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Conjunctive queries and mappings with unequalities

Grigoris Karvounarakis Val Tannen
Computer and Information Science Department

University of Pennsylvania

{gkarvoun,val}@cis.upenn.edu

Abstract

We study conjunctive queries with unequalities (x 6= y) and we identify cases when query containment
can still be characterized by the existence of homomorphisms. We also identify a class of GLAV-like
database schema mappings with unequalities, for which the chase theorem holds, and thus data exchange
has the same complexity as for GLAV mappings. Finally, we define a notion of consistency and provide
an algorithm to check whether a set of mappings is consistent.

1 Introduction

Containment of queries in general or under dependencies is an important problem that has been studied
extensively in database research. Statements of conjunctive query containment are themselves related to
very general database dependencies and to schema mappings (GLAV). The applications include query opti-
mization, data integration, and data exchange.

The chase procedure gives an algorithm for testing containment of conjunctive queries under certain
classes of depedencies [10, 11]. Moreover, for GLAV schema mappings the chase can also be used to solve
the problem of data exchange [11].

The results we just mentioned assume conjunctions of positive atoms in the queries, dependencies and
mappings and the corresponding algorithms have reasonable complexity (for fixed schemas). However, it is
known that the introduction of negation or inequalities (i.e., <,≤) makes these problems harder [7, 18].

In this paper, we explore some extensions of conjunctive queries, dependencies and GLAV mappings for
which the containment test and the chase procedure can be performed without increased complexity. The
negative atoms whose addition we study are unequalities, i.e., atoms of the form t1 6= t2. In particular,
we show that with certain limited use of unequalities in queries and mappings we can use same or slight
extensions (without an increase in complexity) of the techniques used for conjunctive queries and GLAV
mappings to answer such questions.

For dependencies/mappings this is the case of the class of unequality generating dependencies (unegds),
which are dependencies whose body is the body of a conjunctive query and their head is a (conjunction
of) unequalities. Using such dependencies, one can specify some interesting constraints; e.g. in a schema
containing employees and managers of a company, one can use an unegd to ensure that no employee is also
listed as a manager:

∀x, y Employee(x) ∧Manager(y) → x 6= y

Moreover, in a collaborative data sharing system (CDSS) [14], which includes data exchange in a peer-to-peer
setting it may be desirable to express the fact that the contents of two different peers do not overlap (e.g.
such information may be useful for optimization):

∀x, y P1(x) ∧ P2(y) → x 6= y

In such settings, participants can independently add mappings between their schema and other peers, when
they join. When the mappings involve unequalities (or just constants) this can lead to set of mappings that
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cannot be satisfied (i.e., no data exchange solution exists, regardless of what data each peer contributes).
We define the notion of consistency of a set of tgds, egds and unegds and propose an algorithm to test it.
Related questions were studied in the context of data quality and data cleaning by [5, 6].

2 Tableaux with unequalities

We extend the definition of a valuation to accomodate unequalities as follows:

Definition 2.1 If T is a tableau with unequalities and I an instance, a 6=-valuation for T in I is a function
β : var(T ) −→ ID. We extend β to map any constant to itself. Moreover, we say that that the 6=-valuation
β satisfies T if

• for any atom R(e) ∈ T the relation RI contains β(e), and

• for any atom e = e′ ∈ T we have β(e) = β(e′).

• for any atom e 6= e′ ∈ T we have β(e) 6= β(e′).

Essentially, the difference between valuations and 6=-valuations above is the last condition, which defines
how unequality atoms can be satisfied. In the rest of this paper, we use the term “valuation” to refer both
to common valuations and to 6=-valuations (and it is clear from the context whether they have to satisfy
unequality atoms or not).

Observe that the introduction of unequalities in a tableau gives rise to another way in which a tableau
can be unsatisfiable (compared to tableaux without unequalities, which can only be unsatisfieable if they
equate distinct constants):

Proposition 2.2 A tableau T with unequalities is unsatisfiable iff:

• either T ` c1 = c2 for distinct constants c1, c2

• or T ` x 6= y and T ` x = y, where x, y can be variables or constants.

The definition of a homomorphism of queries was extended in [10] to that of a 6=-homomorphism of
queries with unequalities as follows:

Definition 2.3 Given two conjunctive queries q = 〈u, T 〉 and q′ = 〈u′, T ′ 〉 a 6=-homomorphism h : q′ −→
q is a mapping h : var(T ′) −→ var(T ) ∪ ID, extended to map any constant to itself, such that:

• for any atom R(e′) ∈ T ′ we have T ` R(h(e′)),

• for any atom e′1 = e′2 ∈ T ′ we have T ` h(e′1) = h(e′2), and

• for any atom e′1 6= e′2 ∈ T ′ we have T ` h(e′1) 6= h(e′2), and

• T ` h(u′) = u

In the rest of this paper, we use the term “homomorphism” to refer both to common homomorphisms
and to 6=-homomorphisms (and it is clear from the context whether they have to satisfy unequality atoms
or not).

To every satisfiable tableau T we associate a database instance Inst(T ) as follows. Let var(T ) be the
set of variables in T , and adom(T ) be the active domain of T , i.e., the set of constants occuring in it. Then, T
(or, more precisely, the set of equality atoms in T ) determines an equivalence relation on var(T )∪ adom(T ).
Specifically, e is equivalent to e′ iff T ` e = e′. Let us denote by ê the equivalence class of the variable or
constant e. Because T is satisfiable, such an equivalence class can contain at most one constant. We are
going to define Inst(T ) by interpreting the relation symbols as sets of tuples of such equivalence classes.

2



Now for any relation symbol R we define

ê ∈ RInst(T ) iff T ` R(e)

If ê = ê′ then T ` R(e) iff T ` R(e′) hence this definition does not depend on the choice of representatives
from the equivalence classes.

Conversely, to every database instance I we associate a tableau Tab(I) as follows. The variables of the
tableau are the elements of adom(I) and the tableau consists of all the relational atoms R(a) such that
RI(a) holds in I. Moreover, for every pair of distinct constants a, b in the instance, the tableau contains the
unequality a 6= b. Thus, this tableau contains |I| relational and |adom(I)|2 unequality atoms.

3 Containment of CQs with unequalities

3.1 Cases in which the homomorphism criterion holds

The homomorphism theorem [1] gives the existence of a homomorphism as the decidable criterion for con-
junctive query containment. In this section we show that the homomorphism criterion holds if the contained
query has unequalities but the containing does not. In the next section, we will show that it fails to hold if
the containing query has unequalities, unless the contained one is “complete” wrt unequalities .

Theorem 3.1 1. Let q ∈ CQ6= and q′ ∈ CQ. Then:

q v q′ iff there is a homomorphism from q′ to q

2. Let q ∈ CQ6= s.t. q is “complete” wrt equalities and unequalities (see lemma 3.3 and footnote 1) and
q′ ∈ CQ6=. Then:

q v q′ iff there is a homomorphism from q′ to q

Proof

1. Let q = 〈u, T 〉 and q′ = 〈u′, T ′ 〉.
(⇒) First assume q v q′. It is easy to see that û ∈ q(Inst(T )). For the sake of completeness, we show
that β(x) = x̂ is a valuation that satisfies T over Inst(T ), s.t. β(u) = û (by definition).

• Relational atoms:
R(e) ∈ T
⇒ ê ∈ RInst(T ) by the definition of Inst(T )
⇒ β(e) ∈ RInst(T ) by the definition of β

• Equality atoms:
e1 = e2 ∈ T
⇒ e1 ≡ e2 by the definition of the equivalence classes of adom(Inst(T ))
⇒ ê1 = ê2 by the definition of Inst(T )
⇒ β(e1) = β(e2) by the definition of β

• Non-equality atoms:
Let e1 6= e2 ∈ T (1). Suppose, bwoc, that ê1 = ê2. By the definition of Inst(T ), this means
that T ` e1 = e2, which, together with (1), means that T is unsatisfiable. Thus, ê1 6= ê2, i.e.,
β(e1) 6= β(e2).
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Thus, û ∈ q(Inst(T )). Since q v q′, this implies û ∈ q′(Inst(T )). Finally, by lemma 3.3(part 1) there
is a homomorphism from q′ to q.

(⇐) Conversely, assume that h : q′ −→ q is a homomorphism. We wish to show that for any instance
and any a ∈ adom(I) (this is sufficient because conjunctive queries are domain-independent) we have
a ∈ q(I) ⇒ a ∈ q′(I).
By lemma 3.3 (part 2) if a ∈ q(I) then there is a homomorphism g : q −→ 〈a,Tab(I) 〉. But homomor-
phisms compose so g ◦ h : q′ −→ 〈a,Tab(I) 〉 is also a homomorphism. Again by lemma 3.3 (part 2)
we have a ∈ q′(I).

2. (⇒) First assume q v q′. As in the proof of (part 1), it is easy to see that û ∈ q(Inst(T )). Since q v q′,
this implies û ∈ q′(Inst(T )). Finally, by lemma 3.3 (part 2) there is a homomorphism from q′ to q.

(⇐) Conversely, assume that h : q′ −→ q is a homomorphism. We wish to show that for any instance
and any a ∈ adom(I) (this is sufficient because conjunctive queries are domain-independent) we have
a ∈ q(I) ⇒ a ∈ q′(I).
By lemma 3.3 (part 2) if a ∈ q(I) then there is a homomorphism g : q −→ 〈a,Tab(I) 〉. But homomor-
phisms compose so g ◦ h : q′ −→ 〈a,Tab(I) 〉 is also a homomorphism. Again by lemma 3.3 (part 2)
we have a ∈ q′(I).

These results can also be proved as a corollary of Lemma 3.5 in [17].
2

Corollary 3.2 1. q v q′ where q ∈ CQ6= and q′ ∈ CQ is NP-complete.

2. q v q′ where q ∈ CQ6= is “complete” wrt equalities and unequalities and q′ ∈ CQ6= is NP-complete.
Proof For both parts, an NP algorithm is implied by the homomorphism theorem. The problem is

known to be NP-hard, even for a pair of CQs without unequalities.
2

The proof of theorem 3.1 follows from the following lemma, which also contains the definition of “com-
pleteness”.

Lemma 3.3 1. Let q = 〈u, T 〉 ∈ CQ6=, where T is satisfiable, and q′ = 〈u, T ′ 〉 ∈ CQ. Then, there is a
homomorphism from q′ to q iff û ∈ q′(Inst(T )).

2. Let q = 〈u, T 〉 ∈ CQ6=, where T is satisfiable and ∀x, y ∈ var(T ) ∪ Const, either T ` x = y or
T ` x 6= y1. Let q′ = 〈u, T ′ 〉 ∈ CQ6=. Then, there is a homomorphism from q′ to q iff û ∈ q′(Inst(T )).

3. Let q be a conjunctive query, I an instance and a ∈ adom(I). Then a ∈ q(I) iff there is a homomor-
phism from q to 〈a,Tab(I) 〉.

Proof

1. (⇒) Let h : T ′ −→ T be a tableau homomorphism. Define β(x) = ĥ(x). We show that β satisfies T ′

over Inst(T ) (note that T ′ only has relational and equality atoms).

• Relational atoms:
R(e′) ∈ T ′

⇒ T ` R(h(e′)) by the definition of tableau homomorphism (2.3)
⇒ ĥ(e′) ∈ RInst(T ) by the definition of Inst(T )
⇒ β(e′) ∈ RInst(T )

1Henceforth called “completeness” condition
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• Equality atoms:
e′1 = e′2 ∈ T ′

⇒ T ` h(e′1) = h(e′2) by the definition of tableau homomorphism (2.3)
⇒ ĥ(e′1) = ĥ(e′2) by the definition of Inst(T )
⇒ β(e′1) = β(e′2)

Moreover, β(u′) = ĥ(u′) = û. It follows that û ∈ q′(Inst(T )).

(⇐)

Let β : var(T ′) −→ adom(Inst(T )) be a valuation that satisfies T ′ over Inst(T ), s.t., β(u′) = û. Define
h(x) = pick an element of the eq.class β(x). We show that h is a tableau homomorphism from T ′ to
T (again, T ′ only has relational and equality atoms).

• Relational atoms:
R(e′) ∈ T ′

⇒ β(e′) ∈ RInst(T ) since β satisfies T ′ over Inst(T )
⇒ ∃ e1 ∈ β(e′), R(e1) ∈ T by the definition of Inst(T )
⇒ ∀ e2 ∈ β(e′), T ` R(e2) by the definition of Inst(T )
⇒ T ` R(h(e′))

• Equality atoms:
e′1 = e′2 ∈ T ′

⇒ β(e′1) = β(e′2) since β satisfies T ′ over Inst(T )
⇒ h(e′1) = h(e′2) they are the same variable in var(T ),

since we pick the same element from the same eq.class
⇒ T ` h(e′1) = h(e′2) otherwise, T ` x 6= x for some x ∈ var(T ) ∪ C, and thus

T would be unsatisfiable, which is a contradiction

• Output tuple:
β(u′) = û since β satisfies T ′ over Inst(T )
⇒ ∀ u1 ∈ β(u′), T ` u1 = u by the definition of Inst(T )
⇒ T ` h(u′) = u

2. (⇒) Let h : T ′ −→ T be a tableau homomorphism. Define β(x) = ĥ(x). We show that β satisfies T ′

over Inst(T ) (note that T ′ only has relational and equality atoms).

• Relational atoms: as in (part 1).

• Equality atoms: as in (part 1).

• Non-equality atoms:
e′1 6= e′2 ∈ T ′

⇒ T ` h(e′1) 6= h(e′2) by the definition of tableau homomorphism (2.3)
⇒ ĥ(e′1) 6= ĥ(e′2) by the definition of Inst(T )
⇒ β(e′1) 6= β(e′2)

Moreover, β(u′) = ĥ(u′) = û. It follows that û ∈ q′(Inst(T )).

(⇐)

Let β : var(T ′) −→ adom(Inst(T )) be a valuation that satisfies T ′ over Inst(T ), s.t., β(u′) = û. Define
h(x) = pick an element of the eq.class β(x). We show that h is a tableau homomorphism from T ′ to
T (again, T ′ only has relational and equality atoms).

• Relational atoms: as in (part 1).
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• Equality atoms: as in (part 1).
• Non-equality atoms:

e′1 6= e′2 ∈ T ′

⇒ β(e′1) 6= β(e′2) since β satisfies T ′ over Inst(T )
⇒ h(e′1) 6= h(e′2) since they are picked from different eq. classes
⇒ T ` h(e′1) 6= h(e′2) otherwise, by our assumption about “completeness” of T ,

T ` h(e′1) = h(e′2), which together with h(e′1) 6= h(e′2) implies that
T is unsatisfiable, which is a contradiction

• Output tuple: as in (part 1).

3. This part follows from (part 2) once we observe that, by construction, Tab(I) satisfies the “complete-
ness” condition and, moreover, since Tab(I) has no equality atoms, there is an isomorphism between
Inst(Tab(I)) and I such that â corresponds to a.

2

3.2 ... and another in which it does not

The situation wrt testing for containment changes dramatically if the containing query has unequality atoms.
For example, consider the boolean queries (adapted from an example in [16]):

q() : − R(x, y), R(y, z), x 6= z
q′() : − R(x, y), x 6= y

Clearly, q logically implies q′ and thus is contained in it, but there is no homomorphism from q′ to q. As
a result, the homomorphism theorem does not apply in this case. Instead, the following result was proved
in [18], as a special case of the more general theorem about containment of CQs with inequalities (<).

Theorem 3.4 (from [18]) Let q ∈ CQ6= and q′ ∈ CQ6=. Then, testing whether q v q′ is ΠP
2 -complete.

In fact, van der Meyden shows that containment is ΠP
2 -complete even for monadic conjunctive queries

(theorem 7.1 in [18]) A ΠP
2 algorithm that employs the chase is outlined in [7].

4 Containment under dependencies with unequalities and the chase

Dependencies are first-order sentences of a particular form (see below). This form is the result of successive
generalizations of various definitions of integrity constraints, i.e., assertions that database instances are
expected to satisfy in order to agree with the semantic intuition of the db designers.

Definition 4.1 A tuple-generating dependency (tgd) is a sentence of the form

(d) ∀x (B → ∃yC)

where B and C are tableaux, which are “read” as the conjunction of their elements, and where x ⊆ var(B)
and y ⊆ var(C). Because (d) is a sentence, we must also have var(B) ⊆ x and var(C) ⊆ x ∪ y.

Definition 4.2 An (un)equality-generating dependency ((un)egd) is a sentence of the form

(d) ∀x (B → ∃yC)

where B is a conjunction of relational atoms and C is a conjunction of (un)egds, and where x ⊆ var(B) and
y ⊆ var(C). Because (d) is a sentence, we must also have var(B) ⊆ x and var(C) ⊆ x ∪ y.
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The chase procedure can be used to prove containment of CQs under a set of tgds and egds. We now show
that it can also be used to prove containment of CQs (and in some cases CQ6=s) under a set of tgds, egds and
unegds. In the case of dependencies with unequalities in the body, we show that the chase theorem fails, even
for queries without unequalities. However, an extension of the chase (with higher data complexity) proposed
by [7], can be used to prove containment of CQs (with or without unequalities) under such dependencies.

4.1 Dependencies with unequalities in the head

To define the chase step for arbitrary queries and dependencies we need to talk about homomorphisms of
tableaux. This is the same as what was defined earlier as homomorphism of queries, except that we do not
need the fourth condition (that relates the output variables).

Definition 4.3 Consider the dependency
d

def= ∀x (B → ∃yC) where B is a tableau with equalities and C is either a tableau without equalities or
unequalities (i.e., a tgd) or a conjunction of equalities (egd) or unequalities (unegd). Let T be a tableau with
equalities and unequalities. We say that the chase with d is applicable to T if there exists a homomorphism
h : B −→ T that cannot be extended to B ∪C, i.e., there is no homomorphism h′ : B ∪C −→ T that is equal
to h on var(B)2. When the chase is applicable, the result of one step of chase of T with d is the tableau
T ′ def= T ∪ C[x := h(x)] and we write T d→ T ′.

In defining the chase result, we assume that y is disjoint from var(T ). If this is not the case we rename
the bound variables y. For example, we will certainly need such renaming in a sequence of multiple chase
steps with the same dependency.

Recall our earlier construction that associates to every satisfiable tableau T a database instance Inst(T ).

Lemma 4.4 Let d be a tgd, egd or unegd. If the chase with d is not applicable to a satisfiable tableau T
then Inst(T ) |= d.

Proof We prove the contrapositive. Suppose Inst(T ) 6|= d. Then, there exists a valuation β : x −→
adom(Inst(T )) that satisfies the atoms in B over Inst(T ) and such that there is no extension β′ : x ∪
y −→ adom(Inst(T )) that additionally satisfies the atoms in C. Let q′ = 〈 (), B 〉, then true ∈ q′(Inst(T )).
By lemma 3.3.1, since B has no unequalities, there is a homomorphism of tableaux h : B −→ T . This
homomorphism cannot be extended to B ∪ C, because the extension would yield an extension of β that
satisfies C. It follows that the chase with d is applicable to T .

2

Definition 4.5 We define the chase on conjunctive queries using their underlying tableaux: if q def= (x, T )
and T d→ T ′ then q

d→ q′ where q′ def= (x, T ′).

Lemma 4.6 If q d→ q′ then d |= q ≡ q′.

Proof Since the tableau of q is a subset of the tableau of q′ we have a trivial homomorphism q −→ q′

hence q′ v q.
It remains to prove that if I is an instance such that I |= d then q(I) ⊆ q′(I). Let d = ∀x (B → ∃yC),

q = (u, T ), and q′ = (u, T ′). Let h : B −→ T be the homomorphism used in the chase step hence
T ′ = T ∪C[x := h(x)]. Since the output tuple is the same and T ⊆ T ′ it suffices to show that any valuation

2for egds and unegds this just means that h does not satisfy the condition in the head of the dependency
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in I that satisfies T can be extended to a valuation that satisfies T ′. Let β : T −→ I be such a valuation.
It follows that β ◦ h : B −→ I satisfies B in I and since I |= d, β ◦ h can be extended to a valuation γ that
satisfies C in I. Now define β′ : C[x := h(x)] −→ I as follows: if z ∈ y then β′(z) def= γ(z) but if z ∈ h(x)
then β′(z) def= β(z).

Thus β′ extends β and what’s left is to check that β′ satisfies T ′. Clearly β′ satisfies the atoms that are also
in T . Now suppose, (keeping the notation simple) that R(h(x), y) is an atom in C[x := h(x)] obtained from
the atom R(x, y) in C, where x ∈ x, y ∈ y. We have (β′(h(x)), β′(y)) = (β(h(x)), γ(y)) = (γ(x)), γ(y)) ∈ RI

because γ satisfies C. For equality and unequality atoms, C only contains variables in x and it suffices to
define β′(x) def= β(x). For equality, suppose d : ∀x φ(x) → x1 = x2. Then, β′ ◦h is a homomorphism φ −→ I
and β′ ◦h(x1) = β ◦h(x1) = β ◦h(x2) = β′ ◦h(x2) and thus β′(h(x1)) = β′(h(x2)). The proof for unequalities
is identical. Thus, for every I |= d and every valuation β T −→ I, β is also a valuation T ′ −→ I and as a
result, u ∈ q(I) implies u ∈ q′(I), i.e., q(I) ⊆ q′(I).

2

Corollary 4.7 If q d→ q′ and q′ is unsatisfiable, then d |= (q is unsatisfiable)3.

Definition 4.8 Let q be a conjunctive query and D a set of dependencies. A terminating chase sequence of
the query q with dependencies from D is a sequence of chase steps

q
d1→ q1

d2→ q2 · · ·
dn→ qn

such that d1, . . . , dn ∈ D and such that no chase with dependencies from D is applicable to qn.

Corollary 4.9 (of lemma 4.6) If q d1→ q1
d2→ q2 · · ·

dn→ qn such that d1, . . . , dn ∈ D is a terminating chase

sequence, then D |= q ≡ qn

In general, the chase with an arbitrary set of dependencies is not guaranteed to terminate; however, [11]
and [7] have identified weak acyclicity as a sufficient condition of a set of dependencies, to guarantee termi-
nation of any chase sequence with that set. As a result, there is a decision procedure for containment of
queries under weakly acyclic set of dependencies, employing the chase, as the following theorem shows:

Theorem 4.10 Let q ∈ CQ6=, q′ ∈ CQ and let D be a set of egds, unegds and weakly acyclic tgds. Let qn
be the last chase result in a terminating chase sequence of q with D. Then

D |= q v q′ iff qn v q′

Proof By corollary 4.9 D |= q ≡ qn, so if qn v q′ it also follows that D |= q v q′.
For the other implication, let Tn be the tableau underlying qn and let In

def= Inst(Tn). If Tn is unsatisfiable,
qn returns the empty set on all inputs, hence it is contained in any query, in particular q′. Assume that Tn

is satisfiable. By lemma 4.4 above, In |= D; hence In |= q v q′ or q(In) ⊆ q′(In), because D |= q v q′.
Now let q def= (u, T ) and q′

def= (u′, T ′). Note that T ⊆ Tn because each chase step just adds atoms. So
there is a mapping σ : var(T ) −→ adom(In) that associates each variable to its equivalence class, σ(x) = x̂.
It follows (by lemma 3.3 (part 1)) that û = σ(u) is in q(In), and therefore also in q′(In). Hence there must
exist a mapping β : var(T ′) −→ adom(In) such that β(u′) = û. It is now straightforward to show that we
have a homomorphism q′ −→ qn.

2

3Since in the proof above we did not assume anywhere that q′ was satisfiable
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Corollary 4.11 Let q ∈ CQ6=, q′ ∈ CQ and D a set of egds, unegds and weakly acyclic tgds. Let qn be the
last chase result in a terminating chase sequence of q with D. Then

D |= q v q′ iff there is a homomorphism from q′ to qn

The same method can be used when the containing query is complete wrt equalities and unequalities

Corollary 4.12 Let q ∈ CQ6=, q′ ∈ CQ6=, D a set of egds, unegds and weakly acyclic tgds and qn be the
last chase result in a terminating chase sequence of q with D. If qn is complete wrt unequalities, then

D |= q v q′ iff there is a homomorphism from q′ to qn

4.2 Satisfiability of conjunctive queries with unequalities under dependencies

A simple, but practically interesting, application of theorem 4.10 is the following: we say that q is unsatisfiable
under D if for all I |= D, q(I) = ∅.

Corollary 4.13 Let q ∈ CQ6=, q′ ∈ CQ and let D be a set of egds, unegds and weakly acyclic tgds. Let
qn be the last chase result in a terminating chase sequence of q with D. Then q is unsatisfiable under D iff
qn =⊥.

Proof Clearly, q is unsatisfiable under D iff D |= q v q∅, where q∅ is the unsatisfiable/empty query
(i.e., for all I, q∅(I) = ∅).

By theorem 4.10, D |= q v q∅ iff qn v q∅ iff qn =⊥.
2

In fact, if q is satisfiable under D, we can strengthen the statements of Theorem 4.10 and Corollary 4.11:
one only needs to chase q with the tgds and egds in D (i.e., ignoring the unegds), since the containing query
doesn’t have any unequalities, so any containment mapping from q′ to q would have to map relational atoms
of q′ to relational atoms of the result of the chase (i.e., the existence or not of unequality atoms in the result
of the chase does not affect the existence of a homomorphism).

Theorem 4.14 4 Let q ∈ CQ6=, q′ ∈ CQ, D be a set of egds, unegds and weakly acyclic tgds and D+ ⊆ D
a set of tgds and egds only. Let qn be the last chase result in a terminating chase sequence of q with D+.
Then D |= q v q′ iff

• either q is unsatisfiable under D

• or qn v q′ (and there is a hom. q′ to qn)

4This result is due to Alin Deutsch
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4.3 Dependencies with unequalities in the body

First, observe that lemma 4.4 does not hold for dependencies with unequalities in the body. In particular,
let T = R(x, y) and d = ∀x, y R(x, y) ∧ x 6= y → x = y. The chase with d is not applicable on T because
there is no unequality atom in T to which a 6= homomorphism could map the atom x 6= y in d. Hence, if
the lemma above would hold, Inst(T ) |= d. However, by the definition of Inst(T ), x̂ 6= ŷ and thus there is
a valuation h : var(d) −→ T - namely h(x) = x̂, h(y) = ŷ - that satisfies the body of d, but not its head.
Therefore, Inst(T ) 6|= d.

For a simple counterexample of theorem 4.10, let:

q(x, y) : −R(x, y)
d

def= ∀x, y R(x, y) ∧ x 6= y −→ x = y

d is only satisfied by the empty instance ∅ and instances where R(x, y) are such that x = y. It is easy
to see that for such instances, D |= q v q′, where q′(x, x) : −R(x, x). Observe that the chase on q is not
applicable with d, hence chased(q) = q. Suppose, bwoc, that theorem 4.10 holds, then q v q′. However,
there are instances, e.g., I = {R(a, b)}, in which q(I) 6⊆ q′(I), which is a contradiction.

Remark. From the result in [18], we know that containment of queries in CQ6= is ΠP
2 -hard, so obviously

containment of queries in CQ6= under dependencies (whether they have unequalities on the head or body or
both or not at all) is ΠP

2 -hard. However, it would be also interesting to know the complexity of containment of
CQs (without unequalities) under dependencies with unequalities in the body. The corresponding mappings
are also interesting: they are produced as quasi-inverses [12] of sets of tgds and egds. Such queries and
mappings are studied in [7, 8], where the authors propose techniques to deal with such dependencies, that
have however ΠP

2 complexity (see below). The lower bound for the case mentioned above seems to be open,
as it doesn’t follow directly from the lower bound in [18]. Nonetheless, we conjecture that the problem is
still ΠP

2 -hard.
In [7] the authors propose an extension to the chase technique that accommodates unequalities, as well as

negated relational atoms, in both the body and the head of the dependencies. To simplify the presentation
we just highlight the application of their theorem for unequalities:

Theorem 4.15 (from [7]) Let D be a weakly acyclic set of dependencies, q, q′ ∈ UCQ6= and d : ∀x, y true →
x = y ∨ x 6= y. Let qD = chaseD∪{d}(q). Then D |= q v q′ iff qD v q′.

Notice that, in the theorem above, the disjunctive chase [9] is used (because of the disjunction in d). As
a result, qD is a union of queries with unequalities, and qD v q′ iff each of these queries is contained in q′.
Moreover, it is easy to observe that all queries in qD satisfy the “completeness” condition in lemma 3.3 (part
2) (otherwise, the chase with d would be applicable), and thus the homomorphism theorem can be used to
check containment in q′, for each one of them. More precisely:

Corollary 4.16 D |= q v q′ iff ∀qi ∈ qD, there is a homomorphism q′ −→ qi

Observe that, the corollary above also gives a ΠP
2 algorithm for deciding containment between queries in

CQ6=: chase q with d and find a homomorphism from q′ into every query in the result of the chase.
Since dependencies with unequalities in the body are “unfriendly”, even for the fairly simple problem of

containment, in the rest of this paper we are going to investigate other problems, such as data exchange and
consistency, only for the case of dependencies with unequalities in the head, i.e., unegds.

5 Unegds and data exchange

In this section we discuss the problem computing solutions of the data exchange problem, for settings where
the mappings also include unegds, as well as query answering of CQs in such settings. In particular, we

10



want to extend the technique used in [11] in order to accomodate mappings that contain unegds without
increase in complexity 5. A small difficulty arises from the fact that the solution proposed in [11] involves
chasing instances to produce other instances that satisfy the mappings. Since traditional relational instances
only contain relational atoms (i.e., no unequalities), and the chase with unegds introduces such atoms, we
cannot express the output of a chase step as an instance. For this reason, in the case of data exchange with
unegds, the output of every step of the chase, as well as the whole data exchange algorithm, is a pair (K,C)
of a relational instance K and a conjunction of unequalities C, similar to the representation formalism of
g-tables [2]. Note that, this pair also forms a tableaux with unequalities, as the ones discussed above, and
as a result the properties of the chase that were proved in the previous section also apply in this case.

Finally, we say that there is a homomorphism h : (K,C) −→ J , where J is a database instance (no
unequalities) iff there is a valuation (as defined in section 2) that satisfies the tableau (K,C) over J .

5.1 Computing Universal Solutions

First, we extend a basic property of a chase step that was proved in [11] for a set of tgds and egds and is
used to prove that the chase produces a universal solution, for the case with unegds:

Lemma 5.1 Let (K1, C1)
d,hd−→ (K2, C2) be a chase step where C2 6=⊥6. Let K be an instance such that:

(i) K |= d (ii) there exists a homomorphism h1 : (K1, C1) −→ K.
Then there exists a homomorphism h2 : (K2, C2) −→ K.
Proof
We have three cases, according to the form of d.

1. d : ∀xφ(x) → ∃yψ(x,y): In this case, C2 = C1. By the definition of the chase step, hd : φ(x) −→ K1 is
a homomorphism. As a result, h1◦hd : φ(x) −→ K is also a homomorphism. SinceK |= d, h1◦hd can be
extended to a homomorphism h′ : φ(x)∧ψ(x,y) −→ K s.t. h′ is an extension of h1 ◦hd. Let Λy be the
labeled null introduced by the chase step for variable y. Define h2 as follows: h2(z) = h1(z), z ∈ var(K1)
and h2(Λy) = h′(y), y ∈ y. We need to show that h2 is a homomorphism from (K2, C1) to K. This is
obvious for facts and unequality atoms in (K2, C1) that also were in (K1, C1), so we only need to show
this for the new (relational) facts introduced by the chase step. Let T (x′,y′) be a fact in ψ(x,x), where
x′,y′ are subsets of the variables in x,y, respectively. Then, K2 contains a fact T (hd(x′),Λy′). By
the definition of h2, h2(T (hd(x′),Λy′)) = T (h2(hd(x′)), h2(Λy′)) = T (h′(x′), h′(y′)) = h′(T (x′,y′)).
Since h′ is a homomorphism φ ∧ ψ → K, it maps T (x′,y′) into a fact of K. Thus, we conclude that
h2(T (x′,y′)) is a fact of K, i.e., h2 is a homomorphism K2 −→ K.

2. d : ∀xφ(x) → x1 = x2: Again, C2 = C1 and h1 ◦ hd : φ(x) −→ K is a homomorphism. Define
h2 = h1. Since C2 = C1, h2 obviously satisfies the unequality atoms in C2. Moreover, since there
are no new facts in K2, the only way for h2 to not be a homomorphism from (K2, C1) −→ K is if h1

maps hd(x1) and hd(x2) to different constants or labeled nulls of K. However, this is not the case,
since K |= d and h1 ◦ hd is a homomorphism φ(x) −→ K implies that, h1 ◦ hd(x1) = h1 ◦ hd(x2) or
h1(hd(x1)) = h1(hd(x2)). Finally, h2 clearly respects C2 (by hypothesis, since h2 = h1 and C2 = C1)

3. d : ∀xφ(x) → x1 6= x2: In this case C2 = C1 ∧ hd(x1) 6= hd(x2), K2 = K1 and h1 ◦ hd : φ(x) −→ K
is a homomorphism. Again define h2 = h1. Since K2 = K1, h2 is obviously satisfies the relational
atoms of K2. Suppose, towards a contradiction, that h2 does not satisfy some unequality in C2. Since
h2 = h1 satisfies the unequalities in C1, this means that h2 does not satisfy hd(x1) 6= hd(x2), i.e.,
h2 ◦ hd(x1) = h2 ◦ hd(x2), which implies h1 ◦ hd(x1) = h1 ◦ hd(x2). However, since K |= d and
h1 ◦ hd : φ(x) −→ K is a homomorphism, h1 ◦ hd(x1) 6= h1 ◦ hd(x2), which is a contradiction.

2

5[8, 3] defined extended chase procedures for mappings with negation in both head and body (NDEDs), but its complexity
is higher

6i.e., C2 is satisfiable
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Then, the data exchange algorithm proposed in [11] can be extended as follows:

Theorem 5.2 Assume a data exchange setting where Σst is a set of tgds and Σt is a set of tgds, egds and
unegds.

1. Let 〈 (I, true), (J,C) 〉 be the result of some successful finite chase of 〈 (I, true), (∅, true) 〉 with Σst∪Σt.
Then (J,C) is a universal solution.

2. If there exists some failing finite chase of 〈 (I, true), (∅, true) 〉 with Σst ∪Σt, then there is no solution.

Proof
The following proof is a direct adaptation of the proof of [11] for the case of tgds and egds.

1. By lemma 4.4, we know that 〈 I, (J,C) 〉 |= Σst ∪ Σt. Since Σt only uses target relation symbols, it
follows that (J,C) |= Σt. Let J ′ be an arbitrary solution, i.e., 〈 I, J ′ 〉 |= Σst ∪ Σt. Since the identity
mapping id : 〈 I, (∅, true) 〉 −→ 〈 I, J ′ 〉 is a homomorphism, by applying lemma 5.1 inductively on the
chase sequence that led to 〈 I, (J,C) 〉, we obtain a homomorphism h : 〈 I, (J,C) 〉 −→ 〈 I, J ′ 〉 which is
also a homomorphism (J,C) −→ J ′. Thus, J is universal.

2. Let 〈 I, (Jk, Ck) 〉 d,hd−→⊥ be the failing chase step; in order for the chase to fail, d must be an egd or
unegd. In both cases, d ∈ Σt so 〈 I, J 〉 |= diffJ |= d. There are two cases:

• d : ∀x φ(x) → x1 = x2. There are two ways in which this chase step can fail:

(a) hd(x1) = c1 6= c2 = hd(x2), where c1, c2 are distinct constants. Suppose, bwoc, that there
is a J s.t. 〈 I, J 〉 |= Σst ∪ Σt. By induction and the lemma above (similarly with the
proof of (1)) there is a homomorphism h′ : (Jk, Ck) → J . Since homomorphisms compose,
h′ ◦ hd : φ → J is a homomorphism. Since 〈 I, J 〉 |= Σst ∪ Σt it follows that J |= d, hence
h′ ◦ hd(x1) = h′ ◦ hd(x2) ⇒ h′(c1) = h′(c2). Since homomorphisms are the identity on
constants, this implies c1 = c2, which is a contradiction.

(b) hd(x1) 6= hd(x2) ∈ Ck. Suppose, bwoc, that there is a J s.t. 〈 I, J 〉 |= Σst ∪ Σt. By
induction and the lemma above (similarly with the proof of (1)) there is a homomorphism
h′ : (Jk, Ck) → J . Since hd(x1) 6= hd(x2) ∈ Ck, this implies that h′(hd(x1) 6= h′(hd(x2)).
However, h′ ◦ hd : φ → J is a homomorphism and, since J |= d, h′ ◦ hd(x1) = h′ ◦ hd(x2),
which is a contradiction.

• d : ∀x φ(x) → x1 6= x2. For this step to fail, it must be the case that hd(x1) = hd(x2). Suppose,
bwoc, that there is a J s.t. 〈 I, J 〉 |= Σst ∪ Σt. By induction and the lemma above (similarly
with the proof of (1)) there is a homomorphism h′ : (Jk, Ck) → J . Since homomorphisms
compose, h′ ◦ hd : φ → J is a homomorphism. Since J |= d, h′ ◦ hd(x1) 6= h′ ◦ hd(x2) or
h′(hd(x1)) 6= h′(hd(x2)), which is a contradiction, since h′ is a function and hd(x1) = hd(x2).

2

Note that the universal “solution” computed by the algorithm above is not an actual instance; instead it
is a representation of several possible instances that satisfy the mapping and one can compute many actual
solutions from it, by finding assignments of values to the labeled nulls that satisfy the unequalities in C.

5.2 Query Answering

In [11] the authors showed that if J is a universal solution in a data exchange setting, certain(q, I) = q(J)↓,
where q(J)↓ is the result of dropping tuples with labeled nulls from q(J). As we showed above, the solution
computed in the case of data exchange involving unegds is also universal, according to the definition of [11].
A small subtlety is related with the fact that this universal solution is not an actual instance. However, this is
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easily overcome, since, as it is shown in several papers about representation of incomplete information (e.g.,
[15], [13], [2]), the global condition does not affect query answering in any way; thus, one can essentially
ignore the conjunction of unequalities in the universal solution. As a result, the proof of proposition 4.2
in [11] still holds in the case of unegds.

6 Consistency of Mappings

In a P2P setting, different peers specify mappings independently, so it is important to guarantee that when
a new mapping is added, it doesn’t ”break the whole system”. We define consistency of a set of mappings
Σ to capture this notion. Formally:

Definition 6.1 A set Σ of constraints/mappings over a schema S is consistent, if there exists an instance
J of S s.t. for every relation R ∈ S, J(R) 6= ∅ and J |= Σ. Every such J is called a consistent instance for
Σ.

Note that any set of tgds and egds without constants is consistent: let a be a constant in the domain,
then it is straightforward to check that the instance containing one tuple in every relation with the value
a for every attribute satisfies any such dependencies. The problem is more interesting in the presence of
constants and/or unegds. Consider, for example, the set of dependencies:

∀x1, x2 R(x1, x2) → S(x1, x1)
∀x1, x2 S(x1, x2) → x1 6= x2

It is easy to see that no non-empty instance of R,S can satisfy these dependencies.
One can view this problem as a special case of the data exchange problem, where Σst = ∅, Σt = Σ, I = ∅.

An additional restriction is that we are looking for a non-empty solution (otherwise, ∅ always satisfies any
set of mappings, and one can easily see that applying the data exchange algorithm on the setting outlined
above would indeed always yield as a canonical universal solution). However, as we will show in the sequel,
this problem is easily overcome and the basic techniques used in data exchange can be applied to check
whether a set of mappings is consistent. First, we need to define some basic notions:

Definition 6.2 J is a universal consistent instance for a set of constraints Σ if for every consistent instance
J ′ there is a homomorphism from J into J ′.

Let I0 be an instance of S s.t. for every R ∈ S, I0(R) is a single tuple and the values of every attribute
of t are distinct labeled nulls (variables),7 and values of attributes of tuples of different relations are also
distinct.

Theorem 6.3 Let Σ be a set of egds, unegds and weakly acyclic tgds over schema S.

1. Let (J,C) be the result of some successful finite chase of (I0, true) with Σ. Then J is a universal
consistent instance.

2. If there exists some failing finite chase of (I0, true) with Σ, then Σ is inconsistent.

Proof

1. By lemma 4.4, we know that (J,C) |= Σ. Let J ′ be an arbitrary solution, i.e., J ′ |= Σ. We show that
there is a homomorphism from J into J ′ by induction on the length of the chase sequence.

Basis: There is obviously a homomorphism from I0 into any instance with non-empty relations, and
every consistent instance belongs to this set.

Inductive step: Follows directly from lemma 5.1.
7note that these are distinct from constants that may appear in the dependencies
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2. The proof of this part is essentially identical to the proof of theorem 5.2 (part 2).

2

Note that, as in the case of data exchange, the output of the algorithm in the successful case is not an
actual instance, but instead a representation of a set of instances. A different proof that this problem (as
well as implication for this kind of dependencies) can be solved in PTIME was given in [4].

Acknowledgements We are grateful to Alin Deutsch for several very useful discussions.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On the Representation and Querying of Sets of Possible
Worlds. Theoretical Computer Science, 78(1):158–187, 1991.

[3] F. Afrati, C. Li, and V. Pavlaki. Data exchange with arithmetic comparisons. In EDBT, 2008.

[4] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-generating dependencies. J. Comput. Syst. Sci.,
59(1):94–115, 1999.

[5] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional dependencies
for data cleaning. In ICDE, pages 746–755, 2007.

[6] L. Bravo, W. Fan, and S. Ma. Extending dependencies with conditions. In VLDB, pages 243–254, 2007.
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