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Abstract 

The definition of Standard ML provides a forin of generic equality which is inferred for certain 

types, called equality types, on which it is possible to define an equality relation in ML. However, 

the standard definition is incomplete in the sense that there are interesting and useful types 
which are not inferred to be equality types but for which an equality relation can be defined in 
ML in a uniform manner. In this paper, a refinement of the Standard ML system of equality 
types is introduced and is proven sound and complete with respect to the existence of a definable 

equality. The technique used here is based on an abstract interpretation of ML operators as 

monotone functions over a three point lattice. It is shown how the equality relation can be 

defined (as an ML program) from the definition of a type with our equality property. Finally, 
a sound, efficient algorithm for inferring the equality property which corrects the limitations of 

the standard definition in all cases of practical interest is demonstrated. 

1 Equality Types in Standard ML 

The ML language provides an  extensible algebra of type constructions. The Standard ML dialect 

divides types into two cla,sses, those wllicll admit equality (also called eqehnlity types) and those 

which do not. This distinction is based on the structure of types. Primitive types like int and 

string have a predefined equality operation, while equality can be defined over compound types 

built up from primitive types using "concrete" constructions like product and disjoint union in the 

usual componentwise manner. Function types on the other hand do not posses a definable equality 

relation (the existence of such a relation would solve the halting problem), nor do user-defined 

abstract types ( the compiler cannot determine when two concrete representations correspond to  

the same abstract value). As a first approximation, therefore, the types admitting equality can 

be identified with the "hereditarily concrete7' types built from primitive types using concrete type 

'To appear in: I~lfornlation and Co~nputation. 
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2 Carl A. Gunter, Elsa L. Gunter and David B. MacQueen 

constructions. Some recursively defined datatype constructors such as l i s t  also qualify as concrete, 

producing equality types when applied to equdity types. 

Having identified a class of types possessing canonical equality operations, the next step is to  

introduce a restricted form of polymorphism by abstracting over polymorphic type variables which 

are constrained to  range only over such types. Using this restricted form of polymorphism one can 

define functions like the generic list membership function: 

fun member x n i l  = f a l s e  

1 member x (y : : r )  = i f  x = y then t r u e  e l s e  member x r 

which searches a list for an appearance of a value. The type inferred for member is 

member : "a * "a l i s t  -> boo1 

where ' ' a  is a polymorphic type variable ranging over equality types. (In Standard ML, an ordinary 

polymorphic type variable ranging over arbitrary types begins with a single quote, e.g. ' a.) 

This paper addresses some problems that arise from oversimplifications in the treatment of 

equality types in the Definition of Standard ML [MTHSO, MT911. We propose a refined treatment of 

equality types using equality kinds defined in terrns of an abstract interpretation of type expressions 

that we prove to  be sound and complete with respect to the denotational semantics of Standard 

ML types. 

In the Definition of Standard ML, a unary type constructor ' a  F is said to admit equality if t 

F is an equality type whenever the paranleter type t is. A constructed type t F admits equality 

only if both t and F admit equality. This extends to n-ary type constructors in the obvious way. 

Unfortunately, this definition is incomplete for the inference of equality properties because of the 

presence of certain special type constructors that have stronger equality properties. For example, 

the type t r e f  admits equality regardless of whether t does. Therefore a type constructor defined 

as 

datatype ( ' a , ' b )  F = mkF of ' a  * ' b  ref 

has a more complex equality preservation behavior than the standard definition is capable of 

expressing.' For exa.mple, ( i n t  , u n i t - > i n t )  F should admit equality even though one of its 

arguments, (un i t -> in t )  , does not. However this will not be inferred based on the definition. 

To correct this problem requires a more precise notion of equality properties of type constructors. 

A simple binary property distinguishing between type constructors which admit equality and those 

which do not must be replaced by an equality kind that specifies how the equality property of the 

result depends on the equality properties of the arguments of the constructor. 

'Indeed, an example very similar to this one was sent as a 'bug report' to the implementors of the Standard ML 
of New Jersey compiler. 



An abstract interpretation for ML equality kinds 3 

We start in Section 2 by developing a standard denotational interpretation of types and an 

abstract interpretation mapping types into a three point lattice & = {void,eq, type), where the top 

element type represents arbitrary types, the middle element eq represents types admitting equality 

and the bottom element void represents empty types (i.e. types containing no defined elements). 

This abstract interpretation of types is also extended to type constructors, whose interpretations 

will be  nayp pings from appropriate products of f to f. To interpret recursively defined constructors 

we simply calculate a least fixed point of the abstract interpretations. For example, if we define 

datatype ( ' a , ' b )  F = A of ' a  1 B of (un i t  -> 'b ,  'b) G 

and ( ' c , ' d )  G = C of ( ' c  r e f ,  'd l  F I D of 'd 

then neither F nor G are considered to  admit equality according to the Standard ML definition. 

However, both F and G admit equality under the abstract interpretation, and their interpretations 

j ,  g satisfy f (eq, eq) = eq and g(type, eq) = eq respectively. 

In Section 3 we relate the denotational and abstract interpretations by showing that the deno- 

tation of a type is a flat domain if and only if the abstract interpretation of that type is eq. 

In Section 4 we show that if a type has eq as its abstract interpretation we can define an 

equality relation for that type in ML. This involves defining equality functionals corresponding to 

the type constructors used to build the type. It is also shown that only the flat domains may have 

a definable equality relation, so tha,t the equality types are exactly the types having a definable 

equality. Hereafter when we speak of a "definable" relation, we mean definability of the relation as 

an ML program. 

The structure of the recursive definition of a type constructor is used as a format for creating 

a recursive definition of the corresponding equality function. In the case of F and G,  this recursive 

function is parameterized by equality tests for 'a, 'b, 'd and a "dummy parameter" for 'c.  In 

fact, the equality test for ' c  will be never be invoked in an equality test for a type built with F or 

G because it is not used to compute equality on ' c r e f .  

In Section 5 we show that by avoiding void the abstract interpretation can be simplified, and 

equality k inds  are introduced as succinct chara.cterizations of the interpretation of type constructors. 

In practice, normal type constructor definitions are indeed "void-avoiding". 

We conclude by discussing future research directions, particularly the interaction of equality 

typ es and ML modules, and the impact of equality types on implementations of ML. 

2 Interpretations of Types 

For the purposes of this paper, we shall assume that the expressions of the type algebra in ML are 

given by the following grammar: 

t ::= void 1 unit I t * t ( t + t I t -+ t I ref t I Fi(t1,. . . ,t,;) ( i  = 1,. . . m) 
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where the type constructors Fl , . . . F, are all the user-defined datatypes. Associated with the 

user-defined type constructors there is a system of equations 

which any interpretation should treat as one large mutual recursion. For example, the recursive 

definition from the previous section would use the following operators: 

We shall refer to the non-recursive type constructors, namely void, uni t ,  *, +, +, and ref, as 

basic constructors. In the above recursive equations, the functions Fi are second-order A-expressions 

over our type algebra., containing no free occurrences of the symbols Fl, . . . , F,. That is, the bodies 

of the functions are composed only of first-order and second-order bound variables and basic 

constructors. 

In this section we wish to define two interpretations of these type expressions, one domain- 

theoretic and the other an abstract interpretation. In order to do so, it will be beneficial in both 

cases t o  have associa.ted with each of our recursive constructors, Fl, . . . , F,, a sequence of functions 

which are first-order A-expressions over our basic type algebra whose bodies are composed only of 

first-order variables and basic constructors. Under each of the interpretations these functions will 

provide finite approximates to  the recursive constructors. These functions are given by the following 

recursive definition: 

F ~ ( Q ~ ,  . . . , an,) = void 
j+l F; ( C Y ~ , . . . , ~ ~ , )  = Fi(F{,...,~i)(a1,...7an~). 

With these we are now in a position to  describe our two interpretations. 

We now sketch the standard fixed-point semantics of ML's types. To do this we must briefly 

introduce some domain-theoretic terminology. A somewhat fuller discussion of domain theory can 

be found in several sources (see [GS90] and the references there). A subset M C D of a poset D 
is directed if, for every finite set u M, there is an upper bound x E M for u. D is a complete 
pa$rtial order (cpo) if every directed subset A4 C D has a least upper bound V M and there is a 

least element ID in D. To interpret ML's types, we need a collection of operators on cpo's. 
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Given cpo's D and El we define the coalesced sum D $ E to be the set 

where D - { I D )  and E - { I  are the sets D and E with their respective bottom elements removed 

and I D ~ E  is a new element which is not a pair. It is ordered by taking I D ~ E  5 z for all z E D $ E 

and taking (x, m) 5 (y, n)  if and only if m = n and x 5 y. 

Given a cpo D, we define the lift of D to be the poset obtained by adding a new bottom to 

D. More precisely, the set DL = (D x ( 0 ) )  U { I ) ,  where I  is a new element which is not a pair, 

together with a partial ordering 5 which is given by stipulating that (x, 0 )  5 (y, 0) whenever x 5 y 

and I  < z for every z E DL. 
For cpo's D and E, the smash product D @ E is the set 

where I D ~ E  is some new element which is not a pair. The ordering on pairs is coordinatewise and 

we stipulate that IDgE < z for every z E D @ E. 
The two point lattice 1 is a unit for the smash product: D @ 1 S 1 @ D E D. The one point 

lattice 0 is a unit for the coalesced sum, D $ 0  2 0 $ D E D, and an eliminator for the smash 

product, D @ 0 % 0 @I D 2 0. -4 cpo is said to be void if it is isomorphic to  0.  A cpo D is said to 

be flat if it is not void and any two distinct elements of D are comparable only when one of them 

is I .  Up to isomorphism, there is a unique countably infinite flat cpo which we denote NL. The 

domain B of booleans is the flat domain with three distinct elements true,false,I. The equality 

function =D on a flat domain D is a mapping from D @ D into B such that 

r =D (x, y) is true when x = y # I  

=D (x, y) is false when x,y # I and x # y 

r =D (x, y) is I when x or y is I .  

A monotone function between two cpo's is continuous if it preserves least upper bounds of 

directed collections. A function between cpo's is strict if it takes I to I .  Given two cpo's D and 

E, the space of all strict continuous functions between D and E ,  denoted by D c-+ E, is again a 

cpo under the point-wise ordering. 

For an ML type expression t ,  let i be the standard domain-theoretic interpretation of t. This 

definition can be given inductively as follows. First of all, we define void = 0 and unit = 1. The 

interpretations of the basic constructors are defined on domains D and E as follows: 
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ref D = N1 if D # 0 

The interpretation of recursive types can be given as described in [SP82] using colimits. These 

methods also apply to  provide a semantics for the recursively defined type constructors provided 

by ML. For example, an ML definition of lists such as 

datatype ' a  list = Cons of ' a  * ' a  l i s t  I N i l  

is a recursive definition of a constructor l i s t .  At the domain-theoretic level, this is a recursive 

definition of a functor. The solution is obtained as a colimit of a sequence of functors, where the 

colimit is obtained in a category of functors and natural transformations. To prove that  the equality 

functions we define later as ML programs are indeed the ones we expect, i t  is essential for us to  

know something about the exact mathematical operator which we obtain as the solution of this 

equation. 

Fortunately, it is not necessary to  work in a functor category in order to do this. Instead, we 

can employ a technique of Scott which uses a universal domain. The first use of the idea appears 

in [Sco76] using what one might call a "closure-universay domain, but we will employ a related 

technique introduced in [Sco82b, Sco82aI using a "projection-universal" domain. Both techniques 

are described and illustrated in [GS90]. For the purposes of the remainder of this paper, a domain 

is a bounded complete algebraic cpo (these are sometimes called "Scott domains"). It will not 

be necessary for us to  define these structures here since we will simply rely on properties of their 

universal domain. The universal domain technique can be summarized as follows. Given a domain 

D ,  let us say that  a subset E is a subdomain of D and write E a D if E forms a domain under 

the ordering inherited from D and there is a projection from D onto E, i.e. there is is a mapping 

p : D -, E such that p o p = p and p(x) _< x for each x E D. Roughly speaking, a universal 

domain is a domain U which has a copy of every other domain D as a subdomain, i.e. D a U up to  

isomorphism. Moreover, the set of all subdomains of U again forms a domain, and hence there is a 

special subdomain T a U ,  called the type of types, which is isomorphic to the domain of subdomains 

of U .  More specifically, there is a bijection r between T and the domain of subdoinains of U such 

that  D a E iff r ( D )  5 r ( E )  for any pair of subdomains D,  E a U .  In the remainder of the paper we 

will make no distinction between a domain D (which is to  be viewed as a subdomain of U )  and its 

image in T under r. 

The existence of a universal domain allows us to  interpret operators on types as continuous 

functions on the domain T. For example, the function space operator i can be viewed as a 

continuous function from T x T into T. Hence, a fixed point specification such as the one given for 

l is t  above can be solved as a fixed point equation over a cpo without the need t o  introduce functor 
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void 

Figure 1: The Equality Properties Lattice E. 

categories, etc. explicitly (see Theorem 7.10 of [GSgO]). Therefore, if Dl,  . . . , Dn, are domains, 

then we can define " .  
& ( ~ 1 7  - - .  J n i )  = V ( F ; ~ ( D I , .  ,Dn,)) 

where the least upper bound is being taken in T and the isomorphism between domains and elements 

of T is being taken for granted. 

Another useful perspective that we are able to obtain by working in a universal domains is a 

simple way to  compare functions between domains. If we are given a continuous function f : D + E 
between subdomains D and E, then we may view this as a continuous function f' : U + U where 

f 1 ( x )  = f (y(x)) where p is the projection onto D. In particular, if D a D' are flat subdomains, then 

their equality fu~lctions are related = D ~ = ~ I  (where we are suppressing the distinction between the 

equality functions on the domains and their extensions to all of U). One further note which will be 

important to  our discussion later is that when we have a chain of flat domains Do 4 Dl 4 . . ., then 

their limit in T corresponds to  their union Ui Di as subdomains of U .  In particular, the limit of 

their equality functions is the equality function on their limit (the union of the D;'s). 

2.2 An Abstract Interpretation 

Next we wish to describe an abstract interpretation function mapping closed ML type expressions 

into the three point lattice E pictured in Figure 1. To do so, we will define the interpretation on 

the constructors and extend by structural induction to  closed type expressions. For any vl, vz E f, 

we have: 

a void = void 

a unit = eq 

a If either vl = void or v2 = void then vl i v;! = void, if vl = vz = eq then vl i vz = eq and 

otherwise vl G vz = type 
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a If vl = void or v2 = void, then vl i v2 = eq, and otherwise vl v2 = type 

a r;?f void = void and if v # void then ref v = eq. 

Notice that each of the the basic constructors is interpreted as a monotone function over the n-ary 

product (n  = 0 , 1 , 2 )  of & with itself. 

Having defined our interpretation for the basic constructors, by structural induction we have 

the interpretations f i  for the functions ~ b i n c e  they are composed only of basic constructors. 

Using these, we define the interpretations of the recursive constructors by 

By structural induction, we can in fact extend our interpretation function to  the second-order 

functions Fi. Since these are also composed only of basic constructors (and first- and second-order 

bound variables), and since all the basic constructors are interpreted as monotone functions, the 

interpretation of Fi will itself be a function which is monotone in both its first-order and second- 

order arguments. 

Lemma 1 For all i ,  j ,  we have F! 5 Moreover, there exists a k such that for all i ,  F/ = 

F;+l, and hence for all i, Pi = F/. 

Proof. For the first part, the proof is by induction on j. Suppose vl, . . . , vni E &. For the base 

step, F?(vl,. . . , vni) = void 5 F;(V*, . . . ,vn,). For the inductive step suppose that for all i 

Then, by applying 3;, for each i ,  since .fi is monotonic, we have 

and hence ,. ' ^j+l  
F:(uI,. . run,) < F; ( ~ 1 ,  - - .  ,vn,). 

For the second part, since the set of functions mapping En' into & is finite and the $j's form 

an increasing sequence, it is immediate that there exists a k such that for all i we have F! = tk+'. 
By the definition of the Fj's, for all j > k we therefore have @/ = @ .  Again since the F?'S form 

.. ' 
an increasing sequence, we have that F; = mazj{F;} = &Ic. I 

Notice that the previous lemma tells us that the computation of the R ' s  is a finite process. 
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3 Relating Interpret at ions 

The purpose of this section is to demonstrate that, for any type expression t ,  the standard inter- 

pretation i is flat if and only if = eq. This describes the soundness and completeness property 

of our interpretation. Because of the presence of recursive definitions and the constant type void 

itself, it is necessary to  deal with the possibility that there are type expressions t such that every 

program of type t is divergent. Evidently, it is possible to define a type directly in terms of itself: 

datatype money = Invest  of money 

No programs of this type converge. But this could happen more subtly in a mutually recursive 

definition: 

datatype chicken = Hatch of egg 

1 egg = Lay of chicken 

(After all, which comes first?) The following definition and lemma show how such types are 

a,bstractly interpreted as void. 

Definition 2 A closed type expression t has property V provided that t^ = void iff i = 0 .  

Lemma 3 1. The types void and unit both have property V 

2. If the types t l  and t 2  both have property V ,  then so do t l  + t2 and t l  * t2. 

3. For all types t l  and t 2 ,  the type t l  -+ t 2  has property V .  

4.  If a type t ha,s property V then so does ref t .  

5. If types t l ,  . . . , t,, have property V ,  then so does Fi(tl , .  . . , tni)  

Proof. 1 )  The type void has property V since void = void and v6id = 0 .  The type unit has 

property V since &it = eq # void and unit = 1 # 0. 

2 )  Suppose t l  and ta both have property V .  Then 

& $ f2 = void u both 6 = void and & = void 

u both fi = 0 and f2 = 0 

u t ; + f 2 = 0 .  

Therefore, tl + t 2  has property V .  Also, 

fl G f2 = void # either & = void or & = void 

u either 6 = 0 or i2 = 0 

u t ; t f 2 = 0 .  
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Therefore, t l  t t2 has property V. 
3) For all types t l  and t2 ,  the domain fi i f2 = (6 o+ f2)1 always has at least two elements, 

namely I and Xx.1, and hence is not 0. Moreover, by the definition of i , & i f2 is never equal 

to  void. Therefore, tl -+ tz  always has property V. 
4) Suppose that  the type t has property V. Then 

ref t^ = void u t^ = void 

u t = o  
u ref i = o 

Therefore, ref t has property V. 

As a result of parts 1 through 4 of the lemma, we have by structural induction that  any type 

operator that  is composed solely of basic constructors preserves property V. 
5) Let t l ,  . . . , t,, be a collection of types having property V. By the previous remark, for each 

j ,  the type F/( t l ,  . . . ,t,,) has property V. Therefore 

~ i ( & ,  . . . , t i , )  = void u F;(_(il, . . . , t,i) = void, for all j 

where the least upper bound is taken in T, the type of types. Therefore, Fi ( t l , .  . . , t n i )  has property 

v. I 

Corollary 4 For all closed ML type expressions t ,  we have that t^ = void iff i = 0. 

Proof. By structural induction and the previous lemma,, all closed type expressions in ML have 

property V. I 

Our primary interest is not in types which are void, but in those which are equality types. We 

may now characterize the types having eq as their abstract interpretation as exactly those with a 

flat standard interpretation. 

Definition 5 A closed type expression t has property S C  (for "sound and complete") provided 

that t  ̂ = eq iff i is flat. I 

Lemma 6 1. The types void and unit both have property S C .  

2. If the types t l  and t2 both have property SC,  then so do t l  + t2 and t l  * t2 .  
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3. For all types tl and t 2 ,  the type tl i t 2  has property SC 

4.  For all types t ,  the type ref t has property SC. 

5.  If types t l ,  . . . , t,, have property SC, then so does Fi(tl,.  . . , t,,). 

Proof. 1 )  Since vdid # eq and void is not flat, void has property SC. Since &it = eq and unit 
is flat, unit also has property SC. 

2) Suppose that both types t l  and t2  have property SC. Then 

t; 4 i2 = eq 

u ea,ch of fi and i$ is either void or eq, and a,t least one of them is eq 

u each of 6 and f2 is either void or flat (by Corollary 3 and property SC), and at least one 

is not void 

u t; 4 f 2 i s f l a t .  

Therefore, t l  + t2  has property SC. Also, 

& ; i2 = eq 

u both & and & are eq 

u both & and f2 are flat 

u & i i2 is flat, 

and hence, tl  * t 2  has property SC. 

3) For any types tl and t2, we have that 

t̂ , A t̂ , = eq u fl = void or il = void 

u 6 = 0 or & = 0 (by Corollary 3) 

e & 2 f2 = 1, which is flat. 

Therefore, tl + t2 has property SC 

4) Given any type t ,  we have 

ref t* # eq + t* = void 

u t = 0 (by Corollary 3) 

ref t = o 
u ref t is not flat. 

Therefore, ref t has property SC. 
As before, by 1 through 4 of this lemma, we know by structural induction that any type operator 

that is composed solely of basic constructors preserves property SC. 

5)Let t l ,  . . . , t,, be a collection of types having property SC. By the previous remark we have 

that ~ ! ( t l , .  . . , tn , )  has property SC, for each j .  Thus 
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.. .. 
F;(tl,.  . . , t i i )  = eq 

there exists a k such that ~ ! ( t ^ ~ , .  . . , t i i )  = void for all j < k, and ~ ! ( t ^ ~ ,  . . . , t i , )  = eq for all 

j > k (by Lemma 1). - .  
# there exists a k such that F!(&, . . . , t i i )  = 0 for all j < k,  and F!(il,. . . , t i , )  is (non-void) 

flat for all j 2 k 

~ i ( & , .  . . , t i , )  is flat, being the least upper bound of a chain of flat domains. 

Therefore, Fi(t l , .  . . , t,,) has property S C .  I 

Corollary 7 (Soundness and Completeness) For a26 closed ML type expressions t ,  we have that i 
is flat i#t^ = eq. 

Proof. By structural induction and the previous lemma, all closed type expressions in ML have 

property S C .  I 

4 Equality Functions 

Having derived an abstract interpretation for equality types, we now have a theory that tells us 

when we should expect to find an equality function on a type. However, there is no a priori reason 

to  believe that this function is definable in ML or that we can provide a way to uniformly produce a 

program for computing the function from the structure of the type. However, it is not at all difficult 

to see that we can do this for the basic operators. For example, to get the equality function on a 

product s * t, given equality functions f and g on s and t respectively, one just uses the given 

equality functions to compute the equality on the respective coordinates of the product: 

fun eqtimes ( f , g )  ( ( x , y ) ,  ( x ' , y ' ) )  

= f ( x , x J )  andalso g (y ,y ' )  

The sum is similar; the given equality functions should be used in their respective components: 

fun eqsum ( f , g )  ( i n 1  x ,  i n 1  y) = f ( x , y )  

I eqsum (f ,g )  ( i n r  x ,  i n r  y) = g(x,y)  

I eqsum (f ,g) - = f a l s e  

where the sum type is represented by the following concrete type operator: 

datatype ( ' a , ' b )  sum = i n 1  of ' a  I i n r  of 'b ;  

What should be done for the arrow types? These are never equality types except when the 

domain or codomain of the type is void. In this case, the interpretation of the type has two 
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elements; one of these represents the undefined program a t  the type and the other represents 

"delayed divergence". Hence, if two arguments to an equality test for such a type both converge, 

then they are equal. Noting the call-by-value evaluation of ML programs, we may therefore take 

the following definition: 

fun eqarrow ( f , g )  = f n  (x,y) => t r u e  

Note that  the equality function parameters f  and g  are not used. That  this is the "correct" equality 

function 011 arrow types presupposes that  it will only be used in the case where the arrow type is 

flat. 

Equality on reference types must be computed by a primitive function which determines identity 

of memory locations. 

How is the equality function on recursive types computed? Recursively, of course! For example, 

consider the definition of the operator l i s t :  

datatype ' a  l is t  = Cons of ' a  * ' a  l i s t  1 N i l  

given earlier. To calculate equality on ' ' a  l is t ,  given an equality function aeq for "a, the 

coilstructors which build the list must be recursively unwound: 

fun e q l i s t  aeq (Cons (x , l )  , Cons (y , m)) 

= (aeq (x ,y) )  andalso ( e q l i s t  aeq (1,  m)) 

I e q l i s t  aeq (Ni l ,  Nil)  = t r u e  

I e q l i s t  - - = f a l s e  

Now we give the formal definitions of the equality interpretation of types. Given a type t ,  we - 
define the equality function 7 by induction on the structure of t .  First, the equality function on 

products is given by 

true if x = ( x l ,  22) and y = (yl, 92) 

and f ( ~ 1 , Y l )  = Y ( x ~ , Y ~ )  = true 

(f 7 g)(x, y) = false if x = (xl ,x2) and y = (yl, y2) 

and f (x l ,  yl) = false or g = (22, y2)false 

I otherwise 

and on sums by 

( f (XI, yl) if x = (xl,O) and y = (y', 0) 

g(xf, y') if x = (x', 1) and y = (g', 1) 
(f T s > ( x ,  Y) = 

false if x = (x', i )  and g = (y', j )  and i # j 
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A we saw with the definition of eqarrow the interpretation for the function spaces is essentially 

trivial 
true if x # I and y # I 

(f =? 9)(x, Y) = 
otherwise. 

The interpretation for unit is similar: 

- true if x # I and y # I 
(.nit)(., y) = 

1 otherwise. 

- - 
void is the constant function to  I. ref ( f )  is the equality function on N I .  

The equality fuizction for the recursive type operators is the limit of the equality functions 

associated with their finite approximates: 

- 
Theorem 8 For any type expression t ,  if t^ = eq, then 7 is the equality function on i. 

Proof. The proof is by an induction on the structure of t .  The cases involving the primitive 

operators are straightforward. For the recursive type constructors Fi, note first that ~ i ( i 1 ,  . . . , in , )  - - 
is flat if ~ : ( 3 ' ( t ^ ~ ,  . . . , in,)  = eq by Corollary 7. If F: is the equality function on 

for each j then is a limit of equality functions on domains D j .  Since these domains are all flat 

their limit is simply their union U j  D j  and the limit of the equality functions on the parts is the - 
equality function on the whole. Hence is the equality function on Fi(il, . . . ,in,). I 

The reader may now be curious why we have restricted ourselves to types with flat interpreta- 

tions for those having an equality property. Could there be other types on which equality could be 

defined? Our domain-theoretic semantics offers some guidance on this point. Let us generalize our 

earlier defiilitioil of aa  equality fu~lctioll =D by relaxing the requirelllent that D is flat. It is clear 

that there is a program denoting the equality function for the domain 0 that interprets v o i d .  But 

let us consider the simplest non-flat, non-trivial domain. This domain has three elements; indeed it 

is isomorphic to I, but to avoid confusing matters, let us name its elements by I < x < y. This is 

the interpretation of the type unit + unit. Following the standard denotational interpretation of 

ML terms, the equality function on this type cannot be defined in ML because the equality function 

on this three point domain is not monotone. Indeed, no domain with a three element chain could 

have an ML-defina.ble equality function for this reason. another standpoint, a computable equal- 

ity on this would provide a solution to the halting problem! We may conclude that our abstract 

interpretation describes all and exactly the ML types on which a definable equality exists. 
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Figure 2: The Equality Kinds Lattice 0. 

5 Calculating Equality Kinds 

There is a problem with the abstract interpretation of types given in the previous sections. We 

cannot say of a type constructor that the type it yields will admit equality if and only if certain 

of its arguments admit equality. The difficulty is with the combination of the function space type 

constructor and void types. The type unit + void admits equality and the type void + unit 
admits equality, but unit + unit does not ad~ni t  equality. There is a lack of independence 

between the two arguments to + when determining whether their resultant type admits equality. 

This example also shows why it was necessary for us to introduce void as a separate element of the 

equality properties lattice, t'. If we were to interpret vaid as eq, then what would be the correct 

value of eq G eq? If we choose it to be eq, then we lose soundness, and if we choose it to  be type, 

then we lose completeness. It is too naive to try to solve these problems by saying that "there are 

no elements of type void, so there is no reason to have it." Firstly, void may be a subexpression 

of a nonvoid type, such as void + unit. More importantly, we can only understand the recursive 

types by successive approximations, starting with the void type. Still, there is a useful, sensible 

theory that we ca.n cull out based on the idea, of banning void. 

To begin with let us focus attention on the sublattice 0 of t' consisting of the points {eq, type) 

as picture in Figure 2. In this section, we will develop another abstract interpretation of ML 

types, using 0 instead oft ' .  This new interpretation has a succinct representation, which is readily 

computed from the types and type constructors. Moreover, if our recursive type constructors satisfy 

a reasonable void-avoiding property, when we restrict to the subalgebra of types not involving void, 
the two abstract interpretations turn out to be the same. Therefore, on this subalgebra, this new 

abstract interpretation will also turn out to be sound and complete. 

As before, the definition of the abstract interpretation over 0 is given by first defining it on 

the constructors, and then extending it to closed type expressions by structural induction. The 

definition for the constructors is as follows: 
- 

void = eq; 
- 

unit = eq; 



Carl A .  Gunter, Elsa L. Gunter and David B. MacQueen 

for all vl, vz E O we have vl G v2 = type; 

for all v E O we have ref v = eq; and 

- .  
E.(vl, . . . , vni ) = max{F~(vl,  . . . , v,)}. 

3 

Lemma 9 For a11 i ,  j ,  we have Fj 5 pi+'. Moreover, there exists a k such that for all i, F;'" = 

F)+', and hence, pi = F:. 

Proof. The proof is the same as for Lemma 1. I 

Lemma 10 Given any n-ary type operator G over our type algebra, either for all (vl,. . . , v,) E On 
- 

we have G(vl, . . . ,v,) = type, or there exists a point (z l , .  . . ,z,) such that G(vl, . . . , v,) = eq ifl 

vi 5 zi, i = 1,. . . , 72. 

Proof. The proof is by structural induction on the body of G. The result follows immediately for 

the basic constructors. Therefore, by structural induction, we have the result for type operators 

composed solely of the basic operators. In particular, we have the result for the operators F:. But 

then, the result for the recursive constructors follows immediately from the previous lemma, since 

for some k, 2i = 2:. I 

Definition 11 Given any n-ary type operator G over our type algebra, if for all (vl, . . . , v,) E On 

we have ~ ( q , .  . . , v,)  = type, then the equality kind of G is 0, and we say that G does not admit 

equality. Otherwise, the equality kind of G is the point (zl , .  . . , z,) such that G ( V ~ ,  . . . , v,) = eq iff 

v; 5 z; for all i = 1, ..., n. I 

In particular, if t is a closed (nullary) type expression, then either it does not admit equality, 

and therefore has equality kind 0, or it does admit equality and has equality kind (). 
The equality kinds for the basic constructors is as follows: 

The equality kind of void is (). 

The equality kind of unit is (). 

The equality kind of both + and * is (eq,eq). 

The equality kind of + is 0. 

The equality kind of ref is type. 
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Notice that for n-ary type operators F and G that admit equality, we have that F 5 G iff 

(wl,. . . , w,) 2 (zl , .  . . ,zn) where (wl,. . . ,wn) is the equality kind of F and (21,. . . , zn)  is the 

equality kind of G. 

With these definitions it is possible to describe how to calculate the equality kind of a recursive 

type constructor. One simply carries out the iterations of the fixed point. By Lemma 9, this 

will terminate. The number of iterations required is bounded by the number of parameters in the 

type recursion, so the algorithm is quite efficient. This calculation will miss some types for which 

equality is definable, but only in cases that are uninteresting in practice. To state a crisp theorem, 

we must formulate a notion of "void avoidance". To do this, we now restrict our attention to that 

subalgebra of type expressions over basic constructors uni t ,  +, *, +, and ref, and the recursive 

operators, provided that the associated recursive equations are over just these basic constructors. 

Definition 1 2  A set of recursive type constructors Fl, . . . , F, is void avoiding provided that the 

second-order recursive operators .Fi giving the recursive equations associated with them involve 

only the basic constructors uni t ,  +, *, +, and ref, and whenever the constructor Fi is applied 

to argument types t l  . . . , t n l ,  each of which has a non-void domain-theoretic interpretation, the 

resulting type has a domain-theoretic interpretation which is non-void, i.e. ~ ~ ( ( 1 ,  . . . , t,,) # 0. a 

Lemma 13 Suppose that the set of recursive type operators F l ,  . . . , F, are void-avoiding. Then, 

for every closed type expression t not containing void as a subexpression, we have that t^ = i. 

Proof. First notice that any closed type expression in this subalgebra will have an interpretation 

under - of either eq or type. Therefore, we may view the abstract interpretation under -- of any 

n-ary type operator as a function from On into 13. To prove the lemma, it suffices to  show that 

given any n-ary type operator G,  the function G, when restricted to On  is the same as the function 

G. By structural induction, in fact it suffices to  show this for the basic constructors (excluding 

void) and for the recursive constructors. The result follows immediately from the definitions of - 
and N for the basic constructors uni t ,  +, *, +, and ref. 

Since the second-order operators .Fi are composed solely of basic constructors, by structural 

induction we have that & = y i .  Also, since G 5 G for every basic constructor G, we have that for 

each of the finite approximates @ 5 @. By Lemma 1, there exists a k such that 

and & = F!. Therefore, tlze operators Ff form a fixed point of the system A,.  . . ,ym. However, 

by their construction the functions pi, i = 1 , .  . . ,m form the least fix point of the operators Fi. 
Since F; = F! 5 F: < pi, we must have that pi = pi. I 
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Corollary 14 (Soundness and Completeness) Suppose that the set of recursive type operators Fll  

. . . , F, are void-avoiding. Let G be a type operator defined in terms of the basic constructors unit, 

+, * ,  - and ref and the recursive constructors. Then G admits equality ifl the equality kind of G 

is not 0. Moreover, if G admits equality with equality kind (zl, . . . , z,), then for any types t l ,  . . . t ,  

which do not contain void as a subexpwssion, ~ ( i ~ ,  . . . , in) is fiat iff ii < z; for all i = 1, .  . . , n. 

6 Conclusions and Future Work 

We have provided a sound and complete semantic analysis of the equality property for ML types 

and demonstrated an efficient algorithm for carrying out the inference of equality properties for 

void-avoiding systems of user-defined types. Our results are based on theorems that  relate the 

standard denotational semantics of type constructors to  an abstract interpretation that  describes 

the equality kind of the operator. 

Our algorithm expands the number of types that will be judged t o  admit equality. In existing 

compilers, the new types admitted under our scheme can be handled in exactly the same way as the 

ones currently accepted, so no new approach t o  the implementation is implied. The specification of 

equality in Section 4 can be viewed as a specification of equality functions on ML types rather than 

a prescription for how the equality functions must be implemented. (Although our specification is, 

arguably, the most natural approach t o  the implementation.) 

The motivation for this work was to  provide a nlore accurate version of the notion of equality 

types in Standard ML. Introducing the refined notion of equality kinds into Standard ML itself 

raises the question of how they would be integrated with the module system. 

The easiest problem is specifying the equality kinds of type constructors in signatures. The 

current language definition provides a simple type specification 

type ( ' a , ' b )  F 

that  does not constrain the equality kind of F at all, and the equality type specification 

eqtype ( ' a , ' b )  F 

that specifies that  F has equality kind with succinct representation (eq,eq). To specify that  F has 

the equality kind (eq, type) we might use the following notation: 

type F :  ( e q , t y )  => eq 

A more complex interaction with modules involves the effect of sharing constraints in signa- 

tures. If two type constructor specifications are identified as a consequence of sharing constraints, 

it seems clear that  they should have the same equality kind. This brings up the issue of compati- 

bility of equality kind specifications and the problem of determining the resultant kind when two 

specifications share. 
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A third problem is how equality kinds are affected by functor applications. The definition of a 

type constructor in the body of a functor may depend on type constructors in the functor parameter 

with unspecified equality kinds, making it impossible to  completely infer the equality kind of 

the defined constructor. When the functor is applied, the actual parameter supplies additional 

information that  should be taken into account to  recalculate the equality kind of the defined type 

constructor. This suggests partial and incremental calculation of equality kind information may be 

required. 

These problems of integrating equality kinds with the module system are the subject of con- 

tinuing research, with the experience with the current Standard ML treatment of equality kinds 

providing a, starting point. 

I t  is our belief that  there are broader issues relating t o  equality types that involve other proper- 

ties and operators which are defined uniformly from the structure of types. One might refer t o  this 

a.s structural polymorphism. It has conie up in other contexts such as the study of subtyping and 

coercions between recursive types. For instance, [BGS89] describes how coercions between such 

types are generated from the type definitions in a manner very similar to  the one used in Section 

4 of this paper for the equality relations. Whether there is any general theory that  connects these 

apparently similar phenomenon remains to  be seen. 
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