
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

August 1993 

A Lower Bound Result for the Common Element Problem and Its A Lower Bound Result for the Common Element Problem and Its 

Implication for Reflexive Reasoning Implication for Reflexive Reasoning 

Paul Dietz 
University of Rochester 

Danny Krizanc 
Carleton University 

Sanguthevar Rajasekaran 
University of Pennsylvania 

Lokendra Shastri 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Paul Dietz, Danny Krizanc, Sanguthevar Rajasekaran, and Lokendra Shastri, "A Lower Bound Result for the 
Common Element Problem and Its Implication for Reflexive Reasoning", . August 1993. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-73. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/509 
For more information, please contact repository@pobox.upenn.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/509
mailto:repository@pobox.upenn.edu


A Lower Bound Result for the Common Element Problem and Its Implication for A Lower Bound Result for the Common Element Problem and Its Implication for 
Reflexive Reasoning Reflexive Reasoning 

Abstract Abstract 
In this paper we prove a lower bound of Ω(n log n) for the common element problem on two sets of size n 
each. Two interesting consequences of this lower bound are also discussed. In particular, we show that 
linear space neural network models that admit unbalanced rules cannot draw all inferences in time 
independent of the knowledge base size. We also show that the join operation in data base applications 
needs Ω(log n) time given only n processors. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-73. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/509 

https://repository.upenn.edu/cis_reports/509


A Lower Bound Result for The Common Element 
Problem 

and Its  IMplication for Reflexive Reasoning 

MS-CIS-93-73 
G R A S P  LAB 356 

Paul  Dietz 
Danny Krizanc 

Sanguthevar Rajasekaran 
Loke11di-a Shastri  

August 1993 



A Lower Bound Result for the Common Element Problem 

and its Implication for Reflexive Reasoning 

Paul  Dietz Danny ~ r i z a n c * ,  Sanguthevar Rajasekaran3, and  Lokendra Shastri3 

Abstract In this paper we prove a lower bound of R(n log n)  for the common 

element problem on two sets of size n each. Two interesting consequences of this 

lower bound are also discussed. In particular, we show that linear space neural 

network models that admit unbalanced rules cannot draw all inferences in time 

independent of the knowledge base size. We also show that the join operation in 

data base applications needs R(1og n) time given only n processors. 

1 Introduction 

In [Shastri & Ajjanagadde 19931 it is argued that there must exist a cognitively significant 

class of reasoning that can be processed using neural networks whose size is only linear in 

III'BI, the size of the knowledge-base, and in time that is only proportional to the length 

of the derivation and independent of II<BI. Reasoning that can be carried out within these 

space-time constraints has been referred to as reflexive reasoning [Shastri 19911 .4 

The motivation for focusing on reflexive reasoning stems from cognitive as well as biologi- 

cal considerations. The linear space constraint arises from the relation between the expected 

size of a common sense KB and the number of neurons available for encoding such a KB. 
The time constraint is motivated by the observation that the speed at which we perform 

common sense reasoning (say, during language understanding) does not slow down as the 

size of the KB grows significantly. 

A detailed characterization of reflexive reasoning requires an answer to the following 

question: 'What are the formal constraints on the derivations computable by linear sized 

neural networks in time independent of the network size?' A partial answer to this ques- 

tion was provided by sHRUTI  - a neurally motivated model of reflexive reasoning described 

'Dept. of CS, Univ. of Rochester 

"chool of CS. Carleton Univ. 

3Dept. of CIS, Univ. of Pennsylvania 
4The label is intended to  underscore the fact that such reasoning occurs spontaneously, effortlessly and 

without conscious effort - as it were a reflexive response of the cognitive agent. 



in [Ajjanagadde & Shastri 19931; [Shastri & Ajjanagadde 19931; [Mani & Shastri 19921. In 

particular, work on SHRUTI prompted the conjecture that when reasoning via backward 

chaining, any reflexive reasoning system must restrict itself to balanced rules (see Section 

3.2) and lead to the identification of a class of queries that can be answered in a reflexive 

manner [Shastri 19931. 
In this paper we prove a lower bound result for the common-element problem. This result 

establishes a lower bound of R(1og n) on the time required for deriving inferences involving 

unbalanced rules, and hence, provides a formal proof of the above conjecture. We also apply 

the lower bound to show that a similar result also holds for the JOIN operation in relational 

data bases. 

Section 2 states and proves the lower bound result for the common-element problem. 

Section 3 provides a brief overview of sHRUTI and relate the lower bound result to the 

problem of reflexive reasoning with unbalanced rules. Section 4 relates the result to the 

JOIN operation. 

2 The Lower Bound 

The Common Element Problem (CEP): Given two sets S1 and S2 where ISl I = IS2] = n, 

decide if the two sets are disjoint. 

Lemma 2.1 Any comparison based algorithm for CEP takes a(n1ogn) time on the com- 

parison tree model. 

Proof, We'll reduce the problem of sorting to CEP. 
Let Ii' = kl, k2,.  . . , k, be any sequence of n numbers that we want to sort. Let X = 

xl ,  x2 , .  . . , x, be the sorted order of the sequence K. We construct an instance of CEP as fol- 

lows: Take S1 to be = {(kl, O), (kz, 0), . . . , (k,, 0)) and S2 to be = {(El ,  I ) ,  (k2, I ) ,  . . . , (k,, 1)). 

We'll show that any algorithm for CEP would have to compare xi with x;+1, for each 

i, 1 < i < (n - 1). Realize that this will imply the stated lemma on the comparison tree 

model (since these comparisons will yield the sorted order and sorting takes R(n log n)  time 

in the worst case). 

Our claim is that any algorithm for CEP on these two sets S1 and S2 should have decided 

the relative ordering between the elements (xi, 1) and (xi+l7 0) for each i, 1 < i 5 n. If not, 

we could replace (xi,  1) in Sz with (xi+17 0) and force the algorithm to output an incorrect 



answer. Realize that replacing (xi, 1) with (xi+], 0) does not in any way affect the orderings 

imposed by other comparisons made by the algorithm. 

Lemma 2.2 Any algorithm for CEP takes R(n log n)  time even on the Random Access Ma- 

chine model. 

Proof. The above algorithm seems to account for only n comparisons (though among the 

right   airs). We now show that if T(n)  is the run time 9f any algorithm for CEP on two 

sets of size n each, then we could sort any set of size n in time O(n + T(n)) .  We'll make use 

of the fact that the algorithm for CEP should have decided the relative ordering between xi 

and x;+l, for each i, 1 5 i 5 n. 

Construct a graph G(V, E) as follows: V = {kl, k2, .  . . , kn) and there is a directed edge 

from k; to kj if the algorithm for CEP has determined that k; < kj (for any 1 5 i, j 5 n). 

This graph is constructible in O(n + T(n))  time. We could obtain the elements of I( in 

sorted order as follows: Find the smallest element XI  in O(n) time. Find the smallest among 

all the neighbors of X I ;  this will be x2. Find the smallest among all the neighbors of x2; this 

will be 23, and so on. The total time spent is clearly O(n + (VI + [El) = O(n + T ( n ) )  

Note: Realize that CEP can be solved in O(n log n)  time. Also, the above lower bound can 

be circumvented for the following two special cases: 1) If the elements of the sets S1 and S2 
are integers of at  most a polynomial magnitude, we could sort the two sets in linear time 

and hence could solve CEP in linear time as well; 2) If the two sets are not of nearly the 

same size, the lower bound may not hold; for instance if one of the sets is of constant size, 

CEP can be solved in linear time. If ISl[ 2 JSzl, we believe that fl(JSll log /Szl) is a lower 

bound for CEP. Clearly, CEP can be solved in time O(ISl 1 log IS2/). 

3 SHRUTI - a model for reflexive reasoning 

SHRUTI is a neural network model that can encode a class of rules and facts (see below) using 

only a linear number of nodes in IICBJ and answer a class of queries in time proportional to 

the depth of the shortest derivation of the query. 
Rules encoded by SHRUTI have the following form:5 

5 ~ ~ ~ ~ ~ 1  can also deal with softlevidential rules, but  for the  purpose of this paper we will not  consider 

such rules. 



where the arguments of Pi's are elements of {xl, ... x,}, and an argument of Q is either an 

element of {xl, .. .x,) , an element of {zl , .. . z l} ,  or a constant. 

Facts encoded by SHRUTI are partial or complete instantiations of predicates. Thus facts are 

atomic formulae of the form P ( t l , t  2. . . t l , )  where ti's are ejther constants or distinct existen- 

tially quantified variables. 

Queries have the same form as facts. A query, all of whose arguments are bound to constants 

corresponds to the yes-no query: 'Does the query follow from the rules and facts encoded in 

the KB?' A query with existentially quantified variables, however, has two interpretations. 

For example, the query P (a ,x ) ,  where a is a constant and x is an existentially quantified 

argument, may be viewed as the yes-no query: 'Does P (a ,  x) follow from the rules and facts 

for some value of x?' Alternately this query may be viewed as the wh-query: 'For what 

values of x does P ( a ,  x) follow from the rules and facts in the KB?' 

3.1 An overview of SHRUTI 

The following provides a simple overview of SHRUTI. It illustrates how simple rules and facts 

are encoded in SHRUTI and how a query is posed to and processed by SHRUTI. This example 

does not deal with rules with multiple antecedents and rules containing repeated variables 

or constants in the consequent. A detailed specification of the encoding may be found in 

(SA93).  
The network shown in Fig. l a  encodes the following rules and facts: 

2. Vx, y buy(x,y) + own(x,y) 

5 .  3 ( x )  buy(John,x) 
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Figure 1: (a) .4n example encoding of rules and facts. (b) Activation trace for the query 

can-sell(Mary, Bookl) ?. 

The encoding makes use of two types of nodes: p-btu nodes (depicted as circles) and T-and 

nodes (depicted as pentagons). These nodes have the following idealized behavior: If a p-btu 

node A is connected to another p-btu node B, then the activity of node B synchronizes wit-h 

the activity of node A. In particular, a periodic firing of A leads to a periodic and in-phase 

firing of B. We assume that p-btu nodes can respond in this manner as long as the period 

of firing, T, lies in the interval [T,;,, n,,,]. This interval can be interpreted as defining the 

frequency range over which p-btu nodes can sustain a synchronized response. A T-and node 

behaves like a tevzporal A N D  node, and becomes active on receiving an uninterrupted pulse 

train. On becoming active, a T-and node produces a pulse train similar to the input pulse 

train. A third type of node namely, the r-or node (depicted as a triangle) is also used in 

SHRUTI. A T-or node becomes active on receiving any activation and produces an output. 

pulse train of width and period equal to greater than n,,,. Fig. 2 summarizes the behavior 

of these nodes for the idealized case of oscillatory inputs. 

The encoding also makes use of inhibitory modifiers - links that impinge upon and 

inhibit other links. A pulse propagating along an inhibitory modifier will block a pulse 
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Figure 2: Behavior of the p-btu, r-and and T-or nodes in the reasoning system. 

propagating along the link it impinges upon. In Fig. l a ,  inhibitory modifiers are shown as 

links ending in dark blobs. 

Each entity in the domain is encoded by a p-btu node. An n-ary predicate P is encoded 

by a pair of r-and nodes and n p-btu nodes, one for each of its n arguments. One of the 

r-and nodes is referred to  as the enabler, e:P, and the other as the collector, c:P. In Fig. 

l a ,  enablers point upward while collectors point downward. The enabler e:P becomes active 

whenever the system is being queried about P. On the other hand, the system activates the 

collector c:P of a predicate P whenever the system wants to  assert that the current dynamic 

bindings of the arguments of P follow from the knowledge encoded in the system. 

A rule is encoded by connecting the collector of the antecedent predicate to the collector 

of the consequent predicate, the enabler of the consequent predicate to  the enabler of the 

antecedent predicate, and by connecting the arguments of the consequent predicate to the 

arguments of the antecedent predicate in accordance with the correspondence between these 

arguments specified in the rule. A fact is encoded using a r-and node that receives an input 

from the enabler of the associated predicate. This input is modified by inhibitory modifiers 

from the argument nodes of the associated predicate. If an argument is bound to an entity in 

the fact then t,he modifier from such an argument node is in turn modified by an inhibitory 

modifier from the appropriate entity node. The output of the r-and node is connected to 

the collector of the associated predicate. 



The Inference Process 

Posing a query to the system involves specifying the query predicate and the argument. 

bindings specified in the query. This is done as follows: Choose an arbitrary point. in time- 

say, to-as the point of reference for initiating the query (it is assumed that the system is 

in a quiescent state). The query predicate is specified by activating the enabler of the query 

predicate with a pulse train of width and periodicity 7: starting at time to .  

The argument bindings specified in the query are communicated to  the network as follows: 

Let the argument bindings in the query involve n distinct entities: cl , .. ., c,. With each c,, 

associate a delay 5; such that no two delays are within w of one another and the longest 

delay is less than n - w. As mentioned earlier, w is the width of the window of synchrony 

and 7r is the period of oscillation. Each of these delays may be viewed as a distinct pha.se 

within the period t o  and to + T .  Now the argument bindings of an entity c, are indicated 

to the system by providing an oscillatory spike train of periodicity n starting at to + hi, to 

c, and all arguments to which c, is bound. This is done for each entity c; (1 _< i 5 n)  and 

amounts to representing argument bindings by the in-phase or synchronous activation of the 

appropriate entity and argument nodes. 

We illustrate the reasoning process with the help of an example. Consider the query can- 

sell(Mary,Bookl)? (i.e., 'Can Mary sell Bookl?') This query is posed by providing inputs 

to the entities Mary and Bookl ,  the arguments p-seller, cs-obj and the enabler e:can-sell, 

as shown in Fig. lb .  Mary and p-seller receive in-phase activation and so do Bookl and 

cs-obj. Let us refer to the phase of activation of Mary and Bookl as pl and p2 respectively. 

As a result of these inputs, Mary and p-seller will fire synchronously in phase pl of every 

period of oscillation, while Bookl and cs-obj will fire synchronously in phase p2 of every 

period of oscillation. The node e:can-sell will also oscillate and generate a pulse train of 

periodicity and pulse width T. The activations from the arguments p-seller and cs-obj reach 

the arguments owner and o-obj of the own predicate, and consequently, starting with the 

second period of oscillation, owner and o-0b.j become active in pl and pa, respectively. At. 

the same time, the activation from e:cun-sell activates e:own. The system has essentially, 

created dynamic biildi~igs for the arguments of predicate 0 ~ 7 1 .  Mury has been bound to the 

argument owner, and Bookl has been bound to the argument o-obj. These newly created 

biridings in conjuilction with the activation of e:ofwn can be thought of' as encoding the query 

own(Mary ,  B o o k l )  :1 (i.e., 'Does Mary own Bookl?')! The r-and node associated with the 

fact own(iMary, Bal l l j  does not match the query and remains inactive. The activations 

from owner and o-obj reach the arguments recip and y-obj of yive, and buyer and b - o b  



of buy respectively. Thus beginning with the third period of oscillation, arguments recip 

and buyer become active in p l ,  while arguments y-obj and b-obj become active in p 2 .  In 

essence, the system has created new bindings for the predi~at~es give and buy that can be 

thought of as encoding two new queries: give(x,Mary,Bookl)? (i.e., 'Did someone give Mary 

Bookl?'), and buy(Mary, Bookl)?. Observe that now the T-and node associated with the fact 

give(John,Mary,Bookl)-this is the T-and node labeled F1 in Fig. la-becomes active as a 

result of the unint,errupted activation from e:yive. The inhibitory inputs from recip and g-obj 

are blocked by the in-phase inputs from Mary and Bookl, respectively. The activation from 

this r-and node causes c:give, the collector of give, to  become active. The output from c:gi~~e 

in turn causes c:own to become active and transmit an output to  c:can-sell. Consequently, 

c:can-sell, the collector of the query predicate can-sell, becomes active (refer to  Fig. l b )  

resulting in an affirmative answer to the query can-sell(Mary,Bookl)?. 

Conceptualljr, the proposed encoding of rules creates a directed inferential dependency 

graph: Each predicate argument is represented by a node in this graph and each rule is 

represented by links between nodes denoting the arguments of the antecedent and consequent 

predicates. In terms of this conceptualization, it should be easy to  see that the ev~lut~ion of 

the system's state of activity corresponds to  a parallel breadth-first traversal of the directed 

inferential dependency graph. This means that i) a large number of rules can fire in parallel 

and ii) the time taken to generate a chain of inference is independent of the total number 

of rules and just equals ET where 1 is the length of the chain of inference and 7; is the 

period of ~scillat~ory activity. The example discussed above assumed that each predicate was 

instantiated at most once during the inference process. In the general case: where a predicate 

inax be instantiated several times during an episode of reasoning, the time required for 

propagating bindings from a consequent predicate to  antecedent predicate(s) is proportional 

to  k7;: where k is the number of dynamic instantiations of the antecedent predicate when 

the bindings are being propagated. 

3.2 A characterization of SHRUTI'S inferential power 

A charact,erization of the class of queries that can be processed by a SHRUTI-like system in 

a reflexive manner is given in [Shastri 19931. A description of this class is facilitated by the 

following definitions (from [Shastri 19931): 

Any variable that occurs in multiple argument positions in the antecedent of a rule is a 

p i ~ ~ o t a l  variable. 



A rule is balanced if all pivotal variables occurring in the rule also appear in its consequent. 

For example, the rule Vx, y, z P ( x ,  y )  A R(x,  Z)  +- S(x ,  Z)  is balanced, but the rule 

Vx, y ,  z P ( x , y )  A R(x,  z) + S(y,  z) is not. 

Consider a query Q and a KB consisting of facts and balanced rules. A derivation of Q 
obtained by backward chaining is threaded if all pivotal variables occurring in the derivation 

get bound and their bindings can be traced back to the bindings introduced in Q. 

Given a KB consisting of facts and balanced rules, a reflexive query is one for which there 

exists a threaded proof. 

It  can be shown that the worst-case time for answering a reflexive yes-no query, Q, is 

proportional to  Vl Inlvd,  where: 

V is as follows: Let V ,  be the arity of the predicate P,. Then 11 equals m u x ( K ) ,  i 

ranging over all the predicates occurring in the KB. 

( I n (  is t,he number of distinct constants in Q ( ( I n (  5 V ) .  

d equals the depth of the shallowest derivation of Q given the IiB.G 

Observe that  the worst-case time is i) independent of the size of the ICB, ii) polynomial 

in J In l  and iii) only proportional to  d. 

An answer to  a wh-query can also be computed in time proportional to VJlnlvd,  except 

that / I n /  nowT equals the arity of the query predicate Q. 

The space requirement is linear in the size of the I<B and polynomial in 11111. This 

includes the cost of encoding the KB as well as the cost of maintaining the dynamic. state of 

the 'working memory' during reasoning. 

The above result offers a worst-case characterization which assumes that during the 

derivation, all variables will get instantiated with all possible bindings involving constants in 

Q.  This will not be the case in a typical situation. As pointed out in (S93), in a typical 

episode of reasoning the actual time may seldom exceed 50d. 

3.3 CEP and reflexive reasoning 

Consider the unbalanced rule: 

'This assumes that the maximum arzty of predicates in the KB is a constant 



for relations P, Q, and R. Let R ( a )  be the query. Clearly, if all the tuples in Q were of the 

form Q(.,  a ) ,  answering the query reduces to CEP. Thus if IP( = I & )  = n,  R(n log n) will 

be a lower bound on the processing time of the query. As a simple corollary it follows that 

any parallel algorithm for processing the query R(a) will need fl(1og n )  time, given only n 

processors. Thus we have the following 

Lemma 3.1 Any  linear sized network model for reasoning can not make inferences in time 

independent of the size of the ICB if it admits unbalanced rules. 

The above lemma shows that the constraint that rules be balanced is a necessary con- 

straint for reflexive reasoning and not merely an artifact of the SHRUTI design. 

3.4 CEP and Database JOIN 

JOIN is an important operation to be performed in relational database systems. Let R and 

S be two given relations with arity k and B respectively. R can be thought of as a table of 

k-tuples, each column corresponding to  some domain of values. The 6)-join of R and S  on 

columns i and j is defined to  be those tuples in the cartesian product of R and S  such that. 

the i th component of R stands in relation 0 to  the j th  component of S [Ullman 19881. When 

8 stands for =, the JOIN operation is called EQUIJOIN. In the worst case, the size of the 

JOIN of the two relations can be JRI JSJ where JRJ (IS[) is the number of tuples in R ( S ) .  
Consider the problem of deciding if the EQUIJOIN of two given relations R and S on 

columns i and j is nonempty. Clearly, this problem reduces to checking if column i of R 
and column j of S are disjoint. If (RI = IS\ = n, the lower bound for CEP implies that this 

decision problem needs fl(n1og n)  time sequentially. Also, any parallel algorithm for this 

problem that uses only O(n) processors will need n(log n )  time. 

4 Conclusions 

In this paper we have proved a lower bound for the Common Element Problem and have 

demonstrated the applicability of this lower bound in two different areas of computing, i.e., 

reasoning and databases. The lower bound in particular implies that any model of reasoning 

that is of size only pl.oportiona1 to the size of the knowledge base, cannot hope to make 

inferences on all queries whose derivation involves unbalanced rules, in time independent of' 

the size of the knowledge base. As a consequence, we conclude that the constraints imposed 



on the SHRUTI model are indeed necessary and hence the SHRUTI model be a stronger 

predictor of the nature of reflexive reasoning processes in humans. 
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