
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1995

AVATAR -- ATM VideoAudio Transmit and Receive AVATAR -- ATM VideoAudio Transmit and Receive

William S. Marcus
Bell Communications

C. Brendan S. Traw
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
William S. Marcus and C. Brendan S. Traw, "AVATAR -- ATM VideoAudio Transmit and Receive", . January
1995.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-95-12.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/208
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F208&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/208
mailto:repository@pobox.upenn.edu

AVATAR -- ATM VideoAudio Transmit and Receive AVATAR -- ATM VideoAudio Transmit and Receive

Abstract Abstract
To facilitate the transport of audio and video data across emerging Asynchronous Transfer Mode (ATM)
networks, a simple, low cost, audio/video ATM appliance, the AVATAR, has been developed. This
appliance is capable of handling uncompressed bidirectional audio and NTSC video connections.

The intended applications for this device include TeleMentoring (a NSF sponsored exploration of distance
mentoring), video conferencing, and network monitoring. Our experience has shown that AVATAR is an
effective, low cost means of providing multimedia connectivity between sites within the Aurora Gigabit
testbed.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-95-12.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/208

https://repository.upenn.edu/cis_reports/208

AVATAR
ATM VideoAudio Transmit and Receive

W. S. Marcus
C . B. S. Traw

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

March 1995

AVATAR

ATM Video/Audio Transmit And Receive

W. S . Marcus* C. B. S. Trawt

October 24, 1994

Abstract

To facilitate the transport of audio and video data across emerging Asynchronous Transfer

Mode (ATM) networks, a simple, low cost, audio/video ATM appliance, the AVATAR, has been

developed. This appliance is capable of handling uncompressed bidirectional audio and NTSC

video connections.

The intended applications for this device include TeleMentoring (a NSF sponsored explo-

ration of distance mentoring), video conferencing, and network monitoring. Our experience

has shown that AVATAR is an effective, low cost, means of providing multimedia connectivity

between sites within the Aurora Gigabit testbed.

1 Introduction

The transport of audio and video data is one of the primary goals of the emerging gigabit per

second asynchronous transfer model31 (ATM) networks. The Aurora gigabit testbed[5], connecting

Bellcore, IBM, MIT, and UPenn has been instrumental in developing the technologies necessary to

support multimedia and data networking a t these bandwidths.

To support the transfer of uncompressed audio and color video across the Aurora testbed,

an audio/video appliance has been developed at Bellcore and UPenn. This device digitizes and

then packetizes uncompressed 64Kbps audio and 80 Mbps video streams into ATM cells. Separate

network connections are used for each of the media so that they can be switched independently of

'Bell Communications Research

+University of Pennsylvania

Figure 1: Network Configuration

each other. The appliance can also receive ATM cells making up these interleaved media streams,

extract the data from the ATM cells, and then recreate the analog video and audio signals.

Figure 1 shows several audio/video appliance board in a possible Aurora network topology.

Anticipated uses for the audio/video appliance in the type of network configurations include

Telementoring[8], video conferencing, and network monitoring.

Other work within the Aurora testbed in the area of hardware support for multimedia ap-

plications includes Joel Adam's "Vidboard[l]" for MIT's VuNET desk area network and Sanjay

Udani's NTSC video capture card[lO] for the IBM Microchannel bus. Of these two other efforts,

the Vidboard is the most similar. Both the Vidboard and the audio/video appliance discussed in

this paper are capable of sinking and sourcing audio and video data. The major differences focus

on the complexity and capabilities of the designs. The Vidboard is significantly more complicated,

Camera Bt218

9.72 Msps
NTSC Video

8 bit -
I I I I I

. I L ~ I I I b lS-3c Network Connection

9.492 Ksps
Filter Audio traffic has priority

8 bit Mu Law
I

Figure 2: Audio/Video Transmitter

allowing extraction of video frames from the NTSC signal as well as the flexibility provided by a

DSP in the datapath.

Devices with similar capabilities to this audio/video appliance have been developed by Cesar

Johnston of Bellcore[4] and for use in AT&T's LuckyNet broadband networking testbed[7].

The remainder of this document explains the architecture of the audio/video appliance and its

usage.

2 Architecture

The audio/video appliance can be separated into two major parts, the transmitter and the receiver.

2.1 Transmitter

The transmitter, as depicted in Figure 2, digitizes analog video and audio signals, encapsulates the

data into ATM cells, and presents the cells to a STS-3c network connection. It is implemented using

off-the-shelf technology: three Erasable Programmable Logic Devices (EPLD), two synchronous

FIFOs, two A/D integrated circuits, and several linear components.

The digitization of the composite video stream is conducted via a flash A/D converter integrated

within a single device, the Brooktree Bt218 at a rate of 9.72 megasamples per second. This rate

is above the Nyquist rate of a NTSC video signal. In order to decouple the video source (i.e., the

camera) from the Audio/Video ATM Appliance, the video input is AC coupled. This requires the

AID device to be periodically zeroed or "clamped" to force the AC coupled signal to a known

reference voltage. The clamping is performed during horizontal and vertical video synchronization

intervals. In lieu of analog video frame detection of these intervals, we used the following scheme. At

reset the analog input is properly biased. An EPLD monitors the digital output of the A/D device

for values indicative of video blanking, an event that occurs only during synchronization. Once

detected, the EPLD momentarily clamps the video input. The A/D employs raw linear coding

to produce &bit values which are written into a decoupling FIFO. Once 48 bytes are available,

the STS-3c network connection requests an ATM cell, and 48 bytes from the audio A/D are not

available, a second EPLD removes 48 bytes from the FIFO, produces a hardwired ATM cell header

(with VCI == I) , and presents the cell to the network.

The digitization of the audio signal is performed via a single IC device, the Texas Instrument

TCM29C19. The device incorporates a front end anti-aliasing filter which requires only an external

reference clock. The A/D employs p-law coding to produce 8-bit values which are presented as serial

output. An EPLD performs serial to byte conversion and writes the &bit values into a decoupling

FIFO. Once 48 bytes are available and the STS-3c network connection requests an ATM cell, ail

EPLD removes 48 bytes from the FIFO, produces a hardwired ATM cell header (with VCI == 2),

and presents the cell to the network.

When the Audio/Video Transmitter has access to the underlying global SONET physical trans-

port layer its digital sampling clocks, for both the video and audio analog signal, are derived from

the SONET STS-3c 19.44MHz clock. The Audio/Video Receiver uses the same global clock to

derive its playback clocks. This clocking scheme assures no data loss due to clock mismatch; ex-

cessive jitter incurred in the ATM subnet is the only source of data loss. When the Audio/Video

Appliance does not have access to the underlying global SONET physical transport layer, it uses

an on board 19.44MHz oscillator to derive its sampling and playback clocks. In this mode, both

network jitter and clock mismatch can cause data loss. Due to the redundancy of the "raw" video

and audio digitized streams, our simple method of dealing with loss, which is described in the

following section, proved more than adequate.

2.2 Receiver

The receiver, as shown in Figure 3, takes cells from interleaved audio and video connections and

demultiplexes them. This operation is performed by looking at the value of the VCI in the incoming

cell's header. The payload of cells belonging to the video connection (VCI == 1) are written into

one FIFO while the payload of cells belonging to the audio connection (VCI == 2) are written to

a separate FIFO. Cells belonging to other connections (VCI != 1 or 2) are discarded. The VCI

values for audio and video data have been arbitrarily assigned. Any valid VCI value can be used

for either connection, by altering the EPLDs which implement the functionality. The header cyclic

redundancy check (CRC) for the ATM cell header is also ignored.

Figure 3: Audio/Video Receiver

DAC08

The state of these FIFOs is monitored to maintain sufficient buffering to ensure reasonable

audio and video quality. The ideal state of the receive FIFOs is half full. Being half full allows the

greatest tolerance for cell jitter. If the buffer begins to over or under run, loss of data or the use of

incorrect data is possible. If an over run condition is detected, no additional data is written to the

FIFO until it has been drained down to the half full level. This results in the discarding of some

cells received from the network. An under run condition pauses the reading of the FIFO until it

has been refilled to the half full condition. Either of these corrective actions results in a momentary

loss of video or audio, while the error condition is being corrected.

Audio and Video data are read from their respective FIFOs. Video data is read at 9.72 MBps

(Network clock divided by 2) and converted back to a analog signal by an Analog Devices DAC008

digital to analog converter. Since the DAC008 produces a variable current as output, a resistor to

ground is used to convert the current to a voltage. The value of the resistor was selected such that

the full scale output of the DAC would generate a one volt signal. The resulting output voltage is

buffered by a unity gain opamp with a high impedence input and capable of driving low impedence

video loads.

Audio data is read from its FIFO at 9.492 KBps (Network clock divided by 2048). The byte

wide data is converted to a serial bit stream shifted at 2.43 MHz (Network clock divided by 8)

as required by the input of the decoder section of the TI audio CODEC. The decoder converts

the p-law encoded digital data back into an analog form and then low pass filters it to remove

reconstruction artifacts before it is presented on the output pin.

Monitor
Dl A

NTSC Video
<

Speaker - _ - - _ _ _ - _ - - - - - - - - - - - - -
I TCM29C19 I I

I

DIA {
I

FIFO -
Data

Extractor

STS-3c Network Connection
<

I Filter ++

I
I
I
I

I - _ I

FIFO -

2.3 Design Decisions

No data compression was utilized for several reasons. First, the inclusion of compression for the au-

dio data would have an insignificant effect on the overall bandwidth required for a video conference

since the bandwidth required by the audio channels is several orders of magnitude lower than that

required for the video. Video compression would significantly reduce the bandwidth requirements,

but it would require significant effort to include the necessary hardware and/or software resources

needed to perform it at full NTSC quality and frame rate. Compression would also defeat one of

the systems oriented goals of this appliance which is to provide a heavy application load on the

network infrastructure. Finally, the lack of compression has made the video signal very tolerant

of data loss and corruption, as expected since the video signal format is intended for the lossy

broadcast environment.

Another controversial design decision was to digitize the raw NTSC signal instead of extracting

out the video frames and just transmitting them. We had two major reasons for this design

decision. The first is that the extraction of the video data from the analog signal and then recreating

that signal a t the remote point would have increased the complexity of the implementation. The

other reason is that the analog NTSC signal contains all synchronization information and thus no

synchronization support is needed by the appliance.

3 Operation

Figure 4 show the major connectors and controls for the audio/video appliance.

3.1 Analog Interface

The analog video interface consists of two BNC connectors, an input and an output. The video

input is expected to be one volt peak to peak and conform to the standard NTSC video format.

Although video quality degrades with cable length, video interconnection cables as long as 75 feet

have been used and provide reasonable video quality.

Audio connection is provided via two quarter inch mono phone jacks. The audio signal may be

up to 4 volts peak to peak. Acceptable cable lengths for audio connections vary greatly depending

on the type of cable and what is driving it.

Audio or video Loopback operation may be selected for testing of boards or cabling by setting the

first two DIP switches as shown in Table 1 to the proper position. Video loopback is accomplished

by taking the byte wide output of the Bt218 and feeding it directly into the byte wide data input

of the DAC008. Audio loopback is performed entirely within the audio CODEC chip.

Network TX

To 1PC

Combined

Network

TX and RX DIP Switches

on off

Reset Switch

Video In

& Video Out
Power

Audio In

Audio Out +5 Volts

Figure 4: Connector Locations

While video or audio loopback are selected, video and audio cells will still be generated, but

any audio or video cells received by the appliance will be ignored.

3.2 Network Interfaces

The remaining two DIP switches select the mode of the network interface and determines which of

the 34 pin ribbon cable headers will be used to attach to the network,

The audio/video appliance is designed to attach to the network in two different modes selectable

by a fourth DIP switch. When this switch is off, the appliance is a network slave device, meaning

that it receives its framing and clock from the network. The mode is typically used when the

appliance is attached to a physical layer interface such as a SONET multiplexer or GLINK board[Y].

Table 1: DIP Switch Functions

Switch

4

3

2

1

When this switch is on, the appliance generates its own clock and framing signals. This mode is

typically used when the device is attached directly to the Sunshine ATM switch [6].

The third switch selects which set of connectors are used to attach to the network. The middle

34 pin ribbon cable connector is selected by placing the third switch in the ON position. This

connector has botli the transmit and receive directions supported. I t is typically used for connecting

to physical layers such as SONET or GLINK. When this switch is off, the outer two 34 pin ribbon

cable connectors are selected. The end connector has the transmit direction while the remaining

connector supports the receive direction. These two connectors are typically used when connecting

directly to the Sunshine ATM switch. The transmit connector goes to the switch's input port

controller (IPC) while the receiver connector goes to the output port controller (OPC). The transmit

and receive directions are given separate connectors to reduce cross talk between the conductors

by separating each signal conductor from its neighbors by a grounded conductor. The length of

the connecting cables for these connectors is limited to about 14 inches. Seperate ribbon cables are

required for the T X and RX data due to the design of the Sunshine switch rack.

3.3 Other Connections and Controls

On function

Audio Loopback off

Video Loopback off

Combined RX and TX

network connectors

Network master

The power connector is also shown in the figure. The board requires +5 volts at about 1.5 Amps.

Users should be careful when connecting the power supply as the connector is not polarized.

The final control shown in Figure 4 is the reset switch. This switch, when pressed, resets all of

the digital logic including the FIFO buffers on the board.

Finally, there are several potentiometers and jumpers on the board which are not shown in

Figure 4. For their functions, see the schematics in Appendix B.

Off function

Audio Loopback on

Video Loopback on

Separate RX and TX

network connectors

Network slave

4 Current Status

Two versions of this appliance have been produced. An initial, video only, version has fabricated

late in February 1994. This version was placed into use for Telementoring early in March 1994.

The second version which supports both audio and video was fabricated and operational in April

1994. Boards from this second run have been installed at Bellcore, MIT, and UPenn and have been

used extensively.

5 Known Bugs

The termination for the ofTboard/onboard oscillator clock is done incorrectly. There should have

been a voltage divider but instead there is only R20 to ground. Unless an additional resistor is

added to VCC, R20 should be unpopulated.

The silk screen for D l is incorrect. The polarity of the device should be reversed.

Acknowledgments

The authors would like to thank Drew Moore and Sanjay Udani for their assistance and Jonathan
Smith for encouraging this work.

AURORA is a joint research effort undertaken by Bell Atlantic, Bellcore, IBM Research, MIT,
MCI, NYNEX, U. Arizona, and U. Penn. AURORA is sponsored as part of the NSF/DARPA Spon-
sored Gigabit Testbed Initiative through the Corporation for National Research Initiatives, under
Cooperative Agreement number NCR-8919038. NSF and DARPA provide funds to the University
participants in AURORA. Bellcore has provided support to UPenn through the DAWN project.
Telementoring is supported at the University of Pennsylvania by the NSF under Agreement number
CDA-92-14924. Hewlett Packard has supported this effort through the donation of laboratory test
equipment to UPenn.

References
[I] Joel Adam and David Tennenhouse, "The Vidboard: A Video Capture and Processing Pe-

ripheral for a Distributed Multimedia System," ACM Multimedia, June, 1993.

[2] Altera Corporation, 1992 Data Book.

[3] CCITT Recommendation 1.361, ATM Layer Specification for B-ISDN, 1990.

[4] H. J . Chao, C. A. Johnston, and L. S. Smoot, "A Packet Video/Audio System Using the
Asynchronous Transfer Mode Technique," IEEE Transactions on Consumer Electronics, pp.
97-105, May, 1989.

[5] D.D. Clark, B.S. Davie, D.J. Farber, I.S. Gopal, B.K. Kadaba, W.D. Sincoskie, J.M. Smith,
and D.L. Tennenhouse, "An Overview of the AURORA Gigabit Testbed," Proceedings of the
1992 IEEE Infocom Conference, Florence, Italy, 1992.

[6] J. Giacopelli, J. Hickey, W. Marcus, W. D. Sincoskie, and M. Littlewood, "Sunshine: A High-
Performance Self-Routing Broadband Packet Switch Architecture," IEEE Journal on Selected
Areas in Communications 9(8), pp. 1289-1298 (October, 1991).

[7] R. D. Gitlin and T. B. London, "Broadband Gigabit Research and the LuckyNet Testbed,"
Journal of High Speed Networks, pp. 1-47, 1992.

[8] J. M. Smith, et al., "Experiences with TeleMentoring: Lab Teaching over Gigabit Networks,"
CIS Department, University of Pennsylvania, unpublished.

[9] Christopher J . Russo, Andrew M. Moore, C. Brendan S. Traw, and Jonathan M. Smith, "Early
Experiences with ATM Over Hewlett-Packard HDMP-1000," CIS Department, University of
Pennsylvania, unpublished.

[lo] Sanjay Udani, "Experimental Evaluation of a Video Capture Board for Networked Worksta-
tions," Technical Report MS-CIS-93-31, CIS Department, University of Pennsylvania, 1993.

Appendix A: Altera EPM5032 AHDL Code

% %
% Cheap video receiver %
% %
% C. Brendan S. Traw %
% 115-NOV-1993 %
% %
% %
% RX,TX Mode 0 Video Cut Through %
% RX,TX Mode 1 Clock div 8 %
% RX,TX Mode 2 Clock div 4 %
% RX,TX Mode 3 Clock div 2 %
% %
% 0002 is control VCI %
% 0001 is data VCI %
% VPI is ignored for both %
% %
% First byte of control cell format: %
% abccdeff %
% %
% a OR in default mode value for TX mode %
% b OR in value cc for TX mode %
% cc value ORed in if b is set %
% d OR in default mode value for RX mode %
% e OR in value ff for RX mode %
% ff value ORed in if e is set %
% %

DESIGN IS "VCRX"
BEGIN

DEVICE IS I1EPM5032DC-1"
BEGIN

default-mode0 C! 28 : INPUT ;
default-mode1 C! 27 : INPUT ;
-fife-ae C! 16 : INPUT ;
-reset C! 15 : INPUT ;
rx-byteclk C! 2 : INPUT ;
rx-data-in0 C! 14 : INPUT ;
rx-data-in1 C! 13 : INPUT ;
rx-data-in2 C! 1 : INPUT ;
rx-data-in3 C! 11 : INPUT ; %MC13%
rx-data-in4 C! 12 : INPUT ; %MC15%
rx-data-in5 C! 17 : INPUT ; %MC17%
rx-data-in6 C! 18 : INPUT ; %MC19%
rx-data-in7 C! 19 : INPUT . %MC21%
rx-hen-in C! 20 : INPUT ; k ~ ~ 2 3 %
rx-pen-in C! 23 : INPUT ; %MC25%
rx-ten-in C! 24 : INPUT . %MC27%
-cut-through-e CI 3 : OU~PUT ; %MC1%
data-enabled C! 6 : OUTPUT . %MC7%
-f ifo-oe C! 4 : OUTPUT . %~63%
p-f ifo-ren C! 5 : OUTPU? ; %MC5%
ptx-mode0 @ 9 : OUTPUT ; %MC9%
ptx-model @ 10 : OUTPUT ; %MC11%

- fifo-ef C! 26 :input;
- fifo-ff C! 25 :input;

END ;
END ;

subdesign vcrx
(
rx-data-in [7. .0] : input ;
rx-hen-in :input;
rx-pen-in :input;
rx-ten-in :input;
rx-byteclk :input;
-reset : input ; - * -
fifo-oe :output;
data-enabled :output ;
p-fifo-ren :output;
- fifo-ae :input;
-cut-through-e :output;
def ault-mode [I. .O1 : input ;
ptx-mode [I. .01 : output ;
-fife-ef :input;
- fifo-ff :input;
1

variable

rx-data C7. .O1 : df f ;
rx-hen :dff;
rx-ten :dff;
rx-pen :dff;
rx-mode [I. .O1 : df f ;
tx-mode [I. .0] : df f ;
header-byte [2. .0] : df f ;
cell-active :dff;
cell-active-data :dff;
cell-active-cont :dff;
fifo-ren :dff;
running[l. .O1 :dff;
out-count 12. .01 : df f ;
sync-reset :dff;

begin

sync-reset.prn =-reset;
sync-reset.clk =sclk(rx-byteclk);
sync-reset =sync-reset & !-reset;

rx-data[] . clrn =-reset ;
rxZdata[j . clk =sclk(rxibyteclk) ;
rx-data [I =rx-data-in [I ;

rx-hen.clrn =-reset;
rx-hen.clk =sclk(rx-byteclk);
rx-hen =rx-hen-in;

rx-pen.clrn =-reset;
rx-pen.clk =sclk(rx-byteclk);
rx-pen =rx-pen-in;

rx-ten.clrn =-reset;
rx-ten.clk =sclk(rx-byteclk);
rx-ten =rx-ten-in;

header-byte [I . clrn =-reset;
header-byte [] . clk =sclk(rx-byteclk) ;
header-byte [I =(0 & ! rx-hen & ! rx-pen & ! rx-ten) #
(header-byte[]+l & rx-hen & !rx-pen & !rx-ten) #
(header-byte [I & rx-pen) #
(header-byte [I & rx-ten) ;

cell-active.clrn =-reset;
cell-active. clk =sclk(rx-byteclk) ;
cell-active =((header-byte [I ==l) & (rx-data [3. .O] ==O) &
!rx-pen & !rx-ten) #
((header-byte [] ==2) & (rx-data [I ==O) & ! rx-pen &
!rx-ten & cell-active) #
(cell-active & rx-ten) #
(cell-active & rx-pen);

data-enabled =cell-active-data;
cell-active-data.clrn =-reset;
cell-active-data.clk =sclk(rx-byteclk);
cell-active-data =(running[] ! =3)

&
(
((header-byte [I ==3) & (rx-data [7. .4] ==I) &

!rx-pen & !rx-ten & cell-active) #
(cell-active-data & (header-byte [I ! =3)) #
(cell-active-data & rx-pen) #
(cell-active-data & rx-ten)

1;

cell~active~cont.clrn =-reset;
cell-active-cont.clk =sclk(rx-byteclk);
cell-active-cont =((header_byte[]==3) & (rx_data[7..4]==2) &
!rx-pen & !rx-ten & cell-active) #
(cell-active-cont & (header-byte [I ! =3)) #
(cell-active-cont & rx-pen) #
(cell-active-cont & rx-ten);

ptx-mode [I =tx-mode [I ;
tx-mode [I . clrn =-reset;
tx-mode[] .clk =sclk(rx-byteclk);
tx-mode [I =(
(
(default -mode [I & rx-dataC71) #
(rx-data [5. .41 & rx-dataC61)
> &
(header-byte [I ==5) &
cell-active-cont &
!rx-pen & !rx-ten
1 #
(tx-mode [I & (header-byte [I ! =5)) #
(tx-mode[] & !cell-active-cont) #
(tx-mode [I & rx-pen) #
(tx-mode[] & rx-ten) #
(def ault-mode [I & sync-reset) ;

rx-mode [I . clrn =-reset ;
rx-mode[].clk =sclk(rx-byteclk);
rx-mode [] =(

(
(def ault-mode [I & rx-data [3]) #
(rx-dat aC1. . 01 & rx-data [21)
1
(header-byte [I ==5) &
cell-active-cont &
!rx-pen & !rx-ten
1 #
(rx-mode [I & (header-byte [I ! =5)) #
(rx-mode [I & ! cell-active-cont) #
(rx-mode[] & rx-pen) #
(rx-mode [I & rx-ten) #
(default-mode[] & sync-reset);

p-fifo-ren =-fifo-ren;
- fifo-ren.prn =-reset;
-fife-ren.clk =sclk(rx-byteclk);
-f if o-ren =! (
((out-count[]==O) & runningC11) #
((rx_mode[]==2) & (out-count[l==4) & runningC11) #

((rx-mode [I ==3) & (out-count [I ==2) & running [I]) #
((rx-mode [I ==3) & (out-count [I ==4) & running[l]) #
((rx_mode[]==3) & (out-count[1==6) & runningC11)

1;

out-count [I . clrn =-reset ;
out~count~1.clk =sclk(rx-byteclk);
out-count [I =out-count [I +l;

%running[] == 0 is empty%
%running[] == 3 is full%
%running[] == 2 is play%
%running[] == 1 is undefined%

running [I . clrn =-reset ;
running[].clk =sclk(rx-byteclk);
running[] = running[] == 0 & -f ifo-ae & 2

running[] == 3 & ! -f if o-ae & 2

running[] == 3 & -f ifo-ae & 3

running[] == 2 & -f ifo-ef & -f ifo-ff & 2

running[] == 2 & !-fifo-ff & 3;

- cut -through-e = (rx-mode [I ! =O) ;

-f if o-oe = (rx-mode [I -0) ;

end ;

% %
% Cheap video receiver datapath %
% %
% C. Brendan S. Traw %
% 15-Nov-1993 %
01 01

DESIGN IS "VDRX"
BEGIN

DEVICE IS I1EPM5032DC-1"
BEGIN

data-enabled C! 28 : INPUT ;
reset C! 27 : INPUT ;
rx-byteclk C! 2 : INPUT ;
rx-data-in0 C! 16 : INPUT ;
rx-data-in1 C! 15 : INPUT ;
rx-data-in2 C! 14 : INPUT ;
rx-data-in3 @ 13 : INPUT ;
rx-data-in4 C! 1 : INPUT ;
rx-data-in5 C! 5 : INPUT ; %MC5%
rx-data-in6 C! 6 : INPUT ; %MC7%
rx-data-in7 C! 9 : INPUT . %MC9%
rx-hen-in C! 24 : INPUT ; i ~ ~ 2 7 %
rx-pen-in C! 25 : INPUT ; %MC29%
rx-ten-in C! 26 : INPUT . %MC31%
p-f ifo-wen1 C! 3 : OUTPU? ; %MCl%
pfifo-wen2 C! 4 : OUTPUT ; %MC3%
rx-data-out0 C! 10 : OUTPUT ; %MC11%
rx-data-out1 C! 11 : OUTPUT ; %MC13%
rx-data-out2 @ 12 : OUTPUT ; %MC15%
rx-data-out3 C! 17 : OUTPUT ; %MC17%
rx-data-out4 C! 18 : OUTPUT ; %MC19%
rx-data-out5 C! 19 : OUTPUT ; %MC21%
rx-data-out6 C! 20 : OUTPUT ; %MC23%
rx-data-out7 @ 23 : OUTPUT ; %MC25%

END ;
END ;

subdesign vdrx
(
rx-data-in [7. .O1 : input ;
rx-data-out [7. .O1 : output ;
rx-hen-in :input;
rx-pen-in :input;
rx-ten-in :input;
rx-byteclk :input;
-reset :input;
data-enabled :input;
p-fifo-wen1 :output;
pfifo-wen2 :output;
1

variable

rx-data[7. .0] :dff;
-fife-wen1 :dff;
fifo-wen2 :dff;
f lag-count [2. .0] : df f ;

setup :dff;
-reset-sync :dff;

begin

-reset-sync. clk =sclk(rx-b~teclk) ;
-reset-sync =-reset;

rx-data-out [I =rx-data [I ;
rx-data[] . clrn =-reset ;
rx-data[] . clk =sclk(rx-byteclk) ;
rx-dat a [I = (rx-data-in [I & (f lag-count [I ==O) #
(h1'08" & (f lag-count [I ==2)) ;

p-fifo-wen1 =-fifo-wenl;
- fifo-wen1.prn =-reset;
-fife-wen1.clk =sclk(rx-byteclk);
- fifo-wen1 =! (
(!rx-hen-in & !rx-ten-in &
!rx-pen-in & data-enabled) #
(f lag-count [I ! =0)

1;

f lag-count [I . clrn =-reset ;
f lag-count [I . clk =sclk(rx-byteclk) ;
f lag-count [I =(f lag-count [I +1 & ! setup) ;

setup.clrn =-reset;
setup.clk =sclk(rx-byteclk);
setup =(f lag-count [I ==3) #
setup;
end ;

% Cheap audio r x con t ro l l e r %
% %

% C . Brendan S. Traw %
% B i l l Marcus %

DESIGN IS "ARX"

BEGIN

DEVICE IS I1EPM5032DC-1"

BEGIN

END ;

END ;

subdesign arx

pcmin :output ;
p-afifo-ren :output ;
pcmout : i npu t ;
clk12 : i npu t ; % about 1.5 MHz dataclock %
f s : i npu t ; % about 8KHz framestrobe %
- r e se t : i npu t ;
-cut- throuih input ;
parx-data C7. .0] : input ;
-afifo-pae : i npu t ;
1

va r i ab le

b i t -cn t C2. . O 1 : df f ;
af i fo- ren : d f f ;

ioad : d f f ;

begin

bi t -cn t [I . c l r n =- rese t ;
b i t -cn t [I . c l k =clk12;
b i t -cn t [I = (1 & f s) #

(b i t -cn t [I +1 & (b i t -cn t [I >0)) ;

p-afifo-ren =-afifo-ren;
-a f i fo- ren .prn =- rese t ;
-a f i fo- ren .c lk =clk12;
- af i f o-ren =! ((b i t -cn t [I ==7) & ! -af i f o-pae) ;

1oad.c l rn = r e s e t ;
load. c l k =c ik l2 ;
load =!-af i fo-ren;

arx-data[] . c l r n =-reset ;
arx-data [I . c l k =clk12;

pcmin = (arx-data C71 & -cut-through) #
(pcmout & !-cut-through);

arx-data [71 = (parx-data C71 & load) #
(arx-dataC61 & (b i t -cn t [I >O)) #
(arx-data C71 & (bi t -cnt [I ==O)) ;

arx-data [61 = (parx-dataC61 & load) #
(arx-dataC51 & (bi t -cnt [I >0)) #
(arx-data C61 & (b i t -cn t []==O)) ;

arx-data [51 = (parx-dat a C51 & load) #
(arx-dataC41 & (b i t -cn t [I >0)) #
(arx-dataC51 & (b i t -cn t [I ==O)) ;

arx-data C41 = (parx-data C41 & load) #
(arx-data [31 & (bi t -cnt [I >0)) #
(arx-dataC41 & (bi t -cnt [I ==O)) ;

arx-data C31 = (parx-data C31 & load) #
(arx-dataC21 & (bi t -cnt [I >0)) #
(arx-dataC31 & (b i t -cn t [I ==O)) ;

arx-data [21 = (parx-data C21 & load) #
(arx-dataC11 & (b i t -cn t [I >0)) #
(arx-dataC21 & (bi t -cnt [I ==O)) ;

arx-data [ll = (parx-data 111 & load) #
(arx-data [O l & (bi t -cnt [I >O)) #
(arx-dataC11 & (b i t -cn t C]==O)) ;

arx-data C01 = (parx-data COl & load) #
(arx-data COI & (bi t -cnt [I ==O)) ;

end ;

% %
% Cheap audio receiver datapath %
% %
% C. Brendan S. Traw %
% 15-Nov-1993 %
% %

DESIGN IS "ADRX"
BEGIN

DEVICE IS "EPM5032DC-1"
BEGIN

data-enabled @ 28 : INPUT ;
-reset @ 27 : INPUT ;
rx-byteclk @ 2 : INPUT ;
rx-data-in0 @ 16 : INPUT ;
rx-data-in1 @ 15 : INPUT ;
rx-data-in2 @ 14 : INPUT ;
rx-data-in3 @ 13 : INPUT ;
rx-data-in4 @ 1 : INPUT ;
rx-data-in5 @ 5 : INPUT ; %MC5%
rx-data-in6 @ 6 : INPUT ; %MC7%
rx-data-in7 @ 9 : INPUT . %MC9%
rx-hen-in @ 24 : INPUT ; i ~ ~ 2 7 %
rx-pen-in @ 25 : INPUT ; %MC29%
rx-ten-in @ 26 : INPUT . %MC31%
p-fifo-wen1 @ 3 : OUTPU~ ; %MCl%
pfifo-wen2 @ 4 : OUTPUT ; %MC3%
rx-data-out0 @ 10 : OUTPUT ; %MC11%
rx-data-out1 @ 11 : OUTPUT ; %MC13%
rx-data-out2 @ 12 : OUTPUT ; %MC15%
rx-data-out3 @ 17 : OUTPUT ; %MC17%
rx-data-out4 @ 18 : OUTPUT ; %MC19%
rx-data-out5 @ 19 : OUTPUT ; %MC21%
rx-data-out6 @ 20 : OUTPUT ; %MC23%
rx-data-out7 @ 23 : OUTPUT ; %MC25%

END ;
END ;

subdesign adrx
(
rx-data-in [7. .O1 : input ;
rx-data-out C7. .01 : output ;
rx-hen-in :input;
rx-pen-in :input;
rx-ten-in :input;
rx-byteclk :input;
reset :input;
dat a-enabled : input ;
p-fifo-wen1 :output;
pfifo-wen2 :output;
1

variable

rx-data C7. .0] : df f ;
fifo-wen1 :dff;
?if o-wen2 : df f ;
f lag-count C2. .O1 : df f ;

setup :dff;
-reset-sync :dff;

begin

-reset,sync. clk =scl-k(rx-b~teclk) ;
- reset-sync =-reset;
rx-data-out [I =rx-data [I ;
rx-data[] . clrn =-reset;
rx-data[] . clk =sclk(rx-byteclk) ;
rx-dat a [I = (rx-data-in [I & (f lag-count [I ==O)) #
(h"48" & (f lag-count [I ==l)) ;

p-fifo-wen1 =-fifo-wenl;
-fife-wen1.prn =-reset;
-fife-wen1.clk =sclk(rx-byteclk);
- f if o-wen1 = ! (
(!rx-hen-in & !rx-ten-in &
!rx-pen-in & data-enabled) #
(f lag-count [I ! =0)

1;

flag-count[] .clrn =-reset;
f lag-count [I . clk =sclk(rx,byteclk) ;
f lag-count [I =(f lag-count [I +1 & ! setup) ;

setup.clrn =-reset;
setup.clk =sclk(rx-byteclk);
setup =(flag-count []==3) #
setup;
end ;

...
William S. Marcus

Brendan Traw
Bel lcore

30-March-94

This PAL prov ides a l l d i g i t a l d a t a p a t h I / O between t h e
TCM29Cl9 and t h e TX. It a l s o genera tes t h e c o n t r o l s i g n a l s
necessa ry t o pu t d a t a i n t o FIFO TX. F i n a l l y it i s respons ib le
f o r l o a d i n g t h e programmable o f f s e t r e g i s t e r f o r FIFO TX's /pae

FIFO TX i s a 64x9

CONSTANT PAEOffset = 47;

TITLE "audtx";

DESIGN I S "audtx"
BEGIN

DEVICE I S "EPM5032-1";
END ;

SUBDESIGN audtx
(

/rst, % a c t i v e low asynchronous r e s e t %
clk12, % 19.44MHz/l2 -- c r e a t e d by audtime EPLD %
f s , % frame s t r o b e -- c r e a t e d by audtime EPLD %
pcmout % s e r i a l pcm output f r o m - ~ ~ ~ 2 9 ~ 1 9 %
: INPUT ;

pcrntx[7..0], % p a r a l l e l output t o FIFO TX %
/ I d , % l o a d i n p u t t o FIFO TX %
/wen1 % w r i t e enable t o FIFO TX %
: OUTPUT ;

VARIABLE
f a s t c k :SCLK;

c n t [I. .0] :DFF; % used t o cyc le through r e s e t procedure %
s t r c n t C 3 . .O] :DFF; % used t o genera te /wen1 %

pC7. .0] :DFF;
i / l d :DFF;
i /wenl :DFF;

BEGIN

f a s t c k = clk12;

c n t [I . c l k = f a s t c k ;
c n t [I . c l r n = /rst ;
c n t [I = cn t [l < 3 & cntCI+l

cnt[1==3 & 3 ;

/ I d = i / l d ;
i / l d . c l k = f a s t c k ;
i / l d . c l r n = / r s t ;
! i / l d = cnt [I == 2 ;

pcmtx [I = p [I ;
p [l . c l k = f a s t ck ;
P [I = (cnt [I < 3) & PAEOffset

(cnt [I == 3) & (pC6. . O l ,pcmout) ;

s t r c n t [I . c l r n = /rst ;
s t r c n t [I . c l k = f a s t c k ;
s t r c n t [I = f s & 8

! f s & (s t r c n t [I > 7) & s t r c n t []+I;

/wen1 = i /wenl;
i /wenl.prn = / r s t ;
i /wenl .c lk = f a s t c k ;
! i/wenl = cnt [I ==2

cnt [I ==3 & s t r c n t [I ==HMf 'I ;

END ;

% cheap video hengen.tdf %
% %
% C. Brendan S . Traw %
% 19-Jan-1994 %
% %

DESIGN IS "HENGEN"
BEGIN

DEVICE IS I1EPM5032DC-I"
BEGIN

l o f @ 26 : INPUT ; % dmrn added 01/25/94 - Loss Of Frame p in %
byte-clk O 2 : INPUT ;
-nul l O 28 : INPUT ;
- r e s e t O 27 : INPUT ;
-shared @ 16 : INPUT ;
prx-hen @ 3 : OUTPUT ; %MCl%
prx-pen O 4 : OUTPUT ; %MC3%
prx-ten @ 5 : OUTPUT ; %MC5%
pshrx-hen O 6 : OUTPUT ; %MC7%
pshrx-pen @ 9 : OUTPUT ; %MC9%
pshrx-ten O 10 : OUTPUT ; %MCll%
pshtx-hen Cl 11 : OUTPUT ; %MC13%
pshtx-pen @ 12 : OUTPUT ; %MCI5%
pshtx-ten O 17 : OUTPUT ; %MC17%
ptx-hen @ 18 : OUTPUT ; %MC19%
ptx-pen O 19 : OUTPUT ; %MC21%
ptx-ten @ 20 : OUTPUT ; %MC23%
shared @ 23 : OUTPUT ; %MC25%

END ;
END ;

subdesign hengen

ptx-hen
pshtx-hen
prx-hen
pshrx-hen
ptx-pen
pshtx-pen
prx-pen
pshrx-pen
ptx- t en
pshtx-ten
prx-ten
pshrx-ten
lof
- n u l l
-shared
shared
byte-clk
- r e se t

1

: output ;
: output ;
: output ;
: output ;
: output ;
: output ;
: output ;
: output ;
: output ;
: output ;
: output ;
: output ;
: i npu t ; % dmm added 01/25/94, (unused/reserved) %
: input ;
: input ;
: output ;
: input ;

: input ;

va r i ab le
s ta teC5. .01 : d f f ;
hen : d f f ;
btx-hen : t r i ;

bshtx-hen
brx-hen
bshrx-hen
btx-pen
bshtx-pen
brx-pen
bshrx-pen
btx-ten
bshtx-ten
brx-ten
bshrx-ten

:tri;
:tri;
:tri;
:tri;
:tri;
: tri;
:tri;
:tri;
: tri;
: tri;
: tri;

begin

state [I . clrn =-reset;
state [I . clk =sclk(byte-clk) ;
state [I =(state []+I & (state [I <52)) #

(0 & (state [I ==52)) ;

hen.clrn =-reset;
hen.clk =sclk(byte-clk);
hen =(state [I >0> & (state [I (6) ;

ptx-hen =btx-hen;
btx-hen.oe =!-null;
btx-hen =hen ;

pshtx-hen =bshtx-hen;
bshtx-hen.oe =!-null;
bshtx-hen =hen ;

prx-hen =brx-hen ;
brx-hen.oe =!-null;
brx-hen =hen ;

pshrx-hen =bshrx-hen;
bshrx-hen.oe =!-null;
bshrx-hen =hen ;

ptx-ten =btx-ten ;
btx-ten.oe = ! -null ;
btx-ten =gnd ;

pshtx-t en =bshtx-ten;
bshtx-ten.oe =!-null;
bshtx-t en =gnd ;

prx-ten =brx-t en ;
brx-ten.oe = ! -null ;
brx-t en =gnd ;

pshrx-t en =bshrx-ten;
bshrx-ten.oe =!-null;
bshrx-t en =gnd ;

ptx-pen =btx-pen ;
btx-pen.oe =!-null;
btx-pen =gnd ;

pshtx-pen =bshtx-pen;
bshtx-pen.oe =!-null;

bsht x-pen

prx-pen
brx-pen.oe
brx-pen

pshrx-pen
bshrx-pen.oe
bshrx-pen

shared

end ;

...
William S. Marcus
Brendan Traw
Bellcore

30-March-94

This EPLD genrates clk12 and fs from the 19.44MHz clock

TITLE "audclk" ;

DESIGN IS "audclk"
BEGIN

DEVICE IS "EPM5032-1" ;
END ;

SUBDESIGN audclk
(

clkin
: INPUT ;

clk12,
fs
: OUTPUT ;

VARIABLE

fcnt[7..01 :DFF;
ifs :DFF;

BEGIN

cnt [I. clk = clkin;
cnt [I = (cntC1 < 11) & (cntC1+1);

clk12 = iclkl2;
iclkl2.clk = clkin;
iclkl2 = cnt[] < 6;

f cnt [I . clk = iclk12;
f cnt [I = (f cnt [I < 202) & (fcnt []+I) ;

f s = ifs;
ifs.clk = iclk12;
ifs = (fcnt [I == 202);

END ;

...
William S. Marcus

Bellcore

template was s r c r d r p a l of cheapvideo 1

Date: 4/7/94
Pro jec t : CheapVideo2

This PAL does two func t ions :
(I) Provides ATM c e l l s t o an Aurora/Sunshine E l e c t r i c a l

STS-3c i n t e r f a c e (a s spec i f i ed by GRL's OC-12 mux/demux
board) . ATM c e l l bodies a r e found i n two places:
a . The d i g i t a l video 72201 FIFO
b . The d i g i t a l audio 72201 FIFO.

When t h e audio FIFO has a t l e a s t one c e l l body (/pae h igh) , a c e l l
body w i l l be read out during the next ATM c e l l time of t he STS-3c
l i n k . When t h e video FIFO has a t l e a s t one c e l l body, a c e l l body
w i l l be read out only i f no audio c e l l body i s ava i lab le during
t h e next ATM c e l l time of the STS-3c l i n k . I f no c e l l body i s
ava i l ab l e i n t h e FIFOs t h i s PAL s h a l l provide a payload of a l l 0x00.
A l l ATM c e l l headers a r e provided by t h i s PAL. The video d a t a
s h a l l have a V C I of 0x0001. The audio da t a s h a l l have a V C I of
0x0002. I d l e c e l l s s h a l l have a V C I of 0x0000. The CRC's f o r
each VCI a r e 0x25, OxbO, 0x55.

NOTE: The design w i l l produce incor rec t c e l l s f o r the f i r s t
s eve ra l ATM c e l l cyc les , a f t e r which everything w i l l f a l l i n
t o p lace . This " fea ture" has minimal, bordering on none, harmful
e f f e c t s of t h e performance, but made c rea t ing the design much
e a s i e r t o c r ea t e .

(2) Divide t h e SONET clock 2

0

TITLE " s rc rd r " ;

DESIGN IS " s r c rd r "
BEGIN

DEVICE IS "EPM5032
BEGIN

bycko 0 2
/rst 0 14
hen Q 16
Pen Q 27
t e n Q 28
/paeV Q 1
/ p a d 0 3

: INPUT;
: INPUT;
: INPUT;
: INPUT;
: INPUT;
: INPUT;
: INPUT;

/fiforenV @ 9 : OUTPUT;
/fifooeV Q 10 : OUTPUT;
/fiforenA Q 4 : OUTPUT;
/fifooeA Q 5 : OUTPUT;
t d o l Q 26 : OUTPUT;
tdo2 Q 25 : OUTPUT;
tdo3 Q 24 : OUTPUT;

tdo4 @ 23 : OUTPUT;
tdo5 @ 20 : OUTPUT;
tdo6 @ 19 : OUTPUT;
tdo7 @ 18 : OUTPUT;
tdo8 @ 17 : OUTPUT;
clkdiv @ 6 : OUTPUT;

END ;
END ;

SUBDESIGN srcrdr
(

/rst, % active low asynchronous reset %
hen, % Bellcore Framer tx-hen %
pen, % Bellcore Framer tx-pen %
ten, % Bellcore Framer tx-ten %
bycko, % Bellcore Framer tx-bycko %
/paeV, % video fifo has no available cell %
/paeA % audio fifo has no available cell %
: INPUT ;

/fiforenV, % fifo /ren signal to video fifo %
/fifooeV, % fifo /oe signal to video fifo %
/fiforenA, % fifo /ren signal to audio fifo %
/fifooeA, % fifo /oe signal to audio fifo %
tdoC1. .81, % carries all headers, and idle bodies %
clkdiv % divided down clock %
: OUTPUT ;

VARIABLE
hendl :DFF; % hen delayed on clock time %
bytecnt 15. .O1 : DFF; % sequencer for generating control signals %
dwnstateC1..01 :DFF;
upstateC1. .0] :DFF;
/frenV :DFF; % fifo /REN signal to video fifo%
/foeV :DFF; % fifo /OE signal to video fifo %
/frenA :DFF; % fifo /REN signal to audio fife%
/foeA :DFF; % fifo /OE signal to audio fifo %
qC7..01 :DFF;
tbuf C7. .0] :TRI;
dvdr :DFF;

BEGIN
% description of hendl %
hend1.clk = !bycko;
hendl = hen;

% description of bytecntC1 %
bytecnt [I . clk = ! bycko ;
bytecnt [I .clrn = /rst;
bytecntt-1 = (!hen # hendl) & bytecntClc52 & (!pen & !ten) & bytecnt[]+l

(!hen # hendl) & bytecntC1<53 & (pen # ten) & bytecntc];

% decription of dwnstate [] and upstate [I %
% dwnstateC1 == 0 current cell being read is an idle cell %
% dwnstateC1 == 1 current cell being read is a video cell %
% dwnstateC1 == 2 current cell being read is a audio cell %

% dwnstate[] is used to gate falling edge clocked control %
% signals (ie. /fiforenV /fiforenA). %
% upstate conveys the same meaning as dwnstate, but is used %
% to gate rising edge clocked control signals (i.e. /fifooeV). %

dwnstate [I . clk = ! bycko ;
upstate [I . clk = ! bycko;

dwnstate [I . clrn = /rst ;
upstate [I . clrn = /rst ;

dwnstate [I = (bytecntrl ! = 50 # ten # pen) & dwnstater]

upstate [I = (bytecnt [I == 51) & !ten & !pen & dwnstate [I
it
(bytecnt [I == 51) & (ten # pen) & upstate[]

bytecntC1 != 51 & upstate[];

% description of /f ifoenA %
/fiforenA = /frenA;
/frenA.clk = !bycko;
/frenA.prn = /rst;
!/frenA = dwnstateC1 == 2 & bytecntC1 > 2 &bytecntCl < 51 & !ten& !pen;

% description of /fifooeA %
/f ifooeA = /foeA;
/foeA.clk = bycko;
/foeA.prn = /rst;
! /foeA = upstater] == 2 & bytecnt [I >= 4 & bytecnt[] <= 51;

% description of /fifoenV %
/fiforenV = /frenV;
/frenV.clk = !bycko;
/frenV.prn = /rst ;
!/frenV = dwnstateL1 == 1 & bytecntC1 > 2 & bytecntC1 < 51 & !ten & !pen;

% description of /fifooeV %
/f if ooeV = /foeV;
/foeV.clk = bycko;
/foeV.prn = /rst;
! /f oeV = upstate[] == 1 & bytecntcl >= 4 & bytecnt[] <= 51;

% description of tdoL1. .81 %
tdo[l. .8] = tbuf [] .out;
tbuf [I . oe = /f oeV & /f oeA;
tbuf [I .in = q[1 ;

q[] . clk = bycko ;
q[l . clrn = /rst ;
s [I = upstate[] == 1 & bytecnt[] == 2 & H"lOu

upstate[] == 1 & bytecnt[l == 3 & H"2511

upstate[] == 2 & bytecnt [I == 3 & H"b5"

% description of clkdiv %
clkdiv = dvdr;
dvdr.clk = bycko;
dvdr.clrn = /rst;
dvdr = ! dvdr ;

END ;

...
William S. Marcus

Bellcore
16-November-93

Glue Logic which resides in the data path bwt a
Brooktree Bt218KP20 (A/D) and an IDT 72201 FIFO
(256 x 9, with programmable flags).

FUNCTIONS:
(1) Assert CLAMP signal to Bt218 during reset, as well

as during horizontal synch. NOTE: horizontal synch
pulse is 5us in duration and has a DC baised value
of 0 Volts (blanking). While CLAMP is being asserted,
all 0s are asserted on the q[7..01 outputs.

I'd like to guarantee that the Bt218 is clamped
for atleast half of the horizontal synch time, or
2.5~s.

(2) Load FIFO's almost empty programmable flag register
immediately following a reset.

(3) Pass latched output of Bt218 to input of FIFO.

% CONSTANTS %
CONSTANT VthresO = 32; % signal voltage "= ".I28 Volts %
CONSTANT Vthresl = 64; % signal voltage "= ".256 Volts %
CONSTANT PAEOffsetLSB = 48; % /PAE goes high when > 48 bytes in FIFO %
CONSTANT Clamper = 25;

TITLE "filter" ;

DESIGN IS "FILTER"
BEGIN

DEVICE IS "EPM5032- 15"
BEGIN

clock Q 2 : INPUT ;
do Q 13 : INPUT ;
dl Q 14 : INPUT ;
d2 Q 15 : INPUT ;
d3 Q 16 : INPUT ;
d4 Q 27 : INPUT ;
d5 Q 28 : INPUT ;
d6 Q 1 : INPUT ;
d7 Q 3 : INPUT ;
/rst Q 9 : INPUT ;
clamp Q 4:OUTPUT;
/wen1 @ 5 : OUTPUT ;
wen2 Q 6 : OUTPUT ;
q7 Q 26 : OUTPUT ;
q6 Q 25 : OUTPUT ;
q5 Q 24 : OUTPUT ;
94 Q 23 : OUTPUT ;
q3 Q 20 : OUTPUT ;
q2 Q 19 : OUTPUT ;

ql @ 18 : OUTPUT ;
qo @ 17 : OUTPUT ;

END ;
END ;

SUBDESIGN filter
(

clock, % STS-3c byckO divided by n (n=2,4,8) %
dC7. .0], % data from bt218 %
/rst % board level reset signal %
: INPUT ;

/wen1, % to FIFO %
wen2, % to FIFO %
clamp, % to bt218 %
qC7. .01 % to FIFO %
: OUTPUT ;

VARIABLE
i/wenl :DFF; % see /wen1 %
iwen2 :DFF; % see wen2 %
iclamp :DFF; % see clamp %
iqC7. .0] :DFF; % see qC7. .01 %

rcnt[2..01 :DFF; % counter as sequencer for loading
FIFO's almost empty flag. %

gclock :SCLK; % global clock buffer %
schmitt[l..OI :DFF; % used as a schmitt trigger for clamp %
dlschmittl :DFF; % shcmitt[ll delayed one cycle time %
vshot :DFF; % one shot when video signal makes the

transition into synch range %
ccnt[6..01 :DFF; % sequencer which drives clamp circuitry %

BEGIN

% use global clock distribution %
gclock = clock;

% description of rcnt [I %
rcnt [I . clk = gclock;
rcnt [I .clrn = /rst;
rcnt [I = (rent[] < 7) & rcnt[l+l

% description of wen2 %
wen2 = iwen2;
iwen2.clk = gclock;
iwen2.clrn = /rst;
iwen2 = (rcnt [I ! = 2) ;

% description of /wen1 %
/wen1 = i/wenl;
i/wenl.clk = gclock;
i/wenl.prn = /rst;
i/wenl = rcnt [I ! =7 & rcnt [I ! =2 ;

% description of schmitt[] and dlschmittl %
% -- it models a schmitt trigger to detect when video
input has dropped into the synch range.
schmitt [I == 0 (initiation in progress)
schmitt [I == 1 (above synch)
schmitt [I == 3 (below synch)

---%
schmitt [I . clk = gclock;
schmitt [I . clrn = /rst ;
schmitt [I = schmitt[] == 0 & rcnt [I == 7 & 1

schmitt [I == 1 & d[l >= VthresO & 1

schmitt [I == 1 & d [I < VthresO & 3

schmitt[] == 3 & d[l > Vthresl & 1

schmitt[l == 3 & d[] <= Vthresl & 3 ;

dlschmittl.clk = gclock;
dlschmitt1,clrn = /rst;
dlschmitt 1 = schmitt [I] ;

% description of vshot %
vshot.clk = gclock;
vshot.clrn = /rst;
vshot = ! dlschmitt 1 & schmitt [I] ;

% description of ccnt [5. .01 %
ccnt [I . clk = gclock;
ccnt [I . prn = /rst ;
ccnt [I = ccnt [I == ! 0 & !vshot & ! 0

cent [I == !O & vshot & 0

cent [I == Clamper & ! 0

(cent [I ! = ! 0 & ccnt [I ! =Clamper) & ccnt [I +1;

% description of qC7..01 %
s [I = iqC1;
iqCl . clk = gclock;
iq [I = (rcnt [I == 2) & PAEOff setLSB

(rcnt[l != 2) & d[l;

% description of clamp (and zero) %
% I think that while clamp is held high d[] will be zeroed %
% if this is not the case then q[lls description needs to %
% to be modified to assure that zeros are written to the fifo %
clamp = iclamp;
iclamp.clk = gclock;
iclamp.prn = /rst;
iclamp = cent[] != !O;

END ;

A
p

p
en

d
ix

 A
: S

ch
em

atic D
iagram

P
O
*

3
4

iZ

	AVATAR -- ATM VideoAudio Transmit and Receive
	Recommended Citation

	AVATAR -- ATM VideoAudio Transmit and Receive
	Abstract
	Comments

	tmp.1183131691.pdf.uO04n

