recognized

using linguistic concepts such as before, during, while, until, etc. Whenever a new event

was observed, the current event node was terminated and a new node was spawned which

inherited some of the properties of the old one. The two event nodes were then connected

together by the \next" property. Event nodes were terminated when there were signi�cant

changes in properties like change in velocity from zero to positive value or from positive

to zero, change in subject, change in contact relation between agent and subject, change

in direction, etc.
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4.3.2 Event-based Action Segmentation

In this section, we explain our event-based action segmentation approach. The results

obtained by [7, 49, 60] (Section 4.3.1) show that appropriate action-de�nition points have to

be determined for the correct segmentation of actions. Also, these action de�nition points

have to be computed based on second or higher order changes in state. In [7], Badler used

higher order changes to abstract higher levels of action de�nitions and parameters. As we

have shown in Section 3.2.1, the zero-crossings of the second derivative of the motion data

indicate signi�cant changes in the motion. These zero-crossings correspond to third order

changes in state and are good candidates for action de�nition points. At the zero-crossing

points, the velocity has its local extrema and the acceleration crosses the zero-value as

it goes from positive to negative or vice versa. Perceptually, these points correspond to

changes in motion such as starting from rest, coming to a stop, or changing the velocity

direction which are signi�cant events by themselves.

In this thesis, we mainly consider constrained actions involving interactions of the agent

with other objects or with self. In our e�ort to de�ne an event basis for action segmentation,

we continue to use the concepts of tracking sensors and tag objects as de�ned in sections

3.2.2 and 3.2.3 respectively. The CaPAR system computes the zero-crossings of acceleration

data of only the tracking sensors. We conducted several experiments to study the relation

between zero-crossings in acceleration space and the proximity of the tracking sensor from

the objects.

Fig. 3.2 shows the trajectory of the hand tracking sensor for the example touch the

table and Fig. 3.3 shows the corresponding plots of the distance between the tracking

sensor (right hand of the agent) and a tag object (table) and the zero-crossings of the

accelerations. It can be clearly seen that an important event has occured when the instant

of zero-crossings coincides with the close proximity of the tracking sensor and a tag object.

This event corresponds to an occurrence of a spatial constraint (Section 3.2). Similarly,

during visual attention tracking (Section 3.5), the event corresponds to the occurrence of

a visual constraint.

Using the above results, the CaPAR system uses the spatial or visual constraint event

as the event-basis for all action segmentation. We will refer to the frame at which this
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event occurs as the event-frame. The system uses the event-frames to segment the given

action into a number of sub-actions. We can clearly see that the sub-action preceding the

event frame is very di�erent from the sub-action after the event-frame. The event-frame

is a discriminator between the two actions. We will show that the motion information at

the event frame de�nes the previous sub-action. Thus, by Newston's de�nition, the event-

frame is an action-de�nition point. As an example, we shall consider the action touch an

object in which the agent starts from a rest position, reaches across and touches the object.

This action has two motion segments. At the event-frame, the agent just comes in contact

with the object. Before the event-frame, the sub-action corresponds to the agent reaching

for the object. After the event-frame, the sub-action corresponds to the agent continuing

to touch the object.

For a given action, one or more tracking sensors may be active at the same time i.e., the

action may involve whole body motion. For example, touch with left hand and touch with

right hand should be abstracted to a single action of two-handed touch. In such cases, it

becomes very di�cult to build conceptual representations for the whole action. To alleviate

this problem, the CaPAR system considers one tracking sensor at a time. Each tracking

sensor acts as the end-e�ector of a kinematic link in the agent's body. We perceive the

observed action to be a complex combination of motions. Each motion belongs to a separate

kinematic link in the virtual model's body. The system computes the event-frames for each

motion and segments it accordingly. So, the problem of action segmentation is now reduced

to the problem of motion segmentation. For each motion segment in each kinematic link,

the CaPAR system separately analyzes the segment's relation with the environment and

builds corresponding conceptual representations. Later, as described in Section 4.6.2, the

system combines the conceptual representations of actions resulting from each kinematic

link and generates one complex conceptual representation for the entire action.

In all our examples, the agent interacts with one or more objects in the environment.

The agent may also interact with itself, i.e., interact with another part of the agent's

body (for example: touch head with hand, clap both hands together, etc.). In such cases,

we consider the interacting body part (eg: head in touch head with hand and one of the

hands in clap both hands together) to be another object in the environment. In general,

in the presence of multiple objects in an action, we assume that only one of the objects
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actively moves around during the action, and is directly touched, manipulated, and moved

by the end-e�ector. We refer to this object as the dominant object. The rest of the objects

(if any) are referred to as subordinate objects and are assumed to be passive during the

action. The subordinate objects may come in contact only with the end-e�ector or with

the dominant object. Also, the contact between the dominant object and a subordinate

object is signi�cant only after the possession of the dominant object by the end-e�ector.

At all other times, the contact between the dominant object and the subordinate object is

insigni�cant and ignored. Finally, we assume that the end-e�ector or dominant object may

be in contact with only one other object at a time i.e., the end-e�ector can be in contact

with a dominant object or a subordinate object but not both. Similarly, the dominant

object can be in contact with the end-e�ector and only one other subordinate object at

any given time. In general, we only consider actions that can be applied iteratively to a

set of concrete objects.

Our motion segmentation techniques should be able to address very complex situations.

For example, consider an observed action that involves touching multiple objects (labeled

as obj1; obj2; : : : objn) in the environment with and without an instrument. For example,

using the right hand, the agent may �rst touch obj1, then obj2 and obj3 at consecutive

zero-crossing frames and then continue to touch obj3 for some continuous period of time,

then again touch obj1, grasp it as an instrument, and with it touch obj2 for some continuous

period of time, then touch obj3 and obj4 at consecutive zero-crossing frames, release obj1

as an instrument and then directly touch obj2. The CaPAR system needs to be able to

distinguish and recognize each of the transitions between touching the various objects.

The process of checking for proximities between the end-e�ector and a tag object at

zero-crossing frames helps us to detect the presence or absence of constraints. But that

alone will not help us to recognize redundant constraints or constraints with di�erent

objects at consecutive frames. Due to the inherent problems associated with the process of

motion capture, the data obtained may not be very clean and may result in redundant zero-

crossings of acceleration. Hence, even after the end-e�ector and an object are in contact,

the system may recognize multiple occurrences of constraints between the same two objects.

It needs to ignore the redundant ones. Also, the end-e�ector may come in contact with

di�erent objects at consecutive zero-crossing frames. The CaPAR system needs to take
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these into account and distinguish them from the cases of contact with the same object

at consecutive zero-crossing frames. To simplify this process, for each monitoring sensor

or kinematic link, the system generates two binary arrays and two integer arrays, all

of the same size. Each element in an array corresponds to a zero-crossing frame. For

this, the system considers all zero-crossing frames, even those that are not associated with

spatial proximities. One of the binary arrays (referred to as eeObjProx) indicates proximity

between the end-e�ector and one of the objects at each of the zero-crossing frames. '1'

indicates a proximity and '0' indicates no proximity. Similarly, the second binary array

(referred to as objObjProx) indicates proximity between the dominant object and any

other subordinate object. The �rst integer array (referred to as eeObjTagIndex) contains

the object number that the end-e�ector came in contact with at the corresponding zero-

crossing frame. Similarly, the second integer array (referred to as objObjTagIndex) contains

the number of the subordinate object that the dominant object came in contact with at

the corresponding zero-crossing frame. For the above example, the four arrays generated

would be:

bool eeObjProx[] = (0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 0; 0);

int eeObjTagIndex[] = (0; 0; 0; 1; 1; 1; 2; 3; 3; 3; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 0; 0);

bool objObjProx[] = (0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 0; 0; 0; 0; 0; 0);

int objObjTagIndex[] = (0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 2; 2; 3; 4; 4; 4; 0; 0; 0; 0; 0; 0);

The detection of each new constraint generates a new motion segment and the resulting

motion segmentation would be as shown in Fig. 4.6.

As shown by Newston [49], the key features of an action are detected during a transition

from one state to another. Hence, the CaPAR system extracts most of the information

about the sub-actions at the event-frames. Only some of the style parameters are extracted

during the active phase of the motion. In Section 4.4, we describe the extraction and

analysis of motion parameters for each motion segment.
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Segment Start End Segment Start End
# Frame# Frame# # Frame# Frame#

1 0 3 8 13 14

2 3 6 9 14 15

3 6 7 10 15 17

4 7 9 11 17 19

5 9 10 12 19 20

6 10 11 13 20 21

7 11 13 14 21 23

Figure 4.6: Action segmentation from the binary arrays

4.4 Semantic Features Extraction

The two main purposes for extracting the semantic features from a motion segment are

PAR characterization and PAR generation. For PAR characterization, we identify the

features that characterize the action being observed and uniquely identify a UPAR. For

PAR generation, we extract and store the features of the action in the identi�ed UPAR

and the associated agent and object models such that the extracted information can be

reused later for generating similar actions for di�erent sized agents in any simulation or

environment. Whereas all the extracted features may be needed for generating similar

constrained motions for a secondary agent, only some of the features are needed to

characterize the PAR. For example, for PAR characterization, we are neither interested in

the style with which the primary agent executed the action nor are we interested in the

exact constraint location. But these two features are important for motion generation. In

the Reach action, for motion generation, we are interested in knowing where and how the

agent reached. But for PAR characterization, we are only interested in the features that

indicate the agent reached for something.

All the semantic features extracted from a motion cannot be stored within the UPAR

structure. Some of the features (e.g., style) are speci�c to an agent and some (e.g.,

constraint location) are speci�c to the object type. Hence, as shown in Fig 4.7, the

extracted features are stored appropriately in the corresponding UPAR, or the agent model

or the object model which are also part of the Actionary [8] database. In this section, we

discuss each semantic feature and suggest extensions to the UPAR, agent and object models
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Figure 4.7: Storage of features extracted from a motion

to facilitate the storage and retrieval of the parameters.

4.4.1 Features for PAR Characterization

Here, we consider the semantic features and predicates used for characterizing a PAR. We

consider the complex action drink from a mug and its sub-actions Reach and MoveObjTo

to illustrate the di�erent features extracted from a motion segment. In the drink from a

mug action, an agent, who is initially in a neutral standing posture and not in contact with

any object in the environment, reaches across to pick up the mug, drinks from it, puts the

mug back on the table, and goes back to a posture similar to the initial one. Here, the

mug is the dominant object, whereas the table and the mouth are the subordinate objects.

Type of EndE�ector We assume that each primitive PAR has a single active end-

e�ector, which can be one of right hand, left hand, right foot, left foot, head, elbow,

etc. For the PAR characterization process, we are only interested in knowing the type

of end-e�ector and not the side used or the handedness of the agent. For example, we

would like to know if it is the hand or the leg but not if it is a right hand or left hand.

A Reach is a reach whether it is done with the left hand or the right hand. Hence we

use the general type of end-e�ector (hand, foot, etc) for PAR characterization and

the speci�c type of end-e�ector (right hand, left foot, etc) during the PAR generation

process. During motion regeneration process, we specify the exact side of end-e�ector
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to be used. If it is the same as the observed side, then the data can be directly used.

But, if it is opposite to the observed side, then as will be explained in Section 4.4.2.2,

we can easily compute the new mirrored constraint locations. In the drink from a

mug action and all its sub-actions, the CaPAR system determines the end-e�ector

for PAR characterization to be the hand and the end-e�ector for PAR generation to

be the right hand.

EE Object contact relation Here, the CaPAR system extracts the contact relations

between the end e�ector and the di�erent objects both at the beginning and at the

end of the motion. The contact relation can be either 0 (no contact) or 1 (contact).

As described in section 4.3.2, we are only concerned with the contacts between an end-

e�ector and any of the objects and between the dominant object and any subordinate

object. We represent the contact relations at the start and end of the motions by two

separate binary strings (EEObjRelStart and EEObjRelEnd). If we have n objects in

the action, then the length of each string is 2n� 1. The �rst n elements in the string

represent the contact relation between the end-e�ector and each of the n objects.

The next n � 1 elements in the string represent the contact relation between the

dominant object and each of the other n� 1 subordinate objects. Both these strings

are directly generated by the CaPAR system from the information in the 4 arrays

described in Section 4.3.2. This feature is required for both PAR characterization

and PAR generation processes.

In the motion segment corresponding to the Reach action, the number of objects is

1. Hence the string length is also 1. In the frame corresponding to the start of the

motion segment for Reach, no contact is detected by the system between the right

hand and the dominant object, the mug. Hence the EEObjRelStart feature generated

for this motion segment is '0'. In the frame corresponding to the end of the motion

segment for Reach, there is a contact between the right hand and the dominant object,

the mug. Hence the EEObjRelEnd feature generated by the system for this motion

segment is '1'. In the drink from a mug complex action, there are two instances of

MoveObjTo action. The �rst one corresponds to the motion segment in which the

agent moves the mug, he is holding, to the mouth. The second instance ofMoveObjTo
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action corresponds to the motion segment in which the agent moves the mug from

the mouth to the table. The number of objects detected for this motion segment is

2 and therefore, the length of the corresponding strings for the EEObjRelStart and

EEObjRelEnd features is 3. In the frame corresponding to the start of the motion

segment for MoveObjTo, a contact is detected by the system between the right hand

and the dominant object, the mug. Hence the �rst bit in the binary string is set by the

system to '1'. But no contact is detected between the right hand and the subordinate

object (the mouth in the �rst instance and the table in the second instance) and also

between the dominant object and the subordinate object i.e. between the mug and

the mouth (in the �rst instance) or between the mug and the table (in the second

instance). Hence each of the next two bits in the binary string representing the

feature is set to '0'. Combining these bit representations of the contact relations,

the CaPAR system automatically generates '100' as the EEObjRelStart feature for

the motion segment corresponding to the MoveObjTo action. Similarly, at the frame

corresponding to the end of the motion segment, a contact continues to be detected

between the right hand and the dominant object, the mug. Hence the �rst bit in

the binary string is set to '1' by the system. But no contact is detected between

the right hand and the subordinate object (the mouth in the �rst instance and the

table in the second instance). So the second bit in the binary representation of the

EEObjRelEnd feature is set to '0'. Now, a new contact is detected between the mug

and the mouth (in the �rst instance) or between the mug and the table (in the second

instance). Hence the third bit in the binary string is set to '1'. Combining these bit

representations of the contact relations, the CaPAR system automatically generates

'101' as the EEObjRelEnd feature for this motion segment.

Change in Object Location Here, the system checks each of the n objects for any

motion during the action. This is done by checking the relative transformation

between the locations of the object at the start and the locations at each frame. If

the system detects any change in location, the object is considered to have moved

during the motion segment. The motion status of all n objects is represented by

a binary string of length n. If the object has moved, then the system sets the
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corresponding element in the string to '1'. Otherwise, the element in the string is

set to '0' to indicate that the object was stationary during the action. This feature

is required for both PAR characterization and PAR generation processes.

In the motion segment corresponding to the Reach sub-action of the drink from a

mug complex action, the dominant object, the mug, is not found to move during the

action. Hence the ObjChangeLoc feature generated for this motion segment is '0'. In

the motion segment corresponding to the MoveOBjTo action, only the mug is found

to have moved but not the table or the mouth. Hence the ObjChangeLoc feature

generated for the MoveObjTo action by the system is '10'.

Number of objects As mentioned in Section 4.1.2, our system generates UPARs in

which the agents and objects are unknown. But, a UPAR has a �xed number of

objects. During our PAR generation process, we continue to use the concepts of

user speci�ed tracking sensors and tag objects. The number of objects in the UPAR

generated for the observed complex action corresponds to the number of tag objects

de�ned by the user. But, the number of objects in the primitive PARs generated for

each of the sub-actions may not be the same. For example, Reach is a sub-action of

most contact-based actions. Simple Reach needs only one object - the object to reach

for. But each complex action containing Reach as a sub-action may have a di�erent

number of objects. We want to be able to correctly recognize the Reach sub-action of

any complex action. To compute the correct number of objects in a sub-action, the

CaPAR system �rst generates the two strings EEObjRelStart and EEObjRelEnd by

considering all the N objects where N is the total number of objects in the observed

complex action. Hence the string lengths of these EEObjRelStart and EEObjRelEnd

are 2N � 1. From these strings, the system checks for any contact relations between

the end-e�ector and any of the objects. If there is a contact either at the beginning

or at the end, the system adds that object to the list of objects for the sub-action.

Next, if there is a contact between the end-e�ector and the dominant object, the

system checks the EEObjRelStart and EEObjRelEnd strings for contacts between the

dominant object and each of the other subordinate objects. If there is a contact with

a subordinate object at the end of the action, the system adds that object (if not
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previously added) to the list of objects for the sub-action. By this process, the system

automatically determines the number of objects in the sub-action to be n, where

n � N . This feature is explicitly used for PAR generation and implicitly used for

PAR characterization. In the drink from a mug example, the CaPAR system correctly

determines the number of objects in the motion segment corresponding to the Reach

action to be 1 and the number of objects in the motion segment corresponding to

the MoveObjTo action to be 2.

Force Applied This feature speci�es if any force is applied to the object. In the beginning

of the motion abstraction process, the user interactively speci�es whether we need

to consider force transfers for the entire complex action. But this does not imply

that all the sub-actions involve force transfers. Based on the user's speci�cation

and the EEObjRelStart and EEObjRelEnd features derived for that motion segment,

the CaPAR system automatically generates the binary string representing the force

transfer for each object. For an object, indexed by i, if EEObjRelStart[i] is '0' and

EEObjRelEnd[i] is '1' and if the user had speci�ed that a force transfer was involved

in the complex action, then the CaPAR system sets the ith bit for that object in

the binary string to be '1'. Otherwise, it is set to a '0'. For example, in the motion

segment corresponding to a Reach action, the force applied feature generated by the

CaPAR system is a '0'. But for the Hit action, the binary string generated is a '1'.

The applied force causes a propelled motion in an object. The force may be applied

by an end-e�ector on a dominant object or by the dominant object on a subordinate

object. In the latter case, the dominant object refers to the instrument used in the

action. We use Miller's [44] de�nition of propels X to imply applies force to move X.

So, we refer to the motion of an object caused by the application of force on it as a

propelled motion. For example, hit, kick are propelled motions, whereas move, pick-

up actions are simple causal motions. During the motion regeneration process, the

system computes new trajectories, due to force interactions, only for objects with

propelled motions. This feature is used for both PAR characterization and PAR

generation.
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4.4.2 Features for PAR Generation

In this section, we discuss the features which are used only for the PAR generation process.

These include the locations of the spatial and visual constraints and the style of performing

the various actions by the individual agents.

4.4.2.1 Objects in Contact

In this thesis, we are interested only in actions involving interactions between an agent

with other objects or with self. Each motion segment, detected by the CaPAR system, is

associated with a spatial constraint which involves contact between two objects, where one

of the objects involved in the constraint may be one of the end-e�ectors of the agent. Also,

as described in Section 4.4.1, each motion segment may be associated with one or more

objects. If there is only one object and there is a new contact relationship to be established

at the end of the action, then it can be safely assumed that the contact is going to occur

between the end-e�ector de�ned for the action, and the object. But, if there is more then

one object identi�ed for the motion segment, then the new contact may be between the

end-e�ector and one of the objects, or if the end-e�ector is already in contact with the

dominant object at the start of the motion, the new contact may be between the dominant

object and one of the subordinate objects. Hence, it is essential that the system correctly

detects the two objects that will be involved in the new constraint or contact relationship

at the end of the action. During the initial process of checking for spatial constraints in

the observed action, the CaPAR system determines the objects that are in contact and

identi�es them by their indices - the end-e�ector is identi�ed by -1 and the objects are

identi�ed by their index number in the object list of the motion segment. The index

numbers of the contacting objects are then stored by the system in the CollidingObjects

feature. This information will then be used by the system during the motion regeneration

process to know the speci�c objects that will be involved in the constraint.

4.4.2.2 Constraint Location

In our technique, each motion segment of a given action is separately analyzed and

conceptualized. As mentioned earlier, the occurrence of a spatial constraint signals the end
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of one motion and the beginning of another. Any secondary agent should also maintain

the same or similar spatial constraint while imitating the action of the primary agent. In

Section 3.3, we described in detail the method used to compute new constraint locations

for a given secondary agent. In that case of direct mapping, we had apriori knowledge of

the secondary agent and its size. But, now, the secondary agent is unknown at the time

of PAR generation. Therefore, we need to store enough information in the PAR about

the constraint to enable the correct constraint location to be computed for any given

secondary agent. The constraint is established between the end-e�ector(agent) and the

object or between two objects. The generated UPAR for the action should be applicable

to any object and any agent. It is not feasible to store the constraint location within

the UPAR construct. As described in Section 3.3, the location of the constraint for the

secondary agent depends on the type of the tag object. In other words, the constraint

location is a property of the object.

For correct reproduction of the action, we need to store both the position and the

orientation of the constraint. The correct constraint position is given by the collision

detection algorithm [34] when it detects a collision between the end-e�ector segment and

an object or between two objects. As mentioned in Section 4.3.2, during the processes

of motion segmentation and PAR generation of a primitive action, the CaPAR system

processes each kinematic link separately. During the motion regeneration process, the

system uses a speci�c end-e�ector site for each kinematic link. For example, for the

kinematic link consisting of the right arm and the right hand and associated with the

monitoring sensor on the right hand, it uses the agent's right palm.palmcenter as the end-

e�ector site. During the process of extracting features for PAR generation, the system uses

the global orientation of this end-e�ector site as the global orientation of the constraint.

The constraint location is speci�c to the observed object type. The instances of this

object type may be of di�erent sizes. To be applicable to all instances of the object class, the

CaPAR system stores the position and orientation of the constraint local to the coordinate

system of the object. Further, it normalizes the position of the constraint by the size of

the object. We refer to these constraint locations as Normalized Local Transforms (NLT).

During the process of regenerating motions from the PAR for a secondary agent interacting

with a similar object, the stored constraint values are used to compute the correct global
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constraint location based on the size and positions of the agent and the object in the

new environment. Further, to increase the e�ciency of storing the constraints, the system

stores the constraint locations as a vector of length 7. The �rst 3 elements of the vector

contain the position of the constraint and the next 4 elements of the vector contain the

orientation of the constraint in the form of a quaternion [58].

The CaPAR system tracks both spatial and visual constraints. During the abstraction

and direct mapping process, the visual constraints were tracked separately. As explained

in Section 3.5, a visual constraint was recognized when a zero crossing of acceleration of

the tracking sensor on the head occured together with the intersection of the line of sight

of the agent with a tag object. But, this becomes a di�cult problem during the PAR

generation and action segmentation process. This is mainly due to synchronization issues.

To overcome this, the system checks for visual constraints whenever a spatial constraint is

detected. The visual constraint location is then stored together with the spatial constraint

location. Similar to the spatial constraints, the visual constraint locations are also stored

as NLTs of the object.

As described in Section 4.3.2, a constraint can occur between an end-e�ector and an

object or between the dominant object and a subordinate object. In the former case, as we

assume a speci�c end-e�ector site, the system needs to only store the constraint location

computed on the object as the goal NLT of the constraint in the corresponding object

model. But in the latter case, when the dominant object possessed by the end-e�ector

comes in contact with a subordinate object, we need to know the relative constraint between

the dominant object and the subordinate object i.e., we need to know the speci�c location

on the dominant object that comes in contact with a speci�c location on the subordinate

object. For example, in the drink from mug action, when the mug held by the agent's hand

comes in contact with the agent's mouth during the actual process of drinking, we need to

know the speci�c location on the mug that comes in contact with the speci�c location of

the agent's mouth. To be able to do this, the system computes the constraint locations on

both the dominant object and on the subordinate object and computes their corresponding

NLTs. The dominant object's NLT is stored as the eeNLT in its object model and the

subordinate object's NLT is stored as the goalNLT in its object model. We refer to the

NLT of the visual constraint as the vNLT and store it in the corresponding object model.
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It is possible that the same object or object type may be used for multiple actions. But,

for each action, the observed constraint locations may be very di�erent. So, while storing

the various NLTs as properties of the object, it is necessary to qualify the constraint

location by the PAR name. In our PAR generation by action segmentation method, a

sub-action associated with the same agent and same object may be common to multiple

complex actions. For example, the Reach action is common to touch the box, hit the box,

pickup the box actions. For all these actions, the agent and object may be the same. But

the constraint locations will be di�erent as the intent of or purpose for reaching the box is

di�erent in each case. For the touch the box action, the agent may just touch a surface of

the box. So, the purpose of Reach is touch. For pickup the box action, the agent will grasp

the box at a di�erent location to get a proper grip. Here, the purpose of Reach is pickup.

To take care of this problem, we associate the constraint with a user-speci�ed purpose.

Finally, when an agent is coming in contact with an object, especially while using the arms

or legs to do so, either the left limb or the right limb could be used. The goal constraint

location on the object will vary based on the side (right/left) of the limb used. We desire

to store both types of constraint locations. Hence we also associate the constraint with

a side. Later, during the motion regeneration process, if we need to know the constraint

location for the same UPAR with the same purpose, but on the opposite side, it would be

trivial to compute it from the stored information and the geometry of the object.

With all the above considerations, we have extended the structure of the object model in

the Actionary (Fig. 4.3) to include the constraint locations as shown in Fig 4.8. Further,

to allow easy access for insertion and retrieval, the constraint location structure in the

object model is implemented as a tree as shown in Fig 4.9.

4.4.2.3 Style

Each person has an individual style for doing an action. It is sometimes desirable to

replicate the style of another person. Here, the system extracts from an action the di�erent

style parameters (described in Section 3.4). The style is speci�c to an agent and so should

be stored in the agent model. Similar to storing constraint locations, the style information

is associated with the PAR name and the user-speci�ed purpose. Additionally, we qualify
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type object representation =

(coordinate-system: site;

state: state space;

rel-dir: sequence relative direction;

special-dir: sequence special direction;

grasp-sites: sequence site;

actions: sequence parameterized action;

constraints: sequence constraint location)

type constraint location =

(action: parameterized action;

purpose: string;

side: direction;

locations: vector transform;

)

type vector transform =

(eeNLT : real vector;

goalNLT: real vector;

vNLT: real vector;

)

Figure 4.8: Modi�ed object representation type to include spatial constraints

Figure 4.9: Constraint locations stored within a tree in the object model
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Figure 4.10: Normalized distance moved by the end-e�ector

the style by the speci�c end-e�ector too. For example, the style of the reach action done

by the same person for the same purpose may not be the same for both the left and the

right arms. Here, we will consider each style separately:

Frame-wise Variations in End-E�ector Velocity (VelStyle): Using this style

information, the secondary agent will be able to maintain the same speed in the

action along any trajectory. Previously, during the motion abstraction and direct

mapping process (explained in Section3.4.1), we computed the normalized angular

distance moved in the joint space by the primary agent at each frame. During the

PAR generation process, we need to store this style information for future use.

But storing the information at each frame for each degree of freedom of each joint

amounts to a large amount of data and is also redundant. As mentioned earlier,

each primitive UPAR is associated only with a single end e�ector. To increase the

e�ciency of storing the style data, the CaPAR system computes the normalized

distance, ŝi, moved along the trajectory at each frame along each of the 3 coordinate

axis of the end-e�ector.

ŝi =

R
t

0
jv(�)jd�R

tend
0

jv(�)jd�
(4.1)

where tend is the duration of the motion segment. The system then computes and
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stores the average of the three values at each frame. Hence for each motion segment,

it only stores a one dimensional vector of normalized distances. Fig 4.10 shows the

variation of the normalized distances along the di�erent axes and compares it with

their average value. During the motion regeneration process, these distances are used

as interpolating factors for the end-e�ector interpolation.

Variations in Approach Path (PathStyle): We use this style when we need the

trajectory of the secondary agent's end-e�ector to have the same shape as the

trajectory of the primary agent's end-e�ector. For this, we need to store the

intermediate signi�cant end-e�ector locations. The process of extracting this

information has been explained in detail in Section 3.4.2. If during the motion

regeneration process, the duration of the action is di�erent from the observed

duration, then the key frame numbers corresponding to the signi�cant end-e�ector

positions have to be computed correctly. To allow this, the system also stores the

instant of time, normalized by the duration of motion, corresponding to the frame

number at which the signi�cant end-e�ector location has been detected by the system.

type agent style =

(action: parameterized action;

purpose: string;

EE: int;

styles: style information;

)

type style information =

(style1 : sequence vel style;

style2 : sequence path style;

)

type vel style =

(time: real value;

interpolation factor: real value)

type path style =

(time: real value;

significant-points: real vector)

Figure 4.11: Style information added to the agent model

With all the above considerations, we have extended the structure of the agent model
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Figure 4.12: Style information stored as a tree in the agent model

of the Actionary shown in Fig 4.2 to include the style information as shown in Fig

4.11. Again to increase e�ciency, we store the global end-e�ector locations as vectors.

Further, to allow easy access for insertion and retrieval, the agent style structure in

the agent model is implemented as a tree as shown in Fig 4.12.

Variations in Applied Force: We use this style when we need to map force interactions

between the agent's end-e�ector and an object. This is an extension of the PathSTyle

and has been explained in detail in Section 3.4.3. The trajectory of the secondary

agent's end-e�ector is generated similarly by the system, but we need additional

information like the computed coe�cient of restitution and damping forces to

compute the new trajectory of the object. These factors are speci�c to the object

type and so the system stores them in the object model. We again extend the state

space property of the object data type to include this as shown in Fig 4.13

4.5 PAR Characterization

In this section, we discuss our technique of characterizing a PAR from the extracted

semantic features. We also explain our method for e�ciently recognizing a previously

identi�ed PAR from the given set of features. The feature table is initially empty.
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type state space =

(position: real vector;

velocity: real vector;

acceleration: real vector;

force: real vector;

torque: real vector;

damping force: real vector;

coefficient of restitution: real value).

Figure 4.13: Force components to be added to the object model

Whenever a new action is observed, the CaPAR system extracts the EEObjRelStart,

EEObjRelEnd, ObjChangeLoc, EE, and Force semantic features, as described in Section

4.4.1, and groups them together to form a feature set. Each feature set is then compared

against existing feature sets in the feature table. As all the features are stored as binary

strings, the comparison of individual features reduces to a simple string comparison

problem. If there is a match, then the motion segment is labeled with the matched UPAR

name. Otherwise, the system prompts the user for a new UPAR name and stores it along

with the feature set in the feature table.

If we use a at feature table, then as the number of feature sets stored in the table

increases, the computation time required to search for a match also increases. To minimize

the search time, we use the concepts of pattern classi�cation and store the feature table

as a decision tree (Fig 4.14). Each feature in the feature set is stored at a di�erent level

in the tree. The features are sorted by priority. The higher priority features are stored

in the higher levels of the tree. The EEObjRelStart and EEObjRelStart features are very

important in characterizing a PAR and are hence stored at the top 2 levels. This is followed

by the next lower priority feature, ObjChangeLoc, which is stored one level lower in the

tree. The number of objects is implicitly included in each of these 3 features as the length

of the strings is either 2n� 1 (for EEObjRelStart) or n (for ObjChangeLoc) where n is the

number of objects (section 4.4.1). Hence, though the number of objects is a very important

PAR characterizing feature, it need not be stored explicitly in the feature table tree.

This tree structure makes it very easy and e�cient to search for a matching feature

and for inserting a new feature in the tree. The search process proceeds from the top of
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Figure 4.14: Feature table

the tree to the bottom. At any level, a comparison is made by the system between the

feature stored at that level and the corresponding feature in the new feature set. If there

is a match at a node, then only that node's children are traversed to continue comparisons

with the other features in the feature set. If there is a match at every level, then the

system returns the unique PAR that matches the feature set completely. But, if there is no

match at a level, then the system returns the list of all possible UPARs that have matched

the feature values until that level and prompts the user for a unique UPAR name. While

inserting a new feature set into the tree, a similar search process is �rst done. If there is

no match at one of the tree levels, then a subtree is created at that level and the rest of

the features are inserted into that subtree.

Using the above technique, the CaPAR system can easily �nd matches for various

primitive actions as shown in Fig 4.15. Later, if we need to add more speci�c properties

like direction of motion, we can easily add them to the feature table. The tree structure

allows for easy extensions and additions. Similar to Miller's verb tree [44], the speci�c

UPARs contain all the semantic features of the general UPARs, plus others.
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Figure 4.15: Extracted primitive PARs

4.6 PAR Generation

In this section, we describe the technique for generating both a primitive UPAR and a

complex UPAR for the observed action. For this, we use all the features extracted for both

PAR characterization and PAR generation.

4.6.1 Creating Primitive PAR

For each derived motion segment (Section 4.3), the CaPAR system identi�es a UPAR

(Section 4.5). For each newly identi�ed UPAR, the system uses the extracted features

to derive and set all the default parameters. A PAR (Section 4.1) has both high-level

and low-level parameters. The high level parameters include the applicability conditions,

termination conditions, preparatory speci�cations and execution steps. The speci�cations

for these parameters are all stored separately as script �les in Python [52]. The CaPAR

system derives the default parametric values for all these conditions and generates the

corresponding Python scripts. The low level parameters extracted include the constraints

and the duration of the action. In this section, we will discus each parameter separately.
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4.6.1.1 Preparatory Speci�cations

As mentioned in Section 4.1.1, the preparatory speci�cation is a list of <CONDITION,

action> statements. We refer to the CONDITION in the speci�cation as the precondition.

As we are considering only constrained actions (contact verbs), the preconditions can

be easily derived from the EEObjRelStart feature which speci�es the contact relation

between the end-e�ector and the other objects and between the dominant object and

other subordinate objects at the start of the motion segment. So, the associated actions

to satisfy these preconditions will always be one of Reach which causes the end-e�ector to

come in contact with a speci�ed object or MoveObjTo which causes the dominant object

held by the end-e�ector to come in contact with the speci�ed subordinate object. These

actions will be discussed in detail in Section 5.2. If there is no contact relation speci�ed by

the EEObjRelStart, then the CaPAR system uses the posture of the agent at the start of

the motion segment as a precondition. The associated action will then be a PostureChange

UPAR. For all our complex actions, the agent was in an initial neutral standing posture.

Consider the MoveObjTo action which speci�es 2 objects. The action causes the �rst

object (dominant object) to move such that it is in contact with the second object at the

end of the action. The EEObjRelStart for this action (Section 4.4.1) is 100 which speci�es

that at the start of the motion segment, the end-e�ector is in contact with the dominant

object but the dominant object is not in contact with the second object. This should

translate to the following when written in Python.

Preparatory Speci�cation in Python for the action MoveObjTo:

def preparatory_spec(self, agent, obj1, obj2):

if(contact(EE,obj1)):

return 1

else

actions = {'PRIMITIVE':("Reach",{'agents':agent,

'objects':(obj1)})};

return actions

Unfortunately, the PAR system does not allow us to currently check for the end-e�ector

values or any other instantiated PAR values except for the agent and object models within
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the Python scripts. This implies that we cannot currently check for the contact relation

between the end-e�ector and any other object within the preparatory speci�cations. We

would be able to do this with changes to the internal PAR architecture. Until then, the

CaPAR system uses EEObjRelStart and the necessary posture information, and overcomes

this problem by generating and checking for the pre-conditions at run-time during the

process of motion regeneration. The associated actions (Reach, MoveObjTo), instantiated

with the necessary parameters, are also generated at run-time. This will be explained in

detail in Section 5.3.2.

4.6.1.2 Termination Conditions

For the termination conditions, we use EEObjRelEnd feature. For example, for Reach

action, the EEObjRelEnd is 1. Correspondingly, the termination condition should check

for the contact between the end-e�ector and the object. Again, as explained above, we

cannot currently check for this within the Python scripts. Hence, the CaPAR system

generates and checks for the termination conditions also at run-time during the process

of motion regeneration. Additional features and user input may be needed to completely

specify the termination conditions. For example, the additional feature of duration is used

to specify the termination of a touch action, where there is no di�erence between the

starting and ending contact relations in the action.

4.6.1.3 Execution Steps

The execution steps for a primitive action are very straightforward. The CaPAR system

needs to correctly specify the objects. The execution steps described in Python for the

Reach example are shown below:

def execution_steps(self, agent,obj1):

actions = {'PRIMITIVE':("Reach", {'agents':agent,

'objects':(obj1)})}

return actions;
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4.6.1.4 Applicability Conditions

For the applicability conditions, we do not use any extracted features. The system only

generates the standard default applicability conditions as shown below:

def applicability_condition(self, agent,obj1):

if checkCapability(agent, self.name, [agent]):

return 1;

else:

return 0;

4.6.1.5 Constraints

In this thesis, we address only constrained actions. Hence it is very important to store

all the relevant constraint information for the action in the PAR so that it can be easily

used later during the motion regeneration process. To completely de�ne a constraint, we

need to know the exact objects in the PAR that will be involved in the constraint, the

start and end contact relationships between the various objects, and if any of the involved

objects need to change location during the motion segment. For the start and end contact

relationships, we can directly use the parameters EEObjRelStart, EEObjRelEnd and for

the change of location of the object we can use the parameter ObjChangeLoc that were all

derived (section 4.4.1) for the PAR characterization process. For the objects in contact,

we use the CollidingObjects feature generated for the PAR generation process.

With all the above considerations, we have extended the structure of the PAR to

include the constraint information as shown in Fig. 4.16. The CaPAR system sets all the

constraint parameters with the extracted information.

4.6.2 Creating Complex PARs

As mentioned in Section 4.3.2, the CaPAR system considers each tracking sensor separately,

segments the motions in the corresponding kinematic link and generates UPARs for each

segment. It now needs to combine all the UPARs together to form one complex UPAR

representing the observed action. For this, we have built a hierarchical motion abstractor.
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type core semantics =

(motion: MOTION;

force: FORCE;

......

constraint: CONSTRAINT;

)

type CONSTRAINT =

(end-effector: int;

CollidingObjects : int,int;

EEObjRelStart: string;

EEObjRelEnd: string;

ObjChangeLoc: string;

ApplyForce: string;

)

Figure 4.16: Action constraint added to the core semantics of the UPAR

At the �rst (lowest) level, the individual motion segments are abstracted and

characterized as PARs as described in (section 4.5). At the second level, individual

kinematic links are observed by the CaPAR system and the UPARs identi�ed for each

motion segment in the link are connected together sequentially in time. If there is only one

kinematic link, then the complex UPAR is just a sequential combination of these UPARs.

At the third level, the system has to combine these sequential PAR chains to form the

complex PAR. One way of forming the complex UPAR for the whole action is to simply

connect these sequential UPAR chains in parallel. This would be su�cient if the kinematic

links were completely independent of each other. But, generally, this is not the case. If

there is more than one active kinematic link, then they are interdependent. For this,

the CaPAR system needs additional information to temporally synchronize the various

UPARs in the di�erent kinematic links to ensure that the relative timings of the motion

segments in the di�erent kinematic links are maintained correctly. For example, if in the

observed action, the agent �rst reached for the object with the right hand, touched the

object for some time, then reached to touch the object with the left hand (while continuing

to touch with the right hand) and then used both hands to lift the box, the system needs

to replicate this exactly with a secondary agent. To accomplish this, it normalizes the

observed duration of the individual motion segments by the duration of the entire action
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such that the sum of all the normalized durations in a kinematic link equals 1. It then pass

this duration as a parameter of the primitive action in the execution steps for the complex

action. The complex UPARs are generated as a parallel combination of the sequence

of actions in the individual kinematic links. During motion regeneration, each of these

normalized durations is multiplied by the user-speci�ed duration (which maybe di�erent

from the observed duration) for the complex action such that the relative start and end

instants of the various motion segments, executing either sequentially or in parallel, is

maintained correctly. This can be used for characterizing and recognizing coordinated

actions like pickup box with both hands, clapping, etc.

Among the high-level parameters of the complex action, the CaPAR system only

generates speci�c information for the execution steps. The preparatory speci�cations, the

termination conditions and the applicability conditions for the complex action will be taken

care of by the individual primitive sub-actions that make up the complex action. Hence,

there is no need for the system to generate them again for the complex action. In the

execution steps of the complex action, the system speci�es the complex combination of the

individual primitive actions, derived from the hierarchical motion abstractor as described

above. In addition to specifying the observed normalized duration as a parameter of the

individual primitive actions, the system also speci�es some speci�c parameters for the

individual primitive motions. We will now discuss each of these parameters.

Agents: During the PAR generation process, this is just a variable name inside the

Python script and will be initialized by a user speci�ed agent name during the motion

regeneration process.

Objects: During the PAR generation process, these are just variable names inside the

Python script and will be initialized by the user speci�ed object names during the

motion regeneration process.

Duration: This is the duration of the primitive action, normalized by the CaPAR

system over the duration of the entire observed complex action. During the motion

regeneration process, this normalized value is multiplied by the new user-speci�ed

duration for the complex action to derive the correct duration for the corresponding

primitive action.
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Purpose: This is a user-speci�ed string identifying the purpose of the primitive action. As

explained in Sections 4.4.2.2 and 4.4.2.3, for the correct execution of the sub-action,

the purpose of the action is used to correctly retrieve the constraint locations and the

agent's style of executing the action from the corresponding objects and the agent.

EE: This is the speci�c end-e�ector used in the primitive action. During the PAR

characterization process, we do not distinguish between right hand and left hand

or between left foot and right foot in the action. Instead, we only use a general

type of end-e�ector like hand, foot, etc. But during the motion regeneration process,

we need to know the exact end-e�ector (left-hand, right-hand, left-foot, etc.) to be

used in order to generate the motions correctly. So, the CaPAR system uses this

parameter to specify the observed end-e�ector. For example, in a two-handed reach

action, the complex PAR may be a parallel combination of two Reach actions. It

is the EE parameter that helps in completely specifying the parallel combination of

left-handed reach and right-handed reach.

ComplexParent: This is the user speci�ed name of the observed complex action. It is

used during the generation of the instantiated PAR for a secondary agent to retrieve

some parameters from the complex action on which the primitive action's parameters

are dependent.

Posture: This is a pair of strings containing the posture name and the posture �le

name. If either the �rst or the last sub-actions in the complex PAR does not involve

any constraints at the end of the sub-action, then the CaPAR system automatically

records the posture of the agent in a �le and sets the posture name and posture

�lename parameters.

For the DrinkFromMug complex action, where the agent is assumed to be in an initial

standing posture, the abstracted and generated execution steps described in Python are

as follows:

from actionDef import *

def execution_steps(self, agent,obj1,obj2,obj3):

complex = (SEQUENCE,("Reach", {'agents':agent,
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'objects':(obj1),

'duration':0.445274,

'purpose':"PickUp",

'EE':15,

'ComplexParent':"DrinkFromMug"

}),

("MoveObjTo", {'agents':agent,

'objects':(obj1,obj3,obj2),

'duration':0.171642,

'purpose':"Drink",

'EE':15,

'ComplexParent':"DrinkFromMug"

}),

("Drink", {'agents':agent,

'objects':(obj1,obj2),

'duration':0.0472637,

'purpose':"Drink",

'EE':15,

'ComplexParent':"DrinkFromMug"

}),

("MoveObjTo", {'agents':agent,

'objects':(obj1,obj2,obj3),

'duration':0.121891,

'purpose':"PutDown",

'EE':15,

'ComplexParent':"DrinkFromMug"

}),

("TouchWith", {'agents':agent,

'objects':(obj1,obj3),

'duration':0.0472637,

'purpose':"Release",
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'EE':15,

'ComplexParent':"DrinkFromMug"

}),

("Position", {'agents':agent,

'objects':(obj1),

'duration':0.179104,

'purpose':"Release",

'EE':15,

'ComplexParent':"DrinkFromMug",

'Posture':("drinkEnd",drinkEnd.post"}))

actions = {'COMPLEX': complex}

return actions;

4.7 Motion ReGeneration from PAR

In this section, we describe the technique to generate motions for any secondary agent

within the PAR architecture [8]. To regenerate any of the observed complex agents for a

di�erent agent in a di�erent environment, the user �rst speci�es the complex action's

name, the new agent's name and the objects in the environment to be used for the

complex action. With this information, the corresponding UPAR of the speci�ed complex

action is instantiated by the PAR system to form the IPAR (Section 4.1.2). The user can

additionally specify a new duration for the entire complex action. Using this information

along with the parameters speci�ed for each of the primitive actions in the execution

steps of the complex action, the corresponding UPARs of the primitive sub-actions are

instantiated correctly by the PAR system to form individual IPARs. For the complex

action, the user can also specify an agent whose style of executing a similar complex action

can be copied. This agent's style is then used for all the sub-actions.

During the motion generation of the primitive actions, the CaPAR system �rst maps

the instantiated objects in the IPAR to the objects, speci�ed in the colliding objects feature

of the action constraint (Fig. 4.16) in the UPAR, and determines the speci�c objects that

will be actively involved in the new constraint. The colliding objects feature speci�es the

75



two objects that should form the constraint for this primitive action. The object speci�ed

as the �rst parameter in the colliding objects feature is the end-e�ector in the constraint

and the second object is the goal object. With this knowledge and using the UPAR name,

the purpose speci�ed as a parameter of the primitive action, and the side to be used, the

CaPAR system correctly extracts the eeNLT and the goalNLT from the corresponding

object models. Now, knowing the current size and the locations of the objects in the

new environment, the system computes the global constraint locations. Next, using the

EEObjRelStart, EEObjRelEnd, and ObjChangeLoc features, the CaPAR system determines

the type of constraint to be established. Independent of the action to be performed, it is

found that all the actions to be generated from a PAR derived from the CaPAR system

can be generalized to four speci�c cases:

1. There is initially no contact between the end-e�ector and the object. This happens

when EEObjRelStart[i] ==0 00 and EEObjRelEnd[i] ==0 10 where i corresponds

to the index of the speci�ed object in the object list of the sub-action. At the end

of the motion, the CaPAR system needs to establish a constraint between the end-

e�ector and the identi�ed object such that they come in contact: for example, Reach,

Hit. In this case, inverse kinematics is used to solve the constraint. During each

frame of execution of the motion, the system uses the speci�ed style information to

interpolate the end-e�ector location, between the start and goal locations, and uses

inverse-kinematics to solve for all the relevant joint angles. If a visual constraint

exists, it solves the spatial and visual constraints simultaneously.

2. The end-e�ector and the object are already in contact. In addition, the object needs

to change location during the action. This happens when EEObjRelStart[i] ==0 10

and EEObjRelEnd[i] ==0 10 and ObjChangeLoc[0] ==0 10: for example, MoveObj,

MoveObjTo. In this case, the CaPAR system slowly moves the object from the

current location to the computed goal location. At each frame of the animation, the

interpolated location of the object between the start and the goal locations is used

as the new location of the object. The system solves for the individual joint angles

indirectly by allowing the end-e�ector which is already in contact with the object to

passively follow the object.
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3. The end-e�ector and the object are already in contact. Also, the object does not

change location during the action. This happens when EEObjRelStart[i] ==0 10

and EEObjRelEnd[i] ==0 10 and ObjChangeLoc[0] ==0 00: for example, Touch,

TouchWith. In this case, the system does nothing and just maintains the contact

relationship for the speci�ed amount of time.

4. The end-e�ector and the object are initially in contact and should no longer be in

contact at the end of the action. This happens when EEObjRelStart[i] ==0 10 and

EEObjRelEnd[i] ==0 00 and all EEObjRelEnd[i] ==0 00 indicating that the end-

e�ector will not be in contact with any object at the end of the action: for example,

ResumePosture, Neutral. In this case, the system slowly changes the posture of

the agent to that speci�ed in the posture parameter of the primitive action in the

execution steps of the complex action. At each frame of the animation, the CaPAR

system interpolates the joint angles, from the current posture to the �nal speci�ed

posture.

4.8 Summary

In this chapter, we have presented our method for generating complex PARs from observing

motion captured data using the CaPAR system. Using our results from Chapter 3, we have

shown how the CaPAR system segments the motions, extracts all the semantic features

from an action, and combines them to form complex PARs. We have also shown the

technique for generating motions from the extracted PAR for any secondary agent in a

di�erent situation.
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Chapter 5

Results

In chapters 3 and 4, we described in detail our technique for motion abstraction,

parameterization, and mapping. In this chapter, we discuss the results obtained by

applying these techniques on various sets of data. In Section 5.1, we describe our

experiment setup, the techniques we used to overcome some inherent problems, and the

various sources of data. In Section 5.2, we discuss in detail the results of motion abstraction

and parameterization for some speci�c examples. In Section 5.3, we discuss the results of

motion regeneration from the PARs generated for these examples. Finally, we conclude

this chapter with section 5.5 where we summarize and present our observations of the

obtained results.

5.1 Experiment Setup

The main goal of the CaPAR system is to observe a single trial of a human performing

some complex task involving interaction with self or other objects in the environment and

to automatically generate semantically rich information about the action in such a way

that the action can be reproduced by any sized virtual human model. To accomplish

this, the single most important input into the CaPAR system is a stream of 6DOF data

representing the 3DOF position (x,y,z coordinates) and the 3DOF orientation (rotation in

the axial directions) of the various sites of a human over the duration of the performed

action. These sites correspond to various points on the body that would yield enough
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information for reproduction of the subject's body movements. This 6DOF data can be

obtained naturally and most e�ectively by the process of motion capture. It can also be

obtained from manually generated keyframe, procedural, or scripted animations. There are

multiple sources of motion captured data - magnetic, optical, video, etc. The techniques

introduced in this thesis are applicable to any of the above types of data.

As explained in Section 3.1, we have chosen to use the MotionStar system, from

Ascension Technology. It consists of one Extended Range Controller (ERC), one Extended

Range Transmitter, and 12 Bird units, each controlling a single sensor. Although this

system is cost-e�ective, productive and e�cient in generating data, it has one main

drawback. It is an electro-magnetic tracker and is hence susceptible to interference from

neighboring external sources of �elds [50]. The interference of the power supply frequency

and its harmonics with the sampling frequency introduces noise. To minimize this, we

use a sampling frequency of 103.3 Hz. Further, we have conducted several experiments

to calibrate the space around the transmitter in an e�ort to further reduce noise in the

data. We have found that the best data is obtained when the transmitter is placed more

than 6 feet away from the controller and when the sensors are all within 3-5 feet of the

transmitter. Also, all the sensors have to be at a minimum height of one foot above the

ground to minimize noise from cables under the oor in the laboratory. For this, we use a

wooden platform which is 4 feet wide, 8 feet long, and 1 foot high. The human performers

stand on this platform and perform the various actions.

1

3
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Figure 5.1: Locations of 7 electro-magnetic sensors on the upper body of a person

79



During a typical motion capture session, we use 12 magnetic sensors. Eleven of these

sensors are on the human body and the twelfth sensor is placed on the object that the

person will interact with. One of the sensors is always placed on the lower back of the

subject roughly corresponding to the L5 segment of the spine (sacro-iliac). This is used for

calibrating the virtual human model with the human performer. For recording the upper

body motions, we need six sensors in addition to the sensor at the lower back. These

sensors are placed in the following places: top of the head, base of the neck, one at the

back of each hand, one at the back of each elbow on the bony portion just above the elbow

joint. Fig. 5.1 shows the the placement of 7 sensors on a subject for recording upper body

motions. For the lower body motions, the four sensors are placed in the following places

: one above the knee joint on each leg and one on the top side of each foot. All the sites

were chosen for the amount of information they would yield for the reproduction of the

subject's body movements. The sensors at the hands and elbows are a�xed to the subject

using 3/4" wide velcro straps. Each strap is wrapped �rmly around the speci�c site to

ensure that shifting during movement does not occur. The sensor at the sacro-iliac joint

is a�xed using a 2" wide velcro strap, much like a belt, again �rmly wrapped so that

shifting does not occur. The receiver at the top of the head is mounted on a tight �tting

baseball cap, and the cap is placed on the subject's head such that the receiver is on the

top. Receivers are attached to the velcro straps and to the cap using nylon screws (white

plastic), to avoid the use of metal near the magnetically-based receivers.

The �rst step in deriving motions from motion capture data for the primary agent is to

build an avatar that is the same size as the subject. The human model in Jack Rcomprises

a number of segments each of whose measurements are required to generate an accurate

model. So, after the actual motion recording, the subject's anthropometric data is taken.

Twenty-�ve sites, including the upper and lower arm, upper, lower and center torso, upper

and lower legs, neck, head, hands and feet, corresponding to the SASS anthropometric

database [4] sites, are measured in the x, y and z directions. These measurements are

input to Jack Rand the desired human model is generated.

As explained in Section 3.1, to generate motions in the virtual human model, we �rst

establish constraints between the human model and the sensors. We then use inverse

kinematics to solve for the constraints. This causes the human model to closely follow the
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Figure 5.2: Real-time motion capture - Generating motions for a virtual human model

performer. Fig. 5.2 shows a sample session where the human model is following the actions

of the performer in real-time.

To collect enough data for the experiments and to evaluate the results from the CaPAR

system, we collected data from 3 subjects - 2 male and 1 female. While it was relatively

easy to generate human models corresponding to the male subjects, it was di�cult to do the

same for the female subject. We attribute this to inherent problems in the Jack Rsystem,

which generates models based mainly on male data.

In the CaPAR system, we are mainly interested in observing and abstracting complex

actions. Hence we recorded the following actions for each of the 3 subjects: Drink From

Mug, Touch Object, Slide Object, and Pick Up Box With Both Hands. We will discuss

each of these examples in detail in section 5.2. While studying agent-object interactions,

one of the main tasks before analyzing a simulated action in a virtual environment is to

ensure that the virtual environment emulates the real environment to the smallest detail

i.e., we need to ensure that the sizes of the relevant objects and their placement in the

virtual environment replicates the real environment. But, even with all the precautions

taken to minimize errors in the motion capture data, we �nd that the inverse kinematics

may introduce some new errors. We compensate for it by slightly changing the sizes and

the locations of the objects. So, with a little trial and error, we are able to build a virtual

environment in which the actions of the performer can be generated for the human model

and used reliably for further analysis. Note that this perfection is required only during

motion abstraction and not during motion regeneration.
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5.2 Results from Motion Abstraction and PAR Generation

In this section, we discuss the results obtained by using our techniques of motion

abstraction and PAR generation on several complex examples. Each of these examples

was motion captured using the techniques described in Section 5.1.

5.2.1 Drink From Mug

For this example, each of the performers was asked to stand in front of a table on which

was placed a mug. One of the electro-magnetic sensors was attached to the mug by velcro

straps. In all our examples, the performers were initially in a neutral standing posture

not in contact with any object in the environment. For this example, the performers were

asked to pickup the mug, drink from it, put the mug back on the table and to go back to

a posture similar to the initial one. (Note: it was not necessarily the exact same posture.)

No further speci�c instructions were given. The data was recorded and motions were

generated in the corresponding primary agents using the techniques described in Sections

3.1 and 5.1. We found that the data from the two male subjects yielded correct motions

whereas the data from the female subject was not good. This could be attributed to the fact

that the female's body size did not correctly match the actual performer's measurements

and hence the collision with the self type of tag object (mouth of the agent) could not

be detected correctly. Hence, we discarded the female subject's results. For the primary

agent's actions, three tag objects (Section 3.2.3) and two monitoring sensors (Section 3.2.2)

were identi�ed by the user. The tag objects were the mug, the table on which the mug was

resting, and the head of the primary agent. The monitoring sensors were the right hand

and the head of the primary agent.

Using the techniques described in chapters 3 and 4, the resulting motions of the two

subjects were analyzed, segmented and parameterized . We obtained two main results. One

of the results showed, as expected, the information from the actions of the two subjects

to di�er in durations of the primitive sub-actions, in the style of execution of the action,

and in the locations of the spatial and visual constraints. But the single most important

result was that the parameters extracted for characterizing the primitive PARs from any

motion segment were exactly the same for both sets of data. Accordingly, from each of
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the motions, the same complex PAR shown in Fig. 5.3 was automatically generated. The

execution steps generated for this complex action was shown and described in Section 4.6.2.

Figure 5.3: Complex PAR generated for the action DrinkFromMug

As explained in Section 4.5, if an extracted feature set has not been previously stored

in the feature table, the user has to specify the UPAR name to associate the primitive

action with. We will now consider each of the derived motion segments and discuss the

association of the extracted semantic features with their UPAR names.

Reach The following features were extracted from both the data sets for the �rst motion

segment, where the subject, who is in an initial neutral standing posture not touching

anything, reaches across for the mug with the explicit purpose of picking it up:

Number of objects: 1

EEObjRelStart: 0

EEObjRelEnd: 1

ObjChangeLoc: 0

While reaching across to touch an object, we know that there is only one important

object - the object to reach to. The object (table) on which the mug is resting is

not important for the reaching action. We note that even though the total number

of objects for the DrinkFromMug action is 3 (the number of tag objects identi�ed
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above), the CaPAR system, using the technique explained in section 4.4.1, correctly

estimates the number of objects for this motion segment to be 1. From the other

parameters, it can be understood that the end-e�ector of the primary agent is not

initially in contact with any object but comes in contact with an object at the end

of the action. The �rst time this feature set is encountered, the user identi�es it as

a Reach action. Subsequently, for the same or for other complex actions, a motion

segment with these same features will be correctly matched against the existing

feature set in the feature tree (explained in Section 4.5) and identi�ed automatically

by the CaPAR system as a Reach action.

MoveObjTo This corresponds to the motion segments in which the end-e�ector is in

contact with the primary object both at the start and at the end of the motion.

Additionally, the primary object moves during the motion to come in contact with

another object at the end of the motion. This is identi�ed by the features:

Number of objects: 2

EEObjRelStart: 100

EEObjRelEnd: 101

ObjChangeLoc: 10

In the DrinkFromMug complex action, the CaPAR system identi�es this sub-action

twice. The �rst instance corresponds to the second motion segment where the agent

picks up the mug and takes it to his mouth for the purpose of drinking. The second

instance corresponds to the fourth motion segment where the agent moves the mug

from his mouth to rest it on the table for the purpose of putting it down. When

considered very generally, in both the motion segments, the primary object (mug) is

brought in contact with a secondary object (the mouth in the second motion segment

and the table in the fourth motion segment). The object that the primary object is

in contact with at the start of the motion (the table in the second motion segment

and the mouth in the fourth motion segment) is not important. But the object that

the primary object will come in contact with at the end of the motion is important.

Hence the CaPAR system correctly identi�es the number of objects in this motion

segment to be 2. The motion characteristics of both instances of this sub-action are
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the same except for the objects that the primary object will come in contact with

at the end of the motion and the points of contact. The speci�c secondary objects

for each instance are speci�ed as parameters of the primitive motions as described

in Section 4.6.2. The exact points of contact are stored as NLTs in the respective

object models as described in Section 4.4.2.2. Hence, during motion regeneration,

the two distinct instances of the MoveObjTo sub-action are executed correctly.

MoveObj This corresponds to the motion segments in which the end-e�ector is in contact

with the primary object and the primary object is also in contact with the secondary

object both at the start and at the end of the motion. Additionally, the primary

object moves during the motion while continuing to maintain contact with both the

end-e�ector and the secondary object. This is identi�ed by the features:

Number of objects: 2

EEObjRelStart: 101

EEObjRelEnd: 101

ObjChangeLoc: 10

In the DrinkFromMug complex action, this sub-action corresponds to the third

motion segment where the agent, who in the previous motion segment of MovObjTo

had taken the mug to the mouth for the purpose of drinking, now actually drinks

from it. During the process of drinking, the mug is naturally moved or tilted to get

to the last drop of the liquid in the mug. But, we are not concerned with the contents

of the mug.

TouchWith This corresponds to the motion segments in which the end-e�ector is in

contact with the primary object and the primary object is also in contact with the

secondary object both at the start and at the end of the motion. Unlike in the

MoveObj sub-action, the primary object in this sub-action remains stationary during

the motion. This is identi�ed by the features:

Number of objects: 2

EEObjRelStart: 101

EEObjRelEnd: 101

ObjChangeLoc: 00
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In the DrinkFromMug complex action, this sub-action corresponds to the �fth motion

segment where the agent, who in the previous motion segment of MovObjTo had put

down the mug on the table, now continues to hold the mug on the table.

ResumePosture This corresponds to the motion segments in which the end-e�ector and

the object are initially in contact but are no longer in contact at the end of the action.

Also, at the end of the action, the end-e�ector is free and not in contact with any

object in the environment. This is identi�ed by the features:

Number of objects: 1

EEObjRelStart: 1

EEObjRelEnd: 0

ObjChangeLoc: 0

In the DrinkFromMug complex action, this sub-action corresponds to the last motion

segment where the agent releases contact with the mug and moves back to a neutral

posture. The �nal posture that the agent moves into is recorded and sent as a

parameter of the primitive action within the execution step of the complex action.

This is described in Section 4.6.2.

5.2.2 TouchFromRest

For this example, each of the performers was asked to stand in front of a table on which was

placed a box. One of the electro-magnetic sensors was attached to the box by velcro straps.

Again, the performers were initially in a neutral standing posture not in contact with any

object in the environment. The performers were asked to reach across and touch the box.

No further speci�c instructions were given. We later realized that one of the agents had

stopped the action after touching the box whereas the other two agents had gone back

to the neutral posture after touching the box for a small period of time. Accordingly,

we derived two di�erent complex actions - TouchFromRest and TouchCycle. The complex

PARs for these actions are shown in Fig. 5.4 and Fig. 5.5 respectively.

It is important to note that both instances of TouchFromRest generated the same

complex PAR. Also, as expected, the complex PAR for the TouchCycle action was the

same as that generated for the TouchFromRest action except for the addition of the
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Figure 5.4: Complex PAR generated for the action TouchFromRest

Figure 5.5: Complex PAR generated for the action TouchCycle

ResumePosture sub-action, which correctly corresponded to the agent going back to the

neutral position. As the Reach and ResumePosture changes have been explained in detail

in section 5.2.1, we will now only consider the Touch action.

The Touch action corresponds to the motion segments in which the end-e�ector is in

contact with the primary object both at the start and at the end of the motion. Also,

like the TouchWith sub-action, the primary object remains stationary during the motion.

Basically, the Touch action is a more general form of the TouchWith action. This is

identi�ed by the features:

Number of objects: 1

EEObjRelStart: 1

EEObjRelEnd: 1

ObjChangeLoc: 0

In the TouchFromRest or TouchCycle complex actions, this sub-action corresponds to the

second motion segment where the agent, who in the previous motion segment of MovObjTo

had reached across to touch the box, now continues to touch the box. For the simple touch

action, the object that the box is resting on is not important.
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5.2.3 SlideObject

The setup for this action was similar to the TouchFromRest complex action. The performers

were asked to reach across to touch the box and to move it. The PAR generated for this

action for each of the three agents is shown in Fig. 5.6. The complex PAR for this

action consists of the Reach primitive action followed by the MoveObject primitive action

in sequence.

Figure 5.6: Complex PAR generated for the action SlideObject

5.2.4 PickUpWithBothHands

The setup for this action was similar to the TouchFromRest complex action except that

a bigger box was now placed on top of the table. The performers were instructed to

pick up the box with both hands. For this action, we found that only one of the sets of

data was good for further analysis. The problem was that the inverse kinematics was not

able to reproduce the motions exactly for the primary agent from the other two subjects'

data. Hence, we discarded the two sets. Fig. 5.7 shows the block diagram of the complex

PAR for this action. This action involves two kinematic links - the right arm and the

left arm. The movements of the two links have to be carefully synchronized in time. As

explained in Section 4.6.2, the normalized durations for the individual sub-actions are

computed and sent as a parameter to the corresponding primitive action. When each

kinematic link is analyzed, the ResumePosture action is separately recognized by each

link. As explained in section 4.7, the motions for this action are regenerated by returning

the agent to the speci�ed posture using joint angle interpolation. Instead of generating
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Figure 5.7: Complex PAR generated for the action PickUpWithBothHands

two di�erent motions in parallel for the same action, the CaPAR system reduces it to one

action and executes it in sequence after the rest of the sub-actions in the two links have

�nished executing.

Referring to Fig. 5.7, the second motion segment has been identi�ed as MoveObj. This

should have actually been TouchWith, where the agent touches the box, resting on the

table, before picking it up. The discrepancy can be attributed to a small motion in the

box (due to noise in the data), which caused the system to recognize it as a MoveObj

action. As explained in Section 5.2.1, the features of the TouchWith and MoveObj actions

di�er only in the motion of the objects.

The second MoveObj sub-action refers to the motion segment in which the agent lifts

up the box and lowers it down onto the table. This should have correctly been recognized

by the system as two separate sub-actions - lift and lower. The reason for identifying the

combined actions of lift and lower in only one motion segment instead of two is that in our

system, the end of an action is recognized either by the end of the entire complex action

or by the co-occurrence of the zero crossings of acceleration and the spatial proximity of

two objects. If the lift action occurs in the middle of a complex action, the corresponding

motion segment is easily recognized if the object that is lifted comes in contact with another

object at the end of the action. But, in this example, it was not so. Hence the separate

motion segment for lift was not recognized by the system.

89



5.3 Results from Motion Regeneration

For each of the examples discussed above, the CaPAR system used the techniques

described in Section 4.7 and generated the motions in a new environment consisting of

an anthropometrically di�erent sized agent and di�erent sized objects placed at di�erent

locations. As we are mainly concerned with constraint based motions, we use inverse

kinematics to generate most of the motions. Unexpectedly, we came across some inherent

problems with the inverse kinematics. As designing new inverse kinematics solutions was

beyond the scope of this thesis, we overcame these problems in di�erent ways. We discuss

reasons for our problems with inverse kinematics and our solutions in Section 5.3.1. In

section 5.3.2, we discuss the automatic process of generating and checking for preparatory

speci�cations and termination conditions in real time. In Section 5.3.3, we discuss the

e�ect of using the di�erent extracted styles during motion regeneration. Finally, in Section

5.4, we discuss the results of evaluation by external people of the motions generated with

di�erent styles.

5.3.1 Inverse Kinematics

Previously, as explained in Section 3.4, during the process of mapping the motions directly

to a secondary agent, we had generated new motions only for the kinematic chains

containing the monitoring sensors. For the remaining kinematic chains (for example, the

spine), we had used the same joint angles as that of the primary agent. This was partially

possible as the rest of the environment was assumed to be exactly the same. But, the PARs

generated from the CaPAR system have to be applicable to any new environment. This

implies that the environment can be completely di�erent. For example, assume that in the

original environment, the object is in front of the agent on a low table. Then, to reach for

the object, the agent would bend forward and down. Now, in the new environment, let the

object be placed on a high table slightly to the left of the agent. Then, to reach for the

object, the agent has to slightly bend forward and also twist to the left. This action would

not be possible if we were to use the same joint angles as that of the primary agent. Hence,

we need to generate new joint angles for all the e�ected kinematic chains. Currently, we

have only considered upper body motions. This means that we need to generate new joint
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angles speci�cally for the spine. To accomplish this, we allow the constraint between a hand

and the object to be controlled from the waist instead of from the shoulder. While this

satis�es one criterion, it generates other problems. The main problem is that the kinematic

chain for the new constraint between the waist and the hand is very long, consisting of

numerous joints and degrees of freedom. So, there is a lot of redundancy and the solution

obtained is not very stable. To overcome this problem, we consider the visual constraints

that we also recognize and store (section 4.4.2.2) during the motion abstraction process.

During the motion regeneration process, the CaPAR system computes the new locations

for the visual constraints and then creates a new constraint to rotate the head in the

direction of the visual constraint. This constraint controls the joint at the base of the

neck. We found that solving the spatial and visual constraints in parallel got rid of most of

the redundancy problems and we got better solutions. Still, some quirks can be occasionally

found in the resulting animations that can be directly attributed to the problem with the

inverse kinematics. These can be removed by using better inverse kinematic techniques.

Finally, it is possible that not all spatial constraints have associated visual constraints.

To take care of such cases, we initially experimented with using the goal location of the

spatial constraint as the location of the visual constraint. This would correspond to the

naturalness of people looking at the object they are interacting with. But the resulting

motions were not good. Hence, we consider two separate solutions. If there is no visual

constraint, implying that the agent was not looking at anything speci�c, then the system

solves for the spatial constraint by controlling only the corresponding arm. But, if there a

visual constraint, then it controls the spatial constraint from the waist while solving it in

parallel with the visual constraint.

5.3.2 Preparatory Speci�cations and Termination Conditions

As explained in sections 4.6.1.1 and 4.6.1.2, int the current implementation, the preparatory

speci�cations and termination conditions cannot be fully speci�ed and checked for within

the Python scripts for the UPARs. Hence, the CaPAR system generates and checks for

those conditions at run-time during the process of motion regeneration.

As we are only interested in contact-based actions, the system needs to check for
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the contacts speci�ed in the EEObjRelStart and the EEObjRelEnd relations of the action

constraint in the corresponding UPAR. This speci�es the contact relation between the

end-e�ector and the other objects and between the primary object and other secondary

objects at the start of the motion segment. During motion regeneration, the CaPAR system

needs to check for the contacts between the corresponding end-e�ector and the instantiated

objects. Instead of checking for physical contacts using collision detection techniques, we

simplify this process by maintaining a global table within the PAR system to keep a record

of the contact status between the various pairs of objects or between any end-e�ector and

any object. All the end-e�ectors and the objects in the table are only identi�ed by their

names. During initialization of the environment, the table is initialized by the user, with

the contact status between relevant pairs of objects and end-e�ectors. Then, as part of the

post-assertion process (Section 4.1) of each primitive PAR, the CaPAR system updates

the contact table with the new contact status for the pairs of objects. Then, when checked

either for preconditions or for termination conditions, the correct contact status is obtained.

For the preparatory speci�cations, in case of failure of the preconditions, we need to

execute another primitive action to achieve the precondition and make it true. But, as

explained in section 4.6.1.1, the associated actions to satisfy these preconditions will always

be either Reach, which causes the end-e�ector to come in contact with a speci�ed object,

orMoveObjTo, which causes the primary object held by the end-e�ector to come in contact

with the speci�ed secondary object. So, if only the end-e�ector needs to come in contact

with an object, the system generates the Reach action and in all other cases, it generates

the MoveObjTo action. To correctly execute these actions, the system needs to specify

the purpose of the action and which end-e�ector to use. As explained in Section 4.4.2.2,

the system needs to know the purpose of the action to correctly obtain the constraint goal

locations from the corresponding objects. So, it passes the current UPAR's name as the

purpose parameter for the associated action. For the end-e�ector, it speci�es the current

action's end-e�ector for the associated action.

During motion regeneration, the preparatory speci�cations and termination conditions

generated at run-time by this method were checked for all the examples and found to work

correctly.
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5.3.3 Styles of Execution

As explained in sections 3.4 and 4.4.2.3, the di�erent styles of execution of the action

by the di�erent primary agents are recorded during the process of motion abstraction.

During motion regeneration, these styles are used to generate the motions for the speci�ed

secondary agents. The extracted VelStyle and PathStyle values for each action of each

agent is stored in a �le. During the initialization process of the motion regeneration, these

style values (identi�ed by the UPAR name of the action, the purpose of the action and the

end-e�ector used) are read into the corresponding agent model. We minimize the amount

of data stored for each action by using the compaction techniques discussed in Section

4.4.2.3. The e�ect of using the di�erent styles was discussed in section 3.4.

During motion abstraction, we record both the styles. During motion regeneration, we

use only one of the styles. Further, for some speci�c examples, we found that we were

able to regenerate the complete action using the PathStyle, but not the VelStyle. For

example, in the TouchFromRest example, the subjects were asked to indirectly approach

the box that they had to touch; i.e. instead of reaching for the box directly, they were

asked to move the arm randomly before touching. If we were to use the VelStyle for this,

we would lose the information on the approach path. But with PathStyle, the random

motions of the primary agent's arm were correctly reproduced in the secondary agent's

motion. Also, for the PickUpWithBothHands action, even though the sub-actions were not

correctly recognized as lift and lower, the motions generated by the CaPAR system for the

secondary agent from the extracted information but using the PathStyle of the primary

agent's motion, were found to correctly mimic the lift and lower motions of the primary

agent. We used the VelStyle to correctly generate the motions for the DrinkFromMug and

the SlideFromRest complex actions. We used the PathStyle to generate the motions for the

secondary agent for the TouchFromRest and the PickUpWithBothHands complex actions.

5.4 Evaluations

In this section, we describe the evaluations done to validate both motion abstraction and

motion regeneration results obtained from the CaPAR system. For evaluating the motion

abstraction and parameterization processes, we obtained two sets of data for each action
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from each of the three subjects. The CaPAR system processed each data set separately

and generated the same features for each motion segment as discussed above, thus self

validating the techniques of motion segmentation, abstraction, and parameterization.

Figure 5.8: Evaluation of VelStyle

In the motion regeneration process, we used external evaluations to validate the style

extraction and mapping processes. To do this, we asked 6 di�erent people who were not

familiar with the CaPAR system to evaluate it. Three of these people were experienced in

generating various types of animations and the rest had absolutely no experience with such

systems. First, we considered the DrinkFromMug action to test the VelStyle. We found

that as all the subjects had performed the actions smoothly, there was very little di�erence

between the VelStyle of the various agents. Hence we only evaluated the regenerated actions

for the presence of the VelStyle. The experiment was setup as shown in Fig. 5.8. On the left

side was the movie clip corresponding to the action regenerated for the child model using

only the constant interpolation factor. On the right side, the movie clip corresponded to

the action regenerated for the child model using the VelStyle of the �rst primary agent. The

evaluators were not informed of these details. They were asked to watch both the movie

clips and to report whether they found any visible di�erence between the two actions and

to specify which action they found more natural. All the six evaluators correctly found that

there was a distinct di�erence between the two motions and that the motion regenerated

using the extracted VelStyle appeared more natural.

To evaluate the PathStyle extraction and mapping processes, we used the

TouchFromRest complex action and set up the experiment as shown in Fig 5.9. We
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Figure 5.9: Evaluation of PathStyle

�rst played the movie clips of each of the primary agents and then played the movie

clip corresponding to the regenerated motion for the secondary agent. The evaluators

were asked to identify the primary agent who they considered the secondary agent's style

was derived from. Five out of the six people correctly identi�ed the primary agent. We

attribute the single failure to the quirks in the elbow position introduced by the inverse

kinematics as explained in Section 5.3.1.

5.5 Conclusion

In this chapter, we have presented all the results obtained for the motion abstraction and

motion regeneration techniques. We have shown through multiple examples that the same

PARs are generated for the same action even when performed by more than one agent.

This substantiates our claim that a single trial of data is su�cient to abstract a motion

and parameterize it for regeneration on other anthropometrically di�erent-sized models.

One of the most important observations that can be from this technique about motions

for contact verbs is that all the contact-based complex actions are only a combination of

a small set of primitive actions - Reach, MoveObj, MoveObjTo, Hit, Touch, TouchWith,

and ResumePosture. These actions can then be used as good set of base actions from
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which di�erent complex actions can be built. We have also shown that from a single

PAR, we can regenerate motions for di�erent agents with di�erent styles in di�erent

environments containing similar objects, but of di�erent sizes. Finally, we have shown

that in case of actions corresponding to contact-based verbs, only a small set of extracted

features - EEObjRelStart, EEObjRelEnd, and ObjChangeLoc, are required to distinguish

most of the base primitive actions, to estimate the number of objects in a primitive action,

to distinguish di�erent cases of motion regeneration and to automatically generate the

preparatory speci�cations and termination conditions for the actions.
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Chapter 6

Contributions and Future Work

The main goal of this thesis was to build an interactive system that can observe a

single trial of a person's actions and automatically abstract, understand, recognize and

parameterize the observed complex physical action into an agent-size neutral semantic

representation such that the actions can be reproduced by any sized virtual human model.

We have described the process of building such a system, the CaPAR, in Chapter 4 and

demonstrated its capabilities through several examples in Chapter 6. In this chapter, we

summarize the capabilities of the CaPAR system, discuss our contributions and suggest

some useful extensions to this thesis.

Broadly speaking, the techniques introduced in the CaPAR system are applicable to

actions involving interaction with solid non-deformable objects and to actions that can be

applied iteratively to a set of solid objects. This arises from one of our basic assumptions

that the end-e�ector can be in contact with only one object at a time (section 4.3.2). We

have tested the system extensively with several examples involving upper body motions.

The system can be very easily extended to include full body motions. In section 6.1, we

discuss the capabilities of the CaPAR system in terms of the linguistic classi�cation of

verbs. In section 6.2, we discuss all the contributions from this research. We conclude this

thesis with section 6.3 where we discuss some of the relevant future work.
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6.1 Linguistic Classi�cation

In this section, we linguistically classify the set of actions that the CaPAR system is

capable of addressing. We situate the actions that we have extracted from motion capture

in terms of di�erent verb classes. For this, we use two di�erent classi�cations: WordNet

[27] and Levin classes [38]. First, we associate the di�erent verbs that we have extracted

for our seven basic primitive actions with the di�erent senses in WordNet as shown below:

Extracted Verb WordNet Verb WordNet Sense#

Reach Reach 6

Hit Hit 1,4

Touch Touch 1,5,8

TouchWith Touch 1,5,8

MoveObj Move 2

MoveObjTo Move 2

ResumePosture Resume 2

Figure 6.1: Levin classes of verbs addressable by CaPAR system

In the CaPAR system, we are interested only in actions involving interactions between
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an agent and other objects or with the self. We would now like to relate these actions with

relevant linguistic verb classi�cations and study the applicability extent of the CaPAR

system to these verbs. For this, we consider the verb classi�cation suggested by Levin.

Levin verb classes are based on the ability or inability of a verb to occur in pairs of syntactic

frames that are in some sense meaning preserving. The sets of syntactic frames associated

with a particular Levin class are supposed to reect underlying semantic components that

constrain allowable arguments and adjuncts. Fig. 6.1 shows the subset of Levin classes of

verbs that we consider are related to the group of actions we are interested in. The numbers

in the parenthesis refer to the section numbers in the book [38]. The CaPAR system can

be applied directly to the verb classes shown in the shaded boxes. With a few extensions

to the system, it can be applied to the verb classes shown in the non-shaded boxes outlined

by solid lines. But it cannot be applied to the verb classes shown within the dotted lines.

We will now consider each of these classes of verbs and discuss the applicability of the

system towards it.

The CaPAR system is designed to recognize and identify gross motions like the

movement of the arm, legs, head, etc. But it cannot recognize �ne grained motions

involving movement of the eyelids, �ngers, lips, etc. like blink eyes, point �nger, squint

eyes, etc. (40.3.1) as we cannot readily record this type of information from the performer.

Hence, the system can address general verbs of contact(20) like touch or touch with. For

example, Carrie touched the box with the stick. But, it cannot address �ne grained

contact(20) actions like tickle, caress, nudge, kiss, etc. The system can easily address

high level gestures like clap hands(40.3). Here, the contact is between the agent's two

hands which the system can readily handle. We can also address curtsy verbs(40.3.3) like

salaam, salute, etc. as they again involve contact between the hand and the head of the

agent.

Hit is one of the primitive actions that we have shown to be recognized and

parameterized (Section 3.4.3) by the CaPAR system. This allows us to readily address

verbs of contact by impact (18) like hit, kick, strike and their related synonyms. Throw(17)

verbs which cause ballistic motions by imparting a force, linguistically belong to a di�erent

class of verbs. But, in animations, they are very similar to hit verbs and just treated as a

special case. In a hit action, the force is computed at impact. But in a throw action, the
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force is inherent in the arm holding the object and should be computed at the instant the

hand releases the object. The CaPAR system can be easily extended to address the throw

verbs. However it cannot be extended to handle swat(18.2) verbs like bite, claw, pick, etc.,

which are also verbs of contact by impact(18), but involve �ne grained motions of teeth or

�ngers.

In Section 5.2.1, we describe in detail the complex action of drink, that can be easily

parameterized and regenerated by the CaPAR system. This allows us to easily address

verbs of ingesting(39) like drink and eat.

The MoveObj and MoveObjTo primitive actions of the CaPAR system allow us to

readily address move verbs which cause an object to be moved from one location to

another. Although in general, we are not attempting to capture the di�erences in manners

of motion(51) such as running and jogging, there are a few motion verbs which can be

characterized to a simple MoveObj or MoveObjTo action. For example, the carry action

which belongs to the class of send and carry verbs(11) defaults to a MoveObjTo action. A

slide action is a specialized form of move which assumes that the object is in continuous

contact with the surface of another object while it moves. Whereas we do not check for

the surface contact during the motion, we can still readily address the slide action as long

as it does not involve change of possession i.e., the agent has to remain in contact with the

object during the motion.

The put action is a specialized form of the MoveObjTo primitive action. Linguistically,

it has three obligatory arguments, two participants and a locative preposition like in, into,

on, etc. Currently, we are not able to recognize from motion capture any prepositional

relationships between the contacting objects. But, a very natural and important extension

to the CaPAR system will be to include this. Then for motion regeneration, we can use

the principles outlined in [65]. This will then readily allow the system to address verbs of

putting like put(9.1), rest(9.1), stood(9.2), funnel(9.3), etc.

Verbs like lift, raise, lower, etc. are put verbs with speci�c directions(9.4). These verbs

can be addressed by the system provided that they meet two additional requirements.

First, the motion segments corresponding to these actions should not be followed by any

other sub-actions in the whole complex action. In our system, the end of an action is

recognized either by new contact relations or by end of the entire complex action. If the
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lift action occurs in the middle of a complex action, then the corresponding motion segment

is easily recognized if the object that is lifted comes in contact with another object at the

end of the action. If not, the motion segment will not be recognized. Secondly, the system

needs to be extended to recognize relative directions of movement between two objects like

up, down, etc. This will then allow the system to distinguish the lower and raise actions.

6.2 Contributions

The following are our contributions in this thesis:

� Introduced the concept of using zero crossings of acceleration to automatically

segment motions, retarget motions, while maintaining spatial and visual constraints,

and to identify key points in an end-e�ector trajectory.

� Demonstrated the capability to detect and map interactions with objects as well as

with self.

� Automatically extracted various motion styles of the performer.

� Automatically extracted physics-based model parameters from an observed action.

� Demonstrated e�ectively that only a single trial of observed motion is su�cient to

de�ne an action for the purpose of action recognition.

� Built the interactive system that can automatically parameterize and build

conceptual representations of observed complex actions using temporal event linking.

� Introduced techniques to automatically determine preconditions and termination

conditions from the observed action.

6.3 Future Work

Here are some of our thoughts and suggestions on extensions to the CaPAR system that

would greatly enhance its capabilities:
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� As explained in Section 6.1, one of the most important extensions to this system

will be to add the capability of recognizing prepositional phrases from actions. We

currently recognize the spatial relationship between the objects in the environment

in the form of spatial and visual constraints. But we do not recognize the locative

prepositional relations like in, into, on, etc. This would greatly expand the range of

actions that CaPAR can address.

� In the CaPAR system, we currently consider only point-to-point constraints. We

could extend this to recognize and map point-to-line and point-to-plane constraints.

This would also aid in the recognition of the locative prepositions.

� We have currently limited the set of actions to those involving only upper body

motions. A natural extension of this system is to add the capabilities of addressing full

body motions and also �ne grained motions like the �nger motions. The vocabulary

addressable by the CaPAR system would then include grasp, walk, jump, kick, etc.

But, while considering the lower body motions, we need to correctly determine the

supportive or the weight bearing leg both during the abstraction and the motion

regeneration processes.

� In all our actions, we assume that the end-e�ector can be in contact with only one

object at a time. An interesting and easy extension to the system would be to allow

multiple objects to come in contact with the end-e�ector at the same time thus

allowing the system to address actions like playing jacks.

� During the motion regeneration process, we currently do not consider collisions that

might occur between the agent's body and the new environment. A good addition

to the system would be to modify the new motion paths using body-awareness

techniques [68].

� In the CaPAR system, we currently rely on the user to inform the system of possible

force interactions in the action. The system can be extended to automatically detect

the force interactions without any user input.

� We are currently unable to apply the CaPAR system to actions like catch a ball
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which include indeterminable parameters like the instant at which the ball is thrown

and the duration of the ball's motion before it comes in contact with the agent's

hand. This action also falls into the group of actions involving interaction between

two agents which the system currently does not address. Extending the system to

handle such interactions will be a very interesting and challenging project.

� The CaPAR system has been built to capture, record and analyze information from

the actions of a human performer. A very important extension to this system would

be to further enhance the derived motions with some emotions and manner using the

EMOTE system [18].

� The principles we used would likely be found applicable to motion captured data by

other means such as by video cameras. The extension to CaPAR in the abstraction

of 2D data to 3D constraints would be a challenging but feasible project.
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