
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

October 1991

Logical and Computational Aspects of Programming With Sets/Logical and Computational Aspects of Programming With Sets/

Bags/Lists Bags/Lists

Val Tannen
University of Pennsylvania, val@cis.upenn.edu

Ramesh Subrahmanyam
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Val Tannen and Ramesh Subrahmanyam, "Logical and Computational Aspects of Programming With
Sets/Bags/Lists", . October 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-29.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/382
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/382
mailto:repository@pobox.upenn.edu

Logical and Computational Aspects of Programming With Sets/Bags/Lists Logical and Computational Aspects of Programming With Sets/Bags/Lists

Abstract Abstract
We study issues that arise in programming with primitive recursion over non-free datatypes such as lists,
bags and sets. Programs written in this style can lack a meaning in the sense that their outputs may be
sensitive to the choice of input expression. We are, thus, naturally led to a set-theoretic denotational
semantics with partial functions. We set up a logic for reasoning about the definedness of terms and a
deterministic and terminating evaluator. The logic is shown to be sound in the model, and its recursion
free fragment is shown to be complete for proving definedness of recursion free programs. The logic is
then shown to be as strong as the evaluator, and this implies that the evaluator is compatible with the
provable equivalence between different set (or bag, or list) expressions. Oftentimes, the same non-free
datatype may have different presentations, and it is not clear a priori whether programming and reasoning
with the two presentations are equivalent. We formulate these questions, precisely, in the context of
alternative presentations of the list, bag, and set datatypes and study some aspects of these questions. In
particular, we establish back-and-forth translations between the two presentations, from which it follows
that they are equally expressive, and prove results relating proofs of program properties, in the two
presentations.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-29.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/382

https://repository.upenn.edu/cis_reports/382

Logical and Computational Aspects
Of Programming With

Sets/Bags/Lists

MS-CIS-91-29
LOGIC & COMPUTATION 31

Val Breazu-Tannen
Ramesh Subrahmanyam

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

Revised
October 1991

This paper has appeared in the Proceedings of ICALP '91

Logical and Computational Aspects of Programming with
Sets/Bags/Lists

Val Breazu-Tannen Ramesh Subrahmanyam

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St., Philadelphia, PA 19104, USA
E-mail: val@cis.upenn.edu, ramesh@saul.cis.upenn.edu

Abstract. We study issues that arise in programming with primitive recursion over non-free datatypes such as
lists, bags and sets. Programs written in this style can lack a meaning in the sense that their outputs may be
sensitive to the choice of input expression. We are, thus, naturally lead to a set-theoretic denotational semantics
with partial functions. We set up a logic for reasoning about the definedness of terms and a deterministic and
terminating evaluator. The logic is shown to be sound in the model, and its recursion free fragment is shown to
be complete for proving definedness of recursion free programs. The logic is then shown to be as strong as the
evaluator, and this implies that the evaluator is compatible with the provable equivalence between different set (or
bag, or list) expressions . Oftentimes, the same non-free datatype may have different presentations, and it is not
clear a priori whether programming and reasoning with the two presentations are equivalent. We formulate these
questions, precisely, in the context of alternative presentations of the list, bag, and set datatypes and study some
aspects of these questions. In particular, we establish back-and-forth translations between the two presentations,
from which it follows that they are equally expressive, and prove results relating proofs of program properties, in
the two presentations.

1 Introduction

1.1 Motivation

The topic of this paper is programming by structural recursion on datatype presentations whose constructors
satisfy equational constraints. Sets, bags (a.k.a. multisets) and lists with the "append" presentation, are
our primary examples, and we use them in the exposition of the technical results. It should be clear,
however, that this work fits in a more general paradigm.

Our motivation came from recent object-oriented and database programming language designs. In the
relational and in the complex object data models, most of the programming is done with sets, sometimes
with bags. Of great interest is to design database programming languages whose type systems directly
represent the underlying data models (see [Atkinson& Buneman 1987, Ohori et al., 19891 and references
therein). We are therefore led to the study of languages with set datatypes, as in [Ohori et al., 19891.

How do we program with sets? Past experience with relational algebra [Codd 19701 suggests that an
applicative style with a well-chosen collection of primitives is remarkably expressive. Interestingly,
programming with lists works out the same way [Bird & Wadler 1988, Backus 19781. Moreover, for
lists, most programs, including the interesting primitives, can be expressed using definitions by structural
recursion:

- - - - - - - - - - - - --

'This is a slightly revised version of the paper that has appeared in the Proceedings of ICALP991.The authors are partially
supported by ONR Grant N00014-88-K-0634, by NSF Grant CCR-90-57570, and by an IBM Graduate Fellowship.

l e t f (N i l) = N

I f (Cons (x, 1)) = C(x, f (1))
i n . . . f . . . f . . .

(Sometimes we need generalized structural recursion, where the second clause takes the form

f (Cons (x , 1)) = C (x, f (1) ,l) .)

Part of the semantic justification for this programming construct is that (the meaning of) Nil and Cons
generate all finite lists. Turning to sets, we note that the empty set, the singleton sets, and set union
generate all finite sets. By analogy, here is an attempt to program cardinality in this style:

l e t c a r d (Empty) = 0
I c a r d (S n g S e t (x)) = 1
I c a r d (Union (s l , s 2)) = c a r d (s 1) + c a r d (s 2)

i n c a r d (Union (SngSet (A) , Union (Empty, SngSet (B))))

In a simple operational semantics, for example that of SML, this evaluates to the desired 2. Unfortunately,

c a r d (Union (SngSet (A) , Union (Empty, Union (SngSet (A) , SngSet (B)))))

evaluates to 3, even though we have a constructor representation of the same set. Perhaps the evaluator
could be hacked to transform set representations to ones without repetitions, and thus give a c o m t answer
here? Leaving aside that this seems to require run-time checks of equalities which are not computable,
let us argue that hacks that would accommodate programs like c a r d would yield a fundamentally unsafe
language. Consider the following chain of equalities, in which each step is done according to some axiom
that we expect to be true:

1 = c a r d (SngSet (x)) = c a r d (Union (SngSet (x) , SngSet (x))) =

= c a r d (S n g S e t (x)) + c a r d (S n g S e t (x)) = 1 + 1 = 2

We see that reasoning about programs becomes inconsistent, and, as a corollary, there is no reasonable
denotational semantics for such hacks.

To understand this problem, we must pursue the analogy with lists beyond the surface. The finite lists
over a given set form, with cons and nil, an initial object in an appropriate category, and the meaning
of a function defined by structural recursion is precisely the (unique) morphism that initiality postulates.
Note that there are no constraints on cons and nil, and therefore no constraints on the operations that
correspond to them in the target of the recursion. We will look for a similar adjointness (universality)
property as the semantic basis for definitions by structural recursion on sets. Fix a set X, and consider
Ph(X), the set of all finite subsets of X. It's not hard to see that P@(X) with union and the empty
set is the join-semilattice-with-least-element freely generated by X via the injection of generators given
by the singleton set constructor (the morphisms are the join-and-least-element-preserving maps). This is
better said in purely algebraic terms: Pf, (X) with union and the empty set is the commutative-idempotent
monoid freely generated by X via the singleton set mapping and with respect to monoid homomorphisms.

Now the source of the problem we encountered above is clear: (IN, +, 0) is a commutative monoid
but addition is not idempotent. Thus, there is no reason to expect a (commutative idempotent) monoid
homomorphism from (P& (X), U, 0) to (IN, +, 0) and in fact no such exists (or else 1=2).

Such problems do not arise for list programming with Nil and Cons because they are not equationally
constrained. But similar problems would arise for list programming with Nil , SngList , and App since the
operations that correspond to Nil and App must form a monoid. In general, choosing constructors whose
intended semantics has equational constraints gives rise, at a minimum, to the following issues:

r Datatype values may have more than one representation as constructor expressions in the language.
One must prove that the evaluator is compatible with constructor expression equivalence (takes
equivalent inputs to equivalent outputs).

r Not all programs that parse and typecheck have a meaning: for that, each of the definitions by
structural recursion that they make must be correct, a property that depends on the meaning of
component program phrases. Since these may contain global variables (free in the component
phrases but bound in the program as a whole) any denotational semantics must deal with partiality
even though with structural recursion all computations terminate.

r Checking definedness (meaning exists) is in general not decidable. Only restricted cases might be
amenable to compile time definedness checking, similarly to type checking. Checking definedness
is in general not even r.e. We can hope, however that programmers can prove the correctness of
most practical definitions by structural recursion. An (inevitably incomplete) logic of programs
would be useful to that effect. Such a logic must have at a minimum definedness and equational
formulas, hence it will also serve as a logic of program equivalence. Moreover, structural induction
should be available in this logic, as the principal means of proving properties of functions defined
by structural recursion.

Investigating these issues is our primary motivation. Our secondary motivation comes from the examples
of such datatypes that we have in mind, which are presented in Figure 1. It is natural to ask in what
way the two alternative presentations of say, lists, are related. Is there a uniform way of translating
programs using structural recursion on Nil and Cons into programs using structural recursion on Nil,
SngList , and App ? And vice-versa? The same questions arise for the alternative presentations of bags
and sets. Moreover, the presentations of bags can be seen as hierarchically dominated by those of lists,
and those of sets as dominated by those of bags, since, for example, the commutative-idempotent monoids
determine a full subcategory in the category of commutative monoids, which is a full subcategory of the
category of monoids. Do the above mentioned connections between the alternative presentations of lists
uniformly specialize to connections between the two presentations of bags, and further, of sets?

We conclude this section with the observation that all these presentations seem to be very useful. For
example, the list reverse function has a more immediate and elegant definition in the Nil , SngSet , and App
presentation, than in the Nil and Corn presentation. In [Breazu-Tannen et al., 19911, we have a program
that computes transitive closure using structural recursion on the Empty and Ins presentation of sets. It
is not at all obvious how to directly discover a program for transitive closure using the Empty , SngSet ,
and Union presentation (although by the work in Section 3 we know that there is a uniform translation).

'How then do we program cardinality in this style? Note that addition is still commutative, so an analogous program would
have worked fine for computing the ~~~diinality of bags. It is then sufficient to program the fundamental function that coerces
a set into a bag. To do this by structural recursion we need the appropriate commutative-idempotent monoid structure on bags.
This is given by the "max" operation, and implementing it requires that the elements of the underlying type have equality. (Not
surprisingly. since A = B is equivalent to card(Union (SngSet (A),SngSet (B))) = 1 .)

1.2 Other related work

Pascal has a type of sets but they are restricted to sets of integers or similar, and hence cannot be used for
relational database programming. Pascal-R [Schmidt 19771 is a clean and powerful extension that adds
a type of relations (sets of tuples) together with some primitive operations on relations and a "for-loop"
whose "index" ranges over all tuples in a given relation. This is the imperative analogue of the functional
structural recursor in our [Set presentation (see Figure I), and it has therefore the safety problems that we
are concerned with (probably only those that appear because of the use of noncommutative counterparts
to Ins , since we suspect that Pascal-R's operational semantics maintains "canonical" representations for
relations). SETL [Schwartz et al., 19861 is a language that lacks the strong typing of Pascal-R but deals
with more general kinds of sets. It has however, a similar for-loop construct and hence faces the same
problems. One could try to apply our ideas to these languages, but we suspect that the possibility of
side-effects in the body of the for-loops will complicate the semantics substantially.

The idea of alternative presentations of lists, and programming using structural recursion in all these
presentations also appears in [Wadler 19871. Wadler also notes that the usefulness of programming with
the Mist presentation has been suggested for reasons of mathematical elegance by Meertens and of
efficiency by Sleep .
In programming language theory most of the research on issues involving set semantics has concentrated
on powerdomains, with the primary motivations coming from studying nondeterminism and concur-
rency [Gunter '19861. A powerdomain semantics for relational and complex object databases is discussed
in [Buneman et al., 19891.

1.3 Overview

In Section 2 we present general results about languages built on top of the simply typed lambda calculus
with products, by adding datatype presentations like those in Figure 1. The results are stated for an
example, that of sets constructed from the empty set, singleton sets and union (the USet presentation) but
they hold for a general class of such languages. In subsection 2.2 we give a semantics based on sets
and partial functions, which nonetheless models the equational constraints for the constructors and the
adjointness property used to express the meaning of structural recursion. Programs that are not defined (do
not have a meaning) in this model should be rejected. In subsection 2.3 we show that a simple evaluator,
deterministic and terminating, and which otherwise ignores the constraints on the constructors, is sound
in the previously given denotational semantics, and as a consequence is compatible with the equivalence
between different expressions denoting the same set (or bag, or list). In subsection 2.4 we first argue
that definedness is in general undecidable, in fact, not even recursively axiomatizable, and then we give
a logic that approaches definedness well enough to cover most of the examples we studied. Reasoning
about the definedness of terms in turn requires reasoning about term equality. The logic is shown to be
sound in the model, and its recursion free fragment is shown to be complete for proving definedness of
recursion free programs. The logic is then shown to be as strong as the evaluator, and this implies that the
evaluator is compatible with the provable equivalence between different set (or bag, or list) expressions.

In Section 3 we investigate the relation between the alternative presentations of lists, bags, and sets (see
Figure 1). In subsection 3.1 we establish back and forth connections between the initiality situations on
which these presentations are based. The connections are established first for lists, then they are uniformly
specialized to bags, and further, to sets. In subsection 3.2, we present the syntactic counterparts of these
semantic connections, in the form of effective translations between the corresponding languages. We end
with some proof-theoretic compatibility properties between the translations and the logics introduced in
subsection 2.4

CList
Nil , : CList (a)
x : a , 1 : C L t t (a) t Cons ,(x, 1) : CList (a)

AList
Nil , : AList (a)
x : u I- SngList ,(x) : AList (a)
11, l2 : AList (a) t- App , (1 1 , 1 2) : ALt t (a)

IBag

Inc (x,Inc (y ,b)) = Inc (y,Inc (2,b)) I Sum (Sum (b17 b2), b3) = Sum (bl , (Sum b2, b3))
Sum (b,Zero) = b

App (1,Nil) = 1 =App (Nil , I)
SBag

Zero, : IBag (a)
x:a,b:IBag(o)I-Inc,(x,b):IBag(a)

Zero, : SBag (a)
z : a t - O n e ~ (x) : S B a g (a)
bl , b2 : SBag (a) t- Sum , (bl , b2) : SBag (a)

ISet
sum (b1,b2) = Sum (b2,b1)

USet
Empty, : ISet (a)
x : a , s : lSet (a) I- Ins,(x, s) : ISet (a)

Figure 1: Datatypes, Constructors and Equational Constraints

Empty, : USet (a)
x : a I- SngSet ,(z) : USet (a)
s,, s2 : USet (a) I- Unwn ,(sl, s2) : USet (a)

Ins (z , Ins (y , ~)) = Ins (Y , I ~ (v))
Ins (x,Ins (x , s)) =Ins (x , s)

2 Syntax, Semantics and Logic

Union (Unwn (s l y s2) , ~ 3) = Unwn (s l , Union (s2, sg))
Union (s , Empty) = s
Union (s17 s 2) = Union (s2, s l)
Union (s , s) = s

2.1 Syntax

We consider languages built on top of the simply typed lambda calculus with products, and, say, some
unspecified base type L and some unspecified constants of base type co, el , To this, we add datatype
presentations like those in Figure 1, plus, for each such datatype, a construct for expressing functions
defined by structural recursion. We only specify the notation in the case of the USet presentation, which
is our generic example. Instead of the syntactically sugared expression in the style of Section 1.1

let f (Empty) = E
I f(SngSet(x)) = S X
I f (Union (sl, s2)) = U <f sl , f s2>

in M

we use M [USetRec(E, S , U) / f] where

r t - E : r I ' I - S : a + r F I - U : (T X T) - + T
USetRec(,,,)(E, S , U) : USet (a) + T

mechecking rules are as in the simply typed lambda calculus, and in our treatment we will assume that
the terms under consideration typecheck, but we will routinely omit types and type subscripts.

From the six datatypes that are described in Figure 1, we obtain in this way six different languages, all of
which, except for the one given by CList , raise the issues discussed in Section 1.1. In subsections 2.2,
2.3, and 2.4, we state our results only for the USet language, but it is clear that they generalize to the
other four languages of interest as well as a whole class of similar problems.

2.2 Denotational Semantics

Potential, undefinedness has only one source, namely the meaning of structural recursion. In the presence
of lambda abstraction however, partiality affects the entire language. Types are interpreted as sets, as
follows:

A
[L] = an unspecified nonempty set.
[a +- r] P the set of all partial functions from [o] to [r] .

[a x T] the cartesian product of [a] and [T I .
[User (T)] P P ' ([r]) , the set of all finite subsets of I T] .
We call the collection of sets (indexed by types) defined here the Partial Type Hierarchy over [L] , notation
P . Environments are total, type-preserving, functions that map variables to values in P . The meaning of
a term t is a partial function [t] that maps environments to values in P , defined as follows (the notation
A
21 means that the left hand side is defined as the right hand side whenever the latter exists, and undefined
otherwise).

[Z I P P P (X)
A [c;]p = an unspecified element of [L]

A a
[t l t d ~ & f t l l ~ (I t 2 l ~) [Xy.t]p = Q, where q (a) 21 [t]p [y /a]

ISngSet (t)l P & {[tip)
A

IEmprv I P 2 0 [[Union(t17 t 2)] ~ - [t l] ~ u Bt21p

The denotation of a term of the form U s e t R e ~ (, , ~) (E , S, U) needs some care. According to the
semantic paradigm suggested in subsection 1.1, its meaning in environment p should be the unique
homomorphism h from (P j , ([a]) , 0 , U) to ([T], [E] p , [U] p) satisfying h ({ a) = [S]lp(a) , provided
that ([T I , [E] p , [U] p) is a commutative idempotent monoid. In the context of the overall semantics
however, [E] p may be undefined, and [S] p or [U]p may be partial, so we need to check that the semantic
paradigm carries through.

Define strong equality as follows, el E e2 holds if and only if either both el and e2 are defined and are
equal, or they are both undefined. Using this, we can talk about partial monoids and homomorphisms.

Lemma 1 Fix a set X . For any partial commutative idempotent monoid (M , a , e) , and any partial
function f : X - M , there is a unique partial homomorphism h : (Ph (X) , U , 0) - (M , ., e) such
that h ({ x }) 2 f (4

This suggests that the existence of the meaning of U S ~ ~ R ~ C (, , ~) (E , S, U) in p should be conditioned
on ([r] , [U]p , [E] p) being a partial commutative idempotent monoid. It turns out however, that this is
sometimes too strong a condition. More economically, we only need to have a structure of commutative
idempotent monoid on those elements of [T I which will end up in the range of USetRec(E, S , U) . This
extra flexibility is exploited in Section 3.2 when we translate ISet structural recursion via USet programs.
It is also reflected in the logic of definedness and equality as the basis for the soundness of the "range"

induction principles (see subsection 2.4) which are used, among other things, to prove the definedness of
the above mentioned translation.

We therefore define GEN (E , S , U , p) , which we refer to as the range set, to be the smallest subset of
[T] with the following properties:

if [E] p is defined then [E] p E GEN (E , S , U , p);

if a E [a] and [S J p (a) is defined then [[SIp(a) E GEN (E , S , U, p) ;

if b, c E G E N (E , S , U ,p) and [Uljp(b, c) is defined then [U]p(b, c) E GEN (E , S , U, p) .
Note that the range of [S] p is included in GEN (E , S , U, p) . Now, if for all a , b, c E GEN (E , S , U, p)
the following strong equalities hold:

(assoc) [Ulp(CU1p(a7 b), c) - BU1lp(a7 BUBp(b7 c))

(ident) BUIP(BEIP, a) CY a 1! BUIp(a7 [E b)

(comm) [U]lp(a,b) 2 BUIp(b, a)

(idemp) [U]l~(a7 a) - a

then (GEN (E , S , U , p), [Ulp , [E J p) is a partial monoid and we define [USetRec(E, S , U)] p to be the
unique partial homomoxphism h : Pfi (1.1) - GEN (E , S , U, p) such that h ({ a)) cz [S] p (a) , whose
existence is insured by Lemma 1. Otherwise, [USetRec (E, S, U)] p is undefined.

2.3 Operational Semantics

An operational semantics for the language is presented in Appendix B. As usual, only closed terms are
evaluated. If P 4 v then v is called a value. The product and set constructors are evaluated eagerly. We
use a call-by-name rule, but this is not particularly important, since all programs terminate and hence, an
evaluator employing call-by-value would be essentially equivalent. The evaluator is deterministic:

Lemma 2 ZfP 4 vl and P 4 v2 then vl = v2

And always terminating:

Theorem 3 (Strong Normalization) For every closed term P there is a value v such that P 4 v.

This is shown by extending the proof of strong normalization of Godel's System T (see [Barendregt 19841
or [Girard et al., 19891).

Next we see that even though the evaluator is oblivious to the equational constraints on the constructors,
it is nonetheless sound in the semantics of the previous subsection, which validates these constraints. In
what follows, when we say that a closed term is defined, we mean that the term has a meaning (in the
null environment) in Pi according to the semantics in the previous subsection.

Theorem 4 (Soundness of Operational Semantics) lf P is dejned, and P 4 v, then v is defined, and
[PI = [v] in P.

The desired compatibility of the evaluator with the datatype constraints follows immediately.

Corollary 5 (Compatibility) Let P be a defined closed term of type USet (a) + T , and let S1 and S2
be two defined closed t e r n of type USet (a), denoting the same set. If PSI lJ vl and PS2 6 v2 then
[v11 = 1 ~ 2 1 .

An analysis of the operational semantics shows the following two facts. Any term of type L evaluates
to some constant c;. Any term of type USet (T) evaluates to a term of the form A[tl,..,t,], where
A[] is a purely algebraic context composed of Union, SngSet and Empty, the ti's are closed terms
of type T. What is usually called computational adequacy is an immediate consequence of the strong
normalization theorem and the soundness theorem, that if a term is semantically defined, then (a) if its
meaning is c; E B, then t & c;, and (b) if its meaning is a set {el, ..,en), then it evaluates to a term of
the form A[tl,..,t,], where An is a purely algebraic context composed of Union, Sng Set and Empty,
with {[t;] : 1 5 i 5 m} = {el,..,e,}.

We also get as an immediate consequence that if two program phrases (i.e. two not necessarily closed
terms) are semantically equal in all environments, then they are observationally equivalent, that is, when
put in closed contexts of "obsetvable type" yielding defined terms, they evaluate to values that are
semantically equal. Observable types could be, for example, the types of complex objects, which are
constructed out of set types, product types and L. For these, semantic equality of values, is easily seen to
be decidable, and completely axiomatizable by the equational constraints on the constructors, hence .the
same as provable equality in the logic of subsection 2.4.

2.4 Logic of Equality and Definedness

As we have seen in the previous section, the programs that are defined (their meaning in the model of
subsection 2.2 exists) evaluate correctly. Moreover, we can reason consistently about such programs,
provided that our reasoning is sound in the same model. We advocate, of course, that definedness should
be established statically, prior to evaluation. It would be nice if we could deal with dehedness checking
in the same way we deal with most type checking: automatically and at compile time. Unfortunately:

Theorem 6 For each of the languages based on AList , IBag , or SBag , checking whether a closed term
is defined is TI:-hard.

We do not know at this time how hard the problem is for the recursion constructs over ZSet and USet . In
any case, once we add, say, the natural numbers and recursion over them, one cannot hope for definedness
to be recursively axiomatizable. One can, however, hope to prove that given individual programs are
correctly defined, and, in fact, we have accumulated a certain amount of experience with such proofs
(see, for example, Section 3.2). We think that it is valuable to design formal systems for such proofs, on
one hand to serve as rigorous inspiration for informal verifications, on the other to explore the possibility
of automating some of the arguments. While such a formal proof system is necessarily incomplete, we
see it as evolving and becoming richer in interaction with programming practice, with soundness in the
denotational semantics as the only theoretical limitation. The logic we consider in this paper is presented
in Appendix B.

Reasoning about the dehedness of terms in turn requires reasoning about term equality. Hence, the
formulae are universally quantified term equalities, and universally quantified definedness assertions. Up
to a point our problems are similar to those of the call-by-value lambda calculus, for instance P and

are not sound in our model. Thus, for reasoning about the recursion free fragment of our languages
(base, function, and product types) we have a logic that is essentially equivalent to Moggi's unconditional

A,-calculus [Moggi 19851, though we additionally have product types and a couple of rules are stated
slightly differently. It is the structural induction principles that give to our logic its distinctive flavor. To
deal with induction, we use a notation reminiscent of intuitionistic sequents, but the logic is best viewed
as a natural deduction proof system, the left hand side of the sequents containing the premises of the
deduction. The premises of induction steps contain eigenvariables that occur, in general, on both sides of
the sequent. These variables may be considered to be quantified over the entire sequent.

The usual structural induction principle INDuset (see Appendix B) appears to be insufficient for certain
useful arguments in which the induction is valid not on entire types, but only on certain subsets (see
subsection 3.2), so we add a "range" induction principle

where x , m, n are fresh variables. The soundness of this principle makes use of the complication in-
volving "range sets" in the the denotational semantics of structural recursion in subsection 2.2. The
range set complication in the model is then reflected in the reasoning about the definedness of the struc-
tural recursion construct, namely USetRec(E, S, U) . Instead of simply requiring, for example, that
U (x , U (y , z)) = U(U(x , y) , z) we require that U(Hs1, U(Hs2, H s ~)) = U(U(Hs1, H s ~) , H s ~)
where H - USetRec(E , S, U) . Apparently therefore, proving the definedness of USet Rec(E, S, U)
requires proving some equational properties this terms already has! Luckily, these can be shown using
the range induction principle.

Theorem 7 (Soundness) The logic is sound with respect to the denotational semantics in P .

While the entire logic must be incomplete for reasoning about P , its recursion free fragment could
conceivably do better. Moggi shows that the A,-calculus is complete for reasoning over all partial cartesian
closed categories [Moggi 19851. We are, of course, not interested in reasoning about models in which we
cannot interpret the datatypes with structural recursion. For reasoning in P , Moggi has an incompleteness
result, but it involves more complex formulas than the ones we are considering [Moggi 19851. In fact,,
we can show the following.

Theorem 8 (Restricted Completeness) Let t be a term in the recursion freefragment of the language. I f
t is defined in all environments, then Def (t) is provable in the logic.

Finally, we investigate the relationship between our logic and the operational semantics. Since the logic is
denotationally sound and semantic equality implies observational equivalence, the logic can also be used
for reasoning about observational equivalence. Moreover, we can show a few facts that do not follow
from this by directly relating the logic and the evaluator.

Theorem 9 Let P be a closed term. I f Def (P) is provable in the logic and P 4 v then P = v is
provable in the logic.

This gives us a proof-theoretic version of the compatibility result in Corollary 5:

Corollary 10 (Provable Compatibility) Let P be closed term of type USet (a) -t T, and let S1 and S2
be two provably equal closed t e r n of type USet (a) , such that PS; are provably defined. If PSI 4 vl
and PS2 4 v2 then vl and v2 are provably equal.

3 Relating Cons and App , Inc and Sum, Ins and Union

3.1 The semantic connection

Definition 11 An X-dynamic is given by an ordered triple (M, SM : X x M -+ M,e), where M is a
non-empty set, and e E M. A morphism between two X-dynamics (MI, el, bM1) and (M2, e2, SM2), called
an X-dynamorphism, is a function g:Ml -t M2 such that g(el) = e2, and the following diagram commutes:

For a fixed set X, the category of X-dynamics and X-dynamorphisms is called DYN(X). The full subcat-
egory of DYN(X) with S satisfying (1 below) is called CDYN(X). The full subcategory of X-dynamics
with the 6 function satisfying (1) and (2 below) is called ICDYN(X).

Definition 12 Given a set X, the category MON(X) is defined as follows: the objects of this category
are quadruples (M,.,e,v) where (M,-,e) is a monoid and 7 : X -t M. A morphism between two such
objects (M,-,e,q) and (M',-',e',q3) is a monoid homomorphism h:M-tM' with the additional property that
the following diagram commutes:

V

M-M'
h

The full subcategories of MON(X), where the underlying monoids of the objects are commutative and
commutative idempotent, are called CMON(X) and ICMON(X), respectively.

Note that ([CList (a)], Nil ,Cons) is an initial object in the category DYN([a]), and that ([AList (a)], Nil ,
SngList ,App) is an initial object in the category MON([a]). A similar relationship holds between the
obvious algebras corresponding to IBag and SBag , on the one hand, and CDYN(X) and CMON(X),
and similarly between the ISet and USet algebras, on the one hand, and the categories ICDYN(X) and
ICMON(X). In what follows, we will see that, for the case of the list algebras, these two semantics
can be constructed from each other, and moreover, that these constructions will uniformly specialize to
relate the semantics of IBag and SBag , and further, of ISet and USet . More importantly, we will see
that these constructions also relate the unique morphisms postulated by initiality, hence the semantics of
the structural recursors.

To every object M = (M, ., e, 7) in MON(X) we associate an object @(M) = (M, e, S) in DYN(X),
where S(x, m) = ~ (x) . m .

Theorem 13 M is initial in MON(X) i f and only i f @(M) is initial in DYN(X).

Proof Sketch. We omit the "only i f ' part (but warn that it uses induction on the X-dynamics structure
on M, and the validity of induction is a consequence of initiality). For the "if" part, let (N, f , E) be an
arbitrary X-dynamics. To exploit the initiality of M, we must "fabricate" a monoid out of N. The idea
is to take the monoid of (total) functions N + N , with composition and the identity map. In order
for the proof to specialize uniformly to bags and sets, we take the extra step (not really necessary for
lists) of considering the submonoid of N -t N generated by the set of functions F = {Xn.~(x, n) 1
x E X) , call it F*. By the initiality of M there is a unique MON(X)-morphism h from M to
(F*, o,id, Xx.Xn.~(x,n)) . Define g : M + N by g(m) = h(m)(f) . It is easy to verify that g is an
X-dynamorphism. The uniqueness of g follows from the observation that for every X-dynamorphism q
from @(M) to (N, f , ~) we have q(m) = h(m)(f) , which is proved by induction on the monoid-
generated-by-X structure on M (again the validity of this induction principle follows from initiality).
I
When we specialize this proof to, say, sets, we show additionally that if is commutative and idempotent,
then so is 6, and that if E is commutative and idempotent, then so is o on F* (o is, in general, neither
commutative, nor idempotent on N + N , and this explains the extra step taken in the construction).

Now for the converse construction. For every object D = (D, e, 6) in DYN(X), we construct, as in the
proof of Theorem 13, the submonoid of D -t D generated by the set of functions F = {Xd.S(x, d) 1
x E X) , call it F*. We associate to D the object Q(D) = (F*, o, id , Xx.Xd.S(x, d)) in MON(X).

Theorem 14 D is initial in DYN(X) i f and only i f Q(D) is initial in MON(X).

Again, this result and its proof uniformly specialize to bags and sets.

Now, if M is initial in MON(X) then by Theorems 13 and 14, Q(@(M)) is also initial, hence isomorphic
to M . Similarly, if D is initial in DYN(X), @(Q(D)) is isomorphic to D.

3.2 Relating languages

The attractive semantic connection presented in subsection 3.1 has a syntactic counterpart, effectively
relating the language based on CList to that based on AList , and similarly for bags and sets. Taking the
case of lists, we can (almost), out of the proofs and definitions in subsection 3.1, extract a translation that
takes AList programs to CLkt programs, and a translation that does .the converse. Almost, because the Q
construction taken literally, would require to define AList (a) as a "subset" of CList (a) + CList (a)
and we don't know how to fit this in the system of simple types. Luckily,

Lemma 15 If D = (D,e,6) is initial in DYN(X), then Q(D) is isomorphic to (D,.,e,Xx.6(x,e))
where dl . dz = gd, (d 2) with gdl being the unique X-dynamorphism from D to (D , dl, 6) .

This suggests that the types can stay the same and that we can get an effective translation of the AList
constructors by CList progranls. Moreover, this lemma specializes uniformly to bags and sets.

Figure 2 gives the important definitional clauses of these translations for the ISet and USet languages.
Note that in order to translate structural recursion on ISet by a USet program, we still make use of the
(syntactic counterpart of the) Q construction: since in general the (meaning of the) target of the recursion
is not initial, Lemma 15 cannot be used.

@(User) = ISet

@(Union (TI , T 2)) = ISetRec(@(T2), X(x, s) Jns (x , s))@(T l)

@(SngSet (A)) = Ins (@ (A) , Empty) @(Empty) = Empty

@(USetRec(E, S , U)) = ISetRec(@(E), X(x, z) .@(U)(@(S)x, z))

@(ISet) = USet

@(Empty) = E ~ t y @(Ins (A , T)) = Union (SngSet (@ (A)) , @(T))

@(ISetRec(E, I)) = Xs.(USetRec(id, Xx.Xz.Q(I)(x, z) , o) s Q (E))

Figure 2: Translations

Let LIser and Luset stand for the languages with ISet and USet , respectively, as the datatypes. Let
Th stand for the rules and axioms in the recursion free fragment. Let Thlser stand for Th plus rules
for ISetRec (see Appendix B) without the two induction rules. Let Thusel stand for Th plus rules for
USetRec (see Appendix B) with out the two induction rules. The following theorem establishes a proof
theoretic relationship between equations in the Language LIset , and their translates in Luser via Q, and
equations in the language Luset and their LISet translates via Q.

Theorem 16 (i) IfThIser I- tl = t2 then Thuset + INDuset I- @ (t l) = !P(t2).

(ii) IfThuset I- t l = t2 then Thm + INDlset I- @(t l) = @(t2).

(iii) For any tenn t in the language Luset , Thusel + INDuset I- t = @(@(t)) .

(iv) For any term s in the language &set , Th~set + INDIs~~ I- s = !P(@(s))

In subsections 2.4 and 2.2 we motivated the range set construction and the range induction principle,
respectively, to deal with structural recursions USetRec(,,,)(E, S , U) in which (871, [U] , [E l , [U]) is
not a monoid, while (GEN,(E, S , U, p), [Ulp, [E]p , [Unp) is. Dealing with such recursions is important
in Theorem 16. For instance, consider the translation (via @) of the (provably defined) closed term
ISet Rec(E, I) (Here, F provably has .the property that I (x , I(y, 2)) = I (y , I (x , z)) , (z ranging over the
set G E N (E , I) .) Proving the definedness of the !I!-translation this term requires proving the definedness
of USetRec (id , @ (I) , o ,)). It is clear, that in general o is not commutative, but it is commutative over
the set GEN,(id, @ (I) , o , p) (and similarly for idempotence).

4 Further research

The reader may have noticed that we have avoided fixed point recursion. One of our main concerns is the
choice of basic constructs for programming with sets and bags. For datatypes like CList or binary trees, for
example, there is a simple minded translation of structural recursion into fixed point recursion which uses
"inverses" to the constructors (head and tail for CList or taking the root, and the left and right subtree for
binary trees). In general, no such inverses exist for datatypes with equationally constrained constructors.
Some languages implement "non-deterministic" inverses, for example "choose" as an inverse to set insert,
"partition" as an inverse to bag sum. It seems that to program with sets using "choose", one would need

a "delete" function as well, restricting one to deal with equality types. That aside, a clean semantics for
these seems to be considerably more complicated than that of structural recursion, and the presence of
fixed point recursion suggests powerdomains. An in depth comparison of such an approach with the one
that we take in this paper seems interesting.

So far, we did not develop our treatment enough to cover generalized structural recursion (see subsec-
tion 1.1) but this is clearly of great practical importance and is next in line. Further down the line, it
would be interesting to see the interaction of structural recursion on datatypes with general recursion in
the language. Is the logic we propose in this paper still sound for proving observational equivalence?

Our investigation here raises a number of questions. We would like to understand the proof theory better.
For example, is the A,-calculus, which is part of our logic, conservatively extended by our logic? Are
there more restricted completeness results or normal form theorems (for either the entire logic, or for
interesting fragments of it)? We leave open the question of decidability of definedness and semantic
equality for the languages with USet and ISet datatypes (see Theorem 6 in subsection 2.4).

Yet another issue is a precise understanding of the intuition that any program on sets can also be viewed
mutatis mutandis as a program on bags and further down on lists. For example, a definition of the cartesian
product function on ISet , after merely replacing the recursor and constructor names by the recursor and
constructor names in the language containing CList , will become a list cartesian product function (though
there are more than one list cartesian product functions).

Finally we remark that Theorem 16 is restricted to the translation of equalities that have induction free
proofs, even though induction is used in the proof of the translated equalities. Based on the semantic
results in subsection 3.1, we expect that inductive proofs can also be translated, but it seems that we
cannot stay within an equational logic while doing this.

Acknowledgements: We would like to thank Peter Buneman for inspiration and many useful discussions.
We thank Francisco Corella for his criticisms on an earlier draft. Val Breazu-Tannen thanks Octavian
StbQil5 for many discussions on X-dynamics and monoids.

References

[Atkinson& Buneman 19871 M. P. Atkinson. Types and Persistence in Database Programming Languages.
ACM Computing Surveys, June 1987.

[Backus 19781 J. Backus. Can Programming Be Liberated From the von Neurnann Style? A Functional
Style and its Algebra of Programs. Communications of the ACM,21:613-641, August 1978.

[Barendregt 19841 H. P. Barendregt . The Lambda Calculus: Its Syntax and Semantics. Volume 103
of Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam, Second
Edition, 1984.

[Bird & Wadler 19881 R. Bird and P. Wadler. Introduction to Functional Programming. Series in Com-
puter Science, Prentice-Hall International, 1988.

[Breazu-Tannen et al., 19911 V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural Recursion as a
Query Language. Proceedings of the 3rd International Workshop on Database Programming
Languages, Naphlion, Greece, August 1991, to appear.

[Buneman et al., 19891 P. Buneman, A. Jung, and A. Ohori. Using Powerdomains to Generalize Rela-
tional Databases. In Theoretical Computer Science, August 1989.

[Codd 19701 E. F. Codd. A Relational Model for Large Shared Databank. In Communications of the
ACM, 13(6):377-387, 1970.

[Girard et al., 19891 J. Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, 1989.

[Gunter 19861 C. A. Gunter. Sets and the Semantics of Bounded Non-Determinism. Manuscript, Uni-
versity of Cambridge, 1986.

[Moggi 19851 E. Moggi. Categories of Partial Morphisms and the A,-calculus. In Proceedings of Category
Theory and Computer Programming, Springer-Verlag, 1985.

[Ohori et al., 19891 A. Ohori, P. Buneman, and V. Breazu-Tannen. Database Programming in Machiavelli
- a Polymorphic language with Static 'Qpe Inference. In Proceedings of the ACM SIGMOD
Conference, pages 46-57, 1989.

[Schmidt 19771 J. W. Schmidt. Some High-Level Language Constructs for Data of Type Relation. ACM
Transactions on Database Systems, 2(3):247-261, September 1977.

[Schwartz et al., 19861 J. T. Schwartz, R.B.K Dewar, E. Dubinsky, and E. Schonberg. Programming
with Sets: An Ztroductwn to SETL, Springer-Verlag, New York, 1986.

[Wadler 19871 P. Wadler. Views: A Way for Pattern Matching to Cohabit with Data Abstraction. In
Proceedings of the Conference on Principles of Programming Languages, pages 307-313, 1987.

APPENDIX A : OPERATIONAL SEMANTICS

In the following H abbreviates USetRec(E, S, U).

M JJ. v M u v l NUv2 M Jj (AX. L) L\N/x] v
SngSet (M) .& SngSet (v) Union (M, N) J,l Union (vl, v2) M N $ v

M Jj H N JjSngSet (P) SPUV
M N U v

APPENDIX B :LOGIC

Recursion Free Logic

r t - q (q E r) I' I- Def (x) rt-t x t

I' I- Def (X X . ~) I' I- (Xx. t)x x t I' I- Xx.yx x y (y is a variable)

Def (t l t 2) I- Def (t l) Def (t l t 2) I- Def (t l)

r t - t

I'l t- Def (t ;) (i 5 n) I'2 I- Q

r,[Z/t f U r1 I- q[z/ t f

I' u {Def (t l) I- t l x t2 I' U {Def (t 2) I- t l x t2
r I- t l x t2

I' I- tl x t2 I' I- Def (t l)
I' I- Def (t2)

I' I- Def (t l) I' I- Def (t 2) I' I- Def ((t 1 7 t 2)) i = 1,2
I' I- Def ((t l , t 2)) I' t- Def (t i)

i = 1,2

Rules For USetRec and associated Constructors

r I- Union (s l , Union (s 2 , S S)) M Unwn (Union (s l , sa), s s) I' I- Union (s , s) s

I' I- Union (s , E m p t y) w s I' I- Union (s l , s 2) M Union (s 2 , s l) I' I- Def (Empty)

I' I- Def (SngSet (t)) I' I- Def (t)
I' I- Def (t) I' I- Def (SngSet (t))

I' I- Def (Union (t l , t 2)) I' I- Def (t l) r I- Def (t 2)
I' I- Def (t i) I' I- Def (Union (t l , t 2))

In the following H abbreviates USetRec (E , S , U) :

r I- ICMON (E , S , U) r I- Def (H
I' t- Def (H) I ' t - H S n g S e r (t)) x S t

I' t- Def (H)
I' !- H Unwn (t l , t2) x U (H t l , H t 2)

Here I' F ICMON (E , S , U) abbreviates the following premisses (x , y , z are fresh variables):

(iden t) r t- U (E , H x) x H x x U (H x , E)

(assoc) I' I- U (H x , U (H y, H z)) x U (U (H x , H y) , H z)

(c o m m) I' I- U (H x , H y) x U (H y, H x)

(idemp) I' t- U (H x, H x) x H x

I' I- e[Empty / z] I' I- e[SngSet (x) / z] r , e [s l / z] , e [s2 / z] I- e[Union (s l , s 2) / z l
I ' I - e (IND user)

(x , s l , s2 are fresh)

APPENDIX C : RULES FOR ISetRec

r I- Def (Ins (tl , t 2)) r I- Def (t l) r I- Def (t2) r I- Def (Empty) r I- Def (t i) Def (Ins (t17t2))

r I- ~ n s (x , I ~ S (y , s)) = ~ ~ n s (y , l m (x , s)) r I- IKY (x , h (x , s)) = ::m (x , s)

In the following H abbreviates ISetRec(E, I) .

I? I- ICDYN E , I I' I- Def(H hr I ' I - H Z m (x , s) = J) (x , (H s))

Here I' I- ICDYN(E, I) abbreviates the following sequents (x , y, z are fresh):

(comm) ~ I - I (X , (Y , H ~)) = I (Y , (X , H ~))

(idemp) I' I- I (x , (x , H z)) = I (x , H a)

	Logical and Computational Aspects of Programming With Sets/Bags/Lists
	Recommended Citation

	Logical and Computational Aspects of Programming With Sets/Bags/Lists
	Abstract
	Comments

	tmp.1186595128.pdf.KTDOq

