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1. Introduction 

1. Introduction 

The logic programming language XProlog is an extension of conventional Pro- 

log [32] in several different directions: it supports higher-order programming, in- 

corporates A-terms as data structures, includes a notion of polymorphic typing, 

and provides mechanisms for defining modules and secure abstract data types. 

There have been several proposals in the past for adding features of this sort to 

Prolog. The work in the context of XProlog is distinguishable from most of these 

proposals in that the first concern has been to examine the essential logical and 

proof-theoretic nature of these extensions. The result of this analysis has been the 

description of a class of formulas that are called higher-order hereditary Harrop 

(hohh) formulas. These formulas play a role in XProlog that is similar to the role 

played by first-order positive Horn clauses in Prolog. The hohh formulas signifi- 

cantly extend positive Horn clauses, and the new features provided in XProlog are 

the result of exploiting the extension found in hohh formulas. 

We discuss several aspects of the work on XProlog in this paper. In the next 

section we describe the hohh formulas and provide the rationale for considering 

them a suitable basis for a logic progranlming language. Section 3 highlights the 

logical features that are new in hohh fornlulas and explains their use in providing 

extensions to logic programming. Finally, we describe an implementation of a 

version of this logic in Section 4, dwelling on some of the new problems that were 

encountered in its context. 

2. Reconsidering the Foundation in Horn Clauses 

We initially considered a higher-order extension to Horn clauses because we 

were interested in addressing an aspect of incompleteness in theorem provers in 

higher-order logic. In logics that permit predicate quantification, new techniques 

must be devised for finding appropriate substitutions for predicates variables since 

these cannot in general be determined through standard uses of (even higher- 

order) unification. This problem appeared to be very difficult to solve for general 

higher-order logic [I], and it therefore seemed natural to focus attention on a 

sublogic. One possibility was to consider some form of higher-order extension to 

Horn clauses. This possibility appeared to be independently interesting since it 

also provided a basis for studying higher-order notions in logic programming, an 
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aspect for which an analysis was missing from the literature. 

As it turned out, we succeeded in solving the problem of predicate substitu- 

tions for higher-order Horn clauses [26]. This solution did not shed much light 

on the general theorem proving problem: the Horn clause setting is so weak that 

the needed predicate substitutions can be determined solely through higher-order 

unification. However, our results did lead to an understanding of the properties 

of higher-order Horn clauses and established arguments for their suitability as a 

basis for logic programming. Using these results, we described the first version of 

XProlog and constructed an interpreter for it [21]. This interpreter extended the 

standard interpreter for Prolog essentially by replacing first-order unification with 

higher-order unification. 

In our analysis of higher-order Horn clauses, we represented proofs using 

the sequent calculus [4, 311 instead of the more traditional format of resolution 

refutations. This turned out to be rather fortunate because we were able to observe 

certain structural properties of sequent proofs involving positive Horn clauses that 

appear to capture the proof- t heoretic "essence" of logic programming. After these 

properties were abstracted out, it was natural to look for extensions to positive 

Horn clauses that also satisfied them. One such extension involving the addition 

of implications to the body of definite clauses was described in [16, 181. A further 

extension that permitted universal quantification in the body of definite clauses 

was described in [17, 231. This final extension is what we refer to as heredatary 

Harrop formulas. 

Our criterion for judging the adequacy of a logical theory as the basis for 

logic programming may be explained as follows: the theory should permit the 

logical connectives to be construed as certain simple search instructions while at 

the same time being true to their declarative intent. Consider, for instance, the 

logic underlying Prolog. It is possible to construct a complete proof procedure 

for this logic that interprets the connectives A and V in a query or the body of a 

program clause as specifications of -4ND and OR nodes in a search space. This 

aspect permits a programmer writing in this logic to understa,nd clearly the nature 

of the computation being described. In contrast, the connection between logical 

connectives and the search that needs to be performed appears to be much too 

complex in general logic for this to be considered a medium for programming. 



2. Reconsidering the Foundat ion in Horn Clauses 

The relation between the logical connectives V and A and the search opera- 

tions OR and AND can be generalized to other logical connectives, in particular, 

implication (I), and universal (V) and existential (3) quantifiers. The sequent 

calculus provides the means to establish a correspondence between the declarative 

meaning of these logical connectives and search operations. When the succedent 

introduction rule for a particular logical connective is read in a top-down manner, it 

supplies the declarative meaning for that connective. Viewing logic programming 

as a process for cons truc t ing  sequential proofs in a bottom-up fashion, the back- 

ward reading of the introduction rule supplies the natural search-related meaning 

for the logical connective. Adding new logical connectives in this manner actually 

results in the addition of new search primitives to logic programming, in contrast 

to the approach taken by Lloyd and Topor [13] where the new connectives are 

removed by using equivalences in classical logic and by interpreting negation with 

negation-by-failure. 

The association between logical connectives and search operations is defined 

precisely in [24]. This definition is a refinement of the one in [23] and can be 

summarized as follows. Let L be a formulation of quantificational logic containing 

at least the logical connectives A,  V ,  >, V, and 3. Let I- be any provability relation 

over the formulas in L that has a formulation in terms of a sequent calculus. In 

this context, we first define a u n i f o r m  proof to be a cut-free sequential proof in 

which the succedent of each sequent is a single formula and, further, every sequent 

whose succedent is a non-atomic formula is the lower sequent of an inference figure 

that introduces its top-level connective. Given any two sets of L-formulas, D and 

G, we then say that l- is u n i f o r m  over the pair (V, G) if for every finite subset P of 

V and every G E 6 there is a uniform proof of G from P whenever it is the case 

that P t- G. Members of V are called definite clauses or program clauses while 

members of 6 are called goals or queries. 

From this definition it follows that if t- is uniform over (V,G) and P t G 

where G E G and P is a finite subset of V, then the following conditions hold: 

AND If G is B A C then F t- B and F k C. 

OR If G is B V C  then P t  B or Pt- C. 

AUGMENT If G is B > C then B,P t C. 
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INSTANCE If G is 3x B then there exists a term t such that 'P I- [ t / x ] B .  

GENERIC If G is Vx B then 'P t [ c / x ] B  where c  is a constant that does not 

appear in P or G. 

These conditions provide what we consider to be the search related interpretation 

of the various connectives. Using these notions, an abstract logic programming 

language is defined to be a quadruple (L,V,G,I-) where V and are sets of &- 

formulas such that k is uniform over (27, G). 

One example of an abstract logic programming language is provided by the 

logic of positive Horn clauses. To be precise, let F be a formulation of first-order 

logic and let kc denote classical provability. Let GI be the set of all first-order 

formulas that are the existential closure of formulas of the form A1 A.  . . A A,, where 

n > 0 and the A's are atomic. Finally, let Dl be the set of all first-order formulas 

that are the universal closure of formulas of either the form [A1 A . . . A A,] > A. 

where n > 0 or the form Ao: here again, the A's are atomic. Members of V1 
are often referred to as positive Horn clauses, while the negation of member of 

GI are often referred to as negative Horn clauses. It can then be shown that 

(F, Dl, 61, k c) is an abstract logic programming language. It should be noted, 

however, that this is a weak abstract logic programming language in the sense that 

the search operations OR, AUGMENT, INSTANCE, and GENERIC are never 

used. A language which uses the OR and INSTANCE search operations can be 

obtained easily by adding disjunction and existential quantification to formulas in 

GI and the body of clauses in Dl. 

As undertaken in [21] and [26], a higher-order extension to the logic of positive 

Horn clauses can be described and shown to be an abstract logic programming 

language. The latter extension provides many new programming features through 

the availability of A-terms and higher-order unification. However, this language 

is still weak in its use of logical connectives since it does not incorporate the 

AUGMENT or the GENERIC search operations. 

Including the AUGMENT operation requires a shift from the framework of 

classical logic. Examining simple extensions that permit implications in goals 

reveals why this must be so. Consider, for instance, the formula p V (p > q). 

Although this formula has a proof in classical logic, it has no proof that is consistent 
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with the OR interpretation of V: neither p nor p  > q is provable. As another 

example, consider the positive Horn clause p(a)Ap(b)  > q and the "goal" 3 x ( p ( x )  > 
q). While this goal has a classical proof from the given Horn clause, there is no 

proof that is consistent with the INSTANCE interpretation of 3; there is no single 

instance of the goal that is provable from the given Horn clause. Intuitionistic logic 

can, however, provide a declarative meaning of implication which is consistent 

with the AUGMENT search operation. Intuitionistic provability, denoted here by 

k r ,  is weaker than classical provability, and this weakening enables it to be used 

to define stronger abstract logic programming languages. This statement is not 

as paradoxical as it may sound since the abstract logic programming languages 

(F, Dl, GI, kc) and (F, Dl, GI,  k r )  are essentially the same. That is, intuitionistic 

logic provides a "tighter" analysis of Horn clauses than classical logic does. 

Consider the class of first-order formulas denoted by the following mutually 

recursive definition of the syntactic variables D and G: 

We assume here that A ranges over atomic formulas. A D formula is called 

a hereddary Harrop formula. Let D2 be the set of hereditary Harrop formulas 

and let G2 be the set of G-formulas. Using methods described in [18], it can 

be shown that (F ,  D2, 92, kl) is an abstract logic programming language. It is, 

in fact, a language in which all the search operations are present. The term 

"hereditary Harrop formulas" is used since these formulas and all their positive 

subformulas satisfy a syntactic restriction described by Harrop [9]: formulas in 

D2 are essentially equivalent to those formula that do not contain any positive 

occurrences of disjunctions or existential quantifiers. 

Finally, it is possible to define a higher-order version of hereditary Harrop 

formulas. The top-level structure of these formulas is similar to that of the first- 

order ones. One difference is that in the former case quantification is permitted 

over variables of all orders and is restricted only in that the top-level symbols 

of the formulas denoted by A in the definition of D formulas must be nonlogical 

constants. Furthermore, logical const ants may appear embedded in terms in the 

higher-order versions of both Horn clauses and hereditary Harrop formulas. In the 
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former case these constants are limited to A, V,  3, and in the latter case they are 

limited to A, V,  3, V. See [24] for more details. 

3. Programming Language Consequences 

Higher-order hereditary Harrop formulas extend Horn clauses in two major re- 

spects: first, they embed higher-order notions and, second, they provide the prim- 

itives for specifying the additional search operations AUGMENT and GENERIC. 

These two extensions to the logic are orthogonal in the sense that they can each be 

added independently of the other. They are, however, related from a progranming 

point-of-view in that they both provide the means for realizing certain abstraction 

mechanisms that are routinely found in modern programming languages but are 

not directly obtainable through the use of first-order Horn clauses. In this respect, 

A-terms and predicate variables provide for notions of higher-order programming; 

AUGMENT can be used to realize a notion of modules; GENERIC provides a 

mechanism for realizing abstract data types. The presence of A-terms also leads 

to a feature that is novel to the programming realm: they can be used as data 

structures for representing objects containing variable bindings. We discuss these 

logical extensions in greater detail below and explain how they lend themselves to 

the addition of new features at a programming level. 

Predicate Variables. Functional programming languages such as Lisp and 

ML provide the ability to write functions that can take other functions as argu- 

ments. Since the logic programming correspondent to a function is a predicate, the 

provision of this feature in logic programming is related to the ability to quantify 

over predicates. Such quantification is permitted in hohh formulas and, conse- 

quently, several aspects of this kind of higher-order programming can be realized 

by using these formulas. For instance, the hohh formulas (written in a notation 

borrowed from Prolog) 

mappred(P, [I, [I). 
mappred(P, [XILl], [YIL2]) : - P(X,  Y), mappred(P, L1, L2). 

define a predicate mappred that corresponds to the function maplist in Lisp; 

these formulas are higher-order ones because they contain a quantification over a 

predicate variable P .  Languages like Lisp also permit arbitrary lambda expressions 
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to be passed as arguments and later evaluated as programs. Limited aspects 

of this feature are provided by hobh formulas as well, since A-terms containing 

embedded logical connectives may appear as arguments of atomic goal formulas. 

For example, the predicate mappred above can be "invoked" with its predicate 

argument instantiated by a complex goal. 

A-terms as Data Structures. A logic programming language based on hohh 

formulas must provide simply typed A-terms as its data structures with the equal- 

ity between these terms being given by A-conversion. These da.ta structures turn 

out to be especially convenient in programming tasks involving the manipulations 

of objects containing variable bindings. Although first-order terms can be used 

to represent objects that contain internal abstractions, such represent ations make 

it necessary for the programmer to deal with variable names and to implement 

the various substitution operat ions that would be needed. In contrast, A-terms 

capture the higher-order abstract syntax of these objects [30]. Using them as rep- 

resentational devices makes the handling of bound variable names, substitutions, 

variable capturing, etc., part of the meta theory of the programming language. 

Consequently the mechanisms for these are directly supported by the implemen- 

tation of the underlying language. 

As an illustration, consider formulas of a quantificational logic. For instance, 

the formula Vx[p(x)~q(x)] can be represented by the A-term (all Ax((p x) or (q x)), 

where all and or are constants of the appropriate types: in the case of all, it 

has a higher-order type, that is, it maps abstractions over booleans to booleans. 

The advantage of this representation is that several useful operations on for- 

mulas are supported directly by A-conversion. Thus, the equivalence of this 

formula to Vyb(y) V q(y)] is mirrored in the a-convertibility of the two terms 

(all Ax((p x) or (q x)) and (all Ay((p y) or (q y)). Similarly, instantiating the given 

formula with the term f (a) is simply expressed by the term (Xx((p x) or (q x))( f a); 

this term is equal (modulo A-conversion) to the representation of the desired in- 

stance, (p (f a)) or (q (f a)). The richer notion of equality also makes it possible to 

perform quite sophisticated pattern matching operations. For instance, the term 

(all Ax((P x) or (Q x))) in which P and Q are (higher-order) variables can be used 

as a template for recognizing formulas containing a top-level universal quantifier 

whose scope is a disjunction. Observations such as these have in fact been ex- 
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ploited to provide succinct implementations of theorem-provers, interpreters, and 

type inference procedures [2, 20, 22, 27, 291. 

As another example, A-terms turn out to be particularly apt for representing 

programs that contain formal parameters or local variables. Arguments similar to 

those above show that a logic programming language incorporating such terms as 

well as higher-order unification provides useful features for the implement at ion of 

program manipulating procedures. See 17, 8, 11, 221 for examples of building such 

systems using higher-order logic. 

A consequence of incorporating the rules of A-conversion is that the interpreter 

for the logic of hohh formulas must be able to solve equations based on these rules. 

Formally, this means building higher-order unification into the interpreter. This 

form of unification is considerably more complex than first-order unification: it is 

undecidable in general and most general unifiers may not exist even when unifiers 

do exist [lo]. However, there are several characteristics that a search for a unifier 

shares with the search for a proof of goal from first-order Horn clauses, and it 

is possible to interleave these two searches in designing an interpreter for the 

language under consideration [21, 261. It is exactly this kind of an interpreter that 

is used in the current version of XProlog, as we discuss briefly in the next section. 

Meanwhile, we note that despite the complexity of higher-order unification, the 

kinds of unification problems that have arisen in applications so far have been 

tractable and have had correspondences to conceptual problems that a trained 

XProlog programmer can easily recognize. 

AUGMENT. This search operation provides logic programming with an aspect 

of hypothetical reasoning [3, 14, 151. It can also be used to realize a mechanism 

for supporting modular programming [lG, 181. To achieve the latter, implications 

can be used to structure, in a stack disciplined fashion, the environments within 

which queries are to be attempted. Consider, for instance, the query 

in the context of the program P. In solving this query, three different "environ- 

ments" are used for solving the three goals GI, G2, and G3: P U {Dl} for GI, 

F U {Dl, D2} for Gz and P for G 3 .  By exploiting the possibility of nesting im- 

plications, a notion of "importing" modules of code can also be supported. It 
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is important to note that the notion of modules implemented via AUGMENT 

is slightly different from that in conventional programming languages. In such 

languages, the meaning of a procedure defined in a module is determined in a 

completely local manner. In contrast, there is an "openness" in the context of 

modules described here that is in harmony with the interpretation of procedures 

in logic programming. For instance, if Dl and D2 are two modules that contain 

clauses defining the same procedure, then the meaning of this procedure in an 

environment that imports both Dl and D2 is obtained by combining the sets of 

clauses in these two modules. 

GENERIC. This search operation attempts to verify a universal goal by trying 

to prove the result of instantiating the goal with a new object. This is actually 

an intensional interpretation of the universal quantifier that is to be contrasted 

with the eztensional interpretation often used in Prolog systems; the latter inter- 

pretation attempts to satisfy a universal goal by trying to verify that it holds for 

every element in a given domain. For example, let the predicates P ( x )  and Q(x) 

stand for "x is a president of the USA" and "x is born in the USA" respectively. 

Then the intensional reading of Vx(P(x) > Q(x)) corresponds to the question of 

whether a president of the USA must necessarily be born in the USA, whereas the 

extensional reading corresponds to the question of whether all the known pres- 

idents of the USA have in fact been born in the USA. Clearly the intensional 

interpret ation is logically stronger since it implies the extensional interpret at ion. 

There are applications where both of these interpretation are useful. 

The condition for "newness" in the GENERIC search operation can be used 

to ~rovide a kind of security in unification. Consider, for example, the goal 

3xVy P(x, y). To solve this, the interpreter might introduce a free variable, say 

X, for the top-level existential quantifier thus reducing the query to Vy P(X,  y ). 

At this stage, the interpreter must choose a constant, say c, that does not occur in 

the current program clauses and the goal, and then establish P ( X ,  c). In doing so 

it must ensure that X is at no stage instantiated to a term that contains c. This 

ability to restrict substitutions can be used to provide a local construct in program 

modules. For instance, the query 3xVy(D(x, y) > G(x)) requires a substitutioll to 

be found for x that does not contain the parameter substituted for y. Assuming 

that G does not contain y free, it can be seen that 3xVy(D(x, y) > G(x)) is equiv- 
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alent to 3x(3y D ( x ,  y) > G ( x ) )  in intuitionistic logic. Thus, constants that are 

declared to be local to a module can formally be thought of as variables that are 

existentially quantified over program clauses in the module. The mechanism for 

"hiding" these constants is then implemented directly by the GENERIC search 

operation. 

Types. One other difference between hohh formulas and first-order Horn 

clauses is that the former are actually typed formulas. The essential role of types 

here is to impose a functional hierarchy on terms. From a programming perspec- 

tive, these types provide an ML-like typing discipline [25] to Prolog. Such types 

add an element of documentation to programs, and type errors detected at parsing 

time identify goals that will never succeed. The typing scheme (which initially uses 

only primitive and functional types) can be embellished with type constructors. 

For instance, it is possible to define list as a type constructor that maps the type 

int to the new "primitive" type (list in t )  corresponding to lists of integers. Some 

form of polymorphic typing appears to be necessary for the convenient construc- 

tion of typed programs, and so our current implementation of the logic permits 

variables as types. Such types, however, are not supported by the theory of hohh 

formulas and they turn out to be computationally expensive in certain instances; 

we discuss this issue in the next section. 

4. Implementing t he  Extended Logic 

The XProlog system in its current form is an implementation of, roughly, 

the logic of hohh formulas; the main deviations are that implications in goals 

is incompletely implemented and that a form of polymorphic typing has been 

incorporated. A version of this system comprising roughly 4100 lines of Prolog 

code has been in existence since August 1987 and has been distributed to about 40 

sites in North America, Europe, and Asia. The performance of this system leaves 

much to be desired, partly because of the underlying implementation language 

and to a greater extent because efficiency has not been a major concern in this 

experimental implementation. Despite this draw-back, the system has been used 

for serious experimentation a.nd prototype implementations [2, 7, 8, 20, 22, 291 

with two ongoing Ph.D. theses using it as their primary implementation vehicle. 

We describe this system briefly in this section, focussing on the solutions adopted 
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to the new problems encountered in implementing the logic. 

From the user's perspective, programming in XProlog consists largely of writ- 

ing a collection of type declarations and program clauses. The following declara- 

tion, which identifies int + (list i n t )  + (list in t )  as the type of cons, illustrates 

the format of type declarations. 

type cons int + (list i n t )  + (list in t ) .  

In this type expression, int is intended as a primitive type and list as a type 

constructor, and there are provisions for the user to declare these as such. Type 

expressions can also contain variables: thus, the type of cons could also have been 

defmed to be A + (list A )  + (list A) ,  where A (and, in general, any token 

beginning with an upper-case letter) is a variable. 

When writing program clauses in XProlog, we have retained the symbols of 

Prolog, embellishing these as needed by the richer syntax of the underlying logic. 

Several syntactic conventions have also been retained, with the exception that a 

curried notation has been adopted. This is exemplified by the two clauses below 

that define a predicate map f un of three arguments: 

mapf  u n  F [I [I. 
mapfun  F [ X ) L 1 ]  [ (F  X)IL2] :- mapf u n  F L1 L2. 

The types of the symbols that appear in clauses can be defined by type declara- 

tions. They can also be inferred by techniques similar to those used in ML [5] .  

For instance, from the clauses above, the type of mapfun  can be inferred to be 

( A  -, B) + (list A) -+ (list B )  -, o, where o is the type for propositions in 

XProlog. 

Type declarations and program clauses can be organized into named collec- 

tions called modules. Modules also provide a notion of scope that is useful in type 

inferencing: when the code in a module is being type checked and the type of a 

constant has not been declared, all occurrences of that constant in a module are 

assumed to be of the same type while all occurrences of that constant outside of 

the module are assumed to be instances of its inferred type. Modules can also be 

imported into other modules. From the perspective of program clauses, importing 

is explained by means of the AUGMENT search operation [16, 181. In under- 



4. Implementing the Extended Logic 

standing it operationally, the notion of "current module list" is useful. Suppose 

the current module list contains MI and M2 and that l\/I1 imports module M3. 

Given an atomic goal, A, a search is made only in the current modules for a clause 

whose head unifies with A: the module M3 is not accessed. Suppose such a clause 

is found in M I .  In attempting to solve the body of this clause, the current module 

list is extended with the modules imported into Ml, in this case, M3. That is, 

clauses in M3, MI and M2, in that order, can be used in attempting to solve 

this body. The current implementation of XProlog does not support the notion of 

parametric modules found in [16, lS]. 

The interpreter for XProlog is essentially a procedure that attempts to con- 

struct proofs for goal formulas from given sets of hohh formulas. The search space 

that such a procedure must deal with can be characterized by graphs whose nodes 

are pairs, the first element of which is a list of goal formulas and the second ele- 

ment is a list of disagreement pairs. For the initial state, the goal set contains only 

the goal formula for which a proof has to be found and the set of disagreement 

pairs is empty. The objective, then, is to reduce the goal set to an empty set and 

the disagreement set to one for which unifiers can easily be provided. In order 

to "solve" a compound goal, the search operations corresponding to each logical 

connectives can be used with the following exception: the choice of instantiation 

in the case of INSTANCE is delayed by substituting a variable whose value may be 

determined later through unification. In solving an atomic goal A whose top-level 

predicate symbol is a constant, clauses in the current modules must be considered. 

Thus, an attempt to use such a clause, say A' : - G, would lead to the addition 

of the pair (A, A') to the disagreement set. The goal set is changed by removing 

A and adding G, if this is present. The overall structure of the search is quite 

similar to that in the context of first-order definite clauses. There are, however, 

the following differences: it is higher-order unification that must now be used, and 

the unification process must carefully deal with the special constants introduced 

by the GENERIC search operation. 

The interpreter for XProlog performs a depth-first backtracking search, al- 

ways trying to solve any unification problem first by using the search procedure 

described in [lo]. It is thus quite similar to the standard Prolog interpreter. One 

difference is that unification problems may now involve a branching search, and 
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may therefore introduce backtracking points. For instance, assume that g is a 

constant and F is a free variable, and consider the task of solving the following 

goal given the definition of map f un  earlier in this section: 

This gives rise to the problem of finding a unifier for the disagreement pair 

( ( F  I), (g 1 1)). There are four incomparable substitutions for F, namely Xx(g x x), 

Xx(g x I), Xx(g 1 x), and Xx(g 1 I) ,  that will unify these terms. Of these, only 

the third will also unify the pair ((F 2), (g 1 2)). Thus if the interpreter picks any 

other substitution, it would have to backtrack over this choice. 

The behavior of the interpreter can be improved by having it recognize special 

kinds of unification problems. As an example, consider a disagreement pair of the 

form (X, F )  where X is a variable and F is a term in which X does not appear free. 

As noted in [lo], the substitution {(X, F)) is a most general unifier for this   air. 
This special case can be strengthened in the presence of the    rule [26], and the this 

strengthened version is incorporated in our current interpreter. Similarly, there 

is a suitably modified version of the occurs check (see the discussion about rigid 

paths in [lo]) that can in certain instances be used to determine non-unifiability of 

higher-order terms. Incorporating these two special cases into the interpreter has 

the effect of handling first-order unification in a complete fashion. Finally, there 

are certain disagreement sets, the flexible-flexible sets, for which unifiers are known 

to exist but attempting to compute them might lead to an extremely redundant 

search. Our interpreter retains these sets as constraints instead of attempting to 

solve them. If they persist to the end of a computation, they are printed out along 

with the answer substitution. These sets can often be simplified to the extent 

that the user can actually read them and understand the manner in which they 

constrain the answer substitution [19]. This aspect of unification is in some sense 

reminiscent of the approach used in Constraint Logic Programming [12]. 

As noted earlier, a straightforward implementation of GENERIC requires the 

unification procedure to be modified to deal with the special constants correctly. 

An alternative approach, incorporated in our interpreter, is to modify the imple- 

mentation of INSTANCE and GENERIC so that the unification procedure can 

be used unchanged. To understand the mechanics of this approach, let us assume 
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initially that the program consists of only the quantified atomic formula Vu Au 

and that the goal is 3xVy3z(G x y z), where G is a constant. Assuming that x, y, 

h, and f are variables that do not appear in A, it can be seen that the given goal 

has a solution if and only if the pair ( A  y .A (h  y ), Xy .G x y (f y)) has a unifier. 

Further, for any given constant c it is possible to obtain two terms t and s from 

a unifier for this pair such that c does not appear in t and (G t c s) is provable 

from Vu Au. Generalizing on this observation, the interpreter behaves as follows. 

It maintains a list of "universal variables" as part of its state. This list is initially 

empty. Whenever a universally quantified goal is encountered, the quantifier is 

dropped from the goal and the variable is added to the list; rena.ming is necessary 

here if the variable already appears in the list. When an existential quantifier 

is encountered in the goal, it is instantiated by a term of the form (f X I  . . . x,) 

where f is a new variable and the list of universal variables is X I , .  . . , x,. Fi- 

nally, assume that an atomic goal A is encountered, with the list of universal 

variables once again being X I , .  . . , x,. To determine whether a particular clause 

in the program can be backchained upon in order to solve this goal, an instance 

of the clause is created by replacing its universal variables with terms of the form 

(f X I  . . . x,), where f is a new variable. Let A' be the head of the resulting in- 

stance, and let G be the body. An attempt is then made to solve the disagreement 

pair (Axl . . . Xx,A, Axl . . . Xx,A1). If this succeeds, the resulting unifier is used to 

determine the instance of G that must be solved next. 

The approach to dealing with universal quantification outlined above is sim- 

ilar to a technique called V-lifting in [28]. There is an alternative scheme that 

essentially preserves the naive implementation of INSTANCE and GENERIC, 

and modifies the unification process instead. The basic idea here is to use an 

environment that remembers the scope of various quantifiers. This environment 

can then be used within the unification procedure of [lo] to eliminate illegitimate 

substitutions; an analysis of how this might be done appears in [19]. Nadathur 

and Pfenning have implemented a version of XProlog that uses this approach to 

GENERIC. There appear to be certain computa.tiona1 payoffs in using this ap- 

proach. 

There are certain issues that need to be dealt with in a more complete fashion 

than is done in the current implementation of XProlog. The first of these concerns 
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the provision of programming primitives for controlling the unification process. 

Some preliminary devices for this are incorporated in our interpreter [26], but 

there is room for much more experimentation in this respect. Another aspect con- 

cerns the polymorphic typing scheme that we have included in the language. This 

feature provides several programming conveniences that have been discussed in 

the context of functional programming languages. As one example, it permits the 

clauses for mapfun  provided earlier in this section to define a generic procedure 

that can be used by instantiating the variable F using function terms of several 

different types. Unlike the functional programming context, types in XProlog play 

an important role at runtime since they are referred to by higher-order unifica- 

tion. As a result, instantiations for type variables often need to be determined 

at run-time. There are techniques that can be used for either determining these 

instantiations uniquely or for delaying their determination in the hope that the de- 

sired instantiation can later become apparent [26]. However, there are times when 

none of these techniques apply and only fully enumerating all type instantiations 

is complete. Our interpreter does not perform such an enumeration, preferring to 

indicate a run-time error instead. This is clearly unsatisfactory. 

5. Conclusion 

This paper has discussed the design philosophy, the possible applications, and 

some aspects of an implementation of the XProlog system. The design of this sys- 

tem has been based entirely on proof-theoretical considerations. Also, the theory 

of hereditary Harrop formulas contains several features that are found in logics 

proposed by other researchers. The AUGMENT search operation is considered by 

Gabbay because it helps capture some aspects of the meta theory of Horn clauses 

[3]. Instances of both AUGMENT and GENERIC are added to Horn clauses by 

McCarty to provide inference mechanisms needed in certain A1 reasoning tasks [14, 

151. Hallnas and Schroeder-Heister generalize Horn clause logic with the ability 

to assume and discharge Horn clauses [6], and embedded implications overlap in 

functionality with their "rules of higher-level". Finally, Paulson's theorem prover 

Isabelle specifies inference rules using a subset of higher-order hereditary Harrop 

formulas. Isabelle contains not only higher-order unification but also operations 

closely related to the AUGMENT and GENERIC search operations [28]. 
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The focus on proof-theoretic techniques in our study of logic programming 

has led to our ignoring programming aspects not captured directly by proof the- 

ory. These include notions of control, negation-by-failure, and side-effects. Clearly 

these issues are important in a practical programming language, and future theo- 

retical work needs to address them. 

Much work also needs to be done towards providing a serious implementation 

of either AProlog or a language that captures some of its extended functionality. 

One major task in this regard is to find a satisfactory representation for A-terms. 

Such a representation must be one that enables an easy examination of the struc- 

ture of these terms and also permits A-conversion to be done efficiently. Further, 

it should be possible to undo the effects of A-conversions rapidly; this is necessi- 

tated by the fundamental role of backtracking in the logic programming paradigm, 

and the fact that the application of a substitution in our context corresponds to 

A-conversion. An important question to be answered is whether an interpreter for 

AProlog can be made to be as efficient on first-order Horn clauses as standard Pro- 

log interpreters. Our current implementation is unfortunately too naive to shed 

any light on this question. 

Along a different direction, there is a need to remove the mystery surrounding 

higher-order unification. Initially, it was very difficult for us to write programs that 

made significant use of this operation: it is a very different way of thinking about 

computations. With some practice it has become an easy matter for us to discern 

when we can gain from using this operation. However, there is as yet no general 

account of "computing wit 11 higher-order unification", our experiences and those 

of our colleagues being contained mainly in a list of example programs. Providing 

such an account so that programmers can learn when to use this operation appears 

to be worthwhile. Another aspect, which we are only beginning to understand, is 

that of knowing when a simple depth-first interpreter for unification will terminate 

and with how many different unifiers. Most of the unification problems that we 

have encountered in practice are solvable by this simple interpreter, but we have 

not yet formalized this experimental observation. 

Finally there is the issue, raised in the last section, of how to deal with the 

interplay of higher-order unification and polymorphic types. It appears necessary 

to consider an analogue of hereditary Harrop formulas within a logic that contains 
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