
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

May 2006 

Unrestricted Transactional Memory: Supporting I/O and System Unrestricted Transactional Memory: Supporting I/O and System 

Calls Within Transactions Calls Within Transactions 

Colin Blundell 
University of Pennsylvania 

E. Christopher Lewis 
University of Pennsylvania, eclewis@cis.upenn.edu 

Milo Martin 
University of Pennsylvania, milom@cis.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Colin Blundell, E. Christopher Lewis, and Milo Martin, "Unrestricted Transactional Memory: Supporting I/O 
and System Calls Within Transactions", . May 2006. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. TR-CIS-06-09. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/130 
For more information, please contact repository@pobox.upenn.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/130
mailto:repository@pobox.upenn.edu


Unrestricted Transactional Memory: Supporting I/O and System Calls Within Unrestricted Transactional Memory: Supporting I/O and System Calls Within 
Transactions Transactions 

Abstract Abstract 
Hardware transactional memory has great potential to simplify the creation of correct and efficient 
multithreaded programs, enabling programmers to exploit the soon-to-be-ubiquitous multi-core designs. 
Transactions are simply segments of code that are guaranteed to execute without interference from other 
concurrently-executing threads. The hardware executes transactions in parallel, ensuring non-interference 
via abort/rollback/restart when conflicts are detected. Transactions thus provide both a simple 
programming interface and a highly-concurrent implementation that serializes only on data conflicts. A 
progression of recent work has broadened the utility of transactional memory by lifting the bound on the 
size and duration of transactions, called unbounded transactions. Nevertheless, two key challenges 
remain: (i) I/O and system calls cannot appear in transactions and (ii) existing unbounded transactional 
memory proposals require complex implementations. 

We describe a system for fully unrestricted transactions (i.e., they can contain I/O and system calls in 
addition to being unbounded in size and duration). We achieve this via two modes of transaction 
execution: restricted (which limits transaction size, duration, and content but is highly concurrent) and 
unrestricted (which is unbounded and can contain I/O and system calls but has limited concurrency 
because there can be only one unrestricted transaction executing at a time). Transactions transition to 
unrestricted mode only when necessary. We introduce unoptimized and optimized implementations in 
order to balance performance and design complexity. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. TR-
CIS-06-09. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/130 

https://repository.upenn.edu/cis_reports/130


Unrestricted Transactional Memory:
Supporting I/O and System Calls within Transactions

Technical Report TR-CIS-06-09
May 2006

Colin Blundell

blundell@cis.upenn.edu

E Christopher Lewis

lewis@cis.upenn.edu

Milo M. K. Martin

milom@cis.upenn.edu

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389 USA

Abstract
Hardware transactional memory has great potential to simplify

the creation of correct and efficient multithreaded programs, en-
abling programmers to exploit the soon-to-be-ubiquitous multi-core
designs. Transactions are simply segments of code that are guar-
anteed to execute without interference from other concurrently-
executing threads. The hardware executes transactions in parallel,
ensuring non-interference via abort/rollback/restart when conflicts
are detected. Transactions thus provide both a simple program-
ming interface and a highly-concurrent implementation that serial-
izes only on data conflicts. A progression of recent work has broad-
ened the utility of transactional memory by lifting the bound on the
size and duration of transactions, calledunboundedtransactions.
Nevertheless, two key challenges remain: (i) I/O and system calls
cannot appear in transactions and (ii) existing unbounded transac-
tional memory proposals require complex implementations.

We describe a system for fullyunrestrictedtransactions (i.e., they
can contain I/O and system calls in addition to being unbounded in
size and duration). We achieve this via two modes of transaction ex-
ecution:restricted(which limits transaction size, duration, and con-
tent but is highly concurrent) andunrestricted(which is unbounded
andcan contain I/O and system calls but has limited concurrency
because there can be only one unrestricted transaction executing at a
time). Transactions transition to unrestricted mode only when nec-
essary. We introduce unoptimized and optimized implementations
in order to balance performance and design complexity.

1 Introduction
Processor manufacturers are betting on multi-core designs to sus-

tain the accustomed exponential performance growth for the next
generation of microprocessors. Unfortunately, tapping the poten-
tial of these designs is enormously challenging, as parallel program-
ming remains a difficult task in most application domains even after
decades of research. As a result, not only is it urgent that com-
puter architects explore facilities to assuage the challenges of par-
allel programming, but these facilities must be sufficiently simple
(both in terms of interface and implementation) if there is to be any
hope that they will influence imminent multi-core designs.

Researchers have proposed hardware-based transactional mem-
ory systems to ameliorate the challenges of parallel programming
via threads and locks [2, 14, 19, 29, 34, 41]. Transactional mem-
ory systems allow programmers to specify regions of code, called
transactions, that execute in a serialized fashion (i.e., transactions
execute as if they were the only code executing in the system).
Transactional memory systems optimistically execute transactions

currently, yet the appearance of serialization is preserved because
when two concurrent transactions share data (and at least one writes
it), they are serialized by aborting, rolling back, and restarting one
of them. The global serialization property gives transactions a more
powerful semantics than locks, affording programmers the simplic-
ity of coarse-grained locks, while achieving the performance of
fine-grained locks.

Although transactional memory has applications beyond replac-
ing lock-based synchronization, our interest in transactional mem-
ory is solely for providing aneasy-to-use and highly-concurrent
alternative to lock-based synchronization. In contrast, hardware
transactional memory was first proposed to support non-blocking
algorithms [19]. Others have continued to focus on non-blocking
guarantees or have proposed using transactions to support advanced
exception handling semantics [15], real-time systems [3, 31], high-
availability systems [4, 23], transaction-based languages [6], or
speculative transactional execution models [13]. We do not in-
tend to provide a one-size-fits-all solution that also addresses all
of the above domains. Instead, our primary goal is to provide a
pragmatic transactional system sufficient to replace locking in the
next-generation versions of existing mainstream C/C++/Java pro-
grams (e.g., database and web servers, parallel media processing,
scientific, and graphics applications). In this, we are not alone; for
example, some software-only transaction memory proposals have
explicitly advocated against non-blocking behavior [11] or have
proposed isolation-only transactions [44]. Furthermore, this work
is guided by a principle ably articulated by Larus: “Transactional
memory must work within existing environments... [it is] unrealis-
tic to change everything at once” [22].

Toward this end, recent proposals have advanced transactional
memory beyond the originalbounded transactionssuitable for cre-
ating non-blocking data structures, which were limited by the size
of on-chip buffers [19, 41], tounbounded transactionssuitable for
use as a general-purpose synchronization primitive. In the common
case of small transactions, these recent proposals rely on bounded
on-chip structures to buffer speculative state to facilitate rollback
and an invalidation-based cache coherence protocol for conflict
detection. They invoke more advanced handling only in the un-
common case when a transactionoverflowsby exceeding the ded-
icate hardware structures. LTM [2] and LogTM [29] provide un-
bounded transactions (in terms of data touched) using in-memory
logging and unbounded rollback, but they do not allow transactions
to persist across timer interrupts or context switches (i.e., they are
bounded in duration). UTM [2] and VTM [34] provide transac-
tions that are unbounded in both size and duration, but they propose
complex in-memory data structures to both (i) buffer an unbounded

1



amount of state to support unbounded rollback and (ii) detect con-
flicts across an unbounded number of memory locations and among
an unbounded number of concurrently-executing transactions (e.g.,
UTM’s X-state [2] and VTM’s XSW/XF/XADT [34]). Both of
these truly unbounded transactional memory proposals (UTM and
VTM) are currently only “paper” designs without an actual quanti-
tative evaluation, and Ananianet al. chose to implement only their
more-limited LTM scheme over their more-general UTM proposal.

Although these proposals provide unbounded transactions, they
do not provideunrestricted transactionsin that they cannot contain
I/O and arbitrary system calls, because these operations cannot eas-
ily be rolled back (if at all). This restriction is a major practical lim-
itation because programmers are not necessarily aware of when and
where their code performs system calls and I/O (especially when
considering separate compilation and linking with libraries), and
programmers may wish to use transactions to enforce serialization
of I/O operations.

Many researchers have identified supporting I/O and/or system
calls within transactions as an important open problem: “...exclud-
ing I/O operations from transactions greatly reduce their value as
a parallel programming construct.” [22], “The role of I/O within a
transaction is unresolved.” [34], and “Challenges include the need
for better virtualization to support paging, context switches, and
other operating system interactions without undue runtime over-
head or complexity.” [29].

Three observations suggest an approach to unrestricted transac-
tions without the unbounded in-memory logging and complex con-
flict detection structures of prior (length and duration) unbounded
transactional memory systems (i.e., VTM and UTM):

• Observation #1: Previous research has shown that transac-
tions typically update a small amount of memory, run for a
short period of time, and usually don’t perform system calls
or I/O [2, 8, 29]. As such, support for unrestricted transactions
is necessary, but such transactions are not the common case.

• Observation #2:Supporting only one overflowed transaction
at a time is sufficient for correctly handling the uncommon
case that a transaction overflows the on-chip buffers or makes
a system call. This observation can dramatically simplify the
hardware that manages the in-memory data structures for de-
tecting conflicts.

• Observation #3: To ensure forward progress in the face
of conflicts, many transactional proposals use a simple con-
flict resolution algorithm that favors older transactions over
younger transactions [2, 29, 33] (i.e., on a conflict between
two transactions, the younger transaction aborts). Under such
a scheme, when a transaction becomes the oldest transaction
in the system, it will never need to rollback due to a conflict.
If we eschew support for an explicit, user-triggered rollback
instruction (consistent with our philosophy of focusing on re-
placing lock-based synchronization and not on new language
constructs), this oldest transaction can perform arbitrary I/O
and system calls (while maintaining the critical serializable
semantics of transactions), because it will never be asked to
rollback. In addition, it no longer requires a rollback log
buffer of unbounded size.

Our proposal. Based on these observations, we provide unre-
stricted transactions by (i) allowing only a single overflowed trans-
action at a time per application, which follows from observation #2,
and (ii) giving the overflowed transaction priority in conflict res-
olution (i.e., conflicts will never cause the overflowed transaction
to abort), which follows from observation #3. By allowing only a

single overflowed transaction per application, we give up some con-
currency (in the uncommon case of multiple overflows) in exchange
for gaining the ability to perform I/O and system calls within trans-
actions. Our system provides two different transaction execution
modes: restricted (which is bounded in size, duration, and con-
tent but highly concurrent) andunrestricted(which is, naturally,
unrestricted but there can be only one transaction in this mode at a
time). Restricted execution is sufficient for most transactions, but
unrestricted execution will be necessary for the rare (observation
#1) large, long-running, or I/O performing transactions. We present
two implementations that follow this general approach:

Unoptimized Implementation. In our unoptimized implementa-
tion, when a transaction enters unrestricted execution mode (e.g.,
due to overflow), all other threads in the same process are stalled
until the transaction completes. The stalled threads are free to han-
dle interrupts and context switch to another process, but no other
threads within the process are allowed to continue until the over-
flowed transaction completes. This implementation provides lim-
ited concurrency during overflow, but it does not require a mecha-
nism for conflict detection or rollback of the overflowed transaction,
because other threads could not possibly interfere with the execu-
tion (because they are stalled).

Optimized Implementation. The highly-serial unoptimized im-
plementation will be unacceptable if a non-trivial fraction of trans-
actions overflow and/or perform system calls. Our optimized imple-
mentation allows concurrent execution of multiple restricted trans-
actions and a single unrestricted transaction. Logging of unbounded
state is not necessary, and conflict detection with the unrestricted
transaction is simplified because there can be only one.

Relationship to TCC. The TCC [14] system supports I/O and sys-
tem calls within their continuous transactional execution model [13]
via a mode of execution (called pre-committed) that delays all trans-
action commits when a pre-committed transaction is active [14],
rapidly serializing the system around pre-committed transactions.
Our unoptimized implementation of unrestricted transactions is
similar TCC’s approach. However, we stall threads only within a
single application, not the whole system, avoiding issues with low-
level serialization of the entire system [45]. Our optimized imple-
mentation allows for more concurrency by allowing other restricted
transactions to begin, execute, and commit during the execution of
an unrestricted transaction. Our approach leverages any existing
invalidation-based cache coherence protocol, whereas TCC defines
an all-new transaction-grained joint coherence and synchronization
protocol. Recent work by the TCC group abandons pre-committed
execution in favor of transactional I/O via abort and commit call-
backs [27].

No expicit abort . Unlike some other transactional memory pro-
posals (e.g., [1, 6, 16, 17, 35]), our programmer’s API does not in-
clude an explicit user-visible abort operation, because unrestricted
transactions cannot be rolled back. Although some transactional
systems support such a construct, others do not. For example, two
of the three languages being developed as part of DARPA’s HPCS
program support transactionswithout user-visible abort: IBM’s
X10 language explicitly avoids an abort construct “for simplicity of
implementation” [7] and Cray’s Chapel does not include an abort
command [10]. X10 also eschews conditional transactions: “we
have not yet encountered programming idioms in the high perfor-
mance computing space which require the full power of conditional
atomic blocks. Therefore while this construct is in the language, its
use is currently deprecated.” [7]. As one of the tauted reasons for
supporting explicit abort is for nested conditional transactions [17],

2



X10’s depreciation of conditional transactions supports the viability
of a transactional system that does not support user-visible abort.

Contributions. Ours is the first proposal for an unbounded con-
ventional transactional memory system [2, 29, 34] to support I/O
and system calls and the only to do so while allowing concurrent
commits of transactions while an unrestricted transaction is active.
Our approach has several important virtues. (i) Unlike other pro-
posals for unbounded transactions, this approach does not require
unbounded logging. (ii) In detecting conflicts with only a single
unbounded transaction, our approach’s conflict detection scheme
does not require the complexity of tracking references by many un-
bounded transactions as is required by previous proposals that sup-
port transaction of unbounded size and duration [2, 34]. (iii) Our
approach can build on any traditional invalidation-based coherence
protocol, requiring fewer protocol changes than systems such as
LogTM or TCC. (iv) Existing hardware transactional memory sys-
tem proposals are incompatible with existing hardware, requiring
developers to maintain two versions of their applications (one using
transactions and the other,e.g., using locks). In contrast, our min-
imalistic interface admits correct, but low-concurrency, software-
only implementations suitable for existing systems.

2 Interface and Design
Our unrestricted transactional memory system design distributes

the implementation of transactions across the hardware and soft-
ware in order to reduce hardware complexity and allow the software
to inform the user of potential performance problems. The final
motivation greatly enhances the flexibility of the system, allowing
software control of the policies governingwhentransactions tran-
sition into unrestricted execution mode andwhich one transaction
should make this transition (when there are multiple candidates).
Highly optimized configuration- or application-specific policies are
enabled by this approach. Below, we describe the user-level and
hardware interfaces and how the former is built from the latter.

User-level interface. The user-level API (implemented via
an unprivileged software library) simply provides two oper-
ations for annotating the beginning and end of transactions
(begin transaction() andend transaction()). Any kind or
amount of code may appear within each transaction (i.e., this in-
terface allows totally unrestricted transactions), but the program-
mer cannot assume that these transactions can or will be aborted.
Code executing within a transaction is isolated from all other
threads in the application (i.e., transactions are logically serial-
ized with respect to other threads executing either transactional or
non-transactional code, so other threads either observe the machine
state before the transactions begins or after it completes). Serializ-
ing with respect to non-transactional code is required to provide a
stronger and more desirable isolation guarantee [5]. Nested trans-
actions are subsumed by the outermost transaction.1

Hardware interface. Our hardware exports an interface that
includes separate instruction pairs for initiating and completing
restricted (ResTransBegin and ResTransEnd) and unrestricted
(UnresTransBegin andUnresTransEnd) transactions. Both pairs
ensure that the enclosed code will be isolated from all other threads
in the system. Restricted transactionsare limited in what code
they can contain (e.g., no system calls) and how long they can run
(e.g., bounded memory references and duration), but they support
a highly concurrent implementation (as we will see in the next sec-
tion). The system aborts a restricted transaction when it exceeds

1However, this minimalistic semantic interface does not prevent
the implementation of optimized partial-rollback schemes.

the processor’s buffering capacity, encounters a system call, expe-
riences an interrupt, or conflicts with another transaction.Unre-
stricted transactionshave no limitations, but only a single unre-
stricted transaction may execute at a time. The amount of con-
current execution among restricted and unrestricted transactions is
determined by the specific implementation (described in the next
section).

Our interface subjects transactions to a few constraints. Any
number of restricted transactions may be concurrently initiated, but
only a single unrestricted transaction may be active at a time. It
is the responsibility of the software initiating these transactions to
ensure there are no active unrestricted transactions before a new
one is begun. An exception is raised if an unrestricted transaction
is begun while another is active. Both restricted and unrestricted
transactions may be nested, but restricted transactions may not be
nested within unrestricted transactions and vice versa. Improper
nesting raises an exception.

The ResTransBegin instruction writes a value (to a specified
general-purpose register) indicating the state of the transaction it
starts. Initially this value is 0, indicating that the transaction is
executing normally. If the transaction subsequently aborts before
the correspondingResTransEnd is encountered, the state of the
thread is rolled back to the point of the originalResTransBegin,
and theResTransBegin instruction “completes” by writing a non-
zero return value to the specified register, indicating that the trans-
action aborted. The specific value describes the cause of the abort
(e.g., data conflict, interrupt, context switch, buffering capacity ex-
ceeded, or system call encountered). Execution then restarts with
the instruction after theResTransBegin instruction. As described
below, the software is responsible for examining the return value
and re-issuing the transaction.

Realizing the user-level interface.The user-level API can be built
from the provided instructions in any number of ways. The most
direct strategy is for thebegin transaction() routine to simply
initiate a restricted transaction withResTransBegin. If this trans-
action aborts, the system may choose to either (i) initiated another
restricted transaction or (ii) invoke an unrestricted transaction in-
stead. The system must eventually revert to an unrestricted transac-
tion to ensure forward progress. The software alone makes the de-
cision of when to use an unrestricted transaction. Section 3.3 gives
a more detailed description of the use of these machine instructions
to realize the user-level API.

3 Implementation
In this section we describe the implementation of our transac-

tional memory system. We begin by presenting an unoptimized im-
plementation of the hardware interface introduced in the previous
section. Next, we present an optimized implementation support-
ing a greater degree of concurrency. Then we describe how the
user-level API is built from the hardware interface. Finally, to pro-
vide code portability for legacy hardware, we sketch a complete but
low-concurrency software-only implementation of the previously
described user-level API.

3.1 Unoptimized Implementation
Here we describe an unoptimized implementation of restricted

and unrestricted transactions. Restricted transactions are fully con-
current (except when conflicts are detected) but limited in size, du-
ration, and content. Unrestricted transactions do no suffer from
these limitations, but the unoptimized implementationactuallyse-
rializes them with respect to all other threads in the applications
(i.e., all threads stall when an unrestricted transaction is executing).

3



This implementation is appropriate only if unrestricted transactions
are very rare. In the next section we describe an optimized imple-
mentation supporting more concurrency.

Restricted transactions. We implement bounded (space/time-
bounded, system-call-free) transactions using well-established
techniques described in more detail elsewhere [2, 19, 33], but
briefly reviewed here. Each processor buffers speculative state, and
the cache coherence protocol is leveraged to detect data conflicts.
Two extra access bits are kept in the cache with each block indicat-
ing whether the block has been read and/or written while within a
transaction. These bits interact with a standard invalidation-based
cache coherence protocol to detect when two transactions have ac-
cessed the same memory block and at least one access is a write
(indicating a conflict and necessitating an abort). A restricted trans-
action will also abort if it exhausts available buffering, encounters
a system call, or incurs an interrupt or hardware exception. The
begin transaction() code ensures forward progress by eventu-
ally initiating anunrestricted transaction, freeing the hardware from
needing to arbitrate among conflicting restricted transactions to en-
sure forward progress (but such a mechanism may be included for
performance reasons).

Unrestricted transactions. The unoptimized implementation of
unrestricted transactions is equally simple for two reasons. First,
unrestricted transactions cannot abort, so no state needs to be
buffered. In addition, all other threads in the application are sus-
pended while the unrestricted transaction executes, simplifying
conflict detection. The same approach to conflict detection de-
scribed above can be used in this context. If a conflict ever ex-
ists between the unrestricted transaction and a suspended restricted
transaction, it is readily apparent (because the cache encodes all the
references of the restricted transaction) and the latter is aborted. Ex-
piration of scheduling quanta could also cause suspended restricted
transactions to be aborted, potentially allowing a thread from a dif-
ferent application to run. Threads not currently executing transac-
tions also need to be stalled to ensure they do not observe interme-
diate results of the unrestricted transaction.

The machine is augmented with two word-sized registers: (i) the
shared (per-application) transaction status word(STSW) and
(ii) the private (per-thread) transaction status word(PTSW). The
STSW resides in a fixed location in the virtual address space of
each process. Because it is frequently accessed, it is cached in the
processor itself. Any coherence invalidation to the STSW’s address
will invalidate the cached copy of the STSW, and a new copy will
need to be requested before the processor can again read the STSW.
The PTSW is an architected machine register (i.e., it persists across
context switches because the operating system saves and restores
this register along with all the other architected registers).

The STSW contains anunrestrictedbit (set when any thread
in the process is executing an unrestricted transaction) and aun-
restricted transaction identifier(UTID) field (identifying the cur-
rently active unrestricted transaction; this field is only used in the
optimized implementation presented in Section 3.2). The PTSW
contains anunrestrictedbit (true when thecurrent thread is exe-
cuting an unrestricted transaction) and atransaction nesting depth
(TND) field (for tracking the nesting of transactions). Because the
PTSW persists across context switches and migrations, a thread will
not forget that it is executing an unrestricted transaction. The ma-
nipulation and interpretation of the fields of the STSW and PTSW
are described below.

Only a single unrestricted transaction is allowed per application
at a time. Before beginning an unrestricted transaction, a virtual-

memory-resident lock is acquired to ensure exclusivity. Although
the hardware could acquire this lock, our implementation leaves
this to the software (see Sections 2 and 3.3) in order to simplify
the hardware and to provide flexibility in defining the arbitration
policy that decides which of the waiting threads next initiates an
unrestricted transaction.

Before completing a memory operation, a processor must consult
the STSW and PTSW. If the unrestricted bit is set in the STSW but
not set in the PTSW, another thread is executing an unrestricted
transaction, so this thread must stall. The processor stalls until
(i) the unrestricted bit in the STSW is cleared or (ii) a timer in-
terrupt causes a thread from a different application to be scheduled
(resulting in an abort if the current thread is in a restricted transac-
tion). A processor does not stall if the unrestricted bit in the PTSW
is set, because this indicates that it is this processor that is execut-
ing the unrestricted transaction. Also, processors executing threads
from one applications will not stall due to unrestricted transactions
from a thread in another, because different applications have differ-
ent addresses spaces containing distinct STSWs.

The UnresTransBegin instruction sets the unrestricted bits in
both the STSW and the PTSW. The set unrestricted bit in the
STSW ensures that other threads in the application will stall. Be-
cause the STSW resides in virtual memory, the processor execut-
ing UnresTransBegin must request write permission to the cache
block that contains it. In so doing, all other processors will inval-
idate their local copies and stall until they get the new version of
the word. The processor issuingUnresTransBegin may proceed
as soon as it has write permission to the cache block containing the
STSW, because it can be certain that the other processors are stalled
until they get the updated STSW. The unrestricted bit in the updated
STSW will be set, so the other processors will continue to stall. The
UnresTransBegin must ensure that no other unrestricted transac-
tion is currently running in the application. Before the unrestricted
bits are set, an exception is raised if the unrestricted bit is set in
the STSW but not in the PTSW. TheUnresTransEnd instruction
clears both unrestricted bits, allowing other threads to again make
progress.

Nesting. Both restricted and unrestricted transactions can be
nested, which we implement via subsumption (i.e., nested trans-
actions are subsumed by the outermost transaction). This strat-
egy requires only that the instructions for managing transactions
keep track of nesting depth. Whenever a transaction begins, (via
ResTransBegin or UnresTransBegin) the processor increments
the PTSW’s transaction nesting depth field (PTSW.TND). When a
transaction ends, the processor decrements this field. Only when
the nesting depth returns to zero does the transaction actually
commit. The user-level library code forbegin transaction()
(described later in Section 3.3) will not attempt to improp-
erly nest unrestricted and restricted transactions (i.e., it will not
execute aResTransBegin within a restricted transaction or a
UnresTransBegin within an unrestricted transaction). If either of
these situations does occur (detected by the processor by examining
the PTSW), a hardware exception is raised.

3.2 Optimized Implementation
The unoptimized implementation described above is appropriate

only if unrestricted transactions are very rarely necessary. However,
applications may have the occasional transaction that performs I/O
or a modest number of large transactions [2, 8]. Our optimized
implementation provides more concurrency for these cases by en-
abling any number of restricted transactions to execute concurrently
with the single unrestricted transaction (as with the unoptimized im-

4



plementation, the software library enforces the single-unrestricted
constraint). If a restricted and unrestricted transaction conflicts,
the restricted transaction is aborted or stalled until the unrestricted
transaction commits.

Metadata-based conflict detection. An unrestricted transaction
prevents other threads from conflicting with it by marking which
blocks it has read and written using per-block metadata. This meta-
data is associated not only with data in the cache, it is also asso-
ciated with memory at all levels of the memory hierarchy. Other
threads check this metadata to detect potential conflicts with the un-
restricted transaction, stalling the thread if both (i) the unrestricted
bit is set in the STSW and (ii) the metadata indicates a conflict,i.e.,
the processor is attempting to read (write) a block previously writ-
ten (read) by the unrestricted transaction. Much like stalled threads
in our unoptimized implementation, the threads will resume exe-
cution when the unrestricted bit of the STSW is cleared (when the
unrestricted transaction commits) or the stalled thread’s restricted
transaction aborts (due to either a conflict or interrupt). A stalling
processor may choose to quickly raise an special interrupt to en-
able the thread scheduler to schedule a non-stalled thread on the
processor.

The per-block metadata is part of the system’s architected state.
The metadata bits in the cache travel with the data even when it is
evicted from the cache or transmitted to another processor as part
of cache coherence traffic, allowing other threads to remain aware
of the metadata bits so that they may detect conflicts. Metadata
bits are logically part of the data, so a coherence request will bring
the requested data along with the metadata bits into the cache. Al-
though the metadata bits increase the size of the data payload, the
coherence protocol itself need not change.

An unrestricted transaction must acquire write permission to a
block before updating the block’s metadata. This restriction en-
forces consistency of metadata bits across the system via the exist-
ing cache coherence mechanism. Because an unrestricted transac-
tion will need to update the metadata of each block it requests, it
may request write permission for read misses. Alternately, it may
issue a read-only request, check the metadata read bit, and then re-
request write permission (off the critical path) only if the metadata
read bit was not already set.

Opportunistic resetting and ignoring of metadata.When an un-
restricted transaction commits, we would conceptually like to clear
all metadata bits in system. However, as the number of blocks with
non-zero metadata is unbounded and such blocks could be in any
cache, memory module, or even swapped to disk, it is not possi-
ble to easily clear all the metadata. If these metadata bits are not
eventually cleared, false conflicts may occur and the performance
of the system could eventually revert to that of our unoptimized
implementation.

To prevent this situation, each unrestricted transaction is
dynamically-assigned aunrestricted transaction identifier(UTID),
and the per-block metadata is extended to include a fixed-width
transaction identifier field. An unrestricted transaction records its
UTID in the metadata’s transaction identified field whenever it up-
dates the read/write conflict-tracking bits. The UTID is part of the
STSW, allowing all processors to fetch the current UTID by exe-
cuting a coherence read request to its location. Instead of explicitly
clearing the metadata bits when it completes, the unrestricted trans-
action simply increments the current UTID.

A processor checks for conflicts by checking the read/write meta-
data bits as before. If it detects a possible conflict, it then proceeds
to check if the UTID in the metadata is equal to the currently active

UTID. If the IDs do not match, the processor does not need to stall.
If the IDs do match, the thread stalls until the UTID changes or the
STSW’s unrestricted bit is reset.

If the metadata bits available for the UTID were unbounded, this
approach would solve the problem of clearing the metadata while
eliminating false stalls. However, as the metadata is fixed-width and
limited in size, the UTID will be finite and small (e.g., 8 bits). As a
result, UTIDs will wrap around and false conflicts are still possible,
although much less likely than without the UTID.

To further reduce false stalls, we opportunistically clear stale
metadata when possible. For example, when an unrestricted trans-
action completes, it should clear the metadata forall writable blocks
in its cache (by flash clearing the metadata for all writable blocks).
Also, we lazily clear the metadata bits whenever a processor manip-
ulates a cache block in which the current UTID does not match the
UTID associated with the cache block (again, only when the cache
block is writable). Lazily clearing metadata bits does not impact
correctness; it is only a performance optimization.

Metadata storage.As the metadata is part of the architected state
of the system, metadata is maintained in the caches and main mem-
ory. The metadata is stored in all caches by augmenting each cache
block (e.g., 64 bytes) with the metadata (e.g., 10 bits), resulting in
a 2% area overhead. In-memory state can be implemented several
ways: (i) using any of the previously-proposed techniques for stor-
ing per-block directory protocol state (in either dedicate DRAM,
SRAM, or hiding the bits in the ECC encoding while still providing
SECDED protection [12, 20, 30]), (ii) using approaches for imple-
menting capabilities [40, pp. 196–200], or (iii) encoding techniques
introduced by other proposals that use metadata [9, 42, 43] (includ-
ing memory-efficient tables or tree structures for virtual encoding
this state).

Our use of metadata is reminiscent of LogTM’s use of an addi-
tional state in their modified directory protocol as part of conflict
detection for overflowed transactions [29]. We modify only the
“datapath” of the coherence protocol, whereas LogTM introduces
an additional directory state and protocol transitions, modifying the
“control” or operational aspect of the protocol.

Operating system support.We require minimal support from the
operating system. The operating system must save and restore the
PTSW register as part of thread state. When zeroing pages before
reallocation, the operating system should also clear the metadata
bits. To allow the operating system to swap out a page with active
metadata, system implementers have several options. When swap-
ping out a page that potentially has active metadata, the operating
system could force the application into the unoptimized serial mode
of execution in which all threads in the process are stalled until the
active transaction commits. Alternatively, when a page is swapped
into an address space, the operating system could conservatively set
the metadata for all blocks on the page if any unrestricted transac-
tion is currently active in that address space. Finally, the operating
system could save and restore the associated metadata when swap-
ping such pages to and from disk (as implemented in other systems
[9, 40]).

3.3 User-Level API Implementation
In order to build the user-level API from the instructions for man-

aging restricted and unrestricted transactions, a unprivileged soft-
ware library is responsible for (i) retrying aborted restricted trans-
actions (using the return code of theResTransBegin instruction),
(ii) determining when an aborted restricted transaction should be re-
initiated as an unrestricted transaction, and (iii) ensuring that only

5



a single thread per-application is executing an unrestricted transac-
tion at a time.

Retrying aborted restricted transactions and reverting to unre-
stricted transactions. The result of theResTransBegin instruc-
tion indicates the reason for the abort (if there is one). Based on
the reason and a running count of the number of times this trans-
action has aborted, the software may choose to retry a restricted
transaction or initiate an unrestricted transaction. For example, it is
probably wise to retry a restricted transaction a few times when a
transaction aborts due to a conflict. The number of retries can be
informed by static or dynamic contention profiles, and the source of
aborts can be recorded to assist software performance tuning. Con-
versely, if an abort comes from a system call, retrying a restricted
transaction will almost certainly result in another abort, so an unre-
stricted transaction is the right choice. To ensure forward progress,
the software keeps an abort count to ensure that it eventually reis-
sues the transaction as an unrestricted transaction.

Ensuring only a single thread is executing an unrestricted
transaction. The software must ensure that only one thread per
application is executing an unrestricted transaction at a time. This
task is accomplished via a lock in virtual memory shared by all
threads in the application. Before the software library executes a
UnresTransBegin instruction, it must acquire the lock, which it
then releases when theUnresTransEnd instruction completes. The
software is free to use any lock implementation, implement any ar-
bitration or fairness policies, and allow waiting threads to yield after
excessive spinning.

Building the user-level interface.Many software API implemen-
tations ofbegin transaction() andend transaction() using
the previously-described instruction primitives are possible. We
provide the pseudocode for one implementation in Figure 1. Users
call begin transaction() to start a transaction. If the thread is
already in an unrestricted transaction, another unrestricted transac-
tion is initiated withUnresTransBegin. Otherwise, a restricted
transaction is initiated (viaResTransBegin). If the result of
ResTransBegin is non-zero, this means the restrict transaction was
aborted. Based on the cause of the abort, the library code may at-
tempt to initiate another restricted transaction (e.g., on a data con-
flict) or immediately initiate an unrestricted transaction (e.g., when
a system call is encountered). In order to initiate an unrestricted
transaction, the library code performs some bookkeeping (to ensure
that no other threads in the process are already in an unrestricted
transaction) before executing theUnresTransBegin instruction.

In end transaction(), if the thread is currently executing an
unrestricted transaction, it executes theUnresTransEnd instruc-
tion. If the transaction nesting depth (PTSW.TND) has become 0,
the outermost transaction has completed, and the thread releases
the transaction lock. If the thread is not currently executing an un-
restricted transaction, it executes theResTransEnd instruction.

3.4 Full-System Interactions
Our system provides a strong serializable semantics for all trans-

actional and non-transactional code within user-level applications
(e.g., all threads sharing an address space). However, without fur-
ther operating system support, our proposal does not provide se-
rializable semantics between code executing in different address
spaces. This behavior is consistent with our focus on simplifying
the potentially frequent interaction among threadswithin the same
address space. Much as a single-threaded program must still worry
about interactions with other processes on the same machine or re-
mote machines sharing the same distributed file system, a program

void begin_transaction() {
int result, tries = 0;
if (!PTSW.unrestricted) { // not in unres. trans.?

do {
result = ResTransBegin();
if (result == BEGIN_OK)

return; // we’re in a res. trans.
tries++;

} while (try_again(result, tries));
lock(unrestricted_lock);
UnresTransBegin(); // start unres. trans.

} else { // no, must be unres. trans.
UnresTransBegin(); // start unres. trans.

}
}

void end_transaction() {
if (!PTSW.unrestricted) { // not in res. trans.?

ResTransEnd();
return;

} else { // no, must be unres. trans.
UnresTransEnd();
if (PTSW.TND == 0) { // outermost trans.?

unlock(unrestricted_lock);
}

}
}

Figure 1. An implementation of begin transaction() and
end transaction() . PTSWis the private per-thread trans-
action status word (register), andrestricted lock is a vari-
able shared among all threads. The code in bold represents the
common-case execution path through the code (i.e., beginning
or ending an unrestricted transaction).

using our user-level transactional memory to perform I/O or other-
wise communicate outside the sphere of isolation (in our case, just
the process’ address space) must address the same issues.

For example, consider a single unrestricted transaction that reads
a file, closes the file, and then later reads the file again. In our cur-
rent system, the results of the two reads are not guaranteed to be
identical because some other process would be allowed to change
the file contents between the two read operations. To ensure the file
is not changed, either the program must use the appropriate operat-
ing system facilities to prevent this behavior (such as file locking)
or the operating system could be modified to implicitly lock files
accessed within a transaction. In some cases—such as accessing
files on remote file systems without strong file locking support—
transparently providing such strong isolation guarantees may be
difficult or intractable.

3.5 Transactions on Legacy Hardware
Unless programs that use transactions can also execute correctly

on legacy hardware, software developers may be reluctant to write
non-portable programs that execute only on transactional hardware.
One approach for supporting transactions on legacy hardware is to
use software transactional memory techniques [16, 18, 25, 35, 36].
Unlike proposals that provide an interface for explicitly aborting
a transaction, our transactional API admits a simpler but low-
concurrency implementation on legacy hardware. A software-
only system can use serial execution of transactions to provide the
required fully serialized semantics of our transactional interface.
Such a system would interrupt and stall all other threads in the ap-
plication whenever any transaction begins. This approach would
be insufficient if our API included an interface to allow the user to
abort a transaction. Although this software-only system is highly
serial and has significant overheads, its performance would likely
be adequate on the today’s uniprocessors (which don’t exploit par-
allelism anyway).

6



3.6 Implementation Summary
Our implementations require only small changes to existing

bounded transactional hardware proposals. Similar to these prior
proposals, we leveraging the cache to buffer speculative state and
use the unmodified cache coherence protocol (although the data
payload includes metadata) to detect conflicts. Our unoptimized
implementation adds only a single in-memory status bit to allow the
system to efficiently stall other threads within an application. Our
optimized implementation introduces per-block persistent metadata
to protect the blocks read and written by the active unrestricted
transaction. Both of our designs will work in the context of any
standard invalidation-based cache coherence protocols (including
both snooping and directory-based protocols). The only impact of
the optimized implementation on the coherence protocols is pig-
gybacking metadata as part of data block payloads. The metadata
bits do not affect the operation of the coherence protocol (i.e., only
the processor cores interpret or update the metadata). Unrestricted
transactions do not impact the performance of the rest of the appli-
cation unless data conflicts exist. Restricted transactions may begin,
execute, and end with no overhead in the absence of data conflicts.
Unmodified legacy applications can run on this hardware with no
loss of performance. Only minor modifications to the operating
system are required (saving/restoring the PTSW as part of process
state, conservatively handling metadata when swapping pages with
active metadata, and clearing metadata bits when processes are cre-
ated).

4 Analysis and Experiments
Our design explicitly decouples transactional execution into the

common case of well-behaved restricted transactions (which do not
overflow or perform system calls), and the uncommon case of unre-
stricted transactions. Our mechanisms for common-case restricted
execution of transactions are not innovative; in these cases, our sys-
tem will likely perform similarly to other hardware transactional
memory proposals (e.g., [2, 13, 19, 33]). Our analysis begins by
using data from several previous studies to argue that transactions
will rarely overflow or perform system calls. We then use both stan-
dalone and full-system simulation of microbenchmarks to explore
the the functional and performance ramifications of unrestricted
transactions and their interaction with non-transactional code and
restricted transactional execution.

An aside on the state of the art of evaluating transactional mem-
ory systems: unlike some areas of computer architecture, standard
and well-documented tools and workloads for evaluating research
ideas in transactional memory (or even tools for evaluating shared-
memory multiprocessors [38]) are not widely available or even well
understood. As a reflection of this issue, some recent transactional
memory related work has been well received without any quantita-
tive evaluation [34]. Those proposals that have included evaluation
have significant limitations in their evaluation: using trace-based
evaluation (and thus unable to report dynamic conflicts) [8], evalu-
ating only the simpler of two transactional memory proposals [2],
ignoring any full-system or operating system effects [14], or using
only small, decade-old parallel applications [29]. None of these
evaluations used a detailed processor model (instead they all use a
simple single-cycle per instruction model). Yet, despite these eval-
uation limitations, all of these prior efforts have all made important
contributions.

4.1 Unrestricted Transaction Frequency
A premise of this work is that unrestricted transactions will be

rare but necessary. Before describing our own simulation-based ex-

periments, we next use the findings of prior studies [2, 8] to support
this assumption.

Ananianet al. [2] report that less than 0.1% of transactions over-
flow a reasonably-sized cache for five of the six SPECjvm98 bench-
marks they simulated; in the remaining SPECjvm98 application
less than 1% of transactions overflowed the cache. However, sev-
eral of their workloads also had maximum transaction sizes of over
1MB, demonstrating the need to support transactions larger than a
primary data cache.

Chung et al. [8] simulate several explicitly-parallel scientific
workloads (from the SPLASH-2 suite), Java-based threaded work-
loads (JavaGrande and others), and Pthreads-based parallel pro-
grams written in C.2 They report that 95% of all transaction are
(i) less than 5000 instructions in length, (ii) read less than 4KBs,
and (iii) write less than 1KB. Even the largest transactions in their
suite read and wrote less than 128KBs of data. Of the nine work-
loads for which they report I/O rates, six of the workloads have
0.3% to 0.5% of transactions that execute I/O operations. The re-
maining three workloads have 1%, 5%, and 20% of transactions
that contain I/O.

The data presented from these prior works provide compelling
evidence that most transactions can be be well realized via restricted
transactions. Unrestricted transactions will only be necessary when
a transaction overflows on-chip buffering, is longer than a schedul-
ing quanta, or performs I/O (all shown to be rare). Yet, all three of
these situations do occur in practice, emphasizing the need to han-
dle all of these cases without placing the burden on the programmer
to avoid such behaviors in all cases.

4.2 Simulation Methods

Memory system simulator. We have developed a memory sys-
tem simulator that implements the previously described design. It
models multiple processors each with a two-level on-chip cache hi-
erarchy and simple bus-based MOESI cache coherence protocol.
First-level caches are 64KBs and four-way set associative; second-
level caches are 1MB and direct mapped. All caches use 64-byte
blocks, and the granularity of metadata tracking is also 64 bytes.
A first-level cache miss is 10 cycles; a second-level miss is 200
cycles. The memory system exports the interfaces for the instruc-
tion set extensions for implementing the library code that provides
the user-level transaction interface (described earlier in Section 2).
When shown, error bars represent 95% confidence intervals.

Restricted transaction implementation. Our proposed unre-
stricted transaction implementation is mostly independent of the
specific implementation used to implement the bounded, restricted
transactions. However, we must select a specific implementation of
restricted transactions for simulation.

Our bounded implementation optimizes for fast commit by us-
ing eager version management as advocated by Mooreet al. [29].
Whenever a transaction modifies a block for the first time, the new
value is written to the cache after the old value has been saved in a
bounded on-chip log buffer. At commit, the log buffer is cleared.
At abort, the log buffer entries are copied back into the cache at the
rate of one entry per cycle. However, unlike LogTM [29], our log
buffer is not architected state and never needs to be written into the
virtual address space.

2Chunget al. [8] also report data for benchmarks parallelized
via thread-level speculation. We do not include those results, be-
cause our approach targets only explicitly-threaded applications.

7



Conflicting transactions are detected using a standard
invalidation-based cache coherence and by augmenting each
block in the cache with read and write bits. The active restricted
transaction is aborted and rolled back whenever: (i) a request
for write permission to a block with read or write bit set, (ii) a
request for read permission to a block with the write bit set,
(iii) the processor is forced to evict a block with either the read
or write set, (iv) the hardware log overflows, (v) a transaction
reaches 2048 instructions in length (a limitation of our simulation
environment), or (vi) an interrupt occurs. No explicit forward
progress mechanism is required, because a restricted transaction
will revert to unrestricted execution mode after a few aborts (as
implemented by the code in Figure 1). The cache’s read/write bits
are reset at both abort and commit.

“Standalone” and “full-system” simulation modes. We have two
processor models that drive our memory system. First, we have a
standalone mode that interprets instructions and supports only sim-
ple user-level microbenchmarks. However, it supports a larger num-
ber of software threads than physical processors by approximating
a simple scheduling and context switching policy in the simulator.
This model allows us to stress test the correctness of the system
by randomly delaying and rapidly context switching threads to find
bugs and build confidence in the correctness of our design. We use
this model to generate performance results that isolate effects in a
much simpler environment than our full-system simulation mode.

Second, we interface our simulator with the Simics full-system
simulator [24]. We use Simics’s Micro-Architectural Interface
(MAI) to simulate a simple processor model that would achieve one
instruction per cycle throughput in the absence of caches misses.
The simulated processor simulates the x86 ISA, runs the Linux ker-
nel version 2.4, and has 256MBs of DRAM. We are currently lim-
ited to simulating only four processors due to interactions between
the Linux kernel and the particular chipset simulated by Simics. We
use a specific unused no-operation (nop) to extend the x86 ISA with
the needed instructions. Our simulator tracks which process is exe-
cuting and which thread in the process is executing (by examining
the stack pointer).

4.3 Functionality Tests
Our unrestricted transactional memory is most sharply distin-

guished from other transactional memory systems in that the for-
mer supports arbitrary code within transactions (including I/O and
system calls); our transactions can also be of unbounded length
(duration and data touched). Via a microbenchmark in which
threads increment a shared counter in parallel, we verified that in-
termingled execution of non-transactional code, restricted transac-
tion code, and unrestricted transactional code correctly provides
the desired isolation guarantees via aborting and stalling. Conflicts
cause aborts, with the user-level library eventually transitioning the
transaction to unrestricted mode. Via a microbenchmark in which
threads in transactions print to the console, we verified that threads
in restricted transactions can perform I/O and system calls. The
system detects these events and causes the processor to abort the re-
stricted transaction, and the user-level library begins the transaction
in unrestricted mode to complete the system call. We were also able
to verify that serializability is maintained even when the (simulated)
Linux scheduler context switches and migrates threads among the
processors. Unrestricted transactions correctly persist across such
thread switches, whereas restricted transactions are aborted before
the context switch. Serializability is maintained even when the un-
restricted transaction is not executing on any processor (due to a
context switch).

The only claimed feature that we were not able to test in our full-
system simulation environment was transactional persistence across
virtual memory paging, because we have not yet modified Linux to
support paging of metadata bits to disk.

4.4 Non-Conflicting Transaction Overhead
One of our implementation goals was that—in the absence of

data conflicts—the execution overheads of conflict checking should
be negligible. To investigate the overhead of non-conflicting code,
we created a microbenchmark in the standalone simulator in which
each thread is accessing thread-private data. Each thread in the mi-
crobenchmark (i) performs a memory copy that completely misses
in the L1 cache, (ii) enters a transaction, (iii) performs another
memory copy that also completely misses in the L1 cache (the two
memory copies interfere with each other), (iv) exits a transaction,
and (v) repeats.

Figure 2(a) shows the execution time per iteration (lower is bet-
ter) of six configurations. The left-most bar is a configuration in
which thebegin transaction()/end transaction() calls were
removed. The second bar shows the runtime when all of the trans-
actions execute in restricted mode. As the transactions are non-
conflicting and do not exceed the size of the L1 cache, no transac-
tions abort in this microbenchmark. The third bar shows the run-
time on theoptimizedimplementation when one thread executes an
unrestricted transaction (and the rest are executing restricted trans-
actions). The execution time of these three first configurations are
basically identical. This result demonstrates (i) the negligible over-
head of executing code in a transaction and (ii) that—for the op-
timized implementation—a single unrestricted transaction has no
impact on its own execution rate or the other threads in the sys-
tem (again, in the absence of conflicts). In fact, no communication
occurs between the processors throughout the execution (coordi-
nation is needed only during conflict or contention). The fourth
bar illustrates the runtime of theunoptimizedimplementation when
one thread executes an unrestricted transaction. For this situation,
the unoptimized implementation is 50% slower than the optimized
implementation because of the greater concurrency allowed by the
optimized implementation.

The fifth and sixth bars of Figure 2(a) show the runtime when all
transactions are unrestricted for the optimized and unoptimized im-
plementations, respectively. As unrestricted transactions must exe-
cute serially (even in the absence of conflicts), the runtime of these
configuration is much larger than the previous configurations. The
optimized implementation is slightly faster than the unoptimized
implementation, because it overlaps the transactional work with the
non-transactional work (whereas the unoptimized implementation
cannot). Although slower than restricted transactions, these two
configurations are still faster than the code running on a single pro-
cessor (a 4x slowdown, not shown), because when no threads are
executing transactions, the non-transactional work (which is 50%
of the computation in this workload) is still performed in parallel.

4.5 Performance Overhead of Infrequent Un-
restricted Transactions

In the previous experiment we explored a microbenchmark in
which each transaction was either restricted or unrestricted. Fig-
ure 2(b) shows the execution time per iteration (lower is better) for
the same microbenchmark in which each transaction has some per-
cent chance of being forced to become unrestricted. The two lines
represent the optimized and unoptimized implementations. The ex-
treme left of this graph (0% unrestricted) corresponds to the 2nd bar
of Figure 2(a); the extreme right of this graph (100% unrestricted)
corresponds to the fifth and sixth bars of Figure 2(a), for the op-

8



1 2 3 4 5 6
Configuration

0.0

0.5

1.0

1.5

2.0

2.5
N

or
m

al
iz

ed
 r

un
tim

e

(a)

N
o 

Tr
an

sa
ct

io
ns

A
ll 

R
es

tri
ct

ed

O
ne

 U
nr

es
tri

ct
. (

O
pt

)

O
ne

 U
nr

es
t. 

(U
no

pt
)

A
ll 

U
nr

es
tri

ct
ed

 (O
pt

)

A
ll 

U
nr

es
tri

ct
ed

 (U
no

pt
)

0 20 40 60 80 100

Percent of transactions that are unrestricted

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 r
un

tim
e

(b)

unoptimized
optimized

Figure 2. Impact of Unrestricted Transactions on Concurrency: (a) Overhead of Transactions, (b) Optimized vs. Unoptimized
Implementation

timized and unoptimized configurations, respectively. In this ex-
periment, the only communication is the coordination among the
threads to ensure only a single thread is executing a unrestricted
transaction at a time.

This experiment shows that—for this microbenchmark on four
processors—even when 5% of transactions are unrestricted, the per-
formance impact is 1% for the optimized implementation. Even
when 15% or 30% of the transactions are unrestricted, the perfor-
mance impact is only 3% and 10%, respectively. In contrast, for
the unoptimized implementation when 5% and 15% of the trans-
actions are unrestricted, the performance impact is significant (7%
and 25%, respectively). As the prior works reviewed above indicate
that unrestricted transactions are usually less than 5% of all trans-
actions, such a frequency of unrestricted transactions should have
little impact on performance in practice.

4.6 Impact of Conflicts on Performance
Whereas the above two graphs contained no data conflicts, we

next use a Simics-based shared-counter microbenchmark to explore
the performance of our proposal when conflicts occur. The mi-
crobenchmark have a configurable number of counters padded such
that each counter is in its own cache block. The code (i) begins
a transaction, (ii) loads the value of a randomly-selected counter,
(iii) waits for an average of 200 cycles, (iv) stores the loaded value
plus one back to the same counter, (v) ends the transaction and waits
for an average of 200 cycles, and (vi) repeats. We also use a lock-
based version of this microbenchmark that replaces the transactions
with locked regions protected by either a per-counter lock or a sin-
gle global lock.

Our goal in this experiment is to determine the behavior of trans-
actions relative to coarse-grained and fine-grained locks. To that
end, we ran the experiment with both T&T&S locks and ticket
locks (ticket locks are similar to queue locks), as well as with both
unoptimized and optimized transactions. Figure 3 shows the run-
time (lower is better) for the most interesting configurations: the
two global lock configurations, fine-grained T&T&S locks, unop-
timized transactions, and optimized transactions. The number of
counters is varied on the x-axis, controlling the amount of trans-
action conflicts or per-counter lock contention. We first note that
the two global lock runs have a constant (bad) performance, with

1 2 4 8 16 32 64 128 256 512

Number of counters

0

500

1000

1500

2000

R
un

tim
e 

pe
r 

ite
ra

tio
n

global lock (ticket)
global lock (T&T&S)
per-counter locks (T&T&S)
transactions (unopt)
transactions (opt)

Figure 3. Performance under Varying Concurrency

9



2 4 6 8 10

Number of threads

0.0

0.5

1.0

N
or

m
al

iz
ed

 r
un

tim
e

locks
transactions

Figure 4. Performance under Varying Threads

ticket locks outperforming T&T&S locks, because ticket locks per-
form better under contention than T&T&S locks. Both the unop-
timized and optimized transaction implementations outperform the
fine-grained T&T&S lock (the fine-grained ticket lock, not shown,
is outperformed by the fine-grained T&T&S lock), because of the
overhead of acquiring the lock. The unoptimized and optimized
configurations track each other closely, as transactions will become
unrestricted in this experiment only after multiple conflicts.

4.7 Impact of Preemption on Robustness
One well-known issue with lock-based synchronization is that a

thread may be context switched while holding a lock, blocking all
threads that need to access the lock until the thread is swapped back
in and releases the lock. Such a convoy effect can create highly-
variable lock hold times and dramatically affect both overall per-
formance and performance robustness. Figure 4 shows the runtime
(lower is better) for our previously-described counter microbench-
mark with transactions and T&T&S locks. In this experiment the
number of threads in the system is varied and the number of coun-
ters is fixed at eight (with a lock per counter). The transaction-based
configuration has a somewhat shorter runtime because it avoids the
extra coherence misses to actually acquire the lock.

From one to four threads we see the expected reduction in run-
time (for both lines). However, when the number of threads exceeds
the number of physical processors, the lock-based configuration’s
perform begins to degrade substantially, whereas the transaction-
based configuration degrades much more gracefully. As a result,
the transaction-based configuration greatly outperforms the lock-
based configuration as the number of threads grow. The poor per-
formance for locks is due to threads being context switched while
holding a lock, blocking progress of other threads that are trying to
increment a locked counter. In contrast, when a restricted transac-
tion encounters a context switch, the system aborts the transaction
before swapping it out (as described previously). Using this abort
policy, our transaction implementation exhibits better performance
robustness than locks.

5 Additional Related Work
Beyond the comparative discussion in the introduction, this sec-

tion describes some additional related work from speculating on
synchronization, thread-level speculation, and software transac-
tional memory. Speculative Lock Elision [32] and Transactional
Lock Removal [33] provide concurrent execution of lock-protected

regions of a program by speculatively ignoring lock acquisition
and executing optimistically (detecting conflict and rolling back).
These systems support unbounded and unrestricted code by falling
back on actually acquiring the the lock associated with a locked
region of code. This approach is similar to our unrestricted exe-
cution mode, but our proposal differs in that (i) it moves beyond
a lock-based interface to provide a more powerful global serializa-
tion semantics and (ii) the unrestricted execution mode does not
prevent other restricted transactions from making progress (unless
there is an actual conflict). Our approach is also reminiscent of
Speculative Synchronization’s “safe thread” approach for ensuring
forward progress [26]. In addition, recent work in hardware-base
transactional memories builds on mechanisms proposed for buffer-
ing speculative state and detecting inter-thread data conflicts for
thread-level speculative parallelization [39]. Finally, a host of soft-
ware techniques for implementing transactions purely in software
have also been proposed (e.g., [16, 17, 18, 25, 35, 36]). A few re-
cent proposals advocate hardware/software hybrids [21, 28, 37].

6 Conclusion
In the near future,all processors will be multiprocessors as multi-

core designs become prevalent. Hardware transactional memory
systems offer promise as a better synchronization primitive for writ-
ing multi-threaded applications for these ubiquitous multiproces-
sors. Unfortunately, existing proposals for transactional memory
systems (i) are restricted in the code that may appear in transactions
and (ii) require unnecessarily complex implementations to support
boundary cases. Our proposal providesunrestrictedtransactional
memory via a relatively simple implementation.

Our approach allows transactions to contain arbitrary code (in-
cluding system calls and I/O) of arbitrary length (including longer
than a scheduling quanta) via two execution modes, one support-
ing only restricted (i.e., bounded and I/O-free) transactions and the
other supporting entirely unrestricted transactions (no constraints).
The less concurrent unrestricted transactions are only used when
necessary, which is infrequently. We describe two implementations,
and our optimized implementation allows unrestricted transactions
to execute concurrently with restricted transactions, with the limi-
tation that there may be only one of the latter at a time. In essence,
our approach gives up some concurrency for the ability to simply
execute transactions that are unbounded in size, duration, or con-
tain system calls. Initial performance results show that such an ap-
proach has negligible impact on concurrency when the occurrence
of transactions that overflow or perform system calls is low.

This realization of transactions provides highly concurrent exe-
cution (because most transactions only require restricted transac-
tions), unbounded updates (using unrestricted transactions if neces-
sary), unrestricted code (using unrestricted transactions execution
if necessary ), and an implementation that need never perform un-
bounded logging. We believe that the utility and simplicity of this
approach will allow it to have near-term influence on multi-core
designs.

Acknowledgments
The authors thank Robert Ennals, Mark Hill, Christos Kozyrakis,

Ravi Rajwar, Amir Roth, and the anonymous reviewers for com-
ments on this work. This work is supported in part by the National
Science Foundation (CCF-0311199 and CCF-0347290) and dona-
tions from Intel Corporation.

References
[1] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu,

G. L. Steele, and S. Tobin-Hochstadt. The Fortress Language

10



Specification, Version 0.903. Technical report, Sun Microsys-
tems, May 2006.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie. Unbounded Transactional Memory. InProceed-
ings of the 11th Symposium on High-Performance Computer
Architecture, pages 316–327, Feb. 2005.

[3] J. H. Anderson, S. Ramamurthy, M. Moir, and K. Jeffay.
Lock-Free Transactions for Real-Time Systems. InPro-
ceedings of the First International Workshop on Real-Time
Databases: Issues and Applications, Mar. 1996.

[4] T. Anderson and R. Kerr. Recovery Blocks in Action: A
System Supporting High Reliability. InProceedings of the
2nd International Conference on Software Engineering, pages
447–457, Oct. 1976.

[5] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstruct-
ing Transactional Semantics: The Subtleties of Atomicity.
In Proceedings of Workshop on Duplicating, Deconstructing,
and Debunking, June 2005.

[6] B. D. Carlstrom, J. Chung, A. McDonald, H. Chafi,
C. Kozyrakis, and K. Olukotun. The Atomos Transactional
Programming Language. InProceedings of the SIGPLAN
2006 Conference on Programming Language Design and Im-
plementation, June 2006.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
Object-oriented Approach to Non-uniform Cluster Comput-
ing. In Proceedings of the 20th SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Ap-
plication (OOPSLA), pages 519–538, Oct. 2005.

[8] J. W. Chung, H. Chafi, C. C. Minh, A. McDonald, B. D. Carl-
strom, C. Kozyrakis, and K. Olukotun. The Common Case
Transactional Behavior of Multithreaded Programs. InPro-
ceedings of the 12th Symposium on High-Performance Com-
puter Architecture, Feb. 2006.

[9] J. R. Crandall and F. T. Chong. Minos: Control Data Attack
Prevention Orthogonal to Memory Model. InProceedings
of the 37th Annual IEEE/ACM International Symposium on
Microarchitecture, Dec. 2004.

[10] Cray Inc. Chapel Specification 0.4. Technical report, Cray
Inc, Feb 2005.

[11] R. Ennals. Software Transactional Memory Should Not Be
Obstruction-Free. Technical Report IRC-TR-06-052, Intel
Research Cambridge, July 2005. http://www.cambridge.intel-
research.net/ rennals/notlockfree.pdf.

[12] K. Gharachorloo, L. A. Barroso, and A. Nowatzyk. Efficient
ECC-Based Directory Implementations for Scalable Multi-
processors. InProceedings of the 12th Symposium on Com-
puter Architecture and High-Performance Computing (SBAC-
PAD 2000), Oct. 2000.

[13] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg,
M. Chen, C. Kozyrakis, and K. Olukotun. Programming with
Transactional Coherence and Consistency (TCC). InProceed-
ings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems,
pages 1–13, Oct. 2004.

[14] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional Memory Coherence and Con-
sistency. InProceedings of the 31th Annual International

Symposium on Computer Architecture, pages 102–113, June
2004.

[15] T. Harris. Exceptions and Side-effects in Atomic Blocks. In
Proceedings of the 2004 Workshop on Concurrency and Syn-
chronization in Java programs, pages 46–53, July 2004.

[16] T. Harris and K. Fraser. Language Support for Lightweight
Transactions. InProceedings of the 18th SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages
and Application (OOPSLA), pages 388–402, Oct. 2003.

[17] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-
posable Memory Transactions. InProceedings of the 10th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP), pages 48–60, June 2005.

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.
Software transactional memory for dynamic-sized data struc-
tures. InProceedings of the 22nd ACM Symposium on Prin-
ciples of Distributed Computing, pages 92–101, July 2003.

[19] M. Herlihy and J. E. B. Moss. Transactional Memory: Archi-
tectural Support for Lock-Free Data Structures. InProceed-
ings of the 20th Annual International Symposium on Com-
puter Architecture, pages 289–300, May 1993.

[20] T. Horel and G. Lauterbach. UltraSPARC-III: Designing
Third Generation 64-Bit Performance.IEEE Micro, 19(3):73–
85, May/June 1999.

[21] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen.
Hybrid Transactional Memory. InProceedings of the 11th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP), Mar. 2006.

[22] J. Larus. It’s the Software Stupid. Presentation at the Work-
shop on Transactional Systems, Apr. 2005.

[23] D. B. Lomet. Process Structuring, Synchronization, and Re-
covery Using Atomic Actions. InACM Conference on Lan-
guage Design for Reliable Software, pages 128–137, Mar.
1977.

[24] P. S. Magnussonet al. Simics: A Full System Simulation
Platform. IEEE Computer, 35(2):50–58, Feb. 2002.

[25] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive
Software Transactional Memory. InProceedings of the 19th
International Symposium on Distributed Computing, pages
354–368, Sept. 2005.

[26] J. F. Martinez and J. Torrellas. Speculative Synchronization:
Applying Thread-Level Speculation to Explicitly Parallel Ap-
plications. InProceedings of the Tenth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 18–29, Oct. 2002.

[27] A. McDonald and C. Kozyrakis. Architectural Semantics for
Practical Transactional Memory. InProceedings of the 33rd
Annual International Symposium on Computer Architecture,
June 2006.

[28] M. Moir. Hybrid Transactional Memory. Technical report,
Sun Microsystem Laboratories, July 2005.

[29] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based Transactional Memory. InPro-
ceedings of the 12th Symposium on High-Performance Com-
puter Architecture, Feb. 2006.

[30] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb.
The Alpha 21364 Network Architecture. InProceedings of

11



the 9th Hot Interconnects Symposium, Aug. 2001.

[31] F. Pizlo, M. Prochazka, S. Jagannathan, and J. Vitek. Transac-
tional Lock-Free Objects for Real-Time Java. InProceedings
of the 2004 Workshop on Concurrency and Synchronization in
Java programs, pages 54–62, 2004.

[32] R. Rajwar and J. R. Goodman. Speculative Lock Elision: En-
abling Highly Concurrent Multithreaded Execution. InPro-
ceedings of the 34th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, Dec. 2001.

[33] R. Rajwar and J. R. Goodman. Transactional Lock-Free Exe-
cution of Lock-Based Programs. InProceedings of the Tenth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 5–17,
Oct. 2002.

[34] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional
Memory. In Proceedings of the 32th Annual International
Symposium on Computer Architecture, June 2005.

[35] M. F. Ringenburg and D. Grossman. AtomCaml: First-Class
Atomicity via Rollback. InProceedings of the 10th ACM
Internation Conference on Functional Programming, pages
92–104, Sept. 2006.

[36] N. Shavit and D. Touitou. Software transactional memory.
In Proceedings of the 14th ACM Symposium on Principles of
Distributed Computing, pages 204–213, Aug. 1995.

[37] A. Shriramanet al.Hardware Acceleration of Software Trans-
actional Memory. Technical Report 887, Department of Com-
puter Science, University of Rochester, Dec. 2005.

[38] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J.
Lilja, and V. S. Pai. Challenges in Computer Architecture
Evaluation.IEEE Computer, 36(8):30–36, Aug. 2003.

[39] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Proces-
sors. InProceedings of the 22nd Annual International Sym-
posium on Computer Architecture, pages 414–425, June 1995.

[40] F. G. Soltis.Inside the AS/400. Duke Press, 2nd edition, 1997.

[41] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Mul-
tiple Reservations and the Oklahoma Update.IEEE Paral-
lel and Distributed Technology, Systems, and Applications,
1(4):58–71, Nov. 1983.

[42] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure Pro-
gram Execution via Dynamic Information Flow Tracking. In
Proceedings of the 11th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 85–96, Oct. 2004.

[43] E. Witchel, J. Cates, and K. Asanovic. Mondrian Memory
Protection. InProceedings of the Tenth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 304–316, Oct. 2002.

[44] P. Wojciechowski. Isolation-only Transactions by Typing and
Versioning. InProceedings of the 7th ACM SIGPLAN inter-
national conference on Principles and Practice of Declarative
Programming (PPDP), pages 70–81, July 2005.

[45] C. Zilles and D. H. Flint. Challenges to Providing Perfor-
mance Isolation in Transactional Memories. InProceedings
of Workshop on Duplicating, Deconstructing, and Debunking,
June 2005.

12


	Unrestricted Transactional Memory: Supporting I/O and System Calls Within Transactions
	Recommended Citation

	Unrestricted Transactional Memory: Supporting I/O and System Calls Within Transactions
	Abstract
	Comments

	tmp.1172865872.pdf.P237h

