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1 Overview 

This document describes a modified Jack system for off-line motion production and on-l~nc ( r ea l - t i~~ r t ,~  
motion playback to an external IRIS-Performer-based host rendering system. This work was do11c8 1 1 1  

partial fulfillment of Contract #N61339-94-C-0005for the US Marine Corps through KAIVCTSD ( N a v i ~ l  

Air Warfare Center, Training Systems Division). 
The work described herein was contributed by several of the members of the Center for lIurnitl~ 

Modeling and Simulation: J o h n  Granier i  (Design / Engineering / Integration), R a m a  Bindigarlavalc, 
(animator, posture transitions), Hanns-Oskar P o r r  (animator, posture transitions), Hyeongseok K o  
(walking and running motion), Micheal  Hollick (locomotion playback control), Bond-Jay  Ting (hotl!- 
sculpting), f i a n s i s c o  Azoula (body sculpting, anthropometry), Pei-Hwa H o  (body normalizatior~ j .  

J o n a t h a n  C r a b t r e e  (Performer, TIPS file format), X inmin  Zhao  (slaving), Zhongyang Feng (111s 
logfile player), We l ton  Becket and B a r r y  Reich (terrain reasoning and reactive agent control). 

2 Description of JackITTES 

The Team Tactical Engagement Simulator (TTES) system is being designed and built, a t  NAWCTSI) i l l  

Orlando, Florida. This system projects one or more soldiers into a virtual environment, where they nlay 
engage hostile forces. The hostiles throw stones and fire their weapons a t  the soldier. See Figure 1 for n 
schematic overview of the system components. For a full description of TTES refer to the proceedings 
of INCOMSS-94, where a presentation regarding TTES was made. 

The soldier stands in front of a large projection screen, which is his view into the environment. HI! 
has a sensor on his head and one.on his weapon. He locomotes through the environment by s t e p p i ~ ~ g  
on a resistive pad and controls direction of movement and field of gaze by turning his head. The soldicr 
may also move off the movement pad, and the view frustum is updated accordingly based on his vc. 
position (head-coupled display). This allows the soldier, for example, to crouch down to ser undw ;I 

parked vehicle, or to peek around the corner of a building while still affording himself the protection of 
the building. 

Essentially. both the hostiles and the soldier can move around the environment and engage racll 
other. The 11ost.iIes are controlled via a DIS stream of commands coming from a computer-generatetl 
forces (CGF) simulator. (The CGF system is currently under construction a t  the Institute for Simirlatio~~ 
and Training, Orlando, FL. I think they are calling it "SAFDI"). The TTES filters and trarls1at.e~ tllc.  

DIS st.ream into a set, of posture and command "tokens" that are passed to Jack. .Jock then animate.< t 



human figures by transitioning from one posture to another, or locomoting in a cyclical posture change. 
Jack passes the joint angles back to T T E S  for animating in an IRIS Performer run-time articulat.ed 
database of human geometry. 

The  T T E S I J a c k  connection is made through two T C P / I P  stream sockets (The first incarnat.ion of 
the interface was done with shared-memory. This was dropped in favor of the flexibility of the socket 
interface - the machine Jack runs on and the machine TTES runs on don't have to be the same, althougll 
they can be). 

T T E S  controls the global position of each human figure (Jack only moves the figures in its local 
coordinates), using DIS dead-reckoning algorithms and information about the terrain. The  posr ttrc, 
transitions are recorded in such a way that  the direction of the face and gun are al\vays in a kllon.lt 
direction, so the human can be globally oriented correctly when it fires its weapon TTES also crc,ntt.. 
the necessary DIS Entity State PDUs to represent the real soldier (mapping fro111 scnsor v;llr~c..; i111o t 1 1 ,  
small set, of postures in the Entity State PDU), and sends them out over t l l ~  l~et  lo I I I P  ( ' ( ; I . '  .;!..tr,rl~ ; I I I , I  
o t l~e r  T T E S  stations that are participating in the exercise. T T E S  also pcrfor~~ls  111t. I~nl l i s~  ics ( c . o r ~ ~ l ~ ~ ~ r : i t  1 1  1 1 1  

for firing the soldier's gun iilto the scene and determining if and where ~ I I c ,  I I O S I  i l l *  I I I I I I I ; I I I  li;~rrt.\ :,.I 1 1 1 :  

3 Description of Implementation 

Below, I summarize the implementation details of modifications to Jack and the T T E S  s t r~ l )  progralll I \! 1 

do not, have an actual T T E S  trainer station) which mimics the communications ~nt~rfncc)  and ~ C I I C I V ~ I I I L  
of the real TTES program with Jack. 

3.1 DIS Protocol 

The  information representing the human entity in the simulation is limited by what. is stored i n  all I-;IIIII! 
State Protocol Data  Unit (PDU) in the DIS protocol. The  information we are interested in fronl 1111. 1:s 
PDI: is shown in Figure 2. The human is always in one of the 4 postures, along with a weapolt S I ; I I ~ .  

We only modeled the two values of the weapon state, d e p l o y e d  and firing, and not. s l o u ) e d  (which \vou l t i  

represent the gun slung over the shoulder or something like that) .  
The  DIS protocol also allows for upto three weapons on a soldier, but we only modeled one. illso I 1 1 1 ,  

protocol allows for a large library of weapon types to  fit on the soldier (i.e. pistols, grenades. ~ n a c l l r ~ ~ (  
guns, blow pipes, knives, etc). We only modeled AK-47 and M I 6  machine guns. 

3.2 Posture Transitions - Static 
In  t h t  case where the magnitude of the velocity vector is zero (meaning the human is not movingj. \ \ . I ,  

want I ( ,  transition between the possible static postures. We encoded the possible static st.ates of 1 1 1 1 .  

11urna11 in a posture graph, where the nodes represent static postures, and the directed arcs represet11 t I t ( ,  

animated transit.ions, or movement, from posture t o  posture. 
The possible transitions between static postures are encoded in the posture graph of Figure :1. '1'111, 

actual postures are shown in Figure 4. Each directed transition from posture A to B has art assoc.~- 
at.ed motion file, which scripts the transition on the standard human figure a t  the origin of t11v .l(rrX. 
environment. For example, the transition between (Standing Stowed) and (Standing Firing) is i l l  a f i le .  
s t s t o w a s t f  i r e m o t i o n s  . env. For several transitions between A and B, we only author a directed I rarl- 
sitiorl from A t o  B, and to  go from B to  A, we simply play the transition backwards. Each nlot,ior~ lilt. 
typically h a s  about 10-15 primitive Jack motions to transition the human and the gun from one post,urc. 
to another. 

I n  general, a given posture transition was first studied from a video tape of a soldier, as supplirtl 
by NAWCTSD ( the  movie files are supplied on the tape). The goal was not so much as to completrly 
recreate the motion in Jack but more to  treat the video as a visual template for the movemellt. I-or 
instance. i t .  served as an example of where the arms where in relation to  the feet, or what dirrctio~r t l t ~ .  





Figure 2: Essential information from the Entit'y State PDU 
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Figure 3: The posture transition graph 

slio~rlder was tilted, or the general timing of the individual movements of the body in relation to each 
other. 

O n c ~  t,he individual body segment movements were visually recognized and isolated, the animat.ors 
set out t o  create corresponding movements in Jack using its goal-oriented motion facilities. To  facilitat,? 
t.he cre;it.ion, i t  was found helpful to  display the figure and the respective motion from several angles on 
the screen, which helped in the precise placement of the limbs in 3D space. 

There was a restriction that  the ending posture of a posture transition had to  be identical 1.0 t.hc 
starting posture of the next posture transition. This was no problem when we created motions in the 
forward direction (e.g.. Stand to  Kneel). But when we had to create the motions in the reverse d i rec t io~~  
(lineel t o  Stand) ,  it was very difficult to  get the ending posture to  a particular position (joint angles. 
displacements, torso position, etc had t o  coincide exactly) and still get "good7' motions. This dificulty 
was overcome by creating mostly forward-moving motions, and then using the abi1it.y to play channelsets 
in reverse (see below), to get. the corresponding reverse direction, as described above. In most. cases. 
the resulting motions looked fine. In a few cases, the reverse motion was scripted explicitly for het,t.er 
results. 

Also, we at.tempted to  only animate those sequences which were absolutely neccessary. For example. 
we have no direct transition from Prone Firing to Kneeling Firing. The run-time system can find the 
shortest pat,ll (in time) between any two postures in the graph, and execute the sequence of t.ransitions. 

Value 

sf nndzng, kneeinng, prone, deslroyed 
(Stowed) ,  Deployed, Fzrzng 

P,, Py , P, 
V z ,  Vy, \Iz 

theta 

Units 

meters 
meters/second 
compass heading in degrees 



Figure 4: The postures a soldier can take in DIS 

3.3 Posture Transitions - Dynamic/Cyclic 

IYhen the magnitude of the velocity vector is not equal t o  zero, the soldier is moving (either forwards 
or backwards, depending on the difference between the heading and the direction of the velocity vector) 
by either locomoting (if appearance is upright) or crawling (if appearance is prone). When the soldier 
is moving, we call this a dynamic or cyclical posture transition. 

T h e  animations were generated by Hyeongseok KO's walking system. He generated 6 strides for each 
t.pe of walking (forward walking, backward walking, running): left and right starting steps ( tha t  go 
from the base posture to  the cyclic state), left and right ending steps (that  go from the cyclic state to 
the base posture), and left and right cyclic steps. T h e  crawling animation was generated manually, and 
is based on two animations - one that  goes from the base (prone) posture t o  the cyclic state,  and one 
complete cyclic motion. When crawling is ending the starting animation is played backwards to  get back 
to the base posture. 

Playback control of the animation frames is based on a simple state machine shown in Figure 5 l .  

jl'alking is begun whenever the velocity of a figure goes from zero to  a non-zero value. The  heading 
and velocity vector are compared a t  this time t o  determine whether the figure is walking forwards or 
1,ackwards. Once t.his determination is made, the appropriate animation information is referenced and 
used. T h e  purpose of this initial step is to  create a smooth transition from the base posture (standing 
deployed) t o  the walking animation. 

\?'hen the first step is finished, the cyclic "walking" s ta te  is started. This s ta te  continues to  generate 
l~orrnal walking motions until the velocity goes back t o  zero (a t  which time the ending step is used), 
or tile velocity becomes greater than the walkjrun transition value. If this occurs, and if the figure 
is walking forwards (there is no backwards running), the running animations are referenced and used. 
Therc is a single walk->run transition step that  is played, then the "running" cyclic state is entered. 
Tlle figure will continue to  run until the velocity drops below the threshold, a t  which t ime the run->walk 
step will be used. and the "walking" state will be re-entered. 

'Note that in this graph, the nodes are posture transitions that can loop, or states, and the arcs are c o n d i t i o n s  to 
transit ion bet.ween states 
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Figure 5 :  The walking/running/crawling state transition graph 

V 

v > 0 

Stadstop Crawl 
A 

v < = 0  



3.4 Preparation for Motion Playback 

Once the individual soldier motions/transitions were authored, they were recorded to  channelset files 
and organized together into posfure graph files. Then they are re-recorded onto lower-resolution soldier 
figures, and then loaded and bound for playback to the TTES program. I'll describe each phase, along 
with the corresponding Jack commands which do the work. 

3.4.1 R e c o r d i n g  to C h a n n e l s e t s  

LYhen you create a regular motion in Jack and then execute go, the interpolated frame motion is stored 
in a channel.  A channel is storage for any time-varying pardmeter. For example, each joint in the 
environment has its own channel to store the angles . The channels are tightly bound t.o each object for 
which they store data.  I added two new objects to  Jack and Peabody. a channelset and a sharedchannel. 
A sharedchannel holds the same data as a channel, except 1 1  is not bound to a specific object in the 
environment. This allows it to  share its data between several objects of the same type (here, the term 
objecf means either a joint(angles) or a figure(position)). A channelset organizes a set of sharedchannels 
together, giving them a name and a couple of other parameters. Channelsets are used to store the 
posture transitions and other motions described above. Each motion sequence, once it  is interpolated in 
Jack, is saved as a channelset file (including only those channels from the environment that  are part of 
the soldier and gun). 

Once a channelset is created and loaded into Jack the sharedchannels can be bound to objects in the 
environment. Each sharedchannel can be bound to  many objects (of the same type). For example, a 
sharedchannel containing joint angle data for the left knee can be bound to all figures (of the appropriate 
type) with a left knee. A bound channelset is called, of course, a bound channelset.  The amount. of 
memory required to  bind a channelset is very small in comparison to the size of the data  in a channelset. 

A channelset is a Peabody construct, stored in an environment file. An example channelset is shown 
in Figure 6.  

Both a channelset and a sharedchannel have a name associated with them, but it is arbitrary (it 
doesn't relate t o  any Peabody construct), but it should be descriptive (as in the above example). The 
Peahody fields of the channelset are: 

s i ze  : T h i s  is the number of frames stored in each sharedchannel in the set. 

c o u n t  : The number of sharedchannels in the set. 

f p s  : T h e  frames-per-second that the set was saved at .  From this, one can deduce the actual time 
represented in this set. For example, if size=90 and fps=60, then this set represents (90160) or 1.5 
seconds. This also alerts the sampling functions on the sampling frequency for the motion. 

Sharedchannels must be declared within a channelset construct. There are no restrictions on the 
number or type of sharedchannels in a channelset. For TTES each channelset usually contains two 
figure channels (for the soldier and gun) and joint channels for the soldier. The fields of a sharedcliannel 
are: 

t y p e  : This is either "sharedfigure" or "sharedjoint" for now, denoting a figure channel (figure location) 
or a joint channel (joint angles). 

o b j e c t  : In the case of a "sharedfigure" channel, this is a string which just holds the figure name of 
the figure from whence this channel was recorded, and is not used after created. In the case of a 
"sharedjoint" channel, i t  is the name of the joint, and will be used to  locate a joint to bind to. 

p ro tof i l e type  : This is the name (without path prefix) of the figure file from which this object came. 
I t  is used when the channel is bound. This channel can only be bound to  objects which have the 
same figure file name (this is a matching criteria for sharing). 



I 1 
channelse t  crawl2prstoa.  chset  { 

s i z e  = 48;  
f p s  = 60; 
count = 70; 
sharedchannel s o l d i e r  { / *  f i g u r e  p o s i t i o n  */ 

type  = "sharedf igure" ; 
protof  i l e t ype  = "so ld ierxam.  f ig"  ; 
ob jec t  = " so ld i e r "  ; 
frame[O] = ("lower-tors~.proximal~~, trans(31.68cm,43.53cm,-31.05cm)) ; 
frame [l] = ("lower-torso.proxima1" , trans(31.68cm.42.77cm, -31 -05cm)) ; 

frame [48] = ("lower-torso .proximal1', trans(11.52cm,4.15cm, - 2 6 . 4 9 ~ ~ ) )  ; 

1 
sharedchannel  r i gh t - t oe s  { /* j o i n t  angles */ 

type  = "sharedjo in t" ;  
p ro tof  i l e t ype  = "soldier-cam.f ig l ' ;  
ob j ec t  = "right- toes";  /* R(y) */ 
frame [ O l  = (0) ; 
frameC11 = (0) ; 

frame C481 = (0) ; 

1 

I I 

Figure 6: An Example Channelset f i l e  



frame[?] : This is the frame data ,  indexed per frame. For figures, it's a root site and a transform. For 
joints, it 's the joint angles (in radians). The Peabody parser was modified to  allo\i~ field names 
with indices. 

Rlost of the channelsets for TTES were recorded at  60Hz, to provide for better motion sampling. and 
the ability to  vary playback tlme (see posture graph files below). 

T h e  commands added t o  J a c k  for working with channelsets are the following: 

write-channelset : This command will create a new channelset file, from currently defined (and int.rr- 
polated) channels in the environment (i.e. after you've create some motions and typed go).  TIIV 
command prompts for an output file and a channelset, name: followed be t,he begining ant1 e n d ~ n g  
frame numbers (of current motions) to  grab frames from. The nonlenclature for cl~aiinrlsc~t I l ; l r l l r ' i  

are any valid Peabody identifier, without the "/" character. I t  also prompts for a fils and btrltlt 
value. For example, i f  begin=100, end=220, fps=30, and stride=2. you'd tic, pulling 60 fra~tlc%.\, o r  

2 seconds, of niot.ion from fra.mes (100, 102. 104. ... . 220)).  It also ~ ) r o ~ i i p t i  for i1 1 1 ~ 1  o f  i igr~r, , i  
and the channelset will be created wit11 all the channels (figure pos~tion ant1 joint i~~iglv!-) rr0111 I 1 1 ,  
list of figures. In t.he case of TTES we always included a soldier and a gull. 

load-channelset : This command prompts for a channelset file (an  .env filc). and rcads i t .  T l ~ c  
channelset is built via the call-outs from the Peabody parser. The channelsets car). alternativcl!.. 
just be loaded via the read3 ile command. The channelsets will have their names correspontl~rrg 
to what they were named when written. 

bind-channelset : This command prompts for a channelset (from the list. of loaded charit~elsets). i111(1 

then for a new name for the bound channelset you are creating. It then proceeds t o  creatc ;I ~ r c ~ n .  

bound channelset, prompting you for figures of the appropriate types (i.e. from the protofi1c.- 
type fields of the sharedchannels). For example, if the channelset name you are binding is c a l l ~ ~ l  
"stand2crawl". and you are binding this to  the 3rd soldier-gun pair, where the  soldier's figurr tlnrllt. 
is "soldier3". then a good name for the bound channelset would be "stand2crawl/soldier3" 

play-bound-channelset : Once a bound channelset is created, you can play i t .  This corllmand prompt.\ 
for a bound channelset, as well as a direction (forwards or backwards) and a transition tinic- j -  1 
means play it at  the stored time), and then will play the motion. 

step-bound-channelset : Similar to  the above command, but  allows you to single-step the frames. for 
debugging purposes. 

set-channelset-parameters : This command sets the  only global parameter concerning bouird c11w11- 
nelset playback: "yes" means play the bound channelset by traversing each frame, so you'll see t I I V  
complete motion, as fast as i t  can be drawn (which most likely is less than 30%). or "no" nn?an+ 
play the motion in real-time, sync'd to  a real-time clock. This will skip frames, so the  m o t ~ o n  play< 
back in true "wall-clock" time. The  setting should be "no" during playback to  TTES. 

print-channelsetinfo : This command will print information, a t  several levels of verbosity, at)our 
memory usage and contents of stored channelsets. 

rerootf igure-channel : This is a utility command, which operates on a channel (not a sl~aredchannel 
or a hound shared channel). Its purpose is t o  re-root a figure position channel so all the root sit(, 
references are the  same. For example, in the  motion data  recorded from the  walking a l g o r i t h ~ i ~ .  t h i ,  
figure root moves all over the place ( the  toes, heels, hips, pelvis). and we want to  transform 11 so all 
references are to the pelvis (for performance, the soldier figures are never re-rooted during motloll 
playback, although it is possible). The command simply prompts for a figure root site. then finds 
t,lie corresponding channel, then plays it out .  re-rooting to  the new site. and re-recording over t i r ~  
old posit ion da ta  as it goes. This  command can take a while to  execute. 



3.4.2 P o s t u r e  G r a p h  files 

The channelsets can be organized into posture graph files, for easier loading, and optionally, for motion 
playback (only the static posture transitions make use of posture graphs; the walking and running control 
code only uses post.ure graph files as a convenience for storing channelset motions). 

An example posture graph file (for the static posture transitions of the D1.f i g  (See Section 3.4.3 
below), as shown in Figure 3 ,  is shown in Figure 7. 

The file is divided in 3 sections. The first section introduces the tokens for the nodes of the graph (the 
static posture). The second section just lists the channelset files for all motion, and assigns a number to 
each. The  third section describes the actual direcbed arcs, or transitions, in the graph. Each l i n ~  start.+ 
with the beginning and ending posture, followed by the numSer of the channelset to play. Fol1on.rni: 
that is the direction of play on the channelset, and the time it should take for traversal. If you c l l ; t l ~ :~  

the timing here, the playback system will sample the motions accordingly. 
The following commands in Jack  are for dealing with posture graphs. Note that therc is cr~rrc~itI> 1 1 ,  

comnland for creating a posture graph file. They are usually created via t Ile I.niversal Data Al i~n l j )~~ l ; i~  o r  

(a.k.a.  gnu-emacs). 

load-posturegraph : This command prompts for, then loads a posture graph file By con \cn t~o~l  t l l c  

suffix for the posture graph file is .graph. It also asks for a name to  give the posture graph ?'Ills 
name will be used later for reference Once the actual graph 1s loaded. all the channelsets will 
loaded also. 

bind-posturegraph : This command will take a posture graph, and create a bound posfurr gmpii 
analogous to  the channelsets and bound channelsets. It prompts for a posture graph, and a I I ~ , \ \  

name for the new graph. I usually just add a prefix like "soldier3/" to the postlure graph nanic. .<(I 

if the posture graph name was "ptrans", then the bound posture graph is "soldier3/ptrans" 

It also traverses the channelsets and collects all the unique protofigfile fields, and prompts yo11 

to  pick a figure of each kind. It then creates bound sharedchannels (bound channelset) for cac.ll 
channelset. The bound channels then are named something like "soldier3/ptrans/ststow~cran.1" 
(i.e. they are prefixed by the bound posture graph name). The names are not so important. J I I S I  

as long as they make some kind of sense. 

posture-change : This command lets you test out a posture graph. It prompts for a bound posturl 
graph, and then one of the nodes of the posture graph. I t  will then search for a path from t l ~ e  r u r -  
rent node to  the target node in the posture graph (shortest path as defined by traversal time). a11tl 
then execute the set of transitions. For example, if the bound posture graph is currently a t  STAN1)- 
I N G S T O W E D ,  and you request PRONE-FIRING, i t  will transition from STANDSTO\VED to 
CRAi1'L to  PRONESTOWED then t o  PRONE-FIRING. 

. lorX uses three posture graph files for the TTES simulation: so ld ie r low.graph  holds the s t a t ~ c  PO.\- 

t ure transition graph, s o l d i e r l o c o .  graph holds the walking and running transitions, and soldier-crawl . graph 
llolds the crawling transitions. Note that the last two aren't proper posture graphs in the preceding senscl. 
bu t  are just used for convenience for storing and creating bound channelsets. 

Note that  when a posture transition is requested, the system will sample the pre-recorded mot1011 at 
the frame rate frequency, so it is guaranteed to  always play back in real time. For a 2 second posturc, 
transition recorded a t  6Ofps, and a current frame rate of the image generator of 20fps, the playbacl; 
system plays frames 0, 3, 6 ,  ..., 120. It recomputes the elapsed time on every frame, in case the franic 
rate is not uniform. 

3.4.3 L o w e r  reso lu t ion  body model 

Because of frame-rate requirements and polygon-count restrictions, it was necessary to  build a lower 
resolutio~l human figure for use in the runtime TTES system. The low res soldier figure (DI . f i g )  11w 
tllc following properties, compared to  the regular, polybody human: 



// First, the posture names and posture tokens 
// (they must start at 0, and be consecutively numbered) 
8 / /  number of posture states 
0 STANDSTOWED 
1 STANDPIRE 
2 KNEELSTOUED 
3 RNEELIIRE 
4 PRONESTOWED 
5 PRONE-FIRE 
6 CRAWL 
7 DEAD 
# marks end-of-postures 
/ /  
/ /  Now, the posture transition tokens, and channelset filenames 
/ /  (they must start at 0, and be consecutively numbered) 
//token filename 
1 7  / /  number of transition files 
0 ststow2stfirelow.chset.env 
1 ststow2kstovlow.chset.env 
2 ststow2crawllov.chset.env 
3 ststow2kfirelow.chset.env 

1 4  prstow2deadlow.chset.env 
15 prfire2deadlow.chset.env 
1 6  stf ire2kstowlov.chset .env 
# marks end-of-postures-transitions 
/ /  Now, the actual transitions (arcs in the graph) 
/ / 
/ /  start end channelset playback time 
STANDSTOUED STAND-FIRE 0 forward 0 . 8  
STANDIIRE STANDSTOWED 0 backward 0 .8  
STANDSTOWED KNEELSTOWED 1 forward 1.6 
KNEELSTOWED STANDSTOWED 1 backward 1.6 

PRONE-FIRE DEAD 1 5  forward 0.8  
STANDPIRE KNEELSTOWED 1 6  forward 1 . 6  
KNEELSTOUED STANDPIRE 1 6  backward 1 . 6  
DEAD STANDSTOWED 4 backward 1 0 . 0  
# marks end-of-arcs 

Figure 7: A Posture Graph file 



The D I  .f i g  emulates the polybody in most every detail, except that it has no fingers (fingers and palm 
are a single segment), no spine, no eyeballs, and no clavicle psurf (i.e.. the clavicle is a virt.ual segment). 
Tlie DI . f i g  link structure is t,he same as the polybody, except for hands (no fingers) and spine ( t h ~  
spine was replaced with  two rotational joints, and one translational joint, to  mimic the compression t Irat 
the  normal spine can do).  The geometry of the segments of D I . f i g  were not normalized, nlaktt~g 1 1  

un-scalable (anthr~~ometr ical lv)? .  Currently: DI .f  i g  has the dirrlensions of a 95th percentile n ~ a l r  a.. 

defined in ANSUR 88, as given by SASS v2.2.1. 

3.4.4 Slaving and re-recording 

Because of the difference in internal joint structure between the s o l d i e r .  f i g  and DI . f i g ,  it,s mot ion 
cannot be controlled by the available human control routines in Jack (which all make assumptiot~s 
ahout the structure of the human figure). Instead of controlling its motion directly, we use the existing 
comnlands to  control the motion of the regular human (as described above) and map the motion on to 
the low resolution figure, DI.fig. We call this process slavzng, because the high resolution f i g u r ~  is the, 

master, and the low resolution figure is the slave. 
N'e use Jack's constraint system to  do the slaving. Even though the two figures have different internal 

joint struct,ures. their dimensions (e.g., length of arms? legs, etc.) are the same. Our goal is have the 
important landmark sites on both bodies match during the motion. Since from waist down the t w o  
figures have the same internal joint structure, we can simply copy the joint angles. From waist up. 
constraints are used to insure the motions of the two figures match. We create one constraint for each 
sit.? to be matched. The important sites to  be matched are (and the respective constraints): 

1 Constraint I endeffector (on D I  .f ig)  I goal (on soldier .f ig)  ( joint chain (on D I  . f i g )  / I  
11  ~ 1 - b e l l v  / middle-torso.ur,r,er-torso 1 tl2.DImiddletareet 1 waist - bellv n 

DI-torso 
I DIsight 

Jack< constraint system works best if the initial configuration of the figure is close to  the goal 

- 
DIleftpalm 
DIrightplam 

, L)I_leftelbow 

- - - 
configuration. To give a good starting configuration for the constraint solver, we first copy the joint 
angles of the master to  the slave (blending the 17 spine joints onto the 7 DOF torso of the slave). After 

-. 
upper-torso.dista1 
bottomhead.sight 

copying the joint angles, the constraint solver is invoked to make sure that the important sites of two 
figures match during the motion. Because of geometry differences, in general we cannot expect all the 

.2 

upper-torso.dista1 
bottomhead.sight - ., 

sites to match exactly. In the case which we cannot match all the sites, we would prefer to  match tlie 

belly - top of spine 
tor, of mine - eves 
el bows - palms 

shoulders - elbows 

left-palm.palmcenter 
right-palm.palmcenter 
lef t -u~~er-arm.dis ta l  

111ost important sites as close as possible. In this application, the hands always hold a gun. So th r  

L 

1 

left-palm.palmcenter 
right-palm.palmcenter 
left-u~~er-arm.dista1 

matching of the hand motion is very important, otherwise the hands may go through the gun. Usit~g tlie 

2Pei-Hwa Ho is currently fixing this problem, by making some commands in J a c k  that open and automate the usually 
painful and error-prone normalization process 



priority feature of J a c k  constraint system, we can assign higher priority to  the palm center matching 
constraints than others. 

In summary, the slaving process consists of two steps: 

.. Copy all the joint angles from the master to the slave. 

2 .  Evaluate constraints to  make sure that important sites (such as the palm-centers) of the two figures 
match up. 

This slaving technique could be exploited in the future to  allow us to define a v a r i e ~  of lo\\.t,r- 
resolution (than s o 1 d i e r . f  ig)  figures, but still program and create motions for t.he regular 11unla11 
Then we just creat,e a unique slaving procedure for each new lower-resolution figure we've tlefint~tl. 

Once the channelsets have been recorded for s o l d i e r .  f i g  (from the previous sect ion). I l~r.! a r t .  r t -  

loaded into Jack, and played back on a standard soldier. A lower-resolution soldier figure is t l 1 c . 1 1  ~ I ; I \ ~ . \ I  
onto the regular soldier, and the resulting motions are saved for the lo~ver-resolution figure. 

The con~mands for creating a master-slave pair in Jack are: 

c r e a t e m a s t e r s l a v e - p a i r  : This command prompts for a s o l d i e r .  f i g  figure, and a DI . f i g  figure,. 
and creates the master-slave pair. It launches a SimulationFunction wl~icli updates t l ~ e  slave O I I  

each iteration of AdvanceSimulation in Jack. 

s lave-parameters  : This command allows you to  set various parameters concerning the siavc al~tl I 1 1 0  

slaving procedure. Usually, it would be executed like: 

t u r n s l a v e - o n  and t u r n s l a v e ~ f f  : These commands toggle the slave updating on and off. 

t u r n - b e h a v i o r - c o n s t r d f  : This command turns the behavioral constraints of the masttr (solclic,r, 
figure off. This is useful if you're slaving a master that is being driven by channelsets. ivl~c~rts ! . O I I ~  

just interested in the kinematic motion (i.e, the master is not being driven by mot.ions, I ) I I ~  I )? .  
channelsets.). 

c r e a t e - c h a n n e l s e t m o t i o n  : If you're creating slave motions for a master soldier that. already l1a5 i t . -  
channelsets loaded, you can make the master execute its channelset by creating motions with 11115 

command. Once the motions are interpolated, you'll have the channels ready for the slave to crc;ltth 
the slaves channelsets. 

Each channelset recorded in the first phase (on soldier.fig) is reloaded and played back on a ninstcv 
s o l d i e r  .f ig ,  while a D I  .fig is slaved. This then gives us the channelsets for DI .fig, which arc. tllc~l 
saved Imck to new channelset files. Thus, the re-recording is accomplished. 

So the final set of steps, from motion creation t o  playback are: 

1 .  Create motion files for a soldier and gun (posture transitions, walking, running and crawling) 

2 .  Record these motions to  channelsets. 

3. Build a posture graph file, to  organize the channelsets logically. 

4.  Create a master-slave pair, between a soldier master and a DI slave. 

5. Re-load all the channelsets for the soldier, and create a channelset motion for each channelsct ( t 1 1 t  

channelsets can be loaded via the posture graph file). 

6. Re-interpolate the motions. 

T. \\'rite out new channelsets for the slave Dl. 



Figure 8: A View of Quantico village with several soldiers in different postures 

3.5 TTESPerformer stub program 

We built a TTES stub program, which allows us to load the Quantico village database, several soldiers, 
and mimic the control of the soldiers with simple keyboard commands (to emulate the commands coming 
from SAFDI and TTEScontrolled humans). It is called ttes-stub, and it is based on the pickf ly  
demonstration program distributed with Performer 1.2. It is a fairly generic Performer application. 

The  Quantico village database is loaded via the standard Flighb-format loaders. The human figures 
are stored in TIPS  files, and loaded via the TIPS-format loader. The format of the run-time database 
generated for the humans is described in Section 7. See Figure 8 for a look at, what the village looks like. 

I will briefly describe the structure and functionality of the program here and in the next section. 
The  coordinate transforms between the Peabody environment and the Performer environment are the 
following: 

II 
- ~~ I Jack I Performer I )  

u p  vector I +Y I +Z II 
1 Zero heading I -Z I +Y 1 - ,  
1 Distance units I cm I m 1 

There are two main structures that  are used in ttes-stub to connect with J a c k  : a JackProcess 
object (Figure 9 )  for making a connection to  Jack and a Jacksoldier object (Figure 10) for controlling 
t l ~ e  articulation. Note that in the code shown here, not all fields are shown, just the essential ones. 

The declaration of the two classes is in jacksoldier .h .  The definition is in jacksoldier.  c++. Th? 
normal sequence of events would be: 

jack = new JackProcO: 
This creates a JackProc object and initializes all the internal fields. Then. the friendly and hostile 
soldiers are loaded via calls to LoadTIPSFile. and the appropriate fields in JackProc should be set. 
Tllen a Jock process must be launched. 



c l a s s  JackProc { 
pub1 i c  : 

pfGroup *host i lesold ierc lone;  // t h e  s o l d i e r  group f o r  cloning 
pfGroup *fr iendlysoldierc lone;  // t he  s o l d i e r  group f o r  cloning 

JackUpdateTable *updatetable;  
i n t  n j o i n t s ;  
i n t  n f i g s ;  
Jo in t Inf  o jo in t s in f  o [MAXJOINTS] ; 
FigureInf o f igs inf  o [MAXIIGURES] ; 

i n t  readsocket;  / /  t he  f d  were reading from 
i n t  writesocket;  / /  t he  f d  were v r i t i n g  t o  
i n t  connected; // a r e  ve connected yet? 
i n t  jackready; / /  is  jack ready yet? 
i n t  q u i t t i n g ;  // everything s tops  ... 
JackSoldier  *table[JACK-MAXSOLDIERS] ; // a t a b l e  of s o l d i e r s  
i n t  t a b l e s i z e ;  / /  how many a r e  in  t h e r e  

JackProc 0 ; 
v i r t u a l  i n t  s end( in t  token,  int s i z e ,  void *jpk) ; 
v i r t u a l  i n t  launchcchar *host ,  char *remotehost, char *exe, char *da tad i r )  ; 
v i r t u a l  i n t  r ece ive  (char *message) ; 
v i r t u a l  i n t  in it socket connection^) ; 
v i r t u a l  i n t  start (char *soldierpref ix) ; 
v i r t u a l  i n t  q u i t  0 ; 
f r i e n d  void JackSocketReader(JackProc s j p ) ;  
f r i e n d  c l a s s  JackSoldier;  

1 ; 

ex te rn  JackProc * jack;  // t he  jack process mapper  

Figure 9: Jackprocess 



c l a s s  JackSold ie r  { 
p u b l i c  : 

i n t  soldiernum; / /  f o r  i n t e r n a l  r e f e r e n c e  
JackProc * j p ;  // t h e  Jack process  c o n t r o l l i n g  t h i s  s o l d i e r  
pfGroup * s o l d i e r ;  / /  t h e  Performer c lone  
pf DCS * j o i n t p t r s  CMAXJOINTSI ; 
pf DCS *f i g p t r s  [MAX-FIGURES] ; 

i n t  s f l a g ;  / /  is  t h e r e  something i n  t h e  socke t  b u f f e r ?  
i n t  b u f f e r ;  / /  consumer b u f f e r  t o  u s e .  . . 
JackPackl  buf [21 ; / /  j ack  update  packe t ,  double b u f f e r  
i n t  buf s i z e  [2] ; / /  s i z e  of each b u f f e r  

JackSold ie r  (pf Group *clone,  JackProc t j p )  ; 
v i r t u a l  i n t  receive(JackPack1 * j p k , i n t  s i z e ) ;  // f i l l  a b u f f e r  
v i r t u a l  i n t  u p d a t e ( ) ;  / /  update t h e  Performer t r e e  of t h i s  s o l d i e r  
// upda te  t h e  Jack s i d e  of t h i s  s o l d i e r  
v i r t u a l  i n t  r e q u e s t ( i n t  appear ,  i n t  veapon, f l o a t  ve loc i ty [3] ,  

f l o a t  head ing ,  f l o a t  pos i t ion[3] ,  i n t  immediate) ; 
// f r i e n d l i e s  
f r i e n d  vo id  JackSocketReader(JacbProc * j p ) ;  

I ; 

Figure 10: JackSold ie r  



jack->launch(<host>, <remotehost>, <exe>, <data directory>); 
where <host> and <remotehost> are the machine names for the local machine and the machine Jack  
should run on (they can be the same, of course). The <exe> is the name of the Jack  executable, in our 
case jack-ntsc-g, and <data directory> is the startup directory of Jack  (where all the data files are). 
Jack  is launched via a call to rsh. After Jack  is launched, we establish the two sockets: 

j ack- ini it socket connection^) ; 

The above command opens one read and one write socket to  Jack  ( J a c k  will be waiting for these 
connections). It also sproc()'s a process to read the incoming packets from Jack .  Once the sockets are 
established, we can communicate with Jack .  We send the startup commands to Jack  via: 

jack->start ("soldierlou") ; 
which just sends a JCL command to Jack  read3 ile("jack-ttes-soldierlow. jcl"). This start. 
Jack  initializing, which may take a while. Before sending any updates to Jnck  you have t o  wait r l l l t ~ l  

J a c k  is ready. This is signaled when the jack->jackready flag is set (usually takes about. 30-40 seco~rcl- 
for J a c k  to  get ready). 

while ( 1 )  { 
i f  (jack-> jackready) 

break; 
s leep(1)  ; 

I 

Once J a c k  is ready, we can start adding soldiers, and receiving updates from Jack .  For each soldier. fir.<[ 
you create a new soldier: 

JackSoldier *newsoldier = new JackSoldier(jack->hostilesoldierclone, jack); 
where the first parameter is a Performer tree to clone for the soldier, and the second is the jack proccw 
pointer. An example implementation of the use of JackSoldier is in the file simsoldier. c++, which 11a. 
a sample class called SimSoldier, which implements a kind of control for a soldier in the I'erforrllcxr 
environment, along with simple simulations (soldiers that walk in squares and circles). Once a soldirr 15 

created, you can send updates to  Jack  via: 

newsoldier->request(<posture>, <weapon>, <velocity>, <heading>, <posi t ion>);  
This sends the appropriate information to Jack  so it can decide which set of joint angles (frame w i t l l l l r  

a bound channelset) to playback. 

3.6 Start-up in Jack 

Jock  is launched from within the TTES process via a call that looks like: 

r s h  <remotehost> (unsetenv REMOTEHOST; setenv DISPLAY :O; 
jack-ntsc-g -W 9,600,500,1000 
-M 9,600,450,480 -A 9,350,80,10,00urier7 
-E open-ttessockets(<host>) 
-E changedirectory(<directory>) 

which does a remote shell (so your .rhosts file should contain <remotehost> if it's different than 
the local) to launch Jack .  The command arguments are: -W: this sets the window location: -hl: srts 
message window location; -E: execute the command. 

The first thing Jackdoes  is open the read and write sockets to  TTES. This is done via the o p e n - t t e s s o c k e t s  (<has 

call. J a c k  acts as the server for the connection, so it blocks until TTES requests the sockets. The second 
command. changedirectory (<directory>) will set the default directory to where the TTESrelat ed 
data files are (for J a c k ) .  This allows you to keep Jack  and its data files in a separate tree from the rest 
of TTES. 

Once the sockets are open. TTES will send the command read2 ile(" jack-ttes-soldierlow. j c l "  ) 
\vhich will force Jack  to begin the initializing sequence. This file is below: 



1 read3 ile("jack-ttes-soldierlow. env") ; 
2 createsoldierstate("s0" ,"Di21)", "AK-47-0") ; 
3 createsoldierstate ("sl" ,"Di2J1', "AK-47-1") ; 

createsoldierstate("s9" ,"Di29", "AK-47-9") ; 
set-channelsetparameters ("no") ; 
set-ttes~eportinterval(lO.OO) ; 
set-ttesheading-offest(256.00,0.00,256.00); 
s e t - t t e s s o l d i e r - t h r o t t l e  (0.04) ; 
set~ttes1e~ortinterva1(30.00) ; 

s t a r t ~ t t e s s o c k e ~ s i m u l a t i o n ~ )  ; 
disablegraphics 0 ; 

The  first, thing done (line 1 )  is to load the environment file containir~g tilt, 1 0  soltiit,r/gur~ fig~rrc 
pairs. Lines 2-10 create the t,en soldzer states (structures that  hold all statt' info for 1 1 1 ~ ~  holtlic,rj I or. 

example, createsoldierstate("s0" , "Di2_0" ,  "AK-47-0") creates soldier " S O " .  f ron~  I I)l.fig figtrr, 
Di2-0 and gun AK-47-0. The first soldier state create triggers the loading of all the post urt. grap11 f i l , ~ . ~  
and associated channelset files. Also, the channels are bound to the soldiers at this point. Linc 11 sets 

the playback of the channelset t o  real-time (i.e. frame skipping). Line 12 t,ells J a c k  to report st.atus ever>- 
10 seconds, t o  the  shell. You can set this to a higher value to remove the messages that appear. I,inc 
13 sets the  heading offsets associated with the posture transitions, walking. and crawling channelsc~~!- 
respectively. This was necessary, as the channelsets were recorded before we had the int.erface ~ ' o r k r ~ ~ g .  
and before we realized we had a bad offset in there! (it was easier to  add this command than t.o re-rt.cortl 
all the channelsets). Line 14 sets a "throttle" value, in seconds. This actually slo\vs t.he rate of upd;ltc 
packets sent to  TTES. This  was necessary, as Jack  running on its own processor can send out ahout l i )( i(~ 

updates a second, for 10 soldiers, and the max we'll need for 10 is about 300. This value. set at 0.0.1 
seconds, or about 1/30th of a second, will stop Jack  from sending out updates for the same soldlcr a1 

greater than the inverse of the number (e.g. 1/30 means don't send more than 30 updat,es per sccor~tl\ 
If your image generator is never going to  go over 15Hz, set this value t o  1/15, or about. ,065. I t  sa\.cx.< 

on net traffic. Line 16 sends the "I'm ready!" message to TTES so it can proceed with the  simulatlo~r 
And finally, line 17 shuts off J a c k  graphics. J a c k  will not redraw its windows, or spend any tilric doin: 
anything graphical. At this point, J a c k  is ready to  receive updates from TTES and send data  back. 

3.7 Motion Playback in Jack and TTES 

Once the  simulation is set up,  TTES sends requests to  J a c k  (via JackSo1dier::request.). and receives J O I I I I  
angle packets (via JackSo1dier::receive). The format of the packets going from TTES to J a c k  is s11on.11 
in Figure 11. 

This is essentially the key DIS parameters for the soldier. The values are in Performer coord~rlatc~s. 
and are transformed in J a c k  when they arrive. Currently, heading and position should he sent,, but tl~c. 
are not reflected back in the update packets sent to TTES. This is by design, as TTES ~van t s  to s~vt 

heading and position itself. Position is of the feet (i.e. ground level). The pseudo-code for t l ~ r  nlai~l  
soldier controller in Jack  (which is run every iteration of the  J a c k  main loop, for each soldier) is S ~ I O \ \ . I I  

in Figure 12. 
The  updat.e packets are sent out of J a c k  from within the motion controllers (which loosely corrc,- 

spond t o  the "continue ..." statements in the above code; the motion controllers actually are running 
'concurrently', as SimulationFunctions in J a c k ) .  There are three different motion controllers: posturr.. 
\valking/running. and crawling. Each one's job is to pick the correct frame from within a bound clia~l- 
nelset.. and t.his frame is formatted and sent, to TTES as an update packet. 

T h e  format for joint angle update packets from J a c k  t o  TTES look like: 



#define JACKTTESDEAD 1 
#define JACKTTESVPRIGHT 2 
#def i n e  JACKTTESXNEEL 3 
#def ine  JACKTTESPRONE 4 
#define JACKTTESYEAPONSTOYED 0 
#define JACKTTESMAPONDEPLOYED 1 

s t r u c t  JackPackIn { 
i n t  so ld ier index ; // same on Jack and TTES s i d e  [O . .9] 
i n t  appearance; / /  one of above (JACKTTES-*) [1,7,3,4] 
i n t  weaponstate; / /  one of above (JACKTTES_WEAPON+) [O, 11 
f l o a t  ve loc i ty  C31 ; / /  i n  meters/second 
f l o a t  heading; / /  i n  degrees 
f l o a t  positionC31; / /  i n  meters 
i n t  immediate; / /  do we want t h i s  now? "snap to"  

1 ;  

Figure 11: TTES Packets 

\\'hen the TIPS file is loaded into the Performer runtime database, the loader writes out a file of 
articulation parameters, and this information is used to  build an u p d a t e  t a b l e ,  which in turn is used 
to interpret the update packet shown above. Both J a c k  and TTES use the same update table. Each 
entry in the table contains an index, an object name (for either a joint or a figure), and the number of 
degrees-of-freedom passed for this item. Therefore, the number of dofs per entry varies, usually 1 to 3 
for joints, and 16 for figure position (the whole 4x4, but we'll cut this down later to  7: 3 for position, 4 
for orientation). 

'This design allows us to  transmit the minimum amount of information per update, t o  keep ~ ~ e t w o r k  

soldierindex = [O ,91 
size of data  array = I S 



S o l d i e r s t a t e :  : so ld ie rmanager0  

{ 
i f  ( a  packer h a s  arrived) { 

copy packet 
convert from TTES to Jack coordinates 

1 
compute v e l o c i t y  
compute heading 
i f  (soldier is currently transitioning) { 

grab new heading 
continue posture transition 
r e t u r n  

1 
i f  ( a  packet has arrived and 

(posture is different o r  weapon is different) ) { 
i f  (soldier is locomoting) 

cancel the step 
select the goal posture node from posture graph 
start a new posture change (from current to goal) 
r e t u r n  

1 
i f  ( ( v e l o c i t y  > 0) and (soldier is PRONE)) { 

continue crawling 
r e t u r n  

1 
i f  ( ( v e l o c i t y  > 0) and (soldier is STANDING)) { 

continue either walking or running 
r e t u r n  

1 
i f  (no  motion or posture change, but a heading change) { 

send the last update packet with heading change 
1 

Figure 12: S o l d i e r  manager's main loop 



traffic at a minimum (a  complete low-res soldier update is about 440 bytes), and affords us the ability 
to take advantage of frame-to-frame coherence in a motion, and not transmit data that's not changing 
(although we haven't tried that yet). The first incarnation of the J a c k T T E S  interface was implemented 
via shared memory. We passed the entire joint transform (16 floats) for each joint. While this has the 
advantage of speed, it has the greater disadvantage that J a c k  needs to run on the same machine, and 
will not scale well to many soldiers. 

4 Running the Demo 

To run the demonstration executable, you should first unload the tape (tar format) into a directory, say 
/usr/demos/ttes. For convenience, define an environment variable to point here. for example, 

% setenv TTES /usr/demos/ttes 

The files will be in directories according to the organization in Section 6 .  Your environment shoulti 
contain the necessary settings for running Jack .  

4.1 Starting things up 

To start the demo, run the following commands3: 

The parameters are: -W: window size for the program; -H: host to  run Jack  on (can be local): - J .  
J a c k  executable; -I: directory to run J a c k  in; -F: Performer data file path; urban.flt is the Quantico 
village database. Once the program starts, J a c k  will be launched (you should see its screen come up) 
ttes-stub will load the village database, and finally show you a bird's eye view of the whole area. 1 . o ~  
should pick the "SOLDIER CAM" view from the "View" menu on the left side of the window. Tills 
places you on a tethered camera, attached to soldier 0,  who is standing in the middle of the village 
Soldier 1 is walking in a square, and soldier 2 is walking in a circle. 

4.2 Keyboard commands 

The ttes-stub program is derived from pickfly, so it has ail the features of that program (see Performer 
1.2 documentation). In addition, the following keyboard commands are added (these are to exercise the 
features of moving the soldier figures around) (Note: the current soldier starts at  0, and all commands 
are relative to  the current soldier): 

"11 executables were compiled for Irix 4.0.5 



1 I Set posture to DEAD on current. soldier. 
2 I Set ~ o s t u r e  t o  STANDING on current soldier. 1 
3 
4 

Set posture to KNEELING on current soldier. 
Set posture to PRONE on current soldier. 

5 
G 

n or Pu' 

Set weapon state to  DEPLOYED on current soldier. 
Set weapon state to  FIRING on current soldier. 
Next soldier. Set current soldier to next soldier (i.e. if current 

p or P 
a 

soldier is 1 ,  sets current soldier to  2.) 
Previous soldier. 
Add another soldier. This creates a new soldier, standing near the 

A 

- 

low office building. A maximum of 10 soldiers (0-9) can exist. 
Add a Jackcontrolled soldier. This adds a new soldier tha t  is con- 

1 
i or I 
i or J 

u or U 
d or D 

Rotate tethered camera $10 degrees about current soldier. 
Rotate tethered camera -10 degrees about current soldier. 

o or 0 
Left. Right Arrows 

4.3 Taking a walk in the  field ... 

trolled via Jack (reactive behaviors). This is experimental for now. 
Move the tethered camera AWAY from soldier by $5 meters. 
Move the tethered camera TOWARDS the soldier bv -5 meters. 

u 

Move tethered camera to OVERHEAD view on current soldier. 
Change heading -10 or $10 degrees on current soldier. - ., - - 

Up, Down Arrows 1 Change velocity $0.5 or -0.5 meters/second on current soldier. 
7 I Prints a list of keyboard commands to  the stdout (console). 

When you first start  up, you are looking a t  soldier 0. Start  him walking slowly by pressing tlir [Up 
Arrow] key. Change his heading so he walks towards the open fields by pressing [Left Arrow]. You 
can swing around him by holding the [i] or Ij] keys. Take a look a t  him from above by pressing [o]. 
Press [i] again until you are looking a t  him from the side. Now increase velocity with the IUp] arrow. 
When he exceeds 3 meters/second he'll s tart  t o  run. The  drop him back to  zero by pressing [Down 
Arrow]. If you press [Down Arrow] again, he'll walk backwards. Bring him to  a stop again. Now 
try pressing the keys [2], [3] and [4] t o  see him adopt various postures. Also use [5] and [6] t o  see 
him shoulder his rifle. If you press [I] he dies . . .p  ress [2] to resuscitate him. Press [4] to make him go 
PRONE.  Then give a little forward velocity, and he CRAWLS forward. Once you get the hang of i t ,  try 
taking a couple of soldiers out into the field, using [n] and [p] t o  toggle between them.  You can drop 
the  soldier-tethered camera and just drive or fly around by choosing "Fly" or "Drive" from the ''\'iewW 
menu. 

L 

4.4 Looking a t  things in Jack ... 
IVhile the  simulation is going on in the Performer program, Jack is providing motion data ,  reacting 
to the changing states of the soldiers. You won't see anything happening in Jack as the graphlcs are 
disabled. If you enable graphics, you'll see 10 soldiers standing a t  the origin, and several may be walking 
in place, according to  their state.  However, what's going on inside Jack is the same as in Performer. We 
can see that  by doing the following (while you have t tes-stub up and running). G o  to the station Jack 
IS  running on.  Jack will respond to  your keyboard commands. 

Enter the  command r e a d 2  i le("jack-t tes-terrain.  j c l J  ' )  This will turn off soldiers 5-9, and 
set Jack to show the soldiers in their correct global positions in space (1-to-1 with Performer). I t  also 
will read t,lle file urban-terrain. env, which is the Jack equivalent to the urban. f lt file4. You can 

41f Jack  doesn't load the file correctly, load i t  manually from the directory you installed it  into. 
$TTES/jack-terraidurban-terrain.env$ 



do change-view to  move the camera around a bit, but you should see things just as they are on the 
Performer side of things. 

5 Conclusions & Future Work 

We have built and demonstrated a system for off-line production of motion sequences, together wit11 a 
method for putting those motion sequences together (posture graphs and locomotion control) for real- 
time playback t o  a remote image generator. Also, we have created a systen~ for animating the I lun~ar~  
motion associated with what can be expressed about a human figure in the DIS protocol. 

There are many areas in which this work could advance or be improved. Some of our suggrstior~> f < ) r  
imn1ediat.e additional work are listed below: 

Posture Transitioning 

As the number of possible states for the human increases, the post urc' gri~plrs , ~ l i c ~ u l t l  I I !  r r l l l : ~ ,  - ! 

with a more procedural approach t o  changing posture. For t hc, apl)licat Ions t t o ~ l ; ~ !  O I I  c.\!rr.c 111 

workstations, the current technique balances performance and rralisnl SAiVC'I'SI) woul~l Ill ,!  

t o  control the human figures (both hostile synthetics and friendly avatars) with t hr- sanlc, con1 rol 
scheme, based on sensor values from locations on the human figurt. \I-c will t)c ~rivcst~gatirig 11115 

in the near term. 

Production of posture transitions: 

In general, the process went smoothly, but there were several aspects that can be iniljrovt~d 1111011 

The video that was supplied t o  us showed the soldier only from one viewing a~lgl(. I t  K O I I I ~ I  
have been better to  show the same movement from several different views (ultimatt-I>  fro^^^ 
the three orthogonal axes views, as they are used in a rotoscoping system). As i t  w i ~ s .  i t  \\.;I- 

sometimes hard to tell where exactly a given limb would end up (e.g. it was blocl;t~cl  fro^^^ 
view by another body part) .  

- Jack< constraint system was very helpful in roughing out the movement,. Yet, for t h ~ s  sl1111i- 
lation we wanted to achieve a movement that looks as fluent as possible. This provc,tl to  1 1 1  

somewhat difficult under Jack. What would be desirable, would be a facility to " f in t ) - tu~~~ " 

a motion better. Similarly, the algorithm used to  drive the inverse kinematics sonlet I I I I ~ ~ ~  

produced unpredictable results when different goals (motions) affected the same k i11~111 i i t  I ( .  

chain. 

- As an ultimate improvement for this process would be a system that could create t , l i ~  I I I O I  loll.< 
directly from the video, without the use of any animators (automatic rotoscoping), or s a i ~ ~ p l t .  
the motion using a body suit, or a set of sensors (e.g. Flock Of Birds) and recreak t l~r,  mot 1011 

using this data .  We think this is the most promising solution. 

Generalize the cyclic posture changes 

The  cyclic posture transition state machines are currently hard-coded for each cycle ( w a l k ~ r ~ g .  
running, and crawling). The static posture transition state machine is general and data-drivr-11 
We should generalize the cyclical state machines, so they can be driven completely by data filcs 
(like the static postures). The key t o  doing this will be the specification of conditionals on w11icI1 

states change. These could be specified in cyclic posture graph da ta  files as LISP expressions. ant1 
interpreted on-the-fly. during runtime. 

Some bells and whistles 

During the production of one of our posture transitions, a glitch was introduced in ont, of t 1 1 1  

transitions that caused the soldier to  jerk backwards a bit when a transit~on started Tht. solcl~c~r. 



working with TTES saw this and liked it very much, thinking we were animating kickback from 
a firing rifle. We could formalize this a bit, and look a t  the event-type information in the DIS 
stream (weapon fire, explosions, etc) and create small (2-5 frame) sequences of motion to give the 
illusion the  soldier is reacting to the event. This could prove a very inexpensive way of increasing 
the illusion of reality. 

Intelligent, Reactive Friendly soldiers: 

Another interesting extension of using J a c k  for TTES will be the incorporation of some work by 
Becket and Reich. which endows the soldier figures with the following abilities. These could 
used t o  generate Jack-controlled soldiers to  easily populate the world, with a simple prograniniat~c 
control of their higher-level behaviors. 

I n f r a r e d :  A simple infrared model is available. Each figure or segment in an environment call I I V  
tagged with a "heat" value between zero and one. A mode exists to display the environn~c,nt 
using these heat values, interpolating from black to red, instead of the  normal visible.-1i~;llr 
colors. 

A t t r a c t i o n :  Attraction is used to guide an agent towards an object, or agent, towards a global 
location, or towards a location relative to an  object, or another agent. For exan~ple ,  attraction 
might be used to  have a friendly soldier try t o  stay 10 feet away, 20 degrees to the right of 
another agent as tha t  agent moves around in the environment. 

Avo idance :  Avoidance is used to keep an agent away from specific objects, locations, or other 
agents. 

Terrain Sensor :  Terrain sensors detect the types of terrain surrounding an  agent. A t.erra111 
sensor may be used to have an agent avoid certain types of terrain such as water, or to kcep 
an agent on a path or road. 

H o s t i l e  Fie ld-of-View Sensor :  The  hostile field-of-view sensor may be used to have an agent 
avoid the line of sight of one or more hostiles. 

Enlbed motion control in Performer 

The  current implementation of the motion controllers in J a c k  rely mostly on stored motions. 
Therefore, it would be quite possible t o  remove them from Jack  and embed directly in Performer 
Then ,  the J a c k  process would not need to  be run during a TTES session, increasing performance 
of the  system overall. If we use inverse-kinematics and constraints on sensor da ta  (as is likely i l l  

~ I I P  near-term), this would be more difficult, as it would entail embedding tha t  part of Jack  in 
Performer. Eventually, though, this is the  goal. 

6 Appendix A: Data and Code Files 

This is the  directory structure on the tar  tape. Note: files with .Z suffix are compressed and should hc 
uncompressed before using. Also, there are several symbolic links to  cut down on duplications of files. 

./movies/* .mv SGI movieplayer (Irix 5.2) files of posture transitions (as supplied by NAWCTSD). Thc  
video was broken up into 3 movie files. 

./share/motions/* Motion files live here. Each motion has an associated frame 0 * .  env file and a 
*motions. env file. In all motion files, the regular (soldier-cam.fig) soldier is named soldier, t h e  
gun is named AIi-47-color2 (don't ask) ,  and the Dl is called Di. T h e  nomenclature for files is: 

st = standing 

k = kneeling 



pr = prone 

dead = dead 

fire = firing 

stow = stowed (actually deployed) 

For example the motions from standing stowed t o  kneeling firing are ststowakf i r e .  env 

. /share/motions~chsets/* The channelsets, both for regular soldier, and low-res DI. f i g .  The nomen- 
clature is similar to  that of the motion files, with the additional l o w  specifying the low-res soldier. 
and . chse t  . marking this as a channelset file. Several ,ICL files here are also used t o  automate 
the motion->channelset and slaving procedures. 

. / ~ h a r e / ~ e r f  - terrain/* These are the Flight-format geometry files for the Quantico village environ- 
ment.  The main file is urban. f lt 

. / share / jack- ter ra in /*  These are the same Quantico village environment, but converted t o  Peahody 
format. The main file is urban. env (unfortunately, no texture maps). 

. /share/data/* These are Jack data files, defining the various figures used, psurfs, and texture maps. 

. /src/common These are the shared files between Jack and TTES. 

j ackpack. h Format for packets going from TTES to  Jack and back 

update table .  c++ Both sides use the updatetable object, which defines format of packets flowing 
from Jack to  TTES. 

. / s r c / j ack /  These are the files that make up Jack. These files were the only additional or changed 
files above and beyond the 5.8 libraries. 

Motioncontrol. h The locomotion/crawling motion control object. 

channelset .  c++ Channelset CMDs and definition. 

channelse t .  h Channelset declarations. 

jack-ntsc-g The Jack executable (symbolic links point here) 

jack-channel. c++, cont ro l  input2 motion Slightly modified from the 5.8 libraries. These files 
don't have much t o  do with the TTES functionality. 

j ackmotioncontrol  . c++ Definition of Motioncontrol (locomotion) controller. 

j acksock . c++ Socket communications process, and CMDs for all TTES related commands. 

menu. c++ Main menu definition for Jack. 

pea-parse . c++ , pea-parse. y Modified Peabody parser to  handle indexed fields in constructs 

peastuf  f . c++ Parser callouts for handling channelset and sharedchannel fields and constructs 

pgraph. c++ Definition of PostureGraph class 

pos tures .  c++ Definition of BoundPostureGrapph, and CMDs for all posture commands. 

pos tures  . h Declaration of Posture* classes and functions. 

setmot ion .  c++ Definition of the channelset motion. 

setmoti0n.h Declaration of the new SetMotion type. 

sharedchannel.  c++ Definition of the new SharedChannel type (sub-class of Channel), and two 
sub-classes: SharedFigureChannel and SharedJointChannel. 



sharedchannel . h  Declaration of above. 

s l a v e .  c++ Slaving CMDs and functions. 

s o l d i e r .  c++ Definition of Soldierstate class, which wraps up all the other things, and manages 
interface with TTES. 

s o l d i e r .  h Declaration of above. 

s p i t t e r  . c++ The  spitter, creates .tips files 

t t es -c rawl .  c++ State machine for crawling. 

t t e s g l o b a l  . c++ Global coordinates computation for soldiers 

t t e s l o c o .  c++ State niachine for walking and running 

t t es - tes tcmds .  c++ Testing commands for use when no TTES process connected. 

OPT/ttes-stub. OPT Actual executable file 

cmdline frame gui  keybd main object  picking These are all just slight modifications from 
the pickfly original, as distributed with Performer 1.2. 

j a ckso ld i e r  . c++ Definition of the JackProc and JackSoldier classes. 

j a ckso ld i e r  . h  Declarations for above 

j ackupdate. c++ Some sample functions, which call the appropriate functions within other nod- 
ules, t,o start  up J a c k  and create soldiers. You would have something like this in your own 
system. 

p f t  i p s .  c++ The  TIPS  loader 

pf t i p s .  h Declarations for above. 

pickf  l y  . c  Main routines for the interface. 

socke t .  c++ Simple routines for making a socket connection with J a c k .  

so ld i e r s im .  c++ A sample implementation of a simulated soldier, with calls into the main func- 
tionality of JackSoldier. Use as a template for your own. 

. / s r c / t i p s l l /  This is the modified TIPS loader for Performer 1.1. See the description in Section 7.3. 

/demo/jack/ Files for J a c k  when running the demo. This is the directory in which J a c k  should execute 
during the demo. The subdirectory . / demo/ jack /chse t s  holds the pre-computed motions. 

. /demo/perf ormer/ This is where you start  up  the demo. 

7 Appendix: TIPS file format and Performer Loader 

Iloughly, a . t i p s  file is a record of the information obtained in a traversal of the Peabody environ- 
11lent. For each figure in the environment (except the camera) a depth-first traversal of the figure's 
sit.es is performed, starting a t  the root site and following joint connections bet,ween sites. Use of this 
intermediate-style format avoids calling the Peabody parser from within the Performer applicat.ion; we 
found development to be faster without the added complexity of modules linked with both the (extell- 
s ~ v e )  Jack  5.8 libraries and the Performer 1.1 or 1.2 libraries. I t  is for similar reasons of speed and 
convenience of development and debugging that  we chose a human-readable plain-text format. You can 
crt3atc a . t i p s  file from within J a c k  be executing the command s p i t ( " f  i l e .  t i p s " )  which will dunip 
everything in the environment. (except cameras) into f i l e .  t i p s .  



7.1 TIPS file format specification 

The following is an informal description of the structure of a .tips file. Newlines in each part of the 
description correspond to newlines in the file. Entries in the file are generally strings, integers, or floating 
point values, and the exact meaning of constructs in the description should be clear from the example 
.tips file in the nest section. 

[.TIPS FILE] ::= 
[number of figures] [COMMENT] 
[FIGURE DESCRIPTION] *repeated [number of figures] times* 

[FIGURE DESCRIPTION] ::= 
[COM hlEKT] 
[figure name] 
[COhIhIENT] 
[figure filename] 
[COMMENT] 
[4s4 global position transform] 
[COhIMENT] 
[4x4 root site inverse transform] 
[SEGMENT DESCRIPTION] *for the figure's root segment* 

[SEGMENT DESCRIPTION] ::= 
[PSURF FLAG] [COMMENT] 
[GEOMETRY] *only if [PSURF FLAG] = I* 
[number of sites] [COMMENT] 
[SITE] *repeated [number of sites] times* 

[SITE] ::= 
[number of joints] [COMMENT] 
[COMMENT] 
[site name] 
[COMMENT] 
[4x4 site transform matrix] 
[JOINT] 'repeated [number of joints] times* 

[.lOINT] ::= 
[ROOTJOINT FLAG] [COMMENT] 
[COhIhIENT] 
[4x4 joint transform matrix] 
[REVERSE JOINT FLAG] [COMMENT] 
[number of DOFS] [COMMENT] 
[DOF] *repeated [number of DOFS] times* 
[COMMENT] 
boint name] - 

[COMMENT] 
[OTHERSITE name] 
[COMMENT] 
[4x4 inverse of OTHERSITE transform] 
[SEGMENT DESCRIPTION; *for segment at other end of joint* 

[DOF] ::= 



[DOF type] [COMMEIL'T] 

[GEOMETRY] ::= 
[number of attributes] [COMMENT] 
[ATTRIBUTE] *repeated [number of attributes] times* 
[number of nodes] [COMMENT] 
[node coordinate 3-vector] *repeated [number of nodes] times* 
[number of faces] [COMMENT] 
[FACE] "repeated [number of faces] times* 

[ATTRIBVTE] :.= 
[ambient color 3-vector] 
[diffuse color 3-vector] 
[specular color 3-vector] 
[TEXTITRE FLAG] [COhIhIENT] 
[texture filename] *only if [TEXTGRE FLAG] = l *  

[FACE] ::= 
[attribute index number] [COMMENT] 
[number of vertices] [COMMENT] 
[face color RGB vector] 
[VERTEX] *repeated [number of vertices] times* 

[\:ERTEX] ::= 

[node index number] 
[texture coordinate 2-vector] *only if [TEXTURE FLAG] = l* 

[COhlMENT] ::= any string of characters terminated by a new line 

7.2 Example . t i p s  file 

The following .tips file (reproduced verbatim) represents a Peabody environment which contains a 
single unit cube as its only figure: 

1 f i g u r e s  
FIGURE #O 
cube 
FIGURE #O 
cube. f i g  
Global  p o s i t i o n  m a t r i x  
1.000000 0.000000 0.000000 0.000000 
0.000000 1.000000 0.000000 0.000000 
0.000000 0.000000 1.000000 0.000000 
0.000000 0.000000 0.000000 1.000000 
Root s i t e  i n v e r s e  mat r ix  
1.000000 0.000000 0.000000 0.000000 
0.000000 1.000000 0.000000 0.000000 
0.000000 0.000000 1.000000 0.000000 

0.000000 0.000000 0.000000 1.000000 

I (psur f  f l a g )  



1 (# attributes) 
0.173333 0.125490 0.173333 
0.693333 0.501961 0.693333 
0.000000 0.000000 0.000000 
0 (texture flag) 
8 total nodes 
0.000000 0.000000 0.000000 
0.000000 0.000000 1.000000 
1.000000 0.000000 1.000000 
1.000000 0.000000 0.000000 
0.000000 -1.000000 0.000000 
0.000000 -1.000000 1.000000 
1.000000 -1.000000 1.000000 
1.000000 -1.000000 0.000000 
6 faces 
0 attribnum 
4 vertices 
0.000000 0.000000 0.000000 
0 
I 
2 
3 
0 attribnum 
4 vertices 
0.000000 0.000000 0.000000 
0 
3 
7 
4 
0 attribnum 
4 vertices 
0,000000 0.000000 0.000000 

2 
6 
7 
3 
0 attribnum 
4 vertices 
0,000000 0.000000 0.000000 
0 
4 

5 
1 

0 attribnum 
4 vertices 
0.000000 0.000000 0.000000 
4 
7 
6 
5 
0 attribnum 



4 v e r t i c e s  
0.000000 0.000000 0.000000 

1 
5 
6 

2 

1 s i t e s  
0 j o i n t s  
SITE 
base 
S i t e  1 matrix 
1.000000 0.000000 0.000000 0.000000 
0.000000 1.000000 0.000000 0.000000 

0.000000 0.000000 1.000000 0.000000 

0.000000 0.000000 0.005000 1.000000 

7.3 Alternate . t i p s  format 

An alternate format was developed to handle a last-minute change requirecl 1))-  1 1 1 ~  TTES pro.lc,ct. ~ ~ a i i ~ r ~ l ?  
that  the Performer . t i p s  format loader run under Performer 1.1 rather tllail Prrforii~er 1 .2  TI]<, kl.! 
difference between the two versions with respect to  the loader is that  Perfornler 1 .1  lacks t l ~ i y  ~ ) f r ~ U t i ~ l t i c , r  

object of 1.2, which performs automatic generation of efficiently-meshed triangle strip GeoSt,ts ( ~ ~ Y I I I I -  

etry objects) and their associated GeoStates (attribute objects) from arbitrary polygon a11t1 at t r ~ l > ~ ~ r  1 ,  

information. 
Our  solution was to  use the 1.2 pfuBuilder routines to  generate GeoSt,ates and meshrtl gr7011rc,tr> 

whicll were then written into a slightly modified . t i p s  file intended to be read in a Perforriic-s I 1 

environment. The only change, therefore, is in the encoding of geometric information: 

[GEORJETRY] ::= 
[number of attributes] [COMMENT] 
[ATTRIBUTE] *repeated [number of attributes] times* 
[GEOSET] *repeated one or more times* 
eiidgeosets 

[GEOSET] ::= 
geoset 
[attribute index number] [COMMENT] 
[number of triangle strips] [COMMENT] 
[length of strip] *repeated [number of triangle strips] times* 
[indexing mode] 
[IrERTEX1] or [VERTEXP] *repeated once for each vertex* 
[color binding] 
[COLOR11 or [COLOR21 'depending upon [color binding]* 
[normal binding] 
[NORMAL11 or [NORMAL21 *depending upon [normal binding]' 
[text,ure binding] 
[TEXCOORD] *only if [texture binding] = PFGS-PER-VERTEX* 

[i7ERTEX 11 ::= 
[vert,ex index number] 
[vertex 3-vector] *used if [indexing mode] = indexed* 



[VERTEX21 ::= 
[vertex 3-vect,or] *used if [indexing mode] = not indexed* 

[COLOR11 ::= 
[color 4-vector] *repeated once for each vertex* 

[COLOR21 ::= 
[color 4-vector] 

[NORhIALl] ::= 
[surface normal 3-vector] *repeated once for each vert,es* 

[IVORhlAL2] ::= 
[surface norlnal 3-vector] 

[TEXCOORD] ::= 
[texture coordinate 2-vector] *repeated once for each vertcs* 

For obvious reasons, this encoding is very similar in structure to  that ilsecl W I  t 11111 a Pt3rforr111 I 

pfGeoSet. [COLOR11 and [NORMAL11 are used when "PFGS-PER-I'ERTES" attribute, I ) I I I~I I I : :  I -  

in effect (indicating a value for each vertex) and [COLOR21 and [NORRIIAL~] for "PFGS-O\'EI< :\ [,I.' 
attribute binding (indicating a single shared value for all the vertices). 

7.4 Runtime database structure 

Performer 1 .1  and 1.2 are both limited to  a maximum scene graph depth5 of 32. For tllis rc,ilsoil n . t  

use just one pfDCS node for each joint in the Peabody hierarchy. Since a Peabody joint c o ~ l s l s t ~  of 
three transformations (site 1, joint angle, and site 2 inverse), two matrix multiplications are requlred 1 0  

compute each new DCS value. This single-DCS approach was chosen because the alternative. t , rcal i~r l~ 
up the figure hierarchy into several smaller pieces, would entail unnecessary complexity and additrorl;tl 
bookkeeping. The  matrix multiplications must be done a t  some point anyway; nothing is lost. by I I I ~ ~ I I I ~  

them part  of the update process. The two site transforms do not change during simulation. so t l ~ r , !  
are stored by the Performer application and a t  each frame the Jack process need only t,ransfcr t 1 1 t .  

updated joint transforms over the socket or shared memory connection, thus minimizing communrcat 1011 

bandnidt.h. Even with only one DCS per joint, the Jack 5.8 human approaches the Perforn~er-i~l~l~o>t,t l  
li111ii. 70  nlinimize its depth we root the human through the waist a t  all times. 

TTES en t i t i e sGre  attached to  the top level of the Performer scene graph by the sequence of nocic+ 
shown in figure 13. The node labeled "Entity Position DCS" allows the human and gun subgraphs to I ) ( %  
manipulated as a single unit. More specifically, we update the value of this transformation a t  each f ran~v  
to  reflect the terrain ground height under the TTES entity. Our geometry being defined such tliat t l l r ,  

coordinate origin is located between the human's feet, this is a simple matter of casting a vertical ray ~ n t o  
the scene and using the intersection point directly t o  determine the appropriate translation matr ls .  ?'!I(, 
"Figure DCS" node for a particular figure corresponds to the transformation obtained by rnultipl\lr~g 
the global position transform of the figure's root site by the inverse of the root site transform. 7 ' 1 1 1 h  

informat,ion is also part of the update packet sent by Jack on each frame, mapping figure movenicnts 
in the Jack environment into the Performer environment. Figure 14 explains the structure of the s c ~ ~ r ~ r ~  
subgraph representing a Peabody segment. 

5Here we define depth to be the maximum number of pfSCS and pfDCS nodes on any path from the scene graph ro,,t 
to one of its leaves. 

" A n  entity in our case consists of two figures: a camouflaged human and a rifle. 



Graph 

Figure hierarchies, beginning at 
their respective root sites 

... ..-.__. ..... ............................... ....''- 

One such subgraph for each ITES friendiyhostile 

Figure 13: A TTES Entity in the Performer scene graph 

Segment 
pfGroup 

Only present i f  segment :, Hierarchies tor attached segments / 
has geometry (segment pfGroup nodes) ,.' 

--.___ -..__....__..---- ._... 
One such subgnph for the joints of 

each site on the original segment 

Figure 14: The  subgraph corresponding to a Peabody segment 



Finally, the "Joint DCS" nodes are set according to the three composed transformations mentioned 
earlier. Changing the values stored at these DCS nodes is tlie main component of the update process, 
and hence the Performer application also maintains an indexed array of pointers, one to  each of the 
"Joint DCS" nodes in  the graph, for fast access. 
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