= 2
cnn \’ \ University of Pennsylvania

"% | Libraries |

UNIVERSITY of PENNSYLVANIA ScholarlyCOm mons
Technical Reports (CIS) Department of Computer & Information Science
August 1994

Jack/TTES: A System for Production and Real-Time Playback of
Human Figure Motion in a DIS Environment

John P. Granieri
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
John P. Granieri, "Jack/TTES: A System for Production and Real-Time Playback of Human Figure Motion
in a DIS Environment", . August 1994.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-94-42.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/488
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/488
mailto:repository@pobox.upenn.edu

Jack/TTES: A System for Production and Real-Time Playback of Human Figure
Motion in a DIS Environment

Abstract

This document describes a modified Jack system for off-line motion production and on-line (real-time)
motion playback to an external IRIS-Performer-based host rendering system. This work was done in
partial fulfillment of Contract #N61339-94-C-0005 for the US Marine Corps through NAWCTSD (Naval Air
Warfare Center, Training Systems Division). The work described herein was contributed by several of the
members of the Center for Human Modeling and Simulation: John Granieri (Design/Engineering/
Integration), Rama Bindiganavale (animator, posture transitions), Hanns-Oskar Poor (animator, posture
transitions, Hyeongseok Ko (walking and running motion), Micheal Hollick (locomotion playback control),
Bond-Jay Ting (body sculpting), Francisco Azoula (body sculptin, anthropometry), Pei-Hwa Ho (body
normalization), Jonathan Crabtree (Performaer, TIPS file format), Xinmin Zhao (slaving), Zhongyang Feng
(DIS logfile player), Welton Becket and Barry Reich (terrain reasoning and reactive agent control).

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-94-42.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/488

https://repository.upenn.edu/cis_reports/488

Jack/TTES: A System for Production and Real-time
Playback of Human Figure Motion in a DIS
Environment

MS-CIS-94-42
HUMAN MODELING & SIMULATION LAB 65

John P. Granieri

o £

University of Pennsylvania
School of Engineering and Applied Science
Computer and Information Science Department

Philadelphia, PA 19104-6389

August 1994

Jack/TTES: A System for Production and Real-time Playback
of Human Figure Motion in a DIS Environment

John P. Granieri
Center for Human Modeling and Simulation
University of Pennsylvania
Philadelphia, PA 19104-6389, USA

granieri@graphics.cis.upenn.edu

August 5, 1994

1 Overview

This document describes a modified Jack system for off-line motion production and on-hne (real-time:
motion playback to an external IRIS-Performer-based host rendering system. This work was done 1
partial fulfillment of Contract #N61339-94-C-0005 for the US Marine Corps through NAWCTSD (Naval
Air Warfare Center, Training Systems Division).

The work described herein was contributed by several of the members of the Center for Human
Modeling and Simulation: John Granieri (Design / Engineering / Integration), Rama Bindiganavalc
(animator, posture transitions), Hanns-Oskar Porr (animator, posture transitions), Hyeongseok Ko
(walking and running motion), Micheal Hollick (locomotion playback control), Bond-Jay Ting (body
sculpting), Fransisco Azoula (body sculpting, anthropometry), Pei-Hwa Ho (body normalization).
Jonathan Crabtree (Performer, TIPS file format), Xinmin Zhao (slaving), Zhongyang Feng (DIS
logfile player), Welton Becket and Barry Reich (terrain reasoning and reactive agent control).

2 Description of Jack/TTES

The Team Tactical Engagement Simulator (TTES) system is being designed and built at NAWCTSD in
Orlando, Florida. This system projects one or more soldiers into a virtual environment, where they may
engage hostile forces. The hostiles throw stones and fire their weapons at the soldier. See Figure 1 for a
schematic overview of the system components. For a full description of TTES refer to the proceedings
of INCOMSS-94, where a presentation regarding TTES was made.

The soldier stands in front of a large projection screen, which is his view into the environment. He
has a sensor on his head and one on his weapon. He locomotes through the environment by stepping
on a resistive pad and controls direction of movement and field of gaze by turning his head. The soldier
may also move off the movement pad, and the view frustum 1s updated accordingly based on his eye
position (head-coupled display). This allows the soldier, for example, to crouch down to see under a
parked vehicle, or to peek around the corner of a building while still affording himself the protection of
the building.

Essentially, both the hostiles and the soldier can move around the environment and engage each
other. The hostiles are controlled via a DIS stream of commands coming from a computer-generated
forces (CGF) simulator. (The CGF system is currently under construction at the Institute for Simulation
and Training, Orlando, FL. I think they are calling it “SAFDI”). The TTES filters and translates the

DIS stream into a set of posture and command “tokens” that are passed to Jack. Jack then animates the

human figures by transitioning from one posture to another, or locomoting in a cyclical posture change.
Jack passes the joint angles back to TTES for animating in an IRIS Performer run-time articulated
database of human geometry.

The TTES/Jack connection is made through two TCP/IP stream sockets (The first incarnation of
the interface was done with shared-memory. This was dropped in favor of the flexibility of the socket
interface - the machine Jack runs on and the machine TTES runs on don’t have to be the same, although
they can be).

TTES controls the global position of each human figure (Jack only moves the figures in its local
coordinates), using DIS dead-reckoning algorithms and information about the terrain. The posture
transitions are recorded in such a way that the direction of the face and gun are always in a known
direction, so the human can be globally oriented correctly when it fires its weapon. TTES also creates
the necessary DIS Entity State PDUs to represent the real soldier (immapping from sensor values into th
small set of postures in the Entity State PDU), and sends them out over the net to the CGFEF systens andd
other TTES stations that are participating in the exercise. TTES also performs the ballistics conmputation
for firing the soldier’s gun 1uto the scene and determining if and where the hostile human figures eor b

3 Description of Implementation

Below, I summarize the implementation details of modifications to Jack and the TTES stub program i w.
do not have an actual TTES trainer station) which mimics the communications interface and renderine
of the real TTES program with Jack.

3.1 DIS Protocol

The information representing the human entity in the simulation is limited by what is stored in an Entity
State Protocol Data Unit (PDU) in the DIS protocol. The information we are interested in from the ES
PDU is shown in Figure 2. The human is always in one of the 4 postures, along with a weapon stat
We only modeled the two values of the weapon state, deployed and firing, and not stowed (which would
represent the gun slung over the shoulder or something like that).

The DIS protocol also allows for upto three weapons on a soldier, but we only modeled one. Also. the
protocol allows for a large library of weapon types to fit on the soldier (i.e. pistols, grenades, machi
guns, blow pipes, knives, etc). We only modeled AK-47 and M16 machine guns.

3.2 Posture Transitions - Static

In the case where the magnitude of the velocity vector is zero (meaning the human is not moving). we
want to transition between the possible static postures. We encoded the possible static states of the
human in a posture graph, where the nodes represent static postures, and the directed arcs represent the
animated transitions, or movement, from posture to posture.

The possible transitions between static postures are encoded in the posture graph of Figure 3. The
actual postures are shown in Figure 4. Each directed transition from posture A to B has an associ-
ated motion file, which scripts the transition on the standard human figure at the origin of the Jack
environment. For example, the transition between (Standing Stowed) and (Standing Firing) is in a file
ststow2stfiremotions.env. For several transitions between A and B, we only author a directed tran-
sition from A to B, and to go from B to A, we simply play the transition backwards. Each motion fik
typically has about 10-15 primitive Jack motions to transition the human and the gun from one posture
to another.

In general. a given posture transition was first studied from a video tape of a soldier. as supplicd
by NAWCTSD (the movie files are supplied on the tape). The goal was not so much as to completely
recreate the motion in Jack but more to treat the video as a visual template for the movement. For
instance. it served as an example of where the arms where in relation to the feet, or what direction the

T TN

SRR EE

sabueys ainjsod

ulelI9 | ON

(DN) Foef
uo123UUO0d

19)00s Weans
21

ppiayng a|qnoq ; Alowap paieys

sa|buy juiop ajels

Miwww

ulend) qe

|04ju0)) »oer

pakojdap ‘pamols uodeam
auoid ‘jpauy ‘Wybudn ‘pakolisap -dinisod
| uoyejuauo

€ uONed0|

£ Aloojaa

jsoyb yoep

1soyb uewnH

1okeid e Y

Y
G &

Jakeld uewny

150y aNSoH W._o%_n a|IISOH W

:

suonels S31.1434io

(uonoaup ‘Ajoojan) ped 100y
(uauoysod) Josuas peay
(+066uy/uan0/s0d) 10suas unb .

uonejs SH.LL

PR

55 see

ueuslL e/t e

Ananay 196607
SI0IABY3Q 3|I}SOH

Iny/sousiiieg | jonuo) Apu3 -
Sl or/sia
9 (o1e'suoyeuciap's3) NAd SIA
[oJu0Y Josusg Jawioped
N\ J E

(LSD () 1a4vs

| Field [Value | Units |
Posture standing, kneeling, prone, destroyed
Weapon || (Stowed), Deployed, Firing

Position || Pr, P,, P. meters
Velocity || Vo, Vy, V; meters/second
Heading || theta compass heading in degrees

Figure 2: Essential information from the Entity State PDU

Standing
Deployed

Standing
Firing

Kneeling
Deployed

Kneeling
Firing

Prone
Deployed

Figure 3: The posture transition graph

shoulder was tilted, or the general timing of the individual movements of the body in relation to each
other.

Once the individual body segment movements were visually recognized and isolated, the animators
set out to create corresponding movements in Jack using its goal-oriented motion facilities. To facilitate
the creation, it was found helpful to display the figure and the respective motion from several angles on
the screen, which helped in the precise placement of the limbsin 3D space.

There was a restriction that the ending posture of a posture transition had to be identical to the
starting posture of the next posture transition. This was no problem when we created motions in the
forward direction (e.g.. Stand to Kneel). But when we had to create the motions in the reverse direction
(Kneel to Stand), it was very difficult to get the ending posture to a particular position (joint angles.
displacements, torso position, etc had to coincide exactly) and still get “good” motions. This difficulty
was overcome by creating mostly forward-moving motions, and then using the ability to play channelsets
in reverse (see below), to get the corresponding reverse direction, as described above. In most cases,
the resulting motions looked fine. In a few cases, the reverse motion was scripted explicitly for better
results.

Also, we attempted to only animate those sequences which were absolutely neccessary. For example.
we have no direct transition from Prone Firing to Kneeling Firing. The run-time system can find the
shortest path (in time) between any two postures in the graph, and execute the sequence of transitions.

Figure 4: The postures a soldier can take in DIS

3.3 Posture Transitions - Dynamic/Cyclic

When the magnitude of the velocity vector is not equal to zero, the soldier is moving (either forwards
or backwards, depending on the difference between the heading and the direction of the velocity vector)
by either locomoting (if appearance is upright) or crawling (if appearance is prone). When the soldier
i1s moving, we call this a dynamic or cyclical posture transition.

The animations were generated by Hyeongseok Ko’s walking system. He generated 6 strides for each
type of walking (forward walking, backward walking, running): left and right starting steps (that go
from the base posture to the cyclic state), left and right ending steps (that go from the cyclic state to
the base posture), and left and right cyclic steps. The crawling animation was generated manually, and
is based on two animations - one that goes from the base (prone) posture to the cyclic state, and one
complete cyclic motion. When crawling is ending the starting animation is played backwards to get back
to the base posture.

Playback control of the animation frames is based on a simple state machine shown in Figure 5.
Walking is begun whenever the velocity of a figure goes from zero to a non-zero value. The heading
and velocity vector are compared at this time to determine whether the figure is walking forwards or
backwards. Once this determination is made, the appropriate animation information is referenced and
used. The purpose of this initial step is to create a smooth transition from the base posture (standing
deploved) to the walking animation.

When the first step is finished, the cyclic “walking” state is started. This state continues to generate
normal walking motions until the velocity goes back to zero (at which time the ending step is used),
or the velocity becomes greater than the walk/run transition value. If this occurs, and if the figure
is walking forwards (there is no backwards running), the running animations are referenced and used.
There is a single walk->run transition step that is played, then the “running” cyclic state is entered.
The figure will continue to run until the velocity drops below the threshold, at which time the run->walk
step will be used, and the “walking” state will be re-entered.

I Note that in this graph, the nodes are posture transitions that can loop, or states, and the arcs are conditions to
transition between states

Standing

Deployed

v>0

(Start Walk Step LIRJ Stop Walk Step LIR] v>0

ve=0

[Walk Step LIR D O<v<=t (Stan/Stop CrawD

v>t
@n Run LIR Stop Run LIR

ve=0

Crawl

v>0

For running, t=3 meters/second

If v < 0, walking and crawling is backwards (no running backwards)

Figure 5: The walking/running/crawling state transition graph

3.4 Preparation for Motion Playback

Once the individual soldier motions/transitions were authored, they were recorded to channelset files
and organized together into posture graph files. Then they are re-recorded onto lower-resolution soldier
figures, and then loaded and bound for playback to the TTES program. I'll describe each phase, along
with the corresponding Jack commands which do the work.

3.4.1 Recording to Channelsets

When vou create a regular motion in Jack and then execute go, the interpolated frame motion is stored
in a channel. A channel is storage for any time-varying parameter. For example, each joint in the
environment has its own channel to store the angles . The channels are tightly bound to each object for
which they store data. I added two new objects to Jack and Peabody. a channelset and a sharedchannel.
A sharedchannel holds the same data as a channel, except it is not bound to a specific object in the
environment. This allows it to share its data between several objects of the same type (here, the term
object means either a joint(angles) or a figure(position)). A channelset organizes a set of sharedchannels
together, giving them a name and a couple of other parameters. Channelsets are used to store the
posture transitions and other motions described above. Each motion sequence, once it is interpolated in
Jack, is saved as a channelset file (including only those channels from the environment that are part of
the soldier and gun).

Once a channelset is created and loaded into Jack the sharedchannels can be bound to objects in the
environment. Each sharedchannel can be bound to many objects (of the same type). For example, a
sharedchannel containing joint angle data for the left knee can be bound to all figures (of the appropriate
type) with a left knee. A bound channelset is called, of course, a bound channelset. The amount of
memory required to bind a channelset is very small in comparison to the size of the data in a channelset.

A channelset is a Peabody construct, stored in an environment file. An example channelset is shown
in Figure 6.

Both a channelset and a sharedchannel have a name associated with them, but it is arbitrary (it
doesn’t relate to any Peabody construct), but it should be descriptive (as in the above example). The
Peabody fields of the channelset are:

size : This is the number of frames stored in each sharedchannel in the set.
count : The number of sharedchannels in the set.

fps : The frames-per-second that the set was saved at. From this, one can deduce the actual time
represented in this set. For example, if size=90 and fps=60, then this set represents (90/60) or 1.5
seconds. This also alerts the sampling functions on the sampling frequency for the motion.

Sharedchannels must be declared within a channelset construct. There are no restrictions on the
number or type of sharedchannels in a channelset. For TTES each channelset usually contains two
figure channels (for the soldier and gun) and joint channels for the soldier. The fields of a sharedchannel
are:

type : This is either “sharedfigure” or “sharedjoint” for now, denoting a figure channel (figure location)
or a joint channel (joint angles).

object : In the case of a “sharedfigure” channel, this is a string which just holds the figure name of
the figure from whence this channel was recorded, and is not used after created. In the case of a
“sharedjoint” channel, it is the name of the joint, and will be used to locate a joint to bind to.

protofiletype : This is the name (without path prefix) of the figure file from which this object came.
It is used when the channel is bound. This channel can only be bound to objects which have the
same figure file name (this is a matching criteria for sharing).

-1

channelset crawl2prstow.chset {

size = 48;

fps = 60;

count = 70;

sharedchannel soldier { /* figure position */
type = ''sharedfigure";
protofiletype = "soldiercam.fig";
object = "soldier";
frame[0] = ("lower_torso.proximal", trans(31.68cm,43.53cm,-31.05cm));
frame[1] = ("lower_torso.proximal", trans(31.68cm,42.77cm,-31.05cm));

frame[48] = ("lower_torso.proximal"”, trans(11.52cm,4.15cm,-26.49cm));
}
sharedchannel right_toes { /* joint angles */

type = '"sharedjoint";

protofiletype = '"soldier cam.fig";

object = "right toes"; /* R(y) */

frame[0] = (0);

frame[1] = (0);

frame[48] = (0);

Figure 6: An Example Channelset file

frame|s] : This is the frame data, indexed per frame. For figures, it’s a root site and a transform. For
joints, it's the joint angles (in radians). The Peabody parser was modified to allow field names
with indices.

Most of the channelsets for TTES were recorded at 60Hz, to provide for better motion sampling. and
the ability to vary playback time (see posture graph files below).
The commands added to Jack for working with channelsets are the following:

write_channelset : This command will create a new channelset file. from currently defined (and inter-
polated) channels in the environment (i.e. after you've create some motions and typed go). The
command prompts for an output file and a channelset name, followed be the begining and ending
frame numbers (of current motions) to grab frames from. The nomenclature for channelset names
are any valid Peabody identifier, without the /" character. It also prompts for a fps and strid
value. For example, if begin=100, end=220, fps=30, and stride=2. you'd be pulling 60 framex. or
2 seconds, of motion from frames {100, 102. 104. ... , 220}). It also prompts for a list of figures
and the channelset will be created with all the channels (figure position and joint angles) from the
list of figures. In the case of TTES we always included a soldier and a gun.

load_channelset : This command prompts for a channelset file (an .env file). and reads it. The
channelset is built via the call-outs from the Peabody parser. The channelsets can. alternatively.
just be loaded via the read file command. The channelsets will have their names corresponding
to what they were named when written.

bind_channelset : This command prompts for a channelset (from the list of loaded channelsets), and
then for a new name for the bound channelset you are creating. It then proceeds to create a new
bound channelset, prompting you for figures of the appropriate types (i.e. from the protofile-
type fields of the sharedchannels). For example, if the channelset name you are binding is called
“stand2crawl”. and you are binding this to the 3rd soldier-gun pair, where the soldier’s figure name
1s “soldier3”, then a good name for the bound channelset would be “stand2crawl/soldier3™.

play bound_channelset : Once a bound channelset is created, you can play it. This command prompts
for a bound channelset, as well as a direction (forwards or backwards) and a transition time (-1
means play 1t at the stored time), and then will play the motion.

step_bound_channelset : Similar to the above command, but allows you to single-step the frames, for
debugging purposes.

set_channelset _parameters : This command sets the only global parameter concerning bound chan-
nelset playback: “yes” means play the bound channelset by traversing each frame, so yvou'll see the
complete motion, as fast as it can be drawn (which most likely is less than 30Hz). or “no” means
play the motion in real-time, sync’d to a real-time clock. This will skip frames, so the motion plays
back in true “wall-clock” time. The setting should be "no” during playback to TTES.

print_channelset_info : This command will print information, at several levels of verbosity. about
memory usage and contents of stored channelsets.

reroot figure channel : This is a utility command, which operates on a channel (not a sharedchannel
or a bound shared channel). Its purpose is to re-root a figure position channel so all the root site
references are the same. For example, in the motion data recorded from the walking algorithm. the
figure root moves all over the place (the toes, heels, hips, pelvis), and we want to transform it so all
references are to the pelvis (for performance, the soldier figures are never re-rooted during motion
playback, although it is possible). The command simply prompts for a figure root site, then finds
the corresponding channel, then plays it out, re-rooting to the new site, and re-recording over the
old position data as it goes. This command can take a while to execute.

3.4.2 Posture Graph files

The channelsets can be organized into posture graph files, for easier loading, and optionally, for motion
playback (only the static posture transitions make use of posture graphs; the walking and running control
code only uses posture graph files as a convenience for storing channelset motions).

An example posture graph file (for the static posture transitions of the DI.fig (See Section 3.4.3
below), as shown in Figure 3, is shown in Figure 7.

The file is divided in 3 sections. The first section introduces the tokens for the nodes of the graph (the
static posture). The second section just lists the channelset files for all motion, and assigns a number to
each. The third section describes the actual directed arcs, or transitions, in the graph. Each line stari~
with the beginning and ending posture, followed by the number of the channelset to play. Following
that is the direction of play on the channelset, and the time it should take for traversal. If vou chanu
the timing here, the playback system will sample the motions accordingly.

The following commands in Jack are for dealing with posture graphs. Note that there is currently ne
command for creating a posture graph file. They are usually created via the Universal Data Manipulator
(a.k.a. gnu-emacs).

load _posture.graph : This command prompts for, then loads a posture graph file. By convention. the
suffix for the posture graph file is . graph. It also asks for a name to give the posture graph. This
name will be used later for reference. Once the actual graph is loaded. all the channelsets will be
loaded also.

bind posture graph : This command will take a posture graph, and create a bound posture graph
analogous to the channelsets and bound channelsets. It prompts for a posture graph, and a new
name for the new graph. I usually just add a prefix like "soldier3/” to the posture graph name. ~o
if the posture graph name was "ptrans”, then the bound posture graph is "soldier3/ptrans”.

It also traverses the channelsets and collects all the unique protofigfile fields, and prompts vou
to pick a figure of each kind. It then creates bound sharedchannels (bound channelset) for each
channelset. The bound channels then are named something like "soldier3/ptrans/ststow2crawl”
(i.e. they are prefixed by the bound posture graph name). The names are not so important. jusi
as long as they make some kind of sense.

posture_change : This command lets you test out a posture graph. It prompts for a bound postur
graph, and then one of the nodes of the posture graph. It will then search for a path from the cur-
rent node to the target node in the posture graph (shortest path as defined by traversal time). aud
then execute the set of transitions. For example, if the bound posture graph is currently at STAND-
ING STOWED, and you request PRONE_FIRING, it will transition from STAND_STOWED to
CRAWL to PRONE.STOWED then to PRONE_FIRING.

Jack uses three posture graph files for the TTES simulation: soldier_low.graph holds the static pos-
ture transition graph, soldier loco.graph holds the walking and running transitions, and soldier _crawl.graph
holds the crawling transitions. Note that the last two aren’t proper posture graphs in the preceding sense.
but are just used for convenience for storing and creating bound channelsets.
Note that when a posture transition is requested, the system will sample the pre-recorded motion at
the frame rate frequency, so it is guaranteed to always play back in real time. For a 2 second posture
transition recorded at 60fps, and a current frame rate of the image generator of 20fps, the playback
svstem plays frames 0, 3, 6, ..., 120. It recomputes the elapsed time on every frame, in case the frame
rate is not uniform.

3.4.3 Lower resolution body model

Because of frame-rate requirements and polygon-count restrictions, it was necessary to build a lower
resolution human figure for use in the runtime TTES system. The low res soldier figure (DI.fig) has
the following properties, compared to the regular, polybody human:

10

// First, the posture names and posture tokens
// (they must start at 0, and be consecutively numbered)
8 // number of posture states

STAND FIRE

KNEEL FIRE

PRONE_FIRE

CRAWL
DEAD

~N O R W N e O

=

//

STAND_STOWED
KNEEL_STOWED

PRONE_STOWED

marks end-of-postures

// Now, the posture transition tokens, and channelset filenames
// (they must start at 0, and be consecutively numbered)
//token filename

17 // number of transition files

0 ststow2stfire.low.chset.env

1 ststow2kstowlow.chset.env

2 ststow2crawllow.chset.env

3 ststow2kfirelow.chset.env

14 prstow2dead low.chset.env

16 prfire2dead low.chset.env

16 stfire2kstow_low.chset.env

marks end-of-postures-transitions

// Now, the actual transitions (arcs in the graph)

/7

// start
STAND_STOWED
STAND FIRE
STAND_STOWED
KNEEL_STOWED

PRONE FIRE
STAND_FIRE
KNEEL_STOWED
DEAD

end channelset playback time
STAND_FIRE 0 forward 0.8
STAND.STOWED 0 backward 0.8
KNEEL_STOWED 1 forward 1.6
STAND_STOWED 1 backward 1.6
DEAD 15 forward 0.8
KNEEL _STOWED 16 forwvard 1.6
STAND FIRE 16 backward 1.6
STAND_STOWED 4 backward 10.0

marks end-of-arcs

Figure 7: A Posture Graph file

11

soldier.fig | DI.fig
polygons 2410 478
edges 4772 773
nodes 2510 327
segments 69 24
sites 180 147
joints 68 23
(DOFs) 134 50

The DI.figemulates the polybody in most every detail, except that it has no fingers (fingers and palm
are a single segment), no spine, no eyeballs, and no clavicle psurf (i.e.. the clavicle is a virtual segment).
The DI.fig link structure is the same as the polybody, except for hands (no fingers) and spine (the
spine was replaced with two rotational joints, and one translational joint, to mimic the compression that
the normal spine can do). The geometry of the segments of DI.fig were not normalized, making 1t
un-scalable (anthropometrically)?. Currently, DI.fig has the dimensions of a 95th percentile male as

defined in ANSUR 88, as given by SASS v2.2.1.

3.4.4 Slaving and re-recording

Because of the difference in internal joint structure between the soldier.fig and DI.fig, its motion
cannot be controlled by the available human control routines in Jack (which all make assumptions
about the structure of the human figure). Instead of controlling its motion directly, we use the existing
commands to control the motion of the regular human (as described above) and map the motion on to
the low resolution figure, DI.fig. We call this process slaving, because the high resolution figure is the
master, and the low resolution figure is the slave.

We use Jack’s constraint system to do the slaving. Even though the two figures have different internal
joint structures, their dimensions (e.g., length of arms, legs, etc.) are the same. Our goal is have the
important landmark sites on both bodies match during the motion. Since from waist down the two
figures have the same internal joint structure, we can simply copy the joint angles. From waist up.
constraints are used to insure the motions of the two figures match. We create one constraint for each
site to be matched. The important sites to be matched are (and the respective constraints):

[Constraint | endeffector (on DI.fig) | goal (on soldier.fig) | joint chain (on DI.fig) 1

Dl_belly middle_torso.upper-torso | t12.DI.middletarget waist - belly
Dl_torso upper_torso.distal upper_torso.distal belly - top of spine
Dlsight bottom_head.sight bottom.head.sight top of spine - eyes
Dlleftpalm left_palm.palmcenter left_palm.palmcenter elbows - palms
DI_rightplam | right_palm.palmcenter right_palm.palmcenter

DI leftelbow left _upper_arm.distal left_upper_arm.distal shoulders - elbows
Dl_rightelbow | right_upper_arm.distal right_upper_arm.distal

Jack$ constraint system works best if the initial configuration of the figure is close to the goal
configuration. To give a good starting configuration for the constraint solver, we first copy the joint
angles of the master to the slave (blending the 17 spine joints onto the 7 DOF torso of the slave). After
copyving the joint angles, the constraint solver is invoked to make sure that the important sites of two
figures match during the motion. Because of geometry differences, in general we cannot expect all the
sites to match exactly. In the case which we cannot match all the sites, we would prefer to match the
most important sites as close as possible. In this application, the hands always hold a gun. So the
matching of the hand motion is very important, otherwise the hands may go through the gun. Using the

2Pej-Hwa Ho is currently fixing this problem, by making some commands in Jack that open and automate the usually
painful and error-prone normalization process

12

priority feature of Jack$ constraint system, we can assign higher priority to the palm center matching
constraints than others.
In summary, the slaving process consists of two steps:

1. Copy all the joint angles from the master to the slave.

2. Evaluate constraints to make sure that important sites (such as the palm_centers) of the two figures
match up.

This slaving technique could be exploited in the future to allow us to define a variety of lower-
resolution (than soldier.fig) figures, but still program and create motions for the regular human
Then we just create a unique slaving procedure for each new lower-resolution figure we've defined.

Once the channelsets have been recorded for soldier.fig (from the previous section). they arc
loaded into Jack, and played back on a standard soldier. A lower-resolution soldier figure is then siaved
onto the regular soldier, and the resulting motions are saved for the lower-resolution figure.

The commands for creating a master-slave pair in Jack are:

create master _slave_pair : This command prompts for a soldier.fig figure, and a DI.fig figurc.
and creates the master-slave pair. It launches a SimulationFunction which updates the slave on
each iteration of AdvanceSimulation in Jack.

slave_parameters : This command allows you to set various parameters concerning the slave and tin
slaving procedure. Usually, it would be executed like:

slave_parameters('yes", "yes'", "yes",'"yes",0.50,"yes",0.50,"yes" , "yes");
turn_slave_on and turn_slave off : These commands toggle the slave updating on and off.

turn_behavior constroff : This command turns the behavioral constraints of the master (soldicr)
figure off. This is useful if you're slaving a master that is being driven by channelsets. where vour
just interested in the kinematic motion (i.e. the master is not being driven by motions, but by
channelsets.).

create_channelsetmotion : If you're creating slave motions for a master soldier that already has 1=
channelsets loaded, you can make the master execute its channelset by creating motions with thi-
command. Once the motions are interpolated, you’ll have the channels ready for the slave to create
the slaves channelsets.

Each channelset recorded in the first phase (on soldier.fig) is reloaded and played back on a master
soldier.fig, while a DI.fig is slaved. This then gives us the channelsets for DI.fig, which are then
saved back to new channelset files. Thus, the re-recording is accomplished.

So the final set of steps, from motion creation to playback are:

1. Create motion files for a soldier and gun (posture transitions, walking, running and crawling)
2. Record these motions to channelsets.

3. Build a posture graph file, to organize the channelsets logically.

4. Create a master-slave pair, between a soldier master and a DI slave.

5. Re-load all the channelsets for the soldier, and create a channelset motion for each channelset (the
channelsets can be loaded via the posture graph file).

6. Re-interpolate the motions.

. Write out new channelsets for the slave DI.

13

Figure 8 A View of Quantico village with several soldiers in different postures

3.5 TTESPerformer stub program

We built a TTES stub program, which allows us to load the Quantico village database, several soldiers.
and mimic the control of the soldiers with simple keyboard commands (to emulate the commands coming
from SAFDI and TTEScontrolled humans). It is called ttes-stub, and it is based on the pickfly
demonstration program distributed with Performer 1.2. It is a fairly generic Performer application.

The Quantico village database is loaded via the standard Flight-format loaders. The human figures
are stored in TIPS files, and loaded via the TIPS-format loader. The format of the run-time database
generated for the humans is described in Section 7. See Figure 8 for a look at what the village looks like.

I will briefly describe the structure and functionality of the program here and in the next section.
The coordinate transforms between the Peabody environment and the Performer environment are the
following:

H [Jack [Performer ﬂ
Up vector +Y +7Z
Zero heading -Z +Y
Distance units | cm m

There are two main structures that are used in ttes—stub to connect with Jack : a JackProcess
object (Figure 9) for making a connection to Jack and a JackSoldier object (Figure 10) for controlling
the articulation. Note that in the code shown here, not all fields are shown, just the essential ones.

The declaration of the two classes is in jacksoldier.h. The definition i1s in jacksoldier.c++. The
normal sequence of events would be:

jack = new JackProc(Q);
This creates a JackProc object and initializes all the internal fields. Then. the friendly and hostile
soldiers are loaded via calls to LoadTIPSFile, and the appropriate fields in JackProc should be set.
Then a Jack process must be launched.

14

]

class JackProc {

public:
pfGroup *hostilesoldierclone; // the soldier group for cloning
pfGroup *friendlysoldierclone; // the soldier group for cloning

JackUpdateTable *updatetable;
int njoints;

int nfigs;

JointInfo jointsinfo[MAX_JOINTS];
FigureInfo figsinfo [MAXFIGURES];

int readsocket; // the fd were reading from

int writesocket; // the fd were writing to

int connected; // are we connected yet?

int jackready; // is jack ready yet?

int quitting; // everything stops...

JackSoldier *table[JACKMAX_SOLDIERS]; // a table of soldiers
int tablesize; // how many are in there

JackProc();

virtual int send(int token, int size, void *jpk);

virtual int launch(char *host, char *remotehost, char *exe, char *datadir);
virtual int receive(char *message);

virtual int initsocketconnection();

virtual int start(char *soldierprefix);

virtual int quit();

friend void JackSocketReader(JackProc *jp);

friend class JackSoldier;

s

extern JackProc *jack; // the jack process wrapper

Figure 9: JackProcess

15

class JackSoldier {
public:

int soldiernum; // for internal reference

JackProc *jp; // the Jack process controlling this soldier
pfGroup *soldier; // the Performer clone

pEDCS *jointptrs[MAX_JOINTS];

pEDCS *figptrs[MAX FIGURES];

int sflag; // is there something in the socket buffer?
int buffer; // consumer buffer to use...

JackPackl buf{2]; // jack update packet, double buffer
int bufsize[2]; // size of each buffer

JackSoldier (pfGroup *clone, JackProc *jp);

virtual int receive(JackPackl *jpk,int size); // fill a buffer

virtual int update(); // update the Performer tree of this soldier

// update the Jack side of this soldier

virtual int request(int appear, int weapon, float velocity[3],
float heading, float position[3], int immediate);

// friendlies

friend void JackSocketReader(JackProc *jp);

Figure 10: JackSoldier

16

jack->launch(<host>, <remotehost>, <exe>, <data directory>);
where <host> and <remotehost> are the machine names for the local machine and the machine Jack
should run on (they can be the same, of course). The <exe> is the name of the Jack executable, in our
case jack-ntsc-g, and <data directory> is the startup directory of Jack (where all the data files are).
Jack is launched via a call to rsh. After Jack is launched, we establish the two sockets:

jack->initsocketconnection();
The above command opens one read and one write socket to Jack (Jack will be waiting for these
connections). It also sproc()’s a process to read the incoming packets from Jack. Once the sockets are
established, we can communicate with Jack. We send the startup commands to Jack via:

jack->start("soldierlow");
which just sends a JCL command to Jack read file("jack-ttes-soldier low.jcl"). This starts
Jack initializing, which may take a while. Before sending any updates to Jack vou have to wait until
Jack is ready. This is signaled when the jack->jackready flag is set (usually takes about 30-40 secouds
for Jack to get ready).

while (1) {
if (jack->jackready)
break;
sleep(1);
}

Once Jack is ready, we can start adding soldiers, and receiving updates from Jack. For each soldier. first
you create a new soldier:

JackSoldier *newsoldier = new JackSoldier(jack->hostilesoldierclone, jack);
where the first parameter is a Performer tree to clone for the soldier, and the second is the jack process
pointer. An example implementation of the use of JackSoldier is in the file simsoldier.c++, which has
a sample class called SimSoldier, which implements a kind of control for a soldier in the Performer
environment, along with simple simulations (soldiers that walk in squares and circles). Once a soldier 15
created, you can send updates to Jack via:

newsoldier->request(<posture>, <weapon>, <velocity>, <heading>, <position>);
This sends the appropriate information to Jack so it can decide which set of joint angles (frame withimn
a bound channelset) to playback.

3.6 Start-up in Jack

Jack is launched from within the TTES process via a call that looks like:

rsh <remotehost> (unsetenv REMOTEHOST; setenv DISPLAY :0;
jack-ntsc-g -W 9,600,500,1000
-M $,600,450,480 -A 9,350,80,10,Courier7
-E open.ttes_sockets(<host>)
-E change directory(<directory>)

which does a remote shell (so your .rhosts file should contain <remotehost> if it’s different than
the local) to launch Jack. The command arguments are: -W: this sets the window location: -M: sets
message window location; -E: execute the command.
The first thing Jack does is open the read and write sockets to TTES. This is done via the open_ttes_sockets(<hos
call. Jack acts as the server for the connection, so it blocks until TTES requests the sockets. The second
command, change directory(<directory>) will set the default directory to where the TTESrelated
data files are {for Jack). This allows you to keep Jack and its data files in a separate tree from the rest
of TTES.
Once the sockets are open, TTES will send the command read file("jack-ttes-soldier low.jcl").
which will force Jack to begin the initializing sequence. This file i1s below:

17

1 readfile("jack-ttes-soldierlow.env");
create.soldierstate('s0","Di2 0" ,"AK 47.0");
3 createsoldierstate("s1","Di2 1" ,"AK 47_1");

10 createsoldier.state("s9'","Di2.9","AK_47.9");
11 set_channelset.parameters('no");

12 set_ttes.report_.interval(10.00);

13 set_ttes_headingoffest(256.00,0.00,256.00);
14 set.ttessoldier_throttle(0.04);

15 set_ttes.report_interval(30.00);

16 start_ttes_socketsimulation();

17 disable_graphicsQ);

The first thing done (line 1) is to load the environment file containing the 10 soldier/gun figur:
pairs. Lines 2-10 create the ten soldier states (structures that hold all state info for the soldiery For
example, create_soldier _state("s0","Di2.0","AK 47_0") creates soldier “s0”. from the DI fig figur
Di2.0 and gun AK_47_0. The first soldier state create triggers the loading of all the posture graph files
and associated channelset files. Also, the channels are bound to the soldiers at this point. Line 11 sets
the playback of the channelset to real-time (1.e. frame skipping). Line 12 tells Jack to report status every
10 seconds, to the shell. You can set this to a higher value to remove the messages that appear. Line
13 sets the heading offsets associated with the posture transitions, walking. and crawling channelscts
respectively. This was necessary, as the channelsets were recorded before we had the interface working.
and before we realized we had a bad offset in there! (it was easier to add this command than to re-record
all the channelsets). Line 14 sets a “throttle” value, in seconds. This actually slows the rate of update
packets sent to TTES. This was necessary, as Jack running on its own processor can send out about 1000
updates a second, for 10 soldiers, and the max we’ll need for 10 is about 300. This value, set at 0.0+
seconds, or about 1/30th of a second, will stop Jack from sending out updates for the same soldier at
greater than the inverse of the number (e.g. 1/30 means don’t send more than 30 updates per second)
If your image generator is never going to go over 15Hz, set this value to 1/15, or about .065. It saves
on net traffic. Line 16 sends the “I’m ready!” message to TTES so it can proceed with the simulation
And finally, line 17 shuts off Jacks graphics. Jack will not redraw its windows, or spend any time domg
anvthing graphical. At this point, Jack is ready to receive updates from TTES and send data back.

3.7 Motion Playback in Jack and TTES

Once the simulation is set up, TTES sends requests to Jack (via JackSoldier::request), and receives joint
angle packets (via JackSoldier::receive). The format of the packets going from TTES to Jack is shown
in Figure 11.

This is essentially the key DIS parameters for the soldier. The values are in Performer coordimates,
and are transformed in Jack when they arrive. Currently, heading and position should be sent. but they
are not reflected back in the update packets sent to TTES. This is by design, as TTES wants to set
heading and position itself. Position is of the feet (i.e. ground level). The pseudo-code for the main
soldier controller in Jack (which is run every iteration of the Jack main loop, for each soldier) is shown
in Figure 12.

The update packets are sent out of Jack from within the motion controllers (which loosely corre-
spond to the “continue ...” statements in the above code; the motion controllers actually are running
concurrently’, as SimulationFunctions in Jack). There are three different motion controllers: posture.
walking/running, and crawling. Each one’s job is to pick the correct frame from within a bound chan-
nelset, and this frame is formatted and sent to TTES as an update packet.

The format for joint angle update packets from Jack to TTES look like:

18

P |
#define JACKTTESDEAD 1

#define JACKTTESUPRIGHT 2

#define JACKTTES KNEEL 3

#define JACKTTES_PRONE 4

#define JACKTTES WEAPON.STOWED 0

#define JACKTTES WEAPON DEPLOYED 1

struct JackPackIn {
int soldierindex; // same on Jack and TTES side [0..9]
int appearance; // one of above (JACKTTES*) [1,2,3,4]
int weaponstate; // one of above (JACKTTESWEAPON *) [0,1]
float velocity[3]; // in meters/second
float heading; // in degrees
float position[3]; // in meters
int immediate; // do we want this now? ‘‘snap to’’

Figure 11: TTES Packets

soldierindex = [0,9]

size of data array = S
data[0]: object index 1
data[l]: dof 1
data[2]: dof 2
data[3]: object index 2
data[4]: dof 1
data[5]: dof 2
data[6]: dof 3
data[7]: object index 3
data[k]: object index i
datalk+1]: dof 1
data[k+2]: object index i+1
data[S-3]: item index n
data[S-2]: dof 1
data[S-1]: dof 2
data[S]: dof 3

When the TIPS file is loaded into the Performer runtime database, the loader writes out a file of
articulation parameters, and this information is used to build an update table, which in turn is used
to interpret the update packet shown above. Both Jack and TTES use the same update table. Each
entry in the table contains an index, an object name (for either a joint or a figure), and the number of
degrees-of-freedom passed for this item. Therefore, the number of dofs per entry varies, usually 1 to 3
for joints, and 16 for figure position (the whole 4x4, but we’ll cut this down later to 7: 3 for position, 4
for orientation).

This design allows us to transmit the minimum amount of information per update, to keep network

19

SoldierState: :soldiermanager()

{

if (a packet has arrived) {
copy packet
convert from TTES to Jack coordinates

}

compute velocity

compute heading

if (soldier is currently transitioning) {
grab new heading
continue posture transition
return

}

if (a packet has arrived and
(posture is different or weapon is different)) {
if (soldier is locomoting)

cancel the step

select the goal posture node from posture graph
start a new posture change (from current to goal)
return

}

if ((velocity > 0) and (soldier is PRONE)) {
continue crawling
return

}

if ((velocity > 0) and (soldier is STANDING)) {
continue either walking or running
return

}

if (no motion or posture change, but a heading change) {
send the last update packet with heading change

}

}

Figure 12: Soldier manager’s main loop

20

traffic at a minimum (a complete low-res soldier update is about 440 bytes), and affords us the ability
to take advantage of frame-to-frame coherence in a motion, and not transmit data that’s not changing
(although we haven’t tried that yet). The first incarnation of the JackTTES interface was implemented
via shared memory. We passed the entire joint transform (16 floats) for each joint. While this has the
advantage of speed, it has the greater disadvantage that Jack needs to run on the same machine, and
will not scale well to many soldiers.

4 Running the Demo

To run the demonstration executable, you should first unload the tape (tar format) into a directory, say
/usr/demos/ttes. For convenience, define an environment variable to point here, for example,

% setenv TTES /usr/demos/ttes

The files will be in directories according to the organization in Section 6. Your environment should
contain the necessary settings for running Jack.

4.1 Starting things up

To start the demo, run the following commands?:

% cd $TTES

% cd demo/performer

% ./ttes-stub -W 800 -H gumby -J $TTES/demo/jack/jack-ntsc-g -I
$TTES/demo/jack -F $TTES/demo/perf_terrain urban.flt

The parameters are: -W: window size for the program; -H: host to run Jack on (can be local): -J.
Jack executable; -I: directory to run Jack in; -F: Performer data file path; urban.f1t is the Quantico
village database. Once the program starts, Jack will be launched (you should see its screen come up).
ttes-stub will load the village database, and finally show you a bird’s eye view of the whole area. You
should pick the “SOLDIER CAM” view from the “View” menu on the left side of the window. This
places you on a tethered camera, attached to soldier 0, who is standing in the middle of the village.
Soldier 1 is walking in a square, and soldier 2 is walking in a circle.

4.2 Keyboard commands

The ttes-stub program is derived from pickfly, so it has all the features of that program (see Performer
1.2 documentation). In addition, the following keyboard commands are added (these are to exercise the
features of moving the soldier figures around) (Note: the current soldier starts at 0, and all commands
are relative to the current soldier):

3 All executables were compiled for Irix 4.0.5

21

1 Set posture to DEAD on current soldier.
2 Set posture to STANDING on current soldier.
3 Set posture to KNEELING on current soldier.
4 Set. posture to PRONE on current soldier.
5 Set weapon state to DEPLOYED on current soldier.
6 Set weapon state to FIRING on current soldier.
norN Next soldier. Set current soldier to next soldier {(i.e. if current
soldier is 1, sets current soldier to 2.)
porP Previous soldier.
a Add another soldier. This creates a new soldier, standing near the
low office building. A maximum of 10 soldiers {0-9) can exist.
A Add a Jaeckcontrolled soldier. This adds a new soldier that is con-
trolled via Jack (reactive behaviors). This is experimental for now.
uorU Move the tethered camera AWAY from soldier by +5 meters.
dorD Move the tethered camera TOWARDS the soldier by -5 meters.
iorl Rotate tethered camera +10 degrees about current soldier.
jorld Rotate tethered camera -10 degrees about current soldier.
oor O Move tethered camera to OVERHEAD view on current soldier.
Left, Right Arrows | Change heading -10 or +10 degrees on current soldier.
Up, Down Arrows | Change velocity +0.5 or -0.5 meters/second on current soldier.
? Prints a list of keyboard commands to the stdout (console).

4.3 Taking a walk in the field...

v

Arrow] key. Change his heading so he walks towards the open fields by pressing [Left Arrow]. You
can swing around him by holding the [i] or [j] keys. Take a look at him from above by pressing [o].
Press [i] again until you are looking at him from the side. Now increase velocity with the [Up] arrow.
When he exceeds 3 meters/second he’ll start to run. The drop him back to zero by pressing [Down
Arrow]. If you press [Down Arrow] again, he’ll walk backwards. Bring him to a stop again. Now
try pressing the keys [2], [3] and [4] to see him adopt various postures. Also use [5] and [6] to see
him shoulder his rifle. If you press [1] he dies...press [2] to resuscitate him. Press [4] to make him go
PRONE. Then give a little forward velocity, and he CRAWLS forward. Once you get the hang of it, try
taking a couple of soldiers out into the field, using [n] and [p] to toggle between them. You can drop
the soldier-tethered camera and just drive or fly around by choosing “Fly” or “Drive” from the “View”
menu.

When you first start up, you are looking at soldier 0. Start him walking slowly by pressing the [Up

4.4 Looking at things in Jack...

While the simulation is going on in the Performer program, Jack is providing motion data, reacting
to the changing states of the soldiers. You won’t see anything happening in Jack as the graphics are
disabled. If you enable graphics, you’'ll see 10 soldiers standing at the origin, and several may be walking
in place, according to their state. However, what’s going on inside Jack is the same as in Performer. We
can see that by doing the following (while you have ttes-stub up and running). Go to the station Jack
is running on. Jack will respond to your keyboard commands.

Enter the command read file(‘jack-ttes-terrain.jcl’’). This will turn off soldiers 5-9, and
set Jack to show the soldiers in their correct global positions in space (1-to-1 with Performer). It also
will read the file urban_terrain.env, which is the Jack equivalent to the urban.f1lt file*. You can

4If Jack doesn’t load the file correctly, load it manually from the directory you installed it into.
$TTES/jack-terrain/urban terrain.env$

22

do change_view to move the camera around a bit, but you should see things just as they are on the
Performer side of things.

5 Conclusions & Future Work

We have built and demonstrated a system for off-line production of motion sequences, together with a
method for putting those motion sequences together (posture graphs and locomotion control) for real-
time playback to a remote image generator. Also, we have created a system for animating the human
motion associated with what can be expressed about a human figure in the DIS protocol.

There are many areas in which this work could advance or ve improved. Some of our suggestions fur
immediate additional work are listed below:

e Posture Transitioning

As the number of possible states for the human increases, the posture graphs should he replaed
with a more procedural approach to changing posture. For the applications today on current
workstations, the current technique balances performance and realism NAWCTSD would ik
to control the human figures (both hostile synthetics and friendly avatars) with the same control
scheme, based on sensor values from locations on the human figure. We will be investigating this
in the near term.

e Production of posture transitions:

In general, the process went smoothly, but there were several aspects that can be improved upon

— The video that was supplied to us showed the soldier only from one viewing angle It would
have been better to show the same movement from several different views (ultimately from
the three orthogonal axes views, as they are used in a rotoscoping system). As it was, it wa-
sometimes hard to tell where exactly a given limb would end up (e.g. it was blocked from
view by another body part).

— Jacks constraint system was very helpful in roughing out the movement. Yet, for this simu-
lation we wanted to achieve a movement that looks as fluent as possible. This proved to |
somewhat difficult under Jack. What would be desirable, would be a facility to “fine-tund”
a motion better. Similarly, the algorithm used to drive the inverse kinematics sometimies
produced unpredictable results when different goals (motions) affected the same kinematic
chain.

— As an ultimate improvement for this process would be a system that could create the motions
directly from the video, without the use of any animators (automatic rotoscoping). or sample
the motion using a body suit, or a set of sensors (e.g. Flock Of Birds) and recreate the motion
using this data. We think this is the most promising solution.

e Generalize the cyclic posture changes

The cyclic posture transition state machines are currently hard-coded for each cycle (walking.
running, and crawling). The static posture transition state machine is general and data-driven
We should generalize the cyclical state machines, so they can be driven completely by data files
(like the static postures). The key to doing this will be the specification of conditionals on which
states change. These could be specified in cyclic posture graph data files as LISP expressions. and
interpreted on-the-fly, during runtime.

e Some bells and whistles

During the production of one of our posture transitions, a glitch was introduced in one of the
transitions that caused the soldier to jerk backwards a bit when a transition started The soldiers

23

6

working with TTES saw this and liked it very much, thinking we were animating kickback from
a firing rifle. We could formalize this a bit, and look at the event-type information in the DIS
stream (weapon fire, explosions, etc) and create small (2-5 frame) sequences of motion to give the
illusion the soldier is reacting to the event. This could prove a very inexpensive way of increasing
the illusion of reality.

Intelligent, Reactive Friendly soldiers:

Another interesting extension of using Jack for TTES will be the incorporation of some work by
Becket and Reich, which endows the soldier figures with the following abilities. These could be
used to generate Jack-controlled soldiers to easily populate the world, with a simple programmatic
control of their higher-level behaviors.

Infrared: A simple infrared model is available. Each figure or segment in an environment can he
tagged with a “heat™ value between zero and one. A mode exists to display the environment
using these heat values, interpolating from black to red, instead of the normal visible-light
colors.

Attraction: Attraction is used to guide an agent towards an object or agent, towards a global
location, or towards a location relative to an object or another agent. For example, attraction
might be used to have a friendly soldier try to stay 10 feet away, 20 degrees to the right of
another agent as that agent moves around in the environment.

Avoidance: Avoidance is used to keep an agent away from specific objects, locations, or other
agents.

Terrain Sensor: Terrain sensors detect the types of terrain surrounding an agent. A terram
sensor may be used to have an agent avoid certain types of terrain such as water, or to keep
an agent on a path or road.

Hostile Field-of-View Sensor: The hostile field-of-view sensor may be used to have an agent
avoid the line of sight of one or more hostiles.

Embed motion control in Performer

The current implementation of the motion controllers in Jack rely mostly on stored motions.
Therefore, it would be quite possible to remove them from Jack and embed directly in Performer
Then, the Jack process would not need to be run during a TTES session, increasing performance
of the system overall. If we use inverse-kinematics and constraints on sensor data (as is likely in
the near-term). this would be more difficult, as it would entail embedding that part of Jack in
Performer. Eventually, though, this is the goal.

Appendix A: Data and Code Files

This is the directory structure on the tar tape. Note: files with .Z suffix are compressed and should be
uncompressed before using. Also, there are several symbolic links to cut down on duplications of files.

./movies/*.mv SGI movieplayer (Irix 5.2) files of posture transitions (as supplied by NAWCTSD). The

video was broken up into 3 movie files.

./share/motions/* Motion files live here. Each motion has an associated frame 0 *.env file and a

* motions.env file. In all motion files, the regular (soldier_cam.fig) soldier is named soldier, the
gun i1s named AK_47_color2 (don’t ask), and the DI is called Di. The nomenclature for files is:

e st = standing

e k = kneeling

24

e pr = prone
e dead = dead
e fire = firing

e stow = stowed (actually deployed)

For example the motions from standing stowed to kneeling firing are ststow2kfire.env

./share/motions chsets/* The channelsets, both for regular soldier, and low-res DI.fig. The nomen-
clature is similar to that of the motion files, with the additional 1low specifying the low-res soldier.
and .chset. marking this as a channelset file. Several JCL files here are also used to automate
the motion->channelset and slaving procedures.

./share/perf terrain/* These are the Flight-format geometry files for the Quantico village environ-
ment. The main file is urban.flt

./share/jack terrain/* These are the same Quantico village environment, but converted to Peabody
format. The main file is urban. env (unfortunately, no texture maps).

./share/data/* These are Jack data files, defining the various figures used, psurfs, and texture maps.

./src/common These are the shared files between Jack and TTES.

jackpack.h Format for packets going from TTES to Jack and back.

updatetable.c++ Both sides use the updatetable object, which defines format of packets flowing
from Jack to TTES.

./src/jack/ These are the files that make up Jack. These files were the only additional or changed
files above and beyond the 5.8 libraries.

MotionControl.h The locomotion/crawling motion control object.
channelset.c++ Channelset CMDs and definition.

channelset.h Channelset declarations.

jack-ntsc-g The Jack executable (symbolic links point here)

jack_channel.c++, control input2 motion Slightly modified from the 5.8 libraries. These files
don’t have much to do with the TTES functionality.

jackmotioncontrol.c++ Definition of MotionControl (locomotion) controller.

jacksock.c++ Socket communications process, and CMDs for all TTES related commands.
menu.c++ Main menu definition for Jack.

pea_parse.c++, peaparse.y Modified Peabody parser to handle indexed fields in constructs.
peastuff.c++ Parser callouts for handling channelset and sharedchannel fields and constructs.
pgraph.c++ Definition of PostureGraph class.

postures.c++ Definition of BoundPostureGrapph, and CMDs for all posture commands.
postures.h Declaration of Posture* classes and functions.

setmotion.c++ Definition of the channelset motion.

setmotion.h Declaration of the new SetMotion type.

sharedchannel.c++ Definition of the new SharedChannel type (sub-class of Channel), and two
sub-classes: SharedFigureChannel and SharedJointChannel.

25

sharedchannel.h Declaration of above.
slave.c++ Slaving CMDs and functions.

soldier.c++ Definition of SoldierState class, which wraps up all the other things, and manages
interface with TTES.

soldier.h Declaration of above.

spitter.c++ The spitter, creates .tips files

ttes_crawl.c++ State machine for crawling.
ttes_global.c++ Global coordinates computation for scldiers
ttes_loco.c++ State machine for walking and running

ttes_testcmds.c++ Testing commands for use when no TTES process connected.

OPT/ttes-stub.0OPT Actual executable file

cmdline frame gui keybd main object picking These are all just slight modifications from
the pickfly original, as distributed with Performer 1.2.

jacksoldier.c++ Definition of the JackProc and JackSoldier classes.
jacksoldier.h Declarations for above.

jackupdate.c++ Some sample functions, which call the appropriate functions within other nod-
ules, to start up Jack and create soldiers. You would have something like this in your own
system.

pftips.c++ The TIPS loader

pftips.h Declarations for above.

pickfly.c Main routines for the interface.

socket.c++ Simple routines for making a socket connection with Jack.

soldiersim.c++ A sample implementation of a simulated soldier, with calls into the main func-
tionality of JackSoldier. Use as a template for your own.

./src/tips11/ This is the modified TIPS loader for Performer 1.1. See the description in Section 7.3.

/demo/jack/ Files for Jack when running the demo. This is the directory in which Jack should execute
during the demo. The subdirectory ./demo/jack/chsets holds the pre-computed motions.

./demo/performer/ This is where you start up the demo.

7 Appendix: TIPS file format and Performer Loader

Roughly, a .tips file is a record of the information obtained in a traversal of the Peabody environ-
ment. For each figure in the environment (except the camera) a depth-first traversal of the figure’s
sites is performed. starting at the root site and following joint connections between sites. Use of this
intermediate-styvle format avoids calling the Peabody parser from within the Performer application; we
found development to be faster without the added complexity of modules linked with both the (exten-
sive) Jack 5.8 libraries and the Performer 1.1 or 1.2 libraries. It is for similar reasons of speed and
convenience of development and debugging that we chose a human-readable plain-text format. You can
create a .tips file from within Jack be executing the command spit("file.tips") which will dump
evervthing in the environment (except cameras) into file.tips.

26

7.1 TIPS file format specification

The following is an informal description of the structure of a .tips file. Newlines in each part of the
description correspond to newlines in the file. Entries in the file are generally strings, integers, or floating
point values, and the exact meaning of constructs in the description should be clear from the example

.tips file in the next section.

[TIPS FILE] ::=

[number of figures] [COMMENT]
[FIGURE DESCRIPTION] *repeated [number of figures] times*

[FIGURE DESCRIPTION] ::=

[COMMENT]

[figure name]

[COMMENT]

[figure filename]

[COMMENT]

[4x4 global position transform)]

[COMMENT]

[4x4 root site inverse transform]

[SEGMENT DESCRIPTION] *for the figure’s root segment*

[SEGMENT DESCRIPTION] ::=

[SITE] ::=

[JOINT] ::=

[DOF] ===

[PSURF FLAG] [COMMENT]
[GEOMETRY] *only if [PSURF FLAG) = 1*
[number of sites] [COMMENT)]

[SITE] *repeated [number of sites] times*

[number of joints] [COMMENT)
[COMMENT)

[site name]

[COMMENT]

[4x4 site transform matrix]

[JOINT] *repeated [number of joints] ¢{imes*

[ROOTJOINT FLAG] [COMMENT]
[COMMENT]

[4x4 joint transform matrix]

[REVERSE JOINT FLAG] [COMMENT]
[number of DOFS] [COMMENT]

[DOF] *repeated [number of DOFS| times*
[COMMENT]

[joint name]

[COMMENT]

(OTHERSITE name]

[COMMENT]

[4x4 inverse of OTHERSITE transform)

[SEGMENT DESCRIPTION] *for segment at other end of joint*

27

[DOF type] [COMMENT]

[GEOMETRY] ::=
[number of attributes] [COMMENT]
[ATTRIBUTE] *repeated [number of attributes] times*
[number of nodes] [COMMENT]
[node coordinate 3-vector] *repeated [number of nodes] times*
[number of faces] [COMMENT]
[FACE] *repeated [number of faces] times*

[ATTRIBUTE]
amblent color 3-vector]
diffuse color 3-vector]

[

[

[specular color 3-vector]

[TEXTURE FLAG) [COMMENT]

[texture filename] *only if [TEXTURE FLAG] = 1*

[FACE] ::=
[attribute index number] [COMMENT]
[number of vertices] [COMMENT]
[face color RGB vector]
[VERTEX] *repeated [number of vertices] times*

[VERTEX] ::=
[node index number]
[texture coordinate 2-vector] *only if [TEXTURE FLAG] = 1*

[COMMENT)] ::= any string of characters terminated by a new line

7.2 Example .tips file

The following .tips file (reproduced verbatim) represents a Peabody environment which contains a
single unit cube as its only figure:

1 figures

FIGURE #0

cube

FIGURE #0

cube.fig

Global position matrix

1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 0.000000 1.000000
Root site inverse matrix

1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 0.000000 1.000000
1 (psurf flag)

28

C N M I POPORABDOOPOWTONOBOIBIWOOWPROWNHROOBROGRAHMOORHOO®MOO OO K

.000000 0.000000 O
.000000 0.000000 1.000000
.000000 0.000000 1
.000000 0.000000 O
.000000 -1.000000 0.000000
.000000 -1.000000 1.000000
.000000 -1.000000 1.000000
.000000 -1.000000 0.000000

(# attributes)

.173333 0.125490 0.173333
.693333 0.501961 0.693333
.000000 0.000000 0.000000

(texture flag)
total nodes
.000000

.000000
.000000

faces
attribnum
vertices

.000000 0.000000 0.000000

attribnum
vertices

.000000 0.000000 0.000000

attribnum
vertices

.000000 0.000000 0.000000

attribnum
vertices

.000000 0.000000 0.000000

attribnum
vertices

.000000 0.000000 0.000000

attribnum

29

4 vertices
0.000000 0.000000 0.000000
1

N OO

1 sites

0 joints

SITE

base

Site 1 matrix

1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 0.0060000 1.000000

7.3 Alternate .tips format

An alternate format was developed to handle a last-minute change required by the TTES project. namels
that the Performer .tips format loader run under Performer 1.1 rather than Performer 1.2 The ke
difference between the two versions with respect to the loader is that Performer 1.1 lacks the pfuBuilder
object of 1.2, which performs automatic generation of efficiently-meshed trangie strip GeoSets (geom-
etry objects) and their associated GeoStates (attribute objects) from arbitrary polygon and atiribute
information.

Our solution was to use the 1.2 pfuBuilder routines to generate GeoStates and meshed geometry
which were then written into a slightly modified .tips file intended to be read in a Perfornier 11
environment. The only change, therefore. is in the encoding of geometric information:

[GEOMETRY] ::=
[number of attributes] [COMMENT]
[ATTRIBUTE] *repeated [number of attributes] times*
[GEOSET] *repeated one or more times*
endgeosets
[GEOSET] ==
geoset

[attribute index number] [COMMENT]

[number of triangle strips] [COMMENT]

[length of strip] *repeated [number of triangle strips] times*
[indexing mode]

[VERTEX1] or [VERTEX2] *repeated once for each vertex*
[color binding]

[COLOR1] or [COLOR?2] *depending upon [color binding]*
[normal binding]

[NORMALL)] or [NORMAL2] *depending upon [normal binding}*
[texture binding]

[TEXCOORD] *only if {texture binding] = PFGS.PER.VERTEX*

[VERTEX1] ::=

[vertex index number]
[vertex 3-vector] *used if [indexing mode] = indexed*

30

[VERTEX2] ::=

vertex 3-vector] *used if [indexing mode] = not indexed*
g

[COLOR1] ::=

[color 4-vector] *repeated once for each vertex*
[COLOR2] ::=

[color 4-vector]
[INORMALI] ::=

[surface normal 3-vector] *repeated once for each vertex*
[INORMAL2] ::=

[surface normal 3-vector]
[TEXCOORD)] ::=

[texture coordinate 2-vector] *repeated once for each vertex*

For obvious reasons, this encoding is very similar in structure to that used within a Performer
pfGeoSet. [COLORI1] and [NORMALI1] are used when “PFGS_PER_VERTEX" attribute binding 1~
in effect (indicating a value for each vertex) and [COLOR2] and [NORMALZ2] for “PFGS_OVERALL"
attribute binding (indicating a single shared value for all the vertices).

7.4 Runtime database structure

Performer 1.1 and 1.2 are both limited to a maximum scene graph depth® of 32. For this reason w:
use just one pfDCS node for each joint in the Peabody hierarchy. Since a Peabody joint consists of
three transformations (site 1, joint angle, and site 2 inverse), two matrix multiplications are required 1o
compute each new DCS value. This single-DCS approach was chosen because the alternative. breakinyg
up the figure hierarchy into several smaller pieces, would entail unnecessary complexity and additional
bookkeeping. The matrix multiplications must be done at some point anyway; nothing is lost by making
them part of the update process. The two site transforms do not change during simulation. so the)
are stored by the Performer application and at each frame the Jack process need only transfer the
updated joint transforms over the socket or shared memory connection, thus minimizing communication
bandwidth. Even with only one DCS per joint, the Jack 5.8 human approaches the Performer-imposcd
limit. To minimize its depth we root the human through the waist at all times.

TTES entities® are attached to the top level of the Performer scene graph by the sequence of nodex
shown in figure 13. The node labeled “Entity Position DCS” allows the human and gun subgraphs to be
manipulated as a single unit. More specifically, we update the value of this transformation at each frame
to reflect the terrain ground height under the TTES entity. Our geometry being defined such that the
coordinate origin is located between the human’s feet, this is a simple matter of casting a vertical ray into
the scene and using the intersection point directly to determine the appropriate translation matrix. The
“Figure DCS™ node for a particular figure corresponds to the transformation obtained by multiplying
the global position transform of the figure’s root site by the inverse of the root site transform. This
information is also part of the update packet sent by Jack on each frame, mapping figure movements
in the Jack environment into the Performer environment. Figure 14 explains the structure of the scene
subgraph representing a Peabody segment.

SHere we define depth to be the maximum number of pfSCS and pfDCS nodes on any path from the scene graph root
to one of its leaves.

€ An entity in our case consists of two figures: a camouflaged human and a rifie.

31

Entity
Position
DCS

Figure
DCS
weapon

Figure hierarchies, beginning at
their respective root sites

One such subgraph for each TTES friendly/hostile

Figure 13: A TTES Entity in the Performer scene graph

Segment
pfGroup

)
)
'
.

T
] . H
" 1
'
'

Only present if segment Hierarchies for attached segments ;
has geometry . {segment pfGroup nodes}

One such subgraph for the joints of
each site on the original segment

Figure 14: The subgraph corresponding to a Peabody segment

32

Finally, the “Joint DCS” nodes are set according to the three composed transformations mentioned
earlier. Changing the values stored at these DCS nodes is the main component of the update process,
and hence the Performer application also maintains an indexed array of pointers, one to each of the
“Joint DCS” nodes in the graph, for fast access.

33

	Jack/TTES: A System for Production and Real-Time Playback of Human Figure Motion in a DIS Environment
	Recommended Citation

	Jack/TTES: A System for Production and Real-Time Playback of Human Figure Motion in a DIS Environment
	Abstract
	Comments

	tmp.1187364704.pdf.5985m

