
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 2000

A Study of Cache-Based IP Flow Switching A Study of Cache-Based IP Flow Switching

Osman Ertugay
University of Pennsylvania

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Osman Ertugay and Jonathan M. Smith, "A Study of Cache-Based IP Flow Switching", . November 2000.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-00-22.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/139
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/139
mailto:repository@pobox.upenn.edu

A Study of Cache-Based IP Flow Switching A Study of Cache-Based IP Flow Switching

Abstract Abstract
Meeting the service demands from QoS-based network applications is a very challenging task performed
in many high-end routers and switches. This task involves management of resources like bandwidth and
memory in network devices. The memory in the form of a very fast cache that instruments wire-speed
classification, discrimination, and forwarding of network packets needs to be managed very effectively.
We examine the management of a specific IP flow-cache architecture through simulations based on
traffic traces collected from a campus intranet. A probabilistic cache install policy is examined over a
range of cache sizes and install probabilities. This policy successfully identifies the flows that warrant
caching and slightly improves deployable policies based on site-specific traffic information can increase
the switching performance even higher.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-00-22.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/139

https://repository.upenn.edu/cis_reports/139

A Study of Cache-based IP Flow Switching*

Osman N. Ertugay
Jonathan M. Smith

Department of Computer and Information Science
University of Pennsylvania

16th November 2000

Abstract

Meeting the service demands from QoS-based network applications is
a very challenging task performed in many high-end routers and switches.
This task involves management of resources like bandwidth and memory
in network devices. The memory in the form of a very fast cache that
instruments wire-speed classification, discrimination, and forwarding of
network packets needs to be managed very effectively. We examine the
management of a specific IP flow-cache architecture through simulations
based on traffic traces collected from a campus intranet. A probabilistic
cache install policy is examined over a range of cache sizes and install
probabilities. This policy succesfully identifies the flows that warrant
caching and slightly improves the performance they receive. We argue that
dyllamically deployable policies based on site-specific traffic information
can increase the switching performance even higher.

1 Introduction
Most high-end routers and layer-3 switches provide wire-speed forwarding
of IP flows combined with a range of QoS guarantees. At the heart of
such a high-end system is usually a very fast cache mechanism that allows
several million IP flow lookups per second. An IP flow is defined as a
sequence of one or more IP packets with the same protocol, destination
address, source address, destination port, and source port fields. This, in
practice, restricts our interest only to TCP and UDP packets, which make
up most of the IP traffic. In such a system, an important decision made
for each arriving packet is whether to perform a flow-based lookup or a
regular lookup based on the IP destination address only. This decision has
to be made at the wire-speed, hence usually by a hardware filter mech-
anism. Hardware filter mechanisms are usually much coarser compared
to the number of all possible flows simply because the time per packet to

*This research was supported by the NSF grant ANI99-06855 and by the 3Com Corpora-
tion.

make a decision at the wire-speed is very small. A coarse filtering mecha-
nism, consequently, leads to many unintended packets being looked up by
flow-id. When a flow-based lookup fails, forwarding of the corresponding
packet falls back to the software. The software, apart from forwarding the
packet, makes a decision on whether or not to install a new cache entry
for the flow that the packet belongs to. This decision also has a major
effect on the forwarding performance.

In this paper, we provide an analysis of forwarding performance for a
probabilistic cache installation policy. We simulate a specific cache-based
forwarding architecture with IP traffic traces collected from an intranet.
Section 2 describes the traffic traces we collected. Section 3 outlines the
flow-switching architecture. Section 4 describes the simulations we per-
formed. The simulation results are discussed in Section 5.

2 Traffic Traces
We collected traffic traces from three subnets of the SEASNet a t the Uni-
versity of Pennsylvania. A Linux PC (dual Pentium-pro POOMHZ, 192MB
RAM) with three Etnernet NICs was used. Each NIC was attached to
one of the subnets. We ran a tcpdump process for each subnet simultane-
ously. The output file from the tcpdump process for each subnet was then
merged into a single file. Order of the packets in the merged file was de-
termined by the packet timestamps. Since some packets (those travelling
between the three subnets that we traced) appeared twice in the merged
file, we removed the duplicates by checking if a packet was seen before
(to be more correct, if a packet was seen in the last 3 seconds; packets
were identified by the IP protocol, source address, destination address,
source port, destination port, ident, and length fields.) Consequently, the
resulting file contained TCP and UDP packets only. Traffic other than
TCP/UDP makes up around 2% of the overall traffic in the traces. (1.56%
and 2.82% in the two traces we collected)

Before the merging process, traces were also analyzed to see if the
capturing process had dropped any packets. We identified the TCP flows
and found out the gaps in TCP sequence numbers. Based on our analysis,
we concluded that at most 1% of the traffic might have been drooped by
our capturing process.

Two sets of traces were collected on two different days during the same
time period. The IP addresses appearing in the traces were scrambled
due to privacy issues. The scrambling process was designed such that the
flow information (end-to-end addressing associations) in the traces were
preserved.

Table 1 provides information about the collected traces.

3 Flow-switching Architecture
We used a 4-way set-associative flow-cache with LRU replacement policy
for our simulations. Cache sizes ranging from 64 to 4096 rows were used
throughout the simulations. All lookups are based on the IP flow-id. A

Table 1: Traffic Information

successful lookup leads to hardware forwarding for the packet. Lookup
failures are handled by the software. The software forwards the packet,
and makes a decision for whether to install a new flow-cache entry or not.
Ideally, one would like to install a new entry if sufficiently large number
of packets for that flow will arrive in the near future and/or an existing
entry which is taking lots of hits is not kicked out by the new entry. Most
importantly, time and space complexity of the decision algorithm should
not degrade the system performance.

We came up with a probabilistic installation policy: whenever a lookup
failure occurs, we install a new cache entry only with probability p. The
motivation behind this policy is:

flows with small number of packets and/or small packet rates (hence
not warranting a flow-cache entry) will have less chance of being
installed, thereby not disturbing already installed flows,

thrashing due to a set of flows continually kicking each other out of
the cache will decrease,

time and space complexity of the install policy is constant, no need
to keep per flow state.

4 Simulations
We simulated the flow-switching behaviour of the above described archi-
tecture with the collected traffic traces for install probability values rang-
ing from 0.1 to 1.0 with step size 0.1 and cache row numbers 64, 128, 256,
512, 1024, 2048, and 4096. In each simulation run, we kept the following
information for each flow:

number of packets

number of hits

number of misses (slow-path taken)

installs

installs that were kicked out without getting any hits

time first packet was seen

time of first install (if any)

number of packets seen until eventually installed

time last packet was seen

After each simulation run, the resulting flow information file was an-
alyzed to produce the charts and tables seen in the next section.

5 Results
We classify the flows into two categories: uncached flows (flows that were
never installed into the cache), and cached flows (flows that were at some-
time installed into the cache.) For all the charts, Trace1 is shown on the
left, and Trace2 on the right.

Figure 1 shows the average hit percentage for all flows. This figure
suggests that even very small cache sizes is able to provide acceptable
performance for the traffic traces used.

Figure 2 shows the average hit percentage for the cached flows. This
figure discounts the initial misses up to the first install for a cached flow
and the misses for uncached flows. The hitrate for cached flows increases
in general as the install probability decreases. This comes a t the expense
of increased number of slow-path packets per second, which is graphed in
Figure 5 . However, the slow-path packet rate is way less than the software
can handle, and also the number of cache installs per second (Figure 6)
is significantly decreased. Furthermore, Table 2 shows that uncached
flows make up a significant portion of all flows while the total number
of packets belonging to uncached flows make up an insignificant portion
of all packets. This means that our probabilistic install policy prevents
the right set of flows from being installed into the cache, and hence, the
increased slow-path rate (or decreased overall hitrate) is mostly due to
flows not warranting a cache install.

Figure 7 shows the percentage of cache installs that got no hits, i.e.,
potentially harmful installs. This percentage decreases linearly as the
install probability decreases.

Table 3 shows the average number of packets that it takes for a flow to
get installed in the cache. This value as well as the values in Table 2 have
been observed to be very close for all cache sizes, i.e., they are independent
of the cache size.

6 Conclusions
We observed that a router connecting three typical subnets to each other
and to the rest of an intranet can perform flow-based switching effectively
even with very small cache sizes. We analyzed a probabilistic cache install
policy, alternative to an "always install" policy. We saw that a significant
portion of the flows that does not warrant caching can be identified and
routed in the software without degrading system performance. This leads
to a higher hit percentage for cached flows, less cache installations, and

smaller proportion of cache entries that get no hits. We believe that aug-
menting this policy with live statistical information (e.g., per destination
port or per cache row traffic statistics) may lead to further performance
improvements. We actually analyzed such a policy which applies proba-
bilistic installs only to cache rows that get significantly higher number of
installs than the average, and observed an increase (very small though) in
the overall hit percentage. For some cache rows, we observed a significant
increase in the hit percentage. An install policy that can be customized
and deployed dynamically based on site-specific traffic information pro-
vided by network managers may also be desirable. The installation policy
module may be programmed dynamically by managers and injected into
the routers which are active-networking enabled.

0 0.2 0.4 0.8 0.8 1

Cache Inatall PmbabYity
0 0.2 0.4 0.8 0.8 1

Cache lnamll Probability

Figure 1: Hit percentage

Table 2: Statistics for uncached flows

cache install probability

Table 3: Statistics for cached flows

Trace1

cache install probability

avg packets/flow before install

Trace2
1 0.7 1 0.5 1 0.3 1 0.1 (1 0.7 1 0.5 1 0.3 1 0.1

Trace1
0.7

1.27

Trace2
0.5

1.65

0.7

1.27

0.5

1.65

0.3

2.43

0.3

2.40

0.1

4.98

0.1

4.71

	A Study of Cache-Based IP Flow Switching
	Recommended Citation

	A Study of Cache-Based IP Flow Switching
	Abstract
	Comments

	tmp.1181771436.pdf.4C1E9

