
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

August 1993 

Realizability, Covers, and Sheaves II. Applications to the Second-Realizability, Covers, and Sheaves II. Applications to the Second-

Order Lambda-Calculus Order Lambda-Calculus 

Jean H. Gallier 
University of Pennsylvania, jean@cis.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Jean H. Gallier, "Realizability, Covers, and Sheaves II. Applications to the Second-Order Lambda-Calculus", 
. August 1993. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-47. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/281 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/281
mailto:repository@pobox.upenn.edu


Realizability, Covers, and Sheaves II. Applications to the Second-Order Lambda-Realizability, Covers, and Sheaves II. Applications to the Second-Order Lambda-
Calculus Calculus 

Abstract Abstract 
We present a general method for proving properties of typed λ-terms. This method is obtained by 
introducing a semantic notion of realizability which uses the notion of a cover algebra (as in abstract 
sheaf theory, a cover algebra being a Grothendieck topology in the case of a preorder). For this, we 
introduce a new class of semantic structures equipped with preorders, called pre-applicative structures. 
These structures need not be extensional. In this framework, a general realizability theorem can be 
shown. Applying this theorem to the special case of the term model, yields a general theorem for proving 
properties of typed λ-terms, in particular, strong normalization and confluence. This approach clarifies the 
reducibility method by showing that the closure conditions on candidates of reducibility can be viewed as 
sheaf conditions. Part II of this paper applies the above approach to the second-order (polymorphic) λ-

calculus λ→,∀2 (with types → and ∀). 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-47. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/281 

https://repository.upenn.edu/cis_reports/281


Realizability, Covers, and Sheaves. 
11. Applications to the Second-Order Typed A-Calculus 

Preliminary Version 

Jean Gallier* 
Department of Computer and Information Science 

University of Pennsylvania 
200 South 33rd St. 

Philadelphia, PA 19104, USA 
e-mail: j ean(0saul. cis.  upenn. edu 

August 12, 1993 

Abstract.  We present a general method for proving properties of typed A-terms. This method 
is obtained by introducing a semantic notion of realizability which uses the notion of a cover 
algebra (as in abstract sheaf theory, a cover algebra being a Grothendieck topology in the case of 
a preorder). For this, we introduce a new class of semantic structures equipped with preorders, 
called pre-applicative structures. These structures need not be extensional. In this framework, 
a general realizability theorem can be shown. Applying this theorem to the special case of the 
term model, yields a general theorem for proving properties of typed A-terms, in particular, strong 
normalization and confluence. This approach clarifies the reducibility method by showing that the 
closure conditions on candidates of reducibility can be viewed as sheaf conditions. Part I1 of this 
paper applies the above approach to the second-order (polymorphic) A-calculus x'~"~ (with types 
+ and V). 
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1 Introduction 

The following two questions were raised in part I of this paper: 

1. What is the connection between realizability and reducibility? 

2. Is is possible to give more "semantic" versions of proofs using reducibility? 

In part I of this paper, we gave some answers to the above questions for the simply-typed 
A-calculus A ' I ~ P + I ~ .  We defined an abstract notion of semantic realizability using the notion of 
a cover algebra (a Grothendieck topology, in the case of a preorder), and we proved a semantic 
realizability theorem. In part I1 of this paper, we generalize the approach developed in part I to the 
the second-order (polymorphic) A-calculus (with types + and V). For this, we introduce a new class 
of structures equipped with preorders, called pre-applicative structures. In this framework, we have 
a type algebra T ,  that we use to interpret the (syntactic) types. Then, the set of realizers r [ a ] p  
associated with a type a depends on a valuation p that assigns a pair (s, S) to every type variable, 
where s is an element of the type algebra T,  and S is the s-component of some sheaf S = (Ss)sET. 
In this setting, it turns out that the family ( r [ ~ ] p ) , , ~ ~  of sets of realizers associated with the 
types, is itself a sheaf. Actually, we consider abstract properties P of these sets of realizers. The 
main theorem is the following: provided that the abstract property P satisfies some fairly simple 
conditions (P 1)-(P5), if I? D M: a and p( y) E r [ S ] p  for every y: 6 E I', then the meaning d[I' D M: alp 
of I? D M: a is a realizer of a that satisfies the property P .  As a corollary, considering a suitable 
term model for the second-order lambda calculus, we obtain simple proofs for strong normalization 
and confluence. This approach sheds some new light on the reducibility method and the conditions 
on the candidates of reducibility. These conditions can be viewed as sheaf conditions. 

As in part I, in order to understand what motivated the definition of the semantic structures 
used in this paper, it is useful to review the definition of an applicative structure for the second- 
order (polymorphic) A-calculus. In order to deal with second-order types, first, we need to provide 
an interpretation of the type variables. Thus, as in Breazu-Tannen and Coquand [I], we assume 
that we have an algebra of types T ,  which consists of a quadruple 

where T is a nonempty set of types, +: T x T + T is a binary operations on T,  [T + TI is a 
nonempty set of functions from T to T,  and V is a function V: [T j TI -, T. 

Intuitively, given a valuation 8: V -+ T (where V is the set of type variables), a type o E 7 will 
be interpreted as an element [a]8 of T. Then, a second-order applicative structure is defined as a 
tuple 

(T, (As)s,~, ( ~ P P ~ T ~ ) ~ , ~ E T ,  ( t a ~ ~ ' k e [ ~ - + ~ ) ,  

where 

T is an algebra of types; 

( A S ) s E ~  is a family of nonempty sets called carriers, 

(appS*t)s,tET is a family of application operators, where each apps*t is a total function 
appSlt : ASdt x AS + At; 



(tapp')ms[T+q is a family of type-application operators, where each tapp' is a total function 
tapp": A'(') x T -, U ( A ' ( ~ ) ) , ~ ~ ,  such that tappa( f ,  t) E for every f E A'('), and 
every t E T. 

In order to define second-order applicative structures using operators like fun and abst,  we 
need to define the curried version t f  un' of tapp': A'(') x T + u(A@(~)) ,~T.  For this, we define 
a kind of dependent product no(AS)sET (see definition 3.2). Then, we have families of operators 
t f  un': A'(") -, na(AS)sET, and tabst': no (AS),ET + A'(@), for every @ E [T + TI. 

Part I1 is organized as follows. The syntax of the second-order A-calculus is reviewed 
in section 2. Pre-applicative structures are defined in section 3. The crucial notions of P-cover 
algebras and of P-sheaves are defined in section 4. The notion of P-realizability is defined in section 
5. In section 6, it is shown how to interpret terms in A,*@ in pre-applicative structures, and some 
examples are given. The realizability theorem for the second-order typed A-calculus A'*v2 is shown 
in section 7. Section 8 contains an application of the main theorem of section 7 to  prove a general 
theorem about terms of the system A'pV. Section 9 contains the conclusion and some suggestions 
for further research. 

2 Syntax of the Second-Order Typed A-Calculus A 4 ~ x ~ + ~ v 2  

In this section, we review quickly the syntax of the second-order typed A-calculus X'*X*+*'~. This 
includes a definition of the second-order types under consideration, of raw terms, or the type- 
checking rules for judgements, and of the reduction rules. For more details (on the subsystem 
A'*@), the reader should consult Breazu-Tannen and Coquand [I]. 

Let T denote the set of second-order types. This set comprises type variables X ,  type constants 
k, and compound types ( a  -+ r), ( a  x r ) ,  ( a  + r ) ,  and VX. a. It is assumed that we have a set 
TC of type constants (also called base types of kind *). We have a countably infinite set V of type 
variables (denoted as upper case letters X, Y, Z), and a countably infinite set X of term variables 
(denoted as lower case'letters x, y, z). We denote the set of free type variables occurring in a type a 
as FTV(a). We use the notation *for the kind of types. Since we are only considering second-order 
quantification over predicate symbols (of kind *) of arity 0, this is superfluous. However, it will 
occasionally be useful to consider contexts I' in which type variables are explicitly present, since this 
makes the type-checking rules more uniform in the case of A-abstraction and typed A-abstraction. 
Thus, officially, a context r is a set {xl: 01, . . . , x,: a,), where X I , .  . . ,xn are term variables, and 
01,. . .,an are types. We let dom(I') = {xl,. . .,xn). As usual, we assume that the variables z j  
are pairwise distinct. We also assume that x 4 dom(I') in a context I', x: a. Informally, we will 
also consider contexts {XI: *, . . . , X,: *, XI: 01, . . . , z,: an), where XI, . . . , X, are type variables, 
and X I ,  . . . , xn are term variables, with the two sets {XI, . . . , X,) and {xl , . . . , x,) disjoint, the 
variables X; pairwise distinct, and the variables x j  pairwise distinct. We assume that X 4 dom(I') 
in a context I?, X :  *. For the sake of brevity, rather than writing typed A-abstraction as AX: *. M ,  
it will be written as AX. M.  

It is assumed that we have a set Const of constants, together with a function Type: Const + 7, 
such that every constant c is assigned a closed type Type(c) in T.  The set TC of type constants, 
together with the set Const of constants, and the function Type, constitute a signature C. Let us 
review the definition of raw terms. 



Definition 2.1 The set of mw ternas is defined inductively as follows: every variable x E X is a 
raw term, every constant c E Const is a raw terms, and if M, N are raw terms and a, T are types, 
then (MN), (Mr),   AX:^. M ,  AX. M ,  nl(M), 7r2(M), (M, N), in l (M),  inr(M),  and [M, N], are 
raw terms. 

We let FV(M) denote the set of free term-variables in M. Raw terms may contain free variables 
and may not type-check (for example, (22)). In order to define which raw terms type-check, we 
consider expressions of the form r D M: a, called judgements, where r is a context in which all the 
free term variables in M are declared. A term M type-checks with type a in the context I' iff the 
judgement I' D M: a is provable using axioms and rules summarized in the following definition. 

Definition 2.2 The judgements of the polymorphic typed A-calculus A ' * X ~ + ~ ~  are defined by the 
following rules. 

I' D x: a, when x: o E I', 

I' D c: Type(c), when c is a constant, 

I ' , x : a ~ M : r  
(abstraction) r D (AX: a. M): (a -+ 7) 

I ' D M : ( a + r )  ~ D N : u  
(application) 

I' D (MN): r 

I ' D M : U X T  I ' D M : U X T  
(projection) (projection) 

I' D nl(M): a I' D n2(M): T 

I ' D M : ~  I 'DM:T 
(injection) (injection) 

I' D in l (M):  a + r I' D inr(M): a + T 
r b M : ( a - + 6 )  r b N : ( r + b )  

( co-pairing ) 
I' D [M, N]: (a  + r )  -+ r5 

~ , X : * D  M : a  
(V-intro) 

I' D (AX. M): VX. a 

provided that X 4 Uz:TEr FTV(r); 

The reason why we do not officially consider that a context contains type variables, is that 
in the rule (V-elim), the type T could contain type variables not declared in r, and it would be 
necessary to  have a weakening rule to add new type variables to  a context (or some other mechanism 
to add new type variables to a context). As long as we do not deal with dependent types, this 
technical annoyance is most simply circumvented by assuming that type variables are not included 
in contexts. 



Instead of using the construct case P of inl(x: a) + M I inr(y: T) + N ,  we found it more 
convenient and simpler to use the slightly more general construct [M, N], where M is of type 
a -+ S and N is of type r + 6, even when M and N are not X-abstractions. This will be especially 
advantageous for the semantic treatment to follow. Then, we can define the conditional construct 
case P of inl(x:  a )  =+ M 1 inr(y: r) + N, where P is of type a + T, as [Ax: a. M, Xy: T .  NIP. 

Definition 2.3 The reduction rules of the system are listed below: 

(Ax: a. M)N - M[N/x], 

n1((M,N)) - M, 

r2((M, N)) - N, 
[M, N]inl(P) - MP,  
[M, N]inr(P) + NP,  

(AX. M)T ----+ M[r/X]. 

The reduction relation defined by the rules of definition 2.3 is denoted as - p  (even though 
there are reductions other that P-reduction). From now on, when we refer to a X-term, we mean a 
X-term that type-checks. We let A(,, r) denote the set of judgements of the form I' D M: a. 

3 Pre-Applicative Structures 

In this section, some new semantic structures called pre-applicative structures are defined. There 
are various kinds of pre-applicative structures: pre-applicative p-structures, pre-applicative Pq- 
structures, extensional pre-applicative P-structures, and the corresponding so-called applicative 
versions. Since we are dealing with type variables, in order to interpret the types, we first need 
to define the notion of an algebra of (polymorphic) types. We also need to define the notion of a 
dependent product (see definition 3.2) in order to "curry" the map tappa: A'(@)xT + u ( A @ ( ~ ) ) , ~ ~ .  

Definition 3.1 An algebra of (polymorphic) types is a tuple 

where T is a nonempty set of types, -+, x ,  +: T x T -, T are binary operations on T ,  [T e- TI is a 
nonempty set of functions from T to T,  and V is a function V: [T =+ TI + T. 

Intuitively, given a valuation 8: V + T, a type a E 7 will be interpreted as an element [a18 of 
T .  

Given an indexed family of sets (Aj)iez, we let n(A;);Ez be the product of the family 
and U(Ai)iEz be the coproduct (or disjoint sum) of the family (Ai)iEz. The disjoint sum U(Ai)iEz 
is the set U{(a, i) I a E If the sets A; are preorders, then n(A;)iEI is a preorder under the 
product preorder, where (a;)iEz 5 (bi)iEz iff a; A j  bi for all i E I, and U(Ai)ieI is a preorder under 
the (disjoint) sum preorder, where (a, i) 5 (b, i) iff i = j and a 5; b. When I = {1,2), we also 
denote n(A;)iEI as A1 x A2, and U(Ai)iEz as A1 + A2. 

Before defining a pre-applicative structure, we need to define the notion of a dependent product. 



Definition 3.2 Given 
ery function @ E [T + 
which is also described 

an algebra of types T,  and a T-indexed family of preorders (As, As),  for ev- 
TI, the dependent product ng(AS)sET is the cartesian product ntET(~"(t)), 

T 
explicitly as the set of functions in ( U ( A @ ( ~ ) ) , ~ ~ )  defined as follows: 

n ( ~ ~ ) , , ~  = { f :  T + U(A"(')).~T I f (t) E ~ " ( ~ 1 ,  for all t E T}. 
0 

The set nQ(AS),ET is given the preorder 5" defined such that, f 5" g iff f (t) d'(t) g(t), for every 
t E T. 

Given two preordered sets (AS, dS) and (At, dt), we let [AS j At] be the set of monotonic 
functions w.r.t. dS and dt, under the pointwise preorder induced by 3t defined such that, f 5 g 
iff f(a) li\t g(a) for all a E AS. 

We are now ready to define the semantic structures used in this paper. 

Definition 3.3 Given an algebra of types T, a pre-applicative /?-structure is a structure 

d = (A, 5 ,  fun, abst,  tfun, t abs t ,  II, (-, -), i n l ,  inr ,  [-, -I), 

where 

A = (AS)sET is a family of sets (possibly empty) called carriers; 

(dS)sET is a family of preorders, each AS on As; 

abststt: [As + At] + AS't, a family of partial operators; 

funs$t: As't + [AS + At], a family of (total) operators; 

tabst": no(As)sET + A'("), a family of partial operators, for every @ E [T + TI; 

tfunsit: A'(") + na(AS)sET, a family of (total) operators, for every @ E [T + TI; 

(-, -)s9t: AS x At + ASXt , a family of partial pairing operators; 

II.7" Asxt + As x At, a family of (total) projection operators; 
[-, -]svt,d: Asdd x + A ( ~ + ~ ) - * ~ ,  a family of partial copairing operators; 

inlslt: AS + AS+t, a family of (total) operators; 

inrstt: At -+ AS+t, a family of (total) operators. 

We define c in l :  A('+~)'~ + [AS + A ~ ]  and cinr: A ( ~ + ~ ) ' ~  + [At +- A ~ ]  as follows: For every 
h E &+t)'d, 

cinl(h)(a) = f un(h)(inl(a)), 

for every a E AS, and 
cinr(h)(b) = f un(h)(inr(b)), 

for every b E At. 

It is assumed that fun, abst ,  t fun,  t abs t ,  II, (-, -), i n l ,  inr ,  and [-, -1, are monotonic. 
Furthermore, the following conditions are satisfied 

(1) For all s, t E T, if AS # 0 and At # 0, then AS't # 8, and f~n"*~(abst"*~(cp))  2 cp, whenever 
abstslt(cp) is defined for cp E [As 3 At]; 



(2) If A @ ( ~ )  # 0 for every t E T, then A'(@) # 0, and tfunQ(tabst@(cp)) k cp, whenever 
tabsta(cp) is defined for cp E n6(AS)sET; 

(3) For all s, t E T, if AS # 0 and At # 0, then ASXt # 0, and IIsyt((a, b)) k (a, b), for all 
a E As, b E At, whenever (a, b) is defined; 

(4) For all s , t  E T,  if AS # 0 and At # 0, then As+t # 0, and cinl([f,  91) k fun(f), and 
cinr([f, 91) fun(g), whenever [f, g] is defined, for f E As'd and g E A~'~. 

The operators fun induce (total) operators 

appslt: AS't x AS + At, such that, for every f E As't and every a E As, 

Then, condition (1) can be written as 

(1') appS~t(abstsyt(cp), a) 5 cp(a), for every a E AS, for cp E [AS + At], whenever abstSlt(cp) is 
defined, and condition (4) can be rewritten as 

(4') cinl([f ,  g])(a) k app(f, a), for all a E A", and cinr([f,  g])(b) k app(9, b), for all b E At, 
whenever [ f ,  g] is defined, for f E A " ~  and g E At'd. 

The operators t f u n  induce (total) operators 

tappa: A'(@) x T + u ( A @ ( ~ ) ) ~ ~ ~ ,  such that, for every t E T ,  

Then, condition (2) can be written as 

(2') tapp@(tabst@(cp), s )  cp(s), for every s E T, whenever t a b ~ t @ ( ~ )  is defined, for cp E 

l l ~  ( A S ) s ~ ~ .  

Finally, N 5 inl(Ml) implies that N = inl(N1) for some Nl 5 MI, and N 5 inr(Ml) implies 
that N = inr(Nl) for some Nl 3 MI. 

We say that a pre-applicative 0-structure is an applicative 0-structure iff in conditions (1)-(4), 
is replaced by the identity relation =. 

We will omit superscripts whenever possible. Intuitively, A is a set of realizers. It is shown in 
section 6 how the term model can be viewed as a pre-applicative P-structure (see definition 6.5). 

The projection operators II induce projections xi't: ASXt + As and T ; ' ~ :  ASXt + At, such that 
for every a E AsXt, if IIsf (a) = (al, a2), then 

~ i ' ~ ( a )  = a1 and x2Jtt(a) = a2. 

When A is an applicative 0-structure, then, in definition 3.3, conditions (1)-(4) amounts to 

(1) o abstSlt = i d  on the domain of definition of abst;  
(2) tfun" o t abs tQ = i d  on the domain of definition of tabs t ;  

(3) IISlt o (-, -)S*t = i d  on the domain of definition of (-, -); and 

(4) (c in l ,  c inr)  o [-, -1 = f unsyd x f unt,d on the domain of definition of [-, -1. 



In view of (I), from (4), we get 

(c in l ,  c inr )  o ([-, -1 o (abstStd x abstttd)) = i d  on the domain of definition of [-, -1 o 
(abstSpd x absttvd). 

In this case, abst  is injective and fun is surjective on the domain of definition of abst  (and left 
inverse to abst),  t abst  is injective and t f  un is surjective on the domain of definition of t a b s t  (and 
left inverse to tabs t ) ,  (-, -) is injective and 11 is surjective on the domain of definition of (-, -) 
(and left inverse to (-, -)), [-, -1 o (abstSld x absttjd) is injective on its domain of definition, and 
(cinl ,  c inr )  is surjective on this domain (and left inverse to [-, -1 o (abstsld x a b ~ t ~ ~ ~ ) ) .  

When we use a pre-applicative P-structure to interpret X-terms, we assume that (-, -) and 
[-, -1 are total, and that the domains of abst  and t a b s t  are sufficently large, but we have not 
elucidated this last condition yet. Given M E ASdt and N E AS, app(M, N )  is also denoted as 
M N ,  and tapp(M,t) as Mt. 

We now define extensional pre-applicative structures. First, we define isotonicity. Given a 
monotonic function f :  Wl + W2, where Wl and W2 are preorders, we say that f is isotone iff 
f (wl) 5 f (w2) implies that wl 3 w2, for all wl, w2 E Wl. 

Definition 3.4 A pre-applicative p-structure A is extensional iff fun, t f  un, II, and (c in l ,  c inr ) ,  
are isotone, and the following conditions hold: 

(1) ran(fun) dom(abst); 

(2) ran(tf  un) dom(tabst); 

(3) ran(II) C dam((-, -)I; 
(4) r a n ( ( ~ i n l ~ ~ ~ ~ ~ ,  ~ i n r ~ l ~ . ~ ) )  dom([-, -1 o (abstStd x absttld)). 

When A is an applicative P-structure, conditions (1)-(4) hold, and the functions fun, t fun,  Il, 
and (c in l ,  c inr ) ,  are injective, we say that we have an extensional applicative p-structure. 

When A is an extensional pre-applicative p-structure, in view of condition (I), abst(fun(f)) 
is defined for any f E AS't. Observe that by condition (1) of definition 3.3, we have fun(f) 3 
fun(abst(fun(f))), and since fun is isotone, this implies that 

Similarly, we can prove that 

(2) tabst( tfun( f ) )  k f ,  for all f E A'(@); 

(3) (nl (a), n2(a)) 5 a, for all a E ASX t;  and 

(4) [abst(cinl(h)),  abst(cinr(h))] 5 h, for all h E A('+~)'~. 

We will call the above inequalities the 7-like rules. 

In many cases, a pre-applicative p-structure that satisfies the 7-like rules is not extensional. 
This motivates the next definition. 



Definition 3.5 A pre-applicative @-structure A is a pq-structure if the following conditions hold: 

(1) ran(fun) C dom(abst), and abst(fun(f)) f ,  for all f E As't; 

(2) ran(tfun) C_ dom(tabst), and tabst( tfun( f ) )  2 f ,  for all f E A'('); 

(3) ran(II) C_ dom((-, -)), and (xl(a), na(a)) 2 a, for all a E ASXt; and 

(4) r ~ n ( ( c i n l ~ j ~ * ~ ,  ~ i n r " , ~ ~ ~ ) )  C_ dom([-, -1 o (abstsld x absttjd)), and 
[abst(cinl(h)), abst(cinr(h))] h, for all h E A("+~)'~. 

When A is an applicative ,&structure and in conditions (1)-(4), 2 is replaced by =, we say that 
we have an applicative pq-structure. 

It is shown in section 6 how the term model can be viewed as a pre-applicative pq-structure (see 
definition 6.7). From the remark before definition 3.5, an extensional pre-applicative P-structure is 
a pq-structure. When A is an applicative pq-structure, conditions (1)-(4) of definition 3.5 amount 
to: 

(1) abstSlt o funSlt = id; 

(2) tabstq'  o tfun' = id; 

(3) (-, o = id; and 

(4) ([-, -1 o ( a b ~ t " ' ~  x a b ~ t ~ ' ~ ) )  o ( ~ i n l ~ ~ ~ ' ~ ,  cinrSttpd) = id. 

This implies that fun, t fun,  11, and (cinl ,  c inr) ,  are injective. Thus, an applicative ,077- 
structure is extensional. In this case, (together with conditions (1)-(4) of definition 3.3 in the case 
of an applicative p-structure), we have dom(abst) = ~u(A"~),  fun is a bijection between AS't 
and a subset of [As + At] (with inverse abst), dom(tabst) = t fun(~'(@)),  t f u n  is a bijection 
between A'(') and a subset of no(As)sET (with inverse tabs t ) ,  TI is a bijection between ASXt and 
a subset of A3 x At (with inverse (-, -)), and ( ~ i n l ~ * ~ ~ ~ ,  ~ i n r " ~ ~ ~ ~ )  is a bijection between A ( ~ + ~ ) ' ~  
and a subset of [As A ~ ]  x [At + Ad] (with inverse [-, -1 o ( a b ~ t " ~  x abstttd)). 

4 P-Cover Algebras and P-Sheaves 

In this section, we basically repeat the definitions for covers and sheaves given in part I of this 
paper, except that we are dealing with a more general notion of pre-applicative structure (since 
we also have an algebra of types T). As in part I, we define all the necessary concepts in terms 
of preorders, referring the interested reader to MacLane and Moerdijk [6] for a general treatment. 
First, we need some preliminary definitions before defining the crucial notion of a cover. From now 
on, unless specified otherwise, it is assumed that we are dealing with pre-applicative P-structures 
(and thus, we will omit the prefix p). 

Definition 4.1 Given an algebra of types T and a pre-applicative stiucture A, for any M E AS, 
a sieve on M is any subset C C As such that, N 5 M for every N E C ,  and whenever N f C 
and Q 5 N, then Q E C. In other words, a sieve on M is downwards closed and below M (it is 
an ideal below M). The sieve {N I N 5 M} is called the maximal (or principal) sieve on M. A 
covering family on a pre-applicative structure A is a family Cov of binary relations Cov, on 2A' x AS, 



relating subsets of As called covers, to elements of As. Equivalently, Cov can be defined as a family 
of functions Cov,: As -r 22As assigning to every element M E As a set Cov(M) of subsets of As (the 
covers of M). Given any M E As, the empty cover 0 and the principal sieve {N I N 5 M )  are the 
trivial covers. We let t r i v ( M )  denote the set consisting of the two trivial covers of M .  A cover 
which is not trivial is called nontrivial. 

In the rest of this paper, we will consider binary relations P E A X  T ,  such that P (M,  s )  implies 
M E AS, and for every s E T ,  if AS # 0, then there is some M E As s.t. P ( M ,  s). Equivalently, P 
can be viewed as a family P = where each Pa is a nonempty subset of As (unless AS = 0). 
The intuition behind P is that it is a property of realizers. For simplicity, we define the covering 
conditions only for the types -, and V2 (but the types X ,  + and I, can also be handled. This 
treatment can be readily adapted from part I). 

Definition 4.2 Given an algebra of types T, let A be a pre-applicative structure and let P be a 
family P = (Ps)sET, where each Pa is a nonempty subset of As (unless As = 0). A P-cover algebra 
(or P-Grothendieck topology) on A is a family Cov of binary relations Cov, on 2As x AS satisfying 
the following properties: 

(0) Cov,(C, M )  implies M E Ps (equivalently, P ( M ,  s)). 

(1) If Cov(C, M) ,  then C is a sieve on M (an ideal below M). 

(2) If M E Ps, then Cov({N ) N 3 M}, M )  ( M  E Ps is covered by the principal sieve on M). 

(3) (stability) If Cov(C, M )  and N 5 M ,  then Cov({Q I Q E C, Q 5 N), N). 

(4) (transitivity) If Cov(C, M),  D is a sieve on M ,  and Cov({Q I Q E D, Q 5 N),  N )  for every 
N E C ,  then Cov(D, M). 

(5) If ~ o v ( M )  = t r i v ( M ) ,  then Cov(MN) = t r i v ( M N ) ,  and if Cov(C, M )  and Cov(D, M N )  
with C and D nontrivial, then for every Q E D,  there is some M' E C such that Q 3 M'N. 

(6) If cov(M) = t r i v ( M ) ,  then Cov(Ms) = t r i v (Ms) ,  where s E T, and if Cov(C, M )  and 
Cov(D, Ms)  with C and D nontrivial, then for every Q E D, there is some M' E C such 
that Q 3 M's. 

A triple (A ,P ,  COV), where A is pre-applicative structure, P is a property on A, and Cov is a 
P-Grothendieck topology, is called a P-site. 

Condition (0) is needed to  restrict attention to  elements having the property P. Covers 
only matter for these elements. Conditions (1)-(4) are the conditions for a set of sieves to be 
a Grothendieck topology, in the case where the base category is a preorder (A, 3 ) .  Conditions 
(5)-(6) are needed to take care of the extra structure. 

It should be noted that conditions (3) and (4) are in fact only needed for the treatment of the 
sum type + (or the existential type). Also, it is not necessary to assume that covers are ideals 
(downwards closed), but this is not harmful. 

Definition 4.3 We say that M E As is simple iff Cov(C, M )  for a t  least two distinct covers C.  
We say that M E AS is stubborn iff Cov(M) = (0, {Q I Q 3 M)) (thus every stubborn element is 
simple). We say that a P-site (A, P, COV) is scenic iff all elements of the form app(M, N) (or M N ) ,  
or tapp(M, s )  (or Ms),  are simple. 



From now on, we only consider scenic P-sites. In order for our realizability theorem to hold, 
realizers will have to  satisfy properties analogous to the properties (P1)-(P5) mentioned in the 
introduction of part I. 

Definition 4.4 Given an algebra of types T, let (A, P, Cov) be a P-site. Properties (P1)-(P3) are 
defined as follows: 

(PI)  P(M,s) ,  for some stubborn element M E AS. 

(P2) If P(M,  s) and M N ,  then P(N,  s). 

(P3a) If ~ov,,~(C, M), P(N,  s), and P(MfN, t) whenever M' E C, then P(MN,  t).  

(P3b) If ~ o v ~ ( ~ ) ( C ,  M), s E T, and P(Mfs,  @(s)) whenever M' E C, then P(Ms ,  @(s)). 

From now on, we only consider relations (families) P satisfying conditions (P1)-(P3) of definition 
4.4. Condition (PI) says that each P, contains some stubborn element. We are now ready for the 
crucial notion of a sheaf property. This property is a crucial inductive invariant with respect to the 
notion of realizability defined in section 5. 

Definition 4.5 Given an algebra of types T, let (A, P, COV) be a P-site. A function S: A + 2T 
has the sheaf property (or is a P-sheaf) iff it satisfies the following conditions: 

(Sl) If s E S(M),  then M E P,. 

(S2) If s E S(M)  and M k N,  then s E S(N). 

(S3) If Cov,(C, M )  and s E S(N)  for every N E C, then s E S(M).  

A function S: A + 2T as in definition 4.5 can also be viewed as a family S = (Ss)sET, where 
S, = {M E A I s E S(M)). Then, the sets S, are called P-candidates. The conditions of definition 
4.5 are then stated as follows: 

(S2) If M E S, and M N ,  then N E S,. 

(S3) If Cov,(C, M),  and C S,, then M E S,. 

This second set of conditions is slightly more convenient for proving our results. Note that 
according to the first definition, S can also be viewed as a mapping 

S: A -+ Sets. 

Then, (S2) means that M N implies S(M) C S(N).  Thus, S is in fact a functor 

S: Aop + Sets, 

viewing A O P  equipped with the preorder 2, the opposite of the preorder 5 ,  as a category. As in part 
I, the conditions of definition 4.5 mean that this functor is a sheaf for the Grothendieck topology 
of definition 4.2. 



Note that condition (S3) is trivial when C is the principal cover on M, since in this case, M  
belongs to C .  Thus, condition (S3) is only interesting when M is simple, and from now on, this is 
what we will assume when using condition (S3). Also, since Covs(C, M)  implies that P(M,  s), any 
P satisfying conditions (P1)-(P3) trivially satisfies the sheaf property. Finally, note that (S3) and 
(PI)  imply that S, is nonempty and contains all stubborn elements in P, (unless As = 0). 

By (P3a), if M E Ps,t is stubborn and N  E Ps is any element, then M N  IZ Pt. Furthermore, 
M N  is also stubborn. This follows from property (5) of a cover. Thus, if M E P,+ is stubborn 
and N E Ps is any element, then M N  E Pt is stubborn. Similarly, by (P3b) and property (6) of a 
cover, if M E PV(@) is stubborn and s E T, then Ms E Pa(,) is stubborn. 

Definition 4.6 Given an algebra of types T and a P-site (A, P, Cov), we let Sheaf(A, P) denote 
the sets of all P-sheaves on (A, P, Cov), and 

~ h e a f ( A ,  P), = {S, I Ss E S, for some sheaf S = (Ss)sET E Sheaf(A, P)}. 

Since P itself is a P-sheaf, the set Sheaf (A, P )  is nonempty. The fact that definition 4.5 is 
indeed a sheaf condition is shown exactly as in part I (except that a functor F is a P-sheaf iff it is 
a sheaf, and for every a E A, F(a)  T and s E F(a) implies that a E P,). 

5 P-Realizability For ~ ' 9 ' ~  

In this section, we define a semantic notion of realizability. This notion is such that realizers are 
elements of some pre-applicative structure. Since types can contain type variables, we first need to 
define an interpretation of the types. In order to define the set of realizers of a second-order type 
VX. a, we need to define sheaf-valuations (see definition 5.4). 

Definition 5.1 Given an algebra of polymorphic types T ,  it is assumed that we have a function 
TI :  TC -+ T assigning an element TI(k) E T to every type constant k E TC. A type valuation is 
a function 8: V + T. Given a type valuation 8, every type a E 7 is interpreted as an element [a18 
of T as follows: 

[X]8 = f?(X), where X is a type variable, 

[k]8 = TI(k), where k is a type constant, 

[a + ~ j e  = Bale -+ [rle, 
[a x ~ j e  = lalo x [ ~ j e ,  

KU + ~ g e  = Bale + [rle, 
px. 018 = v(nt E T. iuBe[x: = ti). 

In the above definition, At E T. [o]B[X: = t] denotes the function @ from T to  T such that 
@(t) = [a]e[X: = t] for every t E T. We say that T is a type interpretation iff @ E [T + T] for 
every type a and every valuation 6. 

In other words, T is a type interpretation iff [a18 is well-defined for every valuation 8. The 
following lemmas will be needed later. 



Lemma 5.2 For every type a E 7, and every pair of type valuations 81 and 82, if O1(X) = O2(X), 
for all X E FTV(a) ,  then [a]Ol = [a]02. 

Proof. A straightforward induction on a. LI 

Lemma 5.3 Given a type interpretation T, for all a, r E 'T, for every type valuation 8, we have 

Proof. The proof is by induction on a. The case where a = X is trivial, since then X[T/X] = T, 

and 
[x]e[x: = I T B ~ I  = e[x: = [T]@](X) = 

The induction steps are straightforward, and we only treat the case where a = W. 01. In this case, 

[(VY. UI)[T/X]]B = V(At E T. [al[r/X]]8[Y: = t]), 

(where the bound variable Y is renamed in a suitable fashion if necessary), and where At E 
T. [al[r/X]]OIY: = t] denotes the function @ from T to  T such that @(t) = [al[r/X]]8[Y: = t] 
for every t E T . By the induction hypothesis, we have 

@(t) = [a1[r/X]]O[Y: = t] = [a1]6'[X: = [r]O, Y: = t]. 

Then, since 
[w. ~ , p e [ x :  = irge] = v ( ~ t  E T. [ u ~ ] ~ [ X :  = ~ ~ 1 8 ,  Y: = ti), 

we have 
[(W. al)[r/X]]8 = [W. al]8[X: = l[r]8]. 

The next definition can be viewed as a semantic version of Girard's "candidats de rdductibilitQ7' 
(see Girard [4], Gallier [2]). 

Definition 5.4 Given a type interpretation T and a pre-applicative structure A, a sheaf-valuation 
is a pair p = (8, q), where 8: V + T is a type valuation, and q: V + U Sheaf (A, P )  is a function 
called a candidate assignment, such that: 

?(X) = Se(x), where Ss(x) E Sheaf(A, P)@(x),  for some P-sheaf S = E Sheaf(A, p ) ,  
for every X E V. 

Given p = (8, q), for any s E T and any S E Sheaf (A, P),, for some s-component S = S, 
of some P-sheaf S = (Ss)sET E Sheaf(A, P ) ,  we let p[X: = ( 5 ,  S)] = (O[X: = s], q[X: = S]) be 
the sheaf-valuation, such that, 8[X:= s](Y) = 8(Y) for every Y # X and 8[X:= s](X) = s, and 
q [ X :  = S](Y) = q(Y) for all Y # X ,  and q [ X :  = S](X) = S. 

The notion of P-realizability is defined as follows. 



Definition 5.5 Given an algebra of types T,  let (A, P, Cov) be a P-site. For every sheaf-valuation 
p = (8, q), the family ( r [ ( ~ ] p ) , ~ ~ ,  where for every a E I, r[o]p is the set of realizers of a, is 
defined as follows: 

r[k]p = PIqe, k a constant type, 

r[XJp = q(X), X a type variable, 

rI[a + ~ ] p  = {M I M E P[04T]8, and for all N, if N E r[a]p then M N  E r[r]p), 

r p X .  a]]p = {M 1 M E P ~ x . o l e ,  and for every s E T,  every S E Sheaf(A, P),, 
M s  E r[a]p[X: = (s, S)]). 

The following lemmas will be needed later. 

Lemma 5.6 For every type a E 7, every pair of sheaf-valuations pl = (01, 971) and p2 = ($2, q2), 
if ifi(X) = 82(X) and ql(X) = q2(X), for all X E FTV(a), then r[a]pl = r[a]p2. 

Proof. A straightforward induction on a (and using lemma 5.2). 

Lemma 5.7 Given a type interpretation T and a P-site (A, P,  Cov), for all a, T E 7, for every 
sheaf-valuation p = (8, q), we have 

Proof. The proof is by induction on a. We only consider the case where where a = VY. 01, the 
other cases being straightforward. By definition 5.5, we have 

r[(vy. al)[T/x]]p = {M I M E P[(vu.ol)[xlTlle, and for every s E T,  every S E ~ h e a f ( A ,  P),, 
M s  E r[al[~/X]]p[Y: = (s, S)]). 

By lemma 5.3, we have 
[(w. 0~)[T/x]]8 = IVY. al]8[x: = [T]le], 

and by the induction hypothesis, we have 

r[al[~/X]]p[Y: = (s, S)] = r[ol]p[Y: = (s, S), X: = ([r]O, r[~]p)].  

However, by definition, 

r W .  alBp[x: = ([7]0, r [ ~ I p ) l =  {M I M E P ~ Y . ~ ~ I B [ x : = [ ~ I ~ I ,  and for every s E T,  
every S E Sheaf (A, P),, 
Ms  E rEmIp[x: = ([TB~, r[~Bp), y: = (s, S)]), 

and so, we have 
r[(W. a l ) [ ~ l X I l p  = r[Y. u1Bp[X: = ([TI@,  TIP)]. 

The following lemma shows that the notion of a P-sheaf is an inductive invariant. In Gallier 
[2], this is the lemma we call " Girard's trick".l 

'Of course, this is unfair. Girard has many tricks! 



Lemma 5.8 Given a scenic P-site (A, P, Cov), for every sheaf valuation p, if P satisfies conditions 
(PI)-(P3), then the family (r[a]p)oET is a P-sheaf, and if A[o]' jL 0, then each r[o]p contains all 
stubborn elements in 

Proof. We proceed by induction on types. If a is a base type, r[a]p = P[ule, and obviously, 
every stubborn element in P[,le is in r[a]p. Since r[a]p = P[,le, (Sl) is trivial, (S2) follows 
from (P2), and (S3) is also trivial. If a = X is a type variable, then r[a]p = q(X), and since 

q(X) = where E ~ h e a f ( A ,  P)qx) ,  (Sl), (S2), and (S3) hold. The fact that every 
stubborn element in Pqx) is in follows from (P I )  and (S3), as we already noted earlier. 

We now consider the induction step. 

(S1)- 

(1) Type a -+ r. By the definition of r[a -+ r]p, (Sl) is trivial. 

(2) Type VX. a. By the definition of r p X .  alp,  (Sl)  is trivial. 

(S2)- 

(1) Type a -+ r. 

Let M E r[a + TIP, and assume that M M'. Since M E P[u,,le by (Sl), we have 
M' E P[,,,le by (P2). For any N E r[a]p, since M E r[a -+ r]p, we have M N  E r[r]p, and since 
M M', by monotonicity of app, we have M N  t M'N. Then, applying the induction hypothesis 
at type r, (S2) holds for r[r]p, and thus M'N E r[r]p. Thus, we have shown that M' E P[,,,le 
and that if N E r[a]p, then M'N E r [~ ]p .  By the definition of r[a -t r]p, this shows that 
M' E ria -+ r j p ,  and (S2) holds at type a + r. 

(2) Type VX. a. 

Let M E r p X .  a lp ,  and assume that M 2 M'. Since M E Ppx.Ole, by (Sl), we have 
M' E PPx.,le. For every s E T and every S E Sheaf(A, P),, since M E r p X .  a l p ,  we have 
M s  E r[a]p[X: = (s, S)], and since M M', by monotonicity of t app, we have M s  M's. Then, 
applying the induction hypothesis to a and p[X: = (s, S)], (S2) holds for r[a]p[X: = (s, S)], and 
thus M's E r[a]lp[X: = (s, S)]. By the definition of r p X .  a l p ,  this show that M' E r p X .  a lp .  

(S3). 

(1) Type a + T. 

Assume that COV[,,,~~(C, M) ,  and that M' E r[a -+ r]p for every M' E C ,  where M is simple. 
Recall that by condition (0) of definition 4.2, COV[,,,~~(C, M )  implies that M E P[,,,,le. We prove 
that for every N ,  if N E r[a]p, then M N  E r[r]p. First, we prove that M N  E PITle, and for this 
we use (P3). 

First, assume that M E P[,,,le is stubborn, and let N be in r[u]p. By (Sl), N E P[ole. By the 
induction hypothesis, all stubborn elements in are in r[r]p. Since we showed that M N  E PITle 
is stubborn whenever M E P[,+,le is stubborn and N E PITle, we have M E r[a -r TIP. 

Now, consider M E P[u,,le non stubborn. If M' E C ,  then by assumption, M' E r[a + r]p, 
and for any N E r[a]p, we have M'N E r[r]p. Since by (Sl), N E P[,je and M'N E PtTIe, by 
(P3a), we have M N  E Now, there are two cases. 



If T is a base type, then r[r]p = PITle and M N  E r[r]p. 

If T is not a base type, then M N  is simple (since the site is scenic). Thus, we prove that 
M N  E r[r]p using (S3) (which by induction, holds a t  type 7 ) .  Assume that COV[,]~(D, M N )  for 
any cover D of MN. If M N  is stubborn, then by the induction hypothesis, we have M N  E r[r]p. 
Otherwise, since COV~,,,~~(C, M )  and C and D are nontrivial, for every Q E D, by condition (5) 
of definition 4.2, there is some MI E C such that Q 5 M'N. Since by assumption, M' E ria + r]p 
whenever M' E C, and N E r[a]p, we conclude that M'N E r[r]p. By the induction hypothesis 
applied at type r, by (S2), we have Q E r [ ~ ] p ,  and by (S3), we have M N  E r[r]p. 

Since M E P[u,,le and M N E r[r]p whenever N E r[u]p, we conclude that M E r[u -t TIP. 
(2) Type VX. a. 

Assume that C O V ~ ~ . , ~ ~ ( C ,  M), and that MI E r p X .  a l p  for every MI E C, where M is simple. 
Recall that by condition (0) of definition 4.2, C O V ~ ~ . , ~ ~ ( C ,  M )  implies that M E PwX.,le. We 
prove that for every s E T and every S E ~ h e a f ( A ,  P),, we have M s  E r[a]p[X: = (s, S)]. First, 
we prove that M s  E P[ule[x:=sl, and for this, we use (P3). 

First, assume that M E Ppx.,le is stubborn, and let s E T. By the induction hypothesis, 
all stubborn elements in P[ule[X:=sl are in r[u]p[X: = (s, S)]. Recall that we have shown that 
Ms E Pa(,) is stubborn whenever M E PV(@) is stubborn. Considering the function @ such that 
@(s) = [u]B[X: = s] for every s E T,  since we know that [VX. 018 = V(@), then M s  E P[ale~X:=sl is 
stubborn whenever M E Ppx.,]e is stubborn, and we have M E r p X .  a lp .  

Now, consider M E Pwx.,le non stubborn. If M' E C, then by assumption, M' E r v X .  a lp ,  
and for every s E T and every S E Sheaf(A, P),, we have M's E r[u]p[X: = (s, S)]. Since by 
(Sl), M's E P[,le[x:,sl, by (P3b), we have M s  E P~ale[x~=,l, where (P3b) is applied to  the function 
@ such that @(s) = [a]B[X: = s] for every s E T. For such a @, we have WX. ale = V(@). Now, 
there are two cases. 

If a is a base type, then r[a]p[X: = (s, S)] = P[ule~X:=sl, and M s  E r[aBp[X: = (s, S)]. 

If a is not a base type, then M s  is simple (since the site is scenic). Thus, we prove that M s  E 
rI[a]lp[X: = (s, S)] using (S3) (which by induction, holds for u). Assume that C O V [ , ~ ~ [ ~ ~ = ~ ~  (D, Ms) 
for any cover D of Ms. If M s  is stubborn, then by the induction hypothesis, we have M s  E 
r[a]p[X: = (s, S)]. Otherwise, since C O V ~ ~ . ~ ~ ~ ( C ,  M )  and C and D are nontrivial, for every 
Q E D,  by condition (6) of definition 4.2, there is some M' E C such that Q 3 M's. Since by 
assumption, M' E r p X .  a l p  whenever M' E C, we conclude that M's E r[a]p[X: = (s, S)]. By 
the induction hypothesis applied at type a, by (S2), we have Q E r[a]p[X: = (s, S)], and by (S3), 
we have M s  E r[a]p[X: = (s, S)]. CI 

We will now need t o  relate X-terms and realizers. 

6 Interpreting X-Terms in Pre-Applicative Structures 

We show how judgements I? D M: a are interpreted in pre-applicative structures. For this, we define 
valuations. 



Definition 6.1 Given a type interpretation T,  given a pre-applicative structure A, a valuation is 
a pair p = (8, E), where 6: V + T is a type valuation, and E: X -+ U(At)tET is a partial function 
called an environment. 

Given p = (8, E), for any s E T and a E AS we let p[X: = s, x: = a] = (8[X: = s], ~ [ x :  = a]) 
be the valuation, such that, 6[X: = s](Y) = 8(Y) for every Y # X and 8[X: = s](X) = s, and 
E[X: = a](y) = ~ ( y )  for all y # x, and E[X: = a](x) = a. 

Given a context I?, we say that p satisfies I', written as p I' (where p = (8, E)) iff 

E(X) E A["]' for every x: a E I?. 

Note that if p satisfies a context I', this implies that # 0 for every x: a E I'. Also, 
conditions (1)-(4) of definition 3.3 imply that the following conditions hold: 

For all types a, T E 7, if A[o]' # 0 and # 0, then A [ ~ ~ ] '  # 0, A [ ~ X ~ ] *  # 0, f 0, 
and if ~ [ " [ ~ I ~ l l '  # 0 for every T E 7, then # 0. 

We are now ready to  interpret A-terms. 

Definition 6.2 Given a type interpretation T and a pre-applicative structure A, let AI: Const --+ 

$1 be a function assigning an element AI(c) of A ~ ' ( ~ ~ P " ( " ) )  to every constant c E Const. For every 
valuation p = (8, E), and every context I', if p I', we define the interpretation (or meaning) 
A[I' D M: a l p  of a judgement I' D M: a inductively as follows: 

A[I' D x: a lp  = E(X) 

A[I' D c: Typ(c)]p = AI(c) 

A[I' D MN: r]p = app["18~ [710(~[1' D M: (a + ~ ) ] p ,  A[I' D M: alp) 

A[I' D Ax: a. M: ( a  -+ r)]p = a b ~ t [ ~ ] ~ ~  [718(cp)7 

where cp is the function defined such that, 
cp(a) = A[r ,  x: a D M: r]p[x: = a], for every a E A["]' 

Ail? D MT: a[r/X]]p = tappG($l[I' D M: VX. alp, [TJO), 

where 9 is the function such that @(s) = [a]O[X: = s] for every s E T 

A[I' D AX. M: VX. a l p  = tabstG(cp), 

where cp is the function defined such that, 
y(s) = A[I', X: * D M: a]p[X: = s], for every s E T, and where ib is the function such that 
9(s) = [o]O[X: = s] for every s E T 

 I'D nl(M):a]p = nl(AII' D M : a  x TIP) 

Ail? D 7r2(M): TIP = 7r2(A[I' D M: u x r]p) 

A[I' D ( M I ,  M2): a x ~ ] p  = (A[r D MI: alp, A[I' D M2: TIP) 

A[I' D inl(M): a l p  = inl(A[I' D M: a + TIP) 
A[I' D inr(M): r]p = inr(A1I' D M: a + TIP) 



A[I' b [M, N]: (a + T) + 6]p = [Air  b M: (a  + 6)]p, A[I' b N: (T + 6)]p]. 

We are assuming that (-, -) and [-, -1 are total, and that the domains of abst and tabst 
are sufficently large for the above definitions to  be well-defined for all p, and I' D M: a. In this case, 
we say that A is a pm-interpretation. 

The following lemma will be needed later. 

Lemma 6.3 For every pair of contexts rl and r2, for every pair of valuations pl = (01, €1) and 
p2 = (82, c2), for every pair of judgements I?l b M :  a and r2 D M: a, if pl rl and pa r2, 
rl(x)  = r2(x), for all x E FV(M), O1(X) = 02(X), for all X E U(FTV(T)) , , ,~~ U FTV(M), and 
cl(x) = c2(x), for all x E FV(M), then 

Proof. A straightforward induction on typing derivations (and using lemma 5.2). CI 

Let us give an (important) example of a pre-applicative structure. First, we review the notion 
of a substitution. 

Definition 6.4 A substitution cp is a function cp: V U X + 7 U Terms, such that cp(X) E 7 
if X E V, cp(x) E Terms if x E X, and cp(x) # x only for finitely many variables. We let 
dom(cp) = {x E V U X I cp(x) # x). We say that cp is a type-substitution if dom(cp) C V. Given two 
contexts I? and A, we say that cp satisfies I' at A, denoted as A tt- I'[cp], iff A b cp(x): a[cp], for every 
x:a E r. 

The following definition shows how the term model can be viewed as a pre-applicative P- 
structure. 

Definition 6.5 The algebra of second-order types T is defined as follows: 

T = {(a, r) I a E 7 ,  I' a context} U {error}. 

The operations +, x,  and +, are defined as follows: 

a + b = (a + T, I') iff a = (a, I?), b = (7, A), and r = A, otherwise e r ro r ;  

a x b = (a x r, I') iff a = (a, I'), b = (T, A), and I' = A, otherwise error;  

a + b = (a + T, I') iff a = (a, I?), b = (T, A), and l? = A, otherwise error .  

We let Aemor = 0, and A ( ~ V  r, be the set of all provable typing judgements of the form I'b M: a. 
We denote A ( ~ *  r, as A:. For [T + TI, we take the set of all functions @ such that (T, I') H 

(a[r/X], I?), where a , ~  E 'T are any types, and X is any fixed variable that does not occur in I' 
(and with e r r o r  H error).  Then, V(@) = (VX. a ,  

A type valuation is a function 0: V -+ T, such that O(X) = (ox, F x )  or B(X) = error for 
every X E V, and such that the function X H ax defines an (infinite) type substitution that we 
denote as [O]. Then, for any type o E 7, by the definition of the operations +, x, and +, either 

2The choice of X is irrelevant as long as X does not occur in I', since X is bound in VX. a. 
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[a18 = error ,  or [a18 = (a[8], A) for some context A. A valuation p = (8, E) consists of a type 
valuation 8 and of a partial function E :  X -+ U(Ad),ET. AS noted just after definition 6.1, the 
conditions on 8 require that there is some single A such that, B(X) = (ax, A) iff A 2  # 0, for 
every X E V, and B(c) = (a,, A) iff A 2  # 0, for every type constant c . ~  

Indeed, if  XI) = (01, AI), B(X2) = (027 A2), Abd, # 0, A 2  # 0, XI # X2, and A1 # A2, 
since (al, Al) + (az, A2) = e r r o r  and Aenor = 8, the condition on 8 would be violated. Thus, 
E is a partial function such that E(X) is of the form E(X) = A D M,: a,, when it is defined (where A 
is uniquely determined by 8). 

Given a context I', according to definition 6.1, a valuation p = (8, 6 )  satisfies I' (p I?) iff 
for every xi: ai E I?, we have e(xi) E A:[*], for the fixed context A determined by 8,  as explained 
above. This means that €(xi) = A D Mi: u;[8], for some Mi. A valuation p = (8, c) such that p I' 
defines a substitution [E]: X + Terns, such that [E](x) = M,, where E(X) = A D M,: a[B], for every 
2: a E r. 

Thus, the restriction of p to I' defines a substitution cp as follows: cp(x) = [E](x) for every 
x E dom(I'), and cp(X) = [8](X) for every X E UaEr FTV(a). Also, p I' is just the condition 
A H- I'[cp] of definition 6.4, where A is the context uniquely determined by 8. 

We let TI, (-, -), i n l ,  inr ,  and [-, -1, be the obvious. For example, (I' D MI : a, r D M2: r) = 
I' D (MI, M2): a x r. Define I'D N:a  5 I' b M:a  iff M Ap N. Finally, we need to define fun, 
abst ,  t fun ,  and tabs t .  

We define fun(I' D M: a + r )  as the function [I' D M: cr + r ]  from Af to AF, such that 

for every I' b N: a E A;. 

We define tfun(I' b M:VX. a )  as the function [I'b M:VX. a] from T to U(Af)ucT, such that 

for every r E T. In this case, the in tfun@ is the function from T to T induced by a, such that 
@(r)  = u[r/X] for every r E T. 

For every pair of contexts I', A, for every substitution cp such that A H- (I?, x: a)[cp], for every 
judgement I', x: o b M: r, consider the function ~ [ r ,  x: u D M: rIA from A?' to AP' , defined such 
that, 

cp[I', X: u D M: rIA(A b N: a[cp]) = A D M[cp[x: = N]]: ~[cp], 

for every A b N: o[y] E A:"]. Given any such function cp[I', x: a D M: rIA, we let 

For every pair of contexts I', A, for every substitution cp such that A H- (I?, X :  *)[cp], for every 
judgement I', X: * D M: o, consider the function cp[I', X: * D M: aIA from T to U(Az)uET, defined 
such that, 

cp[I', X:*b M: aIA(r) = A D M[cp[X: = TI]: a[cp[X: = TI], 
3A2 = 0 when there is no provable judgement A D M: a for any M. 
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for every T E T. 

Given any such function cp[I', X :  * b  M :  aIA, we let 

tabst(cp[I', X :  * D  M :  aIA) = A D (AX .  M)[cp]: V X .  a[cp]. 

The pre-applicative p-structure just defined is denoted as ,UP. 

It is clear that cp[I', x:  a b M :  rIA is in [Au[9I + A ~ [ ~ ] ] ~ .  Let us verify that 

Since 
fun(abst(cp[I', x: a D M :  T ] ~ ) )  = fun(A D (Ax: a. M)[cp]: a[cp] + ~ [ c p ] ) ,  

fun(A t. (Ax: a. M)[cp]: a[cp] + r[cp]) = [A D (Ax: a. M)[cp]: a[cp] -t r[cp]], 

[A  D (Ax: a. M)[cp]: a[cp] -t r[cp]](A D N :  a[cp]) = A D ((Ax: a. M)[cp])N: r[cp], 

cp[I', x:  a D M :  rIA(A b N :  a[cp]) = A b M[cp[x: = N ] ] :  ~ [ c p ] ,  

and 
((Ax:  a. M)[cp])N +p M[cp[x: = N ] ] ,  

the inequality holds. Indeed, (Ax: a. M)[cp] is a-equivalent to (Ay: a. M[y/x])[cp] for any variable y 
such that y fl dom(cp) and y fl p( z )  for every a E dom(cp), and for such a y, (Ay: a. M[y/x])[cp] = 
( A y :  a[cp]. M[y/x][cp]).  Then, for this choice of y, 

Regarding the definition of t a b s t ,  letting be the function from T to T induced by a ,  such 
that @ ( r )  = u [ T / X ]  for every T E T, it is clear that cp[I',x:*~ M:aIA is in n o ( A i ) s E T .  Let us 
now verify that 

t fun(tabst(cp[I' ,  X :  * b  M :  0 1 ~ ) )  cp[r,X: *b  M :  

Since 
t fun( tabs t (cp[r ,X:*b  M :  C I A ) )  = t fun(A b (AX .  M)[cp]:VX. a[cp]), 

t fun(A D (AX .  M)[cp]: V X .  ~ [ c p ] )  = [A D (AX.  M)[cp]:VX. a[cp]], 

[A  (AX .  M)[cpl:vX.a[cpIl(~) = A D ( (AX .  M)[cpI)r: a[cpl[.rlXl, 

cp[r, X:*b M :  U ] A ( T )  = A D M[cp[X: = r ] ] :  a[cp[X: = T I ] ,  

(by a suitable a-renaming on X), and 

the inequality holds (the details of the verification using a-renaming are similar to the previous 
case). 

The other conditions of definition 3.3 are easily verified. 



As we already observed, a valuation p = (0, E) for the pre-applicative structure Lip, is char- 
acterized by a single context A such that, O(X) = (ax, A) iff A 2  # 0, and 8(c) = (a,, A) 
iff A 2  # 0, for every type constant, and E is a partial function such that ~ ( x )  is of the form 
E(X) = A D M,: a,, when it is defined. Also, given a context I', a valuation p = (0, E )  satisfies I' 
(p I') iff A tt- I'[p]. Then, by a simple induction on the typing derivation for I' D M: a, we can 
show that for any valuation p = (8, E) such that p I', then 

where A is uniquely determined by 0, and where cp is the substitution defined by the restriction of 
p = (0, E )  to  I', as explained at the beginning of definition 6.5. 

We now show how the structure LTp  of definition 6.5 can be made into a pre-applicative 
/37-structure. First, we recall the 7-like rules. 

Definition 6.6 The set of 7-like reduction rules is defined as follows. 

Ax: a. (Mx) - M, if x # FV(M), 

AX. (MX) + M, if X # FTV(M), 

 TI(^), r2(M)) - M7 
[Ax: a. (Minl(x)),  Ay: T. (Minr(y))] + M. 

We will denote the reduction relation defined by the union of the rules of definition 2.3 and of 
definition 6.6 as -pq (even though there are reductions other that P-reduction and 7-reduction). 

Definition 6.7 We define a pre-applicative structure as in definition 6.5, except that I' D M: 0 5 
I' D N: a iff N Ap, M, and that abst  and t a b s t  have a larger domain of definition. First, recall 
the definition of fun and tfun. 

fun(I' b M: a + T) is defined as the function [I' b M: a + T] from A; to A;, such that 

for every r D N: a E A;. 

tfun(I' D M: VX. a )  is defined as the function [I' b M: VX. a] from T to JJ(A;)aET, such that 

[I' D M: VX. u](T) = I' D MT: a[r/X], 

for every T E T. In this case, the in tfuna is the function from T to T induced by a, such that 
@(T) = a[r /X]  for every T E T. 

Then, we define 
abstr([I' D M: a + TI) = I' D Ax: a. (Mx): a + T ,  

where x 4 FV(M), and 

tabstr([I' D M: VX. a]) = r b AX. (MX): VX. a, 

where X 4 FTV(M). The structure just defined is denoted as L'Tp,. 



We need to check that LTp,  is a pre-applicative pq-structure. Let us first verify that 

funr(abstr([r D M: a + r])) [r D M: a + r]. 

Since 
funr(abstr([r D M: a --r TI)) = funr(F D Ax: a. (Mx): a -+ T), 

and 
(Ax: a. (Mx))N -p MN, 

since x 4 FV(M), the inequality holds. 

Let us now verify that 

tfunr(tabstr([r D M :  VX. a])) 2 [r D M:vx. a]. 
Since 

tfunr(tabstr([r D M: VX. a])) = tfunr(r D AX. (MX): VX. a), 

tfunr(r D AX. (MX): VX. a) = [I' D AX. (MX):VX. a], 

and 
(AX. (MX))r +p Mr, 

since X 4 FTV(M), the inequality holds. 

We also need to verify the conditions of definition 3.5. 

We have abstr (f unr (I' D M: a + r)) = abst ([I' D M: a + r]), and since 

abstr([r D M: a + r]) = r D Ax: a. (Mx): a --r r, 

where x 4 FV(M), and by the 7-like rule, Ax: a. (Mx) -p, M, we have 

abstr(funr(rr> M:a + r)) 2- r~ M:a + r. 

Similarly, we have tabstr(tfunr(r D M: VX. a)) = tabstr([I' D M: VX. a]), and since 

tabstr([I' D M :  VX. a]) = r D Ax. (MX): VX. a, 
where X 4 FTV(M), and by the 7-like rule, AX. (MX) -p, M, we have 

tabstr(tfunr(r D M: VX. a)) 2 I' D M: vx. a. 

The other conditions of definition 3.5, are immediately verified. 



7 The Realizability Theorem 

In this section, we prove the realizability lemma (lemma 7.6) for A'tV, and its main corollary, 
theorem 7.7. First, we need some conditions relating the behavior of a meaning function and 
covering conditions. We will also need semantic conditions analogous to the conditions (P4)-(P5) 
from the introduction of part I. 

Definition 7.1 We say that a site (A, P, Cov) is well-behaved iff the following conditions hold: 

(1) For any a E AS, any cp E [AS =. At], if abst(cp) exists, Covt(C, app(abst(cp), a)), and C is a 
nontrivial cover, then c 5 cp(a) for every c E C. 

(2) For any s E T ,  any 9 E rJcp(A5)sET, if tabst(cp) exists, Covq,)(C, tapp(tabst(cp), s)), and 
C is a nontrivial cover, then c 5 cp(s) for every c E C. 

In view of definition 6.2, definition 7.1 implies the following condition. 

Definition 7.2 

(1) For any a E A["]', if COV[,~~(C, app(A[r D Ax: a. M: (a + r)]p, a)) and C is a nontrivial 
cover, then c 5 A[r, x: a B M: r]p[x: = a] for every c E C. 

(2) For any s E T, if COV[,]~[~,,,I (C, tapp(A[I' D AX. M: VX. alp, s)) and C is a nontrivial cover, 
then c 5 Air, X: *D M: a]p[X: = s] for every c E C. 

For the proof of the next lemma, we need to add two new conditions (P4) and (P5) to (P1)-(P3). 

Definition 7.3 Given a well-behaved site (A, P,Cov), properties (P4) and (P5) are defined as 
follows: 

(P4a) For every a E AS, if cp(a) E Pt, where cp E [AS + At] and abst(cp) exists, then abst(cp) E 
Ps+t. 

(P4b) For every s E T,  if cp(s) E Pa(,), where cp E no(AS)sET and tabst(cp) exists, then 
tabst(cp) E Pv(@). 

(P5a) If a E Ps and cp(a) E Pt, where cp E [As + At] and abst(tp) exists, then app(abst(cp),a) E Pt. 

(P5b) If s E T and cp(s) E Pa(,), where cp E rJQ(AS)sET and tabst(cp) exists, 
then tapp(tabst(cp), s) E Pa(,). 

In view of definition 6.2, definition 7.3 implies the following conditions. 

Definition 7.4 

(P4a) If A[r, x: a D M: r]p E then A[I' D Ax: a. M: (a  + r)]p E P[u,,ls. 

(P4b) If A[r,X:*b M: a lp  E PIUle, then A[I' D AX. M:VX. a l p  E Ppx.ule. 

(P5a) If a E P[uls and All?, x: a D M: r]p[x: = a] E PITIs, then app(A[I' D Ax: u. M: (a + r)]p, a) E 

PITle. 

(P5b) If s E T and A[r, X:  *D M: a]p[X: = s] E P[ule[X:=s~, then tapp(A[I'r, AX. M:VX. alp, s) E 
P[u~e[~:=s~- 



Lemma 7.5 Given a well-behaved scenic site (A, P, Cov) and a family P satisfying conditions 
(PI)-(P5), for every sheaf valuation p = (8, 7) and every valuation p = (8, E )  sharing the same type 
valuation 8, for every context I', if p /= I?, then the following properties hold: (1) If p(y) E r[S]p 
for every y: 6 E I', x: a, if for every a, (a E r[a]p implies A i r ,  x: a D M: T ] ~ [ x :  = a] E r [~ ]p ) ,  then 
A[I' D Ax: a. M: ( a  -+ r)]p E r[a -+ r]p; 

(2) If A[r,X:*D M:a]p[X:= s] E r[a]p[X:= (s, S)], for every s E T and every S E 
Sheaf (A, P),, then A[I' D AX. M: VX. a l p  E r p X .  alp.  

Proof. (1) We prove that A[I' D Ax: a. M: (a  -+ ~ ) ] p  E PCO+TlO, and that for every every a, if 
a E r[o]p, then app(A[r D Ax: a. M: ( a  -+ ~ ) ] p ,  a )  E r[r]p. We will need the fact that the sets 
of the form r[a]p have the properties (S1)-(S3), but this follows from lemma 5.8, since (P1)-(P3) 
hold. First, we prove that A[r D Ax: a. M: (a  -, r)]p E P[u,,ls. 

Since p(y) E r[61)p for every y: 6 E I', x: a, letting a = p(x), by the assumption of lemma 7.5, 
Ail?, x: a D M: E r [ ~ ] p .  Then, by (Sl), we have A i r ,  x: a D M: ~ ] p  E PITlo, and by (P4a), we 
have A[I' B Ax: a. M:  ( a  -+ r)]p E P[,,,le. 

Next, we prove that for every every a, if a E r[a]p, then app(A[r D Ax: a. M: (a  -+ r)]p, a) E 
r [ ~ ] p .  Assume that a E r[a]p. Then, by the assumption of lemma 7.5, A i r ,  x: a D M: ~]p[x:  = a] E 
r [ ~ ] p .  Thus, by (Sl), we have a E Ptuls and A[r, x: a D M: r]p[x: = a] E By (P5a), we have 
app(A[I' D Ax: a. M: ( a  + ~ ) ] p ,  a )  E PITls. Now, there are two cases. 

If T is a base type, then r [ ~ ] p  = Since app(d[ I '~  Ax: a. M: (a  -+ r)]p, a) E PlTIe, we have 
app(A[I' D Ax: a. M: (a  -+ ~ ) ] p ,  a) E r [~]p .  

If T is not a base type, then app(d[ I '~  Ax: o. M: (a + r)]p, a) is simple (since the site is scenic). 
Thus, we prove that app(A[r D Ax: a. M: ( a  -+ ~ ) ] p ,  a) E r[r]p using (S3). By lemma 5.8, the case 
where app(A[I' b Ax: a. M: ( a  -+ T ) J ~ ,  a)  is stubborn is trivial. 

Otherwise, assume that COV[,]~(C, app(A[I' D Ax: a. M: (a + ~ ) ] p ,  a)), where C is a nontrivial 
cover. By condition (1) of definition 7.2, c 5 A[I', x: a D M: ~]p[x:  = a] for every c E C, and since 
by assumption, A[I',x:ar, M:T]P[x:= a] E r[r]p, by (S2), we have c E r [ ~ ] p .  Since c E r [ ~ ] p  
whenever c E C,  by (S3), we have app(A[I' D Ax: a. M: (a + ~ ) ] p ,  a)  E r[r]p. 

(2) We prove that A[I' D AX. M:VX. a lp  E PPx.,]0, and that for every s E T and every 
S E sheaf (A, P),, tapp(A[I' D AX. M: VX. alp, s) E r[a]p[X: = (s, S)]. By lemma 5.8, since 
(P1)-(P3) hold, the sets of the form r[a]p[X: = (s, S)] have the properties (S1)-(S3). First, we 
prove that A[I' D AX. M: VX. a lp  E Ppx. 

By the assumption of lemma 7.5, A[I', X:  * D M: a l p  E r[a]p[X: = (s, S)] for every s E T 
and every S E Sheaf(A, P),. In particular, this holds for s = 0(X) and S = rl(X), and we have 
A[I',X:*D M: a l p  E rl[a]p. Then, by (Sl), we have Ai r ,  X: *D M: a l p  E PIUle, and by (P4b), we 
have A[I' D AX. M:  VX. a lp  E Ppx. 

Next, we prove that tapp(A[I' D AX. M: VX. alp, s) E r[a]p[X: = (s, S)], for every s E T 
and every S E Sheaf(A, P),. By the assumption of lemma 7.5, A[I',X:* D M: a]p[X: = s] E 
r[a]p[X: = (s, S)].  Thus, by (Sl), we have A[r, X: *a M: a]p[X: = s] E Ptule[x:=sl. By (P5b), we 
have t app(A[I' D AX. M: VX. alp, s) E Ptule~X~=sl. NOW, there are two cases. 

If a is a base type, then r[a]p[X: = (s, S)] = P[ule[x:=sl. Since t a p p ( d [ r ~ A X .  M:VX.o]p, s) E 
Ptu18[x:=sl, we have tapp(A[r D AX. M: VX. alp, s) E r[a]p[X: = (s, S)]. 



If a is not a base type, then tapp(A[I'  D AX. M :  V X .  alp, s )  is simple (since the site is scenic). 
Thus, we prove that tapp(A[I'  D AX. M:VX.  alp, s )  E r [ a ] p [ X :  = ( s ,  S ) ] ,  using (S3). The case 
where tapp(A[I'  P AX. M :  V X .  alp,  s )  is stubborn is trivial. 

Otherwise, assume that COV~, ,~~[~: ,~~(C ,  tapp(d[I' D AX. M :  V X .  alp, s ) ) ,  where C is a nontrivial 
cover. By condition ( 2 )  of definition 7.2, c 5 A[I',X:*b M : a ] p [ X : =  s] for every c  E C ,  and 
since by assumption, A[I' ,X:* D M : a ] p [ X : =  s] E r [a]p[X:  = ( s ,  S ) ] ,  by (S2) ,  we have c E 
r [ a ] p [ X :  = ( s ,  S ) ] .  Since c E r [ a ] p [ X :  = ( s ,  S ) ]  whenever c E C, we deduce using (S3)  that we 
have tapp(A[I' D AX. M : V X .  a ] p , s )  E r [ a ] p [ X :  = ( s ,  S ) ] .  

We now prove the main realizability lemma for A'?'@. 

Lemma 7.6 Given a  well-behaved scenic site (A, P,  Cov) and a  family P satisfying conditions 
(P1)-(P5), for every sheaf valuation p  = (6,  7) and every valuation p  = (6,  E )  sharing the same 
type valuation 8, for every context I', if p  p I' and p(y) E r[S]p for every y: 6  E I', then for every 
I' D M :  a ,  we have A[I' D M :  alp E r[a]p .  

Proof. We proceed by induction on the derivation of I' 9 M :  a .  If M is a variable x, then 
A[I' D x: a lp  = E ( X )  E r [a]p ,  by the assumption on p. 

If M = M I N I ,  where I' D M I :  ( a  -+ T )  and I' D N1: a ,  by the induction hypothesis, 

Air D M I :  ( a  + r ) ] p  E r [ a  + r ] p  and A[I' t. Nl :  a lp  E r[a]p .  

By the definition of r ia  -t r ] p ,  we get app(A[I' 9 M I :  ( a  -+ r ) ]p ,A[ I ' 9  N l : a ] p )  E r [ ~ ] p ,  i.e., 
Air ( M I N I ) :  ~ ] p  E r [ ~ ] p ,  by definition 6.2. 

I f  M = Ax: a. M I ,  where I' r> Ax: a. M I :  ( a  + T ) ,  consider any a E r [a]p  and any valuation p 
such that p(y) E r[S]p for every y: S E I?. Note that by (S3)  and (PI), r [ a ] p  is indeed nonempty. 
Thus, the valuation p[x: = a] has the property that p[x: = a](y)  E r[S]p for every y: S E I', x: a .  
Applying the induction hypothesis to  I', x: a  D MI:  T and to  the valuations p, and p[x: = a] ,  we have 

Since this holds for every a E r[a lp ,  by lemma 7.5 (I), A[I' D Ax: u. MI:  ( a  -, r)lp E r [ a  -+ T ] ~ .  

If M = M1r,  where I' P M1r: a [ r / X ]  and I' I> M I :  V X .  a ,  by the induction hypothesis, 

Ail? D MI:  V X .  alp E r p X .  alp.  

By the definition of r[VX. a lp ,  letting s  = 1710 and S = r [ r ]p ,  we get 

tapp(A[I'  9 Ml:VX.  alp, 8~16)  E r [ a ] p [ X :  = ( s ,  S ) ] .  

However, by lemma 5.7, we have 

which is just 

r [ a [ ~ / x l l ~  = r[aBp[x:  = ( 8 ,  S ) ] ,  



since s = [r]O and S = r[r]p, and thus, by definition 6.2, we have A[I' a (M1r): u[r/X]]p E 
r 8 a [ ~ / X l l ~ .  

If M = AX. MI, where I'a AX. Ml:VX. a, consider any arbitrary s E T and any arbitrary 
S E Sheaf(A, P),. Since X $ dom(r), by lemma 5.6, we have r[6]p = r[b])p[X: = (s, S)] for 
every y: S E (I', X: *). Thus, we can apply the induction hypothesis to I?, X:  * a Ml : a, and to the 
valuations p[X: = (s, S)] and p, and we have 

A[r, x :  * D  MI: a lp  E r[a]p[X: = (s, S)]. 

Since the above holds for every s E T and every S E Sheaf(A, P),, by lemma 7.5 (2), we have 
A i r  a AX. MI: VX. a l p  E r p X .  alp. 

If M is a closed term of type a, lemma 6.3 implies that AIDM: a l p  is independent of p, and 
thus we denote it as AIM: a]. We obtain the following important theorem for 

Theorem 7.7 Given a well-behaved scenic site (A, P, COV) and a family P satisfying conditions 
(PI)-(P5), for every judgement P M: a where M is closed, we have AIM: a] E PIolO. (in other 
words, the realizer AIM: a] satisjes the unary predicate defined by P, i.e, every provable type is 
realixa ble). 

Proof. Apply lemma 7.6 to the judgement aM: a, to any sheaf valuation p = (8, 7) such that 

q(X) = for every X E V ,  and to any valuation p. CI 

8 Applications to the System x'~'~ 
This section shows that theorem 7.7 can be used to prove a general theorem about terms of the 
system A+lV2. As a corollary, it can be shown that all terms of A+*@ are strongly normalizing and 
confluent. 

In order to apply theorem 7.7, we define a notion of cover for the site A whose underlying 
pre-applicative structure is the structure Lip. 

Definition 8.1 An I-term is a term ofthe form either Ax: a. M,  AX. Ad, (M, N),  in l (M),  inr(M) 
or a copairing term [M, N]. A simple term (or neutral term) is a term that is not an I-term. Thus, 
a simple term is either a variable x, a constant c, an application M N ,  a type application MT, a 
projection nl(M) or nz(M). A term M is stubborn iff it is simple and, either M is irreducible, or 

M' is a simple term whenever M f g M' (equivalently, M' is not an I-term). 

We define a cover algebra on the structure C l p  as follows. Let P be a (unary) property of 
typed second-order X-terms. 

Definition 8.2 The cover algebra Cov is defined as follows: 

(1) If J? D M: a E P(,, r) and M is an I-term, then 

C O V ( ~  a M: U) = {{r D N: a I M N } ) .  



(2) If I' D M: a E P(,, r) and M is a (simple and) stubborn term, then 

(3) If I' D M: a E P(,, r) and M is a simple and non-stubborn term, then 

Cov(I' D M:a )  = {{I'D N : a  I M N}, {I'D N:a I M Q Ap N, for some I-term Q}). 

Recall from definition 4.3 that M is simple iff it has at least two distinct covers. Thus, definition 
8.2 implies that a term is simple in the sense of definition 8.1 iff it is simple in the sense of definition 
4.3. Similarly a term is stubborn in the sense of definition 8.1 iff it is stubborn in the sense of 
definition 4.3. Also, definition 8.1 implies that LTp  is scenic. 

Properties (PI-P3) are listed below. 

Definition 8.3 Properties (P1)-(P3) are defined as follows: 

(PI)  I', x: a b s: a E P(,  r), I' D c: a E P(,, r), for every variable x and constant c (such that 
Type(c) = a). 

(P2) If I' D M: a E P(,, r) and M +p N,  then I'D N:a  E P( ,  r). 

If M is simple, then: 
(P3a) If I' D M: (a + 7) E P( ,,,, r), I' D N:o  E P(,,r), I? D   AX:^. Mt)N:r  E P(,,r) whenever 

M f a  Ax: u. M', then I'D MN: T E P(,, r). 

(P3b) If I' D M: VX. a E P(vx.,, r), r E 7, I' D (AX. M')T: ~ [ T / X ]  E P(,[,IX], r) 
whenever M f AX. M', then I' D MT: a[ r /X]  E P(,[,lx~, r). 

A careful reader will notice that conditions (P3) of definition 8.3 are not simply a reformulation 
of conditions (P3) of definition 4.4. This is because according to definition 8.2, I' D M: a, where M 
is a non-stubborn term, is covered by the nontrivial cover {I'D N: a ( M Ap Q Lp N), where 
Q is some I-term, but the conditions of definition 8.3 only involve reductions to I-terms. However, 
due to condition (P2) and the fact that a nontrivial cover is determined by the I-terms in it, the 
two definitions are indeed equivalent. 

If I' D M: ( a  -+ T) E P(,,,, r) where M is a stubborn term and I' D N: a E P(,, r) where N 
is any term, then I' D MN: T E P(,, r) by (P3a). Furthermore, M N  is also stubborn since it is a 
simple term and since it can only reduce to an I-term if M itself reduces to a an I-term. Thus, 
if r D M: (a  -t T) E P(,,,, r) where M is a stubborn term and I' D N: u E P(,, r) where N is 
any term, then I' D MN: T E P(,, r) where M N  is a stubborn term. We can show in a similar 
fashion that (P3b) implies that if I' D M: VX. a E PpX.  ,, r) where M is a stubborn term, then 
r D Mr :  a[ r /X]  E P(,[,lxl,r), where M r  is a stubborn term, for any T E I. 

Properties (P4-P5) are listed below. 



Definition 8.4 Properties (P4) and (P5) are defined as follows: 

(P4a) If r , x :  U D  M: r E P(,,r), then r D Ax: a. M: ( a  -+ T) E P( ,,,, r). 

(P4b) If ~ , X : * D  M: a E P(,, r), then I'D AX. M:VX. a E P(vx.,, r). 

(P5a) If I' D N: a E P(,, r) and r D M [NIX]: T E P(,, q, then I' P (Ax: a. M)N: T E P(,, r). 

(P5b) If T E 7 and I' r, M[r/X]: u[r/X] E P(,[T/x~, q, then (I' D AX. M)r: u[r/X] E P(,[,/X~, q. 

Again, a careful reader will notice that conditions (P5) of definition 8.4 are not simply a re- 
formulation of conditions (P5) of definition 7.4. However, because of (P2) and the fact that a 
nontrivial cover is determined by the I-terms in it, the two sets of conditions are equivalent. 

We now show that the conditions of definition 4.2 and the conditions of definition 7.2 hold. 

Lemma 8.5 Definition 8.2 defines a cover algebra, and the site ( .C lp ,  P ,  Cov) is scenic and well- 
behaved. 

Proof. Conditions (0)-(4) of definition 4.2 are easily verified. Let us verify conditions (5) and 
(6). In these proofs, we often drop the context I' to simplify the notation. 

(5) If Cov(M) = (0, {Q 1 Q 5 M)) then cov(MN) = (0, { Q  ( Q 5 MN)}, and if Cov(C, M)  
and Cov(D, M N )  with C and D nontrivial, then for every Q E D, there is some M' E C 
such that Q 5 M'N. 

The first part says that if M is stubborn, then M N  is stubborn, which has already been 
verified. If the covers C and D are nontrivial, then by definition 8.1, M and M N  must be simple 
and non-stubborn terms. In this case, Q E D means that 

where P is an I-term. This can happen only if M f p MI, where M' itself an I-term. In this case, 
there is some reduction 

M N  f p M'N Zip P l * p  Q, 

where M' is an I-term. Since M is simple and non-stubborn, definition 8.1 implies that M' E C. 

(6) If Cov(M) = (0, {Q I Q 5 M } }  then Cov(Ms) = (0, {Q 1 Q 5 Ms}), where s E 7, and if 
~ o v ( C ,  M )  and Cov(D, Ms) with C and D nontrivial, then for every Q E D, there is some 
M' E C such that Q 5 M's. 

The first part says that if M is stubborn, then MT is stubborn, which has already been verified. 
If the covers C and D are nontrivial, then by definition 8.1, M and M N  must be simple and 
non-stubborn terms. In this case, Q E D means that 

where P is an I-term. This can happen only if M f M', where M' itself an I-term. In this case, 
there is some reduction + M r  -p M'T P A p  Q, 



where M' is an I-term. Since M is simple and non-stubborn, definition 8.1 implies that M' E C. 

Let us now verify the conditions of definition 7.2. First, recall that for the structure .Up, for 
every valuation p = (8, 6) such that p I?, there is some A uniquely determined by 8, such that 
A I t  I'[p], and 

where tp is the substitution defined by the restriction of p = (8, E) to  I'. 

(1) For any a E A [ ~ ] ~ ,  if Covlrls(C, app(A[T D Ax: o. M: (a  + r)]p, a)) and C is a nontrivial 
cover, then c 5 A[r,  x: a D M: ~]p[x:  = a] for every c E C. 

We have app(A[I' D Ax: a. M: ( a  + r)]p, a)  = A D ((Ax: o. M)[cp])a: ~ [ p ] ,  where cp is the substi- 
tution defined by the restriction of p to I'. By definition 8.1, since C is nontrivial, c E C means 
that 

((Ax: 0. M)[p])a f Q Lp c, 

for some I-term Q. This can only happen if there is a reduction 

However, we have (M[p])[a/x] = M[p[x: = a]] (using a suitable renaming of x). By the definition 
of LIp[I', x: a D M: TIP, we have CIpl[I', x: a D M: r]p[x: = a] = A D M[p[x: = a]]: ~ [ p ] ,  and this 
part of the proof is complete. 

(2) For any s E I, if COV[,~~[~:,,~(C, t app(d[ I '~  AX. M: VX. alp, s)) and C is a nontrivial cover, 
then c 1: A i r ,  X: *D M: a]p[X: = s] for every c E C. 

We have tapp(A[r D AX. M:VX. alp, s) = A D ((AX. M)[cp])s: (o[s/X])[p], where p is the 
substitution defined by the restriction of p to I?. By definition 8.1, since C is nontrivial, c E C 
means that 

((AX- M)[pI)s f a  Q A p  c, 

for some I-term Q. This can only happen if there is a reduction 

However, we have ( M  [p])[s/X] = M[p[X: = s]], and (a[s/X])[p] = a[p[X: = s]], (using a suitable 
renaming of X). By the definition of L-I@[I', X:  * D M: alp,  we have 

and the proof is complete. 

Thus, the site ( L I P ,  P, Cov), is scenic and well-behaved. Consequently, we can apply theorem 
7.7, and get a general theorem for proving properties of terms of the system ~ ' 3 ~ .  In fact, for the 
structure Lip, for a property P satisfying conditions (P1)-(P5), by (PI) and (P3), every variable 
x is stubborn. Thus, for every context I?, we can apply lemma 7.6 to the sheaf valuation p = (8, 7) 
such that 8(X) = (X, I') and q(X) = Px for every type variable, and to the valuation p = (8, E) 

such that E(X) = x for every variable x, since by lemma 5.8, r [ S ] p  contains every stubborn term, 
for every x: S E I'. Consequently, we have the following theorem. 



Theorem 8.6 If P is a family of A-terms satisfying conditions (P1)-(P5), then P(,, r) = A(,, r) 
for every type a (in other words, every term satisfies the unary predicate defined by P). 

Proof. By lemma 8.5, the site (C lp ,  P, Cov) is scenic and well-behaved. By the discussion just 
before stating theorem 8.6, for every context I', if we consider the sheaf valuation p = (8, 7 )  such 
that 8(X) = (X, I') and q(X) = Px for every type variable, and the valuation p = ( 8 ,  E )  such that 
~ ( x )  = x for every variable x, we have p(x) E rl[u]p for every x: S E I'. Thus, we can apply lemma 
7.6 to any judgement I' D M: u and to p and p just defined, and we have 

However, in the present case, LTp[I' D M: a lp  = I' D M: a. Thus, I' D M: u E r[u]p, and since 

r[a]p P(,, r ) ,  we have I' P M: a E P(,, r), as claimed. 

As a corollary, we can prove strong normalization and confluence. We prove strong normaliza- 
tion below. For simplicity of notation, instead of using judgements I'D M: a, we will use the terms 
M. Since we are concerned with reduction properties, this is not harmful at all. 

Theorem 8.7 The reduction relation of the system is strongly normalizing. 

Proof. Let P be the family defined such that P, = SN, is the set of strongly normalizing terms 
of type a. By theorem 8.6, we just have to check that P satisfies conditions (P1)-(P5). First, we 
make the following observation that will simplify the proof. Since there is only a finite number of 
redexes in any term, for any term M,  the reduction tree4 for M is finitely branching. Thus, if M is 
any strongly normalizing term (abbreviated as SN term from now on), every path in its reduction 
tree is finite, and since this tree is finite branching, by Konig's lemma, this reduction tree is finite. 
Thus, for any SN term M ,  the depth5 of its reduction tree is a natural number, and we will denote 
it as d(M). We now check the conditions (P1)-(P5). (PI) and (P2) are obvious. 

(P3a) Since M E SN,,, and N E SN,, d(M) and d(N) are finite. We prove by induction on 
d(M) + d(N) that M N is SN. We consider all possible ways that M N -p P. Since M is simple, 
M N  itself is not a redex, and so P = MINI where either N = N1 and M +p MI, or M = MI 
and N -p Nl. 

If MI is simple or MI = M ,  d(Ml) + d(Nl) < d(M) + d(N), and by the induction hypothesis, 
P = MINI is SN. Otherwise, Ml = A s :  a. MI, Nl = N ,  by assumption (Ax: a. M1)N is SN, and so 
P is SN. Thus, P = MINI is SN in all cases, and M N  is SN. 

(P3b) Since M E SNvx.u, d(M) is finite. We prove by induction on d(M) that M T  is SN. We 
consider all possible ways that MT -p P. Since M is simple, MT itself is not a redex, and so 
P = M1r where M +p MI. 

If MI is simple, d(Ml) < d(M), and by the induction hypothesis, P = M1r is SN. Otherwise, 
Ml = AX. MI, by assumption (AX. M')T is SN, and so P is SN. Thus, P = M1r is SN in all cases, 
and MT is SN. 

(P4) These cases are all similar, and hold because a reduction cannot apply at the outermost 
level. 

'the tree of reduction sequences from M 
5the length of a longest path in the tree, counting the number of edges 



(P4a) Any reduction from Az:a. M must be of the form  AX:^. M Ap Ax:a. M' where 

M fp  M'. We use a simple induction on d(M). 

(P4b) Similar to (P4a). 

(P5a) Since N E SN, and M[N/x] E SN,, the term M itself is SN. Thus, d(M) and d(N) are 
finite. We prove by induction on d(M) + d(N) that (Ax: a. M)N is SN. We consider all possible 
ways that (Ax: a. M ) N  +p P. Either P = (Ax: a. Ml)N where M -+p MI, or P = (Ax: a. M)Nl 
where N --+p N1, or P = M[N/x]. In the first two cases, d(Ml) + d(N) < d(M) + d(N), 
d(M) + d(Nl) < d(M) + d(N), and by the induction hypothesis, P is SN. In the third case, by 
assumption M[N/x] is SN. But then, P is SN in all cases, and so (Ax: a. M)N is SN. 

(P5b) This case is quite similar to  (P5a). Since M[r/X] E SN,[TIxl, the term M itself is 
SN. Thus, d(M) is finite. We prove by induction on d(M) that (AX. M)T is SN. We consider all 
possible ways that (AX. M)T +p P. Either P = (AX. M1)r where M -p MI, or P = M[r/X]. 
In the first case, d(Ml) < d(M), and by the induction hypothesis, P is SN. In the second case, by 
assumption M[r /X]  is SN. But then, P is SN in all cases, and so (AX. M)T is SN. 

Confluence can be shown exactly as in Gallier [3]. 

9 Conclusion and Suggestions for Further Research 

A semantic notion of realizability using the notion of a cover algebra was defined and investigated. 
For this, we introduced a new class of semantic structures equipped with preorders, called pre- 
applicative structures. In this framework, we proved a general realizability theorem. Applying this 
theorem to the special cases of the term model for the simply-typed A-calculus and for the second- 
order A-calculus, we obtained some general theorems for proving properties of typed A-terms, in 
particular, strong normalization and confluence. 

This approach clarifies the reducibility method by showing that the closure conditions on can- 
didates of reducibility can be viewed as sheaf conditions. Indeed, cover conditions provide a clear 
axiomatization of the conditions needed for the proof of the realizability theorem. Our approach 
yields a clearer separation of the semantic versus the syntactic ingredients of the proof. For ex- 
ample, the fact that the sheaf property is an invariant with respect to  the notion of realizability 
is a semantic property which has little to  do with A-terms. In fact, this uses only part of the 
pre-applicative structure (app, tapp, TI, ~ 2 ,  inl, inr). On the other hand, at some point, it is 
necessary to interpret A-terms in order to show what amouts to the soundness of our realizability in- 
terpretation, and it is in this part that substitution and reduction properties of A-terms play a role. 
In traditional presentations of proofs using reducibility, the underlying pre-applicative structure of 
the term model is only implicit, and it is harder to see that substitutions are really valuations. It 
is also practically impossible to see that cover conditions are present. 

As we mentioned in part I of this paper, Hyland and Ong [5] show how strong normalization 
proofs can be obtained from the construction of a modified realizability topos. Very roughly, 
they show how a suitable quotient of the strongly normalizing untyped terms can be made into a 
categorical (modified realizability) interpretation of system F. There is no doubt that Hyland and 
Ong7s approach and our approach are related, but the technical details are very different, and we 



are unable to make a precise comparison at this point. Clearly, further work is needed to clarify 
the connection between Hyland and Ong's approach and ours. 

We have checked that in all proofs of reducibility that we are aware of, except for a recent 
paper by McAllester, KuEan, and Otth [7], the conditions on sets of realizers are sheaf ~onditions.~ 
However, the pre-applicative structures defined in this paper are not always general enough to 
carry out these proofs (for example, in the case of untyped A-terms and typing systems with 
intersection types). McAllester, KuEan, and Otth [7], prove various strong normalization results 
using another variation of the reducibility method, and we need to understand how this method 
relates to the method presented in this paper. We believe that nonextentional structures are 
interesting in their own right, and thus we think that it would be interesting to  investigate classes 
of nonextentional structures more general than pre-applicative structures (perhaps using category 
theory). When dependent types are considered, we run into the problem that interpreting types 
requires interpreting terms. We were able to define cover conditions that seem adequate for proving 
a general realizability theorem, but we ran into problems in defining the meaning of terms. The 
problem has to do with type-conversion rules: a term no longer has a unique type, and we run into a 
coherence problem in attempting to define the meaning of term by induction on typing-derivations. 
Overcoming this difficulty seems to  be the most pressing open problem. More generally, we believe 
that there is a deeper connection between realizability semantics and other kinds of semantics, 
and that the notion of a cover algebra plays a significant role in that connection. We believe that 
understanding this connection would be worthwhile. 
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