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Abs t r ac t  

The central theme of this paper is to  study the properties and expressive power of 
data-models which use type systems with extents in order to  represent recursive or self- 
referential data-structures. A standard type system is extended with classes which rep- 
resent the finite extents of values stored in a database. Such an extended type system 
expresses constraints about a database instance which go beyond those normally associ- 
ated with the typing of data-values, and takes on an important part of the functionality 
of a database schema. Recursion in data-structures is then constrained to be defined via 
these finite extents, so that all values in a database have a finite representation. 

The idea of extending a type system with such classes is not new. In particular 
[2] introduced a type system and data models equivalent to  those used here. However 
such existing work focuses on the expressive power of systems which allow the dynamic 
creation of recursive values, while we are concerned more with the properties of querying 
and manipulating databases containing known static extents of data-values. 

This paper consists of three parts. In part I we look at the problem of expressing 
transformations and constraints over a model based on object identities. A declarative 
language based on Horn-clause logic is introduced in which we can express a very general 
family of constraints and transformations. A normal form for transformations is defined 
and it is shown that transformation specifications expressed in the language which satisfy 
certain syntactic restrictions can be converted into equivalent transformation specifica- 
tion in normal form. The normal form transformations can then be converted into an 
appropriate DBPL for implementation. 

In part I1 we present a more detailed study of data-models based around such an ex- 
tended type system. A second data model, based of regular trees is introduced. I t  is shown 
that this second data-model is a finer model than the first object-identity based model, 
and that under certain assumptions about the operators available on object identities, 
the second data model is observably equivalent to the first. It is also shown that,  under 
different assumptions about the operators on object identities, any two non-isomorphic 
instances in the second model are observationally distinguishable, and that other assump- 
tions yielding useful observational properties between these two extremes are also possible. 

In part I11 we study the evaluation of recursive function definitions over such data- 
structures. We show that,  in general, such function definitions may have many possible 
solutions, and identify the desirable or intuitive solutions as those which can be computed 
constructively. We also show that, by making use of the known finite domains of such 
functions, we can compute these solutions in a manner which is guaranteed to  terminate. 

I have deferred conclusions and discussion of further work until part IV where I briefly 
state the additional work I believe needs to  be done in these areas and directions for future 
research. In addition there are many omitted proofs and technical details that need t o  be 
written up, and perhaps a need for further examples. 
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1 Introduction 

There is a natural analogy between the relationship between values and types in program- 
ming languages and that between instances and schemas in databases. Though the exact 
interpretation of these terms may vary, speaking broadly, a type describes a set of values with 
similar structure, while a schema describes a set of admissible instances for a database. How- 
ever, while a database instance may be considered to  be to be an unusually complex value, a 
schema may describe much more than the possible structure of these values. In particular a 
schema may describe a number of constraints which must be satisfied in order for an instance 
to be valid. 

The kinds of constraints expressible in a schema depend upon the particular data-model 
and DBMS being considered. However perhaps the most important kind of constraint in a 
schema, common to all established database systems, is to describe a number of finite sets, 
representing the data stored in the database, and the relationships between these sets. In a 
relational model these sets would be the relations (sets of tuples) in a database, while in an 
object oriented model they might be the classes (sets of objects). 

str str 

Figure 1: A simple database schema 

The important distinguishing feature of databases, as opposed to more general programming 
environments, is that all values originate from one of these known sets, each of which is known 
to have a finite extent. It may be that new values are built from the values in these sets, but 
still they provide the anchor points from which the database is accessed. This is true whether 
the access to  the database is in order to  enforce constraints, or carry out transformations, as 
well as when querying or updating. We will borrow object-oriented terminology ([7]) and refer 
to  these sets as classes, though the concepts are also common to other kinds of data-model. 

For example figure 1 illustrates a schema for a database of Cities and States, in some inde- 
terminate data-model. The schema shows that that database consists of two classes: a class 
of Cities and a class of States, and that each City has two components, a name and a state to  
which the city belongs, while each state also has two components, a name and a city which is 



it's capital. However the schema also implies some extra information: that the state of each 
City is in the States class of the database, and that the capital of each State is in the City 
class of the database. It is this sort of information that cannot be represented by a normal 
type system. 

In this work we will describe a model (or a number of related models) in which the type 
system is extended to  incorporate these classes. By doing so we hope to achieve a system 
which captures an important part of a database schema while maintaining the utility and 
simplicity of a conventional type system ([13, 31, 161). The extended type system expresses 
some important information, namely the existence of sets with finite extents from which all 
values are sourced, which is not normally present in a type system. Our thesis is that,  by 
basing database programming languages, query languages, transformation systems and so 
on on such an extended type system and making use of this additional information, we can 
gain significant expressive power over languages based on conventional type systems (such as 
CPL[12]). 

An important example of this arises in recursive data-structures. Though recursive data- 
structures exist in some programming languages (such as streams in ML), programming with 
them requires use of lazy-evaluation and potentially non-terminating functions. In databases 
we know that all values have some finite static representation, and so recursive data-structures 
must make use of some finite number of place-holders (object identities or some other equiva- 
lent concept) and a cyclic construction. We know that such place-holders are taken from some 
finite extent, and can use this knowledge to compute functions on recursive data-structures in 
databases, where we would not expect to be able to define equivalent (terminating) functions 
in more general programming systems. 

Another purpose of this work is to study the semantics of data-models based on object- 
identity. Object-identities occur naturally in object-oriented and semantic data-models ( [ 7 ,  
5,21]), and have been shown to enhance the expressive power of purely value based models and 
languages ( [ 2 ,  201). They provide an abstract model for our intuitions about how complex 
structures, and particularly cyclic structures, are represented in a database. There are a 
number of other equivalent concepts, such as systems of equations over variables ([15]), or 
ML-style references ([25]), which basically amount to  the same thing. Object-identities are 
considered to  be internal to a database system, and not directly observable, thus leading 
to  the question of when two database instances, based on object identities, are observably 
equivalent. 

The concept of observable equivalence represents the idea that two database values or in- 
stances can not be distinguished using the some latent query language. consequently obser- 
vational equivalence is dependent on those predicates and operators that we consider to  be 
available. For example, if we consider no comparison operators to  be available on object iden- 



tities, then we get a model equivalent to that based on regular trees. If we have an equality 
predicate on object identities, testing whether two object identities are the same, then we get 
a system where two values are equivalent if and only if one can be obtained from the other 
by applying an isomorphism of object identities. 

An important class of observational equivalences, in between these two, can be obtained using 
systems of keys. By making such systems of keys primitive in a query language we can make 
a value-oriented language while achieving much of the efficiency of an object-identity oriented 
language. Further suitable systems of keys can be used to control the creation of object- 
identifiers ([20]), so that we can we can have a query language which supports the creation 
of object identifiers, but avoids the potential for non-terminating computations present in 

IQL([2l>. 



Part I 

Database Transformations and 
Constraints 

2 Transformations and Constraints of Databases with Object 
Identity 

2.1 Schemas and Constraints 

A schema represents the type structure of a database together with some constraints on 
the valid instances of the database. Precisely which type structures and which constraints 
can be expressed in a schema is dependent on the data-model being considered. The most 
fundamental constraints expressed by a schema are the declarations of a number of finite 
extents which comprise the database. However in general there are many more complicated 
and general constraints that one wishes to assert about a particular database. 

For example let us consider the schema illustrated in figure 1. This diagram describes a 
database with two finite extents: one of Cities and the other of States. Every City in the 
database has a value associated with it, which is a pair consisting of its n a m e  and its state. 
Every State has a value associated with it which is a pair consisting of its n a m e  and a City 
which is its capital. 

We will make use a data-model in which such extents are expressed as part of the type 
system. The model, which is equivalent to  that used in [ 2 ] ,  incorporates a nested relational 
type system, similar to that of [3], with the addition of class types. These class types are used 
to  represent the extents  present in the database. We will define a schema as consisting of a 
set of classes, representing the extents of a particular database, together with an association 
of types to  classes, representing the types of the values associated with the objects in each 
class. 

For example a schema for the database just described will have classes City and State, and 
will associate the type (name : str,state : State) with the class City and the type (name : 
str, capital : City) with State. This means that every City in the database has a record 
associated with i t ,  with a n a m e  attribute of type string, and a state attribute which is a State 
in the database. 

Most database systems will also support a number of other different kinds of constraints as 



primitive in the data-model. For example relational databases will often support keys and 
sometimes functional and inclusion dependencies ([36]), while semantic models might incor- 
porate various kinds of cardinality constraints([21]). In general such collections of constraints 
form a rather ad hoc selection, included because of their utility in the particular examples of 
databases that the designer of the system had in mind, rather than because of any theoret- 
ical justification. With the increasing complexity of data-models, and of the tasks to  which 
databases are being applied, it is apparent that there are many important and necessary 
constraints which fall outside these predetermined classes, and further, that it is difficult to  
anticipate the kinds of constraint that will arise. 

For example, in our Cities and States database, we would want to impose a constraint that 
the capital City of a State is in the State of which it is the capital. This is an example of an 
inclusion dependency and we can express it as 

X.state = Y -+== Y E State, X = Y.capital 

This can be read as "if Y is in class State and X is the capital of Y, then Y is the state of X"  . 
Suppose also that our States and Cities each had an attribute population and we wanted to  
impose a constraint that the population of a City was less than the population of the State 
in which it resides. We could express this as 

X.population < Y.population X E City, Y = X.state 

These constraints are stated in a language called W O L  which we will develop rigorously in 
section 5. This language is based on Horn clause logic. Horn clauses have been seen to provide 
a basis for simple but powerful programming languages (Prolog) ([37]) and database query 
languages (Datalog, ILOG)([36, 201). They are easy to understand and reason about, and 
require only a small number of inference rules to build a complete proof system. Further they 
lend them selves naturally to  a variety of paradigms for computation. 

Our language is based around a small number of simple predicates and primitive construc- 
tors. However it is sufficient to  express a large family of constraints including those commonly 
found in established data-models. In fact the only kinds of constraints which occur in estab- 
lished data-models but can not easily be expressed in W O L  are finite cardinality constraints: 
these are constraints that might state, for example, that a certain set-valued attribute has 
cardinality between 2 and 3. Though it wouldn't be difficult in practice to  extend W O L  
with operators to express such constraints, our experience indicates that the need for such 
constraints is uncommon, and their use is often somewhat contrived. 

The language can express general database transformations, and in later sections we will see 
how it can be extended in order to define recursive functions over complex data-structures. 



2.2 Database Transformations 

Transformations of databases are required to  meet numerous distinct needs: moving data from 
one or more distinct databases to an incompatible target database; incremental changes in 
database schemas, requiring data to  be mapped from the old schema to the new one; and data 
entry, where the format and organization of the data as entered may be very different from 
that of the prescribed database schema. Existing work in this area includes systems which 
allow access to heterogeneous distributed database systems by means of queries against a 
unified view ([34, 40]), work on integrating database schemas ([33,22, 26, 91) which are useful 
primarily in schema design, and work on schema evolution ([32]). In addition there has been 
work done on analyzing whether transformations preserve or reflect information capacity of 
the underlying databases ([23, 241). Also of relevance is the work on restructuring nested 
relational types presented in [I]. In this work a system for constructing rewrite rules using 
complex patterns was proposed, and a semantics of these rules in terms of the underlying data 
was given. The most significant difference between this work and our work on W O L  is our 
ability to  deal with transformations over recursive types and self-referential data-structures, 
and our attention to  implementation techniques for such transformations. In addition the 
predicates of W O L  are more powerful than the patterns of [I], for example allowing inequality 
predicates, and the ability to give partial descriptions of a transformation using W O L  clauses 
gives an increase in expressive power. 

Our work with database transformations arising in the Human Genome Project ([17]) indi- 
cates that there is a need to  implement transformations as actual mappings of data from one 
database to  an other: for example when populating a database with a newly evolved schema 
using the data already stored in an old version of the database, or when incorporating data 
from various archival databases into a local databases. In such cases the original data may 
be widely distributed and difficult to access, so that the unified view approach will be too 
costly, and it will be necessary to store copies of the data locally, and possibly restructure it, 
for efficient querying. Data stored in distinct heterogeneous da.tabases may be represented in 
different and incompatible ways: a concept modeled as a top level relation in one database 
might be represented by a set valued attribute in another database, and some kind of flag 
in yet another database. Schema integration techniques, even those which do consider the 
semantics of the underlying data, require such incompatibilities to be resolved, and suitable 
restructurings to  be applied, before they can be applied. Further many of the transformations 
that arise in practice are not information capacity preserving, but nevertheless require formal 
specification and analysis. None of the existing work mentioned fits all these needs. 

Suppose that, in addition to our database of Cities and States, we have access to  a second 
database containing information about European Cities and their Countries. A possible 
schema for such a database is shown in figure 2. We might want to  transform the data stored 



Figure 2: A schema for a database of European cities and countries 

Figure 3: A schema for a combined database of European and American countries 

in both of these databases into a common database, so that we can query a single class of 
Cities. Suppose our target database had the schema shown in figure 3. 

We can use the language W O L  to describe these transformations. If we rename the classes of 
our first schema to CityA and State*, then we can write clauses to express the population of 
the classes CityT, StateT and CountryT of the new database as: 



These clauses state that, for every object of class CityA in the first database there is a 
corresponding object with the same name in the class CityT in the target database, and so 
on. However we also need clauses to describe how the place and capital attributes in the 
target database are populated. place is not too difficult: 

(Here ins is a constructor for variant types). 

However populating the capital attribute of the class Country is more difficult. Note that 
there is a basic incompatibility between the representation of capital cities in our City and 
Country database, which are marked by a Boolean flag, is-cap, and the capital attribute of 
the class CountryT in our target database. We can express this correspondence in WOL by: 

X.capita1 = Y + X E CountryT, Y E CityT, Y.place = in~,,,-,;~~(X) 

U E CityE, U.name = Y.name, U.is-cap = True 

This states that for any Country X and City Y in our target database, if X is the country 
of Y and there is a city U in our database of European cities and countries (U is of class 
CityE), such that U corresponds to  Y in the target database and U has its is-cap attribute 
set to  T, then Y is the capital city of X. It is this sort of structural manipulation between 
alternative representations of data that the WOL language is particularly well suited to, and 
is where existing schema manipulation and integration techniques fall short. 

In order for clauses such as these to successfully specify a transformation, we require certain 
additional information about the target database. In particular we need to  know that the 
objects of classes CityT, StateT and CountryT are all uniquely determined by their name 
attributes. This is an example of some key dependencies which are easy to  express in WOL: 

This illustrates one of the main principles behind the design of the language WOL: database 
constraints and transformations are fundamentally linked, and should be expressed and rea- 
soned about in  a common formalism. Firstly constraints on a target database play an im- 
portant part in determining transformations: keys or functional dependencies will uniquely 



identify values being inserted into a target database, while inclusion dependencies will cause 
additional parts of the database to  be populated. But transformations also play a role in 
asserting constraints, both on the source and target databases. 

In the example above, each Country in the the target database must have a capital city. 
However there is no such constraint implied on our source Cities and Countries database. 
The transformation specification then implies a constraint 

Y E CityE, Y.country = X, Y.is-cap = True + X E CountryE 

This says that for every X of class CountryE there is a Y of class CityE such that Y is a 
capital city and Y has country X. Having derived such a constraint from our transformation 
specification, we can then test whether our source database satisfies this constraint, and 
consequently ensure that the transformation will be well defined, prior to  actually carrying 
out the transformation. 

2.3 Implementing transformations 

Formally specifying a database transformation is a worthwhile task in itself, since it increases 
our understanding and confidence in the correctness of the transformation. However the WOL 
language also allows us to  directly implement an important class of transformation programs. 
Since we are concerned with structural transformations which can be performed efficiently 
on large quantities of data, rather than general computations, we need to  restrict those 
transformation specifications that may be used in order to  ensure that the transformation 
procedure will terminate and can be performed in a single pass of the source database. In 
section 6 we will define a class of non-recursive transformation programs, and describe an 
algorithm for converting such transformation programs written in WOL into a normal form 
which can then be translated to  an underlying DBPL for implementation. 

There are a number of advantages in using the language WOL to program database trans- 
formations and constraints, beyond the ability to formally reason about them: WOL trans- 
formation programs are easy to  modify and maintain, for example in order to  reflect schema 
evolutions; and the declarative nature of WOL means that the conceptually separate parts of 
a transformation can be specified independently, and the transformation program formed by 
collecting together the relevant clauses. 

The work described in section 6 is an extension of work done by myself in collaboration with 
people working at  the Philadelphia Genome Center for Chromosome 22, a t  the University 
of Pennsylvania, on a language called TSL and an associated transformation system ([17]). 
TSL could be regarded as a restriction of the language WOL to a standard nested relational 



data-model. It also makes use of Skolem functions, as in [20], in order to simulate object 
identities. 

TSL was designed in order to address various database transformation problems encountered 
in a Human Genome Project center. Some of these applications are described and motivated 
in section 3. The normal forms for TSL were defined for the case where the target database 
is flat relation and the source databases have arbitrary nested relational structure, and the 
normalization algorithm was implemented for this case. The normal form for W O L  described 
in section 6 does not have such restrictions. 

The language TSL has two alternative syntaxes: a basic syntax, similar to the syntax for 
W O L  defined in section 5, and an extended syntax. The basic syntax is simpler and easier to 
manipulate and reason about, and was therefore used in the formal development and internal 
implementation of TSL, while the extended syntax is less cumbersome and more convenient 
to program with. For example the transformations from the Cities and Counties database to 
the target database describe above would look something like the following in extended TSL 
syntax: 

(name = N, place = ins,,,,,;ty(Y)) E CityT 

(name = N, country = (name = C))  E CityE, Y(name = C) E CountryE; 

(name = C,  capital = X ,  language = L, currency = M) E CountryT 

+== Y(name = C, language = L, currency = M) E CountryE, 

(name = N, is-cap) = True, country = Y) E CityE, 

X(name = N) E CityT; 

It seems that some kind of extended syntax is also desirable for WOL, in order to make pro- 
gramming transformations more convenient and efficient. However I believe more experience 
is needed in programming transformations and constraints between complex data-structures 
in order to decide on the details of such an extended syntax. 

The implementation of TSL consists of a parser (for the extended syntax), together with 
type and well-formedness checkers, a normalizing program, which tests a TSL program for 
recursion and converts it to normal form if it is non-recursive, and a translator which then 
translates the normal form TSL program into CPL. CPL is a query language developed 
at the University of Pennsylvania which has interfaces to SYBASE and a variety of other 
biological data-sources ([41]). Developing translators from normal-form TSL programs into 
other DBPLs is a straightforward task. 



3 Application of Transformations in Human Genome Project 
Databases 

The work on database transformations and constraints outlined in section 2, and described 
in detail in the following sections, was in part inspired by a series of collaborations with the 
Philadelphia Genome Center for Chromosome 22, at the University of Pennsylvania, and is 
intended to  address the database transformation problems encountered in a Human Genome 
Project (HGP) center. In this section we will look at some of the transformation problems 
involved in maintaining Chr22DB: the laboratory notebook database for the Philadelphia 
Genome Center for Chromosome 22. In order to understand these problems, it will first be 
necessary t o  give some background on the Human Genome Project and the relevant biology. 

The goal of the Human Genome Project is to sequence the 24 distinct chromosomes comprising 
the human genome. Each chromosome is composed of a long, double-stranded molecule of 
DNA (deoxyribonucleic acid) made up of complementary pairs of four different nucleotides 
or bases (A, G, C, T) ,  arranged like beads on a string. Sequencing DNA means discovering 
the exact sequence of A's, C's, T's, and G's on the string. Although there are techniques 
for directly sequencing short DNA strings (approximately 400 bases), current methods are 
not practical for sequencing the entire genome (3  bilLion bases) at one time. Consequently 
the HGP has set mapping the chromosomes as a less ambitious intermediate goal. Mapping 
involves the ordering of identifiable DNA fragments as markers along the chromosome, and 
anchoring markers at known positions to serve as landmarks. 

One of the major problems faced in HGP databases is rapid schema evolution and the re- 
sulting need to  modify existing applications. New and better experimental techniques are 
constantly being developed and the experimental data being modeled is constantly changing, 
forcing evolution of the laboratory notebook database schema and related applications. This 
process must occur extremely rapidly, since investigators consult the database to  plan and 
guide ongoing experimentation. Furthermore data integrity is crucial. However, the data 
is very complex, hierarchically organized, and contains an unusually large number of links 
among tables (inclusion dependencies). This gives rise to a number of complex, non-standard 
constraints that need to be specified and enforced in order for the data to be correct. 

Another major problem is that access to multiple, heterogeneous remote databases and soft- 
ware packages is frequently needed to  augment the contents of the laboratory notebook 
databases and to  answer queries posed by researchers. These include archival databases, 
such as the nucleic acid sequence database, Genbank, the protein sequence data base, PIR 
[8], the biomedical bibliographic data base, Medline, and the human genome map data base, 
GDB [28]; a growing number of laboratory notebook databases; as well as software systems 
such as BLAST [6], FASTA [29], and Staden, which perform complex data analysis involv- 



ing such computational problems as pattern-matching, search and string comparison. These 
databases include flat-relational databases (Sybase), object-oriented databases (Object Store, 
Gemstone), complex-relational databases (ASN.l), and personal-computer-based databases. 

This heterogeneity in schemas and models within the HGP is likely to  persist. As data 
complexity increases, different databases may capture only partial, and perhaps significantly 
different views of the data as a whole; as analysis tasks increase in complexity beyond simple 
queries, it is often necessary to organize the data to optimize a specific application to  achieve 
acceptable system performance. Thus, we find numerous independent structurings of the 
same or similar information. The GenBank family is a case in point: there is the "standard" 
flat-file version with numerous trivial syntactic variants, a relational version developed at  the 
Los Alamos National Laboratory [14], the ASN.l version developed at NCBI, a relational 
version developed from the ASN.l version by the Philadelphia Center for Chromosome 22 
[19], and at  least one knowledge base version, also developed within our group [27], which 
transforms the data from a sequence entry view to a biological concept view. Each of these has 
its own advantages and disadvantages that include issues of representation, query language 
expressiveness, and portability, among others. 

A recent report of a Department of Energy Informatics "sunlmit" [18] underscores these 
problems and indicates that they are pervasive to HGP databases. The report listed a number 
of simple queries that were impossible to answer with the current data sources, because the 
sources are distributed among various databases, programs and structured files, and there is 
no effective technique for combining them. 

An important part of this is the problem of transforming data into some form that is under- 
standable by users, a query language, or an applications program. The problem of schema or 
data evolution calls for flexible tools for rapidly re-mapping databases. We need a principled 
approach to  data transformations: transformations between schemas in a single data model 
(as with schema evolution), between different data models (as with data entry screens, and 
as in the Genbank family of databases), or across multiple data models (as in the integration 
of data from multiple sources). We believe that the formalism and tools outlined in section 2 
and described in detail in the following sections provide a solution to  these problems. 

3.1 A Databaser's View of the Biological Background 

The data and schemas in the archival and laboratory notebook databases for the HGP are 
highly complex and difficult to understand, especially for those who know little to  nothing 
about molecular biology. We will therefore start off by explaining a bit about what is being 
modeled and what some of the terms used mean. 



The HGP's intermediate goal is mapping: ordering markers (fragments of DNA) along the 
human chromosome and locating them at known positions. A variety of techniques are used 
to  anchor markers to  specific locations on the chromosome. For the sake of simplicity, we will 
consider only one: physical mapping using cloned probes and Sequence Tag Sites (STS's). 

The chromosome of interest is cut randomly into overlapping pieces of experimentally manip- 
ulable size (50,000-1 million bases). These pieces are then reassembled into a linear ordering 
representing their order in the original DNA string. To discover the relative ordering of frag- 
ments, it is crucial to  be able to  ascertain when the sequence of two pieces of DNA overlaps, 
that is, when the pieces come from neighboring sites in the original string. Sequence overlap 
between two pieces of DNA can be detected by showing that their sequences contain the 
sequence of a third, much shorter fragment, called a probe. The linear ordering on the pieces 
yields a linear ordering on the probes whose sequence is contained in them, and vice versa. 
The probes then become the desired map landmarks and may be used to  sequence areas of 
special interest, such as regions thought t o  be related to inheritable disease. 

Physical mapping and its relationship to DNA sequence is illustrated in Figure 4'. At the top 
of this figure, a chromosome is depicted with the banding patterns visible under a microscope, 
which themselves function as landmarks at the coarsest level of granularity. Vertical lines 
denote markers (probes). Horizontal lines denote larger, overlapping DNA fragments whose 
sequence contains marker sequence. Below, the sequence of a tiny substring of DNA is shown. 

Figure 4: Physical Mapping of a Chromosome 

Two types of probes used in physical mapping and represented in Chr22DB are: 1) Cloned 
probes and 2) Sequence Tag Sites (STS's). Cloned probes are actual physical reagents stored 

'This figure was made by David Searls 
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in freezers, and STS's are information stored in a database. In what follows, we briefly 
describe some of the information maintained about probes by Chr22DB. 

Cloned Probes. In cloning, a fragment or interval of human DNA is inserted into carrier or 
vector DNA in bacterial or yeast cells. When the host cells are cultured, many exact replicas 
of the human DNA are produced, to  be used in future experiments. 

Sequence Tag Sites (STS's). An STS is an interval of DNA defined by a primer pair: 
a pair of sequenced nucleic acid intervals used as primers to  start a chemical reaction called 
amplification by the polymerase chain reaction ( P C R  amplification). The entire reaction com- 
prises several stages, each proceeding at a different temperature. An amplification reaction 
will not occur unless the primer sequences are found, properly spaced, within the test se- 
quence; therefore, a successful reaction demonstrates sequence containment. Important data 
items about an STS are: its name, including the laboratory which named it; the name, 
sequence, and melting temperature of each of the primers; the expected size range of the 
amplified product; the temperature and time required for each stage of the process (PCR 
conditions); a cross-reference to  GDB; the name of the cloned probe from which the primers 
were derived; and the chromosomal location of the site. 

3.2 A Sample Database Transformation 

The data in Chr22DB comes from a variety of sources: archival databases such as GDB, 
preexisting spreadsheet databases, object-oriented laboratory notebook databases from other 
centers, as well as directly from experiments being carried out at the center. Importing data 
from these sources involves data transformations, and has to  date been done largely by hand. 
Though not particularly glamorous, data entry is a special case of a data transformation, and 
provides a good illustration of some of the coniplexity of structural transformations. Rewriting 
the data entry applications is enormously time consuming since application generator tools 
can not handle the complexity of the data involved, and the modification has to  be done by 
hand. 

In data entry applications, the data is captured on a screen form that provides a specialized 
view of the underlying database. The view and the database may differ widely in structure, 
and the application must map between these two schemas. An example of a form used to  
enter STS lab notebook data is shown in Figure 5. It consists of a complex relation (STS) with 
three sub-relations (Primers, PCR-conditions, Location). Since each screen enters a single 
STS, there will be one row in the STS relation, two rows in the Primers relation denoting the 
primer pair, and multiple rows in the PCR-conditions and Location relations. 



Jun 28 1993 CHROMOSOME 22 GENOME CENTER STS DATA 

STS name KI-189 BELL Derived from clone KI-189 DUMANSKI PHAGE 
lab lab vector type 

GDB locus D22S119 DNA Segment, single copy probe KI-189 

Used here Y Tech Lab BUDARF YAC screen status IN PROGRESS 

PCR product size (bp) 254 254 Polymorphic N Probe type ANONYMOUS 
low high 

Comments 

PRIMERS 

Name Sequence (5' to 3 ' )  Melting temp Pmethod Date picked Strand 
KI-189 .FB CACCATCTAATGGTGCAG 5 6 LANDER 11/03/92 RV 
KI-189 .R2 GGGGAGACGTGATAGAATTAAGCCC 5 5 LANDER 12/15/92 FW 

PCR CONDITIONS 

PCR Initial.. Denature. Anneal . . .  Extend . . .  Final. . . . 
Machine temp time temp time temp time temp time Cycles temp time Buffer 
PCR-9600 95 120 94 15 55 15 72 82 30 72 420 1.5 MgC12 

CHROMOSOMAL LOCATION 

Chr Start position End position Units Verified Location Notebook Comments 
22 Qll all BANDS SO BLOT BUDARF 

Figure 5: STS Data Entry Screen 

Data entered at  the data-entry screen must be transformed to  the underlying (relational) 
Chr22DB database. A conceptual (EER) schema of the relevant portion of Chr22DB, drawn 
using ERDRAW [35], is shown in Figure 6; this is merely introduced to  convey the linkages 
between relations rather than to  give a precise semantics of the schema. 

In this database transformation a complex relation with nested subrelations is flattened into 
a standard relational schema with value-based pointers linking related tables. The atomic 
attributes of the top-level screen relation are distributed over 6 relational tables in the target 
schema: names, l ab ,  mater ia l ,  i n t e rva l ,  na- interval ,  and STS. The Primers subrelation is 
decomposed into 5 target tables: na-int e rva l ,  i n t e rva l ,  mater ia l ,  primer, sequence. The 
two name fields in the entry screen (STSname and GDBlocus) are mapped to two separate 
rows in the target names table, which are linked by the internal identifier of the object being 
inserted. We will view each of these tables as a set of objects in our model, the value of each 
object being a simple tuple. 
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material 
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PCR conditions I 
Figure 6: EER Schema of Target Database for STS7s. 

In order to  accomplish the data transformations, appropriate insert statements must be gen- 
erated. The normalized target schema relies on internal system-generated identifiers to  ac- 
complish the links among related tables. These correspond to the object-identifiers of our 
model. 

Database integrity constraints 

To maintain data integrity, the transformed data must conform to the integrity constraints 
of the target database. Preeminent are key and inclusion dependency constraints, but more 
complex constraints may also hold. For example, each material must have at  least one GDB 
name (i.e., X E names, X.lab-code = "GDB") and at least one non-GDB name (i.e, X E 
names, X.lab-code # "GDB"). 

There are also simple integrity constraints requiring the inclusion of objects identities is 
certain tables. For example for every primer i d  in the STS table there is a corresponding 
entry in the primer table. We could express such a constraint as a clause 

P E primer e S E STS, X.pr1-primerid = P 

However this is not necessary since such constraints are implicit in the type system of our 
model. 



There are many constraints which do need to  be expressed explicitly however, including some 
which go beyond the traditional functional and existence dependencies of the relational model. 
For example that each material has exactly one GDB name: 

X = Y X E names, X.materia1-id = M, X.lab-code = "GDB" 

Y E names, Y.mater ia l id  = M, Y.lab-code = "GDB" 

And that a public name cannot be a GDB name: 

False += X E names, X.publicname = "Yesn,X.lab-code = "GDB" 

Transformation clauses 

The transformation is specified by the constraints on the database together with a number of 
transformation clauses which describe the relation between the data source (the STS input 
screen) and various tables in the target database, Chr22DB. 

The following is a transformation clause generating part of the STS relation of the schema 
shown in Figure 6 from the data entry screen shown in Figure 5: 

S = ~kS~'(p11, PI2) ,  S.pr lpr imer- id  = PI1 ,  
S.pr2-primer-id = P12, 
S.PCR-prod-sizelo = SL, 
S.PCR-prod-sizehi = S H  

+= X E STSscreen, 
P1 E X.primers, Pl.pname = P N 1  
P 2  E X.primers, P2.pname = P N 2  
X.PCR-prod-sizelo = SL, 
X.PCR-prod-sizehi = SH,  
PI1 E Primer, PIl.pname = P N 1 ,  
P I 2  E Primer, PI2.pname = PN2,  
PI1 < P I 2  

There are several points about this clause that deserve comment. Firstly notice that the 
operator AfkSTS is used to  generate object identities for the STS table from pairs of identities 
of the Primer table. Also although the STS-screen relation has only one attribute primers,  
it occurs in two separate atoms in the description of a tuple in the STS-screen relation. This 
is because the attribute is set  valued and each of the two atoms asserts the presence of a 
different tuple in the primers sub-relation. 



The body of this clause makes use of the target database relation primer in order to  look up 
the primer-id's. The tuples for this relation are in turn generated by another clause: 

PI = M ~ P ~ ~ ~ ~ ~ ( P N ) ,  
PI.melting-temp = MT, PI.pickmethod = P M ,  
PI.date-picked = DP, P I . s t r and  = S T  

+== X E STS-screen, P E X.primers, 
P.pname = P N ,  P.melting-temp = MT, 
P.pmethod = P M ,  P.date-picked = DP, 
P.strand = S T  

In order to  implement this transformation it is necessary to unfold clauses like this, in order 
to  get equivalent clauses in normal form: that is clauses that refer only to  source relations in 
their bodies and only to target relations in their heads. Clauses of this form can be processed 
in one-pass without referring to the target database. 

The normal-form clauses are built by combining and unfolding clauses of a transformation, in 
order to  form clauses which provide a complete description of a tuple in the target database 
in terms of the elements of the source 

If it is possible to build only a partial description of a tuple for some relation, then it follows 
that the transformation program is not complete. 

For example a normal-form clause for the STS table in the transformation from the STS 
data-entry screen (Figure 5) to Ch22DB (Figure 6) formed from the clauses above would be: 

s = MLS~~(PII ,   PI^), 
S.pr1-primer-id = PI1 ,  
S.pr2-primer-id = P12, 
S.PCR-prod-sizelo = SL,  
S.PCR-prod-sizehi = S H  

+= X E STS-screen, 
P1 E X.primers, P N 1  = Pl.pname, 
P 2  E X.primers, P N 2  = P2.pname, 
X.PCR-prod-sizelo = S L ,  
X.PCR-prod-sizehi = S H ,  
p11 =  primer ( P N l ) ,  P I 2  = MhPrimer(p~2), 

PI1 < P I 2  

Notice that this clause gives a complete description of a tuple in the STS relation, and does 
not call on any of the target relations in the body of the clause. In particular the calls to  



the pr imer  relation which were in the body of the previous clause have been replaced by 
applications of the operator M ~ P ~ ~ ~ ~ ~  in order to create primer identities. 

4 A Data Model with Extents and Object Identity 

In this section we will define the data-model on which the language WOL is based. The model 
is basically equivalent to  that described in [2] and its type system incorporates class types 
which are used to  represent the finite extents present in a database. 

In part I1 we will examine this data-model in more detail, in particular studying the obser- 
vational properties of the model, and will show that under certain assumptions about the 
predicates available on object identities, it is observation-ally equivalent to  a much coarser 
model based on regular trees. 

Our model starts with a type system. In order to  describe a particular database system it 
is necessary to  state what classes are present, and also the types of (the values associated 
with) the objects of each class. We consider these two pieces of information to  constitute a 
database schema. 

4.1 Types and Schemas 

Definition 4.1: Assume a finite set of classes C, ranged over by C, C', . . ., and a countable set 
of attribute labels, A, ranged over by a ,  a', . . .. The set ~ ~ ~ e s ~  of types over C is then given 
by the following abstract syntax: 

where b is some base type. The notation (al : TI,. . . , ak : rk) represents a record type with 
attributes a l ,  . . .,ax, of types TI, .  . . , t k  respectively, while (a l ,  TI,. . . , ax, : T ~ D  represents a 
variant type. 

A schema consists of a finite set of classes, C,  and a mapping S : C i ~ ~ ~ e s ' ,  such that 



where rC is not a class type. (Since C can be determined from S we will also write S for the 
schema). 

Example 4.1: As an example let us consider the database of Cities and States shown in 
figure 1. Our set of classes is 

CA = {CityA, StateA) 

and the schema mapping, SA, is given by 

SA(CityA) (name : str, state : StateA) 

SA(StateA) (name : str, capital : CityA) 

That is, a City is a pair consisting of a string (its name) and a State (its State), while a State 
is a pair consisting of a string (its name) and a City (its capital). 

For the combined schema of figure 3 the classes would be 

and the schema mapping ST would be 

ST(CityT) (name : str, place : 1 us-city : StateT, euro-city : CountryT D )  
ST(StateT) (name : str, capital : CityT) 

ST(CountryT) (name : str, language : str, currency : str, capital : CityT) 

We can view schemas as directed graphs, with classes and other type constructors as their 
nodes. Note that,  given this view of a schema, any loops in the graph must go through a 
class node. This means that any recursion in a schema must be via a class. Consequently, 
we will see in section 4.2, any recursive data-structures in an instance must have a finite 
representation via the object-identifiers of these classes. 

4.2 Database instances 

The instances of our data-model will be based on object identities. This could be thought of 
as providing an abstract model of the internal representation of a database instance, rather 
than a representation of the observable properties of an instance. 

In order to  represent cyclic or recursive data-structures in a finite manner it is necessary to  
use some mechanism such as object identities, pointers, variables and recursive equations, and 
so on. In fact all of these are simply different representations of the same basic concept, and 



the choice of which style of representation to  use is simply a matter of personal preference. 
My decision to use object identities is simply because I find it the most intuitive of these alter- 
natives, and because it fits in nicely with actual implementations of object-based databases. 
However the results of this section, and of later sections, should be easily adaptable to  other 
such alternative mechanisms. 

For each base type b, assume a domain D b  - associated with b. 
The values that may occur in a particular database instance depend on the object identities 
in that instance. Consequently we will first define the domain of database values and the 
denotations of types for a particular choice of sets of object identities, and then define instances 
using these constructs. 

Suppose, for each class C E C we have a disjoint finite set ac of object-identities of class 
C2 We define the domain of our model for the sets of object identities aC, D(aC), to  be the 
smallest set satisfying 

D(oC) = U{aC~C' E C} u U{DDI~ - a base type) U 

where X 2; Y represents the set of partial functions from X to  Y with finite domains. 

Definition 4.2: For each type r define [r]ac by 

@]aC - D* - 

[C]ac - aC 

( a  : I . .  . , a : ) a c  3 { f E A -2 D(aC) I dom( f )  = {al, .  . . , ak} 

and f(a;) E [r;]ac, i = 1,. . . , k }  

[(Jal : TI,. . . ,ak : rkD]aC - ({al} x [r1]ac) u . . . u ({ak} x [rk]ac) 

I[{T)I.~ = ~ ~ ; , i u ~ n ~ ~ )  

Definition 4.3: A database instance of schema S consists of a family of object sets, aC ,  and 
for each C E C a mapping 

C C Vc : aC + [r ]a 

Given an instance Z of S (Z = (aC, VC)), we will also write [r]Z for [r]ac. 

Example 4.2: We will describe an instance of the schema introduced in example 4.1. 

' ~ l t e r n a t i v e l ~  oids of class C ,  or references, or pointers or place-holders or gumballs, or whatever else you 
like best. 
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Figure 7: A database instance 

Our object identities are: 

p t y  = {Phila, Pitts, Harris, NYC, Albany) 

aState {PA,NY} 

and the mappings are 

v ci ty(~hi la)  (name H "Philadelphia", state ti PA) 

v c i t y ( ~ i t t s )  (name H "Pittsburg", state ti PA) 

~ ~ ~ ~ ~ ( H a r r i s )  (name H "Harrisburg", state ti PA) 

v C i t y ( N ~ c )  E (name ti "New York City7',state ti NY) 

vCi ty (~ lbany)  (name H "Albany", state H NY) 

and 

v S t a t e ( p ~ )  (name H "Pennsylvania", capital H Harris) 

v S t a t e ( ~ y )  (name H "New York", capital ti Albany) 

This defines the instance illustrated in figure 7. 

Homomorphisms and Isomorphisms of Instances 

Two instances are said t o  be isomorphic if they differ only in their choice of object identities: 
that  is, one instance can be obtained by renaming the object identities of the other instance. 
Since object identities are considered to  be an abstract notion, and not directly visible, it 
follows that  we would like to  regard any two isomorphic instances as the same instance. In 
particular, any query or database programming language when applied t o  two isomorphic 



instances should return isomorphic results. Isomorphism therefore provides the finest level of 
distinction that we might hope to  be able to  observe. 

In this section we will formalize this notion. 

IC If Z and 1' are two instances of a schema S, and f C  is a family of mappings, f C  : aC -+ a , 
C E C then we can extend f C  to  mappings f7 : [T]Z + [TIT' as follows: 

b f-c E c 
(al:~l,...,ak:?-k "U 5 (al ++ fT1 (u(al)), . . . , ak - frk(u(ak))) 

fQal:.ri ,...rakrkD (%, U) (ai, f 7%) 
f { T ' { ~ l , . . . , ~ n )  { f 7 ~ ~ , - - . , f 7 ~ n )  

A homomorphism of two instances, Z = (aC,  VC) and Z' = (atC, v"), of a schema S consists 
of a family of mappings, fC ,  such that for each C E C and each o E aC 

Definition 4.4: An isomorphism of two instances, Z and Z1, consists of a homomorphism, 
f C  from Z to Z' and a homomorplzism gC from Z1 to  Z, such that, for C E C, gC o f C  is the 
identity mapping on aC and f C  o gC is the identity mapping on a''. Z and Z', are said to  be 
isomorphic iff there exists an isomorphism f C  between Z and 1' .  

We write Z E Z' to  mean Z is isomorphic to  Z'. 

4.3 Keys 

In the model described so far, object identities represent abstract entities which can not be 
directly observed, but which can only be viewed by examining the values associated with 
them. In part I1 we will analyze the observational properties of this model in more detail, 
and show how various assumptions about the predicates available on object identities effect 
their observational properties. However, in order to do transformations over databases with 
object identity, we need some way of uniquely identifying an object. One possible solution, 
which is adopted by many practical database systems, is to use keys: simple values that 
are associated with object identities, and are used to  compare object identities. Two object 
identities are taken to  be the same iff their keys are the same. 



K e y  specifications 

Definition 
consists of 
to  families 

4.5: Suppose we have a schema S with classes C. A key specification for S 
a type rcC for each C E C, and a mapping IC; from instances, Z = (oC, vC), of S 
of functions 

C C c IC? : a  + [[K ]la 

for each C E C. 

Example 4.3: Consider the first schema described in example 4.1. We would like t o  say that 
a State is determined uniquely by its name, while a City is determined uniquely by its name 
and its state (one can have two Cities with the same name in different states). The types of 
our key specification are therefore 

,City = (name : str, state : State) 

,$'tate = st r  

For an instance Z = (aC, VC) the mappings Kg are given by 

K F ~ Y ( ~ )  v ~ ~ ~ J ' ( ~ )  
State xPate(0) (V (,))(name) 

A key specification is said to be well-defined iff for any two instances, Z and Z', if f C  is a 
family of functions describing an isomorphism from Z to  Z', then for each C E C and each 

n 

Well-definedness simply ensures that a key specification is not dependent on the particular 
choice of object identities in an instance, and will give the same results when applied t o  two 
instances differing only in their choice of object identities. For the remainder we will assume 
that all key specifications we consider are well-defined. 

Two key specifications, Kf and ICf, are said to be equivalent iff, for any instance 1, any 
C E C and any ol,o2 E oC, = IC:(o2) if and only if ICiC(ol) = ICF(02). 

Definition 4.6: The dependency  graph,  G(KC), of a key specification KC is a directed graph 
with nodes C such that G(IC') contains the edge (C', C )  if and only if the class C' occurs in 
tCC. 

For example, the dependency graph of the key specification of example 4.3 has nodes City 
and State, and a single edge (City, State). 



Proposition 4.1: For any key specification, KC, if the dependency graph G(KC) is acyclic then 
there is an equivalent key specification K" such that each type lcIC is ground (contains no 
classes). 

We will see that key specifications with acyclic dependencies graphs are particularly useful 
later. 

Keyed Schema 

Definition 4.7: A keyed schema is a pair consisting of a schema S and a key specification 
KC on S. A simply keyed schema is a keyed schema (S,KC) such that the dependency 
graph of KC is acyclic. 

An instance Z of S is said to satisfy the keyed schema (S, KC) if and only if for any class 
C C E C and any ol,02 E 8 ,  if K2(oI) = KZ(02) then 01 = 02. 

For example the instance described in example 4.2 satisfies the first schema of example 4.1 
and the key specification from example 4.3. 

5 A Logic for Constraints and Transformations 

In this section we will give a rigorous definition of the language WOL introduced informally 
in section 2. In section 5.1 we will define the syntax for WOL, and in section 5.2 we will give 
a denotational semantics for WOL based on the model of section 4. 

5.1 Syntax 

We will assume a simply keyed schema, (S,  KC), with classes C, and will define our language, 
WOL", relative to  this schema. 

As before we will assume a countable set of constant symbols ranged over by cb for each base 
type b, and also a countably infinite set of variables, Var, ranged over by X, Y, . . .. 
We may also assume some additional predicate symbols, ranged over by $l-.br,. . .. $~...b~ is 
a predicate symbol of arity r ,  taking arguments of types bl,. . . , bT. In general, when we use 
additional predicate symbols, they will represent well established predicates, such as 5 on 
integers, and may make use of infix notations in order to give a more standard appearance. 



Terms 

Definition 5.1: The set of terms for S, Termss, ranged over by P, Q,  . . ., is given by the 
abstract syntax: 

P ::= C - class 
I cb - constant symbol 
I x - variable 
I r,P - record projection 
1 ins, P - variant insertion 
I !P - dereferencing 
I M ~ ~ P  - object identity referencing 

A term C represents the set of all object identities of class C. A term rap represents the 
a component of the term P, where P should be a term of record type with a as one of its 
attributes. insaP represents a term of variant type built out of the term P and the choice a. 
!P represents the value associated with the term P, where P is a term representing an object 
identity. The term M~'P represents the object identity of class C with key P .  

We can also construct a version of the language, wOL', for an un-keyed schema, S, by 
missing out the term constructors ~ k ' ,  C E C, and skipping the corresponding typing rules 
and semantic operators in the following definitions. 

We will introduce the shorthand notation P.a, defined by 

since this will occur often. 

For example, if the variable X is bound to some object identity, then the term X.name, or 
r,,,,(!X), represents the name field of the value associated with X, which must be a suitable 
record. 

Type contexts and typing terms 

A type context, r, is a partial function (with finite domain) from variables to  types: 

T : Var 1 TypesC 



Definition 5.2: Given a type context r, the relation I' k: & TermsS x TypesC is the smallest 
relation satisfying the rules: 

r F C : { C )  

So a type context represents a set of assumptions about the types of the values bound to  
variables, namely that a variable X is bound to  a value of type I'(X) if X E dom(I'). The 
typing relation I' k P : r means that if, for each variable X E dom(r),  X has type I'(X), 
then the term P has type T .  

For example, for the schema from example 4.1, if T(X) = City, then r t-!X : (name : 
str, state : State) and I' t- n,,,,(!X) : str. 

Atoms 

Atomic formulae or atoms are the basic building blocks of formulae in our language. An atom 
represents one simple statement about some values. 

Definition 5.3: The set of atoms for S, ~ t o m s ~ ,  ranged over by 4, $, . . . is given by the 
abstract syntax: 

4 : PAQ 

I P#Q 
I P iQ 
I P ~ Q  
I $~..."(P~,... ,P,) 
I False 



The atoms P-Q, P+Q, P i Q  and P#Q represent the obvious comparisons between terms. 
@ l . . . b r ( ~ ~ ,  . . . , PT) represents the a,pplication of the predicate p to the terms P I , .  . . , P,. False 
is an atom which is never satisfied, and is used to  represent inconsistent database states. 

We mark the symbols =, #, E and 6 with dots in our syntax in order to  distinguish them 
from the same symbols used as meta-symbols (with their traditional meanings) elsewhere in 
the paper. However, where no ambiguity is likely to  arise, we may omit these dots. 

Definition 5.4: An atom 4 is said to  be well-typed by a type context T iff 

1. 4 = P = Q  or 4 E P # Q  and r k P : T,  T k Q : T for some T;  or 

2. q 5 ~  P i Q  or 4~ P$Q a n d T F  P : T ,  r t-Q : {r} for s o m e r ;  or 

3. $ = @ 1 . . . 6 ~ ( ~ ~  , . . . ,  PT) and r t Pi : b i  for i = 1 , . . . ,  r ;  or 

4. #J = False. 

Intuitively an  aton1 is well-typed iff that  atom makes sense with respect t o  the types of the 
terms occuring in the atom. For example, for an atom P = Q,  it wouldn't make sense t o  
reason about the terms P and Q being equal unless they were potentially of the same type. 

Range restriction 

The concept of range-restriction is used to  ensure tha-t every term in collection of atoms is 
bound t o  some value occuring in a database instance. This is a necessary requirement if we 
wish to  infer types for the terms, a,nd also to ensure that  the truth of a statement of our logic 
is dependent only on the instance and not the underlying domains of the various types. 

Definition 5.5: Suppose @ is a set of atoms, and P is an  occurrence of a term in @. Then P 
is said t o  be range-restricted in @ iff one of the following holds: 

1. P z C where C E C is a class; 

2. P = cb where cb is a constant symbol; 

3. P E T,& where Q is a range restricted occurrence of a term in @; 

4. P occurs in a term Q E ins,P, where & is a range-restricted occurrence of a term in @; 

5. P =!Q where Q is a range-restricted occurrence of a tern1 in @; 



6. @ contains an  atom P-Q or Q - P  or P i Q ,  where Q is a range-restricted occurrence of 
a term in a: 

7. P = X ,  a variable, and there is a range-restricted occurrence of X in @. 

Note: It is important here t o  distinguish between syntactic terms, and occurrences of those 
terms in a set of atoms. It is possible for a syiltactic term to  occur two or more times in a 
set of atoms, but for oilly one occurrence of that  term t o  be range-restricted. 

For example consider the set of atoms 

Here the first occurrence of the term ins,)' is range-restricted, while the second occurrence 
of ins,Y and the term Z are not. 

A term occurrence may be identified by the atom in which the term occurs together with a 
path within the parse tree of that  atom. 

Clauses 

Definition 5.6: A clause consists of two finite sets of atoms: the head and the body of the 
clause. Suppose @ = (41, .  . ., # k )  and !P = ($1,. . We write 

for the clause with head Q and body @. Intuitively the meaning of a, clause is tha t  if the 
conjunction of the atoms in the body holds then the conjunction of the atoms in the head 
also holds. 

For example, the clause 

Y.state = X S E State, Y = X.capita1 

means that ,  for every object identity X in the class State, if Y is the capital of X then X is 
the state of Y. 



Well-formed clauses 

Definition 5.7: A set of atoms is said to  be well-typed if there is a type context I' such 
that each atom in is well-typed by I'. 

A set of atoms Q! is said to  be well-formed iff it is well typed, and every term occurrence in 
@ is range-restricted in @. 

A clause !P + is said to  be well-formed iff is well-formed and @ U Q is well-formed. 

Intuitively a well-formed clause is one that makes sense, in that all the terms of the clause 
refer to  values in the database, and the types of the terms are compatible with the various 
predicates being applied to  them. In fact we will only be interested in clauses which are 
well-formed. 

Proposition 5.1: If is a well-formed set of atoms then there is a unique type context I? such 
that dom(r) = Var(@) and every aton1 in @ is well-typed by I?. 

Corollary 5.2: If !P += is a well-formed clause then there is a unique type context I' such 
that dom(I') = Var(@ U !P) and !P += is well-typed by I?. 

Though not difficult, this result is significant in that it means we can assign a unique type to  
every term occuring in a well-formed clause. 

If is a well-formed set of atoms and P is a term occuring in a, we write t- P : T to  mean 
I' t- P : T where I' is the unique minimal type context which well-types @. 

Example 5.1: Let us first add some additional attributes to our running example. Consider 
the schema S with classes 

C = {City, State} 

and 

S(City) (name : str, state : State, pop1 : int) 

S(State) (name : str, capital : City, pop1 : int, neighbors : {State}) 

So both Cities and States have attributes representing their population, and States also have 
an attribute representing their neighboring States. 

Our model itself already ensures the fundamental referential integrity constraints: that the 
state of each City is in the States extent, that the capital of each State is in the City extent, 
and that the neighbors of each State are in the States extent. However we would also like to  
assert additional constraints such as that the capital City of a State is in that State. This 
could be represented by the clause: 

Y.state = X + X E State, Y = X.capita1 



Equally we would like constraints ensuring that no State is its own neighbor, and each state 
is a neighbor of its neighbors: 

Y 6 Y.neighbors Y E State 
Y E Z.neighbors += Y E State, Z E Y.neighbors 

Finally we might like to  make some restrictions on the values that some other attributes may 
take, for example that the population of any city is smaller than the population of its state: 

X.popl < X.state.popl += X E City 

Here we're using an additional predicate, <, on integers, representing the normal ordering on 
integers. rn 

5.2 Semantics 

In this section we will define a semantics for WOL' in terms of the model defined in 4.3. 

Semantics of terms 

Suppose Z = (aC,  vC)  is an instance of S. An Z-environment, p, is a partial function from 
Var t o  D(Z). We write Env(Z) for the set of all Z-environments. 

For each constant symbol cb we assume an interpretation c E ~ b .  

Definition 5.8: We define the semantic operator [-IZ : ~erms'  + Env(Z) i D(Z) by: 

b Z [c-] p = i? - cb a constant symbol 

(6P1IZp)a if UPIIZp E ( A  2; D(Z)) 
[T .P I ]~~  E and a E dom(I[~]'p) 

undefined otherwise 

[insa P]'p = (a,  [P]'~) 

Z [!PI] p = vC([~IJZp) if [p]lZp E aC for some C E C 
undefined otherwise 

if I[P]'p E I [ K ~ ] z  and o E aC 
[ ~k~ ( P)]]'~ = such that I C ~ ( O )  = IIP]IZp 

undefined otherwise i 0  
I[x]=p - if X E dom(p) { :::?fined otherwise 



For example, for the key specification of example 4.3 and instance of example 4.2, 

and 
I[~,,,;~,~(!x)]~(x H PA) = Harris 

An Z-environment, p, is said to satisfy a type context, I?, iff dom(p) = dom(I') and p(X) E 
[I'(X)]Z for each X E dom(p). 

Proposition 5.3: If I' k P : r and p satisfies r then, if [P]'~ is defined then IIP]lTp E [r]Z. 

Semantics of atoms 

For each auxillary predicate we assume a relation Dbl x . . . x D ~ T .  

Definition 5.9: We define the semantic operator Us]' : ~torns '  -+ Env(Z) -+ {T, F) by: 

if [p]IZp and [&ITp are defined 

and UPilZP = UQIZP 
otherwise 

if [p]IZp and IIQIZp are defined 

and IIPI~P # UQI'P 
otherwise 

if [PIIZp and [&]Ip are defined 

and UPI'P E UQDZP 
otherwise 

if [~] 'p and I[Q]'p are defined 

and UPI'P $ UQI'P 
otherwise 

Z 
%P(PI,... ,PT)] p = T if    PI]'^, . . . , I[p,]'p) E B 

F otherwise 



Semantics of clauses 

In a clause, any variables occuring in the body of the clause are taken to  be universally 
quantified, while any additional variables occuring in the head are existentially quantified. 
Hence a clause is satisfied if, for any instantiation of the variables in the body of the clause 
such that all the atoms in the body are true, there is an instantiation of the remaining 
variables in the head of the clause such that all the atoms in the head are also true. 

Suppose A = gl,. . . , g1 + . . . qSk is a well-formed clause. An instance 1 is said to  satisfy 
A iff, for any environment p with dorn(p) = Var(41, . . . , 4k), if 

for i = 1,. . . , k,  then there is an extension of p, p', with dorn(pl) = Var(qhl, . . . , qSk, . . , $[), 
such that 

[ + j ] ' ~ '  = T 

f o r i =  1, ..., 1. 

Example 5.2: For the instance of example 4.2, suppose the environment p is given by 

p = ( X  H PA, Y H Phila) 

then 

If we check other suitably typed environments, we fine that any environment in which the 
first two atoms are true also makes the third atom true. So this instance satisfies the clause 

Y.state = X += X E State, Y = X.capita1 

If Pr is a set of clauses and A is a clause, we write Pr A to mean that,  for any instance 
Z, if Z satisfies each clause in Pr then Z also satisfies A. 

5.3 Semi-normal forms 

The language W O L ~  is very rich in that it allows us many different ways of expressing the 
same thing. However when performing structural manipulations of the clauses, as we will do 



when dealing with transformations and recursive function definitions later, our life is made 
easier if there is less variance in the way things can be expressed, so that techniques such as 
unification can be applied simply. 

In this section we will define a semi-normal form (snf) for clauses which reduces the variety of 
forms the atoms of a clause can take. For every clause we will show that there is an equivalent 
clause in semi-normal form. 

There are two main purposes in converting a clause to  semi-normal form: firstly, because 
any two equivalent sets of atoms in snf differ only in their choices of variables, we can apply 
unification algorithms to  atoms and clauses in snf. Secondly, converting a clause to  snf ensures 
that there is a variable introduced at every point where the database is being referenced by 
the clause. This makes it easy to  reason about the information being accessed or implied 
by a particular clause, which will be necessary in our analysis of recursion. In addition, 
assuming that clauses are in snf allows us to  reduce the number of cases we must consider, 
and consequently simplifies many of our proofs. 

Definition 5.10: An atom is said to be in semi-normal form iff it is of one of the forms: 

x=cb  
x - C  

X=n,Y 
X=ins,Y 
x- !Y 

x-MI<~(Y) 
x - Y  
X#Y 
X i Y  
X ~ Y  

$1 ...br ( x l  , . . . , XT) 
False 

where X and Y are variables, cb a constant symbol, C E C a class, and a E A an attribute 
label. 

Note, in particular, that the terms of a snf atom will contain no nested operators, and the 
terms of an snf atom using some predicate other than will contain only variables as terms. 

Lemma 5.4: For any set of atoms, @, there is a set of atoms in snf, Q', with Var(@) C Var(@'), 
such that for any instance Z and Z-environment p with dom(p) = Var(@), [@ITp = T if and 
only if there is an extension p' of p such that [@']ITp' = T. 

Intuitively this means that for any set of atoms there is an equivalent set of atoms in semi- 



normal form, subject to the introduction of additional variables. In general we expect a single 
atom to be equivalent to  a set of snf atoms. 

Example 5.3: The atom X-Y.state.capita1 is equivalent to the snf atoms 

Definition 5.11: A clause, 9 + @, is in semi-normal form iff 

1. all its atoms are in semi-normal form; 

2. @ contains no atoms of the form X-Y; 

3. for any atoms of the form X-Y in Q, X E var(@) and Y E var(@); 

4. if X ,  Y, Z E var(@ U Q) and @ U 9 contains the atoms Y and Z ~ T , X  then Y r Z;  
a n d i f @ U ! P  k X : ( a l  :TI  , . . . ,  a , : r , ) , @ U ! P k X : ( a l  :T I  ,..., a, : r n ) a n d @ U 9  
contains atoms ZI-nalX,. . . , Z,=r,,X and Z1=ra1Y,. . . , Z,;aanY then X = Y; 

5. if X,Y, Z E var(@ U 9 )  and @ U Q contains the atoms X-insay and X-insbZ then 
a b and Y =_ Z; and if U !P contains the atoms X-insa,Z and Y-insatZ and 
@ u ! P k X : ~ a 1 : r 1  ,..., a , : r , D , @ u Q k X : ~ a l : q  , . . . ,  a,:r,D t h e n X ~ Y ;  

6. if X ,  Y, Z E var(@ U Q) and @ U 9 contains the atoms XA!Z and Y -!Z then X -- Y; 

7. if X, Y, Z E var(@ U Q) and @ U !P contains the atoms X - M ~ ~ Z  and Y - M ~ ~ Z  then 
X = Y; and if @ U 9 contains the atoms X = M ~ ~ Y  and X-M~'Z then Y = 2; 

8. if X , Y  E var(@ U Q) and @ U 9 contains the atoms X-cbase and Y - C ~  then X G Y; 
and if @ U 9 contains the atoms X-cb and ~ + d h  then cb = db: 

9. if @ U !P contains an atom X#Y then X ,kY; 

10. for any X ,  Y E var(@ U 9)) @ U Q does not contain both of the atoms X i Y  and X ~ Y ;  
and 

11. @ does not contain the atom False, and if Q contains the atom False then it contains no 
other atoms. 

So intuitively a clause, 9 +== @, is in semi-normal form if 
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1. all its atoms are in semi-normal form; 

2. given 1, it contains a minimal number of variables: in particular there are no distinct 
variables, X , Y  E var(@), such that @ X I Y ,  and there are no distinct variables 
X, Y E var(@ U !P j such that either X or Y is in var(Q) \ var(@) and Phi U l! XX-Y;  
and 

3. it contains no contradictory atoms other than the atom F which may only occur by 
itself in the head of the clause. 

The following proposition, though straightforward, is perhaps the most significant result in 
making semi-normal form clauses useful. 

Proposition 5.5: For any clause A, there is an equivalent clause A', unique up to  the choice 
of variables, such that A' is in snf. 

Example 5.4: Consider again the clause 

Y.state = X += X E State, Y = X.capita1 

Recall that this is shorthand notation for 

nstut,(!Y) = X += X E State, Y = ~(capital)(!X) 

This is equivalent to  the snf clause 

V =!Y, X = T,~,~,(V) += W = State, X E W, U =!X,Y = ncup;tU~(U> 

Note that, for every subterm in the original clause, there is a corresponding variable in the 
snf clause. 

6 Database Transformat ions 

In this section we will show how our language, wOL', can be used to  specify and imple- 
ment general structural transformations on databases. Transformations are specified at the 
schema-level, describing the relationship between instances of two or more schemas. We con- 
sider transformations to  be specified by a series of logical statements in WOL, describing the 
relationships between two databases, just as we consider constraints to  be logical statements 
about a single database. However, since we are concerned with structural transformations 
which can be performed efficiently on large quantities of data, rather than general compu- 
tations, we will need to  restrict those sets of logical statements that may be used in order 



to  ensure that  the transformation procedure will terminate and can be performed in a single 
pass: that  is it is non-recursive . 
The language as presented so far deals with a single database schema and instance. However 
in order t o  express transformations, or other correspondences between two or more databases, 
it is necessary to  extend the language to  deal with two or more distinct database values. In 
general we will distinguish one of these databases, which we will call the target database, 
and we will refer t o  the other databases as the source databases, though this distinction will 
become more meaningful when we start considering the actual implementation of database 
transformations. 

6.1 Partitioning schemas and instances 

Suppose S1,. . . , S, are schemas with disjoint sets of classes, C1,. . . , C,. We define their union, 
S r S1 U . . . U S,, to  be the schema with classes C r C1 U . . . U C, and 

if C E C;. 

Definition 6.1: A partition of a schema S is a collection of disjoint schemas S l ,  . . . S, such 
that S = S1 U . .  . U  S,. 

C .  C .  If Z1,. . . , Zn are instances of S1,. . . , S, respectively, where Z; r (ai \ Vi '), then Z - Zl U . . . U 
1, is given by Z r (aC,  vC) ,  where C = C1 U . . . U C,, aC r a? and V' r v?, for C E C;. 

Clearly Zl U . . . U Z, is an instance of S1 U . . . U S,. Further, for any instance Z of S1 U . . . U S ,  
there exist unique instances Zl, . . .,I, of S1, .  . . ,S,  respectively such that  Z = Z1 U . . . U Z,. 
Given a partition S1, . . . , S, of a schema S ,  and an instance Z of S ,  we write ZJS;, i = 1, . . . , n, 
for the unique instances of S; such that Z = Z/S1 U . . . U Z/S,. 

If (S1,K1), . . ., (S,,K,) are disjoint keyed schemas then we define their union, ( S , K )  r 
(S1,IC1) u . . . u (S,,K,), to  be such that S = S I , U . .  . U S, and t-cC E K? if C E C;, and 
K F  KCTIs, if C E C;. 

In looking a t  transformations, we will concentrate on dealing with transformations between 
two databases. We will assume that we have a simply-keyed schema (S, K) with a partition 
(SSrc, KSTc), (STgt, KTgt), and will use the language WOL" in order t o  specify transforma- 
tions from the source schema (Ss,,, KsTc) to  the target schema, ICTgt). However we 
will ensure our definitions apply equally well to  the cases of non-keyed schemas. The source 
schema Ss,, may in turn be partitioned into a number of distinct schemas, so that  these 
methods apply equally well to  transforming a single database or a collection of databases. 



6.2 Transformation Clauses and Programs 

In analyzing the clauses that describe a transformation, it is necessary to classify the terms of 
a clause as source terms, which refer to  part of the source database, and target terms, which 
refer to  the target database. Certain terms may be considered to be both source terms and 
target terms: indeed this is necessary in order for a clause to express the transformation of 
data between two databases. 

Suppose S is a schema, partitioned into two schemas Ss,, and STgt as described earlier, and 
@ is a set of WOL'~ atoms. A term P occuring in is said to be a target term in @ iff 

1. P = C where C E C T ~ ~ ,  or 

2. P T,Q where Q is a target term in @, or 

3. P occurs in a term Q = ins,P where Q is a target term in a ,  or 

4. P occurs in a term Q =!P where Q is a target term in @, or 

5. P occurs in a term Q = M ~ ~ P  where Q is a target term in @, or 

6. contains an atom P-Q or P i Q  where Q is a target term in @. 

The definition of source terms is similar. 

Definition 6.2: There are three kinds of WOL' clauses that are relevant in determining 
transformations: 

1. target constraints - containing no source terms; 

2. source constraints - containing no target terms; and 

3. transformation clauses - clauses for which the translation into semi-normal form, 
Q @ satisfies 

(a) Q contains only target terms; 

(b) @ U Q contains no negative target atoms: that is, no atoms of the form P @ Q or 
P # Q where P or Q are target terms; 

(c) for any variable X E var(@ U q ) ,  such that X is a target term of set type in @ U !4!, 
(that is @ U !P t- X : {r} for some r ) ,  then there is at most one atom of the form 
X=P in @ U q ;  and 

(d) for every atom + E !P \ @ there is a variable X occuring in !4! such that X @ Var(@). 



So transformation clause is one that does not imply any constraints on the source database, 
and which only implies the existence of certain objects or values in the target database. 

Further a transformation clause is limited to using "non-negative" tests on the target database. 
This is because we need to be able to  apply transformation clauses at  points where the tar- 
get database is only partially instantiated, and therefore the tests must remain true even if 
additional elements are added to the target database. For example, suppose we were t o  allow 
a transformation clause such as 

where C is a class with corresponding type rC = (a  : {int)). Then suppose, at  some point 
during the transformation, we were to  find an instantiation of X and Y to  two objects, 
say 01 and 02, of class C ,  such that the body of the clause was true at  that point in the 
transformation. Then the clause would cause the constant 1 to  be added to  the set X.a, thus 
potentially making the body of the clause no longer true. 

Note that it is possible in this characterization for a clause to  be both a transformation 
clause and a target constraint. This reflects the fact that a target constraint can perform two 
functions: determining the data which must be inserted into a target database, and ensuring 
the integrity of data being inserted into a database. 

Source constraints do not play a part in populating a target database, and, since we will 
assume that the contents of the source database are already know before we evaluate a 
transformation, they do not play a direct part in determining a transformation. However 
they play a significant role in simplifying transformation clauses. 

Example 6.1: For the schemas of the Cities and Countries databases described earlier, suppose 
we split the description of the instantiation of the CountryT class over several transformation 
clauses: 

x = M ~ C O U ~ ~ T Y T  (N) ,  X.language = L G Y E CountryE, Y.name = N, Y.Janguage = L 

x = M ~ C O U ~ ~ T Y T  (N) ,  X.currency = C Z E CountryE, Z.name = N, Z.currency = C 

Combining these clauses gives 

x = M ~ C O U ~ ~ T Y T  (N) ,  X.language = L, X.cu~rency = C 

+= Y E CountryE, Y.name = N, Y.language = L 

Z E CountryE, Z.name = N, Z.currency = C 



To apply this clause we would need to take the product of the source class CountryE with 
itself try t o  bind Y and Z to pairs of objects in CountryE which have the same value on their 
name attribute. 

Suppose however, we had a constrain on the source database: 

That is, name is a key for CountryE. We could then use this source constraint t o  simplify 
our previous, derived transformation clause, in order to  form the new clause: 

x = M ~ C O U ~ ~ ~ Y T  (N) ,  X.language = L, X.currency = C 

Y E CountryE, Y.name = N, Y.language = L, Y.currency = C 

Note that this clause does not actually give us any new information about the target database, 
but that it is simpler and more efficient to  evaluate. 

Suppose we also have a target constraint expressing the key specification for CountryT: 

We could combine this constraint with our previous transformation clause in order to  get 

x = M ~ C O U ~ ~ ~ Y T  (N) ,  X.language = L, X.currency = C, X.name = N 

+== Y E CountryE, Y.name = N, Y.language = L, Y.currency = C 

In this case the target constraint has told us how to instantiate another attribute of the 
object being inserted into the class CountryT. So the target constraint is providing additional 
information for the transformation. 

A transformation program, Tr, from schema Ss,, to schema STgt, is a set of source and target 
constraints and transformation clauses in WOL', where S = Ssr, U STgt. 

Example 6.2: We will take the first schema described in examples 4.1 and 4.3 to  be our source 
schema. Our target schema will be given by: 

and 

STgt(Statez) = (name : str, cities : {City2)) 

STgt(City2) = (name : str, is-capital : (cap-of: State;!, not-cap : unit)) 



Figure 8: A target schema for Cities and States 

City2 

with key specification 

WS . . 
Statea 

~ ~ ~ ~ S t a t e z  ( o )  = - v S t a t e 2  
( 0 )  (name) 

#TgtCity2 ( 0 )  - (name ++ vCity2(o)(name), state ++ {of  E astate210 E vstatez(of)(cit jes)))  

The schema is illustrated in figure 8. Note that the variant Qcap-of: S t a t e ,  not-cap : unit)  is 
an example of a very common construction: it is similar to  an  optional reference or a pointer 
with a possible "nil" value in a programming language such as C. 

n e  

Then a transformation between the two schemas would he given by the transformation clauses 

W E City2, W.name = N ,  W.is-capital= ins ,,,, f (V)  += 
X E CityA, X.name = N ,  X.sta,te.capital= X 
V E S t a t e ,  V.name = X.state.name 

str  is-cap 
11 

W E City2, W.name = N, W.is-capital =  in^^^^-^^^() +== 
X E City, X.name = N ,  X.state.capital# X 

name 
L 

The first clause says that  for each state in the source class StateA there is a corresponding 
state in the target class State2 with the same name. The second clause says that  for each 
city in the source class CityA which is the capital of its state, there is a corresponding city 
in the target class City2 with the same name and with is-capital set t o  the state of the City, 
while the third clause says that  if a city in the source database is not the capital of its state, 
then the corresponding city in the target, class City,? has is-capital set to  not-cap. The fourth 
clause says how the cities attribute of the Stale2 class is populated by cities. 



In addition to  these clauses, we would need some constraints on the target database in order 
to identify elements of Statez and City,: 

Y E Stat@,X E Y.cities X E City, 
X = Y = X E State2,Y E State2, Z E X.cities, Z E Y.cities 

The first two of these constrains are "key constraints" on State, and City,, and tell us how 
to generate their keys. The third says that every city must be in the cities set of some state, 
and the third says that no city can lie in the cities set of two distinct states. 

6.3 Transformations of instances 

Definition 6.3: Suppose that Tr is a transformation program from schema Ss,, to  STgt, 
and that Zs,, is an instance of Ss,,. Then an instance ZTgt of STgt is said to be a Tr- 
transformation of Zs,, iff, for each clause (9 @) E Tr, Zs,, U ZTgt satisfies 9 -+== a. 

Unfortunately the Tr-transformation of an instances is not, in general unique. A transforma- 
tion program will imply that certain things must be in the target database, but will not imply 
that other addition things cannot be included. Consequently there may be infinitely many 
Tr-transformations of a particular instance, representing the inclusion of arbitrary additional 
data, and so it is necessary to  characterize the unique smallest Tr-transformation when it 
exists. 

Deterministic and complete transformation programs 

Definition 6.4: Suppose Tr is a set of clauses. A clause 9 + is said to  be deterministic 
with respect to  Tr iff, for any instance Z satisfying all the clauses in Tr and any environment 
p such that dom(p) = Var(@) and [@ITp = T there is at most one extension of p, p' say, such 
that dom(pt) = Var(!P, a) and [!P]'p' = T. 

So a clause in deterministic if the values of the instantiation of any existential variables in the 
clause are uniquely determined by the instantiations of the universal variables in the clause. 

Definition 6.5: Suppose Z and Z' are instances of a schema S, and f C  is a family of injective 



functions, f : oC i oIC. Then we define the relations 3 j C [r]Z x [T]I' to be the smallest 
relations such that p 3; p' if 

a T = band p' = p, or 

a r r (al : TI,. . ., a k  : rk) and p(ai) ij' pl(ai) for i = 1,. . . , k, or 

a T = gal : TI,. . . ,ak : rkD and p = (ai,q), = ( a i , ~ ' )  and q j;" q', or 

a T {r') and for each q E p there is a q' E p' such that q 3 j' q'. 

We write I jf I' iff, for each C t C, each o t oC, vc(o) 5 jc ).)IC( fCo). 

We write Z 3 1' and say that Z is smaller than 2' iff there is a family of injective functions, 
f C ,  such that Z 2'. 

The relation 5 could be thought of as a generalized subset relation, allowing for the renaming 
of object identities. 

Lemma 6.1: If Z, Z' and Z" are instances of S then 

1. Z 5 I - the relation 5 is symmetric; 

2. if Z 5 Z' and Z' 5 1'' then Z 5 Z1' - 1' is transitive; and 

3. i f Z  5 Z 1  and Z ' d Z  then Z S Z '  

Definition 6.6: We say that a transformation program, Tr, is complete iff every clause 
in Tr is deterministic with respect to  Tr and, for any instance Is,, of SsTc, if there is a 
Tr-transformation of Is,, then there is a unique (up to  isomorphism) smallest such Tr-  
transformation. That is, if Is,, has a Tr transformation, then there is an ZTgt such that ZTgt 
is a Tr-transformation of Is,, and, for any Tr-transformation Z' of Is,,, ZTgt 5 1'. 

We are therefore interested in complete transformation programs, and in computing these 
unique smallest transformations. 

Example 6.3: We will describe the transformation specified by the transformation program 
in example 6.2 on the instance of Ss,, defined in example 4.2. 



We will take our object-identities to  be: 

,City2 5 {Phila', Pitts', Harris', NYC', Albany') 

+7taten {PA',NY) 

(the choice of object identities is arbitrary since transformations are defined up to  isomorphism 
only). Our mappings are 

Vcity2 (phila') (name H "Philadelphia", is-capital H (not-cap, 0)) 

~ ' ~ ~ ~ ~ ( ~ i t t s ' )  (name H "Pittsburg", is-capital I--+ (not-cap, 0)) 

VCity2 ( ~ a r r i s l )  =: (name I--+ "Harrisburg", is-capital H (cap-of, PA1)) 

vCi ty2 (N~C ' )  (name H "New York City", is-capital H (not-cap, 0)) 
vCity2 (Albany') E (name H "Albany", is-capital H (cap-of, NY)) 

and 

V S t a t e 2 ( ~ ~ ' )  = (name H "Pennsylvania", cities H {Phila', Pitts', Harris')) 

vState2 (NY)  (name H "New York", cities H {NYC, Albany'}) 

6.4 Normal forms of transformation programs 

In this section we will define a normal form for transformation clauses. A transformation 
clause in normal form will completely define an insert into the target database in terms of 
the source database only. That is, a normal form clause will contain no target terms in its 
body, and will completely and unambiguously determine some element of the target database 
in its head. Given a transformation program in which all the clauses are in normal form, the 
transformation may be then be easily implemented as a single pass transformation in some 
suitable DBPL. 

Our objective will be to  determine certain syntactic constraints on transformation programs 
(non-recursion), such that any complete transformation program satisfying these constraints 
can be converted to  an equivalent program in which all the clauses are in normal form. 

Term paths 

We introduce the concept of term paths in order to  reason about which parts of a database a 
clause will access. Every term in a well-formed set of atoms will have at least one term-path 



associated with it, representing the part of the database instance where it may be found. 
Term paths therefore represent a way of navigating a database, starting at some class and 
then following a series or attribute labels, dereferences and set inclusions. 

The concept of term paths will be useful in a number of places, when trying to reason about 
the information accessed or implied by clauses. We will use them in order to  formalize the 
concept of a formula "unambiguously" determining part of a clause. 

Definition 6.7: A term path for some schema S is a pair (C, p )  where C E C and p is a 
string over the alphabet 

{ r a ( a  E A} U {insa(a E A} u {!, E }  

We define the typing relation t :  on term paths by the rules: 

t- (c, : {T} t ( C , p ) :  D, D E C  
t- (C, €1 : {C) t (c ,p .€ )  : T k ( C ,  p.!) : TU 

t- (C ,  p) : (a1 : TI, .  . . , ak : ~ k )  t- (C,p)  : gal : T ~ , . . . , U ~  : T ~ )  

t- (C, p.rai)  : T; t (C, p.insa,) : T; 

Note that the type associated with a term path is dependent only on the term path itself, and 
not on a type context or the atoms from which the term path arises, or any other influence. 

Suppose P is a term occuring in a well-formed set of atoms, @. We say P has term path 
( C , p )  in a, written ch t- P : (C,p) ,  if 

1. P G C and p = E (the empty string), or 

2. p =!Q and p = p'.! and cP k Q : (C,p1), or 

3. P = r a Q  and p = p1.ra and @ t & : (C,p1), or 

4. P occurs in a term Q = insa(P) in cP, and p = p1.insa and @ l- Q : (C, p'), or 

5. Q contains an atom P i Q  and p = p l . i ,  and @ t Q : (C,pt), or 

6. contains an atom P A &  and k Q : (C,p).  

Example 6.4: Consider the set of atoms 



for the schema of the previous examples. Here the term N has two term paths: @ t- N : 
(City,, i!~,,,,) and t- N : (Stat%, i!n,itiesi!.rr,,me). 

The following lemma tell us that the typing rules for term paths and for terms occuring in a 
well-formed set of atoms coincide, and further, that for any term path for which the typing 
rules assign a type, there is a set of atoms which include a term with that term path. 

Lemma 6.2: 

1. If is a well-formed set of atoms and k P : (C, p)  in @ and Q, t- P : T then k (C, p) : T. 

2. If (C, p )  is a term path and T a type, such that k (C, p) : T, then there is a well-formed 
set of atoms, a, and a term P occuring in @ such that @ l- P : (C, p). Further there 
is a unique (up to  variable renaming) smallest set of semi-normal form atoms, a,  such 
that @ t- X : (C,p)  for some X E Var(Q,). 

rn 

From this lemma we can get the intuition that a term path corresponds to  the subset of a set 
of atoms necessary in order to associate a particular term with some location in the database. 

Characterizing formulae 

We introduce the concept of characterizing formula as a means of uniquely characterizing a 
particular element of a database. Notice that this is more specific than a term-path, which 
characterizes a place in the database. In particular, if a value occurs in some set in a database 
instance, then its term path will not characterize which element of the set it is. 

Definition 6.8: Suppose Tr is a transformation program, and O is a set of atoms. Then O is 
said to  be characterized in Tr by a set of variables {XI, . . . , Xk} iff {XI,.  . . , Xk} C Var(O) 
and for any instance Z satisfying Tr ,  and for any Z-environment p such that dom(p) = 
{XI, .  . . , Xk) ,  there is at most one extension p' of p such that dom(pJ) = Var(O) and l[O1)Tp' = 
T. 

Definition 6.9: Suppose Tr is a transformation program, and (C,p)  a term path. A char- 
acterizing formula for (C ,p )  in Tr is a set of atoms O together with a set of variables 
{Yl, . . . , Y,} C Var(O) and a distinguished variable X E Var(O), such that {Yl,. . . , Y,) 
characterize O and O t- X : (C,p).  

We write Ox(Yl,. . . , Y,) for the characterizing formula with O as its set of atoms, {Yl,. . . , Y,} 
as its set of characterizing variables and distinguished variable X. 



I11 other words, a characterizing formula, together with an instantiation of its variables, will 
uniquely characterize a particular element of a database. 

It is clear that there are some trivial characterizing formula, such as Ox(Yl,. . . , YN) where 
{Yl, . . . , YN} = Var(O). However there are also some more useful examples of characterizing 
formula. 

ExampIe 6.5: A characterizing formula for the term path (State', i) in the transformation 
program of example 6.2 would be 

since the program implies the target constraint 

X = Y -e= X f State,, Y E State2, nname(!X) = N, nname(!Y) = N 

A characterizing formula for the term path (City', i) would be 

O/,(N, 2 )  X E City,, n,,,,(!X) = N, Z E State2, X E nc;ties(!Z) 

The following lemma tells us that the characterizing formulas for any other target terms paths 
could be formed from these two. 

Lemma 6.3: 

1. If t- (C, p )  : (al : TI,. . . , ah : rk) and Oy(V) is a characterizing formula for (C,p),  then 
Ok (V) = ( O y ( V )  u {X =raiY))  is a characterizing formula for (C ,  p.nat). 

2. If I- (C ,p )  : (a1 : q,  . . . , a, : ,D and Oy (V) is a characterizing formula for (C, p),  then 
Ok (V) z (Oy (V) u {insal X-Y)) is a characterizing formula for (C, p.insa, ). 

3. If t- (C, p )  : D, D E C, and Oy (V) is a characterizing formula for (C, p),  then O/x (V) - 
(Oy (V) U { X - ! Y ) )  is a characterizing formula for (C, p.!). 

Consequently, if we are describing a database instance, or a transformation, we only need 
characterization formula for paths of the form (C, p . i ) .  

In addition, in the case of a keyed schema, for each class C E C the formula 

is a characterization formula for the term path (C, i). This gives us a useful special case: if 
every set type occuring in a schema S is of the form {C), that is a set of values of class type, 
and we have a key specification on S ,  then we can automatically find useful characterization 
formulas for any term path in S. 



Normal Forms 

Definition 6.10: Suppose that Tr is a transformation program, with target constraints T'rT. 

A clause Q += @ is in normal form for Tr iff 

1. Q -+= @ is in semi-normal form; 

2. @ contains no target terms; 

3. For any target term path (C ,  p),  if @ U Q I- X : (C, p)  for some X E Var(@ U Q), and 
@ U Q I- (C, p) : r where r is not a set type, then Qx(Yl, . . . , Yk) is a characterizing 
formula for (C, p)  in ~r~ for some variables {Yl, . . . , Yk} C_ Var(@); 

4. If @ U @ I- X : (C, p) for some X and some target term path (C,p)  and I- (C ,p)  : 
(al : rl, . . . , a k  : rk), then for each a;, @ U @ contains an atom (Y =r , ,X )  for some 
Y E Var(@ U Q); and 

5. If @ u !P I- X : (C, p) for some X and some target term path (C, p )  and I- (C, p)  : l a l  : 
7-1, . . . , ak : rkDr then @ U Q contains an atom ins,,Y -X for some Y E Var(@ U Q) and 
some a;. 

The first requirement, that the clause be in snf, serves to  simplify the later requirements. 
The second requirement implies that the body of the clause can be evaluated by looking at 
the source databases only, and hence the clause can be applied in a single-pass, non-recursive 
manner. 

The remaining requirements ensure that the head of the clause uniquely and unambiguously 
determines some part of the target database. In particular, 3 implies that every variable in 
the head of the clause is characterized by the universal variables of the clause. Note that we 
don't have a requirement similar to the fourth and fifth requirements for set types: that is, we 
don't require that, if Q +== @ contains a term of some path type (C,p),  where 1 (C,p)  : {r), 
then the clause must specify the contents of the set. This is because we are looking at unique 
smallest transformations, so the set is uniquely determined anyway: if no elements of a term 
of set type are specified then the resulting set will be empty. 

Example 6.6: The following are normal-form clauses equivalent to the transformation clauses 



of example 6.2: 

Y E State', W =!Y, N = nnameW + X E State, U = ! X ,  N = n,,,,U 

Y E State', W E City', U =!Y, N = .rrna,,U, V =!W, C = 7rnameV, 
T = .rriscapV, T = insyes 0, S = ncitesU, W E S 

+ X E State, & =!X, N = T ~ , , ~ & ,  2 E City, R =!Z, C = rnameR, 
Z = r s t a t e Q ,  X = rcapitalR 

Y E State', W E City', U =!Y, N = rnam,U,V =!W,C = T,,,,V, 
T = nismpV, T = insn,(), S = n,iteSU, W E S 

e= X E State, & =!X, N = nnam,Q, Z E City, R =!Z, C = xna,,R, 
Z rstateQ 7 0 = rcapita~R, X # 0 

6.5 Unifiers and Unfoldings 

Our algorithm for converting clauses into normal form works by repeatedly unfolding a target 
clause on a series of transformation clauses until the target cause is in normal form. The 
process starts with a target clause which completely describes part of the target database. 

Definition 6.11: A description for a target database schema STgt is a semi-normal form 
clause of the form 

a + @  
where 

1. @ contains no source terms or atoms of the form X @ Y; 

2. if Q, t X : (C, p) and (C, p) : (al : T I , .  . . , ak : rk)  then, for each ai, @ contains an atom 
Y=X.ai for some Y; and 

3. if Q, k X : (C,p)  and (C,p) : (lal : 7 1 , .  . . ,ak : r k D  then, for some ai and some Y, @ 
contains the atom ins,,Y AX. 

So the head of a description clause satisfies the requirements for a normal form clause, but 
the body is identical to  the head. 

However, as we shall see in section 6.6, merely applying all possible sequences of unfoldings 
is unlikely t o  be efficient, and may not even terminate. 



Unifiers 

Unifiers map the variables of a target clause to those of an unfolding (transformation) clause, 
so that the atoms of the two clauses can be matched and the target clause unfolded. A variable 
of the unfolding clause may match multiple universal variables from the target clause, though 
each target variable can match at most one variable from the unifying clause. 

Definition 6.12: Suppose E = XJt + at and A I Qu +== @, are two clauses in semi-normal 
form with disjoint variables. A unifier from A to Z is a partial mapping 

which respects types. That is, if a variable X has type r in Z and X is in the domain of U, 
then U(X)  has type r in A. rn 

If @ is a set of atoms, we write U(@) for the result of replacing each occurrence of a variable 
X in @, where X is in the domain of U, by U(X). If E = Qt += ipt is a clause, we write 
U(E) for the clause U(P)  += U(@). 

Lemma 6.4: If E and A are clauses and U is a unifier from A to E, then + U(Z). 

Unfolding 

Let E and A be clauses as before, and U a unifier from A to Z. Define Unfold*(=, A,U)  by 

where 

Define Unfoldr(Z, A,U) to  be the set of minimal well-formed clauses XJ G @* (ordered by 
the subset ordering on the heads and bodies of clauses), such that @ & @* U(Qt) U a,, 
where UnfoId*(Z, A,  U) = Q -+= @. So Unfoldr(=, A,U) is formed by adding a minimal set of 
atoms from at to  Q necessary to  make it range-restricted. Since there may be several ways 
of adding atoms in order to  preserve range restriction, Unfold' is set valued. 

Define Unfold(?, A,U)  to be the set of clauses !P C= @ such that P += cP is in semi-normal 
form and there is an equivalent clause (9' +== @I) E Unfoldr(3, A,U). So Unfold(E, A,U) is 
formed by taking the clauses of Unfoldf(E, A,  U) and combining any variables that are implied 
to  be equal. 

Definition 6.13: E is said to  be unfoldable on A, U iff 



1. There is no variable in X E var(Qu) \ var(@,) such that X E var(@) for some clause 
Q += @ E Unfold(Z, A,U); 

2. For each clause Q += @ E Unfold(2, A,U), U(Gt) @; and 

3. For each clause @ +== @ E Unfold(E,A,U), Q is characterized by Var(@). 

The first condition says that no existential variables in the unfolding clause 
become universal variables in the resulting clause, while the second condition states that the 
unfoldings are not trivial: that at least one atom was removed from the target clause in each 
unfolding. 

Lemma 6.5: If U is a unifier from A to E and @ + @ E Unfold(:, A,U), then A, Z )= Q + 
@. 

6.6 Recursive Transformation Programs 

Intuitively a recursive transformation program is one that admits an infinite series of unfold- 
ings of clauses. It seems clear that if a transformation program is recursive then we can not 
hope to  find an equivalent program in which all the transformation clauses are in normal 
form. However it is not decidable whether a transformation program admits such an infinite 
series of unfoldings. Consequently it is necessary to  find some stronger test which ensures 
that a transformation program does not admit any such infinite sequences of unfoldings, but 
which allows as many useful non-recursive transformation programs as possible. 

For example the following clause, representing a transitive closure property, is clearly recur- 
sive: 

W E C , W . a = X , W . b = Y  + 
U E C , V E C , U . a = X , U . b = Z , V . a =  Z,V.b=Y 

If we were t o  include this clause in a transformation program then we could unfold it infinitely 
many times, never reaching a normal form. 

Traditionally, in Datalog, recursion is defined in terms of the dependency graph of a program: 
the dependency graph has nodes for each predicate symbol, and has an arrow from one 
predicate symbol to  another if the program contains a clause with the first symbol occuring 
in the body and the second synlbol as the head. A Datalog program is then said to  be 
recursive if it's dependency graph contains a cycle. 

So for example the clause above would be considered as recursive in Datalog, because the 
dependency graph would contain an edge from the symbol R to itself. 



On the other hand, the following clause in not recursive in our language (though it could still 
comprise part of a recursive program together with some other clauses), even though it would 
be considered to  be recursive using the datalog definition of recursion. 

This can be explained by saying that our language works at a finer level than Datalog: in 
Datalog such a clause would be considered to be defining an element of C in terms of itself, 
while in our language it is considered to  be determining the b-attribute of an element of C in 
terms of the a-attribute of the element of C.  

Consequently we would like a finer notion of non-recursive progranis, which disallows any 
transformation programs such as the first, which do admit infinite series of unfoldings, but 
which allows for as many transformation programs that do not admit such infinite sequences 
of unfoldings as possible. 

Note that the notion of a recursive transformation program is a syntactic, rather than a 
semantic one. Consequently, given a recursive transformation program, it is quite possible 
that there is an equivalent non-recursive, and therefore normalizable, transformation program. 
However the problem of determining whether a transformation program is equivalent t o  some 
non-recursive transformation program is almost certainly undecidable. 

Infinite unfolding sequences 

Our mechanism for detecting recursive transformation programs works by making use of semi- 
normal forms and the presence of variables at each point at which values are potentially being 
created. For each variable a record is kept of which transformation clauses have "touched" 
that variable during the transformation process. The idea is that, in an infinite series of 
unfoldings, eventually it will be necessary to do an unfolding on a clause such that every 
variable involved in the unfolding has already been touched by the clause. When this happens 
recursion is detected and the transformation program is rejected. 

An unfolding sequence for a transformation program Tr consists of a (possibly infinite) - - sequence of clauses, Zo, Ao, cl, A,, . . . , z;, A;, . . . and a sequence of unifiers, Uo, U1, . . . , U;, . . ., 
such that 

1. A; E Tr for i = 0 ,1 ,2 , .  . ., and 

2. Z; is unfoldable on Ci,Ui and Di+l E Unfold(D;, C;,U;) for i = 0 , 1 , 2 , .  . .. 

A decorat ion of an unfolding sequence is a sequence of maps, So, d l , .  . . , S;, . . ., such that 



1. 6; : var(E;) + Pj;,(Tr) for i = 0,1,2, .  . ., 

2. So(Z) = 0 for each Z E var(Eo), and 

if Z E var(E;) \ dom(U;) 
3. (2) = { f U ; ( )  W E d o ( ;  otherwise 

for i = 0,1,2,  ldots 

Proposition 6.6: Suppose Zo, A,, El, A,, . . ., Uo, 241, . . . is an infinite unfolding sequence for 
Tr. Then there is a k such that, for every X E dom(Uk), Tk E Sk(X). 

Proof outline: We assume that we have a an infinite unfolding sequence, and a clause 
A E Tr such that A occurs infinitely often in the unfolding sequence, and for each occurrence 
of A there is variable X in the domain of the corresponding unifier, X E dom(Uk) say, such 
that A $ Sk(X). We prove that there is then an infinite unfolding sequence that does not 
involve A. 

If the proposition is false then we can repeatedly apply the above result, to  get that there 
is an infinite unfolding sequence with unfolding clauses taken from the empty set of clauses, 
which is clearly false. 

This proposition leads to  a fine definition of recursion, for which, as we will see, tests can be 
built into out normalization algorithm. 

Definition 6.14: Suppose Tr is a transformation program from Ss,, to  STgt. Then Tr is said 
to  be recursive iff there is an unfolding sequence for Tr, Zo, A,, . . . , E k ,  A,, 2.40, . . . ,Uk with 
decoration So,. . ., Sk, such that So is a description clause for St ,  and Ak E Sk(X) for each 
X E dorn(Uk). a 

Note that, while a transformation program which admits an infinite sequence of unfoldings, 
starting from a description clause, must be recursive, it does not follow that any recursive 
transformation program must admit such a sequence on unfolding. 

In addition we need syntactic restrictions on programs in order to  ensure that any variants 
or object-identities generated by the program are fully specified by the program. We say 
that a transformation program, Tr ,  is safe iff every clause in Tr is deterministic with respect 
to  Tr and, for any clause A E Tr, A r q +== a, instance Z and environment p such that 
[[q, @ITp = True, and X E Var(q) \ Var(@) we have 

1. if A k X : C ,  C E C,  then there is a clause A' E Tr, A' = 9' += a', and an environment 
p' such that [[Q']'~' = True and there is an atom (2'-!Y) E !P' and pt(Y) = p(X); 

2. if A I- X : (al  : 7 1 , .  . . , a ,  : T,) then for each a; there is a clause A' E Tr, A' r !If' + a', 



and an environment p' such that [@']lP' = True and there is an atom (Z;r , ,Y)  E 9' 
and p ' (Y)  = p ( X ) ;  

3. if A t- X : ( a l  : TI,. . .,an : then for some ai there is a clause A' E Tr, A' - 
Q' e @ I ,  and an environment p' such that = True and there is an atom 
(Y-ins,,Z) E Q' and p l ( Y )  = p ( X ) .  

Proposition 6.7: Given any non-recursive, safe transformation program Tr from Ss,, to  STgt, 
if Tr is complete then there is an equivalent transformation program Tr' such that Tr' is in 
normal form. Further there is an algorithm which will compute such a Tr' if Tr is complete, 
or terminate reporting that Tr is not complete otherwise. 

Such a Tr' can be computed by taking the maximal unfolding sequences of the description 
clauses for STgt with clauses from Tr. 



7 Implement at ion Issues 

The ideas and methods presented in section 6 suggest a plan for implementing transforma- 
tion programs specified in WOL. Transformation programs written in W O L  would first be 
translated into semi-normal form (definition 5.11). The snf transformation program would 
then be normalized using an algorithm based on proposition 6.7, and finally the normal form 
transformation program is translated into code in an appropriate DBPL, such as CPL, which 
can then be executed. Such an architecture is shown diagrammatically in figure 9. In fact 
this corresponds to the architecture for the established implementation of the more restrictive 
language TSL  (see section 2.3). Certain constraints and type information relevant t o  a W O L  
transformation program may be derived directly from the meta-data stored of the various 
relevant databases, as well as being input by the user in a (possibly extended) W O L  syntax. 
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meta-data I I User input I 

Parser 

'I program 

I 
I Translator to snf I 

I I 

I 
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I 
I 
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Figure 9: Architecture for proposed implementation of WOL transformations 

The algorithm for normalizing a transformation program suggested by proposition 6.7 would 
work by first generating a set of description clauses, then generating all the possible unfolding 



sequences, and collecting together the resulting normal form clauses. If recursion was detected 
while generating the unfolding sequences then the algorithm would halt and report that the 
transformation program is recursive. 

However such an algorithm, if implemented naively, would not be tolerably efficient. This is 
because there are too many possible unfolding sequences and too many possible unifiers a t  
each stage. It is necessary to  take various steps to  make the search space smaller, and the 
implement ation more efficient. 

In this section we will briefly discuss various issues relevant to making a practical implemen- 
tation of W O L  transformation programs. These include optimizations to  the normalizing 
algorithm, and restrictions on the relevant target database schemas and constraints necessary 
to  make the resultant transformation code suitably efficient. Some of these optimizations 
have already been incorporated in the existing implementation of TSL, others represent im- 
provements t o  the existing implementations, and others are factors relevant only t o  the more 
general transformations expressible in WOL. 

7.1 Optimizing the Normalization Algorithm 

The algorithm suggested by proposition 6.7, in a naive form, would be: 

1. Generate a set of description clauses; 

2. For each description clause generate maximal unfolding sequences, while testing for 
recursion; 

3. If recursion is detected then raise a "recursive transformation program" error; 

4. Return final clauses from unfolding sequences which are in normal form. 

However generating all possible maximal unfolding sequences would be extremely inefficient, 
and so it is necessary to  find ways of reducing our attention to a subset of relevant unfolding 
sequences. 

Maximal unifiers 

In general there will be many possible unifiers between two clauses. For example if we have 
a target clause 

Q +== X = C , Y  E X, Z=!Y, U = n , Z , V  = n b Z  



and an unfolding clause 

X' = C ,  Y' E X', Z' =!Y1, U' = n,Z' =+= @ 

then there is an obvious unifier, namely 

However there are also many other possible unifiers, such as ( U  H U') and ( Z  H Z', U H U') 
and so on. At each stage we limit our attention to the mazimal unifiers: that is we unify as 
many variables as possible at each stage. 

Ordering unfolding clauses 

If we have multiple unfolding clauses, it may be possible to apply the clauses in a number of 
different orders and get equivalent unfolding sequences. For example suppose we had a target 
clause 

E (q X = C,  Y E X ,  Z =!Y, U = T,Z, V = nbZ) 

and two transformation clauses 

where Q1 and Q2 contain no target atoms. Then we can unfold first with the clause Al, 
removing the atom U = r,Z, and then with the clause A2 removing the remaining atoms, 
or we can unfold first with the clause A2,  removing the atom V = nbZ, and then with 
the clause A l ,  removing the remaining atoms. The results of these two unfolding sequences 
are equivalent. It is clear that the number of equivalent unfolding sequences is potentially 
exponential in the number of transformation clauses. We therefore need to  find a way of 
avoiding generating multiple equivalent transformation sequences. 

In order to solve this problem we must assume that there is an ordering on the transformation 
clauses of a program. Suppose our transformation clauses are Al ,  . . . , Ak. We then use the 
following algorithm. 

Repeat 
Fo r i  = 1, ..., Kdo 

Unfold on A; as many times as possible; 
Ignore unfoldings which do not bind an atom which was 
not present during a previous attempt to unfold on Ai; 

od 
Until no more unfoldings are possible 



Initially every atom in the target clause counts as being "not present in a previous attempt 
to  unfold" on each clause. In later iterations of the repeat loop, only unfoldings which bind 
newly introduced atoms are applied. Note that it is possible to  unfold on the same target 
clause multiple times. 

7.2 Maintaining Characterizing Sets of Variables 

Our definition of valid unfoldings (definition 6.13) requires that the clause resulting be char- 
acterized by the variables in the body of the clause. In general this is a difficult condition to  
test, and we need to  make some simplifying assumptions on our target constraints. 

We assume that the only target constraints that introduce non-trivial characterizing formulae 
are those that define the keys of classes. In particular we assume there are no target constraints 
of the form XGY += in the transformation program, though there may be constraints of 
the form x - ' M ~ ~ ( Y )  += a. (Constraints of the first form may still exist, but they will be 
used only t o  ensure integrity of the target database, and not to determine a transformation). 
Any non-trivial of characterizing formula are therefore derived using target constraints of this 
second form, together with the lemma 6.3. 

Rather than compute characterizing sets of variables for each clause in an unfolding sequence, 
we propose computing minimal characterizing sets of variables on the description clauses, and 
then tracing these sets of variables through an unfolding sequence. 

Suppose U is a unifier from a clause A to E, and V c Var(S) is a set of variable. Then we 
define 

U(V) = {U(X) I X E V n dom(U)) U (V \ dom(U)) 

- 
If ZO, A,, . . . , c k ,  Ah, Zkf l t  240, . . . ,Uk is an unfolding sequence, such that Z; r (Q; -+= @;) 
for i = 1,. . . , k + 1, and V C Var(Go), then we say that the unfolding sequence preserves V 
iff 

U; o . . . oUo(V) C Var(@i+l) 

for i = O ,  ..., k. 

It follows that for any valid unfolding sequence, Zo, Ao, . . . , Zk, A,, Ek+, , Uo, . . . ,Uk, where 
Eo is a description clause, there must be a set of minimal characterizing set of variables for 
3 0 ,  say V, such that the unfolding sequence preserves V. Having computed the characterizing 
sets of variables for a description clause, it is easy to  ensure this condition is satisfied by any 
unfolding sequences we compute. 



7.3 Restrictions on Applicable Schemas 

If we are to  continue to  use CPL, or an extension of CPL, as a target language for implementing 
transformations, then it is will be necessary to restrict the possible target schemas so that the 
transformations can be expressed in CPL in a reasonable manner. In particular CPL is not 
well suited t o  handling transformations where the target involves deeply nested sets. This is 
because the values which are associated with each object identity must be created be a single 
expression, rather than being created incrementally. 

For example, suppose our target schema contained a class C with associated type 

rC r ( a  : int, b : {int))  

and the key specification for C was 

That is, the attribute a  functions as the key for C. Suppose our source database contains a 
class D, with rD E int, and that we have the transformation clauses 

Then to  apply both of these clauses individually would require 2n accesses to  the source 
databases, whereas combining the two in a CPL-style comprehension would require n2 accesses 
to the source database, n being the size of the database. In general the number of accesses 
in a comprehension expression will be exponential in the level of nesting of sets. 

I believe a reasonable restriction to  impose on target databases is that all set types occuring 
in the target database schema must be either of the form {C) for some class C ,  or {b)  for 
some base type b. This would also simplify the computing of characterizing sets of variables. 

7.4 Tree Representation of Clauses 

The existing implementation of TSL represents clauses as pairs of sets snf atoms. I believe 
significant improvements in the unification and unfolding algorithms could be gained by mak- 
ing use of the range-restriction conditions and representing clauses as pairs of forests, together 
with some extra atoms. Such forests would have variables for the nodes of the trees, with the 
root of each tree being marked by a class, and edges marked with the symbols i ,  !, n,, nb, . . . 
and so on. Atoms of the forms X - Y ,  X#Y and X$Y would still be represented as additional 
sets of atoms. 



For example the snf clause 

Would be represented by the tree structures 

Such a representation of clauses should provide significant improvements in the searching for 
possible unifiers between clauses, and also make it possible to reject invalid unifiers a t  an 
earlier stage. 

Though it has not so far seemed to  be worth rewriting the TSL implementation in order to  use 
this representation, I believe that it would be worth incorporating in a future implementation 
of WOL. However doing so would make it more difficult to  re-use code from the existing TSL 
implement a t  ion. 



8 Transformat ions of Alternative Collect ion Types 

The type system we defined in 4.1 supports set types as well as variants, records and class 
types. However many data-models support other kinds of collection types, in particular bags, 
in which elements have multiplicity, and lists, in which elements have both multiplicity and 
order. Sets, bags and lists are all examples of a kind of categorical structure known as a monad 
(see [39]). Though the details of monads are not important here, the important conclusion 
is simply that it is natural to  use the same, or similar constructs t o  program over sets, bags 
and lists. This idea is exemplified in [lo] where programming languages based on structural 
induction are introduced for these three collection types. 

Consequently the question arises as to how we can adapt the language WOL, and the associ- 
ated programming techniques, for defining transformations between databases involving bags 
and lists. We will concentrate on solving this problem for lists, since a solution for lists can 
then be generalized for bags (and, in fact, sets) via the appropriate coercions. 

The problem is that WOL is a declarative language, in which there is no implicit concept 
of order of evaluation or assignment. The traditional presentation of lists involves the con- 
structors cons and nil, and lists are built using ordered sequences of applications of these 
constructors. As it stands, WOL uses a single predicate i in order to  indicate inclusion in 
a collection type, but does not have any means of indicating the order or multiplicity of ele- 
ments in a collection. The cons, nil presentation of lists is not suitable for inclusion in WOL 
because it requires some kind of recursion in order to  construct lists or arbitrary length. 

- (name : For example suppose we have a target class Person, with associated type rPeTson = 

str, children : [Person]). Here [TI is used the type of lists of type T .  Suppose our source 
contains a table Parents of type [(pname : str, cname : str)]. We could write a clause 

X = M~?(N), X.name = N, M ~ ~ ~ ~ ~ ' " ( C )  E X.children 

-+= P E Parents, P.pname = N ,  P.cname = C 

Then we would like to  have the order of the list of children of a particular person in the 
Person class coincide with the order of the corresponding children in the Parents table. So if 
our Parents list was 

Parents = [(pname = "Susan", cnnme = "Jeremy"), 

(pname = "Susan", cnarne = "Chris"), 

(pname = "Val", cname = "Alexander"), 

(pname = "Val", cname = L'Nicholas")] 



then we would like our class Person t o  have objects 

CTPerson = {Susan, Jeremy, Chris, Val, Alexander, Nicholas) 

with associated values 

V Person (Susan) = (name = "Susan", children = [Jeremy, Chris]) 
v Person ( Val) = (name = "Val", children = [Alexander, Nicholas]) 

y Person (Jeremy) = (name = "Jeremy", children = [I) 
v Person (Chris) = (name = "Chris", children = [I) 

y Person (Alexander) = (name = "Alexander", children = [I)  
Person (Nicholas) = (name = "Nicholas", children = [ I )  

8.1 A n  alternative representation for lists 

Since we are avoiding recursion and the cons, nil presentation of lists in our language, we will 
present an alternative construction for lists which relies on the idea of assigning a precedence 
t o  each element of a list, representing its position. 

We will assume a linearly ordered set (L, <). The particular linear we choose does not 
matter here, though later we'll be settling on the set of strings of natural numbers ordered 
lexicographically. 

Definition 8.1: Suppose D is some set. A list over domain D is a partial function 1 : L 2 D 
such that  I has a finite domain. 

If i  E L and l ( i )  = p then we say p is in 1 with precedence i .  The idea is that ,  if p and q 
occur in I with precedences i  and j respectively, and i < j, then p occurs in the list 1 before 

4 .  

We define the relation FZ on lists to  be such that  I E I' iff there is a bijective function 
f : dom(1) -+ dom(E1) such that  if i, j E dom(l), i < j, then f ( i )  < f ( j ) ,  and for every 
i  E dom(l), l(i) = Et(f(i)). 

Lemma 8.1: The relation z is an equivalence on lists. rn 

We will consider t o  lists, 1 and It, to  be equal if 1 FZ 1'. 

For example, if we take (L, <) t o  be the natural numbers with their normal ordering, we 
could represent the list [ "a", "b", "c"] as (1 ct "a", 2 ++ "b", 3 H "c"),  or, equally well, as 
(36 ++ "a", 54 ct "b", 63 H "c"), and so on. 



8.2 Assigning precedence to list elements 

Given our new representation of lists, the problem is now to find a way assign precedences 
to  elements of a List in a target database, based on the precedences of elements of lists in the 
source database. 

We will adopt the same typing rules for terms and atoms involving list types as those given 
for set types in definitions 5.2 and 5.4. 

We will expand the definition of the semantic operator on types (definition 4.2) with 

However we will change the definition of the semantic operator on atoms from that in defini- 
tion 5.9, so that [.IT : ~to rn .8  -t Env(Z) + ({T,F) U Pj;,(L)) and 

if [PBTp # (UQIIT~)(i) 

[ P € Q ] ~ ~  = for all i E dom([&]'p) 

{n 1 ([QITP)(n) = [P]'~} otherwise 

So [P€QjTp is F if [[P]'p does not occur in the list [QnTp, and is the set of precedences with 
which ([~]l'p occurs in [QnTp otherwise. 

For simple clauses, such as our clause 

X = &JhPe""n ( N ) ,  X.narne = N ,  M ~ ~ " ( C )  E X.children 

P E Parents, P.pname = N, P.cname = C 

this would seem sufficient: we could take the clause to  mean, if P is in list Person with 
precedence i, then M ~ ~ ~ ~ ~ ~ ~ ( c )  is in the list X.children with precedence i also. 

However this does not solve the probleni for a clause with multiple i atoms in the body. For 
example for a clause of the form 

where L1, Lz and L3 are Lists, it is necessary to combine the precedences of the two E atoms 
in the body of the clause to  find the precedence of the head of the clause. 

At this point it is necessary t o  make some precise decisions about the underlying linear order 
for lists. We will use the set of strings of natural numbers, IN*, ordered lexicographically. We 
will also assume that each list occuring in the source database has its precedences taken from 



IN (or strings of length one). We can make this assumption without loss of generality since 
for any list 1 there is an equivalent list I' z 1 with dom(1') = (1,. . . , n) for some n. 

Definition 8.2: A ranked set of atoms is a set of atoms, a, together with an assignment of a 
distinct rank, r E IN, to  each atom of the form PEQ in @, such that the ranks of atoms in @ 
form an initial sequence of the natural numbers. 

We write P E' Q to  denote the atom P E Q with rank r.  We also adopt the convention, 
when writing a sequence of atoms, that the order in which we write the atoms corresponds 
to  their ranks, when the sequence is interpreted as a ranked set of atoms. For example the 
sequence of atoms 

X E Y.a, Z E Y.b, Z = insdW, U E W 

would be interpreted as the ranked set of atoms 

We will change our definition of clauses (definition 5.6), to say that a clause consists of two 
ranked sets of atoms: the head and the body. 

Definition 8.3: We will define a semantic operator [a]; on ranked sets of atoms, such that for 
any 1-environment p and ranked set of atoms @ with atoms of ranks 1,. . . , k, [@]JIBp IN*, 
by 

0 if ~q!~j'p = F 
for some 4 E @ 

where n; E [qh;jZP and 4; has 
otherwise 

rank i in @,for  i = 1, ..., k 

So [@&I = 8 if any of the atoms in @ are unsatisfiable, and consists of the set of 
strings of precedences of ranked atoms in @, ordered by rank, otherwise. 

For example, if [ X  E Y.a]'p = {4,7}, [Z E Y.bjzp = {2,33), [U E ~ 1 ) ' ~  = (15) and 
[Z = insdW]'p = T, then 

Note that, for any set of atoms @ and Z-environment p, p satisfies iff [@]&p # 0. In 
particular, if cP contains no atoms of the form Pi&, and p satisfies a ,  then = {E), the 
set containing only the empty string. 

The operator [[.]g then gives us a way of getting a precedence string from the body of a 
clause with multiple i atoms. We can use these precedences to  order the elements of a list 



in the head of the clause. So if L1 and L2 denoted the lists ["a", "b", "c"] and ["d", "e", "f"] 
respectively, then the smallest list Lg satisfying the clause 

be [(Ua" ,"d"), (cia","  77 " " "f"), ("b" ,"dm), ("b" Ge"), ("b" "f 7 7 ) )  (Uc" ,"d"), ("c"," " e ),( a , 7 7 1, 

The next problem to  face is how to assign precedences to target lists if they occur multiple 
times in the head of a clause. For example suppose we had a clause 

and we found an environment that satisfied @. We would want to insert two elements into 
the list L and assign them two distinct precedences. This time we will make use of the ranks 
on the atoms in the head of the clause to determine the order of insertion. 

Definition 8.4: For any c E W*, we define the semantic operator [-I: on ranked sets of atoms, 
such that for any ranked set of atoms @ and Z-environment p, 

( T if, for each # E  a, if # i s  of the form (PETQ) 
then u.r E [$]Ip 

and [cj]'p = T otherwise 
( F otherwise 

So, for example, 

[{X E' Y.a, Z Y.b, Z = insdW, (1 c3 w ) ] ~ ~ . ~ . ~ ~ ~ P  = T 

iff 4.2.15.1 E [X E y.a]lZp, 4.2.15.2 E [ Z  E ~.b]*p, 4.2.15.3 E [U E wjZp ,  and [Z = 
insdwjZp = T. 

Then we could say a clause Q + is satisfied by an instance Z iff, for any Z-environment p 
such that dom(p) = Var(@), and any u E [@]&p, there is an extension of p, say p', such that 
[[!P]lZpf = T. 

For example if L1 represented the list [("a","bn), ("c","d"), ("e"," f " )] then the smallest list 
La satisfying the clause 



Note that these definitions cause the elements inserted into a list by different atoms in the 
head of a clause to be "interleaved". By changing the definitions slightly we could make it 
so that all the elements inserted into a list by the first atom in the head of the clause come 
before all the atoms inserted by the second atom in the list. 

There remains a problem, however, if we are dealing with multiple clauses each of which may 
insert into some target list. For example, suppose we had a transformation program with 
clauses 

X E P  @I 

Y E &  Q2 

and we could find environments, pl and pa such that # 0 and [<~~1]i~~ # 0, and 
[ [P]I '~I  = [Q]'P~. Then we would need to ensure the two clauses insert elements into the list 
with different precedences. 

Suppose Tr is a (normal form) transformation program. For each clause A E Tr we assign a 
distinct rank, r E IN to  A. We will write 9 -+=' @ to represent that the clause '$ += @ has 
rank r .  When writing transformation programs, we will also assume that the transformation 
clauses are written in order of ascending rank, so that we will not need to  annotate the clauses 
with their ranks. 

We will take the approach that each clause inserts any values into a list before those inserted 
by any other clauses of higher rank. In other words, if Al = (ql eT1 Q1) and A2 = 
(qz  e T 2  G2) are two clauses in Tr, and rl < r2, then any elements inserted into a list by 
clause Al would come before any inserted by the clause A2. We will ensure this property by 
prepending the rank r of a clause A to any of the precedences of elements inserted into some 
list by that clause. 

Definition 8.5: Suppose Z is an instance and A = '$ +== @ a clause. Then Z is said to satisfy 
A with rank r iff, for any Z-environment p such that dom(p) = Var(@), and any n E 
there is an extension of p, p' say, such that [91Jz,p' = T. 

An instance Z is said to  satisfy a transformation program Tr iff for every clause A E Tr, if 
A has rank r ,  then Z satisfies A with rank r .  

So, if we had a pair of clauses 
X E L S ~ - - X E L ~  
X E L ~ + = X E L ~  

where Lg is an expression representing the same list in each clause, then the smallest list L3 
would be the result of appending L1 and L2. 

Finally, having computed a transformation involving lists, we must replace any lists occuring 



in the target database with equivalent lists in which the precedences are taken from IN, or 
sequences with length one. This is so that we can compose transformations. 

This now gives us all we need to do transformations between databases using lists instead of 
sets. If we are dealing with source databases which involve both sets and lists, then we need 
to invent some arbitrary precedence for each element of the set: in other words we need to 
treat sets as lists with some arbitrary ordering on their elements. If we are transforming to a 
target database involving both sets and list, then we can carry out the transformation as if 
the target database had only lists, and then throw away any precedence information for sets, 
inserting elements in an unordered and duplicate-eliminating manner. 

A consequence of this is that, if we are transforming from sets to lists, then the transformation 
may not be deterministic because of the need to choose an arbitrary ordering on the elements 
of a set. In practice, however, it is likely that we will be able to use some canonical ordering 
on the elements of a set, so that this will not be a problem. 



Part I1 

Observable Properties of Models for 
Recursive Data-Structures 

9 A Data Model Based on Regular Trees 

As we remarked in section 4, the concept of object-identities provides a useful abstraction 
of the reference mechanisms used in representing complex or recursive data-structures in a 
database. However such reference mechanisms are normally internal to  a database system, 
and may not be directly accessed or observed by a user. In particular object identities do not 
represent part of the data being modeled in a database, and the data being modeled does 
not depend on the choice of object identities used. Consequently we would like to  deal with 
data-models where object-identities are not considered to be directly visible. In later sections 
of part I1 we will see that the observable properties of a data-model are dependent on the 
particular predicates we consider to be available for comparing object-identities. 

We would like to  construct a data-model which coincides precisely with the observable proper- 
ties of a database: two instances or values in an instance should be equal in the model precisely 
when they can not be distinguished by any query in some underlying query language. Such 
a model would give us insight into the expressive power and richness of a database system, 
which an overly fine model of instances, such as that introduced in definition 4.3, fails to  
capture. 

In this section we will present a model sharing definition 4.1 of types and schemas, but in 
which instances are based on the idea that the only observable values are those of base-type 
(integers, strings and so on), and those constructed from other observable values using set, 
record and variant constructors. Such a value-based model was proposed in [2]. 

The model will use regular treesin order to represent values and instances. The idea of regular 
trees is that they capture those infinite trees with finite representations, and consequently 
can be thought of as finite trees with cycles ([15]). Though it's fairly easy to  form an in- 
tuitive understanding of regular trees, based on diagrammatic representations, to  formulate 
them rigorously requires a surprising amount of care. It's suggested that readers who feel 
comfortable with the concept of regular trees skip the technical details in the next couple of 
sub-sections. 



9.1 Regular Trees 

A tree domain, D IN*, is a set of non-empty strings of natural numbers, such that 

1. if 4i  E D ,  i > 1, then 4( i  - 1) E D, and 

2. if 4 i  E D ,  4 a non-empty string, then 4 E D. 

A tree is a mapping from a tree domain to  some alphabet A. 

Suppose t is a tree and q5 E IN* is a string such that 4 E dom(D). We write t.4 for the tree 

We say t.4 is the projection of t on 4. 
Given two trees, t and t', we say t' is a subtree of t iff there is a 4 E dom(t) such that t' = t.4. 

Definition 9.1: A regular tree is a tree with only finitely many subtrees. 

There several ways of constructing regular trees: one can view then as directed graphs with 
edges marked by elements of the alphabet, together with some distinguished node, known 
as the root, such that there is a directed path from the root to each node in the graph. An 
example of such a graph is shown below: 

Alternatively we can view a regular tree as being defined by a system of equations over string 
variables and patterns: 



In this case the previous regular tree is represented by the string variable T I .  The operator I 
represents choice: either T2 = b.T3 or T2 = c.T4. 

There are a number of other equivalent representations as well. In general we will use directed 
graphs in order to  give an intuitive representation of regular trees. 

Bisimulation of regular trees 

We do not want to  distinguish between two regular trees if they differ only in the ordering or 
multiplicity of their edges. We therefore need to  construct an equivalence relation on trees 
which captures when we consider two regular trees to  be the same. 

We define the binary relation x on regular trees t o  be the largest relation such that, if tl x r 2  

then 

1. if i E dom(tl) ( i  a string of length I), then there is a j E dom(t2) such that tl(i) = t2 ( j )  
and tl.i x t2.j ,  and 

2. if j E dom(t2) then there is an i E dom(tl) such that t l( i)  = t2(j)  and tl .i x t2.j. 

If tl x t2 we say that tl and t2 are bisimilar and we will be treating them as the same tree. 

Constructors for trees 

Suppose t l ,  . . . , tk are trees, and crl, . . . , a k  are elements of the alphabet. Then (cwltl,. . . , ak tk )T  
is the tree given by 

k k 

dom((alt1, . . . , a i t i )T )  U {i+ 1 + E do@;)} LJ U {i) 
i=l i=l 

and 
T .  (a l t l ,  . . . , ak tk )  ( 2 )  -. a; 

for i = 1,. . . , k, and 
(Qltl, . . a ,  ~ k t k ) ~ ( i + )  = ti(4) 

for i = 1, . . . , k and + E dom(t;). 

We write (a l t l ,  . . . , ak tk )  for the x-equivalence class containing (alt:, . . . , crkQT,  where ti 
is a representative of the x-equivalence class t;, for i = 1, .  . . , k. We write E for the x- 
class consisting of the tree with empty domain. For the remainder we will refer t o  these 
equivalence classes as regular trees, and, when dealing with regular trees, will consider them 
to be representatives of their x-equivalence classes. 



9.2 Trees of Types 

We will be interested in regular trees over an alphabet with the elements 

1. the symbol E ,  

2. for each attribute label a E A, the symbols n, and ins,, 

3. for each C E C a symbol s tC ,  and 

4. for each base type b a disjoint countable set of constant symbols, cb, . . .. 

Definition 9.2: We define the mapping TTree from types to  sets of regular trees over this 
alphabet to  be the largest such that: 

1. if t E TTree(b) then t = (c%) for some constant symbol cb, 

2. if t E TTree((al : rl , . . . , ak : rk) )  then t = (n,,tl, . . . , na,tk) where ti E TTree(r;) for 
i = 1, ..., k. 

3. if t E TTree((al : TI,. . . ,ak : rkD) then t = (ins,, t') where t' E TTree(ri) some 
i~ 1, ..., k. 

4. if t E TTree({r)) then t = (E t l , .  . ., E tk)  where k 2 0 and ti E TTree(r) for i = 
1, .  . . ,k .  

5. if t E TTree(C) then t = (stet') where t' E T'~ree(r'). 

TTree(r) represents the set of all regular trees of type r. 

Informally these definitions can be interpreted as: 

1. A tree of base type has one branch, labeled by a constant symbol, which goes to  the 
empty tree; 

2. A tree of record type (al : TI, . . . , ak : rk) has k branches, labeled n,, to  n,, , going to 
trees of types to  T, respectively; 

3. A tree of variant type lal : TI,. . . ,a, : r,) has one branch, labeled ins,, for some i, 
going to a tree of type ri; 



4. A tree of set type { r )  has finitely many branches, each labeled by i and each going to  
a tree of type T; and 

5 .  A tree of class type C  has one branch, labeled by &,tC, going to  a tree of type rC. 

9.3 Instances 

Definition 9.3: An instance, wC, consists of a family of finite sets of regular trees, wC & 
TTree(C), for each C  E C. 

A regular tree, t ,  is said to  be a value of type r iff t E TTree(r). 

A regular tree t is said to  be valid for an instance wC iff for each C  E C and each subtree t i  
o f t  of type C ,  t' E wC. 

An instance wC is said to  be valid iff for each C  E C and each t E wC, t is valid for wC. 

Example 9.1: Let us consider an instance for the schema described in example 4.1. The 

./ 
"Pennsylvania" 

"Harrisburg" "Albany" 

Figure 10: States from instance 

instance consists of two sets, wState and w C i t y .  The set wState contains the regular trees 



slzown in figure 10 representing the states New Yorlc and Pennsylvania. Pennsylvania has the 
string 'LPennsylvania" as its name, and a tree representing the city Harrisburg as its capital, 
while New York has the string "New York" as its name, and a tree representing the city 
Albany as its capital. The tree representing Harrisburg in turn has the string "Harrisburg" 
as its name, and the tree representing Pennsylvania as its state. Note that there is a loop 
in the tree a t  this point: in fact this is a finite representation of an infinite regular tree. 
The set wCi ty  will also contain a number of regular trees, such as the one shown in figure 11 

r n / -  \ate 

"Philadelphia" 

r c a p i t a l  
rn/\ / s t a t e  

"Pennsylvania" i s t c i t y  

r n a y 2  

J 
"Harrisburg" 

Figure 11: Cities from instance 

representing the city Philadelphia. However, in order to be a valid instance, w C i t y  must at  
least contain regular trees for Harrisburg and Albany. 

10 Bisimulation and Correspondence of Object Identities 

It seems clear that the object-identity based model of definition 4.3 captures our intuition 
about how databases with recursive values and extents are represented. However, since object 



identities are not normally considered to be directly observable, or to have meaning outside 
the internal representation of a database, it follows that there can be many indistinguishable 
instances in this model, differing only in the choice of object identities. 

We would like a semantic model where two instances are considered to  be different if and 
only if they are distinguishable. However to talk about whether two instances are distin- 
guishable assumes some latent language for querying the databases, and of course the notion 
of distinguishability is dependent on this language and the predicates available in it. 

The regular-tree based model defined in 9.3 seems to provide such a semantic model if we 
assume that it is not possible to observe or compare object-identitieslrecursive-values di- 
rectly: in particular, if it is not possible to test whether two object-identities are equal, or 
whether a particular object identity is included in a set of object identities. In this section we 
construct an equivalence relation z on (object identity based) database values representing 
observational equivalence in this scenario. In section 10.1 we will show that the show how 
this equivalence gives rise to  regular tree (definition 9.3) database instances. In section 11 we 
will show how these different equivalences/models correspond to  different observational equiv- 
alences induced by varying the assumptions about which operators are available on object 
identities in a query language. 

Definition 10.1: A correspondence between two families of object identifiers aC and a'' is 
a family of binary relations wCc aC x afC. 

For each type r ,  we can extend wC to a binary relation w7C [[r]ac x [r]lafc. w7 are the 
smallest relations such that: 

1. cb cb for cb E ~ b ,  

2. x , ( a l : ~ l r . . . , a k : ~ k )  y if x(a;) wTi y(a;) for i = 1,. . . , k ,  

3, x) wda~:~~r. . . ,ak:~k D (aj, y) if i = j and x wT1 y, and 

4. X AT) Y if for every x E X there is a y E Y such that z wT y and for every y E Y 
there is an x E X such that x wT y. 

A correspondence wC is said t o  be consistent with instances Z = (aC,  lie) and Z' = ( d C ,  vfC) 
if for each C E C and all o E a', o' E a", if o wC of then vC(o) wTC ~ ' ~ ( 0 ' ) .  

Lemma 10.1: Given any set of consistent correspondences between the instances Z and Z' the 
correspondence formed by taking the union of the relations for each class C E C from each of 
the set of correspondences is also consistent for Z and Z'. 



Definition 10.2: Let Z, Z' be instances of a schema S. Then we define the bisimulation 
correspondence, z z z ~ ,  between Z and Z' to be the largest consistent correspondence between 
Z and Z' (the existence of which follows from the previous lemma). Since the subscripts are 
rather cumbersome here, and are usually clear from context, we will frequently omit them. 

Given any two instances Z and Z', we say Z and Z' are bisimilar and write Z = Z' if and 
only if, for each C E C, 

1. for each o E aC there is an o' E a" such that o l  xz, o', 

2. for each o' E arc there is an o E aC such that o z z p  o', 

Proposition 10.2: The relation z is an equivalence on the set of all model 2 instances I of a 
schema S. 

Proposition 10.3: For each equivalence class [I], there is an Z' E [Z],, unique up to  isomor- 
phism, such that, for any 1" E [I], there is a unique homomorphism, f C  from 1" t o  Z'. Such 
an Z' is said to  be a canonical representative of [Z],. 

The canonical representative of an equivalence class [I], is therefore an instance Z' in which 
any bisimilar object identities are coalesced into a single object identity: for every object 
identity in Z, o E aC say, there is a unique object identity in Z', o' E a'', such that o z z z t  of. 

10.1 Mapping Between the two Models 

In this section we will show that there is a one-to-one correspondence between the z -  
equivalence classes of the object-identity based instances of definition 4.3 and the regular 
tree based instances of definition 9.3. 

Mapping from object-identities to regular trees 

Suppose Z = (aC,  11') is an instance of schema S. For each type T we define the mapping tree; 
from  la^ to model 1 values (regular trees), by: 

b b  b treq(c-) (c-E) 
(a1 r.. .rak:~k) treel (x) I (xal tree? (x(al)), xak treepk (%(ak))) 

aa1:71,...,ak:Tkb treez - (a;, x) = (ins,, tree? (x)) 

treeg1({xl,. . ., xk)) I ( E  treef(xl), . . . , E treez(x,)) 



The mapping tree from model 2 instances, I, t o  model 1 instances M, is given by 

tree : Z H wC 

where 
wC = {treeg(o) I o E aC) 

for C E C. It is easy t o  check that  wC is indeed a model-1 instance of S 

Mapping from trees to ob ject-identities 

Suppose wC is a model 1 instance of a schema S. 

Assume we have sonie ordered, countably infinite set from which to  pick object identifiers3. 
For each C E C,  and each v E wC, pick an object identifier oV to  associate with v. (If we 
use a lexicographical ordering on the elements of wC and the ordering on our set of potential 
object-identifiers then this can be done in a deterministic way). 

We can form a family of object identifier sets, aC by 

aC = {o" I v E wC) 

Then for each type r we define the mapping inst:, from model 1 values of type T (TTree(r)) 
t o  values from [rl]ac by 

b b  b inscc((c-E)) = c- 
( U ~ : T ~ > . . . , ~ ~ : T ~ )  ins twc ((sly,. . . , akvk)) (al H i n ~ t ~ ~ ( v ~ ) ,  . . . , a k  H in~ tZl f ;~ (v~) )  

(al:r lr...ruk:rkD instwc ((aiv))  = ( a ; ,  instzc(v)) 

1.1 instwc ( ( E  y , .  . . , E vk)) {instLc(vi) I i = 1,. . ., k )  

i n ~ t ; ~ ( v )  = o" 

For each C E C define the mapping : aC i j[rC]ac by 

vC(oU) z inst:: (v') where u = stC(v') 

3a gumball machine 



The mapping inst from model 1 instances M to  equivalence classes of model 2 instances, I/ z 

is given by 
inst(wc) r [(aC, vC)]= 

where aC and vC are as described above. 

Proposition 10.4: The mappings tree and inst provide an isomorphism between the set of 
bisimulation classes of model 1 instances and the %-equivalence classes of model 2 instances. 

11 Query language based on structural recursion 

In this section we will present an adaption of the query language SRI ([lo, 111) to  the model 
of definition 4.3. The language is based on the mechanism of structural recursion over sets 
which was described in [lo] as a basis for a query language on the nested relational data-model. 
Our choice of this mechanism is because it is semantically well understood and because it 
is known to be strictly more expressive than other formally developed query languages for 
nested relational model, such as the algebra and calculus of [3]. Consequently most of the 
results on the expresivity of various operators in this language paradigm will automatically 
carry over to other query language paradigms. 

We will present two variants of the query language, SRI and SRI(=):the = representing the 
inclusion of the equality predicate on object identities. 

In section 11.1 we introduce the language SRI(=) and describe queries to  be closed expressions 
of ground type in this language. A denotational semantics for SRI(=) is given, and certain 
useful shorthand notations or extensions are introduced. In section 11.2 we show that two 
illstances are indistinguishable in SRI(=) if and only if they are isomorphic, but that there is 
no generic test for isomorphism of instances: that is, there is no SRI(=) query which, when 
evaluated for any two instances, will return the same result if and only if the instances are 
isomorphic. 

In section 11.3 we will present the language SRI with no comparison operator on object 
identities. We will show that distinguishability of instances in this language coincides with 
the bisimulation correspondence on instances defined in 10.2, and that it is possible t o  test 
values in an instance for bisimilarity using only SRI. However we also show that testing 
for bisimilarity using SRI requires the ability to recurse over the entire extents of a database 
instance, from which we conclude that a more efficient means of comparing values is necessary. 

In section 12 we will consider a third variant of the language SRI, this time taking account 
of a key-specification on the schema. We show that distinguishability in such a language Lies 



between isomorphism and bisimulation of instances, and that such a language, together with 
an acyclic key-specification, provides us with an efficient way of comparing databases and 
values in a database. 

11.1 Queries and the language SRI(=) 

The query language is described for a schema S, with classes C, such that S : C I--+ rC for 
each C E C. The schema will be considered to  be implicit in the remainder of this section, 
and indeed in most of this document. 

We assume two base types unit and 3001. (Bool is actually unnecessary since it is equivalent 
to  a variant of units, but is included for convenience). We expand our type system to include 
first-order function types (ranged over by T, T', . . .), as well as objectldata types (ranged over 
by 7 , .  . .): 

0 bject types 

T ::= ( a : ~  ,..., a : r ) I Q a : r  ,..., a : r D I { r } l  

unit I Bool I C 

General types 

T ::= r l r - T  

Definition 11.1: A ground type is an object type which contains no class types. 

Ground types are significant in that values of ground type are considered to  be directly 
observable, while values of non-ground type will contain object identities, which do not have 
meaning outside of a particular instance. Further the set of values associated with a ground 
type will not be dependent on a particular instance, so that expressions of ground type can 
be evaluated in different instances, and their results can be compared. 

For example the type (name : str, statename : str) is a ground type, while (name : str, state : 
State) is not. When comparing two instances of the schema of example 4.1, it makes no sense 
to  compare values of the second type since they will contain object identities taken from to 
distinct instances. 

Definition 11.2: A query is a closed expression of ground type. 

For each class C E C we will assume there is a binary predicate =C in the language which 
tests whether two terms evaluate to  the same object identity. Consequently it will be possible 



t o  define an equality predicates =T on each object type r ,  and also set inclusion predicates, 
using the language. 

For each type T we assume a countably infinite set of variables x7,  y7,. . .. The syntax and 
typing rules are given in figure 12. 

Products 
t- e :  ( a l :  rl, ..., ak : r k )  t - e l  : T I  . . .  t ek : ~ k  

t- r a i e  : ~i k (a l  = e l , .  . . , ak = ek) : (a l  : T I , .  . ., ak : r k )  

Variants 
t- e : T; 

t- i n s ! ~ ~ : ~ l " . . ' ~ * : ~ " e  : ( al : 7 1 ,  . . . , ak : rk D 
t - e : @ l : ~ l  ,..., ak:rkD t - e l : T  ... k e k : ~  
k caseeofal(x;T1) e l ,  ..., a k ( x t )  + ek : T  

Sets 
t- el : T t- e2 : { T }  t- el : TI  -+ 1-2 -+ 7 2  I- e2 : 1-2 t- e3 : { t l )  

k 0 : { T }  I- add(el ,  e2 )  : { r }  k sri(el, e2, e3)  : ~2 

Functions 
t e : T 2  t - e l : ~ ~  -+T2 k e 2 : r l  

F Xx71 e :  TI  -+ T 2  t- ele2 : T 2  

Booleans 
I- el : Boo1 t- e2 : T t- e3 : T 

t- t t  : Boo1 k ff : Boo1 t- i f ( e l ,  e2 ,  e3) : r 

0 t hers 
k e : C  t - e l : C  t - e 2 : C  

k x7 : T F () : unit t- C : { C }  t-!e : rC' I- el =' e2 : Boo1 

Figure 12: Typing rules for query language 

The operator sri is the only part of this language to really require an explanation. sri takes 
three arguments: a function, a starting value and a set. It then iterates the function over 
the set starting with the starting value. So, for example, the expression sri( f ,  P ,  S )  would 
be equivalent to f ( s l ,  f ( s 2 , .  . . , f ( s k , p )  . . .)), if S denoted the set {sl,. . . , s k )  (allowing for 
rather a lot of notational abuse). 

Example 11.1: For the schema of example 4.1, the following query will return the set of all 
names of States in an instance: 

sri(Xx . Xy - add(x.name, y ) ,  0, State) 

where again we use e.a as shorthand for r a ( ! e ) .  



The following expression returns the set of all Cities in states named "Pennsylvania": 

sri(Xx . Xy - if (x.state.name = "Pennsylvania", add(x, y), y), 0, City) 

However this expression does not count as a query, since its type is {City). A query which 
returns the names of all Cities that have a state named "Pennsylvania" would be 

sri(Xx - Xy . if (x.state.name = "Pennsylvania", add(x.name, y), Y), 0, City) 

Semantics of SRI(=) 

Let Var be the set of variables of SRI(=). An environment for instance Z is a mapping 
p : Var + D(Z) such that p(xT) E [r]Z for each variable x' of type r .  

We define the semantic function V[.]Z from expressions of SRI(=) and Z-environments to  



vuraen~~ = ( V u e n Z ~ ) ( a )  
V [ ( a l  = e l , .  . . , ak = ek)]Zp z (a1 - V [ e l ] Z p , .  . .,ak H V[ek]Zp)  
V[ins,e]lZp 2 ( a ,  V[e]lZp) 

i V[e1]Z(p[x1 ul )  if V U ~ I Z P  = (a1, u )  
Vucasee o f a l ( x l )  + e l , .  . . ,ak(xk)  + ekjZp = i i 

v[ek]l I (p[xk  u] )  if V [ ~ ] Z P  = (ak, u )  
V[@]IZP = 0 
VUadd(e1, e2)IZp = { V u e l n Z ~ )  U Vl[ea]lZp 
V[sri(el ,e2,es)]Zp zz f (u1 ,  f ( u 2 ,  . . . f (  u ~ , v )  ...)) where V [ e l ] Z p =  f 

V [ e 2 ] Z p  = v 

vuesllxp = (211, . . , un} 
V [ A x  - e ] z p  = ( U  H V [ e ] Z ( p [ x  ti u ] ) )  
vuele2nz~ = ( ~ ~ e ~ n ~ ~ ) ( v u e ~ n z ~ >  
V [ t t ] Z p  = T 
V [ f q Z p  = F 

V ~ I X I Z P  = P ( X >  

VUOII~P = 0 
V [ C ] Z p  z oC 
V [ ! e ] Z p  = v ~ ( v [ ~ ] z ~ )  where V[e]lZp E oC 

T if V [ e l ] Z p ,  V [ e 2 ] Z p  E oC 
V [ e l  =' e2]Zp = and V[ellJZp = V [ e 2 ] Z p  

F otherwise 

where 0 denotes the unique value of type unit, and T and F are the values of type Bool. 

Note that,  for tlze semantics of sri to be well defined, its function argument must be idempotent 
and commutative in its first argument. In any of our uses of sri we will assume that this is 
the case. 

Note also that, if an expression e contains no free variables then its semantics does not depend 
on the environment p .  In this case we can write V [ e ] Z  for the semantics of e  in instance Z .  

Example 11.2: For the instance described in example 4.2, and the first query of example 11.1, 

V[sri(Xx - Xy . add(x.name, y ) ,  0 ,  State)jZ = {"Pennsylvania", "New York") 

and for the second query 

V[sri (Xz  Xy - i f(x.state.name = "Pennsylvania", add(x.name, y), y), 8, City)]Z 



= {"Philadelphia", "Pittsburgh", "Harrisburg") 

Extending SRI(=) 

In order to  make the language SRI(=) more usable we will add some additional predicates 
and logical operators. These do not actually add to the expressive power of the language, but 
may be thought of as macros or short-hand notations for more complicated S R I  expressions. 
The typing rules for the extensions are shown in figure 13. 

Logical Operators 
I- el : Boo1 k ez : Bool t- el : Boo1 k e2 : Bool k e : Boo1 

I- el A ez : Boo1 I- el V €2  : Boo1 I- l e  : Boo1 

Predicates 
k e : ~  k e ' : ~  t e : ~  t e f : { r )  
I- e zr e' : 3001 I- e cT e' : Boo1 

Figure 13: Extensions to  SRI(=)  

The logical predicates can be defined in terms of the minimal SRI(=) as follows: 

e ~ e '  = i f ( e , e f , f f )  
e v e' = i f ( € ,  tt,  e') 

l e  E i f ( e , f f ,  tt) 

and the predicates =T and ET can be defined by the following induction on types: 

e = Bool e' 5 i f ( e , e f , 1e ' )  
unit 1 - e = e = t t  

=(a1 :TI r...rak:~k) e' = ( ~ , , e  zT1 n a l e f )  A . . . A  ( n u k e  =rk r a k e f )  
I e = ~ a 1 : r 1 5 . ' . 9 a k : T k D  e' = casee o f a l ( o l )  + (casee o f a l ( y l )  + xl y l ,  

a 2 ( ~ 2 )  * f f , . . . , a k ( ~ k )  * A), 
. . . , ak (xk )  =+ ( c a s e e ' o f a l ( y l )  + A;. . . + f f ,  

a k ( ~ k )  * X k  =rk yk > 
e E~ e' = sri(Xx X U  - ( x  =T e )  V u,  ff ,  e') 

e =iT} e' sri(Xx . X U  - ( 5  E~ e f )  A u ,  tt, e )  A 

sri(Xy - Xu - ( y  er e )  A u ,  t t ,  e') 



In addition we use the shorthand notations 

and 
V x  E e . e' = sri(Xx Xu . e' A u, t t , e )  

where u does not occur in e ,  e'. 

11.2 Indistinguishable Instances in SRI(=) 

Two instances Z and 1' are said to be indistinguishable in SRI(=) iff, for every ground 
type r and closed expression e such that I- e : r ,  V[[e ]$  = V[e]%, .  

The following result tells us that isomorphism of instances exactly captures indistinguisha- 
bility in SRI(=), and is therefore an important result in establishing the expressive power of 
SRI(=)  . 
Theorem 11.1: Two instances, Z and Z', are indistinguishable in SRI(=)  if and only if they 
are isomorphic. 

Proof  The if part is by induction on S R I  expressions. 

For the only-if part, given an instance Z we construct an expression e l  such that I- e l  : Boo1 
and V[ez1]Z1 is true iff Z' ?i 1. 

To simplify things we will assume that our schema, S, involves only a single class C. The 
construction of the distinguishing expression works just as well for the case where S has 
multiple classes, though the nested subscripts and superscripts become rather unmanageable. 

Suppose Z = (aC, v') is an instance of schema S, such that 

and 
C v (0;)  = p2[om;, . . . , O m t  ] 

nE 

where om;, . . . , o m , , ,  are the object identities occuring in vC(o ; ) .  
nt 

We will write pi[xf ' ,  . . . , xEz] for the expression formed by replacing each occurrence of om: by 
the variable x:. Note that there is an implicit conversion of values into syntactic expressions 
here which can be carried out inductively in a straight forward manner. 

Also we will use the shorthand expression Dis t (e l , .  . . , en)  defined by 



So V[Dist(el, . . . , e,)]]Zp = T iff the values Vl[el]Zp,. . . , V[e,]lZp are distinct. 

Now we can define ez as follows: 

So ez states first that there are n distinct elements of class C ,  which are bound to  the variables 
XI, .  . . , x,, next that every object identity of class C is one of these n identities, and finally 
that the values associated with each of 21,. . . , x, correspond to the values associated with 
the object identities in the instance. 

For any instance Z' we now have V[[eT]Zt = True iff Z' S 1. 

Example 11.3: Returning to  the instance Z described in example 4.2, we construct ez as 

ez 3x1 E City . 3x2 E City . 3x3 E City . 3x4 E City . 3x5 E City 

3yl E State 3y2 E State . 
(Dist(x1, ~ 2 , ~ 3 , ~ 4 ,  x5) A Dist(y1, ~ 2 )  A 

(Qz E City ( Z  = X I  V z = x2 v z = x3 V z = xq V z = x5)) A 

(Qw E State . (w = yl V w = y2)) A 

xl.name = "Philadelphia" A xl.state = yl A x2.name = "Pittsburgh" A 

x2.state = yl A x3.name = "Harrisburg7' A x3.state = y1 A 

x4.name = "New York City" A x4.state = y2 A x5.name = "Albany" A x5.state = y~ A 

yl .name = "Pennsylvania" A y1 .capital = 23 A 

y2.name = "New York" A y2.capital = x5) 

Then Vl[el]lZ = T, and for any other instance Z', V[eTlJZ1 = T iff Z' E Z. 

Claim: For any reasonable query language L, such that L supports an equality predicate 
on object identities, any two instances are indistinguishable in L if and only if they are 
isomorphic. 

Justification: To see that this is true we need to show that, in any natural query language 
we can think of, with extensions for handling object identity dereferencing and classes, it is 
possible to  construct an expression ez equivalent to  the one from theorem 11.1. For example 
the constructors used in the proof of theorem 11.1 do not go beyond those found in the nested 
relational algebra of [12] or the calculus of [3] without the powerset operator. 



Proposition 11.2: It is not possible to build a generic expression in SRI(=) which tests whether 
tests whether two instances are isomorphic. In other words, given a schema S, it is not 
possible to  construct a value es ,  depending only on S, such that for any two instances Z and 
Z, V[es]Z = V[es]Z1 iff Z and Z' are isomorphic. rn 

Proof: Suppose there is such an e, and k e : T. Clearly T must be a ground type (contain no 
classes) for this to  make sense. Hence, for any instances Z and Z', [T]Z = [r]Z' = T ,  where 
T is some finite set of values. So for any instance Z, Vl[e]Z E T. But T is finite and there are 
a countably infinite number of non-isomorphic instances (for any non-trivial schema). Hence 
result. rn 

11.3 Distinguishing instances without equality on identities 

We now introduce a variant on the language SRI(=), which we will call simply SRI. This is 
the same as the language SRI(=) only without the =C predicates on object identities. So SRI 
gives us no way of directly comparing object identities. 

We will show that observational indistinguishability of instances in SRI coincides with the 
bisimulation correspondence on instances, z, defined in definition 10.2, and, further, that the 
relation on values of an instance Z can be computed using SRI. 

Indistinguishable instances in SRI 

Proposition 11.3: Two instances, Z and Z', are indistinguishable in SRI if and only if Z z Z1. 
rn 

Proof: It is clear that, for any instances Z and Z1, if Z $1' then we can build an SRI query 
e such that V[e]Z # V[e]lZ1. We will therefore concentrate on the if part of the proposition. 

Assume that Z and Z' are such that Z z 1'. We need to  show that, for any SRI query e, 
V[e]ZZ = V[e]Z1. Note that, for a ground type T, zT coincides with equality. We will show 
that for any closed expression e, V[e]lZZ z V[e]lZ1. 

We must first expand the definition of zT to function types. Suppose f E [T + TIz and 
g E [T + T]p. We say f ~ 5 ~ ' ~  g iff for any u E [ T ] ~  and v E [ T ] ~ I  if u zT v then fu zT gv. 

Now it suffices to  show that, if e is any SRI expression, t- e : T ,  and p E Env(Z) and p' E 
Env(Z1) are environments such that dom(p) = dom(pl) and, for each variable x' E dom(p), 
p(xT) zT pl(xT), then 

V[e]Zp zT V[e]Z1pl 

The proof proceeds by induction on the structure of SRI expressions. 



Testing for correspondence in SRI 

Proposition 11.4: Using SRI we can test for the bisimulation correspondence relation described 
in section 10, that is, for any type r ,  and any values u and v, u, v E [rjz, we can form a 
function expression CorT : ( r  x T )  i Bool such that VICor]lz(u, v) = True iff u z z  v. 

(The notation T x rr represents a Cartesian product and is not actually a type constructor 
in our model, but can be considered to  be a notational abbreviation for a record constructor 
with two attributes: (#1 : 7, #2 : r')). 

This result tells us that SRI has the same expressive power as SRI(z) (the language SRI 
augmented with predicates for testing E). 

Proof: We will show how to build such a function in the case where the schema, S, contains 
oilly one class, C ,  though again the definition can be easily extended for the case when there 
are many classes. 

First we will define some more "macros" for SRI: 

Map( f ,  X )  = sri(Xx . XY - add( f x, Y), 0, X )  

Flatten(X) = sri(Xx - XY . x U Y, 0, X)  
Prod(X, Y) = sri(Xx Xz sri(Xy - Xw . add((x, y), w), z ,  Y), @, X )  

UnionProd(X, Y) Map(Xx . x.#1 U x.#2, Prod(X, Y)) 

Here Map and Flatten are the standard operators. Prod is the cartesian product operator, 
and Unionprod maps the union operator over the cartesian product of two sets. 

For each object type T we construct a function CheckT : (r x r) i {{C x C}) such that,  if 
CheckT(e, el) = X ,  then [el zT [el] iff, for some set Y E X o zC or for each pair (0, or) E Y. 
Note that, if CheckT(e, el) = 0 then [el @ [el]], and if ChecV(e, el) = (0) then [el z [el]. We 
will give some of the cases in the definition of CheckT. 

Checkunit ( ~ ) ( e ,  el) = {0} 
~ h e c k B " ~ ' ( ~ ) ( e ,  el) = if'(e-el, {0}, 0) 

checkc (~ ) ( e ,  el) = {{(e, el)}) 
check("] :TI ,...,a ~ r k )  (e, el) = UnionProd(Checkrl (e.al, e' .al ), Unionprod(. . . , 

CheckTk(e.uk, er.ak)) . . .) 
checkdal :TI ,...,a k:%D (E)(e, el) = case eof al(xl) * (case e ' o f ~ ~ ( ~ ~ )  * CheckT1(E)(xl, yl), 

a 2 ( ~ 2 )  * 0, . . . , a k ( ~ k )  * 0), 

~ ( x k )  * (case erofal(yl) * 0, .  . . , ak-l(yk-I) J 0, 



a k ( ~ k )  * Checkrk (E)(xk, ~ k ) )  
checl<(')(e,e') = sri(Xz . XZ . Map(Xy . Map(XW 

UnionProd(Checkr(x, y), W), Z),  el), 0, e) 

The next step is a function IterChk : {C x C )  i {{C x C))  which iterates the function 
checkTc over a set. 

IterChk(Y) = sri(Xx XZ . ~nion~rod(~heck~~(!(x.#l), !(x.#2)), Z), 0, Y) 

The function Unfold : {{C x C))  i {{C x C}) applies IterChk to  each element in a set and 
flattens the result. 

So a pair of expressions, e and el, can be shown not to  be bisimilar using N levels of deref- 
erencing iff the result of applying Unfold to  Check(e,ef) N times is the empty set. But we 
know that,  if e and e' are not bisimilar then they can be shown not to  be bisimilar in less 
than laCl steps. So we define 

TestCorr(e, el) E sri(Xx XZ Unfold(Z), CheckT(e, e'), C )  

Finally we can use this set in testing for z-equivalence of values: 

Then [Corr(e, el)] = T iff [e] E' [el]. 

This result tells us that SRI has the same expressive power as SRI(z) (the language SRI 
augmented with predicates for testing E). 

This result is a little surprising since our values are recursive, and we can not tell how deeply 
we need to  unfold two values in order to  tell if they are bisimilar. 

We are saved by the fact that all our object identities come from a fixed set of finite extents. 
The cardinality of these extents provide a bound on the number of unfoldings that must be 
carried out: if no differences between two values can be found after C{ICI I C E C) derefer- 
encing of object identifiers, then the values are equivalent. Consequently we can implement 
Cor by iterating over each class, and for each identifier in a class unfolding both values. 

Unfortunately this implementation of zz seems to  go against our philosophy of the non- 
observability of object identities: if we can't observe object identities then should we be 



able t o  count them? From a more pragmatic standpoint, a method of comparing values 
which requires us to  iterate over all the objects in a database is far too inefficient to  be 
practical, especially when dealing with large databases, and we would like t o  have algorithms 
to  compare values which take time dependent on the size of the values being compared only. 
We would therefore like to know if we can test for z without iterating over the extents of an 
instance. In the following subsection we will show that this is not possible in general. 

N-bounded  values a n d  sRIN 

A value v is said t o  be N-bounded iff any set values occuring in v have cardinality a t  most N. 
An instance Z is N-bounded iff for each class C E C and every o E gC,v(o)  is N-bounded. 

Note that, for any instance Z there is an N sufficiently large that Z is N-bounded. 

We now define a variant of the language SRI  which has the same power as SRI  when restricted 
t o  N-bounded values, but which will not allow recursion over sets of cardinality greater than 
N .  

The language S R I ~  is the same as the language SRI  except that an expression sri( f ,  e, u) is 
not defined if lV[u]lzl is greater than N. 

Proposition 11.5: It is not in general possible to  compute the correspondence relations z on 
N-bounded instances using the language That is, there exists a schemas S and type 
r such that, for any expression Cor with 1 Cor : r x r -+ Bool, either there is an N-bounded 
instance Z and values u and v, u, v E [r]lZ, such that VICor]lz(u, v) = T and u ,kTv, or there 
is an N-bounded instance Z and values u, v E [r]Z such that VICor]lz(u, v) = F and u zT v. 

Proof: First note that for any S R I ~  expression e ,  there is a constant ke, such that any 
evaluation of an application of e will involve less than ke dereferences of objects. Consequently 
it is enough to  construct a schema with a recursive structure such that, for any constant k, 
we can construct an instance containing two objects which require b + 1 dereferences in order 
t o  distinguish between them. 

This tells us that we can not hope to test if two values are equivalent without making use of 
recursion over classes, from which we conclude that a more efficient way of comparing values 
is needed. 



Applicability of results to other query languages 

The results in this section are in terms of variants of a query language based on structural 
recursion on sets ([lo]). From a theoretical standpoint the choice of the SRI  languages is 
motivated by some ideas from category theory ([12]) which lead us to  believe that sri is the 
most general reasonable predicate for defining functions over sets. From a more pragmatic 
point of view we can show that SRI is more expressive than other existing nested relational 
algebras ([12]) including the algebra with powerset operator of [3]. 

For most of the results in this section, in particular propositions 11.2, 11.5 and the "only if" 
parts of theorem 11.1 and proposition 11.3, we automatically get equivalent results for any 
less expressive query languages. To adapt results such as proposition 11.4 or the "if" parts of 
theorem 11.1 or proposition 11.3 to  otlzer query languages, it is necessary to  check that the 
query languages in question are sufficiently expressive to describe the relevant expressions. 
To this end we observe that none of these results use the full generality of SRI or go beyond 
the operations we would expect to be present in a reasonable query language for these data- 
models. 



12 Observable Properties of Object Identities with Keys 

In sections 11 and 11.3 we presented two different query languages, based on different assump- 
tions about the predicates available for comparing values. The first, SRI(=), assumed that 
it was possible to directly compare any two object identities for equality, and we showed that 
such a predicate, together with a simple query language over complex objects, allowed us to  
compute the equivalence relation = over all types, and was sufficient to distinguish between 
any two non-isomorphic instances. 

However object identities are abstract entities that do not directly represent data, and so we 
would like to  ensure that they can only be compared by means of their associated values. Our 
second query language, SRI, was based on the idea that only base values could be directly 
compared, and that other complex values and objects could be compared only by comparing 
their component parts or associated values. In section 11.3 we saw that distinguishability 
under such a language coincided precisely with the bisimulation relation on instances, x, 
defined in 10.2, and in section 10.1 we saw that such an equivalence corresponded to  an 
alternative, coarser data-model, namely that of regular trees defined in 9.3. In section 11.3 
we saw that such a bisimulation equivalence relation, x, on values in an instance could be 
computed, but that doing so required a level of unfolding bounded by the size of the instance, 
and therefore the ability to  recurse over all object identities in the instance. Allowing such a 
computation seems at odds with our premise, that object identities, and hence the cardinality 
of a particular class of object identities, could not be observed. From a more pragmatic 
perspective, it is clear that such an equivalence relation is too expensive to  use in a query 
language over databases, and a more efficient way of comparing values and object identities 
is required. In particular, we want to  be able to compare values in time dependent on the 
values themselves and independent of the size of the database. 

In this section we will propose a solution to this problem based on the systems of keys 
introduced in section 4.3. A system of keys, as defined in 4.5, determines an equivalence 
relation on object identities: 

12.1 Key correspondences 

Let us recall the definition of of key specifications from 4.5. 

Definition 12.1: Given a key specification, ICE and two instances I and Z', we define the family 
of relations 111 x k  5 [r]Z x ([r]Z1 to be the largest relations such that 

b 1. if cb 111 zk c'b for cb, c'b E D& then ch = c'b, 



( a l  :TI ,...,ak:Tk) 2. if xz-l%,: y then z(ai) 111 zz y(a;) for i = I , .  . . , k ,  

{ a l : T ]  ,...rak:Tk D 
3. if (a;, x) zzr zK (a j ,y)  then i =  j and xzzj=z y, 

4. if X 11. z$' Y then for each x E X there is a y t Y such that x =; y and for each 
y E Y there is an x E X such that x 111 zk y, and 

5. for each C E C and any o E aC, or E if o z~ zE 0' then Kg(o) 111 =kc KFl (0'). 

Note: For any schema S, if we take the key specification given by = rC for each C E C, 
and for any instance Z = (aC,  vC) and each C E C, 

lc? - vC 
then the relations z,: and z relations are the same. 

Given any instance Z, we write zzc for 1- I-:, or omit the Z altogether when it is clear from 
the context. 

z: is called the correspondence generated by K:. 

Proposition 12.1: If KC is a key specification then, for any instance Z and each type T, zk is 
an equivalence relation. 

Definition 12.2: An instance I is said to  be consistent with a key specification Kf iff for 

each C E C, any o,ol E oC, if o z& o' then vC(o) zkc vC(o'). 

Note that consistence is a more general condition than that of an instance satisfying a keyed 
schema, from definition 4.7. This is in line with the more general equivalences on values in 
an instance we have developed since then. 

Given two instances of a simply keyed schenia, (S ,  KC), say Z and Z', we say Z is IC-equivalent 
to  Z', and write Z z,: Z' iff 

1. For each C E C, each o E aC there is an o' E alC such that o zg of, and for each 
o' E a'' there is an o E aC such that o zg of; and 

2. For each C E C, o E aC and o' E a'C, if o z: o' then yC(o) =kc ~" (0 ' ) .  

12.2 Keyed Schema 

Recall the definition of keyed schema from 4.7, that is a keyed schema consists of a schema, 
S together with a key specification KC on S. 



An instance of a keyed schema (S,KC) is an instance Z of S such that Z is consistent with 
KC. 

Lemma 12.2: For any instances Z and Z' of a keyed schema (S, K), if Z xx Z' then 111 is 
a consistent correspondence between Z and Z'. 

Proposition 12.3: For any two instances, Z and Z', of a simply keyed schema (S, K),  if Z zx: Z' 
then Z z 2'. 

Note, however, that the converse is not true: there are simply keyed schema for which the key 
equivalence is strictly finer than bisimulation of instances, as the following example demon- 
strates. 

Example 12.1: Let us consider the schema from example 4.1 once again, and the schema 
specification, K" given by 

KCi ty  G (name : str, state-name : str) 

KState (name : str, cities : {City)) 

and 

K~'"(o) (name c ( ~ ~ ' ~ ~ o ) . n a r n e ,  state-name ++ ~ ~ ~ ~ ~ ~ ( ~ ~ " ~ ( o ) ( s t a t e ) ) ( n a m e ) )  

KFate(o) (name H ~ ~ ~ ~ ~ ~ ( o ) ( n a m e ) ,  cities H {o' E oCityIvCity(o')(state) = 0)) 

So the key of a City is its name and the name of its State, and the key of a state is its name 
and the set of its Cities. 

Figure 14: A database instance 

Let us now construct a new instance, Z', and compare it to  the instance Z defined in exam- 
ple 4.2. Z' is defined by: 

,City {Phila, Pitts, Harris, NYC, Albany} 
aState G {PAI,PA2,NY) 



and the mappings are 

vcity(phila) (name H "Philadelphia", state H PAI) 

v ~ i t y  (Pit ts)  (name H "Pittsburg)), state H PA2) 

~ C i t y  (Harris) (name H "Harrisburg", state H PA2) 

V C i t y ( N ~ c )  E (name H "New York City", state H NY) 

v ~ i t y  (Albany) (name H "Albany", state H N Y )  

and 

 state (PA1)  (name I-+ "Pennsylvania", capital H Harris) 

 state (PA2)  (name H "Pennsylvania", capital H Harris) 

v S t a t e ( N y )  (name H "New York", capital H Albany) 

This instance is illustrated in figure 14. 

Then Z and Z' are bisimilar, Z z Z', but then are not equivalent under the key specification 
K J C )  Z k K Z i .  

Figure 15: A summary of the operators considered and the resulting observational equiva- 
lences 

Observational equivalence on 
instances 

N - - isomorphism 

- key correspondence 

= - key correspondence 

= - bisimulation 

Language 

SRI(=) 
SRI  with equality test on 
object-identities 

SRI(K ) 
K an acyclic key specifica- 
tion 

SRI(K ) 
K a general key specification 

SRI  
SRI  with no comparisons on 
object-identities 

Observational equivalences 
computable on values 

rT  - equality on all types 

%; -key correspondence 

z k  - key correspondence 
(computing 
requires recursion over extents 
of object-identifiers) 
zT - bisimulation 
(computing 
requires recursion over extents 
of object-identifiers) 



12.3 Computing key correspondences 

Given a keyed schema, (S,IC), we define the language SRI(IC) for the schema to be the 
language SRI extended with new operators keyC for each C E C. The typing rules for these 
new operators are: 

and the semantics are given by 

Similarly we define the language SRIN(IC) as an extension of SRIN. 

We get the same results for computability of key correspondences, ZK, as we did for bisimu- 
lation correspondence, namely 

1. We can find a formula in SRI(IC) to compute z k  for each type r. 

2. We cannot in general find a formula to compute EL on N-bounded values in SRIN for 
any N. 

However the following result goes some way towards justifying our earlier statement that key 
specifications with acyclic dependency graphs are of particular interest. 

Proposition 12.4: For any simply keyed schema (S, IC) there is an M such that for any N 2 M, 
and any type r, z k  can be computed on N-bounded values using SRI~(K) .  That is, for each 
type r ,  there is a formula Cork of SRIN(IC) such than k Cork : r x 7- -+ Bool and for any 
two N-bounded values u, v E [r]Z, V [ C ~ r k ] ~ ( u ,  v) = T iff u z k  v. 

We have seen that there are a variety of different observational equivalences possible on 
recursive database instances using object identities, and that the observational equivalence 
relation generated by a particular query system is dependent on the means of comparing 
object identities in that system. Systems of keys generate various observational equivalences 
lying between these two. It follows that acyclic key specifications provide us with an efficient 
means of comparing recursive values which incorporate object identities, without having to 
examine the object identities directly. These results are summarized in figure 15. 



Part I11 

Computing Recursive Functions with 
Finite Domains 

13 Recursive Functions 

Our type system and data-model allow us to express recursive types in such a way that the 
values of these types have a finite representation, and also so that the extent or range of values 
associated with a type is finite. Such recursive data structures may admit infinite series of 
unfoldings, and thus can be represented as trees of infinite depth. 

Though finite, the representation of such data structures can be arbitrarily large, and it is 
not possible, a priori, to  tell what level of unfolding is necessary in order to examine all parts 
of the data-structure. Consequently, when defining functions and operators on such recursive 
data structures, it is natural to use recursive function definitions, and so the question of how 
to evaluate such function definitions arises. 

In this section we will show that, though such recursive function definitions have an intuitive 
meaning over cyclic data-structures, they will in general be undefined under the Eeast-fixed- 
point semantics approach of conventional programming language theory. Further, if the recur- 
sive function definitions are interpreted as equations, they will admit many solutions which 
are not intuitively meaningful in addition to  those that are. We will then demonstrate that 
the intuitively solutions to  a system of recursive function definitions are those that can be 
formed constructively, and that this insight yields an algorithm for evaluating such functions. 

In section 14 we will provide a formal semantics for recursive functions of finite domains based 
on the techniques of [38], and show that this semantics coincides with our intuitions for the 
meanings of such functions. We will also claim that the constructive solutions t o  any such 
function definitions can be computed using structural recursion CP over the finite extents of a 
database, rather than general recursion. 

For example let us consider the simple recursive schema shown in figure 16. Here we have 
a single class, Person, with attributes representing the name, age and set of children of a 
person: 

TPerson = - (name : str, height : int, children : {Person)) 

If we were to  define a function which returned the maximum height of the child of a person, 
we could do so by first taking the children attribute of a person, and then using structural 



Figure 16: A simple recursive schema 

recursion on this set. However, if we wanted to  find the maximum height of an ancestor of a 
person, we would need to write a recursive function definition in order t o  unfold the nested 
children attributes: 

max-an_ht(X) - max {X.height, max{max-an_ht(Y)IY E X.children)) 

This schema allows for cyclic data-structures: a Person could be their own ancestor. Suppose 
(ignoring the physical impossibility of such an occurrence) that our database contained a 
person, say Jenny, who was a member of her own children set. Then evaluating the function 
max-an-ht using a conventional least-fixed-point approach would yield a bottom or undefined 
result. But, even in such an instance, the set of ancestors of Jenny would be finite, and so 
intuitively the function should be well-defined and should yield the maximum height for any 
person in the set of ancestors of Jenny. 

In general, using conventional methods from programming language theory t o  evaluate recur- 
sively defined functions over such cyclic structures will lead to non-terminating or undefined 
results, even though, intuitively, the structures are finite and so such functions have an ap- 
parent and seemingly computable solution. 

In section 10 we saw that,  given the knowledge that all object identities in a database resided 
in some known finite extents, and using recursion over those extents, we could compute a 
bisimulation relation on the values of a database, even though this relation could not be 
computed without using this additional knowledge. The question arises as to whether such 
a technique can be applied to more general recursive functions, thus allowing us to  evaluate 
such functions using structural induction on the finite extents of the database. 

In the following sections we will show how more general recursively defined functions over 
finite extents can be computed in a terminating manner. We will provide a denotational 
semantics for such function definitions, and show that the computable solutions coincide with 
those provided by this semantics. We will also show that the recursive function definitions 
may admit a number of solutions, but that only certain of these solutions are actually mean- 
ingful, and that these coincide with the solutions formed in a constructive manner. We will 



also present a semantic characterization of these meaningful solutions, and try to  find an 
operational characterization for them. 

Representing recursive data-structures 

The use of object identities, or some other equivalent mechanism, allows us to  create recursive 
or self-referential data-structures and represent them in a finite way, so that the extent or 
range of values associated with any type remains finite. This differs from the case in general 
programming languages, where recursive structures have potentially infinite values (such as 
streams). 

Example 13.1: Let us consider a single class Rlist, and the schema 

S : Rlist H int x Rlist 

(recall that we write r x r' as an abbreviation for the record type (#1 : r ,  #2 : 7') and (P, &) 
as an abbreviation for (#1 H P, # 2  H Q ) ) .  

An example recursive list would be: 

Here the corresponding instance is given by aRLiSt = { E l ,  12, 13, 141, and 

This could be thought of as encoding an infinite sequence, 2,4,4,6,4,4,6,4,4,6,. . . . Nevertheless 
the instance is finite, and consists of only four object identities. 



Recursive function definitions 

In general a system of recursive function definitions will be of the form 

where Mi are some expressions involving f l ,  . . . , f k  with free variable x. Details of the oper- 
ations available will be deferred till later. 

A simple example, for the list above would be 

f (x) = min(x.#l, f (x.#2)) 

which seems to  define a function that returns the minimum element of a recursive list (an 
object of the class Rlist defined before). 

However even with this simple example there are problems, in that it fails to  define a unique 
solution. An obvious solution, for the instance shown earlier, would be f(El) = 2 and f (12) = 
f (13) = f (14) = 4. However an equally valid solution would be f ( E l )  = f (12) = f (13) = f (14) = 
-20. So the question arises as to what makes the first solution a better or more natural one? 

One possible answer is that it's the greatest solution to the equation. However this is a rather 
ad-hoc characterization: different functions with different domains and ranges are unlikely 
to  have such a natural ordering on their range. Consequently such a characterization of 
best solutions would involve defining an ordering on the possible solutions, dependent on the 
particular function and it's intended meaning, rather than merely its domain and its range. 

A more convincing answer is that the first solution is formed constructively, while the second 
seems to  be merely an arbitrary choice of number. This hints at a paradigm for computing 
solutions to  such recursive functions. To explore this more thoroughly it is best to  reformulate 
the function definition a bit. 

Unfolding the definition of min gives the equation: 

f (x)  = if x.#1 I f(x.#2) then x.#1 else f(x.#2) 

or, in written in a "logic-programming style": 



Figure 17: Search tree for f(l l)  = X ?  

and searching for a solution for f can be thought of as querying against these two clauses. 

Suppose we wished to  evaluate f on lI. We would do this by trying to  solve the query 
f( l l )  = X ? ,  where X is a logical variable. Using the first clause gives the binding X = 2, 
together with the assumption 2 1 f(12). This then leads to a new query f( la)  = Y?. 

Using the second clause leads to the assumptions X < 2 and X = f(l2), and hence to  a new 
query f(12) = X?.  We can then use the two clauses to try to  find solutions for each these 
new queries. 

A search tree is shown in figure 17. At each stage in generating this search tree we generate 
some new assumptions, and some new queries, leading to the next stage of the tree. A branch 
will terminate if either the new assumptions added contradict those already made, or the 
branch leads to  no new queries. In the later case a l l  the logical variables in the branch would 
be instantiated, and all the assumptions true for those instantiations of variables, thus leading 
to  a solution. 

Alternatively a branch may not terminate at all, as is the case with the right most branch of 
this search tree. This is where the finiteness of the domain of our function comes in. Because 
there are only finitely many objects to  which f can be applied it follows that a non terminating 



branch will eventually repeat a query. At this point we can tell that the branch will not lead 
to  a constructive solution (in the case of figure 17 the right-most branch represents an infinite 
set of solutions), and stop searching it. 

Example 13.2: Figure 18 illustrates a schema for a database of Cities and Flights. The class 
City has a name attribute and a set-valued flights-from attribute, which points to  a set of all 
the flights originating from that City, while Flights has attributes At#, cost and destination. 

Flights City 

cost 
destination 

int str 

Figure 18: A schema for a database of Cities and Flights 

A possible instance for this schema is illustrated in figure 19. 

Figure 19: An instance of the Cities/Flights database 

We might wish to  write a function on pairs of Cities in this database which returns the lowest 
possible cost for flying between those cities: 

Min-Cost(X,Y) = if X I Y  then 0 else 



Such a function would not terminate if evaluated using a least-fixed-point approach, or a 
prolog-style depth-first search because of loops in the instance. However again it is clear that 
it should have a solution, and that there are only finitely many possible proofs of well-defined 
solutions, corresponding to loop-free paths in the instance, the paths incorporating loops can 
not give rise t o  well-defined or constructive solutions. 

An equivalent function could be defined in a logic-programming style as: 

Min-Cost(X, Y) = 0 e X = Y 
Min-Cost(X, Y) = Min-Cost_F(X.Aightsfrom, Y) += X # Y 
Min-Cost_F(W,Y) = F.cost + Min-Cost(F.destination,Y) += 

F E X ,  (F.cost + Min-Cost(F.destination,Y)) < Min-Cost_F(Del(F, W)) 
Min-CostT(W,Y) = Min-Cost_F(Del(F, W) ,Y)  += 

F E X, (F.cost + Min-Cost(F.destination, Y)) 2 Min-Cost_F(Del(F, W)) 

Here Del(P, Q)  represents the set Q with any occurrences of the element P removed from it. 

Because there are only finitely many pairs of Cities, we can construct a search tree which at  
each stage follows one of the flights out of the first City argument, so that each path in the 
search tree is guaranteed to  end either in a solution or a contradictory set of assumptions, or 
to  recursively test the same pair of Cities. 

This last example brings out an important feature of such an algorithm for evaluating func- 
tions: it must be able to  store partial instantiations while searching for a solution. For 
example, a t  some stage in the algorithm we might make an assumption: 

Min-Cost(Philadelphia, San_Francisco) = ( ~ ~ ' ~ ~ ~ ~ ~ ( ~ l t 2 1 1 ) ) ( c o s t )  + 
Min-Cost(Los Angeles SanJ'rancisco) 

but not yet have made any assumptions about what the value of Min-Cost(LosAngeles, San_Francisco) 
should be. 

Before formalizing such an algorithm however, it is necessary to provide a formal semantics 
for such function definitions, so that we can prove our algorithm satisfies such a semantics. 

13.1 A logic for recursive functions 

In this section we will extend our language of section 5 in order to  form a logic, wOLSF, in 
which to  express recursive function definitions. 



Since we are interested in functions with finite domains only, we must first define a restricted 
form of types which have finite extents, so that  these restricted types will be the domains of 
our functions. 

Definition 13.1: We define the set of finite types over a set of classes C, ranged over by v, . . ., 
t o  be given by abstract syntax: 

v ::= {v) 

I ( a : v ,  . . . , v )  

I ~ u : u ,  . . . ,  a:.) 

I C 
I unit 

Note that  finite types are a restriction of the types defined in 4.1 in which the only base type 
is unit. We will assume that  the domain of type unit, Dunit, is a single element set. It would 
be possible t o  allow other base types with finite domains, such as Bool in finite types, but 
these can be regarded as variants of elements of type unit. 

Lemma 13.1: For any finite type, v, the denotation of v, [v]lZ, as defined in 4.2, is a finite 
set. w 

We assume a set F of function symbols, and for each f E 3 an associated domain, v f ,  and 
range r f ,  where vf is a finite type and rf is a general type. 

For example, for the function Min-Cost described in example 13.2, the domain of Min-Cost 
would be the finite type vMin-Cost = - (#1 : City, #2 : City) and the range would be the type 
TMin-Cost = 

- int. 

The purpose of finite types here is simply to  ensure that the domains of the functions consid- 
ered are finite. Alternatively, we could have explicitly limited the values from the denotation 
of a type that  we are interested in t o  being those that  occur somewhere in the database 
instance. Our semantics for recursive function definitions should easily still work in this case. 

Syntax of w O L ~ ~  

We will assume just one base type b with an infinite corresponding domain D&. We will 
assume an  infinite set of constant symbols K, ranged over by cb, . . ., representing values of 
type b. 



We extend the W O L ~  terms defined in section 5.1 with 

P ::= C - class 
1 cb - constant symbol 
I x - variable 
I rap - record projection 
1 ins,P - variant insertion 
1 !P  - dereferencing 
I f(p) - function application 
I Del(P, Q) - set deletion 

The function applicatioiz terms f ( P )  here and the terms Del(P,Q) are the only new terms; 
the rest are included as a reminder. The Del operator is necessary in order to do recursion 
over sets. We add the new typing rules 

r k ~ : c f  ~ F P : T  r t ~ : { ~ }  
r F f ( P )  : ~f I? k Del(P, Q j : {T} 

to  those listed in section 5.1. 

The syntax for atoms is the same as in section 5.1 except that the types of additional predicate 
symbols are simplified: we assume additional predicate symbols of the form pT where r is the 
arity of pT. 

Semantics of WOL'~ 

An F-environment, E3, for instance Z, is a set of functions, Ef : [ v f ] ~  + [ [ r f ]~ .  We write 
F ' ~ n v ~ ( 1 )  for the set of 3-environments for I. 

Intuitively we can see that the 3-environments for Z will be the exact solutions to our function 
definitions. 

We alter our semantic operators for terms, ([.IT : ~ e r m 8  + Env(3) + FE~?(z) + D(Z), 
and for atoms, [.IT : ~ t o m 8  i Env(Z) + FE~?(z) + {T, F) to take an F-environment as 
an additional parameter. In particular we define 

uf(p)nzpr - rf(upnTpr) 

Also we define the semantics of the Del operator by: 

In the following we will assume that F consists of a single function symbol f ,  in order 
to  simplify things. However things should go through just as well with multiple function 
definitions. 



13.2 Function definitions and programs 

We will limit our attention to a special form of clauses for function definitions, A function 
definition clause is a clause of the form 

where e does not contain any function symbols and var(e) U {x) C_ var(@). 

Definition 13.2: A program consists of a finite set of function definition clauses, A; = 
(fi(x)Avi) += @;, i = 1,. . ., b ,  such that, for any instance Z, function symbol f E 3, F- 
environment [, and object-identity o E o c f ,  there is an environment p, and at  least one 
clause, A; such that f; = f ,  p(x) = o and [@;]zp[ is true. 

The conditions are to  ensure that, for each function symbol, and any computed partial so- 
lution, there will always be an applicable function definition clause, and so the program will 
not define partial functions. Any function definition of the form f(x)  = M[f](x), where M 
may involve if-then-else expressions, will be equivalent to  a program of this form. 

Example 13.3: For the schema described in example 13.1, take the program Pr given by the 
clauses 

(this is the same function as described in section 13 adjusted to satisfy our requirements for 
function definition clauses) 

Take the 3-environment [ given by [f ( 1 1 )  = 2, tf (12) = tf (13) = tf ( 14 )  = 4. Then [ satisfies 
the program Pr. ¤ 



14 Topological systems of solutions for recursive function 
equation 

We have already seen that an F-environment represents a solution to  a set of function equa- 
tions, but we have also seen that a set of function equations may have many such solutions, 
and that, in computing the solutions to such equations, it is necessary to  reason about partial 
solutions. 

We will use the techniques of [38] to build a topological system to  represent such partial 
solutions. The F-environments will be the points of our topological system, and the opens 
will correspond to  the partial or computed solutions. The opens will form an algebraic 
structure known as a frame. A frame, F, is a complete lattice such that F has all finite 
meets/conjunctions and all (possibly infinite) joins/disjunctions, and finite meets distribute 
over infinite joins. 

Frames 

We will briefly reproduce those definitions and results concerning frames that are necessary 
for our purposes here. For further details see [38]. 

Definition 14.1: A frame is a complete lattice, (F, A ,  V )  such that 

1. If S C F, S finite, then /\ S E F - F has all finite conjunctions; 

2. If S C F then V S E F - F has all infinite disjunctions; 

3. If S F ,  u E F, then (V S) A u = V{v A u I u E S )  - finite conjunctions distribute 
over disjunctions. 

One of the most important features of frames is that, despite their infinitary nature, they can 
be presented in the same manner as a finitary algebra. 

A presentation of a frame consists of a set of generators G, and set of relations R (R is a 
set of equations relating expressions built out of the operators of the frame, the generators, 
G and some variables). A model for a presentation (GIR), is a frame A, together with an 
interpretation g~ of each of the generators g E G, such that each of the relations in R hold. 
A frame, A, is presented by a presentation (GJR) iff it is a model for (GJR), and for any other 
model for (GIR), B, there is a unique frame homomorphism f : A i B, such that fgA = g~ 
for each g E G. 



Proposition 14.1: Given a presentation (GIR), there is a frame A, unique up to isomorphism, 
such that A is presented by (GI R). 

The set of elements g ~ , g  E G are known as the sub-basics of A. A basic of A is a finite 
conjunction of sub-basics. 

Proposition 14.2: If A is a frame presented by (GI R), then every element of A is the disjunction 
of some set of basics in A. 

Definition 14.2: A topological system consists of a set P ,  a frame F ,  and a relation c 
P x F such that 

2. z + V S  iff a x for some x E S .  

Note that, if F is a frame presented by (GI R) and J='c P x G then there is a unique (=C P x F 
such that (P, F, I=) is a topological system and a g~ iff a (=' g . 

14.1 A topological system of function solutions 

Suppose we have a set of function symbols F, and an instance 2. We define the sub-basics for 
3 and Z, S B ~ ( Z ) ,  to  be the set of triples of the form f o  H u, where f E F, o E I[vf]2 and 
u E ( [ r f ]~ .  Each sub-basic represents an atomic statement that one of our functions takes a 
particular value on a particular ob ject-identity. 

Definition 14.3: We define F ~ ~ ( Z )  to be the frame generated by S B ~ ( Z )  together with the 
laws 

1. ( fo  H u)A ( f o ~  v) = 1 if u # v. 

The first of these laws can be thought of as saying that every function takes at most one value 
on a particular object-identity. The second law states that each function symbol is total, or 
assigns some value to  every object identity in its class. 

The least element of the frame, I = V 0 represents a contradictory or unsatisfiable set of 
solutions. The top element, T = A 0 represents the set of all possible solutions. 



Definition 14.4: We define the relation I= F E ~ V ~ ( Z )  x I?r3(x) to be such that ( F E ~ V ~ ( Z ) ,  M ( z ) ,  )= 
) is a topological system, and E + (fo H u) iff [f (0) = U. 

Example 14.1:  Let us consider the schema and instance in example 13.1, and F containing 
just one function symbol f ,  with domain Rlist and range int. 

The sub-basic f l l  H 2 would describe all those 3-environments in which f takes the value 2 
on the object identity E l .  

The basic f 11 H 2 A f 12 H 4 A f l3 H 4 A f H 4 describes exactly one F-environment, in 
fact the solution to  the example described in section 13. 

The open u given by 

u (f l l  H 2 A f12 H 4 A fig H 4 A fl4 H 4 )  

V(fE1 H 2 A f12 H 3 A fl3 H 3 A f14 H 3) 

v V{(fll  H i A f12 H i A fi3 ++ i A f l4  H i) I i < 2) 

describes an infinite set of F-environments, in fact the set of all solutions to  the function 
equations described in example 13.3. 

14.2 Opens and Clauses 

In this section we define an entailment relation between the opens (the elements of our frame 
I?r3(Z)) and the formulas and clauses of WOL'~. 

Definition 14.5: If 4 is a formula of w O L ~ ~ ,  p is an Z-environment, and u E F'r3(1), then we 
say u entails 4, p, and write u b 4, p iff for any F-environment, J, if E u, then [$]zp[ = T. 

If @ is a set of atomic formula, then we write u b @, p iff u b 4, p for every 4 E a. 
If !P += @ is a clause in WOL'~, and u E F ~ ~ ( z )  an open, then we write u b (!P @) iff 
for any Z-environment, p,  such that dom(p) = Var(@), if u b @, p then there is an extension 
of p, p', such that u b !P, p'. 

Example 14.2: Recall the two clauses of example 13.3: 

Both of these clauses are entailed by the open u of example 14.1: 



In fact this open has the important property that, for any other open v, v b Al and v b A2 iff 
v 5 u. (Here we use 5 to denote the partial order induced by the frame operators of FI?(z): 
that is, v < u iff v V u = u). In other words, u is the largest open which entails both Al and 

A2. 

14.3 Declarative semantics of programs 

In this section we will define a declarative semantics for the programs defined in section 13.2. 

For an instance 1, we define the mapping Assertz from WOL'~  clauses to  F'r3(Z) by: 

Assertr(A) = V{u t F ~ ~ ( I )  IU b A) 

Clearly, for any program clause A,  Assertz(A) b A, and for any u E F ~ ~ ( z ) ,  if u b A then 
u < Assertl(A). So Assertz(A) is the greatest or most general element of the frame satisfying 
A. 

Definition 14.6: Given a program Pr, Pr = {Al, . . . , A,), we define 

Proposition 14.3: For any program, P r  = {Al,.  . . ,A,),  Assertl(Pr) b A; for i = 1 , .  . . , n ,  
and, for any u E FrF(1), if u b A; for i = 1 , .  . . , n, then u < Assertz(Pr). 

Recall that any element of a frame can be expressed as a disjunction of basic elements. In 
particular Assertz(Pr) = V S where S is some set of finite conjunctions of sub-basics. Hence 
Assertz(Pr) can be thought of as a disjunction of all possible solutions to  the program Pr. 

Example 14.3: Take the program Pr defined in example 13.3. For this program 

14.4 A proof-tree oriented semantics for programs 

In this section we will describe an alternative view of the semantics of our programs, still 
using our topological system, which attempts to capture the intuitive notion of proof trees 
for recursive functions presented in section 13. 



First we define the operator Mod by 

So Mod(u, @,p)  is the largest element of F ~ ~ ( z )  which is less than u and entails @,p.  If 
Mod(u, @, p) = I we say that u is incompatible with @, p. 

We define the operator Re1 to  return tlze set of environments relevant t o  a particular open 
and program clause. Re1 takes as parameters an open, u, a program clause, A, and an object 
identity, o, and returns all environments, p ,  such that u is compatible with the body of A 
and p, and p maps the first variable of A to o: 

where A = (f ( x ) - e  += @). 

We define the operator Applypr which takes an open, and returns a set of opens representing 
the effect of applying one clause to the first open. 

~ p p l y , ~ ( u )  { ~ { M o d ( u , @ i , ~ )  A ( f i ( ~ x )  ++ [ v i l r ~ )  I P E Rel(u,Ai,o)) ( 
Ai E Pr, o E g C f ' ,  Rel(u, Ai, 0) # 0) 

Next we define a series of sets of opens, App;,., Appkr,. . ., representing the stages of building 
a proof tree. 

The following lemma may be thought of as saying that every proof tree constructed in this 
manner will terminate. 

Lemma 14.4: For any program Pr and instance Z, there is an N such that ~ p p ; ,  = ~~~f~ 
for any i > N. rn 

This construction represents the "largest possible" proof tree: intuitively any proof of a 
particular solution should be super-imposable on it. 

Finally, we extract the leaves or finished opens from the ~ p p ~ , s :  

AppE {vl v E App;, for some i ,  

VAj E PrVo t ocb Vp E Rel(v, Ai, o) . Modju, Gj, p) 5 (fro c [ejlrp)} 



where A j  = ( fj(x)Aej + @j). So Appg  consists of the opens occuring in some AppZ,, for 
which there are no more applicable clauses. 

Example 14.4: We will continue with the instance described in example 13.1 and the function 
definitions from example 14.3. To compute Appkr we start with the open T and find all 
relevant environments. For example, for the clause Al and the object identity 11, we get 

and for clause A2, 
R e l ( ~ ,  A,, 1,) = {[x H 11, y H n] ( n < 2) 

In particular, if we take p = [x H 11] then 

where !Dl = 7r1(!x)3 f(7r2(!x)). If we take p = [x H 11, y H n] and - (yL f(r2(!x)), y<tl(!x)), 
then 

Mod(T, @2, P )  = (fE1 n)  A (f12 n) 

By calculating the relevant environments for the other object identities, we get: 

Repeating this process, and extracting Appg,  we get: 



The following proposition shows that such proof trees are meaningful with respect t o  our 
declarative semantics, and that any solution to  a program is the result of such a proof tree. 
In effect it represents a soundness and completeness result for our proof-tree semantics. 

Proposition 14.5: For any program Pr and instance 1, Assertz(Pr) = V Appg.  a 

Corollary 14.6: For any program P r ,  instance 1, and any t; E F E ~ V ~ ( Z )  such that [AlTC = T 
for each A E Pr, there is a u E Appg  such that t; I= u.  a 

14.5 Constructive solutions 

The sen~antics described in sections 14.3 and 14.4 provide us with all the solutions Lo a 
recursive function definition program. However we saw in section 13 that certain solutions 
are more desirable than others, and that these are the solutions found in a "constructive" 
manner. We would like to  try and formalize this notion, and find a way to  isolate such 
constructive solutions. 

Recalling the solutions of example 14.4, our "proof-tree" semantics provided us with three 
different paths t o  solutions, corresponding to the three opens 

ul = ( f l l  I+ 2A f 1 2  - 4 ~  f 1 3  H 4~ f l q  ~ 4 ) ,  

u2 E V { f l l  - 2 A  f 1 2  - n A  f 1 3 -  nA f14 w n  12 > n < 41, and 

u3 = V { f ~ l  +-+ n A f ~ 2  - n A fi3 H n A f14 ++ n 1 n < 2) 

Here ul is intuitively a constructive solution, while u2 and us are not. Assume that the base 
type int denotes the natural numbers. It is notable that there is exactly one F-environment 
satisfying the open u l ,  while there are two satisfying 212 and infinitely many satisfying us. This 
immediately suggests that the constructive solutions are those corresponding to exactly one 
F-environment. However, we shall see that there are problems with such a characterization. 

We will show that the number of F-environments satisfying the opens u2 and us is dependent 
on the domains we choose for the underlying base types, whereas ul is satisfied by exactly 
one F-environment regardless of the domain of the base types. 

For i = 1 ,2 ,3  let us define Fi(Dint) = {[ E F E ~ V ~ ( Z ) ( [  + u;}, where D~~~ is the denotation 
of the base type int. If we take Dint to be the natural numbers excluding the number 3, 
then Fl and F2 both have cardinality 1 while F3 is infinite. If we take D~~~ to  be the real 
numbers then Fz and F3 are both uncountably infinite, while Fl has cardinality 1. The 
notable property of Fl, and therefore of u l ,  is not that it has cardinality 1 for some particular 



underlying domains, but that it is invariant under changes of the underlying domains and 
the interpretations of constant symbols. 

This observation is reminiscent of work done in lambda-definability, particularly in [30], where 
values which correspond to lambda terms are characterized as those which are invariant under 
relations on the underlying base domains. We will try to  adapt these kind of ideas t o  our 
model here. This also raises the question of whether we can find a semantic characterization 
those functions that may be defined using recursive function definition programs of this form. 

In te rpre ta t ions  of  cons tan ts  

In order to  represent the notion of a particular solution being independent of the base domains 
and interpretations of constant symbols, we first need to parameterize our semantics on these 
interpretations. 

Recall that we have a set of constant symbols K ,  and for each auxiliary predicate symbol pT 
we will assume we have a corresponding relation pK C K T .  

Definition 14.7: An in te rpre ta t ion  consists of a set DL, a function : K + Db, and for each 
predicate symbol pT a relation C ( ~ h ) ~ ,  such that for any cl, . . . , cT E K ,  (ycl,. . . , yc,) E jj 
if and only if (cl , .  . . , c,) E pK. We will often write y for an interpretation with function y 
and assume the other components of the interpretation are clear from context. 

Of particular interest is the interpretation Id with domain DId z K ,  yId(c) -- c for c E K ,  
K and jj- p 

Definition 14.8: Given any two interpretations, (D l ,  yl,pl) and (D2,  y2,jj2) a in te rpre ta t ion  
9 morph i sm,  yl + 7 2 ,  is a function g : Dl + D2,  such that, for any c E K ,  g(yl(c)) = y 2 ( ~ ) ~ .  

Semant ics  of W O ~ ~ ~ f o r  interpreta t ions  

In this subsection we will present a variant on our model from section 4 which is parameterized 
on the domain of base types, and versions of our semantic operators for WOL '~  which are 
parameterized on interpretations. 

Definition 14.9: For a base domain DL, and a family of sets of object identities, aC ,  C E C ,  
define D ( D ~ ,  aC)  by: 

41nterpretations and interpretation morphisms form a category with Id as an initial object. 
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We define the denotation of a type T, [TI:' by 

[b]zk = D b  - 

Db - C [cnnc = a 
Db = b C 

[(a1 : TI . . . , ak : T~)],c - {f E A 2 D(D-, o ) I dom( f )  = {al,  . . . , ak} 

and f(ai)  E [q]Zk, i = 1,. . . ,k )  

[(al : .. ak : T~D]:' = ({al) X [TI]:') u . . . u ({at) x [Tk]:') 

[{.)]ZL pr in( [~]%~)  

An instance Z consists of a family of sets of object identities, aC, and for each C E C a function 
c K vC : 0' + [T ]Ioc 

An environment for an instance Z and an interpretation y is a partial function with finite 
domain p : Var 2; D ( D ~ ,  a'), where ~b is the domain of the interpretation y. 

An F-environment, <, for an instance Z and an interpretation y, consists of a family of 
functions <f : oCf -+ [rf 1%' for f E 3. 

We define the operators [a]; on terms and atoms as the obvious extensions of the operators 
already defined. 

The definition the frame I?r3(Z) (definition 14.3 can be generalized to e(~ ,  y)  for an in- 
terpretation y,  and the topology and entailment relations (definitions 14.4 and 14.5) can also 
be parameterized on interpretations, as can the various operators used in the declarative and 
proof-tree semantics of sections 14.3 and 14.4. 

If g is an interpretation morphism from yl to yz then we extend g to  map fi3(T., yl) to  

fi3(1,ya) by 

1. g ( f  0 H V) = (f H g(v)) for (f o ++ v)  E S B ~ ( Z ,  and 

2. g(u A v) -. g(u) A g(v), and 

Application Sequences 

We define application sequences to  represent the particular solutions to  a recursive function 
definition: that is, the maximal paths in the proof tree. 



Definition 14.10: Suppose Pr is a function definition program. A application sequence for 
Pr and an instance Z is a sequence (Al,  ol), . . . , (A,, on) where A; = (f;(x)-el += a;) E Pr 
and o; E gCft. 

An application sequence (Al,  ol), . . . , (A,, on) is said to be valid for an interpretation y if 
there is a sequence of opens, uo,. . . , u, E F ~ ( z ,  y )  such that uo = T, and for i = 1,. . . , n, 
Rely (u;-l, A;, 0;) # 0 and u; E Apply~r(~ ; - l ,  A;, 0;). 

An application sequence S is said to be maximal  for an interpretation y iff S is valid for y 
and there is no (A, o) such that S, (A, o) is valid for y . rn 

Lemma 14.7: If (Al, ol), . . . , (A,, on) is an application sequence for P r  and Z which is valid 
for some interpretation y , then there exists a sequence (A,+l, o,+l), . . . , (A,, om) such that 
(A1, ol), . . . , (A,, om) is an application sequence for Pr and Z which is maximal for y. rn 

It follows that,  for any program Pr, instance Z and interpretation y,  there are only finitely 
many application sequences for Pr and Z that are valid for y. We write AppSeq(Pr,Z, y) for 
the set of application sequences which are maximal for y. 

If (A1, ol), . . . , (A,, on) is a valid application sequence for y then we define 

where uo, . . . , u, is the sequence of opens such that uo = T and u; =  apply$,(^;-^, A;, 0;) 
for i = 1,. . . , n .  

Proposition 14.8: For any program P r ,  instance Z and interpret ation y , 

where App,",(y) is the operator defined in section 14.4 parameterized in interpretations. rn 

Const ruc t ive  application sequences 

Finally we define constructive application sequences to  represent the constructive solutions to  
a a recursive function definition. 

Suppose S is an application sequence for program Pr and instance 1. Then S is said to  be 
construct ive iff, for every interpretation y,  S is a maximal valid application sequence for y,  
and for any two interpretations yl and yz and morphism g from yl to yz, g ( A ~ p l y 2 ~ ( S ) )  = 

APP~YE(S). 

It remains to show that constructive application sequences do in fact capture our intuition of 
the constructive solutions to a recursive function definition, and that they coincide with the 
solutions computed by the algorithm suggested in section 13. 



Part IV 

The Next Steps 

15 Conclusions and Further Work 

The central theme of the work proposed in this document is to study the transformation 
and querying of databases involving recursive or self-referential data-structures. In section 1 
we suggested that the most fundamental difference between databases and other areas of 
computation is that all values in a database arise from some known finite extents, and that 
using knowledge of these extents could yield major gains in the expressive power of systems 
for transforming and querying databases. 

To this end we proposed a data-model in section 4 in which the type system was extended 
with the notion of classes and the self-referential data-structures are represented by means 
of object identities. Such models have been proposed previously, for example in [2], and have 
been used as a basis for studying the power of query languages which allow for dynamic 
creation of object identities. In contrast to  this work, we have been concerned with the 
querying an manipulation of known static extents of objects. 

In the remainder of this section we will recall each of the three major parts of this proposal, 
dealing with database transformations, the observable properties of databases involving self- 
referential data structures, and evaluating recursive function definitions over finite domains of 
self-referential data-structures. For each part we will consider various possible additions and 
extensions to  the work which I believe to be important. This will include work that can or 
should be included in a completed version of this thesis, and also areas which unfortunately 
it may not be feasible to  include in this thesis, but which may provide nevertheless important 
future areas for research. There will undoubtedly be other directions for extending this work, 
perhaps ones which could be included in this thesis, which have not occured to  me, and any 
suggestions are welcome. 

15.1 Database transformations 

In part I we looked at the problem of database transformations. We argued that database 
transformations arise from a variety sources, such as schema evolutions, integrating fragments 
of heterogeneous databases, data entry utilities, multiple user views and so on. We also showed 
that there is an important interaction between database transformations and constraints, and 
therefore argued that it would be highly beneficial to have a single formalism in which we 



could express and reason about both transformations and constraints. Our collaborations 
with the Human Genome Center for Chromosome 22, at the University of Pennsylvania, 
have shown that such transformation tasks are common, and that there is a major need 
for tools to  help automate such transformations which is not met by established software or 
techniques. We propose a declarative language, WOL, for specifying database transformations 
and constraints, and a system for converting non-recursive specifications of transformations 
in WOL into an underlying database programming language for implementation. 

Currently implementations of WOL are limited to  a restricted form of the language which 
deals with nested relational data-structures and flat relational target databases. This imple- 
mentation generates code for the query language CPL which can be used to access a variety of 
biological data-sources. Trials of the system are underway at Human Genome Center a t  the 
University of Pennsylvania, for transforming data from GDB to the local laboratory notebook 
database, Chr22DB, and the formalism has been used in implementing transformations from 
GenBank (ASN1) data to local prolog databases. 

There are many ways in which this work can be extended, and further work which needs to  
be addressed in the short term. Short term issues include the following: 

Implementation for general recursive types: Section 6 described a method for com- 
puting the normal form of a transformation program involving general recursive types. 
This work represents an extension of the current implementations, and has not yet been 
implemented. 

Further trials: There are many applications of transformations arising from the Human 
Genome Project databases and other biological databases, and trials to  test the utility 
both of the current system and any future implementations for these transformation 
tasks are necessary. In addition I believe that the need for such transformations arises 
frequently in other application areas, and it would be desirable to  test these implemen- 
tations in other application areas. 

For the first of these, there are a number issues that need to  be resolved. Firstly, assuming we 
continue to  use CPL as a target language for implementing transformations, we need to  decide 
how best to  extend it in order to  represent some form of references or self-referential data- 
structures. Secondly, we need to decide to what extent we wish to reuse or extend existing 
implementation code, and to what extent we are willing to write the new implementation 
from scratch. In section 7 we indicated that there could be substantial improvements to  the 
efficiency of the normalization process gained by adopting a new internal representations for 
clauses. 

There are a number of potential sources of transformation trials in the Human Genome Center 



at the University of Pennsylvania, for example in implementing a planned reorganization of 
the local laboratory notebook database, Chr22DB, or in creating data-entry applications. 
In some existing work using the W O L  formalism to specify transformations between the 
ASNl GenBank database and a local Prolog database, variants in the ASNl database proved 
problematic. I would like to  rework these transformations since I believe they might be 
handled more effectively by composing two W O L  transformations and using intermediate 
data-structures for variants. 

Possible longer term directions for research directions and extensions to  this work include: 

Interactive schema manipulation tools: The interfaces to the transformation tools 
described thus far are largely syntactic. They require the user to  input transformation 
specifications in a high level language ( W O L ) .  It would be desirable to  have more user- 
friendly, graphically oriented tools for carrying out schema manipulations and generating 
W O L  transformation specifications. 

Automated derivation of constraints: In section 6 we argued that there is an impor- 
tant interplay between database transformations and constraints. It would be desirable 
to  automatically derive certain constraints from a transformation specification, for ex- 
ample to  derive a set of constraints on a source database which are necessary for the 
transformation to be valid. 

Implementing user views: The tools considered so far are oriented towards doing bulk 
one-time transformations on data. User views are also, in a sense, transformations, 
though they are generally implemented in a dynamic manner, transforming data as it 
is needed whenever the view is accessed. We would like to build tools for specifying and 
implementing user views using WOL.  

Translators for other languages: In certain situations it may be desirable to  convert 
transformations specified in W O L  into other database programming languages, rather 
than use CPL as an intermediary language. It may therefore be desirable to  implement 
translators from W O L  normal forms into a variety of DBPLs. 

Weakly Context-Sensitive Grammars as data sources: There is a great deal of data 
which is stored not in databases but in formatted text files. We would like to  extend 
W O L  so that we can use context-free or weakly context sensitive grammars to  parse 
such files and then transform the data into some more convenient format for querying 
and manipulation. 

The last of these items is particularly interesting. We were inspired by the work of Abiteboul, 
Cluet and Milo ([4]) in which they used context free grammars (CFGs) to specify the structure 



of a text file, and then queried against these CFGs. In this work they pushed queries down 
the parse tree of a text file in order to  evaluate them. We believe it may often be more useful 
to transform data from a text file into some database format, where general queries and 
database technology can be applied. Also we believe we can extend WOL to transform text 
files specified by mildly context sensitive grammars (MCSGs), of which indexed grammars are 
an example. MCSGs are more general than CFGs and may be useful for analysing data which 
can not be recognized using a CF, for example certain features of biological sequence data. 
These issues are currently being investigated by Wenfei Fan at the University of Pennsylvania. 

15.2 Observable properties of recursive data-structures 

In part I1 we undertook a more detailed examination of our data-model, and, in particular, 
examined the observable properties of the model in the presence of various different kinds of 
operators on object identities. It is essential to  understand these issues properly if we are 
to  properly understand and reason about the expressive power of the model and its query 
languages. 

We argued that the notion of object identity was an abstract one, and that it was natural to  
consider only values not involving object identities to be directly observable and to restrict 
the primitives available for comparing object identities. In section 11 we showed that, if we 
allow an equality predicate on object identities in a reasonably expressive query language, 
then observational indistinguishabilty of instances coincides with isomorphism. 

In section 9 we proposed an alternative data-model based on regular trees (a  "value based" 
based model in the terminology of [2 ] ) .  We showed that this model exactly captures the 
observable properties of the model of section 4 under the assumption that no comparison 
operators are available on identities. In section 10 we showed that observational equivalence 
of values in an instance, under these assumptions, corresponds to a bisimulation relation on 
values. We also showed that such a bisimulation relation can be computed in a query language 
which allows for recursion over the entire extents of a database, but can not be computed 
in time dependent only on the size of the values being compared. This indicated that the 
ability to  recurse over the finite extents of a database could potentially give a major gain in 
expressive power of queries, an idea that was explored further in part 111. It also showed that 
computing bisimulation was not a practical means of comparing object identities. 

In section 12 we argued that acyclic systems of keys give us a practical mechanism for compar- 
ing and referencing values without resorting to the intuitively dubious practice of providing a 
direct equality predicate on object identities. We showed that a using system of keys allows 
for a range of observational equivalence relations lying between isomorphism and bisimula- 
tion, and that observational equivalence under an acyclic system of keys can be computed in 



time dependent on the size and type of the values being compared, and not the size of the 
entire database. 

This part of the thesis is, I believe, complete as it stands, and there are no significant additions 
that I wish to make to  it at present. 

15.3 Recursive Functions with Finite Domains 

In part 111 we observed that our data-model allows for recursive type definitions through 
classes, and admits arbitrarily nested or cyclic data-structures as instances of such types. We 
argued that it is natural to use recursive function definitions in order to  express queries on such 
data-structures. In section 13 we showed that, intuitively, such recursive function definitions 
have meaning because of the finite nature of database instances, but that a conventional least- 
fixed-point approach to  providing a semantics for such function definitions would in general 
give undefined results. We also showed that a recursive function definition would, in general, 
admit many solutions in addition to the intuitively meaningful solutions, and argued that the 
meaningful solutions are those that could be formed constructively. 

In section 14 we provided two semantics for recursive function definitions, both in terms of 
a topological system of partial solutions. The first semantics is declarative in nature, while 
the second is more operational, and corresponds to the proof trees suggested in section 13. 
We showed that these two semantics coincide, indicating that the solutions to  such recursive 
function definitions, when interpreted declaratively, coincide exactly with the valid paths in 
the proof trees for those definitions. We also gave a denotational characterization of the 
"constructive" solutions to such function definitions. 

Part 111 is, I believe, the furthest part of this proposal from being completed. The most 
urgent requirement is for a good operational characterization of the "constructive" solutions. 
Such a characterization would have to be used to prove that the semantic characterization of 
constructive solutions of section 14.5 is correct, and that the algorithm suggested in section 13 
does indeed return all the constructive solutions for recursive function definition. 

In section 13 we also conjectured that the constructive solutions to any recursive function 
definitions could be computed by means of structural recursion over the finite extents of a 
database, rather than by general, unbounded depth recursion. In fact I have some results 
showing that this is the case. However I believe that the validity of these results is dependent 
on first finding a satisfactory operational characterization of constructive solutions, and have 
therefore omitted them for the time being. 

The minimum work that I feel is necessary in order to complete part I11 is therefore the 
following: 



a Construct an operational characterization of "constructive" solutions to  recursive func- 
tion definitions. 

Prove that constructive solutions may be evaluated using only structural recursion over 
the finite domains of the functions. 

Generalize these results for set valued functions: our function dejnition clauses defined 
in section 13.2 require that the complete value of a function on some element be given 
in the head of a clause. In order to  deal with set valued functions, we would also like 
to  allow for set-inclusion atoms in the head of a function definition clause. 

I believe that the last of these items can be addressed by enriching the frame defined in 
section 14.2 using a Hoare (lower power domain) partial ordering on sets. Such an extension 
is not in itself difficult. However care is required to check that the results of section 14 still 
go through in such an extended semantics. Also, there may be interesting correspondences 
between such a semantics and the inflationary semantics for Datalog with recursion. 

In the longer term, work that could be done to extend part I11 would include trial imple- 
mentations based on these ideas, and an examination of the mechanisms necessary to  convert 
function definitions given in a conventional functional programming style into the Horn clauses 
described in section 13.1. 



References 

[l] S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theoretical 
Computer Science, 62:3-38, 1988. 

[2] S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. In Proceed- 
ings of ACM SIGMOD Conference on Management of Data, pages 159-173, Portland, 
Oregon, 1989. 

[3] Serge Abiteboul and Catriel Beeri. On the power of languages for the manipulation of 
complex objects. In Proceedings of International Workshop on Theory and Applications 
of Nested Relations and Complex Objecls, Ilarmstadt, 1988. Also available as INRIA 
Technica.1 Report 846. 

[4] Serge Abiteboul, Sophie Cluet, and Tova. Milo. Querying and updating the file. In 
Proceedings of 19th International Conference on Very Large Databases, pages 73-84, 
Dublin, Ireland, 1993. 

[5] Serge Abiteboul and Richard Hull. IFO: A formal semantic database model. ACM 
Transactions on Database Systems, 12(4):525-565, December 1987. 

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J .  Lipman. Basic local alignment 
search tool. Journal of Molectilar Biology, 215:403-4 10, 1990. 

[7] F. Bancilhon. Object-oriented database systems. In Proceedings of 7th ACM Symposium 
on Principles of Database Systems, pages 152-162, Los Angeles, California, 1988. 

[8] W.C. Barker, D.G. George, L.T. Hunt, and J.S. Garavelli. The PIR protein sequence 
database. Nucleic Acids Research, 19:2231-2236, 1991. 

[9] C. Batini, M. Lenzerini, and S. Navathe. A compa,rative anaaysis of methodologies for 
dakabase schema integration. ACh4 Computing Surveys, 18(4):323-364, December 1986. 

[ lo]  V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structliral recursion as a query lan- 
guage. In Proceedings o j  3rd International IVorkshop on Database Programming Lan- 
guages, Naphlion, Greece, pages 9-19. Morgan Kaafmann, August 1991. Also available 
as UPenn Technical Rehort MS-CIS-92-17. 

[ll] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of pro- 
gramming with Sets/Bags/Lists. In LNCS 510: Proceedings of 18th International Col- 
loquium on Automata, Languages, and Programming, Madrid, Spain, July 1991, pages 
60-75. Springer Verlag, 1991. 



[12] Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Naturally embedded query 
languages. In J. Biskup and R. Hull, editors, LNCS 646: Proceedings of 4th Interna- 
tional Conference on Database Theory, Berlin, Germany, October, 1992, pages 140-154. 
Springer-Verlag, October 1992. Available as UPenn Technical Report MS-CIS-92-47. 

[13] Luca Cardelli. Types for data-oriented languages. In J. W. Schmidt, S. Ceri, and 
M. Missikoff, editors, LNCS 303: Advances in Database Technology - International 
Conference on Extending Database Technology, Venice, Italy, March 1988. Springer- 
Verlag, 1988. 

[14] Michael J .  Cinkosky, Jim Fickett, Debra Nelson, and Thomas G. Marr. The restructuring 
of GenBank. October 1987. 

[15] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 
25:95-169, 1983. 

[16] L. Damas and R. Milner. Principal type-schemes for functional programs. In Proceedings 
9th ACM Symposium on Principles of Programming Languages, pages 207-212, 1982. 

[17] S. B. Davidson, A. S. Kosky, and B. Ecknian. Facilitating transformations in a human 
genome project database. In Proc. Third International Conference on Information and 
Knowledge Management (CIKM), pages 423-432, December 1993. 

[18] Department of Energy. DOE Informatics Summit Meeting Report, April 1993. Available 
via gopher a t  gopher. gdb . org. 

[19] K. Hart, D. B. Searls, and G. C. Overton. SORTEZ: A relational translator for NCB19s 
ASN.l database. Computer Applications in the Biosciences, ???(???):???, ??? To appear. 
See also UPenn Technical Report CBIL-9203. 

[20] R. Hull and M. Yoshikawa. ILOG: Declarative creation and manipulation of object 
identifiers. In Proceedings of 16th International Conference on Very Large Data Bases, 
pages 455-468, 1990. 

[21] Richard Hull and Roger King. Semantic database modeling: Survey, applications, and 
research issues. ACM Computing Surveys, 19(3):201-260, September 1987. 

[22] Anthony S. Kosky. Modeling and merging database schemas. Technical Report MS- 
CIS-91-65/L&C 39, Department of Computer and Information Science, University of 
Pennsylvania, 1991. 

[23] R. J. Miller, Y. E. Ioannidis, and R Ramakrishnan. The use of information capacity 
in schema integration and translation. In Proc. 19th International VLDB Conference, 
pages 120-133, August 1993. 



[24] R. J .  Miller, Y. E. Ioannidis, and R Ramakrishnan. Schema equivalence in heterogeneous 
systems: Bridging theory and practice. Information Systems, 19, 1994. 

[25] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT 
Press, 1990. 

[26] A. Motro and P. Buneman. Constructing superviews. In Proceedings of ACM SIGMOD 
Conference on Management of Data, 1981. 

[27] G. Christian Overton, Jeffery Aaronson, Jurgen Haas, and Julie Adams. QGB: A system 
for querying sequence database fields and features. Computational Biology, 1994. To 
appear. 

[28] P.L. Pearson. The genome data base (GDB), a human genome mapping repository. 
Nucleic Acids Research, 19:2237-2239, 1991. 

[29] William R. Pearson. Rapid and sensitive sequence comparison with FASTP and FASTA. 
Proc. Natl. Acad. Sci. U.S.A., 85:2444-2448, 1990. 

[30] Gordon D. Plotkin. Lambda-definability in the full type hierarchy. In J.P. Seldin and 
J.R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus 
and Formalism, pages 363-373. Academic Press, 1980. 

[31] J .  Reynolds. Three approaches t o  type structure. In Advanced Seminar on the Role of 
Semantics in Software Development, Berlin, 198.5. 

[32] John F .  Roddick. Schema evolution in database systems - An annotated bibliography. 
SIGMOD Record, 21(4):35-40, December 1992. 

[33] A. Sheth, J .  Larson, J. Cornellio, and S. Navethe. A tool for integrating conceptual 
schemas and user views. In Proceedings of 4th International Conference on Data Engi- 
neering, pages 176-183, 1988. 

[34] J .  Smith, P. Bernstein, U. Dayal, N. Goodman, T. Landers, K. Lin, and E. Wong. 
Multibase - Integrating heterogeneous distributed database systems. In Proceedings of 
AFIPS, pages 487-499, 1981. 

[35] Ernest Szeto and Victor M. Markowitz. Erdraw 4.0: A graphical editor for ex- 
tended entity-relationship schemas. reference manual. Technical Report LBL-PUB-3084, 
Lawrence Berkeley Laboritory, Berkeley, California, 1993. 

[36] Jeffrey D. Ullman. Principles of Database and Knowledgebase Systems I. Computer 
Science Press, Rockville, MD 20850, 1989. 



[37] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming 
language. Journal of the ACM, 23(4):733-742, 1976. 

[38] Steven Vickers. Topology via Logic, volume 5 of Cambridge Tracts in Theoretical Com- 
puter Science. Cambridge University Press, 1989. 

[39] Philip Wadler. Comprehending monads. Mathematical Structures in Computer Science, 
2:461-493, 1992. 

[40] S. Widjojo, R. Hull, and D. S. Wile. A specificational approach to  merging persistent ob- 
ject bases. In A1 Dearle, Gail Shaw, and Stanley Zdonik, editors, Implementing Persistent 
Object Bases. Morgan Kaufmann, December 1990. 

[41] Limsoon Wong. Querying Nested Collections. PhD thesis, Department of Computer and 
Information Science, University of Pennsylvania, Philadelphia, PA 19104, August 1994. 
Available as University of Pennsylvania IRCS Report 94-09. 


	Types With Extents: On Transforming and Querying Self-Referential Data-Structures (Dissertation Proposal)
	Recommended Citation

	Types With Extents: On Transforming and Querying Self-Referential Data-Structures (Dissertation Proposal)
	Abstract
	Comments

	tmp.1183140521.pdf.EKawy

