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most O(log n) bits of storage. This is much more space-efficient than a previously reported systolic
algorithm for the same problem, which required O (nlog n) space per processor. The algorithm also
extends previous algorithms that only output a single parse tree of the input.
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1. Introduction

General context-free language (CFL) recognition is an important problem with a wide range of appli-
cations: formal language theory, pattern rccognition, natural language processing, compiler design, to name
a few. To date, thc Cockc-Kasami-Younger (CKY) algorithm [YOUNG67] and Earley’s algorithm
[EARL70] remain the best known practical methods for solving this problem, both having a worst-casc
time complexity of O (n3) for inputs of length n. (In [VALI75), Valiant presented an asymptotically faster
algorithm; however, the constant of proportionality is too large for practical applications.)

Kosaraju [KOSA75] first considered the problem of parallel CFL recognition and prescnted a paral-
Ielization of the CKY algorithm on a two-dimensional iterative array of n? processors. The array operatcs
in linecar time and only requires finitc-state processors (i.e., the processor stores information whose size is
independent of the length of the input). Another algorithm, using a systolic array, is also implied by the
work of Guibas, Kung and Thompson [GUIB79], who gave a parallel implementation of thc dynamic pro-
gramming algorithm (similar to the CKY algorithm) for computing the cost of an optimum binary scarch
trcc. Both algorithms are optimal; the speed-up is lincar in the number of processors used. A parallel
algorithm which has a faster running time (in fact, O (log?n)) has been presented by Rytter [RYTTSS];
however, the algorithm is implemented on parallel random-access machine (PRAM), a hypothetical model
that ignores communication costs, and uscs morc processors ().

In [CHIAB84], Chiang and Fu considcred the more general problem of CFL parsing, which unlike
recognition, also rcquires a parsc tree as output. They gave a parallel implementation of Earley's algorithm
on a systolic array of n? processors. Besides recognizing the input, the ‘array also outputs a parse tree in
linear time. Howecver, the processors are no longer finite-state since each is required to store O (log n) bits
of information. A fully finitc-state systolic array for recognition and parsing was later given in [CHANS7];
the array uses n? processors and runs in lincar time.

An intercsting extension to the CFL parsing problem is that of outputting all parse trees of the input
string. In some applications such as natural language parsing, the underlying grammar is usually ambigu-
ous. Typically, onc would be intcrested in gencrating all parse trees of the given string, which later can be
disambiguated by applying some scmantic rules. In [LANGS86], Langlois considered the all-parses problem
and gave a systolic algorithm based on the systolic architecture of [GUIB79]. The systolic array uscs
0 (n? processors. However, cach processor is required to storc O (n log n) bits of information, resulting
in a total space complexity of O (n®log n). If the underlying grammar is unambiguous, the spacc com-
plexity reduces to O (n?log n). Langlois posed indirectly the question of whether O (n? log n) space is
sufficient to output all parscs for an arbitrary CFL. In this paper, we scttle this question in the affirmative.
In particular, we give a systolic CFL parsing algorithm that outputs all parses in time O (m - n) using n*
_ processors, each of which requires only O(log n) bits of storage. Thus, the total space complexity is
0 (n* log n). The systolic algorithm is an cxtcnsion of the one described in [CHANS87]. It should be
pointed out that the algorithm in [CHANS7] does not give an explicit systolic array implementation, but
rather gives an algorithm that runs on a scquential machine characterization of a systolic array. This paper
gives the explicit "systolic version" of the algorithm in [CHANS7], and cxtends it to generate all parse
trees of the input string with only a factor log n increase in the space complexity.

The paper is organized as follows. In Section 2, we first describe a sequential parsing algorithm on
which the systolic algorithm is based. In Section 3, we introduce the systolic array model that implements
the algorithm. Sections 4 and 5 describe the two phases of the systolic algorithm: the recognition and
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parse generation phasc, respectively. Finally, Scction 6 gives an analysis of the time and space complexity
of the algorithm.

2. A Sequential Context-Free Parsing Algorithm

We first describe the sequential parsing algorithm on which the systolic parsing algorithm is based.
We assume familiarity with context-frce grammars (CFG’s); see, ¢.g., [AHO72]. Let G = <Vy,Vr,P ,S> be
a CFG where Vy and Vr are finitc scts of nontcrminal and terminal symbols, respectively, S € Vy is the
start symbol, and P is a finite set of productions in Chomsky normal form. That is, every production in P
is either of the fom A — BC orA — a, wherc A, B, C € Vy and a € Vr. The language generated by
GisL(G)={we ViriS =>w].

Given an input string w = a,a; - - * @,, a; € Vr, the scquential algorithm starts by constructing scts
R(@.j),1<i <£j <n,such that
| Rij)={IA >olePlA=>a - "a).

The sets R (i ,j) are computed according to the following variant of the CKY dynamic programming algo-
rithm [YOUNG67]:

RG,i)=([A »ale P) 1<i <n,
R@,j)=1Q R@Ek)* R(k+1,j) 1<i<j<n,
isk<j

where Ry * Ry = {[A — BC] € P |there are productions ©t; € R; and ®, € R, such that LHS(w;) = B and
LHS(mp) = C}. (‘LHS’ stands for ‘left-hand side’.) Thus, w € L(G) iff R(1,n) contains a production
whose LHS is the start symbol S.

An cxample of a CFG G and the corrcsponding matrix of R (i,j)’s for the string w = abaa is illus-
trated in Figure 2.1. Henceforth, the matrix R = {R(ij) |1 <i < j <n} shall be referred to as the recog-
nition matrix. For the given example, we see that abaa € L(G) since R (1,4) contains a production whose
LHSis S.

If w € L(G) then w has onc or more parse trees, where a parse tree is a binary trec of productions
uscd in the derivation § => w. For the example in Figure 2.1, the string abaa has five distinct parse trees,
as shown in Figure 2.2. For cach production, the pair of numbers (i ,j) denotes the matrix entry R (i ,/) to
which the production belongs.

We now describe a procedure PARSE for generating all parse trees of the input string. PARSE is a
recursive procedure that takes four arguments (4, ,jtag), where A € Vy, 1<i <j<n and tag €
(FIRST, CURRENT, NEXT). Informally, PARSE (A, ,jtag) rcturns a parsc tree for the derivation
A =>a; -+ a;. The parse trce is represented as follows: if a production 7 in the parse trce belongs to
R(i,j), then the occurrence of & in R (i,j) is "marked" by some special symbol, say *. (There is no ambi-
guity here since all productions in a parse tree belong to distinct R (i,j)’s.) For example, the first parsc tree
in Figure 2.2 would be represented as shown in Figure 2.3. Note that the actual tree can be retricved since
for cvery marked production, its Icft (right) child in the actval trec is simply the next marked production
above it along the same column (diagonal).
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G=<{5A8,C},{ab},P,S > where

P = {[§—>AA)], [A = AC], [B — BC], [C - CC],
[S — AB], [A - CB], B = 0b), [C > a] }
[A —a],

Recognition Matrix for w = abaa

el b ) 2
R(Y,1) R(2,2) R(3,3) R(4,4)
(A->8] [B->b] [A->a) [A->8]
[C->a) [C->a) {C->a]
R(1,2) R(2,3) R(3,4)

(S->AB) [B->BC] [5->AA)

[A->CB) [A->AC]
[c->ce)

R(Y,3) R(2,4)

feoml | t-ecl

{A->AC]

[A->CR]

(1)

[5->AA]

[s->AB)

[A->AC]

[A->CR})

Figure 2.1. A CFG G and the recognition matrix R for w = abaa.

The argument tag dictates which parse tree is returned. If tag = FIRST, then PARSE (A ,i,j tag)
returns an initial parse tree for A L a; **+ a;. If tag = NEXT, then it returns the next (distinct) parse
tree following the one last generated. Finally, if tag = CURRENT, then it returns the current parse tree.

To keep track of the order of parse tree generation, the procedure makes use of a number of auxiliary
variables. For each (i,j), 1 Si < j < n, there are boolean variables done(i,j) and last_id(i,j), and an
integer variable id(i,j). The variables are utilized as follows: Let ¢ be the tree that results after a call to
PARSE (A ,i,jtag). Then,

(1) done(i,j) = true iff ¢t is the last parse tree for A => a; - - * a;.

(2) id(i,j)=k,i Sk <], iff the root of t has a left subtree whose root is a production in R(i,k) and a
right subtree whose root is a production in R (k+1,j). (id stands for "index of decomposition”.)
(3) last_id(i,j) = true iff id (i ,j) is the largest integer k satisfying (2).

Procedure PARSE is given below. In the procedure, each R (i,j) is treated as an ordered subset of produc-
tions, so that we can refer to the first, second, etc., production in the set.



[5=» AA]
(L4 [S =2 AA}
(1,4)
)
(A -» CD]) LA =r AC}
(L2 3.4) [A =» AC} [A=>a]
/\ (1.3) (4,0
{C->a) D-rb]) A=ra) {C-ra]
(.0 2,2) (3.3) (4,4) (A ->CB) (C->a)
(1.2) 33
C->a) (D =»>b]
(.n (2,2)
15=> AA}
[A =2 CD} (A=ral
[§ 8] (4,4)
(C=»a) b -20C)
. 3)
(D =rb) [C=»a)
2.2) G.3)
IS =-» AD)
(1.4) 15 =2 AB}
(1.4
TA-ra] 1B oo / |
11 - Ip -»nC)
(.n (2.9) l?]_;).l 2.4
[({ S Y] {Cc—rccl
3 b -»0C) IC-ra}
@2 XN 22) (4.4)
{C-ra) [C-ra)}
3 =) [C-ral
3.3) 4,9 (2.2) 3.3

Figure 2.2. Parse trees for S => abaa.
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Figure 2.3. Representing a parse tree in the recognition matrix.

procedure PARSE (A ,i,j,tag);

begin

if ({ =j) then
if R (i,i) has a marked production then UNMARK (i i) endif;
mark the production [A — ;] in R(i,i);
id(ii) < O; done(i,i) « last_id(i,i) « true

else
case tag of
CURRENT :

/* there is a marked production in R (i,j) */
let [A — BC] be the marked production in R ({,j);
k « id(i,j);
PARSE (B ,i k ,CURRENT);
PARSE (C ,k+1,j ,CURRENT);
FIRST:

if R (i,j) has a marked production then UNMARK (i ;) endif;

mark the first production ® =[A — BC]in R(i,j) whose LHS = A;
(id(i,j), last_id (i,j)) « MATCH(B,C,i,j,i};

PARSE (B ,i ,id(i,j),FIRSTY);

PARSE (C ,id (i,j)+1,j ,FIRST);



NEXT:
/* there is a marked production in R (i,j) */
let [A — BC] be the marked production in R (¢, );
k « id(i,j);
if not done (k+1,j) then
PARSE (B ,i ,k  CURRENTY);
PARSE (C ,k+1,j NEXT)
elseif done (k+1,j) and not done (i ,k) then
PARSE (B ,i ,k NEXT);
PARSE (C ,k+1,j FIRST)
else /* done (i ,k) and done (k+1,5) */
UNMARK (i ,k); UNMARK (k+1,j);
if not last_id (i,j) then
(id (i ,j), last_id(i,j)) « MATCH (B,C,i,j k+1);
PARSE (B ,i id (i,j },FIRST);
PARSE (C ,id (i ,j )y+1,k ,FIRST)

else
unmark the currently marked production in R (i, );
mark the next production ®° = [A — DE] whose LHS = 4;
(id(i,j), last_id (i,j)) « MATCH (D ,E,i,j,i);
PARSE (D ,i id (i,j),FIRST);
PARSE (E ,id (i ,j)+1,j ,FIRST)

endif;

endif;

endcase;

temp <« done (i ,id(i,j)) and done (id (i ,j }+1,j) and last_id (i,j);

if (temp) and (n is the last production in R(i,j) whose LHS = A) then
done (i ,j) « true

else
done (i,j) « false

endif;

endif’;
end PARSE .

In the procedure, subroutine UNMARK (i,j) deletes all marks on productions in the subset of entries
{R(a,b)li <a <b <j}. This has the effect of deleting the subtree whose root is a production in R (i,j)
(this subtree no longer belongs in the parse tree being generated).

Subroutine MATCH (B,C,i,j,k) returns a pair of values (/,last), where ! is an integer satisfying
k<l <j and last € {irue,false}. Specificallyy, MATCH does the following: It looks at the pairs
[R@,0), R(I+1,j)], k <! <, in increasing value of ! then returns the least / such that

(*) there is some production in R (i,/) whose LHS = B and
there is some production in R ({+1,j) whose LHS = C.

In addition, if there is no other integer >! satisfying (*), it returns last = true; otherwise, it returns
last = false.
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The main program that calls PARSE is given below:

begin
if there is a production in R (1,n) whose LHS = § then
PARSE (S,1,n ,FIRST)
endif;
while not done(1,n) do
PARSE (§,1,n NEXT);
endwhile;
end.

One can verify that running the main program using the recognition matrix of Figure 2.1 outputs the
parse trees of w = abaa in the order shown in Figure 2.2.

For the time complexity, it is clear that constructing the recognition matrix takes O (n®) time. Each
call to PARSE (S,1,n,tag) in the main program takes O (n?) steps. This follows from the fact that since
the grammar is in Chomsky normal form, a parse tree has 2n—1 nodes (productions). For each production,
at most one call to subroutine MATCH is performed to determine its children, and this takes O (n) time.
Moreover, all calls to UNMARK within PARSE takes at most O (n?) steps. Thus, the total running time is
O (n® + mn?), where m is the number of distinct parse trees of the input string. Note that the second term
dominates when m = Q(n).

3. The Systolic Array Model

The systolic parsing algorithm is essentially a parallelization of the sequential algorithm described in
the previous section. The systolic array that implements the algorithm is illustrated in Figure 3.1. It con-
sists of two triangular arrays: the P -array (the square nodes) and the Q -array (the circular nodes). Both
triangular arrays have n processors along each dimension, where n is the length of the input string to be
parsed. The processors are assumed to be indexed as shown. For the P -array, P (i,j) denotes the proces-
sor in the i-th leftmost column, of the j-th row. For the Q -array, Q (i,j) denotes the processor in the i-th
rightmost column, of the (j—i+1)-st row. For convenience, we call a processor of the P -array (Q -array) as
a P -processor (Q -processor). The processors are interconnected as shown in the figure. All communication
links are assumed to be bi-directional (i.e., data can travel in either direction).

The operation of the systolic array is synchronous, i.e., computations take place at distinct clock
cycles. The input is the string aja, - - - a, to be parsed, followed by an end-of-input marker $. This
input is fed serially to processor P(1,1) of the P -array; aq; is input at clock cycle i, 1<i <n,and § at
clock cycle n+1. The parse trees (if any) of the input string are generated in "stages”". At the end of each
stage, a new parse tree would be stored "on-the-fly" in the Q -array; more precisely, if the parse tree con-
tains a production from R (i,;), then this production would be stored in processor Q (i,j ).
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Figure 3.1. Systolic array model.

Each processor has a local memory consisting of fixed number of registers. In describing the systolic
algorithm, it is convenicnt to give namcs to some of these registers, as shown in Figure 3.2. A P-
processor has six registers r,, and ¢, (p, ¢ € {0,1)), cach capable of holding an ordered subsct of produc-
tions of the underlying grammar. In addition, it has four cells, Cpe (0, q € {0,1)), where a cell is a col-
lection of three registers: tag, sym, and pset. Register tag can hold a value from the sct (FIRST,
CURRENT , NEXT }, sym can hold a single nonterminal symbol, and pset can hold an ordered subset of
productions. A Q-processor has five registers: p, done, ldone, rdone, id and last_id. Registers done,
Idone, rdone and last_id can hold boolean values; p can hold a single production. Finally, id can hold
values of the form (/,b) where [ is an integer in the range 0 <[ < n and b € {0,1}. We shall explain the
usc of thesc registers in subsequent sections.

As in the scquential case, the systolic parsing algorithm consists of two phases: a recognition phase
which computes the rccognition matrix, and a parse generation phase which outputs the parse trees. The
rccognition phasc is similar to the one described in [CHANS7]; the difference is that the algorithm in
[CHANBS7] was given in terms of a scquential machine characterization of the systolic array. The algo-
rithm presented here is the "systolic version" of the sequential machine in [CHANS7]. "Using the same
scquential machine, [CHANS87] also describes how to output a single parse trce of the input string. Here,

we present a parse generation phase that outputs all such parsc trees with only a small increase in the space
complexity.

4. The Systolic Recognition Phase

The systolic recognition phase computes the recognition matrix R and determines whether the input
string aja; * - * a, is in the language generated by the grammar. During this phase, only the processors of
the P -array take part in the computation; the Q -array is not used.
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roo rot 10
eto | e u
oo cot
tag sym 1ag sym
psel psel
c1o ) c1
tag sym teg sym
psat psel
(@

Figure 3.2. Memory organization of (a) a P -processor and (b) a @ -processor.

The recognition phase has the property that the movement of data in the P -array is only from lower-
indexed to higher-indexed processors (i.e., from left to right and from top to bottom). We take advantage
of the uniformity of the data flow by introducing the notion of a forward sweep, which simplifies the
description of the computational steps involved. For a processor p of the P -array, let d, be the rectilinear
distance (i.e., counting only horizontal and vertical links) of p from processor P (1,1). Then, p is said to
be at forward sweep s iff it is at clock cycle d, + 5. For example, forward sweep 1 is clock cycle 1 for
P (1,1), clock cycle 2 for P (1,2), clock cycle 3 for P(2,2) and P (1,3), etc. The important thing to note is
that in a given forward sweep, a processor is "viewed" one clock cycle earlier than the neighboring proces-

sors to its right or below it. Thus, a computation that takes place in the former processor can affect the
latter processors also at the same forward sweep.

Conceptually, the recognition phase starts, for all processors, at forward sweep 1 and ends at forward
sweep n+1. With respect to processor P (1,1), these correspond to the first n+1 clock cycles during which
it reads the input a4, - - * a,$. During each forward sweep, the P -array computes a new portion of the

recognition matrix; in particular, at forward sweep s, 1<s <n, only the set of entries {R(a,s) |
1 <a <s} are computed.
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Matrix entries are computed only at processors P (j,f), 1 £j < n, henceforth called primary proces-
sors. A primary processor computes one or more such entries but at different forward sweeps. More pre-
cisely, P(j,j) computes R(s—j+1,s) at forward sweep s, j £s <n. For example, P(3,3) computes
R(1,3),R(24), - -+, R(n—2,n) at forward sweeps 3,4, -, n.

The secondary processors P (i,j), 1 Si < j < a, play a different role. Suppose that primary proces-
sor P(j,j) is assigned to compute entry R (a,b) at some forward sweep. Then, at the same forward sweep,
the secondary processors to the left of P (j,j) would have stored in their local memory the set of "convolv-
ing pairs" {[R(a,c), R(c+1,b)]1a < ¢ < b} which are needed to compute the value of R (a,b). The map-
ping from convolving pairs to secondary processors is best explained by means of an example. Consider
the case when processor P (5,5) wishes to compute R (2,6) at forward sweep 6. Then the required convolv-
ing pairs {[R(2,c), R(c+1,6)] |2 < ¢ < 6} would be stored in processors P(1,5), * - -, P(4,5) as shown in
Figure 4.1-(a). Intuitively, the mapping is obtained by first listing the convolving pairs
{[R(a,c), R(c+1,b})]} in increasing order of c, then "folding" the list about the middle as shown in Figure
4.1-(b). (As we shall see later, this "folded" mapping guarantees that data can be routed among processors
using only nearest-neighbor connections.)

P(1,5) P(2,5) P(3,5) P(4,5)

- - - - R(2,3)| R(4,6) RQ22)| R3.6)

. - - - R24)| R(506) R2,5)| R(6,6)
@

[(R22),R(G,6)] [R@23),RE6)] ! [R24),R(56)]1 [R(25)R(66)]

(®)

Figure 4.1. Mapping from convolving pairs of R (2,6) to secondary processors.
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The formal mapping is given by Invariants 4.1 and 4.2 below. The processors use the four r,, regis-
ters to store the entries. The notation r,,(i,j,s) means the contents of register 7,, of processor P(i,j) at
forward sweep s.

Invariant4.1. For1 i <j <s <n,

%] if2i <j
roo(i,j,s) =
R(s—j+1,5-i) otherwise

Q

if2i <j

Q

if2i <j
rioi,j,s) =
R(s—j+1,5—j+i) otherwise

@ 2 <
rufi,g,.s) =

rOl(i 1j 1S) = {
R(s—i+1,s) otherwise

R(s—j+i+1,5) otherwise.

Invariant 4.2, For1<j <s <n,

’oo(i»f,s) = rll(.i’j7s) = gi
rot(.j»s) =riol,js) = R(s—j+1s).

Invariants 4.1 and 4.2 specify the register values for secondary and primary processors, respectively.
All registers are assumed to be initialized to the empty set &. Observe from Invariant 4.1 that some secon-
dary processors may have some registers permanently set to &J; this indicates that no matrix entry is
mapped onto the register. Moreover, for primary processors (see Invariant 4.2), roo and r; are always &,
and ro; and rjy hold the computed entry. Although one register should be sufficient, this mapping
simplifies the routing of data (1o be explained later). Finally, the invariants define the register values of
P(i,j) only for forward sweeps s 2 j. If s < j, the registers of P (i,j) retain their initial values &. Fig-
ure 4.2 illustrates the register values for a 4 x 4 P -array at forward sweeps 1 through 4.

It is easy to see how Invariant 4.2 can be realized for every primary processor given that Invariant
4.1 holds for secondary processors. For a given forward sweep, Invariant 4.1 states that all the convolving
pairs required to compute the entry at the primary processor are available in the secondary processors to its
lefe. Thus, the desired value is simply the union, over all secondary processors, of (rgo*ro1) W (rio*rip)-
This value can be computed as follows: Each processor has a left input terminal /N, and a right output ter-
minal OUT, (for a processor in the leftmost column other than P(1,1), IN, is assumed to be permanently
set to ). At the start of each forward sweep, the processor receives a value from /N,, computes IN, U
(reo*ro1) U (r10*ry1) then sends the result to OUT,. The output from QUT, then travels with unit-delay to
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the IN, terminal of the next processor. It is clear that the value that arrives at the primary processor is the
desired matrix entry. The primary processor then stores this value in its rq; and ryo registers. Processor
P(1,1) is a special case: we let IN, be the terminal from which it receives the input string aja, - -+ a,3.

At forward sweep i, 1 <i <n, P(1,1) reads a; from IN,, computes the set {[A — g;] € P}, then stores
the result in its ro; and rjq registers.

Once computed by a primary processor, an entry is routed to various secondary processors to partici-
pate in the computation of new entries. Invariant 4.1 gives the desired mapping. We now specify the
required data routing steps. Each processor has four input terminals /N, and four output terminals OUT,,
(», 9 € {0,1}) connected to neighboring processors as shown in Figure 4.3. More precisely, the /N o and
IN{; terminals of processor P (i,j) receive data from the OUTy, and OUT;; terminals, respectively, of pro-
cessor P (i-1,j—1), and the INy; and /Ny terminals receive data from the OUT¢, and QUT;, terminals,
respectively, of processor P (i,j—1). (For processors with non-existent neighbors along the directions
shown, the relevant inputs are assumed to be J.) Data items travel through the communication links at
different speeds. In particular, outputs from terminals QUT o, OUTy,, OUT o and OUT; reach their desti-

nations 3, 1, 2, and 2 clock cycles later, respectively (indicated in the figure by the number of black
squares in each link).

PlI=1,)=1) e j=-1)
[] oo ouT00 - [ moo ouroo []
[ wos oroi [] [j INO1 ouros
[ mwo wrio [] (] mo wT10
[ mn T [ wn uTH D

P

IN0O wroo [ —J-H-H—
v oo [0
o o oo [-E—>
] mr ot BE—

>

Figure 4.3. The IN,, and OUT,, terminals of a P -processor and their interconnections.

For a secondary processor, data arriving at the /N,, terminals are used to update its local registers, as
depicted in Figure 4.4. For processors P(i,j) satisfying 2i # j, register r,, is updated to the value
received from IN,,; similarly, OUT,, gets the value of r,,. For processors P(i,j) satisfying 2i = j, the
input terminals are switched for roy and rig, and the output terminals are switched for ro; and ry;. For a
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primary processor, inputs (if any) arriving at the IN,, terminals are ignored. After storing the newly com-
puted entry in its registers, the processor routes the register contents to the associated output terminals the
same way as described.

oo [ > r00 »{J oo iNOD [l 00 > 5 T00

woi [ > o1 1RO [—— —»{ ro1 ’—\ wTo!
mlo; » 10 mmﬁ 10— 10

INIIC > ol - ]ouru ,N“ﬁ » 13 [+7: 40}

y
[
a
s

A 4
-
a
=
°

Y

(a) (b)

Figure 4.4. Updating the r,, registers of processor P (i,j) for the case (a) 2i #j and (b) 2 = .

For processor P (i,j), the above data routing step (and the associated computational step which com-
putes the convolutions) is performed at every forward sweep s 2 j. For forward sweeps s < j, the proces-
sor is "inactive". The processors can be activated at the right forward sweeps as follows: At clock cycle 1
(when the first input symbol is read), processor P(1,1) generates a "start" control signal which travels
downwards with 2-delay (i.e., hops from processor to processor every 2 clock cycles) and to the right with
unit-delay. One can easily verify that the "start" signal reaches processor P (i,j) at forward sweep s = j.

At this point, we explain the use of registers ¢, and ¢, in each processor (see Figure 3.2). At the
clock cycle when a processor receives the "start" signal, it also copies into its fo and ¢; registers, the
updated contents of its rq; and ry; registers, respectively. In subsequent clock cycles, the contents of ¢

and ¢, are left unchanged. The information stored in these registers will be used later in the parse genera-
tion phase.

The computational and data routing steps previously described guarantee that Invariants 4.1 and 4.2
hold for all processors of the P -array. In particular, at the end of forward sweep n, processor P (n,n)
would have computed the value of R (1,n). The proof is straightforward induction (on the sweep number
and processor index) and is left to the reader (see also [CHANS87]).

Forward sweep n+1 (at which processor P (1,1) reads the end-of-input marker $) is used to terminate
the recognition phase for all processors. When § is read, processor P(1,1) issues a "halt" signal which trav-
els downwards and to the right with unit-delay. When received by a processor other that P (n,n), the pro-
cessor terminates its computation. For processor P (n,n), it checks if R (1,n) (which is stored in its r¢; and
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rio registers) contains a production whose LHS is the start symbol S. If there is no such production, it
sends a "reject” signal back to processor P (1,1) and the systolic array halts. Otherwise, P (n,n) initiates
the parse generation phase described in the next section.

Remark 4.1. We have some final remarks about the recognition phase. If onc wishes only to determine
whether the input string is in the language generated by the grammar, then the systolic array need not exe-
cute the next phasc. In this case, onc gets the answer from processor P (n,n) at the end of forward sweep
n+1, which corresponds to clock cycle 3n—1. Furthermore, observe that every processor stores in its regis-
ters, valucs which are dependent only on the size of the grammar and not on the length of the input (i.c.,
the processor is finite-state). It is also a simple exercisc to modify the systolic algorithm just described so
that cach processor does not need to. know its index (e.g., as is required to distinguish processors P (i,j)
such that 2i = j).

5. The Systolic Parse Generation Phase

The systolic parse generation phase is essentially a parallelization of procedure PARSE described in
Section 2. During this phase, both P-array and Q -array take part in the computation. Conceptually, the
phase is divided into m stages, where m is the number of distinct parse trees of the input string. At the
end of each stage, a new parse tree is stored "on-the-fly" in the Q -array; more precisely, if the parse tree
contains a production from R (i, ), then this production would be stored in processor Q (i, ).

Every stage begins with processor P(n,n) issuing a "begin-parse” control signal which reaches all
other processors of the P -array and Q -array by moving upwards and to the left with unit-delay. Thus, a
processor a (rectilinear) distance d away from P (n,n) receives the signal d clock cycles later. For a pro-
cessor, let reverse sweep 1 (of the current stage) be the clock cycle at which it receives the "begin-parse”
signal. Then, reverse sweep 2 is the next clock cycle, reverse sweep 3 the clock cycle after reverse sweep
2, etc. A reverse sweep is just like a forward sweep, the only difference being that in a given reverse
sweep, a processor is "viewed" one clock cycle earlier that the neighboring processors to its left and above
it.

The parse tree that is eventually stored in the Q -array at the end of each stage is output from the P -
array. Informally, the P -array identifies and "marks" the productions making up the parse tree from the
recognition matrix entries stored in its primary processors. The mapping described in the previous section
is especially suited for carrying this "marking" process since at every forward sweep, the convolving pairs
of the entry computed at a primary processor are all stored in the secondary processors to its left. Thus, if
a production, say [A — BC], has already been identified as part of the parse tree at some primary proces-
sor, then the children of this production in the parse tree can be obtained by performing a "search" of the
convolving pairs stored in the secondary processors (i.e., find a register-pair [rp0, 7p1] such that B is the
LHS of some production in r,o and C is the LHS of some production in r,;). To do this, however, the
flow of information should now be from right-to-left (rather than from left-to-right as is the case for a for-
ward sweep). Moreover, since at the end of forward sweep n the primary processors only hold the set of
entries {R(a,n)!1<a < n}, the "lost" entries should somehow be recovered.
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The trick is to be able to "reconfigure” the P -array such that at reverse sweep 1, 2, ..., n, every pro-
cessor holds the same memory contents that it had at forward sweep n, n—1, ..., 1, respectively. That this
can be accomplished follows from the observation that during the recognition phase, every newly computed
entry starts from an r,, register of a primary processor then follows a unique directed path through the P -
array. Moreover, the path always ends either at a 1, register at some forward sweep s < n (after which the
t, register is no longer changed) or at an r,, register at forward sweep n. Thus, the r,, and ¢, registers at
the end of the recognition phase contain all the entries computed in all n forward sweeps; in n reverse
sweeps these entries can be sent back to their previous locations by routing them along the paths opposite
to what they took during the recognition phase.

In order not to lose the information stored in the r,, and ¢, registers at the end of the recognition
phase (they will be required at the start of each new stage), we instead use the cells of the P -array for stor-
ing and routing the data (see Figure 3.2). In particular, we let register pset of cell Cp, (or pset(C,,) for
short) take the place of register r,,. For example, for n = 4, the contents of the pset registers of the P -
array at reverse sweeps 1 through 4 would be identical to those shown in Figure 4.2, except that reverse
sweep 1 corresponds to forward sweep 4, reverse sweep 2 corresponds to forward sweep 3, etc.

The "routing scheme” for cells is essentially the reverse of that shown in Figure 4.4: simply replace
“rpg" by "Cpe" and reverse the directions of all the arrows. The delays associated with the links (see Fig-
ure 4.3) remain the same. (To route a cell we mean to route the contents of the three registers tag, sym
and pset that make up the cell.) Processor P(i,j) performs the routing step for its cells at every reverse
sweep. There are two exceptions: The first is reverse sweep 1, when processor P (i,j) updates pset (C o0)
and pset (C o) to roo and rq, respectively, instead of getting the data as inputs (which turn out to be non-
existent at reverse sweep 1). The second exception is reverse sweep n—j+1, when processor P (i,j) instead
updates pset (Cq;) and pset (C ;) to to and ¢, respectively; this has the opposite effect of copying rg; and

ry into to and ¢, respectively, at forward sweep j. (We shall explain later how processor P (i,j) would
know when it is at reverse sweep n—j+1).

We now describe the computational steps performed by the P -array. At each reverse sweep, a pro-
cessor carries out the computational steps only after it has updated its cells. The heart of the computation
is an "instruction" called MATCH which is issued by a primary processor to all secondary processors to its
left. MATCH can be thought of the "systolic equivalent" of subroutine MATCH in procedure PARSE. In
general, this instruction has the form MATCI! (r, (tag ,tag,), id, last_id) where
. 7 is a production in P,

e  lag,, tag, € {FIRST, CURRENT, NEXT, NULL},

° id = (I,b) where [ is an integer such that 0 <! <n and b € {0,1}, and

. last_id € {true,false}.

For a primary processor P (j,j), the cells of the secondary processors to its left can be thought of as a
"chain” of cell-pairs, as depicted in Figure 5.1. When P(j,j) issues a MATCH instruction, say,
MATCH ([A — BC), (tag,tag,y), (,b), last_id), the cell-pairs are "searched” in the order shown in the
figure starting at cell-pair [C}q,Cp] of processor P (I,j) (processors prior to P (l,j) simply propagate the
instruction unchanged to the next processor with unit-delay). Now, let [C,C,] be the first cell-pair
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satisfying the property that
(*) there is a production in pset (C ;) whose LHS = B and
there is a production in pset(C,) whose LHS = C.
If [C,C4] is cell-pair [C},Cy1] of processor P (I,j) then:
(1)  sym(Cyq) and sym(C,{) are set to nonterminals B and C, respectively,
(2) tag (Cyo) and tag (C,~ ) are set to tag, and tag,, respectively, and

(3) processor P(l’,j) modifies the instruction it sends to its left to MATCH ([A — BC], (NULL ,
NULL), (',b"), last_id).

P(1,j) P{-2.j) P(j-1J) P3.J)

coo COI

—— p——

Cw| Cu

Figure S.1. The cells of secondary processors to the left of P (j,/) depicted as a "chain” of cell-pairs.

Updating (tag,tag,) to (NVULL ,NULL) indicates that a match has already been found; the place where the
match occurred is given in the new id = ({,b"). The rest of the cells-pairs following the one where the
match occurred continue to be tested for property (*), this time to determine whether last_id needs to be
updated. If another match occurs, then last_id is updated to false ; otherwise, it retains its old value.

The MATCH instructions leaving the leftmost column of the P-array serve as input to the Q -array.
The steps performed by a Q -processor are simple: at each reverse sweep, it shifts the contents of its local
registers p, id and last_id into the corresponding registers of the processor to its left, then updates its own
registers to those it receives from the processor to its right. For a Q -processor in the rightmost column,
the new contents of its p, id, and last_id registers are obtained from the m, id, and last_id arguments,
respectively, of the MATCH instruction (if any) it receives from the corresponding processor in the P-
array. (If no MATCH instruction is received, the Q -processor simply clears the three registers.)

For processors of both the P-array and Q -array, the data routing steps and the computational steps
associated with the MATC/! instruction are executed at every reverse sweep starting at reverse sweep 1
(which is when they receive the "begin-parse” signal). For all processors on the j-th row (from the top),
reverse sweep n—j+1 is the last reverse sweep when these steps are performed. A processor on the j-th
row can know when it is at reverse sweep n—j+1 as follows: At reverse sweep 1, processor P (n,n) issues
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an "end-parse” control signal which travels upwards with 2-delay and to the left with unit-delay. A proces-
sor receives this signal at reverse sweep n—j+1.

We now explain how the MATCH instructions are used to generate a parse tree of the input string.
The actions performed by the systolic array for the first stage are slightly different from those of the
succeeding stages. We first describe what happens during stage 1.

Stage 1. Stage 1 begins when the "halt" signal indicating the end of the recognition phase reaches proces-
sor P(n,n). At this clock cycle, processor P (n,n) issues the "begin-parse” signal to all other processors to
start reverse sweep 1 of the stage. At the start of reverse sweep 1, the data routing steps described earlier
would place the value of R(1,n) into registers pset(Cyq;) and pset(Cqp) of primary processor P(n,n).
Moreover, the cells of the secondary processors to its left would hold the convolving pairs of R (1,n). Sup-
pose that pset(Cg,) (or pset (Cy)) has a production whose LHS is the start symbol S. Then, P (n,n) first
sets sym (C ;) to nonterminal symbol S and tag (Cy;) to FIRST, then does the following:

(1) Locate the first production ©t € pset (Cg;) such that LHS(r) = sym(Cy;). Moreover, if © is the last
such production, distinguish ® by some special symbol, say 7 (this information will be used later in
the Q -array);

(2) Send MATCH (r (or &), (FIRST FIRST), (n-1,0), true) to the processor to its left.

The MATCH instruction would search for the first cell-pair [C,,C,] which contains a pair of productions
that match the right-hand side of ®. The cell-pair is then "marked” by updating their sym and tag regis-
ters. In addition, new id and last_id values would be computed and, together with production & (or T),
shifted into the Q -array. Now, the routing scheme for cells would eventually bring the marked cells to pri-
mary processors (either as Cy; or Cyo) at some reverse sweep. When this happens, the secondary proces-
sors to the left of the primary processor would again hold the convolving pairs of the entry stored in the
pset register of the marked cell. The process then repeats. More precisely, a primary processor P (f,j)
receiving a marked cell C (at most one marked cell would arrive at any reverse sweep) checks tag(C) and
sym(C). If tag (C) = FIRST, then it performs step (1) above for C, and issues a MATCH instruction as in

step (2), except that the fourth argument is (j—1,0). For primary processors not receiving a marked cell, no
MATCH instruction is generated.

The marking process continues until the processors receive the "end-parse” signal. For the sample
grammar and input string given in Figure 2.1, the configurations of the P-array and Q-array for the n
reverse sweeps (n = 4) is shown in Figure 5.2. In particular, at the end of reverse sweep n, the Q -array
would have stored in its p registers a parse tree of the input string. This parse tree can then be read off

directly from the Q -array or pipelined out of the Q -array to a host computer. We omit the steps involved
as they are relatively straightforward.

The clock cycle at which the "end-parse” signal is received represents the end of the stage for each
processor of the P-array. On the other hand, the Q -array performs another step which involves the update
of the ldone, done and rdone registers of its processors. This is accomplished as follows: At reverse
sweep n (which is also when it receives the "end-parse" signal), processor Q (n,n) sends out an "update”
control signal to all other processors of the Q-array, this signal traveling diagonally downwards with 2-
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delay and to the right with unit-delay. For processors on the top row of the Q-array (i.e., processors
Q(U.j) 1<j<n), the following is performed when they receive the "update” signal: set
Idone = rdone = done = true and send the contents of done diagonally downwards with 2-delay and verti-
cally downwards with unit-delay. For a processor in a lower row, one diagonal input and one vertical
input would arrive at the time it receives the "update” signal. The processor then does the following:

(1) If its p register does not contain a production, then clear its done, ldone and rdone registers and
route the vertical and diagonal inputs to the next vertical and diagonal processors below it, respec-
tively.

(2) If its p register contains a production, then set /done to the value of the vertical input and rdone to
the value of the diagonal input. Set rdone to true iff (i) Idone = rdone = true, (ii) last_id = true,
and (fii) the p register contains a distinguished production . Otherwise, set done to false. Route
the contents of done vertically and diagonally downwards.

For example, after the update step, the Q-array would have the configuration shown in Figure 5.3. After
the update step for processor Q(1,n), it sends the contents of all of its local registers to processor P (n,n)
of the P -array to begin the next stage. In addition, processor Q (1,n) sends a signal to all processors of the
Q -array, this signal traveling upwards and to the left with unit-delay. When received by a Q -processor, it
sends the contents of all its local registers to the processor to its left and receives the updated values from
the processor to its right. The effect is that the entire parse tree is shifted out of the Q -array and pipelined
into the primary processors of the P -array (using the toroidal connections; see Figure 3.1).

Stage k > 1. Each subsequent stage after stage 1 effectively starts at the clock cycle when processor
P (n,n) receives an input from processor Q (1,n). At this clock cycle, processor P (n,n) sends the "begin-
parse” to all other processors to start reverse sweep 1 of the new stage. The data routing and computa-
tional steps performed during the stage are identical to those in stage 1, except for primary processors
which now receive inputs from the Q-array. For convenience, we assume that the input to a primary pro-
cessor is of the form [ = (p, ldone, done, rdone, id, last_id). The MATCH instruction issued by a pri-
mary processor now depends on this input. The main thing to note is that if a primary processor holds an
entry R (a,b) then input I represents the register contents of processor Q (a,b) after the update step of the
preceding stage. In particular, if argument p of the input holds a production x, then x is in R (a,b) and is
part of the parse tree last generated. The rest of the arguments of the input are used by the primary pro-

cessor to determine how the next parse tree would be generated, in a manner similar to that performed by
procedure PARSE .

The steps executed by a primary processor are as follows. (It is instructive to compare these steps
with procedure PARSE). At reverse sweep 1, processor P (n,n) sets sym(Cgq) = S as before. This time,
however, it checks the value of done from input I. If done = true, then the parse tree from the previous
stage is the last one and P (n,n) sends a signal to all processors to halt all computation. If done = false,
then there is a next parse tree, in which case processor P (n,n) sets tag (Co;) to NEXT.

The following steps are also performed by every primary processor P (j,j) that has a marked cell C
(C is Cy for processor P (n,n)):
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{A-)CB2

Figure 5.3. Register contents of the Q -array after the update step of stage 1.

(1) If tag (C) = CURRENT, then output MATCH (p, (CURRENT ,CURRENTY), id, last_id), where p, id,
and last_id are from input /.

(2) Iftag(C) = FIRST, then locate the first production © € pset (C) such that LHS(%) = sym(C). If this

also the last such production, distinguish © as &. Output MATCH (rt (or T), (FIRST ,FIRST), (j—1,0),
true).

(3) 1Iftag(C) = NEXT, check input / and do the following:
(a) If rdone = false, output MATCH (p, (CURRENT ,NEXT), id, last_id).
(b) If rdone = true and ldone = false, output MATCH (p, (NEXT ,FIRST ), id, last_id).
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(cy If rdone =true and lIdone = true, check last_id. 1If last_id = false, then output
MATCH (p, (FIRST ,FIRST), id’, true) where id’ is defined as follows: if id = ({,0) then
id = (,1); if id = (I,1) then id’ = (I-1,0) (this simply moves the starting point of the search
to the next cell-pair). If last_id = true, then locate the next production = in pset (C), after the
one stored in p, such that LHS(w) = sym(C). If this is also the last such production, distin-
guish w as . OQutput MATCH (x (or &), (FIRST ,FIRST), (j—1,0), true).

If a primary processor does not receive a marked cell, then it ignores input I and does not issue a MATCH
instruction; this produces the same effect as subroutine UNMARK in procedure PARSE .

Figure 5.4 illustrates the configurations of the systolic array for the n reverse sweeps of the second
stage. At the end of reverse sweep n, a new parse tree would be stored in the Q -array. As in stage 1, an
update step is performed for the done, ldone and rdone registers of the Q -array; the result is shown in
Figure 5.5. After this update step, the next stage is ready to begin.

Remark 5.1. In general, the systolic algorithm generates the parse trees in an order different from pro-
cedure PARSE. The reason is that, because of the "folded" mapping from convolving pairs to secondary

processors, the pairs are considered in a different order. Nevertheless, each stage always generates a new
parse tree.

6. Complexity Analysis

Since the underlying context-free grammar is in Chomsky normal form, every parse tree has size
(number of nodes) 2n—1, where n is the length of the input string. We show that the systolic parsing algo-
rithm runs in time O (m - n), where m is the number of distinct parse trees of the input string. The recog-
nition phase is completed after 3n—1 clock cycles (see Remark 4.1). One can also verify that the "begin-
parse” signal from processor P (n,n) that starts each stage occurs every 6n-3 clock cycles. Thus, the run-
ning time of the systolic array is 3n—1 +m - (6n=3)=0(m * n).

The systolic array has O (n?) processors. Each processor requires at most O (log n) space. Thus, the
total space complexity is O (12 log n). This is considerably more space-efficient than the systolic parsing
algorithm given in [LANGBf], which uses O (n* log n) space. In fact, one can do better for certain special
cases. As mentioned in Remark 4.1, each processor uses only constant space if only the recognition phase
is performed. This is in fact also true if only one parse tree is required as output. The id registers of the
Q -processors, which are the only registers that hold log n bits, are not necessary since the information

stored in these registers are only used after stage 1. Thus, to output the first parse tree, O (n?) total space
is sufficient.
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Figure 5.5. Register contents of the Q -array after the update step of stage 2.
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