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Abstract. We study issues that arise in programming with primitive recursion over non-free datatypes such as 
lists, bags and sets. Programs written in this style can lack a meaning in the sense that their outputs may be 
sensitive to the choice of input expression. We are, thus, naturally lead to a set-theoretic denotational semantics 
with partial functions. We set up a logic for reasoning about the definedness of terms and a deterministic and 
terminating evaluator. The logic is shown to be sound in the model, and its recursion free fragment is shown to 
be complete for proving definedness of recursion free programs. The logic is then shown to be as strong as the 
evaluator, and this implies that the evaluator is compatible with the provable equivalence between different set (or 
bag, or list) expressions . Oftentimes, the same non-free datatype may have different presentations, and it is not 
clear a priori whether programming and reasoning with the two presentations are equivalent. We formulate these 
questions, precisely, in the context of alternative presentations of the list, bag, and set datatypes and study some 
aspects of these questions. In particular, we establish back-and-forth translations between the two presentations, 
from which it follows that they are equally expressive, and prove results relating proofs of program properties, in 
the two presentations. 

1 Introduction 

1.1 Motivation 

The topic of this paper is programming by structural recursion on datatype presentations whose constructors 
satisfy equational constraints. Sets, bags (a.k.a. multisets) and lists with the "append" presentation, are 
our primary examples, and we use them in the exposition of the technical results. It should be clear, 
however, that this work fits in a more general paradigm. 

Our motivation came from recent object-oriented and database programming language designs. In the 
relational and in the complex object data models, most of the programming is done with sets, sometimes 
with bags. Of great interest is to design database programming languages whose type systems directly 
represent the underlying data models (see [Atkinson& Buneman 1987, Ohori et al., 19891 and references 
therein). We are therefore led to the study of languages with set datatypes, as in [Ohori et al., 19891. 

How do we program with sets? Past experience with relational algebra [Codd 19701 suggests that an 
applicative style with a well-chosen collection of primitives is remarkably expressive. Interestingly, 
programming with lists works out the same way [Bird & Wadler 1988, Backus 19781. Moreover, for 
lists, most programs, including the interesting primitives, can be expressed using definitions by structural 
recursion: 

- - - - - - - - - - - - -- 

'This is a slightly revised version of the paper that has appeared in the Proceedings of ICALP991.The authors are partially 
supported by ONR Grant N00014-88-K-0634, by NSF Grant CCR-90-57570, and by an IBM Graduate Fellowship. 



l e t  f ( N i l )  = N 

I f (Cons (x,  1) ) = C(x,  f (1) ) 
i n  . . .  f . . .  f . . .  

(Sometimes we need generalized structural recursion, where the second clause takes the form 

f (Cons (x ,  1) ) = C (x,  f (1) ,l) .) 

Part of the semantic justification for this programming construct is that (the meaning of) Nil and Cons 
generate all finite lists. Turning to sets, we note that the empty set, the singleton sets, and set union 
generate all finite sets. By analogy, here is an attempt to program cardinality in this style: 

l e t  c a r d  (Empty) = 0 
I c a r d ( S n g S e t  (x) ) = 1 
I c a r d  (Union (s l ,  s 2 )  ) = c a r d ( s 1 )  + c a r d  ( s 2 )  

i n  c a r d  (Union (SngSet  ( A ) ,  Union (Empty, SngSet ( B )  ) ) ) 

In a simple operational semantics, for example that of SML, this evaluates to the desired 2. Unfortunately, 

c a r d  (Union (SngSet  ( A )  , Union (Empty, Union (SngSet (A)  , SngSet  ( B )  ) ) ) ) 

evaluates to 3, even though we have a constructor representation of the same set. Perhaps the evaluator 
could be hacked to transform set representations to ones without repetitions, and thus give a c o m t  answer 
here? Leaving aside that this seems to require run-time checks of equalities which are not computable, 
let us argue that hacks that would accommodate programs like c a r d  would yield a fundamentally unsafe 
language. Consider the following chain of equalities, in which each step is done according to some axiom 
that we expect to be true: 

1 = c a r d  (SngSet  ( x )  ) = c a r d  (Union (SngSet  ( x )  , SngSet ( x )  ) ) = 

= c a r d ( S n g S e t  ( x ) )  + c a r d ( S n g S e t  ( x ) )  = 1 + 1 = 2 

We see that reasoning about programs becomes inconsistent, and, as a corollary, there is no reasonable 
denotational semantics for such hacks. 

To understand this problem, we must pursue the analogy with lists beyond the surface. The finite lists 
over a given set form, with cons and nil, an initial object in an appropriate category, and the meaning 
of a function defined by structural recursion is precisely the (unique) morphism that initiality postulates. 
Note that there are no constraints on cons and nil, and therefore no constraints on the operations that 
correspond to them in the target of the recursion. We will look for a similar adjointness (universality) 
property as the semantic basis for definitions by structural recursion on sets. Fix a set X, and consider 
Ph(X), the set of all finite subsets of X. It's not hard to see that P@(X) with union and the empty 
set is the join-semilattice-with-least-element freely generated by X via the injection of generators given 
by the singleton set constructor (the morphisms are the join-and-least-element-preserving maps). This is 
better said in purely algebraic terms: Pf, (X) with union and the empty set is the commutative-idempotent 
monoid freely generated by X via the singleton set mapping and with respect to monoid homomorphisms. 



Now the source of the problem we encountered above is clear: (IN, +, 0) is a commutative monoid 
but addition is not idempotent. Thus, there is no reason to expect a (commutative idempotent) monoid 
homomorphism from (P& (X), U, 0) to (IN, +, 0) and in fact no such exists (or else 1=2). 

Such problems do not arise for list programming with Nil and Cons because they are not equationally 
constrained. But similar problems would arise for list programming with Nil , SngList , and App since the 
operations that correspond to Nil and App must form a monoid. In general, choosing constructors whose 
intended semantics has equational constraints gives rise, at a minimum, to the following issues: 

r Datatype values may have more than one representation as constructor expressions in the language. 
One must prove that the evaluator is compatible with constructor expression equivalence (takes 
equivalent inputs to equivalent outputs). 

r Not all programs that parse and typecheck have a meaning: for that, each of the definitions by 
structural recursion that they make must be correct, a property that depends on the meaning of 
component program phrases. Since these may contain global variables (free in the component 
phrases but bound in the program as a whole) any denotational semantics must deal with partiality 
even though with structural recursion all computations terminate. 

r Checking definedness (meaning exists) is in general not decidable. Only restricted cases might be 
amenable to compile time definedness checking, similarly to type checking. Checking definedness 
is in general not even r.e. We can hope, however that programmers can prove the correctness of 
most practical definitions by structural recursion. An (inevitably incomplete) logic of programs 
would be useful to that effect. Such a logic must have at a minimum definedness and equational 
formulas, hence it will also serve as a logic of program equivalence. Moreover, structural induction 
should be available in this logic, as the principal means of proving properties of functions defined 
by structural recursion. 

Investigating these issues is our primary motivation. Our secondary motivation comes from the examples 
of such datatypes that we have in mind, which are presented in Figure 1. It is natural to ask in what 
way the two alternative presentations of say, lists, are related. Is there a uniform way of translating 
programs using structural recursion on Nil and Cons into programs using structural recursion on Nil, 
SngList , and App ? And vice-versa? The same questions arise for the alternative presentations of bags 
and sets. Moreover, the presentations of bags can be seen as hierarchically dominated by those of lists, 
and those of sets as dominated by those of bags, since, for example, the commutative-idempotent monoids 
determine a full subcategory in the category of commutative monoids, which is a full subcategory of the 
category of monoids. Do the above mentioned connections between the alternative presentations of lists 
uniformly specialize to connections between the two presentations of bags, and further, of sets? 

We conclude this section with the observation that all these presentations seem to be very useful. For 
example, the list reverse function has a more immediate and elegant definition in the Nil , SngSet , and App 
presentation, than in the Nil and Corn presentation. In [Breazu-Tannen et al., 19911, we have a program 
that computes transitive closure using structural recursion on the Empty and Ins presentation of sets. It 
is not at all obvious how to directly discover a program for transitive closure using the Empty , SngSet , 
and Union presentation (although by the work in Section 3 we know that there is a uniform translation). 

'How then do we program cardinality in this style? Note that addition is still commutative, so an analogous program would 
have worked fine for computing the ~~~diinality of bags. It is then sufficient to program the fundamental function that coerces 
a set into a bag. To do this by structural recursion we need the appropriate commutative-idempotent monoid structure on bags. 
This is given by the "max" operation, and implementing it requires that the elements of the underlying type have equality. (Not 
surprisingly. since A = B is equivalent to card(Union (SngSet (A),SngSet ( B ) ) )  = 1 .) 



1.2 Other related work 

Pascal has a type of sets but they are restricted to sets of integers or similar, and hence cannot be used for 
relational database programming. Pascal-R [Schmidt 19771 is a clean and powerful extension that adds 
a type of relations (sets of tuples) together with some primitive operations on relations and a "for-loop" 
whose "index" ranges over all tuples in a given relation. This is the imperative analogue of the functional 
structural recursor in our [Set presentation (see Figure I), and it has therefore the safety problems that we 
are concerned with (probably only those that appear because of the use of noncommutative counterparts 
to Ins , since we suspect that Pascal-R's operational semantics maintains "canonical" representations for 
relations). SETL [Schwartz et al., 19861 is a language that lacks the strong typing of Pascal-R but deals 
with more general kinds of sets. It has however, a similar for-loop construct and hence faces the same 
problems. One could try to apply our ideas to these languages, but we suspect that the possibility of 
side-effects in the body of the for-loops will complicate the semantics substantially. 

The idea of alternative presentations of lists, and programming using structural recursion in all these 
presentations also appears in [Wadler 19871. Wadler also notes that the usefulness of programming with 
the Mist presentation has been suggested for reasons of mathematical elegance by Meertens and of 
efficiency by Sleep . 
In programming language theory most of the research on issues involving set semantics has concentrated 
on powerdomains, with the primary motivations coming from studying nondeterminism and concur- 
rency [Gunter '19861. A powerdomain semantics for relational and complex object databases is discussed 
in [Buneman et al., 19891. 

1.3 Overview 

In Section 2 we present general results about languages built on top of the simply typed lambda calculus 
with products, by adding datatype presentations like those in Figure 1. The results are stated for an 
example, that of sets constructed from the empty set, singleton sets and union (the USet presentation) but 
they hold for a general class of such languages. In subsection 2.2 we give a semantics based on sets 
and partial functions, which nonetheless models the equational constraints for the constructors and the 
adjointness property used to express the meaning of structural recursion. Programs that are not defined (do 
not have a meaning) in this model should be rejected. In subsection 2.3 we show that a simple evaluator, 
deterministic and terminating, and which otherwise ignores the constraints on the constructors, is sound 
in the previously given denotational semantics, and as a consequence is compatible with the equivalence 
between different expressions denoting the same set (or bag, or list). In subsection 2.4 we first argue 
that definedness is in general undecidable, in fact, not even recursively axiomatizable, and then we give 
a logic that approaches definedness well enough to cover most of the examples we studied. Reasoning 
about the definedness of terms in turn requires reasoning about term equality. The logic is shown to be 
sound in the model, and its recursion free fragment is shown to be complete for proving definedness of 
recursion free programs. The logic is then shown to be as strong as the evaluator, and this implies that the 
evaluator is compatible with the provable equivalence between different set (or bag, or list) expressions. 

In Section 3 we investigate the relation between the alternative presentations of lists, bags, and sets (see 
Figure 1). In subsection 3.1 we establish back and forth connections between the initiality situations on 
which these presentations are based. The connections are established first for lists, then they are uniformly 
specialized to bags, and further, to sets. In subsection 3.2, we present the syntactic counterparts of these 
semantic connections, in the form of effective translations between the corresponding languages. We end 
with some proof-theoretic compatibility properties between the translations and the logics introduced in 
subsection 2.4 



CList 
Nil , : CList ( a )  
x : a , 1 : C L t t  ( a )  t Cons ,(x, 1 )  : CList ( a )  

AList 
Nil , : AList ( a )  
x : u I- SngList ,(x) : AList ( a )  
11,  l2 : AList ( a )  t- App , ( 1 1 ,  1 2 )  : ALt t  ( a )  

IBag 

Inc (x,Inc (y ,b) )  = Inc (y,Inc (2,b))  I Sum (Sum (b17 b2), b3) = Sum (bl ,  (Sum b2, b3)) 
Sum (b,Zero) = b 

App (1,Nil)  = 1 =App (Nil , I )  
SBag 

Zero, : IBag ( a )  
x:a,b:IBag(o)I-Inc,(x,b):IBag(a) 

Zero, : SBag ( a )  
z : a t - O n e ~ ( x ) : S B a g ( a )  
bl , b2 : SBag ( a )  t- Sum , (bl , b2) : SBag ( a )  

ISet 
sum (b1,b2) = Sum (b2,b1) 

USet 
Empty, : ISet ( a )  
x : a , s : lSet ( a )  I- Ins,(x, s )  : ISet ( a )  

Figure 1: Datatypes, Constructors and Equational Constraints 

Empty, : USet ( a )  
x : a I- SngSet ,(z) : USet ( a )  
s,, s2 : USet ( a )  I- Unwn ,(sl, s2)  : USet ( a )  

Ins (z , Ins  ( y , ~ ) )  = Ins ( Y , I ~  (v)) 
Ins (x,Ins ( x , s ) )  =Ins ( x , s )  

2 Syntax, Semantics and Logic 

Union (Unwn ( s l y  s2) ,  ~ 3 )  = Unwn ( s l  , Union (s2, sg)) 
Union ( s ,  Empty ) = s 
Union (s17 s 2 )  = Union (s2, s l )  
Union ( s ,  s )  = s 

2.1 Syntax 

We consider languages built on top of the simply typed lambda calculus with products, and, say, some 
unspecified base type L and some unspecified constants of base type co, el ,  . . . . To this, we add datatype 
presentations like those in Figure 1, plus, for each such datatype, a construct for expressing functions 
defined by structural recursion. We only specify the notation in the case of the USet presentation, which 
is our generic example. Instead of the syntactically sugared expression in the style of Section 1.1 

let f (Empty) = E 
I f(SngSet(x)) = S X  
I f (Union (sl, s2) ) = U <f sl , f s2> 

in M 

we use M [USetRec(E, S ,  U ) /  f]  where 

r t - E : r  I ' I - S : a + r  F I - U : ( T X T ) - + T  
USetRec(,,,)(E, S ,  U )  : USet ( a )  + T 

mechecking rules are as in the simply typed lambda calculus, and in our treatment we will assume that 
the terms under consideration typecheck, but we will routinely omit types and type subscripts. 



From the six datatypes that are described in Figure 1, we obtain in this way six different languages, all of 
which, except for the one given by CList , raise the issues discussed in Section 1.1. In subsections 2.2, 
2.3, and 2.4, we state our results only for the USet language, but it is clear that they generalize to the 
other four languages of interest as well as a whole class of similar problems. 

2.2 Denotational Semantics 

Potential, undefinedness has only one source, namely the meaning of structural recursion. In the presence 
of lambda abstraction however, partiality affects the entire language. Types are interpreted as sets, as 
follows: 

A 
[ L ]  = an unspecified nonempty set. 
[a +- r ]  P the set of all partial functions from [o] to [ r ] .  

[a x T ]  the cartesian product of [ a ]  and [ T I .  
[User ( T ) ]  P P ' ( [ r ] ) ,  the set of all finite subsets of I T ] .  
We call the collection of sets (indexed by types) defined here the Partial Type Hierarchy over [ L ] ,  notation 
P .  Environments are total, type-preserving, functions that map variables to values in P .  The meaning of 
a term t is a partial function [ t ]  that maps environments to values in P ,  defined as follows (the notation 
A 
21 means that the left hand side is defined as the right hand side whenever the latter exists, and undefined 
otherwise). 

[ Z I P  P P ( X )  
A [c;]p = an unspecified element of [ L ]  

A a 
[ t l t d ~  & f t l l ~ ( I t 2 l ~ )  [Xy.t]p = Q, where q ( a )  21 [ t ]p [y /a ]  

ISngSet (t)l P & {[tip) 
A 

IEmprv I P 2 0 [[Union(t17 t 2 ) ] ~  - [ t l ] ~  u Bt21p 

The denotation of a term of the form U s e t R e ~ ( , , ~ ) ( E ,  S, U )  needs some care. According to the 
semantic paradigm suggested in subsection 1.1, its meaning in environment p should be the unique 
homomorphism h from (P j ,  ( [ a ] ) ,  0 ,  U) to ([T], [ E ] p ,  [ U ] p )  satisfying h ( { a )  = [S]lp(a) , provided 
that ( [T I ,  [ E ] p ,  [ U ] p )  is a commutative idempotent monoid. In the context of the overall semantics 
however, [ E ] p  may be undefined, and [ S ] p  or [U]p may be partial, so we need to check that the semantic 
paradigm carries through. 

Define strong equality as follows, el E e2 holds if and only if either both el and e2 are defined and are 
equal, or they are both undefined. Using this, we can talk about partial monoids and homomorphisms. 

Lemma 1 Fix a set X .  For any partial commutative idempotent monoid ( M ,  a ,  e )  , and any partial 
function f : X - M , there is a unique partial homomorphism h : (Ph ( X ) ,  U ,  0) - ( M ,  ., e )  such 
that h ( { x } )  2 f (4 

This suggests that the existence of the meaning of U S ~ ~ R ~ C ( , , ~ ) ( E ,  S, U )  in p should be conditioned 
on ( [r] ,  [U]p ,  [ E ] p )  being a partial commutative idempotent monoid. It turns out however, that this is 
sometimes too strong a condition. More economically, we only need to have a structure of commutative 
idempotent monoid on those elements of [ T I  which will end up in the range of USetRec(E, S ,  U )  . This 
extra flexibility is exploited in Section 3.2 when we translate ISet structural recursion via USet programs. 
It is also reflected in the logic of definedness and equality as the basis for the soundness of the "range" 



induction principles (see subsection 2.4) which are used, among other things, to prove the definedness of 
the above mentioned translation. 

We therefore define GEN ( E ,  S ,  U ,  p) , which we refer to as the range set, to be the smallest subset of 
[T] with the following properties: 

if [ E ] p  is defined then [ E ] p  E GEN ( E ,  S ,  U ,  p); 

if a E [a] and [ S J p ( a )  is defined then [[SIp(a) E GEN ( E ,  S ,  U, p) ; 

if b, c E G E N ( E ,  S ,  U ,p )  and [Uljp(b, c )  is defined then [U]p(b, c )  E GEN ( E ,  S ,  U, p) . 
Note that the range of [ S ] p  is included in GEN ( E ,  S ,  U, p) . Now, if for all a ,  b, c E GEN ( E ,  S ,  U, p) 
the following strong equalities hold: 

(assoc) [Ulp(CU1p(a7 b), c )  - BU1lp(a7 BUBp(b7 c ) )  

(ident) BUIP(BEIP, a )  CY a 1! BUIp(a7 [ E b )  

(comm) [U]lp(a,b) 2 BUIp(b, a )  

(idemp) [U]l~(a7 a )  - a 

then (GEN ( E ,  S ,  U ,  p), [Ulp ,  [ E J p )  is a partial monoid and we define [USetRec(E, S ,  U ) ] p  to be the 
unique partial homomoxphism h : Pfi (1.1) - GEN ( E ,  S ,  U, p) such that h ( { a ) )  cz [ S ] p ( a )  , whose 
existence is insured by Lemma 1. Otherwise, [USetRec (E, S, U ) ] p  is undefined. 

2.3 Operational Semantics 

An operational semantics for the language is presented in Appendix B. As usual, only closed terms are 
evaluated. If P 4 v then v is called a value. The product and set constructors are evaluated eagerly. We 
use a call-by-name rule, but this is not particularly important, since all programs terminate and hence, an 
evaluator employing call-by-value would be essentially equivalent. The evaluator is deterministic: 

Lemma 2 ZfP 4 vl and P 4 v2 then vl = v2 

And always terminating: 

Theorem 3 (Strong Normalization) For every closed term P there is a value v such that P 4 v. 

This is shown by extending the proof of strong normalization of Godel's System T (see [Barendregt 19841 
or [Girard et al., 19891). 

Next we see that even though the evaluator is oblivious to the equational constraints on the constructors, 
it is nonetheless sound in the semantics of the previous subsection, which validates these constraints. In 
what follows, when we say that a closed term is defined, we mean that the term has a meaning (in the 
null environment) in Pi according to the semantics in the previous subsection. 

Theorem 4 (Soundness of Operational Semantics) lf P is dejned, and P 4 v, then v is defined, and 
[PI = [v] in P. 

The desired compatibility of the evaluator with the datatype constraints follows immediately. 



Corollary 5 (Compatibility) Let P be a defined closed term of type USet ( a )  + T ,  and let S1 and S2 
be two defined closed t e r n  of type USet (a), denoting the same set. If PSI lJ vl and PS2 6 v2 then 
[v11 = 1 ~ 2 1 .  

An analysis of the operational semantics shows the following two facts. Any term of type L evaluates 
to some constant c;. Any term of type USet ( T )  evaluates to a term of the form A[tl,..,t,], where 
A[] is a purely algebraic context composed of Union, SngSet and Empty, the ti's are closed terms 
of type T.  What is usually called computational adequacy is an immediate consequence of the strong 
normalization theorem and the soundness theorem, that if a term is semantically defined, then (a) if its 
meaning is c; E B, then t & c;, and (b) if its meaning is a set {el, ..,en), then it evaluates to a term of 
the form A[tl,..,t,], where An is a purely algebraic context composed of Union, Sng Set and Empty, 
with {[t;] : 1 5 i 5 m} = {el,..,e,}. 

We also get as an immediate consequence that if two program phrases (i.e. two not necessarily closed 
terms) are semantically equal in all environments, then they are observationally equivalent, that is, when 
put in closed contexts of "obsetvable type" yielding defined terms, they evaluate to values that are 
semantically equal. Observable types could be, for example, the types of complex objects, which are 
constructed out of set types, product types and L. For these, semantic equality of values, is easily seen to 
be decidable, and completely axiomatizable by the equational constraints on the constructors, hence .the 
same as provable equality in the logic of subsection 2.4. 

2.4 Logic of Equality and Definedness 

As we have seen in the previous section, the programs that are defined (their meaning in the model of 
subsection 2.2 exists) evaluate correctly. Moreover, we can reason consistently about such programs, 
provided that our reasoning is sound in the same model. We advocate, of course, that definedness should 
be established statically, prior to evaluation. It would be nice if we could deal with dehedness checking 
in the same way we deal with most type checking: automatically and at compile time. Unfortunately: 

Theorem 6 For each of the languages based on AList , IBag , or SBag , checking whether a closed term 
is defined is TI:-hard. 

We do not know at this time how hard the problem is for the recursion constructs over ZSet and USet . In 
any case, once we add, say, the natural numbers and recursion over them, one cannot hope for definedness 
to be recursively axiomatizable. One can, however, hope to prove that given individual programs are 
correctly defined, and, in fact, we have accumulated a certain amount of experience with such proofs 
(see, for example, Section 3.2). We think that it is valuable to design formal systems for such proofs, on 
one hand to serve as rigorous inspiration for informal verifications, on the other to explore the possibility 
of automating some of the arguments. While such a formal proof system is necessarily incomplete, we 
see it as evolving and becoming richer in interaction with programming practice, with soundness in the 
denotational semantics as the only theoretical limitation. The logic we consider in this paper is presented 
in Appendix B. 

Reasoning about the dehedness of terms in turn requires reasoning about term equality. Hence, the 
formulae are universally quantified term equalities, and universally quantified definedness assertions. Up 
to a point our problems are similar to those of the call-by-value lambda calculus, for instance P and 

are not sound in our model. Thus, for reasoning about the recursion free fragment of our languages 
(base, function, and product types) we have a logic that is essentially equivalent to Moggi's unconditional 



A,-calculus [Moggi 19851, though we additionally have product types and a couple of rules are stated 
slightly differently. It is the structural induction principles that give to our logic its distinctive flavor. To 
deal with induction, we use a notation reminiscent of intuitionistic sequents, but the logic is best viewed 
as a natural deduction proof system, the left hand side of the sequents containing the premises of the 
deduction. The premises of induction steps contain eigenvariables that occur, in general, on both sides of 
the sequent. These variables may be considered to be quantified over the entire sequent. 

The usual structural induction principle INDuset (see Appendix B )  appears to be insufficient for certain 
useful arguments in which the induction is valid not on entire types, but only on certain subsets (see 
subsection 3.2), so we add a "range" induction principle 

where x ,  m, n are fresh variables. The soundness of this principle makes use of the complication in- 
volving "range sets" in the the denotational semantics of structural recursion in subsection 2.2. The 
range set complication in the model is then reflected in the reasoning about the definedness of the struc- 
tural recursion construct, namely USetRec(E, S, U )  . Instead of simply requiring, for example, that 
U ( x ,  U ( y ,  z ) )  = U(U(x ,  y ) , z )  we require that U(Hs1,  U(Hs2, H s ~ ) )  = U(U(Hs1,  H s ~ ) ,  H s ~ )  
where H - USetRec( E ,  S,  U )  . Apparently therefore, proving the definedness of USet Rec(E, S, U )  
requires proving some equational properties this terms already has! Luckily, these can be shown using 
the range induction principle. 

Theorem 7 ( Soundness) The logic is sound with respect to the denotational semantics in P .  

While the entire logic must be incomplete for reasoning about P ,  its recursion free fragment could 
conceivably do better. Moggi shows that the A,-calculus is complete for reasoning over all partial cartesian 
closed categories [Moggi 19851. We are, of course, not interested in reasoning about models in which we 
cannot interpret the datatypes with structural recursion. For reasoning in P ,  Moggi has an incompleteness 
result, but it involves more complex formulas than the ones we are considering [Moggi 19851. In fact,, 
we can show the following. 

Theorem 8 (Restricted Completeness) Let t be a term in the recursion freefragment of the language. I f  
t is defined in all environments, then Def ( t )  is provable in the logic. 

Finally, we investigate the relationship between our logic and the operational semantics. Since the logic is 
denotationally sound and semantic equality implies observational equivalence, the logic can also be used 
for reasoning about observational equivalence. Moreover, we can show a few facts that do not follow 
from this by directly relating the logic and the evaluator. 

Theorem 9 Let P be a closed term. I f  Def ( P )  is provable in the logic and P 4 v then P = v is 
provable in the logic. 

This gives us a proof-theoretic version of the compatibility result in Corollary 5: 

Corollary 10 (Provable Compatibility) Let P be closed term of type USet (a )  -t T, and let S1 and S2 
be two provably equal closed t e r n  of type USet (a) ,  such that PS; are provably defined. If PSI 4 vl 
and PS2 4 v2 then vl and v2 are provably equal. 



3 Relating Cons and App , Inc and Sum, Ins and Union 

3.1 The semantic connection 

Definition 11 An X-dynamic is given by an ordered triple ( M, SM : X x M -+ M,e), where M is a 
non-empty set, and e E M. A morphism between two X-dynamics (MI, el, bM1 ) and (M2, e2, SM2), called 
an X-dynamorphism, is a function g:Ml -t M2 such that g(el) = e2, and the following diagram commutes: 

For a fixed set X, the category of X-dynamics and X-dynamorphisms is called DYN(X). The full subcat- 
egory of DYN(X) with S satisfying (1 below) is called CDYN(X). The full subcategory of X-dynamics 
with the 6 function satisfying (1) and (2 below) is called ICDYN(X). 

Definition 12 Given a set X, the category MON(X) is defined as follows: the objects of this category 
are quadruples (M,.,e,v) where (M,-,e) is a monoid and 7 : X -t M. A morphism between two such 
objects (M,-,e,q) and (M',-',e',q3) is a monoid homomorphism h:M-tM' with the additional property that 
the following diagram commutes: 

V 

M-M' 
h 

The full subcategories of MON(X), where the underlying monoids of the objects are commutative and 
commutative idempotent, are called CMON(X) and ICMON(X), respectively. 

Note that ([CList (a)], Nil ,Cons ) is an initial object in the category DYN([a]), and that ([AList (a)], Nil , 
SngList ,App ) is an initial object in the category MON([a]). A similar relationship holds between the 
obvious algebras corresponding to IBag and SBag , on the one hand, and CDYN(X) and CMON(X), 
and similarly between the ISet and USet algebras, on the one hand, and the categories ICDYN(X) and 
ICMON(X). In what follows, we will see that, for the case of the list algebras, these two semantics 
can be constructed from each other, and moreover, that these constructions will uniformly specialize to 
relate the semantics of IBag and SBag , and further, of ISet and USet . More importantly, we will see 
that these constructions also relate the unique morphisms postulated by initiality, hence the semantics of 
the structural recursors. 

To every object M = (M, ., e, 7) in MON(X) we associate an object @(M) = (M, e, S) in DYN(X), 
where S(x, m) = ~ ( x )  . m . 



Theorem 13 M is initial in MON(X) i f  and only i f  @(M) is initial in DYN(X). 

Proof Sketch. We omit the "only i f '  part (but warn that it uses induction on the X-dynamics structure 
on M, and the validity of induction is a consequence of initiality). For the "if" part, let (N, f ,  E )  be an 
arbitrary X-dynamics. To exploit the initiality of M, we must "fabricate" a monoid out of N. The idea 
is to take the monoid of (total) functions N + N , with composition and the identity map. In order 
for the proof to specialize uniformly to bags and sets, we take the extra step (not really necessary for 
lists) of considering the submonoid of N -t N generated by the set of functions F = {Xn.~(x, n)  1 
x E X )  , call it F*. By the initiality of M there is a unique MON(X)-morphism h from M to 
(F*, o,id, Xx.Xn.~(x,n)) . Define g : M + N by g(m) = h(m)(f) . It is easy to verify that g is an 
X-dynamorphism. The uniqueness of g follows from the observation that for every X-dynamorphism q 
from @(M) to (N, f , ~ )  we have q(m) = h(m)(f) , which is proved by induction on the monoid- 
generated-by-X structure on M (again the validity of this induction principle follows from initiality). 
I 
When we specialize this proof to, say, sets, we show additionally that if is commutative and idempotent, 
then so is 6, and that if E is commutative and idempotent, then so is o on F* (o is, in general, neither 
commutative, nor idempotent on N + N , and this explains the extra step taken in the construction). 

Now for the converse construction. For every object D = (D, e, 6) in DYN(X), we construct, as in the 
proof of Theorem 13, the submonoid of D -t D generated by the set of functions F = {Xd.S(x, d) 1 
x E X )  , call it F*. We associate to D the object Q(D) = (F*,  o, id ,  Xx.Xd.S(x, d)) in MON(X). 

Theorem 14 D is initial in DYN(X) i f  and only i f  Q(D) is initial in MON(X). 

Again, this result and its proof uniformly specialize to bags and sets. 

Now, if M is initial in MON(X) then by Theorems 13 and 14, Q(@(M)) is also initial, hence isomorphic 
to M . Similarly, if D is initial in DYN(X), @(Q(D)) is isomorphic to D. 

3.2 Relating languages 

The attractive semantic connection presented in subsection 3.1 has a syntactic counterpart, effectively 
relating the language based on CList to that based on AList , and similarly for bags and sets. Taking the 
case of lists, we can (almost), out of the proofs and definitions in subsection 3.1, extract a translation that 
takes AList programs to CLkt programs, and a translation that does .the converse. Almost, because the Q 
construction taken literally, would require to define AList (a)  as a "subset" of CList (a) + CList ( a )  
and we don't know how to fit this in the system of simple types. Luckily, 

Lemma 15 If D = (D,e,6) is initial in DYN(X), then Q(D) is isomorphic to (D,.,e,Xx.6(x,e)) 
where dl . dz = gd, ( d 2 )  with gdl being the unique X-dynamorphism from D to ( D ,  dl, 6) . 

This suggests that the types can stay the same and that we can get an effective translation of the AList 
constructors by CList progranls. Moreover, this lemma specializes uniformly to bags and sets. 

Figure 2 gives the important definitional clauses of these translations for the ISet and USet languages. 
Note that in order to translate structural recursion on ISet by a USet program, we still make use of the 
(syntactic counterpart of the) Q construction: since in general the (meaning of the) target of the recursion 
is not initial, Lemma 15 cannot be used. 



@(User ) = ISet 

@(Union (TI ,  T 2 ) )  = ISetRec(@(T2), X(x, s )  Jns ( x ,  s ) )@(T l )  

@(SngSet ( A ) )  = Ins ( @ ( A ) ,  Empty ) @(Empty ) = Empty 

@(USetRec(E, S ,  U ) )  = ISetRec(@(E), X(x, z) .@(U)(@(S)x,  z ) )  

@(ISet ) = USet 

@(Empty ) = E ~ t y  @(Ins ( A ,  T ) )  = Union (SngSet ( @ ( A ) ) ,  @(T))  

@(ISetRec(E, I ) )  = Xs.(USetRec(id, Xx.Xz.Q(I)(x, z ) ,  o )  s Q ( E ) )  

Figure 2: Translations 

Let LIser and Luset stand for the languages with ISet and USet , respectively, as the datatypes. Let 
Th stand for the rules and axioms in the recursion free fragment. Let Thlser stand for Th plus rules 
for ISetRec (see Appendix B) without the two induction rules. Let Thusel stand for Th plus rules for 
USetRec (see Appendix B) with out the two induction rules. The following theorem establishes a proof 
theoretic relationship between equations in the Language LIset , and their translates in Luser via Q, and 
equations in the language Luset and their LISet translates via Q. 

Theorem 16 (i)  IfThIser I- tl = t2 then Thuset + INDuset I- @ ( t l )  = !P(t2). 

(ii) IfThuset I- t l  = t2  then Thm + INDlset I- @( t l )  = @(t2). 

(iii) For any tenn t in the language Luset , Thusel + INDuset I- t = @(@(t) ) .  

(iv) For any term s in the language &set , Th~set + INDIs~~  I- s = !P(@(s)) 

In subsections 2.4 and 2.2 we motivated the range set construction and the range induction principle, 
respectively, to deal with structural recursions USetRec(,,,)(E, S ,  U )  in which (871, [U] ,  [ E l ,  [U] ) is 
not a monoid, while (GEN,(E, S ,  U, p), [Ulp, [E]p ,  [Unp) is. Dealing with such recursions is important 
in Theorem 16. For instance, consider the translation (via @) of the (provably defined) closed term 
ISet  Rec(E, I )  (Here, F provably has .the property that I ( x ,  I( y, 2)) = I (  y ,  I ( x ,  z ) ) ,  ( z  ranging over the 
set G E N ( E ,  I )  .) Proving the definedness of the !I!-translation this term requires proving the definedness 
of USetRec ( id ,  @ ( I ) ,  o ,  )). It is clear, that in general o is not commutative, but it is commutative over 
the set GEN,(id, @ ( I ) ,  o ,  p) (and similarly for idempotence). 

4 Further research 

The reader may have noticed that we have avoided fixed point recursion. One of our main concerns is the 
choice of basic constructs for programming with sets and bags. For datatypes like CList or binary trees, for 
example, there is a simple minded translation of structural recursion into fixed point recursion which uses 
"inverses" to the constructors (head and tail for CList or taking the root, and the left and right subtree for 
binary trees). In general, no such inverses exist for datatypes with equationally constrained constructors. 
Some languages implement "non-deterministic" inverses, for example "choose" as an inverse to set insert, 
"partition" as an inverse to bag sum. It seems that to program with sets using "choose", one would need 



a "delete" function as well, restricting one to deal with equality types. That aside, a clean semantics for 
these seems to be considerably more complicated than that of structural recursion, and the presence of 
fixed point recursion suggests powerdomains. An in depth comparison of such an approach with the one 
that we take in this paper seems interesting. 

So far, we did not develop our treatment enough to cover generalized structural recursion (see subsec- 
tion 1.1) but this is clearly of great practical importance and is next in line. Further down the line, it 
would be interesting to see the interaction of structural recursion on datatypes with general recursion in 
the language. Is the logic we propose in this paper still sound for proving observational equivalence? 

Our investigation here raises a number of questions. We would like to understand the proof theory better. 
For example, is the A,-calculus, which is part of our logic, conservatively extended by our logic? Are 
there more restricted completeness results or normal form theorems (for either the entire logic, or for 
interesting fragments of it)? We leave open the question of decidability of definedness and semantic 
equality for the languages with USet and ISet datatypes (see Theorem 6 in subsection 2.4). 

Yet another issue is a precise understanding of the intuition that any program on sets can also be viewed 
mutatis mutandis as a program on bags and further down on lists. For example, a definition of the cartesian 
product function on ISet , after merely replacing the recursor and constructor names by the recursor and 
constructor names in the language containing CList , will become a list cartesian product function (though 
there are more than one list cartesian product functions). 

Finally we remark that Theorem 16 is restricted to the translation of equalities that have induction free 
proofs, even though induction is used in the proof of the translated equalities. Based on the semantic 
results in subsection 3.1, we expect that inductive proofs can also be translated, but it seems that we 
cannot stay within an equational logic while doing this. 
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APPENDIX A : OPERATIONAL SEMANTICS 

In the following H abbreviates USetRec(E, S, U). 

M JJ. v M u v l  NUv2  M Jj (AX. L) L\N/x] v 
SngSet (M)  .& SngSet (v) Union (M, N )  J,l Union (vl, v2) M N $ v  

M Jj H N JjSngSet ( P )  SPUV 
M N U v  

APPENDIX B :LOGIC 

Recursion Free Logic 



r t - q  ( q E r )  I' I- Def ( x )  rt-t x t 

I' I- Def ( X X . ~ )  I' I- (Xx. t)x  x t I' I- Xx.yx x y ( y  is a variable) 

Def ( t l t 2 )  I- Def ( t l )  Def ( t l t 2 )  I- Def ( t l )  

r t - t  

I'l t- Def ( t ; )  ( i  5 n)  I'2 I- Q 

r,[Z/t f  U r1 I- q[z/ t f  

I' u {Def ( t l )  I- t l  x t2 I' U {Def ( t 2 )  I- t l  x t2 
r I- t l  x t2 

I' I- tl x t2 I' I- Def ( t l )  
I' I- Def ( t2 )  

I' I- Def ( t l )  I' I- Def ( t 2 )  I' I- Def ( ( t 1 7 t 2 ) ) i  = 1,2 
I' I- Def ( ( t l ,  t 2 ) )  I' t- Def ( t i )  

i = 1,2  

Rules For USetRec and associated Constructors 

r I- Union ( s l ,  Union ( s 2 ,  S S ) )  M Unwn (Union ( s l ,  sa), s s )  I' I- Union ( s ,  s )  s 

I' I- Union ( s ,  E m p t y )  w s I' I- Union ( s l ,  s 2 )  M Union ( s 2 ,  s l )  I' I- Def (Empty ) 

I' I- Def (SngSet ( t ) )  I' I- Def ( t )  
I' I- Def ( t )  I' I- Def (SngSet ( t ) )  

I' I- Def (Union ( t l ,  t 2 ) )  I' I- Def ( t l )  r I- Def ( t 2 )  
I' I- Def ( t i )  I' I- Def (Union ( t l ,  t 2 ) )  

In the following H abbreviates USetRec ( E ,  S ,  U ) :  

r I- ICMON ( E ,  S ,  U )  r I- Def ( H  
I' t- Def ( H  ) I ' t - H S n g S e r ( t ) ) x S t  

I' t- Def ( H  ) 
I' !- H Unwn ( t l , t2)  x U ( H  t l , H  t 2 )  

Here I' F ICMON ( E ,  S ,  U )  abbreviates the following premisses ( x ,  y ,  z are fresh variables): 

( iden t )  r t- U ( E ,  H x )  x H x x U ( H  x ,  E )  

(assoc) I' I- U ( H  x ,  U ( H  y, H z ) )  x U ( U ( H  x ,  H y ) ,  H z )  

( c o m m )  I' I- U ( H  x ,  H y) x U ( H  y, H x )  

( idemp)  I' t- U ( H  x, H x) x H x 



I' I- e[Empty / z ]  I' I- e[SngSet ( x ) / z ]  r , e [ s l / z ] ,  e [ s2 / z ]  I- e[Union ( s l , s 2 ) / z l  
I ' I - e  (IND user ) 

( x ,  s l ,  s2 are fresh) 

APPENDIX C : RULES FOR ISetRec 

r I- Def (Ins (tl , t 2 ) )  r I- Def ( t l )  r I- Def ( t2)  r I- Def (Empty ) r I- Def ( t i )  Def (Ins (t17t2)) 

r I- ~ n s  ( x ,  I ~ S  ( y ,  s ) )  = ~ ~ n s  ( y , l m  ( x ,  s ) )  r I- IKY ( x , h  ( x ,  s ) )  = ::m ( x ,  s )  

In the following H abbreviates ISetRec(E, I ) .  

I? I- ICDYN E , I  I' I- Def(H hr I ' I - H Z m ( x , s ) = J ) ( x , ( H s ) )  

Here I' I- ICDYN(E, I )  abbreviates the following sequents ( x ,  y, z  are fresh): 

(comm)  ~ I - I ( X , ( Y , H ~ ) ) = I ( Y , ( X , H ~ ) )  

( idemp)  I' I- I ( x ,  ( x ,  H  z ) )  = I ( x ,  H  a )  
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