
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

March 1995

GCSR: A Graphical Language With Algebraic Semantics for the GCSR: A Graphical Language With Algebraic Semantics for the

Specification of Real-Time Systems Specification of Real-Time Systems

Hanene Ben-Abdallah
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Jin Young Choi
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Hanene Ben-Abdallah, Insup Lee, and Jin Young Choi, "GCSR: A Graphical Language With Algebraic
Semantics for the Specification of Real-Time Systems", . March 1995.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-95-09.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/206
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/206
mailto:repository@pobox.upenn.edu

GCSR: A Graphical Language With Algebraic Semantics for the Specification of GCSR: A Graphical Language With Algebraic Semantics for the Specification of
Real-Time Systems Real-Time Systems

Abstract Abstract
Graphical Communicating Shared Resources, GCSR, is a formal language for specifying real-time systems
including their functional and resource requirements. A GCSR specification consists of a set of nodes that
are connected with directed, labeled edges, which describe possible execution flows. Nodes represent
instantaneous selection among execution flows, or time and resource consuming system activities. In
addition, a node can represent a system subcomponent, which allows modular, hierarchical, thus scalable
system specifications. Edges are labeled with instantaneous communication actions or time to describe
the duration of activities in the source node. GCSR supports the explicit representation of resources and
priorities to resolve resource contention. The semantics of GCSR is the Algebra of Communicating Shared
Resources, a timed process algebra with operational semantics that makes GCSR specifications
executable. Furthermore, the process algebra provides behavioral equivalence relations between GCSR
specifications. These equivalence relations can be used to replace a GCSR specification with an
equivalent specification inside another, and to minimize a GCSR specification in terms of the number of
nodes and edges. The paper defines the GCSR language, describes GCSR specification reductions that
preserve the specification behaviors, and illustrates GCSR with example design specifications.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-95-09.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/206

https://repository.upenn.edu/cis_reports/206

GCSR: A Graphical Language with Algebraic
Semantics for the Specification of Real-Time Systems

Hanene Ben-Abdallah
Insup Lee

Jin-Young Choi

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

March 1995

GCSR: A Graphical Language with Algebraic
Semantics for the Specification of Real-Time

Systems *

HanGne Ben-Abdallah, Insup Lee, and Jin-Young Choi
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

March 1995

Abstract

Graphical Communicating Shared Resources, GCSR, is a formal language for speci-
fying real-time systems including their functional and resource requirements. A GCSR
specification consists of a set of nodes that are connected with directed, labeled edges,
which describe possible execution flows. Nodes represent instantaneous selection aniong
execution flows, or time and resource consuming system activities. In addition, a
node can represent a system subcomponent, which allows modular, hierarchical, thus,
scalable system specifications. Edges are labeled with instantaneous communication
actions or time to describe the duration of activities in the source node. GCSR sup-
~ o r t s the explicit representation of resources and priorities to resolve resource con-
tention. The semantics of GCSR is the Algebra of Communicating Shared Resources,
a timed process algebra with operational semantics that makes GCSR specifications
executable. Furthermore, the process algebra provides behavioral equivalence relations
between GCSR specifications. These equivalence relations can be used to replace a
GCSR specification with an equivalent specification inside another, and to minimize a
GCSR specification in terms of the number of nodes and edges. The paper defines the
GCSR language, describes GCSR specification reductions that preserve the specifica-
tion behaviors, and illustrates GCSR with example design specifications.

'This research was supported in part by NSF CCR93-11622 and ARO DAAH04-95-1-0092

1 Introduction

The Communicating Shared Resources (CSR) paradigm is an ongoing project at the Uni-
versity of Pennsylvania to build a framework for the development of real-time systems. This
project has been motivated by a demand for a rigorous framework in which various design
alternatives for a real-time system can be fc,rinally specified and rigorously analyzed and
testred before implementation. This is an effort to reduce potential high cost associated
with incorrect operation of real-time systems which are often embedded in safety-critical
applications.

'l'lle CSR paradigm is based on the premise that the timed behavior of a real-time system
is affected not only by the time its components take to execute and synchronize, but also by
delays introduced due to the scheduling of actions that compete for shared resources. One of
the objectives of the CSR paradigm is therefore to provide a formalism where the run-time
resource requirements of a real-time system can be specified together with its functional re-
cluirements. The integration allows designers to consider resource-induced constraints during
the design stage of the development cycle and to eliminate uiiimplementable design alterna-
t ives without expensive prototyping.

\Vithin the CSR paradigm, the Algebra of Communicating Shared Resources, ACSR [ll],
has been developed as a formal specification language. ACSR is distinguished from other
real-time forinalisms (e.g., temporal logics, net-based models, and automata theory) by its
notio~ls of resources and priorities which allow the specification of the resource requirements
of a real-time system. Two additional advantages of ACSR are its precise operational seman-
tics and its equivalence relations. The operational semantics makes it possible to execute
an ACSR specification to detect unintended behaviors of the specification before attempting
to prove its correctness. The equivalence relations make it possible to compare specifica-
tions (e.g., recluirements and design) and to replace one specification for another inside a
larger system. This in turn makes modular specification and verification possible within the
,iCSR formalism. Recently, ACSR has been implemented in VERSA [2], a toolkit for the
ipecification, syntactic manipulation, execution, and analysis of ACSR specifications.

Similar to most other formal specification languages, however, ACSR is based on a textual
notation that often produces cumbersome, difficult to understand specifications. In an effort
to make ACSR more accessible to average software engineers who are not necessarily experts
in process algebra, we have developed a graphical language for real-time systems called
Ch-aphical Communicating Shared Resources (GCSR). Figure 1 shows the overall structure
of the GCSR development environment. GCSR borrows intuitive graphical concepts of nodes
and edges from control flow graphs which have been widely used in software engineering
through methodologies such as Structured Analysis [4]. GCSR has several advantages: it
allows scalable specification of complex systems in a modular and hierarchical fashion; it
allows the integration of a system functional requirements with its resource requirements
ill a natural way that produces easy to understand and modify specifications; and it has
a precise operational, i.e., executable, semantics that corresponds to ACSft. The GCSR-
XC'SR correspondence makes it possible to combine both types of specifications and to use
the analysis tools provided through VERSA.

The remainder of the paper is organized as follows. Section 2 presents the GCSR compu-

Analysis el
I I

Figure 1: GCSR Specification and Analysis Environment

tation model and syntax. Section 3 reviews ACSR and describes the correspondence between
GCSR and ACSR. Section 4 models and analyzes a railroad crossing system in the GCSR
formalism. Section 5 reviews related work in the area of graphical, formal specification
languages for real-time systems and outlines future work based on GCSR.

The GCSR Language

The GCSR paradigm is based on the view that a real-time system consists of a set of com-
municating components, called processes, that use a finite set of serial, shared resources for
execution and that synchronize with one another. The use of shared resources is represented
by timed actions, called actions, and synchronization is supported by instantaneous actions,
called events. The execution of an action is assumed to take nonzero time units with respect
to a global clock, and to consume a set of resources during that time. The execution of
an action is subject to the availability of the resources it uses. Contention for resources is
arbitrated according to the priorities of competing actions. To ensure uniform progress of
time, processes execute actions synchronously.

Unlike an action, the execution of an event is instantaneous and never consumes any
resource. Processes execute events asynchronously except when two processes synchronize
through matching events. Priorities are used to arbitrate the choice when several events are
possible. Event priorities model priorities inherited from the functional requirements and
"break a tie" between competing services.

Graphically, a GCSR process is represented by a finite set of nodes that are connected
with directed edges.

unlabeled edge

Action nodes

Ili.stantimeouh time-consuming (cevmr~nrme>. qnonly,)
event-labeled edge

Normal edge

The c~rcle node is any node.

Figure 2: (a) GCSR Nodes; (b) GCSR Edges

2.1 Nodes

CiCSK. offers several types of nodes for a succinct and graphically clear representation of
va.rious syst'em activities. GCSR classifies nodes into two main categories: action nodes and
process nodes. Figure 2 (a) shows the graphical symbols of GCSR nodes.

An action node describes a system execution state where a basic activity, i.e., decision or
timed action, is executed. Action nodes are divided into two types: 1) the instantaneous node
tlescribes a system state where an undelayed communication or control transfer is executed;
and 2) the time-consuming node describes a systeni action, e.g., computation that takes time
and consumes resources. The Resource attribute of a time-consuming node identifies the set
of resources required for the execution of the action.

A process node describes a system execution state in which multiple activities are ex-
ecuted. Process nodes are divided into three types: 1) the nil node represents a halting
process, i.e., end of system execution; 2) the reference node refers to a GCSR process by
it5 name. Refernce nodes help visually to structure a large specification into pieces; and 3)
the compound node describes the details of one GCSR process or multiple GCSR processes
esecuting in parallel.

The compound node is essential in supporting scalable specifications. It allows grouping
of CC'SR processes into a higher level entity. Furthermore, it can also be used to connect
several GCSR processes that are executed sequentially. This lnaltes it possible to describe
a system in a iiiodular fashion. In addition to this structural modularity, a cornpound node
encapsulates dependencies through two attributes, Restrict and Close. The Restrict attribute
identifies a set of events which are visible only among the GCSR processes nested inside the
node. The Close attribute identifies a set of resources which can be used only by the nested
G('SR processes and thus are unavailable outside the compound node.

2.2 Edges

GC'SR clisides edges into two categories shown in Figure 2 (b): normal edges to represent
transit ion5 hetween nodes at the same level, and c.rceptfon edges to emulate transitions
hetn-eea nodes at different levels of nesting. The two types of edge5 are motivated by the
cl~sire to support a structured, hierarchical specificatioll in which edges do not cross node
bounclaries. ,Also. we want to graphically distinguish two types of control flow: one that is
externally controlled by an interacting process and one that is triggered internally through
voluntary release of control by raising an exception.

.I normal edge is either unlabeled or labeled with an event or time. An event is denoted
l ~ y a pair ((tilent-name), (p r . z o ~ - l t y)) , where the priority is an integer that represents the
urgency of the event. \Ye use e ? to denote receiving the event c and e! to clellote sending the
e\-eilt t. Time is denoted by a positive integer constant.

,411 esception edge has a source node that is either a compound or reference node. Control
move5 to the destination node of the exception edge when the process inside the source node
esecutes an exception event that labels the exception edge. The transfer of control through
ail esception edge allows synchronization between a process inside a compound node wit11
an outside node.

Tliere can be multiple edges originating from a common source node; this allows the
choice alllong several activities. GCSR uses ACSR notiorl of prioritized transitions, which is
described in Subsection 3.1.2, to arbitrate among simultaneously possible transitions.

2.3 Gate Example

Flgure 3 shows GC'SR specification of the gate coi~iponent of a railroad cro5sing system [7] .
The GCSR specification of the gate is divided into four modules: an initial process, Gate.
two processes responsible of lowering the gate, G D and GD', and a process, GU. responsible
of raising the gate.

Figure 3: Gate Esalnple

The behavior of the system is described by a control flow that starts a t the initial node of
Gate and rnoves across the llodes until it reaches a nil node. at ~ v l ~ i c h time the iystein end5 its

execution. When control enters the initial node of Gate which is an instantaneous node, there
are two possibilities corresponding to the outgoing edges. One possibi l i t~ is to idle by inoving
control to the time consuming node wit11 the empty set of resources. The other possibility
is to receive the event (lower?, I) , in which case control moves to the reference node named
G D and the system starts behaving like the G D process. In the complete specification of the
railroad crossing system, where the Gate is running in parallel with other components, e.g,
train, the senlantisc of GCSR ensures that the transition on receiving tlie lower event has a
higher priority than the idle transition. Once control enters the initial node of G D , it stays
in this node for 20 time units while continuously coilsuming the cpu resource a t priority 1
and the gate resource at priority 1. Afterwards, control moves to the target instantaneous
node, and so on so forth. The initial node of the process G U is a compound node. The
process nested inside this node, GO, represents the gate opening activities. This process can
1,e interrupted by the reception of the event lower: in this case, control moves to the process
1,esponsible of closing the gate, GD. If there is no lower request, the gate is opened in 20
tiine units; here, it signals done and control moves to the initial process Gate.

2.4 GCSRProcesses

A C:C:SR process is a tuple (N, I, E,L,R) where L is a set of event names, R is a set of
re5ource names, (AK, E) is a directed graph with initial nodes I c ,Y. The set of labeled
edges E N x L x N is defined over the set of labels L { c } U (L x N) U (N U {m)) where
t denotes a n enipty label.

Since GCSR is hierarchical, the set of nodes ,V is defined together with a hierarchy
function p which defines for each node the set of GCSR processes it contains inside. That is,
p(17) = {GI , GI;) if the GCSR processes GI , . . . , Gk are contained immediately inside the
node 1 2 . Given the hierarchy function p, a node n is either an instantaneous, time-consuming,
nil, or reference node, if p(n) = 0; and a node n is a compound node, if p(n) = {GI, a - , GI,}.

To assign semantics to GCSR specifications, nTe next describe rules to restrict how GCSR
nodes aiicl edges can be combined to form a valid GCSR specification.

Definition 2.1 A vabid GCSR process has edges and nodes that satisfy the following re-
strictions:

Edges:

1. E,ach edge connects nodes only at the same level.

'2. For e17ery edge (s, I , d), and for every compound node n , p(n) = {GI, . , Gk) , s
is a node of G'; if and only if d is a node of G;, for i = 1, ..., k .

Action nodes:

1. Each instantaneous node can have only unlabeled or event-labeled, ilormal out-
edges, and it can not be a sink node.

2. Each tiine-consuming node must have one time-labeled out-edge and nothing else.

Process nodes:

1. Each nil node is a sink node, i.e., has no out-edge.

2. Ally reference and compound node can have multiple event-labeled normal out-
edges, at most one time-labeled out-edge, and at most one exception out-edge.

Figure 4 shows examples of illegal compound node and edges. In the rest of this paper,

(a) (b)

Figure 4: Illegal Compound Node (a) and Edges (a) and (b)

C;(SR 1."-ocess means valid GCSR process.

3 The Semantics of GCSR

The underlying semantics of GCSR is the Algebra of Communicating Shared Resources
(XCSR). We define the semantics of GCSR in two steps. The first step is to identify pure
(:('SR, a subset of GCSR with an obvious correspondence with ACSR. The second step is
lo define a set of transformations from pure GCSR to GCSR and vice versa. Thus, every
valid GC'SR process can be translated into an ACSR process by first converting it to a pure
Gi'SR process and then mapping the pure GCSR process to a corresponding ACSR process.

3.1 The ACSR Language

XCSR augments CCS [13] with time and resource-consuming prioritized actions. Although
XCSR has heen developed for both dense time [l] and discrete time [I l l , the analysis toolkit
I'ERSA supports only discrete time.

The computation model of ACSR is based on the view that a real-time system is a set
of coinmuliicating processes that compete for shared resources. The use of shared resources
is represented by actions and communication is supported by events. An action represents
the progress of one time unit with the consumption of resources. The execution of an
action. which is a set of (resource-name, priority) pairs, is subject to the availability of the
resources it uses. The contention for resources is arbitrated according to the priorities of
colnpeting actions. As an example, the action {(cpu, 1)) denotes the use of the cpu resource
at the priority level 1, whereas the action {(cpu, l) , (memory, 2)) denotes the use of the cpu
resource a t the priority level 1 as well as the memory resource at the priority level 2. The
itctior~ (d represents the passage of one time unit without consuming any resources, that is,
idling for one tinie unit.

The events provide a basic mechanism for synchronization and communication between
processes, and for outside observation. The execution of an event never consumes any re-
sollrce. Processes execute events asynchronously except when two processes synchronize
t.111-ough matching events. Priorities are used to arbitrate the choice when several events are

possible at the same time. An event is denoted by a pair (a,p) , where a is the label of the
event. and p is its priority. Labels are drawn from the set L U 2 U { T) , where if a is a given
lahel, we say that a is its inverse label; i.e., a = a. As in CCS, the special identity label, r ,
a.rises when two events with inverse labels are executed in parallel.

3.1.1 The Syntax of ACSR

We use A, B and C for actions and e, f and g for events. When we do not want to distinguish
whether it is an action or an event, we use cr and P.

The followiiig grammar describes the syntax of ACSR processes:

p ..- . NIL 1 A: P I (a , n) .P (P + P I PIIP I
PA: (Q,R,S) I [PII I P\F 1 r e c X . P (X

NIL is a process that executes 110 action (i.e., it is initially deadlocked). There are two prefix
operators, corresponding to actions and events, respectively. The first, A : P, executes a
resource-consuming action A at the first time unit, and proceeds to the process P. On the
other hand, (a, n) .P , executes the event (a, n), and proceeds to P . The difference here is
that we consider no time to pass during the event occurrence. The Choice operator P + Q
represents possible executions - either of the enabled processes may be chosen to execute.
The operator PI(& is the parallel composition of P and Q.

The Scope construct P A; (Q, R, S) binds the process P by a temporal scope [12], and
incorporates both the features of timeouts and interrupts. We call t the time bound, where
t E M+ U {m) (i.e., t is either a non-negative integer or infinity). The scope may be exited
in a iiuinber of ways. First, if P successfully terminates before t time units by executing an
eveat labelled with a, then control proceeds to the "success-handler" Q (here, a may be any
label other than r .) On the other hand, R is a tiineout exception-handler; that is, if P fails
to terminate before t time units, then control proceeds to R. Lastly, at any time while P is
executing it may be interrupted by S, and the scope is then departed.

The Close operator, [PII, produces a process P that monopolizes the resources in the set
I. The Restriction operator, P\F, limits the behavior of P . Here, no events with labels in
F are permitted to execute. The process rec X . P denotes standard recursion, allowing the
specification of infinite behaviors.

To simplify the description of large systems, we augment the ACSR syntax with a def-

inition operator as well as indexed processes and events. We use X Ef P to refer to the
process expression P by the process name X. We use subscripts to define indexed processes
and events, e.g., PI and (az,p) .

3.1.2 The Semantics of ACSR

The seinantics of ACSR is defined in two steps. First, we develop the unconstrained transition
ff

system, where a transition is denoted as P + P'. Within "+" no priority information
is used to prune impossible executions; we subsequently refine "L" to define our prioritized
trailsitioil system, "L, ."

The two rules for the prefix operators are axioms; i.e., they have premises of true. There
is one rule for an action, and one for an event.

A c t T
A : P A ' P

For example, the process {(cpu, 1)) : C1,l can use the cpu resource at priority level 1 for one

time unit and proceeds to the process ClI1. Alternatively, the task process TI (sl, l).Cl,o
can execute the event (sl , 1) and proceeds to the process Cl,o.

The rules for Choice are identical for both actions and events (and hence we use "a" as
the label).

' 1
ChoiceL

P + Q 5 P f
Cho iceR Q "t Q'

P + Q 5 Q t

def As an example, the process C1,,, = 0 : C1,,, + (sl, l).Cl,o may choose between idling for one
time unit or executing the event (s l , 1). The former behavior is deduced from rule ChoiceL,
while the latter is deduced from ChoiceR.

'l'he Parallel operator provides the basic constructor for concurrency and communication.
The first rule, ParT, is for two time-consuming transitions.

P P', Q Q'
ParT

A1 uA2 (~ (~ 1) n P (A ~ > = 0)
PIIQ P'IlQ'

where p(A) is the set of resources used by the action A; e.g., p({(cpu, l) , (buf fer ,2))) =
{cpu, bu f fe r) . Note that timed transitions are synchronous, in that the resulting process
advances only if both of the constituents take a step. The condition p(Al) n p(A2) = 0
tllandates that each resource is truly sequential, and that only one process may use a given
resource during any time step.

The next three laws are for event transitions. As opposed to actions, events may occur
asynchronously.

The first two rules show that events may be arbitrarily interleaved. The last rule is for two
synchronizing processes; that is, P executes an event with the label a , while Q executes an
eveut with the inverse label a . Note that when the two events synchronize, tlreir resulting
priority is the sum of their constituent priorities.

Exaimple 3.1 Consider the following two processes:

(lef (s ,3) .Pi + { (cpu l ,8)} : p2
def

Q = (3,5).Q1 + {(cPu2, 7)) : Q2

The compound process PIIQ admits the following four transitions:

(s,3)

PIIQ + PI I I Q [by P ~ ~ I L]
(3 , 5)

P I I & + PllQ1 [by ParIR]
(73)

PIIQ + PillQ~ [by Parcorn]
{ (C P U I ,~),(cPuz,~))

PIlQ ---+ P2IIQ2 [by ParT]
Note than an event transition always executes before the next "tick" of the global clock.

'I'lle coristruction of ParCom ensures that the relaiive priority ordering among events with
the saiiie labels remains consistent even after conimuiiication takes places. The following
esainple shows how the ordering is preserved.

Exaimple 3.2 Consider the following static priority scheduler where the dispatcher D has
t11e clioice between instantiating two tasks TI and T2:

D (s , 5).DI + (S , 3).D2
T d" (s,2).T1 + (a,3).T2

Thus, in T the second choice is preferred, while in D the first choice is preferred. There are
~ i g h t possible transitions for DIIT:

(7,s) (736)
DIIT + D11JTz DIT + DzllT~

TT,Tllile there are now four possible transitions labelled with 7 , the addition of priorities in
ParColm ensures that the original relative orderings are maintained. Note that the 7-

transition with the highest priority is that associated with the derivative D1(lT2. These
transitions had the highest priorities in their original constituent processes.

The Scope operator possesses a total of five transition rules, which describe the various
l~eliaviors induced by a temporal scope. The first two rules show that as long as t > 0 and
P does not execute an event labelled with b, the executions of P continue.

A P . P'
ScopeCT

P ~ b l (Q , R, S) -5 P' A",_, (Q , R, S)
(t > 0)

p (a,n! p1
ScopeCI (a # b , t > 0)

P A: (Q , R, S) P' ~ 6 , (Q , R, S)

The ScopeE (for "end") shows how P can depart the temporal scope loy executing an event
labelled with b. Upon exit, the label b is converted to the identity label .r (however, the same
priority is retained).

p p/
ScopeE

P nbt (Q, R, S) 9 Q
(t > 0)

Tlle next rule, ScopeT (for "timeout"), is applied whenever the scope times out; that is,
w11e11 t = 0. At this point, control proceeds to the timeout exception-handler R.

R ". R'
ScopeT (t = 0)

P L$ (Q, R , S) 5 R'

Finally, ScopeI shows that the process S may interrupt (and kill) P while the scope is still

S 5 S'
ScopeI

P & (Q, R, S) % S' (t > 0)

Example 3.3 Consider the following specification: "Execute P for a niaximum of 100 time
units. If P executes an event labelled with b in that time, then stop the system. However,
if P fails to finish within 100 time units, then start executing R. At any time during the
execution of P, allow interruption by an event (c , 3) , which will halt P, and initiate the
interrupt-handler S." This system may be realized by the following process:

P A;,, (NIL, R, (c ; 3).S).

The Restriction operator defines a subset of events that are excluded from the behavior
of t,he system. This is done by establishing a set of labels, F (T $ F), and deriving only
those behaviors that do not involve events with those labels. Actions, on tlie other hand,
relllain unaffected.

P A' P'
ResT

P\F Pt\F

p '"."! PI
ResI

P\F P'\F
(a , @ F)

Example 3.4 Restriction is particularly useful in "forcing" the synchronization between
concurrent processes. In Example 3.1, synchronization on s and s is not forced, since PJI Q
has transitions labelled with s and s. On the other hand, (PIIQ)\{s} has only two transitions:

(~ , 8) { (C P U I , B) , (c P ~ ,7)}

\ + (Q) \ { } and (PIIQ)\{s} + (P211Qz)\{s)

Irl effect, t5he restriction declares that s and 3 define a "local channel" between P and Q.

The Close operator assigns dedicated resources. When a process P is embedded in a
closed context such as [PII, we ensure that there is no further sharing of the resources in

I . Assume that P executes an action A. If A utilizes less than the full resource set I, the
action is augmented with (r: 0) pairs for each unused resource r E I - p(A).

P A" PI

CloseT A~ UA. (A2 = {(r,O) 1 7- E I - p(A1)))
[PI1 +" [P11I

Tlle operator rec X . P denotes recursion, allowing the specification of infinite behaviors.

P[rec X.P/X] -5 P'
Rec

rec X.P ". P'

where P[I-ec X.Y/X] is the standard notation for substitution of rec X.P for each free
occurrence of X in P.

As an example, consider rec X.({(cpu, 1)) : X), which indefinitely executes the action
"{(cpz~, I)) ." By A c t T ,

{ (c p u , l) }
{(cpu, 1)) : (rec X.({(cpu, 1)) : X)) + rec X.({(cpu, 1)) : X) ,

so 113' Rec,
{ (C P U , ~) }

rec X.({(CPU, 1)) : X) + rec X.({(cpu, 1)) : X).

N

We clefine the unprioritized labelled transition system "+" as follows: P - P' if the
transition on a is derivable by one of the rules described in this section.

T h e Pr ior i t ized Transit ion System. The prioritized transition system is based on pre-
f ~~lption, which ii~corporates our treatment of synchronization, resource-sharing and priority.
\\'e use '-4" to denote the preemption relation. For two actions or events, a and P , if a 4 P,
then we say that "a is preempted by /I." This means that in any real-time system, if there
is a choice between executing either a or P , it will always execute P. Informally, there are
tllsee cases for a 4 /?: 1) a and /? are events with the same label and has a higher priority;
2) a and /3 are actions and p uses a subset of resources with at least one at a higher priority
illall in a ; or 3) B is a T event with a non-zero priority while cu is an action.

Example 3.5 The following examples show some coniparisons made by the
wlat ion, "4."

a. {(I ' I , 2) . (~ 2 ~ 5)) {(TI, 7), (r2,5))

11. {(TI. 21, (7*2,5)} + {(r l , (~ 2 ~ 3))

c. (19.1, a)? (r2,O)) 4 7))

~ 1 . u 7 . 1 , 217 h 7 11) + {(r17 711

e. (~ ~ 1) 4 (~ ~ 2)

f. (a , 1) + (b, 2) if a # b

g. ((1.2) 4 (a, 5)

11. TI,^), (r2 ,5)) + (7,2)

VCie next define the prioritized transition system " t , , " which simply refines "+" to account
for preemption.

a
Definition 3.1 The labelled transition system "t," is defined as follows: P -, P' if

a) P 5 P' is an unprioritized transition: and

P B) There is no unprioritized transition P PI' such that a + P .

Example 3.6 In Example 3.2, prioritized transition eliminates five of the eight possible
transitions, leaving the following:

since (s , 2) 4 (s , 3) , and (s, 3) 4 (~ , 5) , and (7 , ~) + (7,s) for p = 5,6,7.

3.1.3 Ailalysis in ACSR

The precise operational semantics of ACSR, as described earlier, makes it possible to execute
a,n ACSR process to examine unintended behaviors. Furthermore, one of the advantages of
a process algebraic formalism is its support of notions of equivalence that can be used to
verify the correctness of a process, e.g., design specification, with respect to another process,
e.g, requirements specification. ACSR offers liotions of process equivalence that are based
on the concept of bisimulation [14]. ACSR uses the two common notions of bisimulation,
strorl,y bisimulation and weak bisimulation. Furthermore, ACSR augments the two notions of
l~isinlulation with priorities to define the largest prioritized strong and weak bisimulations,
\rhich are called (prioritized) strong equivalence (N ~) and (prioritized) weak equivalence (z,),
respectively. The strong equivalence, N7T, is a congruence relation with respect to all ACSR
operators [5]. This allows modular analysis in ACSR which is essential in the verification of
la,rge-scale systems.

ITsing the notions of equivalence, ACSR offers syntax-Based analysis and semantics-based
nnalysis techniques. In the syntax-based analysis, ACSR defines a set of laws that can be
used to syntactically transform one process to an equivalent process. In the case of discrete
time. ACSR has a sound and complete set of laws that characterize strong equivalence for
finitc-sate processes. The reader is referred to [I] for more details.

Semantics-based analysis in ACSR uses an effective algorithmic approach to verify the
ecluivalence of any finite-state processes. The basic idea of this analysis technique is to com-
pute the largest bisimulation of two processes. The algorithm [3, 101 minimizes the combined
labelled transition systems of two processes to be coinpared with respect to bisimulation.

Recently, we augmented ACSR with a Hiding operator P\H which conceals the identify
of the resources in H from the behaviors (i.e., prioritized labelled tralisition system) of the
process P. The Hiding operator augments semantics-based analysis capabilities of ACSR.
I t a,llows the comparison of ACSR processes irrespectively of their resource usage which
~ilight be considered as detail information. This is very useful when one is interested only in
t,be t,ililing behavior of a process while resource usage is irrelevant. The following example
illustrates how verification is facilitated through the Hide operator.

Example 3.7 Consider the following processes:

P def {(cpul, 1)) : P + {(cpul, 1)) : P

Q ds {(cpu2,1)} : Q + {(cpu3, 1)) : Q
R 'Af P 1 Q

Suppose we want to prove that the process R does not reach a deadlock state. One way is
to construct such an ACSR requirements specification R' and to show that R and R' are
bisimilar. Since any two of the three resources cpul, cpu2, cpu3 can be used during each time
unit,, it is cumbersome to specify R' so that all possible resource use patterns are explicitly
en~ullierated. But, we are not interested in the patterns of resource usage. Thus, the require-
ments specification can be rephrased as to show that the process R\{cpul, cpu2, cpu3) never
deadlocks. Since the resource information of R is hidden, we can use a ACSR requirements
specification, rec X . 0 : X. The correctness of R can then be proved by showing that

R/{cpul, cpu2, cpu3) E, rec X. 0 : X.

3.2 The Semantics of Pure GCSR

In this section. we define the semantics of a subset of valid GCSR, called pure GCSR. Pure
GC'SR corresponds to ACSR; that is, there is a translation between pure GCSR to ACSR
(IGAAl) and vice versa (TAG). The main idea behind the two translations is the same, we
therefore describe only IGA in detail.

Defii~itioil 3.2 A pure GCSR process is a valid GCSR such that:

1. any instant node has either one normal, event-labeled out-edge, or two normal, unla-
beled out-edges;

2. any reference node is a sink node;

:3. any compound node, n, has either one or two nested components, i.e., ~ (n) = (G) or

p (n) = (GI, Gz); and

4. any compound node with out-edges has one nested component, one exception out-edge,
one time-labeled out-edge, and one normal unlabeled edge.

Process G D of Figure 3 is a pure GCSR process, however, processes Gate, GD' , and GU
a.re not. Figure 5 shows their pure GCSR representation.

Figure 5: Pure GCSR processes

Each pure GCSR process corresponds to an ACJSR process. The translation of a GCSR
l~rocess consists of translating the nodes and the edges. The translation starts from the
initial node and is recursively applied to processes reachable from the initial nodes. The
results of the translations are then combined using an ACSR operator. Figure 6 describes
the nine steps of translating a GCSR process to ACSR. The translation function is called
?;:A.

Step 1 binds the translation of the GCSR process to the process variable name P. In
st,ep 2, an event prefix process is created from the event that labels the normal edge out of
the instantaneous node and the translation of the GCSR process that starts at the target
node. In step 3, an action prefix process is created from the time-consuming node and its
t'isne-labeled out-edge. In step 4, each process that starts at the target node of the unlabeled
edge is translated and the result is combined through the Choice operator. In step 5, the nil
node is translated to the NIL process. In step 6, the reference node is translated to a process
va,riable with the referenced name. In step 7, the GCSR process inside the coinpound node
is tjranslated, and then the Restrict and Close attributes of the compound node are used
in the Restrict and Close operators; the attributes are ignored if they are the empty sets.
In step 8, the two GCSR processes inside the compound node are translated and combined
through the Parallel operator. The Restrict and Close attributes of the compound node are
used in the Restrict and Close operators. In step 9, the GCSR process inside the compound
node is translated and used as the main process in the Scope operator. The translation of
t,arget process of the exception edge produces the success-handler process. The translation
of the time-labeled edge produces the timeout process. Finally, the translation of the GCSR
process that starts at the target node of the unlabeled edge produces the interrupt process.

Figure 7 shows the translation of the pure GCSR processes Gate, GD' , and GU of Figure 5
and G D of Figure 3. Note that (lowel-?, 1) in GCSR is represented as (lowel-, 1) in ACSR
and (Dowiz!, 1) as (Down, 1).

We can use structural inductioil to prove the following lemma.

Leinina 3.1 For every pure GCSR process G, TGA(G) is an ACSR process and for every
A(I'!SK process P, TAG(P) is a pure GCSR process.

NIL

1 Restrict = F, Close = I

I Restrict = F, Close = I

9. a

Restrict = F, Close = I

Figure 6: Pure GCSR to ACSR Translation

16

de f
Gate = 8 : Gate + (lower, 1).GD

G D {(cpu, 1), (gate, 1))" 0: (Down, l).GD1

GD' %f 0 : GD' + (ra i se , l).GU

GU GO ~2' (Gate, NIL, (lower, l).GD)

GO {(cpz~, 1). (gate, 1))" : (p, l).(done, l) .NIL

Figure 7: Translation of the Gate Example

F~~r t~hermore , we can establish the ulliqueness of the correspoildence between pure GCSR
and ACSR as sta,ted in the next Theorem.

Theorelm 3.1 For every pure GCSR process G, we have TAG(IGA(G)) -- G, and for every
A('SR process P , we have TGA(IAG(P)) = P, where denotes labeled graph isomorphism
and = denotes syntactic equality between processes modulo commutativity for the parallel
a.nd choice operators.

3.3 Transformation of GCSR Specifications

In aclditioi~ to the verification of the correctness of a GCSR specification, another advan-
tage of ACSR equivalence relations is their use as the basis to minimize or expand GCSR
specifications. Figure S shows transformations (minimization or expansion) that produce
ecl~livalent specifications according to the prioritized strong equivalence of ACSR, N,.

Elinlillate process nodes. There are two transformations that allow the elimination of
process nodes: one to replace a reference to a process with a cyclic edge (Figure 8, 1)
and the other to eliminate an unreachable nil node (Figure 8, 2).

Elill~il~ate edges. There are two transformations to eliminate edges in a GCSR process:
one to remove unnecessary unlabeled edges (3) and the second to merge consecutive
"identical" nodes (4).

Elilmillate boxes. Extra nested compound nodes, which can be due to reference node bind-
ing, can be eliminated (5 and 6).

Eliminate duplicates. The last GCSR transforlnation merges "identical" portions in a
CCSR process.

The GCSR processes Gate and G D ' of Figure 3 can be obtained from the GCSR processes
in Figure 3 by eliminating unlabeled edges (transforillation 3). The GCSR process GU in
Figure 3 can be obtained from the pure GCSR process in Figure 5 by eliminating the m
time labeled edge and its target node (transformation 2). Figure 9 (a) shows the result
of elinlinating the reference node GD' from the process G D ' (transformation 1). and (b)

Eliminate process nodes Eliminate boxes

1.
L

Conditions: N2.Restnct = N1.Restrict
N2.Close =N1 .Close

2. N 1

I I

Eliminate edges
Conditions: N2,Restrict = N1 .Restrict

N2.Close =N1 .Close= { J

If instantaneous node has one
u~~labeled incoming edge Eliminate duplicates

Figure 8: GCSR Transformations and Short Hand Notation

shom~s the result of binding the reference node labeled GD' in the process G D of Figure 3,
finally (c) shows the resulting of eliminating the extra compound node which is created in
(11) (t.ransformation 5).

GCSR to Pure GCSR. It is possible to show that every valid GCSR process can be
transformed to a pure GCSR process by using the above transformations. Since every pure
GCSR process corresponds to an ACSR process, we therefore establish the fact that every
valid GCSR process corresponds to an ACSR process. Note also that since pure GCSR is
a subset of GCSR, and since every ACSR process has a corresponding pure GCSR process,
this implies that ACSR is the same as valid GCSR.

4 Example: A Busy Railroad Crossing System

The system to he developed coi~trols a gate at a railroad crossing [7]. The railroad crossing
lies in a region delimited by entry and exit sensors that detect the entry and exit of trains.
The goal is to develop a system that operates the crossing gate subject to the following two

Figure 9: (a) G D ' after eliminating reference node GD'; (b) G D after resolving reference node
GD': (c) G D after eliminating extra box.

properties:
. s a f e t y when a train is in the crossing, the gate is down; and
u t i l i f y when no train is in the crossing, the gate is up.

Figure 10 shows the GCSR specification of the railroad crossing system to which we added
cars to model a busy railroad crossing, BRC. Our design contains three main components:
Train and Car which describe the environment, and Gate which describes the computer sys-
t,em that colltrols the gate. The Train synchronizes its activities with the Gate by sending
the sensory-event lower when it nears the crossing and raise when it leaves the crossing. In
;~ddit,ion, the Train marks its critical position in the crossing region by producing the observ-
nblf event (iVc!, 1) when it is near the crossing, the event (I c ! , 1) when it is in the crossing,
and the event (Pc ! , 1) when it passes the crossing. A Train takes 2.5 time units to enter the
crossing, 10 time units to pass it , and at least 15 time units to return to the crossing again.

While the Train synchronizes its activities with the Gate, the Car does not. This models
cars that try to pass the crossing any time they can, possibly by sneaking around the gate
~vliea it is down. To detect potential collisions between a train and a car, we use the shared
resource crossing. A collision is marked by a deadlock that is due to a train that must access
t,he c.i~ossi,zg resource at tlie same time as a car. To arbitrate the resource sharing, a train
in the crossing has a higher priority to access tlie crossing resource than a car that arrives
LO the crossing.

The Train process states that once a train enters the crossing region, which is marked by
(_\'c.!. 1). it triggers the entry-sensor (lower!, 1). and then spends 25 time units approaching
the crossing while at the same time trying to capture the resource crossing; this is described
13y process TN which executes for 25 time units. In process TN, the time-consuming node
with no resources can be repeatedly visited until the first time it is possible to enter the node
with resources {(crosszng, 5)) at which time control loops in this node. Since the resource
crossing is closed in B RC, entering the node with resources {(crossing, 5)) is at the earliest
tinie it is enabled. Consequently, in the case that there is no car already in tlie crossing (i.e.,
C a r is in the idling node), the train enters this node immediat,ely, which makes the resource
cro.ssing unavailable to ally car that arrives later.

To verify that the detailed GCSR specification BRC of Figure 10 satisfies the safety and
utility properties, we use the requirements specification Spec, of Figure 11. The ACSR
process Spec, focuses on describing the desired behavior of the BRC. It does not show the
iystem architecture, i.e., components and abstracts out resource usage. This specification
coilsists mainly of sequential executions and thus is easier to inspect for the safety and

BRC ,

Figure 10: GCSR Specification of Busy Railroad Crossing

utility properties. We can see that in Spec,, the gate is down whenever there is a train in the
crossing: each occurrence of Down precedes an occurrence of Ic (line (4)) and each occurrence
of Cip is preceded by an occurrence of event PC (from line (4) to line (7)). In addition, we can
inspect in Spec, that the train and the car will not collide: there is no deadlock in Spec, due
to resource contention. Furthermore, one can easily inspect that Spec, satisfies the utility
property: if no event (x, 1) ever occurs, the gate remains in its initial position (line (3)))
which is by assumption, up; on the other hand, if no event (E, 1) occurs within 15 time
urlits of the last PC, the event Up occurs (line (7)) .

More specifically, we can use the VERSA analysis tools and our translation mechanism
to prove that

TGA(BRC)\\{crossing} E, Spec,

where the operator P\H conceals the identities of the resources in H in the executions of
process P and zT is the prioritized weak equivalence in ACSR. Thus, we can conclude that
our design specification BRC satisfies the safety and utility properties.

dzf -
Spec, - (N C , 2) . ((x , 1).(Jz0 : GDown + 0 : ((x, l).g4 : (x, 2).016 : GDown (1)

$0 : ((x, l).g3 : (E, 2).017 : GDown + 0 : ((x, 1).g2 : (x, 2).018 : GDown (2)

+0 : Spec,)))) (3)

GDown ef (s, I).@' : (z, l).O1° : (E, l).g5 : (x , 2) . 0 5 : (x, 2).e5 : Spect, (4)
def -

Spec', = (N c , 2) . ((x , 1).g2' : GDown + 0 : ((z, l).g4 : (z, 2).016 : GDown (5)
$0 : ((=,l).O3 : (z , 2) . 8 l 7 : GDown + 0 : ((x , 1) . g 2 : (x ,2) .018 : GDown (6)
$0 : ((x, l).gl : (K, 2).019 : GDown + 0 : (@, l).Spec,)))) (7)

Figure 11: Requirements Specification of the Busy Railroad Crossing

5 Conclusions

The pioneering work in CRSMs, St atecharts, and Modechart helped us underst and graphical
constructs essential in a specification language to describe the behavior of a real-time sys-
tern in a modular and hierarchical fashion. The Communicating Real-time State Machine
(C'RSM) formalism [16] combines the graphical representation of state machines together
with time and synchronous communication over unidirectional channels. CRSM's formal
semantics is given as a history of traces that describe the timed occurrences of communica-
tion and internal computation. Statecharts [6] augmented the finite state machine formalism
with hierarchy, and broadcasting mechanism. Communication is done via shared variables
and events that are visible across all states and levels of a specification. Statecharts' formal
semantics is based on timed sequences of system state changes. Modechart [9] enhanced the
features of Statecharts with timing constructs such as alarms and deadlines, and limiting
transition labels to avoid semantic anomalies. Its semantics is based on Real Time Logic,
a first-order predicate logic [8] . The toolset MT [15] has been implemented to specify and
model real-time systems using a subset of Modechart. M T can be used to specify real-
time properties written in RTL, e.g., safety properties and verify that a given Modechart
specification satisfies them.

The underlying formalisms of the above languages, however, assume idealistic run-time
eilvironments. 111 particular, they lack notions of resources and priorities which are essential
to capture accurately the behavior of a real-time system. While it might be possible to en-
code the run-time resource requirements with functional requirements in these languages as
boolean conditions, the resulting specification may be complex and hard to modify. Further-
more, these languages lack an equivalence relation that can be used to verify the correctness
of a specification with respect to another.

In addition to supporting the specification of resources and priorities in an intuitive
wa.y that produces easy to understand and modify specifications, the GCSR language we
presented in this paper is distinguished by its syntax and precise algebraic semantics. GCSR
offers several types of nodes and edges for a modular and structured hierarchical specification.
GCSR semantics, which is defined through the ACSR process algebra, makes it possible to

execute a GCSR specification, verify its correctness through various notions of behavioral
ecluivalence relation, and minimize it or expand it to include more details.

'L'here are several extensions for GCSR on which we are currently working. The first
estension is to augment VERSA with a graphical environment where a real-time system
can be modeled ill GCSR. The second extension is to use GCSR as the front-end for an
eilvironnient for the top-down design of real-time systems. In this environment, a real-
time system is specified through an iterative process of implementation detail additions,
called refinement. These refinements will be represented through graphical transformation
operations. They will also have essential semantic properties such as preservation of deadlock
freedoin and timed occurrences of events between the original specification and the refined
one.

References

[l] Patrice Brilmond-Grilgoire. A process Algebra of Communicating Shared Resources with
Dense Time and Priorities. PhD thesis, Department of Computer and Inforination
Science, The University of Pennsylvania, Philadelphia, PA 19104, 1994. Tech. Report
MS-CIS-94-24.

[2] Duncan Cla.rke, Insup Lee, and Hong-Liang Xie. VERSA: A Tool for the Specification
and Analysis of Resource-Bound Real-Time Systems. Journal of Computer and Software
Engineering, 3(2), April 1995.

[:{I R.. Cleaveland, J. Parrow, and B. Steffen. A Semantics-Based Verification Tool for
Finite-State Systems. In Proc. of Protocol Specification, Testing, and Verification, IX ,
pages 287-302. Elsevier Science Publishers B.V., 1990.

[3] T. DeMacro. Structured Analysis and System Specification. Prentice-Hall, Inc., Yourdon
Press, Englewood Cliffs, NJ, 1987.

[5] R. Gerber. Communicating Shared Resources: A Model For Distributed Real-Time
Systems. PhD thesis, Department of Computer and Information Science, The University
of Pennsylvania, Philadelphia, PA 19 104, 1991.

[6] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8:231-274, 1987.

[7] C'. Heitrneyer, R. Jeffords, and B. Labaw. A benchmark for comparing different ap-
proa.ches for specifying and verifying real-time systems. In Proc. lo th IEElG Workshop
on Real-Time Operating Systems and Software, Majr 1993.

[8] F. Jahanian, R. Lee, and A. K. Mok. Semantics of modechart in real time logic. In
PI-oceedinys of the 2lst Hawaii International Conference on System Science, January
1988.

[9] F. Jahanian and A. K. Mok. Modechart: A specification language for real-time systems.
IEEE Ti-an,sactions on Software Engineering (to appear), November 1989. IBM Tech
Report RC 15140.

[lo] P. (:1. Kanellakis and S. A. Sniolka,. CCS Expressions, Finite State Processes, and Three
Problems of Equivalence. Information and Computation, 86:43-68, 1990.

[ll] I. Lee, P. Brkmond-Grkgoire, and R. Gerber. A Process Algebraic Approach to the
Specification and Analysis of Resource-Bound Real-Tirne Systems. Proceedings of the
IEEE, pages 158-171, Jan 1994.

1121 1. Lee and V. Gehlot. Language Constructs for Distributed Real-Time Programming.
In Proc. IEEE Real- Time Systems Symposiu~n, 1985.

[13] K . Milner. A Calculus for Communicating Systems. LNCS 92, Springer-Verlag, 1980.

[14] D. Pa.rli. Colicurrency and Automata on Infinite Sequences. In Proc. of 5th GI Confer-
ence. LNCS 104, Springer Verlag, 1981.

[l5] Anne T. Rose, Manuel A. Pkrez, and Paul C. Clements. iWodechart Toolset User's
illanual. Center for Computer High Assurance Systems Information Technology Divi-
sion, Yaval Research Laboratory. Washington, DC 20375-5320, NRL/MR/5540-94-7427
edition, February 1994.

[16] A. C'. Shaw. Communicating Real-Tinie State Machines. IEEE Transactions on Software
engin re?-ing, 18(9):805-816, September 1992.

	GCSR: A Graphical Language With Algebraic Semantics for the Specification of Real-Time Systems
	Recommended Citation

	GCSR: A Graphical Language With Algebraic Semantics for the Specification of Real-Time Systems
	Abstract
	Comments

	tmp.1183135482.pdf.Si2qy

