
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

March 1991

An Abstract Interpretation for ML Equality Kinds An Abstract Interpretation for ML Equality Kinds

Carl A. Gunter
University of Pennsylvania

Elsa L. Gunter
Bell Laboratories

David B. MacQueen
AT&T Labs

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Carl A. Gunter, Elsa L. Gunter, and David B. MacQueen, "An Abstract Interpretation for ML Equality Kinds", .
March 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-23.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/761
For more information, please contact repository@pobox.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/761
mailto:repository@pobox.upenn.edu

An Abstract Interpretation for ML Equality Kinds An Abstract Interpretation for ML Equality Kinds

Abstract Abstract
The definition of Standard ML provides a form of generic equality which is inferred for certain types,
called equality types, on which it is possible to define an equality relation in ML. However, the standard
definition is incomplete in the sense that there are interesting and useful types which are not inferred to
be equality types but for which an equality relation can be defined in ML in a uniform manner. In this
paper, a refinement of the Standard ML system of equality types is introduced and is proven sound and
complete with respect to the existence of a definable equality. The technique used here is based on an
abstract interpretation of ML operators as monotone functions over a three point lattice. It is shown how
the equality relation can be defined (as an ML program) from the definition of a type with our equality
property. Finally, a sound, efficient algorithm for inferring the equality property which corrects the
limitations of the standard definition in all cases of practical interest is demonstrated.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-23.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/761

https://repository.upenn.edu/cis_reports/761

An Abstract Interpretation
For ML Equality Kinds

MS-CIS-91-23
LOGIC & COMPUTATION 30

Carl A. Gunter
(University of Pennsylvania)

Elsa L. Gunter
(AT&T Bell Laboratories)

David B. MacQueen
(AT&T Bell Labortories)

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

March 1991

An Abstract Interpretation for
ML Equality Kinds*

Carl A. Gunter Elsa L. Gunter David B. MacQueen

University of Pennsylvania AT&T Bell Laboratories AT&T Bell Laboratories

December 1991

Abstract

The definition of Standard ML provides a forin of generic equality which is inferred for certain

types, called equality types, on which it is possible to define an equality relation in ML. However,

the standard definition is incomplete in the sense that there are interesting and useful types
which are not inferred to be equality types but for which an equality relation can be defined in
ML in a uniform manner. In this paper, a refinement of the Standard ML system of equality
types is introduced and is proven sound and complete with respect to the existence of a definable

equality. The technique used here is based on an abstract interpretation of ML operators as

monotone functions over a three point lattice. It is shown how the equality relation can be

defined (as an ML program) from the definition of a type with our equality property. Finally,
a sound, efficient algorithm for inferring the equality property which corrects the limitations of

the standard definition in all cases of practical interest is demonstrated.

1 Equality Types in Standard ML

The ML language provides an extensible algebra of type constructions. The Standard ML dialect

divides types into two cla,sses, those wllicll admit equality (also called eqehnlity types) and those

which do not. This distinction is based on the structure of types. Primitive types like int and

string have a predefined equality operation, while equality can be defined over compound types

built up from primitive types using "concrete" constructions like product and disjoint union in the

usual componentwise manner. Function types on the other hand do not posses a definable equality

relation (the existence of such a relation would solve the halting problem), nor do user-defined

abstract types (the compiler cannot determine when two concrete representations correspond to

the same abstract value). As a first approximation, therefore, the types admitting equality can

be identified with the "hereditarily concrete7' types built from primitive types using concrete type

'To appear in: I~lfornlation and Co~nputation.

1

2 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

constructions. Some recursively defined datatype constructors such as l i s t also qualify as concrete,

producing equality types when applied to equdity types.

Having identified a class of types possessing canonical equality operations, the next step is to

introduce a restricted form of polymorphism by abstracting over polymorphic type variables which

are constrained to range only over such types. Using this restricted form of polymorphism one can

define functions like the generic list membership function:

fun member x n i l = f a l s e

1 member x (y : : r) = i f x = y then t r u e e l s e member x r

which searches a list for an appearance of a value. The type inferred for member is

member : "a * "a l i s t -> boo1

where ' ' a is a polymorphic type variable ranging over equality types. (In Standard ML, an ordinary

polymorphic type variable ranging over arbitrary types begins with a single quote, e.g. ' a.)

This paper addresses some problems that arise from oversimplifications in the treatment of

equality types in the Definition of Standard ML [MTHSO, MT911. We propose a refined treatment of

equality types using equality kinds defined in terrns of an abstract interpretation of type expressions

that we prove to be sound and complete with respect to the denotational semantics of Standard

ML types.

In the Definition of Standard ML, a unary type constructor ' a F is said to admit equality if t

F is an equality type whenever the paranleter type t is. A constructed type t F admits equality

only if both t and F admit equality. This extends to n-ary type constructors in the obvious way.

Unfortunately, this definition is incomplete for the inference of equality properties because of the

presence of certain special type constructors that have stronger equality properties. For example,

the type t r e f admits equality regardless of whether t does. Therefore a type constructor defined

as

datatype (' a , ' b) F = mkF of ' a * ' b ref

has a more complex equality preservation behavior than the standard definition is capable of

expressing.' For exa.mple, (i n t , u n i t - > i n t) F should admit equality even though one of its

arguments, (un i t -> in t) , does not. However this will not be inferred based on the definition.

To correct this problem requires a more precise notion of equality properties of type constructors.

A simple binary property distinguishing between type constructors which admit equality and those

which do not must be replaced by an equality kind that specifies how the equality property of the

result depends on the equality properties of the arguments of the constructor.

'Indeed, an example very similar to this one was sent as a 'bug report' to the implementors of the Standard ML
of New Jersey compiler.

An abstract interpretation for ML equality kinds 3

We start in Section 2 by developing a standard denotational interpretation of types and an

abstract interpretation mapping types into a three point lattice & = {void,eq, type), where the top

element type represents arbitrary types, the middle element eq represents types admitting equality

and the bottom element void represents empty types (i.e. types containing no defined elements).

This abstract interpretation of types is also extended to type constructors, whose interpretations

will be nayp pings from appropriate products of f to f. To interpret recursively defined constructors

we simply calculate a least fixed point of the abstract interpretations. For example, if we define

datatype (' a , ' b) F = A of ' a 1 B of (un i t -> 'b , 'b) G

and (' c , ' d) G = C of (' c r e f , 'd l F I D of 'd

then neither F nor G are considered to admit equality according to the Standard ML definition.

However, both F and G admit equality under the abstract interpretation, and their interpretations

j , g satisfy f (eq, eq) = eq and g(type, eq) = eq respectively.

In Section 3 we relate the denotational and abstract interpretations by showing that the deno-

tation of a type is a flat domain if and only if the abstract interpretation of that type is eq.

In Section 4 we show that if a type has eq as its abstract interpretation we can define an

equality relation for that type in ML. This involves defining equality functionals corresponding to

the type constructors used to build the type. It is also shown that only the flat domains may have

a definable equality relation, so tha,t the equality types are exactly the types having a definable

equality. Hereafter when we speak of a "definable" relation, we mean definability of the relation as

an ML program.

The structure of the recursive definition of a type constructor is used as a format for creating

a recursive definition of the corresponding equality function. In the case of F and G, this recursive

function is parameterized by equality tests for 'a, 'b, 'd and a "dummy parameter" for 'c. In

fact, the equality test for ' c will be never be invoked in an equality test for a type built with F or

G because it is not used to compute equality on ' c r e f .

In Section 5 we show that by avoiding void the abstract interpretation can be simplified, and

equality k inds are introduced as succinct chara.cterizations of the interpretation of type constructors.

In practice, normal type constructor definitions are indeed "void-avoiding".

We conclude by discussing future research directions, particularly the interaction of equality

typ es and ML modules, and the impact of equality types on implementations of ML.

2 Interpretations of Types

For the purposes of this paper, we shall assume that the expressions of the type algebra in ML are

given by the following grammar:

t ::= void 1 unit I t * t (t + t I t -+ t I ref t I Fi(t1,. . . ,t,;) (i = 1,. . . m)

4 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

where the type constructors Fl , . . . F, are all the user-defined datatypes. Associated with the

user-defined type constructors there is a system of equations

which any interpretation should treat as one large mutual recursion. For example, the recursive

definition from the previous section would use the following operators:

We shall refer to the non-recursive type constructors, namely void, uni t , *, +, +, and ref, as

basic constructors. In the above recursive equations, the functions Fi are second-order A-expressions

over our type algebra., containing no free occurrences of the symbols Fl, . . . , F,. That is, the bodies

of the functions are composed only of first-order and second-order bound variables and basic

constructors.

In this section we wish to define two interpretations of these type expressions, one domain-

theoretic and the other an abstract interpretation. In order to do so, it will be beneficial in both

cases t o have associa.ted with each of our recursive constructors, Fl, . . . , F,, a sequence of functions

which are first-order A-expressions over our basic type algebra whose bodies are composed only of

first-order variables and basic constructors. Under each of the interpretations these functions will

provide finite approximates to the recursive constructors. These functions are given by the following

recursive definition:

F ~ (Q ~ , . . . , an,) = void
j+l F; (C Y ~ , . . . , ~ ~ ,) = Fi(F{,...,~i)(a1,...7an~).

With these we are now in a position to describe our two interpretations.

We now sketch the standard fixed-point semantics of ML's types. To do this we must briefly

introduce some domain-theoretic terminology. A somewhat fuller discussion of domain theory can

be found in several sources (see [GS90] and the references there). A subset M C D of a poset D
is directed if, for every finite set u M, there is an upper bound x E M for u. D is a complete
pa$rtial order (cpo) if every directed subset A4 C D has a least upper bound V M and there is a

least element ID in D. To interpret ML's types, we need a collection of operators on cpo's.

An abstract interpretation for ML equality kinds

Given cpo's D and El we define the coalesced sum D $ E to be the set

where D - { I D) and E - { I are the sets D and E with their respective bottom elements removed

and I D ~ E is a new element which is not a pair. It is ordered by taking I D ~ E 5 z for all z E D $ E

and taking (x, m) 5 (y, n) if and only if m = n and x 5 y.

Given a cpo D, we define the lift of D to be the poset obtained by adding a new bottom to

D. More precisely, the set DL = (D x (0)) U { I) , where I is a new element which is not a pair,

together with a partial ordering 5 which is given by stipulating that (x, 0) 5 (y, 0) whenever x 5 y

and I < z for every z E DL.
For cpo's D and E, the smash product D @ E is the set

where I D ~ E is some new element which is not a pair. The ordering on pairs is coordinatewise and

we stipulate that IDgE < z for every z E D @ E.
The two point lattice 1 is a unit for the smash product: D @ 1 S 1 @ D E D. The one point

lattice 0 is a unit for the coalesced sum, D $ 0 2 0 $ D E D, and an eliminator for the smash

product, D @ 0 % 0 @I D 2 0. -4 cpo is said to be void if it is isomorphic to 0. A cpo D is said to

be flat if it is not void and any two distinct elements of D are comparable only when one of them

is I . Up to isomorphism, there is a unique countably infinite flat cpo which we denote NL. The

domain B of booleans is the flat domain with three distinct elements true,false,I. The equality

function =D on a flat domain D is a mapping from D @ D into B such that

r =D (x, y) is true when x = y # I

=D (x, y) is false when x,y # I and x # y

r =D (x, y) is I when x or y is I .

A monotone function between two cpo's is continuous if it preserves least upper bounds of

directed collections. A function between cpo's is strict if it takes I to I . Given two cpo's D and

E, the space of all strict continuous functions between D and E , denoted by D c-+ E, is again a

cpo under the point-wise ordering.

For an ML type expression t , let i be the standard domain-theoretic interpretation of t. This

definition can be given inductively as follows. First of all, we define void = 0 and unit = 1. The

interpretations of the basic constructors are defined on domains D and E as follows:

Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

ref D = N1 if D # 0

The interpretation of recursive types can be given as described in [SP82] using colimits. These

methods also apply to provide a semantics for the recursively defined type constructors provided

by ML. For example, an ML definition of lists such as

datatype ' a list = Cons of ' a * ' a l i s t I N i l

is a recursive definition of a constructor l i s t . At the domain-theoretic level, this is a recursive

definition of a functor. The solution is obtained as a colimit of a sequence of functors, where the

colimit is obtained in a category of functors and natural transformations. To prove that the equality

functions we define later as ML programs are indeed the ones we expect, i t is essential for us to

know something about the exact mathematical operator which we obtain as the solution of this

equation.

Fortunately, it is not necessary to work in a functor category in order to do this. Instead, we

can employ a technique of Scott which uses a universal domain. The first use of the idea appears

in [Sco76] using what one might call a "closure-universay domain, but we will employ a related

technique introduced in [Sco82b, Sco82aI using a "projection-universal" domain. Both techniques

are described and illustrated in [GS90]. For the purposes of the remainder of this paper, a domain

is a bounded complete algebraic cpo (these are sometimes called "Scott domains"). It will not

be necessary for us to define these structures here since we will simply rely on properties of their

universal domain. The universal domain technique can be summarized as follows. Given a domain

D , let us say that a subset E is a subdomain of D and write E a D if E forms a domain under

the ordering inherited from D and there is a projection from D onto E, i.e. there is is a mapping

p : D -, E such that p o p = p and p(x) _< x for each x E D. Roughly speaking, a universal

domain is a domain U which has a copy of every other domain D as a subdomain, i.e. D a U up to

isomorphism. Moreover, the set of all subdomains of U again forms a domain, and hence there is a

special subdomain T a U , called the type of types, which is isomorphic to the domain of subdomains

of U . More specifically, there is a bijection r between T and the domain of subdoinains of U such

that D a E iff r (D) 5 r (E) for any pair of subdomains D, E a U . In the remainder of the paper we

will make no distinction between a domain D (which is to be viewed as a subdomain of U) and its

image in T under r.

The existence of a universal domain allows us to interpret operators on types as continuous

functions on the domain T. For example, the function space operator i can be viewed as a

continuous function from T x T into T. Hence, a fixed point specification such as the one given for

l is t above can be solved as a fixed point equation over a cpo without the need t o introduce functor

An abstract interpretation for ML equality kinds

void

Figure 1: The Equality Properties Lattice E.

categories, etc. explicitly (see Theorem 7.10 of [GSgO]). Therefore, if Dl, . . . , Dn, are domains,

then we can define " .
& (~ 1 7 - - . J n i) = V (F ; ~ (D I , . ,Dn,))

where the least upper bound is being taken in T and the isomorphism between domains and elements

of T is being taken for granted.

Another useful perspective that we are able to obtain by working in a universal domains is a

simple way to compare functions between domains. If we are given a continuous function f : D + E
between subdomains D and E, then we may view this as a continuous function f' : U + U where

f 1 (x) = f (y(x)) where p is the projection onto D. In particular, if D a D' are flat subdomains, then

their equality fu~lctions are related = D ~ = ~ I (where we are suppressing the distinction between the

equality functions on the domains and their extensions to all of U). One further note which will be

important to our discussion later is that when we have a chain of flat domains Do 4 Dl 4 . . ., then

their limit in T corresponds to their union Ui Di as subdomains of U . In particular, the limit of

their equality functions is the equality function on their limit (the union of the D;'s).

2.2 An Abstract Interpretation

Next we wish to describe an abstract interpretation function mapping closed ML type expressions

into the three point lattice E pictured in Figure 1. To do so, we will define the interpretation on

the constructors and extend by structural induction to closed type expressions. For any vl, vz E f,

we have:

a void = void

a unit = eq

a If either vl = void or v2 = void then vl i v;! = void, if vl = vz = eq then vl i vz = eq and

otherwise vl G vz = type

Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

a If vl = void or v2 = void, then vl i v2 = eq, and otherwise vl v2 = type

a r;?f void = void and if v # void then ref v = eq.

Notice that each of the the basic constructors is interpreted as a monotone function over the n-ary

product (n = 0 , 1 , 2) of & with itself.

Having defined our interpretation for the basic constructors, by structural induction we have

the interpretations f i for the functions ~ b i n c e they are composed only of basic constructors.

Using these, we define the interpretations of the recursive constructors by

By structural induction, we can in fact extend our interpretation function to the second-order

functions Fi. Since these are also composed only of basic constructors (and first- and second-order

bound variables), and since all the basic constructors are interpreted as monotone functions, the

interpretation of Fi will itself be a function which is monotone in both its first-order and second-

order arguments.

Lemma 1 For all i , j , we have F! 5 Moreover, there exists a k such that for all i , F/ =

F;+l, and hence for all i, Pi = F/.

Proof. For the first part, the proof is by induction on j. Suppose vl, . . . , vni E &. For the base

step, F?(vl,. . . , vni) = void 5 F;(V*, . . . ,vn,). For the inductive step suppose that for all i

Then, by applying 3;, for each i , since .fi is monotonic, we have

and hence ,. ' ^j+l
F:(uI,. . run,) < F; (~ 1 , - - . ,vn,).

For the second part, since the set of functions mapping En' into & is finite and the $j's form

an increasing sequence, it is immediate that there exists a k such that for all i we have F! = tk+'.
By the definition of the Fj's, for all j > k we therefore have @/ = @ . Again since the F?'S form

.. '
an increasing sequence, we have that F; = mazj{F;} = &Ic. I

Notice that the previous lemma tells us that the computation of the R ' s is a finite process.

A n abstract interpretation for ML equality kinds

3 Relating Interpret at ions

The purpose of this section is to demonstrate that, for any type expression t , the standard inter-

pretation i is flat if and only if = eq. This describes the soundness and completeness property

of our interpretation. Because of the presence of recursive definitions and the constant type void

itself, it is necessary to deal with the possibility that there are type expressions t such that every

program of type t is divergent. Evidently, it is possible to define a type directly in terms of itself:

datatype money = Invest of money

No programs of this type converge. But this could happen more subtly in a mutually recursive

definition:

datatype chicken = Hatch of egg

1 egg = Lay of chicken

(After all, which comes first?) The following definition and lemma show how such types are

a,bstractly interpreted as void.

Definition 2 A closed type expression t has property V provided that t^ = void iff i = 0 .

Lemma 3 1. The types void and unit both have property V

2. If the types t l and t 2 both have property V , then so do t l + t2 and t l * t2.

3. For all types t l and t 2 , the type t l -+ t 2 has property V .

4. If a type t ha,s property V then so does ref t .

5. If types t l , . . . , t,, have property V , then so does Fi(tl , . . . , tni)

Proof. 1) The type void has property V since void = void and v6id = 0 . The type unit has

property V since &it = eq # void and unit = 1 # 0.

2) Suppose t l and ta both have property V . Then

& $ f2 = void u both 6 = void and & = void

u both fi = 0 and f2 = 0

u t ; + f 2 = 0 .

Therefore, tl + t 2 has property V . Also,

fl G f2 = void # either & = void or & = void

u either 6 = 0 or i2 = 0

u t ; t f 2 = 0 .

Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

Therefore, t l t t2 has property V.
3) For all types t l and t2 , the domain fi i f2 = (6 o+ f2)1 always has at least two elements,

namely I and Xx.1, and hence is not 0. Moreover, by the definition of i , & i f2 is never equal

to void. Therefore, tl -+ tz always has property V.
4) Suppose that the type t has property V. Then

ref t^ = void u t^ = void

u t = o
u ref i = o

Therefore, ref t has property V.

As a result of parts 1 through 4 of the lemma, we have by structural induction that any type

operator that is composed solely of basic constructors preserves property V.
5) Let t l , . . . , t,, be a collection of types having property V. By the previous remark, for each

j , the type F/(t l , . . . ,t,,) has property V. Therefore

~ i (& , . . . , t i ,) = void u F;(_(il, . . . , t,i) = void, for all j

where the least upper bound is taken in T, the type of types. Therefore, Fi (t l , . . . , t n i) has property

v. I

Corollary 4 For all closed ML type expressions t , we have that t^ = void iff i = 0.

Proof. By structural induction and the previous lemma,, all closed type expressions in ML have

property V. I

Our primary interest is not in types which are void, but in those which are equality types. We

may now characterize the types having eq as their abstract interpretation as exactly those with a

flat standard interpretation.

Definition 5 A closed type expression t has property S C (for "sound and complete") provided

that t ̂ = eq iff i is flat. I

Lemma 6 1. The types void and unit both have property S C .

2. If the types t l and t2 both have property SC, then so do t l + t2 and t l * t2 .

An abstract interpretation for ML equality kinds

3. For all types tl and t 2 , the type tl i t 2 has property SC

4. For all types t , the type ref t has property SC.

5. If types t l , . . . , t,, have property SC, then so does Fi(tl,. . . , t,,).

Proof. 1) Since vdid # eq and void is not flat, void has property SC. Since &it = eq and unit
is flat, unit also has property SC.

2) Suppose that both types t l and t2 have property SC. Then

t; 4 i2 = eq

u ea,ch of fi and i$ is either void or eq, and a,t least one of them is eq

u each of 6 and f2 is either void or flat (by Corollary 3 and property SC), and at least one

is not void

u t; 4 f 2 i s f l a t .

Therefore, t l + t2 has property SC. Also,

& ; i2 = eq

u both & and & are eq

u both & and f2 are flat

u & i i2 is flat,

and hence, tl * t 2 has property SC.

3) For any types tl and t2, we have that

t̂ , A t̂ , = eq u fl = void or il = void

u 6 = 0 or & = 0 (by Corollary 3)

e & 2 f2 = 1, which is flat.

Therefore, tl + t2 has property SC

4) Given any type t , we have

ref t* # eq + t* = void

u t = 0 (by Corollary 3)

ref t = o
u ref t is not flat.

Therefore, ref t has property SC.
As before, by 1 through 4 of this lemma, we know by structural induction that any type operator

that is composed solely of basic constructors preserves property SC.

5)Let t l , . . . , t,, be a collection of types having property SC. By the previous remark we have

that ~ ! (t l , . . . , tn ,) has property SC, for each j . Thus

Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

.. ..
F;(tl,. . . , t i i) = eq

there exists a k such that ~ ! (t ^ ~ , . . . , t i i) = void for all j < k, and ~ ! (t ^ ~ , . . . , t i ,) = eq for all

j > k (by Lemma 1). - .
there exists a k such that F!(&, . . . , t i i) = 0 for all j < k, and F!(il,. . . , t i ,) is (non-void)

flat for all j 2 k

~ i (& , . . . , t i ,) is flat, being the least upper bound of a chain of flat domains.

Therefore, Fi(t l , . . . , t,,) has property S C . I

Corollary 7 (Soundness and Completeness) For a26 closed ML type expressions t , we have that i
is flat i#t^ = eq.

Proof. By structural induction and the previous lemma, all closed type expressions in ML have

property S C . I

4 Equality Functions

Having derived an abstract interpretation for equality types, we now have a theory that tells us

when we should expect to find an equality function on a type. However, there is no a priori reason

to believe that this function is definable in ML or that we can provide a way to uniformly produce a

program for computing the function from the structure of the type. However, it is not at all difficult

to see that we can do this for the basic operators. For example, to get the equality function on a

product s * t, given equality functions f and g on s and t respectively, one just uses the given

equality functions to compute the equality on the respective coordinates of the product:

fun eqtimes (f , g) ((x , y) , (x ' , y '))

= f (x , x J) andalso g (y ,y ')

The sum is similar; the given equality functions should be used in their respective components:

fun eqsum (f , g) (i n 1 x , i n 1 y) = f (x , y)

I eqsum (f ,g) (i n r x , i n r y) = g(x,y)

I eqsum (f ,g) - = f a l s e

where the sum type is represented by the following concrete type operator:

datatype (' a , ' b) sum = i n 1 of ' a I i n r of 'b ;

What should be done for the arrow types? These are never equality types except when the

domain or codomain of the type is void. In this case, the interpretation of the type has two

An a.bstract interpretation for ML equality kinds 13

elements; one of these represents the undefined program a t the type and the other represents

"delayed divergence". Hence, if two arguments to an equality test for such a type both converge,

then they are equal. Noting the call-by-value evaluation of ML programs, we may therefore take

the following definition:

fun eqarrow (f , g) = f n (x,y) => t r u e

Note that the equality function parameters f and g are not used. That this is the "correct" equality

function 011 arrow types presupposes that it will only be used in the case where the arrow type is

flat.

Equality on reference types must be computed by a primitive function which determines identity

of memory locations.

How is the equality function on recursive types computed? Recursively, of course! For example,

consider the definition of the operator l i s t :

datatype ' a l is t = Cons of ' a * ' a l i s t 1 N i l

given earlier. To calculate equality on ' ' a l is t , given an equality function aeq for "a, the

coilstructors which build the list must be recursively unwound:

fun e q l i s t aeq (Cons (x , l) , Cons (y , m))

= (aeq (x ,y)) andalso (e q l i s t aeq (1, m))

I e q l i s t aeq (Ni l , Nil) = t r u e

I e q l i s t - - = f a l s e

Now we give the formal definitions of the equality interpretation of types. Given a type t , we -
define the equality function 7 by induction on the structure of t . First, the equality function on

products is given by

true if x = (x l , 22) and y = (yl, 92)

and f (~ 1 , Y l) = Y (x ~ , Y ~) = true

(f 7 g)(x, y) = false if x = (xl ,x2) and y = (yl, y2)

and f (x l , yl) = false or g = (22, y2)false

I otherwise

and on sums by

(f (XI, yl) if x = (xl,O) and y = (y', 0)

g(xf, y') if x = (x', 1) and y = (g', 1)
(f T s > (x , Y) =

false if x = (x', i) and g = (y', j) and i # j

14 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

A we saw with the definition of eqarrow the interpretation for the function spaces is essentially

trivial
true if x # I and y # I

(f =? 9)(x, Y) =
otherwise.

The interpretation for unit is similar:

- true if x # I and y # I
(.nit)(., y) =

1 otherwise.

- -
void is the constant function to I. ref (f) is the equality function on N I .

The equality fuizction for the recursive type operators is the limit of the equality functions

associated with their finite approximates:

-
Theorem 8 For any type expression t , if t^ = eq, then 7 is the equality function on i.

Proof. The proof is by an induction on the structure of t . The cases involving the primitive

operators are straightforward. For the recursive type constructors Fi, note first that ~ i (i 1 , . . . , in ,) - -
is flat if ~ : (3 ' (t ^ ~ , . . . , in,) = eq by Corollary 7. If F: is the equality function on

for each j then is a limit of equality functions on domains D j . Since these domains are all flat

their limit is simply their union U j D j and the limit of the equality functions on the parts is the -
equality function on the whole. Hence is the equality function on Fi(il, . . . ,in,). I

The reader may now be curious why we have restricted ourselves to types with flat interpreta-

tions for those having an equality property. Could there be other types on which equality could be

defined? Our domain-theoretic semantics offers some guidance on this point. Let us generalize our

earlier defiilitioil of aa equality fu~lctioll =D by relaxing the requirelllent that D is flat. It is clear

that there is a program denoting the equality function for the domain 0 that interprets v o i d . But

let us consider the simplest non-flat, non-trivial domain. This domain has three elements; indeed it

is isomorphic to I, but to avoid confusing matters, let us name its elements by I < x < y. This is

the interpretation of the type unit + unit. Following the standard denotational interpretation of

ML terms, the equality function on this type cannot be defined in ML because the equality function

on this three point domain is not monotone. Indeed, no domain with a three element chain could

have an ML-defina.ble equality function for this reason. another standpoint, a computable equal-

ity on this would provide a solution to the halting problem! We may conclude that our abstract

interpretation describes all and exactly the ML types on which a definable equality exists.

A n abstract interpretation for ML equality kinds

Figure 2: The Equality Kinds Lattice 0.

5 Calculating Equality Kinds

There is a problem with the abstract interpretation of types given in the previous sections. We

cannot say of a type constructor that the type it yields will admit equality if and only if certain

of its arguments admit equality. The difficulty is with the combination of the function space type

constructor and void types. The type unit + void admits equality and the type void + unit
admits equality, but unit + unit does not ad~ni t equality. There is a lack of independence

between the two arguments to + when determining whether their resultant type admits equality.

This example also shows why it was necessary for us to introduce void as a separate element of the

equality properties lattice, t'. If we were to interpret vaid as eq, then what would be the correct

value of eq G eq? If we choose it to be eq, then we lose soundness, and if we choose it to be type,

then we lose completeness. It is too naive to try to solve these problems by saying that "there are

no elements of type void, so there is no reason to have it." Firstly, void may be a subexpression

of a nonvoid type, such as void + unit. More importantly, we can only understand the recursive

types by successive approximations, starting with the void type. Still, there is a useful, sensible

theory that we ca.n cull out based on the idea, of banning void.

To begin with let us focus attention on the sublattice 0 of t' consisting of the points {eq, type)

as picture in Figure 2. In this section, we will develop another abstract interpretation of ML

types, using 0 instead oft ' . This new interpretation has a succinct representation, which is readily

computed from the types and type constructors. Moreover, if our recursive type constructors satisfy

a reasonable void-avoiding property, when we restrict to the subalgebra of types not involving void,
the two abstract interpretations turn out to be the same. Therefore, on this subalgebra, this new

abstract interpretation will also turn out to be sound and complete.

As before, the definition of the abstract interpretation over 0 is given by first defining it on

the constructors, and then extending it to closed type expressions by structural induction. The

definition for the constructors is as follows:
-

void = eq;
-

unit = eq;

Carl A . Gunter, Elsa L. Gunter and David B. MacQueen

for all vl, vz E O we have vl G v2 = type;

for all v E O we have ref v = eq; and

- .
E.(vl, . . . , vni) = max{F~(vl, . . . , v,)}.

3

Lemma 9 For a11 i , j , we have Fj 5 pi+'. Moreover, there exists a k such that for all i, F;'" =

F)+', and hence, pi = F:.

Proof. The proof is the same as for Lemma 1. I

Lemma 10 Given any n-ary type operator G over our type algebra, either for all (vl,. . . , v,) E On
-

we have G(vl, . . . ,v,) = type, or there exists a point (z l , . . . ,z,) such that G(vl, . . . , v,) = eq ifl

vi 5 zi, i = 1,. . . , 72.

Proof. The proof is by structural induction on the body of G. The result follows immediately for

the basic constructors. Therefore, by structural induction, we have the result for type operators

composed solely of the basic operators. In particular, we have the result for the operators F:. But

then, the result for the recursive constructors follows immediately from the previous lemma, since

for some k, 2i = 2:. I

Definition 11 Given any n-ary type operator G over our type algebra, if for all (vl, . . . , v,) E On

we have ~ (q , . . . , v,) = type, then the equality kind of G is 0, and we say that G does not admit

equality. Otherwise, the equality kind of G is the point (zl , . . . , z,) such that G (V ~ , . . . , v,) = eq iff

v; 5 z; for all i = 1, ..., n. I

In particular, if t is a closed (nullary) type expression, then either it does not admit equality,

and therefore has equality kind 0, or it does admit equality and has equality kind ().
The equality kinds for the basic constructors is as follows:

The equality kind of void is ().

The equality kind of unit is ().

The equality kind of both + and * is (eq,eq).

The equality kind of + is 0.

The equality kind of ref is type.

A n abstract interpretation for ML equality kinds 17

Notice that for n-ary type operators F and G that admit equality, we have that F 5 G iff

(wl,. . . , w,) 2 (zl , . . . ,zn) where (wl,. . . ,wn) is the equality kind of F and (21,. . . , zn) is the

equality kind of G.

With these definitions it is possible to describe how to calculate the equality kind of a recursive

type constructor. One simply carries out the iterations of the fixed point. By Lemma 9, this

will terminate. The number of iterations required is bounded by the number of parameters in the

type recursion, so the algorithm is quite efficient. This calculation will miss some types for which

equality is definable, but only in cases that are uninteresting in practice. To state a crisp theorem,

we must formulate a notion of "void avoidance". To do this, we now restrict our attention to that

subalgebra of type expressions over basic constructors uni t , +, *, +, and ref, and the recursive

operators, provided that the associated recursive equations are over just these basic constructors.

Definition 1 2 A set of recursive type constructors Fl, . . . , F, is void avoiding provided that the

second-order recursive operators .Fi giving the recursive equations associated with them involve

only the basic constructors uni t , +, *, +, and ref, and whenever the constructor Fi is applied

to argument types t l . . . , t n l , each of which has a non-void domain-theoretic interpretation, the

resulting type has a domain-theoretic interpretation which is non-void, i.e. ~ ~ ((1 , . . . , t,,) # 0. a

Lemma 13 Suppose that the set of recursive type operators F l , . . . , F, are void-avoiding. Then,

for every closed type expression t not containing void as a subexpression, we have that t^ = i.

Proof. First notice that any closed type expression in this subalgebra will have an interpretation

under - of either eq or type. Therefore, we may view the abstract interpretation under -- of any

n-ary type operator as a function from On into 13. To prove the lemma, it suffices to show that

given any n-ary type operator G, the function G, when restricted to On is the same as the function

G. By structural induction, in fact it suffices to show this for the basic constructors (excluding

void) and for the recursive constructors. The result follows immediately from the definitions of -
and N for the basic constructors uni t , +, *, +, and ref.

Since the second-order operators .Fi are composed solely of basic constructors, by structural

induction we have that & = y i . Also, since G 5 G for every basic constructor G, we have that for

each of the finite approximates @ 5 @. By Lemma 1, there exists a k such that

and & = F!. Therefore, tlze operators Ff form a fixed point of the system A,. . . ,ym. However,

by their construction the functions pi, i = 1 , . . . ,m form the least fix point of the operators Fi.
Since F; = F! 5 F: < pi, we must have that pi = pi. I

18 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen

Corollary 14 (Soundness and Completeness) Suppose that the set of recursive type operators Fll

. . . , F, are void-avoiding. Let G be a type operator defined in terms of the basic constructors unit,

+, * , - and ref and the recursive constructors. Then G admits equality ifl the equality kind of G

is not 0. Moreover, if G admits equality with equality kind (zl, . . . , z,), then for any types t l , . . . t ,

which do not contain void as a subexpwssion, ~ (i ~ , . . . , in) is fiat iff ii < z; for all i = 1, . . . , n.

6 Conclusions and Future Work

We have provided a sound and complete semantic analysis of the equality property for ML types

and demonstrated an efficient algorithm for carrying out the inference of equality properties for

void-avoiding systems of user-defined types. Our results are based on theorems that relate the

standard denotational semantics of type constructors to an abstract interpretation that describes

the equality kind of the operator.

Our algorithm expands the number of types that will be judged t o admit equality. In existing

compilers, the new types admitted under our scheme can be handled in exactly the same way as the

ones currently accepted, so no new approach t o the implementation is implied. The specification of

equality in Section 4 can be viewed as a specification of equality functions on ML types rather than

a prescription for how the equality functions must be implemented. (Although our specification is,

arguably, the most natural approach t o the implementation.)

The motivation for this work was to provide a nlore accurate version of the notion of equality

types in Standard ML. Introducing the refined notion of equality kinds into Standard ML itself

raises the question of how they would be integrated with the module system.

The easiest problem is specifying the equality kinds of type constructors in signatures. The

current language definition provides a simple type specification

type (' a , ' b) F

that does not constrain the equality kind of F at all, and the equality type specification

eqtype (' a , ' b) F

that specifies that F has equality kind with succinct representation (eq,eq). To specify that F has

the equality kind (eq, type) we might use the following notation:

type F : (e q , t y) => eq

A more complex interaction with modules involves the effect of sharing constraints in signa-

tures. If two type constructor specifications are identified as a consequence of sharing constraints,

it seems clear that they should have the same equality kind. This brings up the issue of compati-

bility of equality kind specifications and the problem of determining the resultant kind when two

specifications share.

An abstract interpretation for ML equality kinds 19

A third problem is how equality kinds are affected by functor applications. The definition of a

type constructor in the body of a functor may depend on type constructors in the functor parameter

with unspecified equality kinds, making it impossible to completely infer the equality kind of

the defined constructor. When the functor is applied, the actual parameter supplies additional

information that should be taken into account to recalculate the equality kind of the defined type

constructor. This suggests partial and incremental calculation of equality kind information may be

required.

These problems of integrating equality kinds with the module system are the subject of con-

tinuing research, with the experience with the current Standard ML treatment of equality kinds

providing a, starting point.

I t is our belief that there are broader issues relating t o equality types that involve other proper-

ties and operators which are defined uniformly from the structure of types. One might refer t o this

a.s structural polymorphism. It has conie up in other contexts such as the study of subtyping and

coercions between recursive types. For instance, [BGS89] describes how coercions between such

types are generated from the type definitions in a manner very similar to the one used in Section

4 of this paper for the equality relations. Whether there is any general theory that connects these

apparently similar phenomenon remains to be seen.

Carl A . Gunter, Elsa L. Gunter and David B. MacQueen

References

[BGS89] V. Breazu-Tannen, C. Gunter, and A. Scedrov. Denotational Semantics for Subtyping

between Recursive Types. Research Report MS-CIS-89-63/Logic & Computation 12, De-

partment of Computer and Information Science, University of Pennsylvania, 1989.

[GS90] C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, pages 633-674, North Holland, 1990.

[MT91] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, 1991.

[MTHSO] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[Sco76] D. S. Scott. Data types as lattices. SIAM Journal of Computing, 5:522-587, 1976.

[Sco82a] D. S. Scott. Domains for denotational semantics. In M. Nielsen and E. M. Schmidt,

editors, International Colloquium on Automata, Languages and Programs, pages 577-

613, Lecture Notes i n Computer Science vol. 140, Springer, 1982.

[Sco82b] D. S. Scott. Lectures on a mathematical theory of computation. In M. Broy and G.
Schmidt, editors, Theoretical Foundations of Programming Methodology, pages 145-292,

N A T O Advanced Study Institutes Series, D. Reidel, 1982.

[SP82] M. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain equa-

tions. SIAM Journal of Computing, 11:761-783, 1982.

	An Abstract Interpretation for ML Equality Kinds
	Recommended Citation

	An Abstract Interpretation for ML Equality Kinds
	Abstract
	Comments

	tmp.1196371283.pdf.9_kd9

