
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

February 1991

Programming With Jack (Fourth Edition) Programming With Jack (Fourth Edition)

Cary B. Phillips
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Cary B. Phillips, "Programming With Jack (Fourth Edition)", . February 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-19.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/430
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/430
mailto:repository@pobox.upenn.edu

Programming With Jack (Fourth Edition) Programming With Jack (Fourth Edition)

Abstract Abstract
This manual describes the implementation of Jack™, with emphasis on how to extend it and modify it.
The principle purpose of this manual is to describe what functions in the Jack libraries are available to be
used in writing new features for Jack. The manual also gives an overview of how Jack works, for those
interested in modifying its current behavior. This manual assumes that you already know how to use Jack,
and are familiar with its basic terminology.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-19.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/430

https://repository.upenn.edu/cis_reports/430

Pro ramming with Jack
f~ourth Edition)

MS-CIS-91-19
GRAPHICS LAB 39

Cary B. Phillips

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

February 1991

Programming with Jack

Fourth Edition
Second Revision
Jack Version 5.6

January 26, 1993

Author: Cary B. Phillips
Revisions: John P. Granieri

Computer Graphics Research Laboratory
Department of Computer and Information Sciences

University of Pennsylvania
Philadelphia, Pennsylvania 191046389

Copyright @ 1988, 1992 Cary B. Phillips, University of Pennsylvania.

The development of this software is partially supported by Lockheed Engineering and Management Services
(NASA Johnson Space Center), NASA Ames Grant NAG-2-426, NASA Goddard through University of Iowa
UICR, FMC Corporation, Siemens Research, NSF CISE Grant CDA88-22719, Air Force HRL/LR ILIR-40-02
and F33615-88-GO004 (SEI), and ARO Grant DAAL03-89-GO031 including participation by the U.S. Army
Human Engineering Laboratory, Natick Laboratory, and TACOM.

This software uses the Utah Raster Toolkit, Copyright @ 1982, 1986, Spencer W. Thomas, et. al, Computer
Science Dept., University of Utah. The source code for the Utah Raster Toolkit is available free of charge from
the University of Utah.

Contents

1 Programming wi th Jack 5
. 1.1 The Jack Source Code 5

. 1.2 Your Own Version of Jack 6

. 1.3 Perusing the Source Code 8

2 How to Program With Jack 9
2.1 The main Procedure . 9
2.2 Your Own Version of Jack . 9
2.3 Defining Menus and Commands . 9

. 2.4 CMD Functions and How to Write Commands 10
2.5 Input Functions . 11

2.5.1 Inputting Strings and Filenames . 11
2.5.2 Inputting Values . 12
2.5.3 Inputting Peabody Things . 13
2.5.4 Inputting Psurf Items . 14
2.5.5 How the Input Functions Work . 15
2.5.6 Inputting Windows . 15

2.6 Handling Output Messages . 15
2.6.1 Using the Status Window . 15
2.6.2 Using the Message Window . 16
2.6.3 Screen Messages . 16
2.6.4 Reporting Errors . 17
2.6.5 Reporting Status During Long Operations . 17

2.7 Drawing New Kinds of Objects . 18
2.7.1 Auxiliary Drawing Functions . 18
2.7.2 Drawing Segments without Psurfs . 18

2.8 Dealing with Windows . 18
2.8.1 Creating New Windows . 19
2.8.2 Making Your Own Kind of Windows . 20

2.9 Writing Interactive Applications . 20
2.9.1 Keyboard Input . 21

2.10 The Jack Movement Operator . 22
2.11 Simulation Functions . 23
2.12 The RecordArgument Functions . 24
2.13NamedTyp es . 24

3 How Jack Works 2 7
3.1 The Jack Program Structure . 27

3.1.1 The Jack main Procedure . 28
3.1.2 Jack Variables . 28
3.1.3 Jack's Colors . 28

3.2 Jack Windows . 29

2 CONTENTS

. 3.2.1 How Jack Draws the Windows 29
. 3.2.2 Peabody Windows 30
. 3.3 The Jack Flow of Control 32

. 3.3.1 Other Occurrences of Events 34
. 3.3.2 Implemention Issues 34

. 3.3.3 Jack Commands 34
. 3.3.4 The Execution of Commands 35

. 3.3.5 Command Arguments 35
. 3.4 The Jack Simulation Procedure 35

. 3.5 Picking 37

4 Human Figures 39
4.1 The Human Data Structure. 39

4.1.1 Is it Human? . 41
4.2 The Human Figure Constraints . 41

. 4.2.1 Interactively Moving Constraints 42
4.2.2 The Figure Fbot . 42
4.2.3 Human Figure Goals . 42
4.2.4 getsitegoal . 42

4.3 Human Figures and the Jack Simulation Procedure . 43
4.3.1 The HumanBehaviors Function . 44

4.4 Human Figure Controls . 47
4.4.1 Balance Control . 47
4.4.2 Stepping Behaviors . 48

4.5 Inputting Human Figures . 48
4.5.1 The List of Humans . 49

5 The Motion Syetem 51
5.1 The Motion Data Structure . 51

5.1.1 Weight Functions . 52
5.1.2 Velocity Controls . 52
5.1.3 The Motion Functions . 53

5.2 An Example Motion . 53
. 5.3 Creating Motions 54

5.4 How the Animation System Works . 58
5.5 Frames . 61
5.6 Controlling Time . 61

6 Constraints 63
6.1 Constraints . 63
6.2 The Constraint Data Structure . 63
6.3 Creatingconstraints . 66

6.3.1 More on Creating Constraints . 67
6.4 Controlling Constraints . 67

6.4.1 Turning Constraints On and Off . 68
6.4.2 Constraint Priority . 68

6.5 Getting Information about Constraints . 68
6.6 The Constraint Evaluation Process . 69
6.7 Evaluating Your Own Constraints . 70
6.8 Things to Watch Out For . 71

. 6.9 Miscellaneous Things - 71

CONTENTS 3

7 T h e Peabody Object Representation
. 7.1 The Peabody Environment :

. 7.2 The Peabody Data Structure
7.2.1 The World Segment .

. 7.2.2 The Spanning Tree
7.2.3 The Segment .
7.2.4 The Site .
7.2.5 The Joint .
7.2.6 The Figure .
7.2.7 The Environment .

. 7.3 The Peabody Hierarchy
. 7.3.1 The cleantree Flag

. 7.3.2 The uptodate Flags
. 7.3.3 The needsglobal Flags

. 7.3.4 The needspush Flags
. 7.4 Accessing the Spanning Tree

. 7.5 Reading the Peabody Language
7.6 Peabody Values .

. 7.7 Creating Parts of the Environment
7.8 Dealing with Names .

. 7.8.1 Generating Unique Names
7.9 Writing the Environment .

7.9.1 Printing Things to Strings .
7.10 Collision Detection .
7.1 1 The Peabody Parser .

8 The Psur f Geometric Pr imi t ive
8.1 The Psurf Data Structure .

. 8.1.1 Lazy Evaluation and Psurf Fields
8.1.2 Psurf Nodes .
8.1.3 Psurf Edges .
8.1.4 Edge Display Lists .
8.1.5 Psurf Faces .
8.1.6 Face Display Lists .
8.1.7 Attributes .
8.1.8 Psurf Dimensions .
8.1.9 The Psurf Scale .

. 8.2 Syntactic Representation of Psurfs
. 8.3 Csurfs

8.4 How Psurfs are Read from Files .
8.5 Psurf Utilities .

. 8.6 Distance Measuring Utilities
8.7 Writing Psurfs .
8.8 Modifying Psurfs .

9 The VEC Library
. 9.1 Macros

. 9.2 Vectors
9.3 Matrices .

. 9.3.1 Homogeneous Transformations
9.4 Quaternions .

. 9.5 Intersections of Planes and Lines
9.6 Lists .
9.7 Timestamps .

4 CONTENTS

9.8 Miscellaneous Utilities . 122
9.8.1 Strings . 122
9.8.2 Memory Allocation . 122

Chapter 1

Programming with Jack

This manual describes the implementation of JackTM, with emphasis on how to extend it and modify it. The
principle purpose of this manual is to describe what functions in the Jack libraries are available to be used in
writing new features for Jack. The manual also gives an overview of how Jack works, for those interested in
modifying its current behavior. This manual assumes that you already know how to use Jack, and are familiar
with its basic terminology.

The foundation of Jack is peabody, which is a representation for articulated geometric objects. It represents
figures composed of segments connected by joints, also under the influence of consimints. Jack is a facility for
modeling, displaying, manipulating, and animating objects represented by peabody. It provides a standard user
and programmer interface to routines that operate on the environment. This manual describes the low level
routines that access and control the peabody environment, as well as the higher-level routines that allow you to
define new commands in Jack.

The major bulk of Jack source code is written in C. It is a total of about 100,000 lines long. The source
code is divided into several libraries, giving the source code a logical order. This manual is meant to be more
of a guide to the source code than a complete description of how to use it without needing to look at it. As of
version 5.6, the source code is compiled through the C++ compiler. All new features of Jack will be written in
C++, but you are free to mix C and C++.

Jack as a program is fairly simple: it does not rely on any complex systems programming or networking
concepts. As you work with it, you will make your changes and extensions in "your own version" of Jack. This
means you will produce a program that looks like the "real JacP when you run it, but it will have your extensions
and modifications linked in as well. When what you do becomes stable and robust, it can be included into the
officially installed version of the libraries.

1.1 The Jack Source Code

Jack is organized into several major libraries. The source code files are prefixed with the name of the library the
belong to.

jmenu The Jack menus. These are the functions which set up the default menus in Jack.

jcmds This is the source code Jack commands, which loosely correspond to the commands available
in the menus.

jdev The Jack device library. This contains the utilities and commands for accessing devices such
as the network, the Flock of Birds, audio, video recorders, etc.

jack The Jack system, which provides the basic Jack windowing and command structure. This
includes the routines for drawing, picking, inputting, moving, etc.

h u m a n The routines in Jack for dealing specifically with human figures.

peabody The peabody library, which contains the routines for reading, accessing, and maintaining
peabody figures.

6 CHAPTER 1 . PROGRAMMING WITH JACK

psurf The psurf library, which contains the routines for reading and maintaining psurfs, the geometric
primitive.

alt The attribute, light, and texture library, which has routines for representing surface attributes.

vec The library of low level miscellaneous routines, including ones for basic vector and matrix oper-
ations. Whatever doesn't have a place elsewhere ends up here.

The source code is organized under the directory gen/src/ l ib. In the Graphics Lab at Penn, the most recent
version of the source code is maintained in /pkg/jack/gen/src/lib/. The include files are in gedinclude.
Other versions of the source code may from time to time be kept in other places, but each version will
have the same basic organization. For example, the lastcouple versions of Jack source code are stored in
/pkg/ jack/VERSION, where VERSION is 5.6 or 5.5.

The libraries in Jack are layered, in the sense that each library in the list above is depends only on the
libraries below it. For example, the peabody library depends on the psurf, alt, and vec library, but no code in
the peabody library depends upon the jack, jcmds, or jmenu libraries. This organization is important to follow
in adding new routines to the source code. Routines should as far down in the library hierarchy as possible. This
ensures that routines will be as general as possible without causing circular relationships between the libraries.

1.2 Your Own Version of Jack

To make your own version of Jack, you need two files: a Hakef i l e and the file menu. c. These can be found in
the directory gen/src/jack. The Makefile is shown in Figure 1.1, with one important change: the name of
the executable has been changed to myjack. The Hakefile lists only one object file: menu.0. As you write new
routines, you should put them in other files, and place a reference to each file on the OBJ line in the Makef i l e .
This will cause them to be linked in. If you need to modify some internal part of Jack, locate the file that needs
the change, copy it into your directory, along with the Hakef i l e and menu. c, and put a reference to it in the
Makef i l e . The linker will use your version instead of the one in the library.

EXE = my jack

OBJ = renu. o

SBC = $(OBJ:.o=.c++) Kakefile
LIBS = -L$(LIBDIR) -1jmenn -1jcds -Ihruan -1jder -1jack -1pea -1psnrf \

-1alt -1rec -lrle -1gls -lirs -1slm -1bnd -Iralloc -lm -1cs

all: $(EXE)

include $ (IICLUDEDIR) /make. h

1 I

Figure 1 .l: nakef i l e

The file menu. c is shown in Figure 1.2. This file contains the function Initnenue, which the Jack main
procedure invokes to initialize the menus. This is your hook into the Jack command structure. The details of
how to define other commands are described in Section 2.3.

1.2. YOUR O W N VERSION OF JACK

*include "jack. h"
*include <signal .h>

extern int QID9uit 0 ;

Figure 1.2: menu.c

CHAPTER 1 . PROGRAMMING WITH JACK

1.3 Perusing the Source Code
This manual describes some, but not all, of the workings of the Jack source code. Writing such a manual is
like shooting at a moving target. By its very nature, this manual is not as upt-date as the software itself.
You should consult the source code directly if you have further questions about the workings described here.
In particular, this manual frequently describes the data structures very briefly, and there are likely to be extra
fields given in the actual include files.

For users of gnu emacs, there is help in perusing the Jacksource code, in the form of "tags." Tags are wonderful
things that allow you go directly to the location in the source code file where a particular routine is located. You
can position the cursor over a call to a subroutine and execute the emacs command f ind-tag-other-window.
Emacs will automatically find the file that contains the definition of the function, read it in, and place the cursor
at the beginning of the function.

The file /pkg/jack/gen/src/lib/TAGS is an emacs tag table. To use tags, put the following lines in your
'/ . emacs file:

(setq tags-f ile-name "/pkg/jack/gen/src/lib/TAGSM)
(global-set-key "\C-Xt" 'f ind-tag-other-window)

This binds the command f ind-tag-other-window to -Xt.

Chapter 2

How to Program With Jack

This chapter describes the higher level routines which are available to programmers in writing extensions to
Jack. These extensiops are usually in the form of new Jack commands, and this chapter describes how to go
about writing these commands and making them executable inside a version of Jack. Many of these routines are
user-interface routines, or the routines which get input from the user, by entering values from the keyboard or
by picking things with the mouse.

2.1 The main Procedure

The rain procedure in Jack is in the library - l jack, 80 you don't need one yourself. It performs a lot of
bookkeepping operations, and it then invokes the main Jack control loop which polls the user for commands.
The commands are your "hooks" into Jack. The operation of the main procedure is described in Section 3.1.1.

2.2 Your Own Version of Jack

The information you need in order to link your own version of Jack is described in Section 1.2. You need two
files: a Makefile, shown in Figure 1.1 and a copy of the file menu. c++ shown in Figure ??.

2.3 Defining Menus and Commands

Commands are the means through which Jack translates "user" action into operations on internal data structures.
In this context, the "user" may not be a real person sitting at the console moving the mouse and selecting things
from the popup menus. The input may be coming from the keyboard or from a file, or even from some external
1 / 0 source.

Commands are grouped together into menus. The menus are then grouped together into one "main" menu.
The rain procedure calls the function InitKenus to initialize the main menu. This function is the responsibility
of your version of Jack, although the file menu.c++ in the Jack program is also a good place to start. These
functions are illustrated in the function Initnenus in Figure ??. Each file in the directory gen/src/lib/jmenu-*
defines a function which initializes one of the menus in Jack, so you can also look there for examples of how to
use these functions.

MED *
WkHenu(name)
char *name;

CHAPTER 2. HOW TO PROGRAM WITH JACK

lIhnenuCmd(menu,name,func)
HElU *menu;
char *name;
i n t (*func)O;

HENU *
~k~ubHenu(rnenu,submenu)
MENU *menu;
HENU *submenu ;

HkCmd(name, func)
char *name;
i n t (*func) (1 ;

Menus are created with the function Menu , which takes a character string argument giving the name of the
menu. When the menu appears as a submenu, the parent menu item has the name of the submenu with the
word "menu" appended. Therefore, the name argument should be a single word.

Commands are'created with HMenuCmd, which creates a command and places it in a menu. The items in a
menu are collected top to bottom as they are created, so the ordering of the items in the menu depends upon
the sequence in which the commands were created. There is no way of altering this order once it has been
established.

MenuCmd takes a character string name which is the name of the command. This is the name which will
appear in the menu. This name should generally consists of several English words separated by blank spaces. The
name should consist of only alphanumeric charaters, not special characters such as parentheses or punctuation
marks. The JCL name of the command is inferred from this name by replacing the spaces with underscores.

The func argument to M e n u r n is the command's function, which is the function which is called when the
command is executed. By convention, these functions have names beginning with CHD, to distinguish them from
other functions.

2.4 CMD Functions and How to Write Commands

By convention, the functions which are associated with Jack commands have names beginning with CHD. These
functions are invoked by the command executioner in a special way, with the arguments supplied to the function.
These arguments specify what "objectsn the command will act upon. The argument list may contain character
strings or numbers, or it may contain special values instructing the command to pick the arguments interactively.

The CHD functions all take two arguments. The first argument is a list of VALUE structures. The second
argument is a pointer to a character string for the "output arguments," which is a record of all arguments used
in the execution of the command. This enables Jack to generate JCL scripts of commands and their arguments.

It is primarily the responsiblity of the cm functions to decipher the argument list to determine what objects
and values are to be operated upon, and then pass the objects on to other routines which perform the "meatn
of the operation. As a general rule of thumb, the cm functions should be relatively short, with the bulk of the
routine dedicated to accessing the argument list.

This rule of thumb is related to the general principle of modular programming. When developing an appli-
cation, it is best to organize the functionality of the program into small routines which do bits and pieces of the
work. The CHD function should then call these lower level functions after deciding what objects and values the
other functions need.

By convention, the CHD functions rely upon the Input functions to get input from the argument list. There
are ~ n p u t functions for "inputtingn practically everything: numbers, strings, peabody constructs, psurf items,
etc. These functions encapsulate the interactive nature of Jack, and then decipher the argument list for the cm

2.5. INPUT FUNCTIONS 11

functions. Generally, the functions simply pass the argument list and output arguments directly to the ~nput
functions, which are responsibly for deciding what to do with the arguments.

The return value of the CHD functions specify whether the command was successfully executed. If the CIUI
function returns 1, then the command is recorded in the JCL list of executed commands. If the CHD function
returns 0, then the command is ignored.

2.5 Input Functions

The functions in Jack which get input from the user all begin with the prefix Input. These functions operate on
the arguments which are passed to the c m function. You do not need to understand how these functions work,
but only what they do.

The following example illustrates the typical way in which the Input functions are called.

CWDAnExampleComrnand (a , , outargs)
VALUE *age;
char **outarga ;
{

int n;
Segment *segment;

if (! Input Int (&args , outargs ,On, "enter an integer : ")) {
return(0) ;

1

if (! (segment=InputSegment(&args,outargs, "Pick a segment")) (
return(0) ;

1

A return value of 0 from an Input function specifies that the intended value was not input successfully. The
CHD function may deal with this situation as it sees fit. Typically, this means aborting the command.

The files in the directory gen/src/lib/jcmds-* contain definitions for all the CHD functions in Jack, so you
can refer to them for more examples of how to use the Input functions.

2.5.1 Inputting Strings and Filenames

There are several Input functions for entering strings and filenames. Filenames are really just strings, except
that the command does filename completion and it ensures that the users doesn't enter a filename which will
overwrite an existing file unless that's what he or she wants to do.

CHAPTER 2. HOW TO PROGRAM WITH JACK

char *
InputString(arglist,outargs,string,prompt)
VALUE **arglist;
char **outarge ;
char *string;
char *prompt;

char *
InputString~omplete(arglist,outarge,string,prompt, ncomp,compatrs,previnput,menu)
VALUE **arglist ;
char **outargs ;
char *string;
char *prompt;

char *
InputInputFile(arglist,outargs,filename,prompt)
VALUE **arglist ;
char **outargs ;
char *filename ;
char *prompt;

char *
InputOutputFile(arglist,outarga,filename,prompt)
VALUE **arglist ;
char **outargs ;
char *filename ;
char *prompt;

Each of these functions uses the value passed in the parameter string or filename, as the default value in the
edit buffer, so it is essential that you initialize the string to a reasonable value. You can fill it in with a default
string or just set i t to the null string by placing a null character in the first position. Each of the functions
returns a pointer to the string it enters, or HULL if none was entered.

Inputstring gets a character string and places it in string. Inputstringcompete does the same thing but
it does automatic completion, based on the values specified by ncomp and compstrs. compstrs is an array of
character strings. Its length is given by ncomp. The user may enter any string he or she wishes, although the
automatic completion will be done only on these values. These values will also be placed in the pop-up menu
which the user gets by pressing the right mouse button. The previnput argument is a list of previously input
strings, which the user may retrieve by hitting "P and -8. The menu argument should be tin.

The functions InputInputFile and InputOutputFile do automatic completion of file names. They should be
used to get the name of files which your application intends to read or write. Also, InputOutputFile tests to see
whether the named file exists. If it does, it prompts the user to enter another name or to acknowledge that the
file will be overwritten. If the user chooses to overwrite the file, the command renames the file by appending a
tilde character, -, to the beginning of the filename, a la emacs.

These commands just return the names of files. They don't actually open them.

2.5.2 Inputting Values

The functions InputFloat, InputInt, and Inputvector input floating point numbers, integers, and vectors, respec-
tively, as you might guess from their names.

2.5. I N P U T FUNCTIONS

Boolean
InputFloat (arglist . outargs ,f ,prompt)
VALUE **arglist ;
char **outargs ;
float *f ;
char *prompt ;

Boolean
InputInt(arglist,outargs,n,prompt)
VALUE **arglist ;
char **outargs;
int *n;
char *prompt ;

Boolean
Inputvector (arglist ,outargs , vec, len,prompt)
VALUE **arglist;
char **outargs ;
float vec ;
int len;
char *prompt ;

The default value comes from the initial the argument, so the value should be initialized before it is passed
in.

2.5.3 Inputting Peabody Things
The following functions input peabody constructs.

Figure *
InputFigare (arglist , outargs ,prompt)
VALUE **arglist ;
char **outargs ;
char *prompt ;

Segment *
InputSegment(arglist.outargs.prompt)
VALUE **arglist;
char **outargs ;
char *prompt ;

Site *
InputSite(arglist .outargs ,prompt)
VALUE **arglist ;
char **outargs ;
char *prompt ;

CHAPTER 2. HOW TO PROGRAM WITH JACK

Joint *
Input Joint (arglist , outargs ,prompt)
VALUE **arglist ;
char **outargs ;
char *prompt ;

Segment *
InputLight (arglist , outargs , prompt)
VALUE **arglist ;
VALUE **arglist;
VALUETYPE type;
char *prompt ;

Attribute *
InputAttribute (arglist , outargs *prompt)
VALUE **a.glist ;
char **outargs;
char *prompt ;

2.5.4 Inputting Psurf Items
The following functions input a psurf item. Each function returns a boolean value specifying whether the
argument was successfully input. Each function sets the segmentp pointer to point to the corresponding segment.

InputlPode(arglist ,outargs .prompt, segmentp, itemp)
VALUE **arglist ;
char **outargs ;
Segment **segmentp ;
short *itemp;

InputEdge(arglist,outargs,prompt,segmentp,itemp)
VALUE **arglist ;
char **outargs ;
Segment **segmentp;
short *itemp;

InputFace(arglist,outargs,prompt,segmentp,it~p)
VALUE **arglist;
char **out args ;
Segment **segmentp;
short *itemp ;

InputCurve(arglist,outargs,prompt,segmentp,itemp)
VALUE **arglist ;
char **outargs ;
Segment **segmentp;
short *itemp;

2.6. HANDLING OUTPUT MESSAGES

InputPatch(arg1ist , outargs ,prompt, segmentp, itemp)
VALUE **arglist;
char **outargs ;
Segment **segmentp ;
short *it emp ;

2.5.5 How the Input Functions Work

All of the h p u t functions take as an argument the address of a list of VALUE structures. Each function inspects
the first entry in the list for the argument of interest. This argument may be of several types, and the action
taken depends upon the type:

VBUHBER A number. This is recognized by InputInt and InputFloat.
VSTRIBG A character string. This can be interpreted differently by different functions. Inputstring

simply returns the string. The functions InputFigure, Inputsegment, Inputsite, and InputJoint
expect that the string names a peabody construct and it looks for the construct with that name.

V Y m E F An error. This occurs because of a syntax error in the string from which the argument
came.

VUHSUPPLIED This special value means to pick the value interactively. Strings and numbers are
entered from the keyboard. Peabody constructs are picked interactively.

All of the ~ n p u t functions behave in a consistent manner. If the intended argument was successfully input,
then each function returns with the argument. If there was an error, such as a syntax error in the argument list,
then the Input functions prompt the user to enter the appropriate value.

2.5.6 Inputting Windows

Some operations in Jack manipulate the appearance of a window by modifying the parameters of the window.
These functions must be able to refer to a specific window. To do this, they use InputVindov. Interactively, this
function returns the current window, which is the window which currently has the input focus.

InputVindow(arglist,outargs)
VALUE **arglist ;
char **outargs ;

2.6 Handling Output Messages

Jack has several facilies for printing informational messages. Generally, messages can go in the status window
(the blue, oneline window across the bottom of the screen), or in the message window (the text window below
the graphics window), or directly in the graphics window.

2.6.1 Using the Status Window

The principal routine for displaying information in the status window is Statuabg, takes a single character string
argument.

StatusMsg (msg)
char *msg;

16 CHAPTER 2. HOW TO PROGRAM WITH JACK

The message will remain displayed in the window until another message is written. It is good idea to display
a message in the message window before any internal computation which is likely to take more than a second or
so. This keeps the user informed about what is going on.

A major use of this facility is in reporting errors. In this case, the message needs to be displayed long enough
for the user to see it, but then control usually passes to another part of the program. For this situation, there
is the function StatusError, which displays a message, beeps the keyboard bell, and pauses one second. The
function statuspause does the same thing without the beep.

st atusbor (msg)
char *msg;

Statuspause (msg)
char *msg;

2.6.2 Using the Message Window
Messages may be displayed in the message window using Logkg. The character string rnsg must end in a newline
character!

LogUsg(msg, type)
char *msg;
int type;

The type controls how the text is printed. The following values may be used:

WSH-IIORMAL Ordinary text

WSHHICHLIGHT Highlighted text.

WSHREVERSE Reverse video text.
WSHJHDERLILOE Underlined text.
WSHHICHLIGHTREVERSE Highlighted reverse video text.
WSHUBDERLIHEREVERSE Underlined reverse video text.

-1 Use the value from the previous call to ~ognsg.

2.6.3 Screen Messages

int
ScreenMsg(line,buf)
int line ;
char *buf;

int
ScreenBuf(line,buf)
int line;
char *buf;

2.6. HANDLING OUTPUT MESSAGES 17

Screeflag prints a message on the graphics window at the given line. ScreenBuf takes a buffer and chops it
into lines delimited by newline characters and displays the lines on the screen using screedsg, with the lines
decreasing from the given line. It returns one less than the line number of the bottom line written. The function
screenlines returns the number of lines in the current window.

Screen messages stay on the screen only until the window is redrawn. In other words, the messages are never
really erased, they're just "drawn over". Jack automatically redraws all of the windows after it executes every
command, so messages written with screenmsg disappear after a command finishes.

2.6.4 Reporting Errors
It is important for Jack to deal efficiently with errors which occur during the use of the program. The function
s t a t u s ~ r r o r i s generally only useful for reporting small usererrors, such as incorrect keystrokes, or abort messages.

There are times when more informationneeds to be displayed than will conveniently fit in the message window.
The error reporting facility is described in the chapter on the VEC library. This uses the function error, which
in the Jack environment uses infomsg to display the messages on the screen and scrolls automatically when
necessary.

error (msg)
char *msg;

2.6.5 Reporting Status During Long Operations
An informed user is a happy user. When a Jack command does something that takes a long time, it is always
a good idea to have the command print occasional status messages that let the user know it is still working, as
opposed to being hung up or in an infinite loop. You can do this with the function timeformessage.

Boolean
timef ormessage(n)
int n;

resetmessaget imer 0

This function looks at the current time, in milliseconds, and compares it to the last time a message was
printed. If more than n seconds have passed, it returns TRUE. Otherwise, it returns FALSE. Embed this function
inside of a loop and make it print a status message when it returns true. The function resetmessagetimer resets
the timer and should be called to initialize the process.

The following example illustrates this.

resetmesssagetimer 0 ;

for (i=O; icniterations; i++) {
DoSomethingComplicated() ;
if (timef ormessage0) {

sprintf (msg , "thinking. . . (iteration %d of %d)" , i ,niteration91 ;

CHAPTER 2. HOW TO PROGRAM WITH JACK

2.7 Drawing New Kinds of Objects
Jack has two mechanisms for drawing geometric things other than psurfs in the peabody windows.

2.7.1 Auxillary Drawing Functions

The first mechanism is a list of functions called auxiliary drawers which are invoked as each peabody window is
drawn, after the environment. These are created with the function BindAuxDraver:

SimFunc
BindAuxDrawer (f unc , args)
int (*func) 0 ;
void *args ;

The function passed in to BindAuxDraver may call any graphics routines it wishes. It is invoked with the args
arguments, which may point to any allocated chunk of memory. It is called with the current viewing on the
matrix stack. The return value of the function is a pointer which can be passed to UnBindAuxDrawer to delete the
function from the list of drawers.

2.7.2 Drawing Segments without Psurfs

Normally, Jack draws a segment in the peabody windows by drawing the segment's psurf. If there is no psurf,
the segment is not drawn. It is also possible to have the segment drawn by another means by assigning the
segment a drawer field. If the drawer field of the segment is set, then the psurf, if one exists, is ignored and the
the drawer function is invoked, with the segment and the segment's data field as arguments. This function is
invoked when the current modeling transform for the segment is on the matrix stack, so the drawing function
should draw the object in local coordinates. This allows you to define arbitrary kinds of objects which can be
treated as peabody segments, meaning they can be picked and moved around.

2.8 Dealing with Windows
Sometimes a command needs to redraw the screen. Generally, this is done with DravVindovs, which draws all of
the windows. This is generally the best way to redraw the screen. If your applications is causing the motion of
an object, it is important to redraw all the windows so the object will appear to move from all views. DravVindov
redraws a single window, but it does not swap the buffers, so the newly drawn window will not appear until
ewabuffers is called. This allows you to draw auxiliary information over the window if necessary.

Sometimes is it convenient to draw all the windows except for the current one, probably because you want to
draw the current one explicitly. This can be done with DravOtherWindove.

2.8. DEALING WITH WINDOWS

DravWindow~ does not draw "frozen" windows. If the user wants to disable the display of some of the windows
for efficiency, he may "freezen the windows. The function DrawAllWindows draws all the windows, even the frozen
ones. This is done automatically after each command is executed.

Drawwindow (window)
Window *window;

DrawOtherWindows(window)
Window *window;

The functions Drawwindow and I)ravOtherWindovs do not swap the buffers using swapbuffers, so their effect
will not be apparent until this is done. The function SwapVindowBuff ers calls swapbuffers in each window. This
routine ensure that the all Jack windows are updated simulaneously, rather than one at a time when the drawing
is slow.

The window drawing routinea leave the matrix stack with the viewing transform. This enables other routines
to draw auxiliary information over a window without having to restate the view.

It is also possible to inquire about the "currentn window, which is the window with the current input focus.
The variable Jack.windov always points to the window with the current input focus.

2.8.1 Creating New Windows
Windows are created with UewWindou:

PewWindow(type,nsme,l,r,b,t)
WindowType type;
char *name ;
long lsr,bst;

The type is an identifier which differentiates the window from other types of windows. If name is nil, then
UewWindow generates a unique name itself. The I, r, b, t arguments specify the position of the window in screen
coordinates. If I 2 r or b 2 t , then the window is opened interactively by the window manager.

The function ~indwindov returns a pointer to the window with a given name, or nil if a window with that
name cannot be found. The function Findwid returns a pointer to the window with a given window manager id,
or nil if a window with that id cannot be found.

Window *
FindWindow(name)
char *name ;

CHAPTER 2. HOW TO PROGRAM WITH JACK

Window *
FindWid(id1
int id;

2.8.2 Making Your Own Kind of Windows
It is relatively straightforward to create new kinds of windows which draw different types of things inside of Jack.
It is important, however, to create these windows using the Jack window structure, rather than just opening
them with the IRIS GL routine vinopen.

The Jack window structure is described in Section 3.2. The window has a drawer function and a data field.
The data field may point to a location in memory which contains data relevant to the window. The drawer
function is the function which draws the windows. This function is called with the window structure as an
argument. This function should call the IRIS GL subrouting vinset to make sure that the graphics are directed
to the proper window. The drawer function is completely responsible for drawing the window, including setting
up the view. This function is called frequently, so the function should be as efficient as possible. For example,
the function should not do a large amount of computation. If necessary, it can compute data for the graphics
and store it a field in the data pointer.

Different types of windows may also process mouse and keyboard events differently. Each window has an
eventhandler function and this function is called with events that occur while the mouse is inside that window.
This process is described in Section 3.3. The eventhandler function is invoked with the type of event which has
occurred, but the event has not yet been read from the queue. The handler function should then read from the
queue, using the IRIS GL routine qread. The event handling function is free to interpret the event in any way.

The process of creating a new kind of window begins by calling Hevwindov. You should pass it a type which
does not conflict with other window types. Choose an integer greater than 100 and you'll be safe. Then assign
the drawer and event handler functions to the appropriate fields in the window structure.

2.9 Writing Interactive Applications
One of the most important functions of the Jack interface is its management of the mouse and keyboard. The
mouse and key event manager is built on top of the IRIS queuing routines and provides a means of defining
significant events and waiting for them to occur. When events occur, they are automatically placed by the
hardware in an event queue. The event manager governs how the events are interpreted from the queue. Most
actions in Jack are initiated and terminated with clicks of the mouse. These routines provide a way of using the
mouse and keyboard to control the program.

It is important to use these functions in processing events because the window manager generates special
events for redrawing windows and changing input focus which cannot be ignored but are difficult to process.

There are two different types of events: mouse events and keyboard events. Mouse events occur when the
state of a mouse button changes, i.e. goes up or comes down. The down click and up click of a mouse button
are different events. A single keyboard event occurs when a key is pressed. Releasing the key does not generate
an event.

Device
VaitForEvent(val,wintype)
Device *val;
int wintype ;

Device
YaitForKeyEvent (wintype)
int wintype;

2.9. WRITING INTERACTIVE APPLICATIONS

Device
~aitForHouseEvent(val,wintype)
Device *val;
int wint ype ;

Device
VaitUnt ilEvent (wint ype)
int wintype ;

UaitForEvent operates just like the IRIS Graphics Library routine qread: it returns the device, with its value
stored in val. UaitForKeyEvent returns with the ASCII code for the key pressed. UaitForMouseEvent returns
the device (mouse button) pressed, with setting val to 1 if the click was "up," and 0 if the click was "down."
YaitUntilEvent waits until an event occurs, but it doesn't read the event from the queue.

Each of these functions takes a wintype argument which specifies the type of window in which it wants the
event to occur. If an event occurs in another type of window, it will be ignored. If the wintype is -1, it this
effectively ignored and any window type is acceptable. This mechanism does not work reliably, and it is best to
use -1 to receive an event in any window then test to ensure that the window is the proper type.

The control key and the shift keys cannot be queued, but their position may be sensed with the macros
COHlROL and SHIFT. This gives a way of interpreting control characters and capital characters.

The function devname is useful for debugging event-driven routines. It returns the character string name of
an event, thus allowing code to print debugging information about what events have occurred. All IRIS events
are included, event the weird ones.

char *
devname(dev)
Device dev;

2.9.1 Keyboard Input

The keyboard is treated as a device, so that it is not convenient to read from the terminal using standard I/O
routines like s c a d and gets. However, keyboard input may be input directly with the function getkeyboardstring,
which displays a prompt in the message window and then reads a string from the keyboard.

CHAPTER 2. HOW T O PROGRAM WITH JACK

char *
g e t k e y b o a r d s t r i n g (b u f , p r o m p t , n c o m p , c o ~)
char buf q ;
char *prompt;
int ncomp;
char *compstrO ;
List previnput ;
H E W menu;

This function does automatic completion, based on the values specified by ncornp and compstrs. cornpstrs
is an array of character strings. Its length is given by ncomp. The user may enter any string he or she wishes,
although the automatic completion will be done only on these values. These values will also be placed in the
pop-up menu which the user gets by pressing the right mouse button. The previnput argument is a list of
previously input strings, which the user may retrieve by hitting 'P and -I. The menu argument should be X u .

InputStringCorplete invokes this function to get the value from the keyboard. InputStringCompete should be
used unless you are absolutely sure you want the input to come from the keyboard and not from a JCL script.

2.10 The Jack Movement Operator

The movement routines provide a means of inputting general homogeneous transforms interactively. The basic
movement operator is HoveTransform, which interactively determines a transform from the position of the mouse,
while executing an arbitrary function as it goes.

Boolean
HoveTransform(Tran8form *trans,

Transf orm *ref,
char *message,
int flags,
int (*action) (void *arge [J 1,
int (*drawer) (void *args [J 1,
int (*binder) (int key ,Boolean *done, void *args n 1,
int (*initializer) (void *args a) ,
void *argsfl)

This action function may be used, for example, to update the position and orientation of objects, the d ie
placement of joints, the location of nodes or control points, or the goals of constraints.

The trans transform is a local transformation. It specifies a global position relative to ref, which is in turn
a global transformation, i.e. specified with respect to the base coordinate frame. HoveTransf om continuously
updates trans based on the input from the user. The ref transform remains fixed. The invert argument specifies
whether or not the transformation being manipulated interactively is the inverse of the transform requested in
trans.

HoveTransform is a loop which continuously does the following:

1. read the state and position of the mouse and keyboard

2. update trans accordingly

3. call action with args:

2.11. SIMULATION FUNCTIONS

4. execute the function AdvanceSimulation.

5. redraw the graphics windows (draw the current one last, so that it leaves this as the current GL window).

6. call drawer with args.

The msg argument to Hove~ransform is displayed in the message window to inform the user of what is going
on. This arrangement allows the action function to distribute the effect of the new transform to the appropriate
parts of the environment, then give the drawer function the opportunity to draw important information on the
screen, in terms of highlighted segments, icons, or screen messages. Notice that HoveTransform does not take a
window as an argument. It moves the transform in whatever window the mouse cursor is in when the buttons
go down.

HoveTransf o m returns a boolean value specifying whether the transform was successfully moved. It will return
FALSE if an error occurs or if the user aborts the move.

HoveTransform is currently called as a part of several facilities in Jack:

The move figure command. In this case, ref is the identity transform, and the action function applies the
trans transform to the location of the figure being moved, using SetFigureLocation.

The move site command. In this case, ref is the global transform of the site's segment, and the action
function applies the tram transform to the location of the site being moved, using SetSiteLocation.

The constraint moving function noveconstraint. This is used by the interactive reach command, and by the
human figure manipulation commands. In this case, the constraint must have a goal type of VIATRIX. The
trans transform is the identity, and the action function is updateconstr, which applies the ref transform to
the goal of the constraint.

2.11 Simulation Functions

Jack maintains a list of simulation functions which it invokes at each interactive iteration. You may add functions
to this list with the routine BindSimulationFuaction. This routine returns a pointer to a SimFunc structure. This
value may be passed later to UnBindSimulationFunction to unbind the function.

SimFunc *
BindSimulationFunction(func,args)
i n t (*func>O;
void *args ;

These functions may do anything you like. The purpose of these functions is to provide access to the interactive
nature of Jack. These functions are invoked repeatedly, both as Jack is waiting for input from the user and as
the user moves objects or changes the view. Therefore, if you write a simulation function which causes an object
to move in a certain way, you may still interact with the object by changing the view or moving other objects,
even as it moves under the control of the function.

Section 3.4 describes more about the Jack simulation mechanism.

24 CHAPTER 2. HOW TO PROGRAM WITH JACK

2.12 The RecordArgument Functions
This section describes the RecordArgument functions, which are used mostly by the Jack Input functions to add
elements to the outargs parameter. The outargs parameter is passed to the cm functions to keep a record of what
parametera were entered. This enables Jack to record in JCL format the commands it has executed, with the
appropriate arguments. Each ~ n p u t function takes an args parameter of input values, and an outargs parameter,
which is the address of a character string pointer. The Recordkgument functions take this parameter and copy
a character string representation of a value input by the user into the string.

RecordArgument (outarga , string)
char **outarga ;
char *string;

Record~rgumentString(outargs,string)
char **outargs ;
char *string;

RecordArgumentInt(outargs,n)
char **outargs ;
int n;

RecordArgumentFloat (outarga , f)
char **ontargs;
float f ;

The function RecordArgurent takes a string and records it as is. This is appropriate for the names of peabody
constructs. RecordArgurentString records a string but encloses it in double quotes. This is appropriate for
quantities like the weight functions or velocity controls.

These functions are called in the Input functions. They are also called in the inputparams functions for
motions, as described in Section 2.12.

2.13 Named Types

Jack has a facility for associating character string names with enumerated types. This mechanism is convenient
for allowing the use to choose between several options by selecting a character string name. The user may enter
the name from the keyboard or may select it from a pop-up menu.

The HamedType structure is defined as:

typedef atruct {
char name;
int type ;

) HamedType;

The most important function in using this facility is the Input function InputNmedType, which allows the user

2.13. NAMED TYPES 25

to enter the type based on the names in the array of UamedType structures. This uses the automatic completion
facility, and the user may also select the items from a pop-up menu.

int
InputPamedType (arglist , outargs , typep, types ,prompt)
VALUE **arglist ;
char **outargs ;
int *typep ;
HamedType types ;
char *prompt ;

InputlamedType returns the type associated with the name selected. It is your responsibily as a programmer
to construct the array of PamedType structures. The array must be terminated with a type with a HULL name
pointer. This signifies the end of the array. Figure 2.1 shows an example of the use of this facility.

1ar.dType balance-controls - {
("beteaon foot", = R E T) ,
("hold current balance poinBCJOLD),
("hold currant alorat ion1*, BCBOLD-ELEV) ,
{ ' a r o l o ~ o elorat ion*'. BCAELEASEaEV) .
("saatod" , BCSEATED) .
(=. 0).

1;

1
if (typo - BCJ'EEI) (

Figure 2.1: InputNamedType

There are also the following useful functions for dealing with arrays of UamedType structures.

char *
TypeHame(type,namedtypes)
int type ;
PamedType namedtypes ;

Boolean
~ind~ype(typep,name,aamedtypea)
int *typeP;
char *name ;
PamedType namedtypes ;

4.2. T H E HUMAN FIGURE CONSTRAINTS 41

This structure is created with the function InitHumanFigure, which looks for the sites and joints with the
proper names. If it can't find the appropriate sites and joints, it returns 0 and concludes that the figure is not a
human figure. The function InitHumanFigureConstraints creates the constraints. If the human field of the figure
structure is fflTU, then the figure is not a human figure. These functions are invoked automatically from the
commands in Jack which expect to operate on human figures. These functions are defined in the source code file
gen/src/lib/ jackligure . c++.

4.1.1 Is it Human?
To determine whether or not a figure is a human figure, the function InitHumanFigure looks for a joint named
l e f t ~ h o u l d e r . If it doesn't find one, then it assumes that the figure is not a human. Therefore, if you need for
any reason to bypass these functions with a human-like figure, just rename the left shoulder.

4.2 The Human Figure Constraints
The constraints in the constr struct and in the two constr struct in the left and right structs are the behavior
constraints on the human figure. They allow Jack to control the posture of the human figure. Each of these
constraints has a goal type of V J A T R I X , except in the special cases outlined below.

The most intuitive analogy for how these constraints work is that of a marionette puppet, controlled by strings.
The constraints are the strings. Each of these constraints defines a desired location in space for a reference point
on the figure. Collectively, they specify the complete posture for the figure. The inverse kinematics algorithm
finds a set of joint angles that places the figure in a posture that satisfies the positioning criteria given by the
constraints.

Figure 4.1: A Marionette Puppet

The user in Jack does not really see these constraints. They are created automatically by the function
InitHumanFipeConstraiats, described below. Only the effect of the constraints is visible. The user only sees
a figure that can be manipulated in a variety of ways through the manipulation commands. The interface for
manipulating human figures in Jack is designed to shield the user from the terminology of constraints. The
user only sees manipulation commands like move foot and bend torso, and behavioral controls like keep torso
vert ical . Internally, the manipulation commands change the goal values of the constraints. The behavior
control commands in Jack change the properties of these constraints.

There are only two ways through which the goal locations for these constraints may be set: through Jack's
manipulation commands, and through Jack's behavior funciions. The user does not interact with the human
figure in Jack by adjusting joint angles or by moving the figure with the move figure command. The only access
to the posture of the figure is through the manipulation commands, and these commands change the goals of
the constraints. The behavior functions also determine positions for the goals.

In order to understand how these constraints work, try not to think of the figure as a jointed mechanism
whose controls are the joint angles. Do not think of interacting with the figure by specifying joints angles.
Instead, think of the figure as a puppet and think of manipulating it by moving the strings. The end of the
strings specify the goals of the constraints. The inverse kinematics algorithm repeatedly computes the posture
based on the goal values of the constraints.

42 C H A P T E R 4 . HUMAN FIGURES

4.2.1 Interactively Moving Constraints

The direct manipulation operator in Jack, HoveTraaef om, is described in Section 2.10. This function is object-
oriented in the sense that it accepts functional arguments which define its behavior. It is used to interactively
move positions and orientations in many different situations in Jack. It is the heart of the human figure manip-
ulation commands.

The manipulation operator for constraints is the function Moveconstraint. This function invokes the manip
ulation operator HoveTransf arm with an action function, updateconstr, that applies the manipulation transform
to the goal matrix of a constraint. Each of the human figure manipulation commands in Jack (except for bend .

torso) use this routine.

Boolean
l4oveConstraint(Constraint *constr,char *prompt)

4.2.2 The Figure Root

The control of the posture of a human figure in Jack is complicated by the need to designate a single point on
the figure as the root. The inverse kinematics algorithm cannot itself position the root. The inverse kinematics
algorithm operates on chains of joints that emanate from the root. This means that if, for example, there is a
constraint on the right toes when the figure is rooted through the right toes, then the constraint cannot have
any effect on the position of the toes during the execution of the inverse kinematics algorithm. This means that
the toes must be controlled through another technique.

Rather than designating a single point on the figure as the permanent figure root, Jack allows the root to
change from time to time. The human figure behavior routines outlined below allow the posture of the figure
to be described completely through the constraints. The behavior functions provide a means of automatically
repositioning the figure root according to the constraints. The behavior functions also provide a way of changing
the setting of the figure root in order to ensure that the figure "behaves" well.

The behavior functions described below make it possible to control the entire figure through its constraints,
without worrying about the location of the figure root.

4.2.3 Human Figure Goals

4.2.4 getsitegoal

The goals of the constraints on the human figure serve as the handles for controlling the figure's posture. As
subtle but significant aspect of the behavior functions is that the goals themselves serve to define the location of
the appropriate body parts, rather than the actual location of the body part itself. For example, if a behavior
function needs to know where the left toes are, it should consult the goal of the constraint on the left toes, not
query the toe site itself. The reason for this is that the goal defines where the toes should be in the next iteration.
The behavior functions are invoked before the constraints are evaluated but after the direct manipulationoperator
has moved one of the goals. Therefore, the behavior functions should consult the goals in order to define where
the other goals should go.

This situation is complicated by the need to sometimes control parts of the figure through several constraints.
This is particularly true with the animation system, in which motions controlling parts of the figure may overlap,
meaning two conflicting constraints pull the body part in different directions. This is not a problem for the inverse
kinematics algorithm because it simply weights each constraint and finds an minimum energy solution. But for
behavior functions that need to know, for example, where the right toes are, it is not so simple if there are several
constraints on the toes.

The function GetsiteGoal takes a site and returns with the goal of constraints on the site, i.e. constraints which
have this site as an end effector. If there are multiple constraints which are currently active, then it averages the
position and orientation of the goals, based on the goal weights and the position/orientation weights. It returns
with a homogeneous transform giving the goal for the site.

4.3. HUMAN FIGURES AND THE .JACK SIMULATION PROCEDURE

This function is called in several key places:

In FindFootBalanceInterp and ComputeFootBalancePoint to find the location of the toes for use in computing
the balance point for the center of mass constraints. . In BalanceBehavior to find the goal location of the site which is currently the figure root. This is defined
in Section 4.4.

4.3 Human Figures and the Jack Simulation Procedure
Section 3.4 describes Jack's simulation procedure. This consists of the function AdvanceSimulation, which is
called inside of Jack's interaction loops. It is defined in the file s r c / l i b / jack-time. c++, and it is shown in
Figure 3.4. Advancesimulation is called inside of the direct manipulation operator MoveTranaform, inside the
viewing changing command, and the top level command loop as well. Advancesimulation makes the sequence of
calls:

This structure for the behavior functions is designed to be very general, but in fact it currently executes only
the function HumanBehaviors on every human figure. This function, shown in Figure 4.2, is very simple.

~ecuteBehaviorFmctions0

{
List 1;

1 = 0 ;
while (<l=circlistiterator(~~r->humans ,1))) {

figure = LISTDATA(Pigure.1);
HumanBehariors(f igure) ;

I
1

Figure 4.2: ExecuteBehaviorFunctiona

The purpose of the behavior functions is the take the geometric information generated by the direct manip-
ulation operator and make it known to the rest of the figure. This provides a sense of coordination between the
parts of the figure. An example of this is the way the balance point follows the feet when the feet move. In one
of the simplest cases, the constraint on the center of mass is automatically adjusted to a point half way between
the figure's feet. This is described below in the discussion of tlie BalanceBehavior function. In this case, the Jack
command move foot invokes the function Hoveconstraint to interactively manipulate the goal of the constraint
on the feet. The balance behavior function BalanceBehavior is responsible for interpolating between the goal
locations for the feet to determine the proper location of the goal for the center of mass.

After executing the behavior functions, Advancesimulation evaluates the constraints. After this, it evaluates
the function ExecutePostBehaviorRmctione. The post-behavior functions are simply behavior functions which
need to be evaluated after the constraints rather than before. Currently, the only post-behavior function is
VerticalizeToreo, the routine to keep the torso vertical.

CHAPTER 4 . HUMAN FIGURES

4.3.1 The HumanBehaviors Function

The function HumanBehaviors is defined in the file src/lib/humanbehavior. c++, and it is shown in Figure 4.3.
It invokes behavior functions which perform operations on different parts of the figure. The most important ones
are BalanceBehavior, shown in Figure 4.4, and RootBehavior, described in Section 4.3.1.2.

Jack uses the behavior field in the human structure to specify what the behavior functions are supposed to
do. These flags generally correspond to the behavior controls described in the Jack User's Guide. Each of these
fields has values defined in the include file human.h. The mapping between the character string names used
by the user interface routines, and seen by the interactive user in Jack, is done with the NamedType structures
defined in src/lib/humanbehavior . c++.

There are two especially important fields of the human structure: support and behavior.balance. The be-
havior.balance flag registers whether the figure is sitting or standing, and if it is standing, how it is maintaining
its balance. Some of the behavior functions operate differently in these two cases. The behavior.balance field
is set with the function SetBalanceControl. The term "support" is really a euphemism for the figure root. The
function SetFigureSupport sets the figure root and records it in the support field. The only options for the human
figure are the left toes, the right toes, and the lower torso. A seated figure is always rooted through the lower
torso. For a standing figure, the function RootBehavior determines the best location for the figure root.

4.3.1.1 The BalanceBehavior Function

The BalanceBehavior function, shown in Figure 4.4, computes a new location for the balance constraing based
on the location of the feet. It uses the function ComputeFootBalancePoint, described in Section 4.4.1.

The function BalanceBehavior actually does more than govern balance, because it also serves for seated figure
to transmit positional and orientational information from the center of mass and pelvis constraints.

When the figure is rooted through the left toes, the left toe constraint cannot do any positioning, and likewise
for the right toes. The same applies to the lower torso and the center of mass and pelvis constraints. In this case,
these constraints serve to describe a desired location for the figure root. The function BalanceBehavior looks at
how the figure is rooted, and it moves the end effector of the constraint at the figure root to its goal.

This means that the posture of the figure can be described solely through the goal values of the constraints.
No control mechanism needs to reference the figure root explicitly. The RootBehavior and BalanceBehavior
functions ensure that the figure is rooted in the best possible way, and it automatically repositions the figure
root according to the positioning criteria described by the constraints.

The function BalanceBehavior determines whether the balance point has moved very much. If it hasn't moved
more than than a threshold amount, given by Jack.balance. epsilon, then it doesn't update the center of mass
constraint. Otherwise, the center of mass constraint will be needlessly re-evaluated for a very small amount
of positioning. Without this test, the constraints would always be evaluated, sometimes causing undesireable
oscillations.

4.3.1.2 The RootBehavior Function

The RootBehavior function is responsible for determining the best site to use for the root of the figure, given the
figure's current posture. It is not shown here because it is long, messy, and uniteresting. It is defined in the file
src/lib/humanbehavior . c++.

RootBehavior uses the following rules:

It roots the figure through a foot whenever the weight of the body is more than 60% on that foot. This
ensures that if the figure is standing with more weight on one leg than the other, the supporting leg serves
as the root. It also ensures that if the figure is standing with weight equally between the two legs but
possibly swaying side to side that the root doesn't rapidly change between the legs.

If the height of the center of mass above the feet dips below 70% of the length of the leg, then the root
changes to the lower torso. This predicts that the figure is sitting down. Heuristically, this proves to be
a good choice even if the figure is only squatting, because the constraint on the non-support leg tends to
behave badly when both knees are bent to their extremes.

4.3. HUMAN FIGURES AND THE JACK SIndULATION PROCEDURE

hum = figure->human;

/*
Compute the support polygon. This is the convex hull of the projections
of the toes and heel of both feet .

*/

/*
Do the balance behaviors. If the figure is sitting, this
involves setting the fipre location.

*/
BalmceBehavior (f igure) ;

/*
Do the root behavior, but only if the figure is not seated.
If it seated, the root never changes.

*/
if (hum->behavior. balance ! = BCSEATED) {

ii (hum->behavior .root) {
PootBehavior(figure) ;

3

/*
Do the stepping behaviors, bat only if the figure is not currently
stepping. It c m J t take two steps at once.

*/
if (hum->stepping = FALSE &L ! Jack.advancetLPa) {

if (ham->behavior.step.balance LL hum->co~tr.cor->beinpoved) {
BalanceSteppingBehavior(f i p e) ;

1

Figure 4.3: HumanBehaviors

CHAPTER 4 . HUMAN FIGURES

BalanceBehavior(Figare *f igure)

t
B- *hum;
Vector L,R,BL,bp;
Transform D,G,E,II;
float d;
Transfoa C.Ginr;

hum = f igure->human;

if (!hum->seated && hum->behavior .balance == BCPEET) {
~omputeFootBalancePoint(figure,bp,L,R,BL);
vecsub(D.v.p.bp.hm->balancepoint);
d = MG(D.v.p);

if (Jack,advancethe 1 I d > Jack.balance .epsilon) {
GetSiteGlobal(f igure->centerofmass.&G) ;
cprector (hum->balancepoint .bp) ;
cpmatrix(E.matrix,hum->conntr.com->go~.v.matrix);
E.v .p[Ol = hum->balancepoint[OI ;
E.v.pC11 = G.v.pC11;
E.r .p[2] = hum->balancepoint [2] ;
SetHoldConstraint (hum->constr . com,&E) ;

if (hum->support - SUPLEFIEOOT) {
QetSiteGoal(hum->loft . toes,&G) ;
SetFigureLocation(figare,&G);

) else if (hor->support == SUPBIGBTEOOT) {
OetSiteOoal(hum->right .toes .&GI ;
SetFi~eLocation(fipe,&G);

) else if (hum->support = SUP-LOUER-TORSO) {
GetSiteOoal(hum->lowertorso. RG) ;
OetOodTransfoa(hum->co~tr.palvis,&E);
if (hum->behavior .balance == BCSEATED) {

GetSiteGlobal(hum->constr .corn->end.v .site ,&!I) ;
) else {

aetSiteGlobal(hw>constr .cm->end.v .site ,&E) ;
cpvector(E.v.p.G.r.p);
OetsiteQlobal(hum->conntr. cor->end. r .site ,&!I) ;

8

/*
If the figure is standing, then set the xy location of the
heel constraints. This only affects the drawing. This will
make the constraints be d r a m as a vertical line.

*/
if (!hum->seated) .(

QetEndEffectorTrap.form(h~->left.constr.heel.&E);
hum->left .constr .heel->goal.v .~trix[3] LO] = E.v.p[O] ;
hum->left .constr.heel->goal.v .matrix[3] [2] = E.v .p[21;
GetEndEff ectorTransforn(hura->right .co~tr.heel.&E) ;
hum->right .constr .heel->goal.v .matrix[3] [O] E.v.p[O] ;
hum->right .constr .heel->goal.v .matrix[3] [2] = E.r .p[2] ;

1

1

I I

Figure 4.4: BalanceBehavior

4.4. HUhfAN FIGURE CONTROLS

4.4 Human Figure Controls
The following functions set the behavioral parameters of the constraints:

~etFigureSupport(Figure * f igure , in t type)

~ e t T o r s o ~ o n t r o l (F i g u r e * f igure , in t type)

Constraint *
SetHandControl(Figure *f igure , in t type , in t s ide , i n t s tart joint ,Segment *segment)

Constraint *
SetFootControl(Figure *figure , i n t type, i n t s ide , Segment *segment)

SetFigureSupport accepts one of SUPLOWER-TORSO, SUPLEFTEOOT, or SUPRIGHTEOOT, and sets the support
field of the human structure accordingly. The is called by the RootBehaviorfunction, and by the SetBalanceControl
function when it makes the figure seated.

SetTorsoControl accepts one of TCJOUE, TC-VERTICAL, TCSETPARAH, and TCHOLD, and it sets behavior.torso
accordingly, except that the special type TCSETPARAM just sets the values of the torso parameters, i.e. the low,
high, initiator, and resistor joints.

SetPelvisControl accepts one of PCEOLD or PCEEET, and it sets behavior.torso accordingly.
SetRandControl accepts one of HCRELEASE, HCEIPS, HCXNEES, HC-GLOBAL, HC-LOCAL, or HCSITE, and it sets

either behavior.left.band or behavior.right.hand accordingly. If the type is HC-LOCAL, then the segment argument
specifies the segment to which the hand is to be constrained. In this case, the goal type of the constraint changes
to a segment. If the type is ACSITE, then the segment argument is the site, cast as a segment.

SetFootControl accepts one of FCRELEASE, FCPIVOT, FC-LOCAL, or FC-GLOBAL, and it sets either behav-
ior.left.foot or behavior.right.foot accordingly. If the type is FC-LOCAL, then the segment argument specifies the
segment to which the hand is to be constrained. In this case, the goal type of the constraint changes to a segment.

4.4.1 Balance Control

SetBalanceControl(Figure *f igure , in t types f loa t in te rpx , f loa t in terpz)

SetBalanceControl accepts one of BCEEET, BC-HOLD, BCSEATED, BCHOLDELEV, or BCRELEASEELEV, and it
sets the behavior.balance field accordingly, except that BCEOLDELEV and BCRELEASEELEV are special cases
and are not assigned to behavior.balance. They only cause a change in the position type of the center of
mass constraint, between CSOS and CLINE. In the case of BCEEET, the extra interpx and interpz specify the
parametrization of the location of center of mass goal with respect to the feet. If the type is not BCEEET, then
the extra parameters are ignored.

The two functions ComputeFootBalancePoint and FindFootBalanceInterp help out in the balance behavior.
The parametrize the location of the center of mass in terms of the placement of the feet. Given the location
of the center of mass, the function FindFootBalanceInterp computes two parameters, footbalancinterpx and
footbalancinterpz, shown in Figure 4.5 as x and z. To do this, it projects the balance point on the y = 0 plane,
which is the point &. It then finds the point on the balance line closest to this point, and calls it 6, z is the
distance between & and fi, that is, the balance point's distance forward from the balance line. Likewise, x is the

48 CHAPTER 4 . HUMAN FIGURES

interpolation factor which gives fi in terms of the left and right foot reference points, normalized between 0.0
and 1.0, with z = 0 being the left foot. If x is outside of the [O,l], then the balance point is to the side of the
support polygon. 40 40

Figure 4.5: The Parametrization of the Balance Point

CorputeFootBalancePoint does the opposite: it takes the balance parameters and computes a new balance
point based on the placement of the goals for the constraints on the feet.

When the balance control is BCSEATED, SetBalanceControl turns off the constraints on the toes and turns
the heel constraints into position and orientation constraints. Then the move foot command will use the heel
constraint as the end effector for moving the foot. This seems to work well for seated figures.

4.4.2 Stepping Behaviors

The HuranBehaviors function also calls the stepping behaviors functions BalanceSteppingEehavior and PelvisSteppingEehavior
These funtions look at the location of the center of mass and the orientation of the pelvis to see if the figure
need to take a step. If it does, then they generate a foot motion, using the motion system described in Chap-
ter 5. This motion causes the foot to "step" from its current location to a new location, during the course
of the manipulation. BalanceSteppingBehavior need only be invoked while moving the center of mass, and
PelvisSteppingBehavior need only be invoked while rotating the pelvis.

4.5 Inputting Human Figures

Human figures may be picked by the user with the function InputHumanFigure. If there is only one human figure
in the environment, the function returns it without prompting tlie user to pick it.

4.5. INPUTTING HUMAN FIGURES

Figure *
~n~ut~umanFigure(arglist,outargs,prompt)
VALUE **arglist ;
char **outargs ;
char *prompt ;

4.5.1 The List of Humans

There is also a list of human figures in the Environment structure, called env->humans. This field is a list of
Figures which have valid Human structures.

C H A P T E R 4 . HUMAN FIGURES

Chapter 5

The Motion System

5.1 The Motion Data Structure

A synopsis of the notion data structure is:

typedef enum {
UBOPE, UEXDEFFECTOR, UJOIUT, USITE , ULEFTEOOT , HRIGHTEOOT, ULEFTHEEL,
U-RIGETHEEL, U-COM , UJELVIS , U-TORSO , MLIGHT , USUPPORT, HZEFTHABD , U-RIGHTHAHD ,

} UotionType;

s t r u c t motion {
char *name ;
char *description;
Figure *figure ;
Hot ionType mtype ;
long s tar t t ime;
long duration;
i n t weightfunction;
i n t velocitycontrol;
void *mvar ;
i n t (*allot> 0 ;
i n t (*apply) 0 ;
i n t (*preaction) 0 ;
i n t (*postaction) 0 ;
i n t (* inputparams) () ;
i n t (*recordparams) 0 ;
s t r u c t {

unsigned movetype : 3;
unsigned af terconst rs : 1;
unsigned current : I;

1 f l ags ;
char * j clpref i x ;

1;

The motion data structure models a change in a parameter of a specific time interval. The motion simulation
procedure in Jacksimulates time over several possibly overlapping motions. The effect of each motion is described

52 CHAPTER 5. THE MOTION SYSTEM

through the set of function fields. The process of writing new motion primitives involves writing a new set of
functions which cause the desired effects.

Motions are illustrated in the Jack animation window. This window draws motions in tracks, on a horizontal
time line. The window is a port-hole into which the user can look at a set of motions which happen over a certain
portion of time. The user can scroll the window forwards or backwards in time, or expand or shrink it to show
a larger or smaller region of time. The window draws only the motions which happen during the time interval
displayed in the window.

The animation window sorts the motions according to the figure and "body part" they control, so that the
window gives the user a sense of how the controls on a part of the figure change over time. This sorting is done
based on the figure field and the rntype field. This'is currently the only application for the rntype field, since the
behavior of the motion is defined in terms of its function fields.

The name field of the motion is the identifier that is placed in the left column of the animation window next
to the figure's name. This usually describes the body part which the motion controls. The description field
of the motion is the text string which goes along with the icon on the timeline in the window. This usually
gives information about the parameters of the motion. The figure field points to the figure to which the motion
applies.

The starttime and duration fields of the motion describe what time the motion is active. In the current
implementation, these units are integral frame numbers, starting at 0. The ending time for the motion can be
computed from the starting time and the duration.

5.1.1 Weight hnctions
The weightfunction field is available for use by the functions which define the motions effects. In the currently
implemented motions, the weight function is used to control the weight of the constraints which the motions
control. The weight function can be one of:

VFEASEIHEASEOUT

The function weightfunction implements these functions, base in the input argument type. It maps a nor-
malized time value t, in the range 0.0 to 1.0, to weight value between 0.0 and weight.

float
weightfunction(type,weight,t)
int type;
float weight ;
float t;

5.1.2 Velocity Controls
The velocitycontrol field is available for use by the functions which define the motions effects. In the currently
implemented motions, it is used to control the velocity of the goals of the constraints which the motions control.
The velocity can be one of:

VC-CONSTANT
VCACCEUERATE
VCDECELERATE
VClASEIHEASEOUT

The function relocitycontrol implements these functions, base in the input argument type. It maps a
normalized time value t, in the range 0.0 to 1.0, to position interpolation value between 0.0 and 1.0. This value
may then be used to interpolate between a starting and ending position by the motion function.

5.2. AN EXAMPLE MOTION

f l o a t
veloci tycontrol (type, t)
i n t . type;
f l o a t t;

5.1.3 The Motion Functions

The effects of the motion are controlled through the functions preaction, apply and postaction. In developing a
new type of motion primitive, it is your responsibility to write the functions and have them generate the desired
effect, according to the following rules. The preaction function is invoked once when the start time of the motion
is reached. The postaction function is invoked once when the ending time for the motion is reached. The apply
function is invoked at each time increment between the starting and ending time, inclusive. Each function is
invoked with a pointer to the motion structure as an argument. The apply function is invoked with the current
time as the second argument.

(h->postact ion) G) ;

The inputpararm and recordparams functions are responsible for inputting and recording the parameters
of the motion, respectively. Each parameter of the motion should be input with Input functions inside of the
inputparams function. This function is invoked with first two arguments to match the arguments of the Input
functions. The third argument is the mvar field of the motion, and fourth is the a pointer to the motion itself.

This function is used in two places. First of all, it is used to input the parameters when the motion is created.
It is also invoked when the parameters of the motion are changed, using the command change motion. Therefore,
the inputparams function should be structured so that it can be invoked multiple times. It should take the
current value of the parameters as the default values.

The inputparams function should not input the start time and duration, because these parameters are gen-
erally changed graphically, by sliding the end points of the motion around with the mouse in the animation
window.

The recordparams function records the parameters of the motion in a string in the format of JCL, so that
the motion can be written to a JCL file. The jclprefix of the motion contains the name of the command used
to create the motion. This function is invoked with a pointer to the motion structure as the first argument and
the outargs argument second.

This function should use the RecordArgument functions to record the parameters.

5.2 An Example Motion

This section describes an example motion, taken directly from the source code file src/lib/human-motion. c++.
This is the implementation of the create pelvis motion command. This is a good generic example of how motions
work in Jack.

The definition of the motion includes the functions pelvispreaction, pelvispostaction, pelvisapply,
pelvisinputparame, pelvisxecordparam, and C~CreatePelvisnotion, along with a special structure called

54 CHAPTER 5 . THE MOTION SYSTEM

PelvisHotion, which hold information needed by the motion functions. In this case, the necessary informa-
tion includes the constraint on the pelvis, the starting and ending pelvis orientations (stored as homogeneous
transforms), and the constraint weight.

There are some important point to consider:

Recall that a motion is an instruction to move something t o a desired location, beginning at a certain time,
from its current location at the starting time. Therefore, the start field of the PelvisHotion structure is
filled in automatically by the preaction function. This sets the starting orientation of the pelvis to its value
when the preaction function is executed. This happens only at the starting time of the motion.

The postaction function deactivates the motion constraint and activates the human body constraint, ini-
tializing it to hold the pelvis in its final orientation.

The apply function interpolates between the starting and ending position, according to the current time,
passed in as a parameter. In this case, the apply function linearly interpolates between the two orientations,
using the function linterpmatrix. Notice how it uses the velocitycontrol function to map the time into
the interpolation parameter. It also computes the weight using the weightfunction.

The apply function is responsible for turning off the human body constraint on the pelvis and turning on
the PelvisHotion's constraint. The human body constraint should not be active while the motion is in
effect. This must be done in the apply function, not the preaction function, becaue motions like this can
overlap. It is possible to have two motions controlling the same part of the body at the same time. Since
the postaction function activates the body constraint to hold the pelvis in its current orientation after the
motion passes, if two motions are overlapping and one expires before the other, the body constraint will
be activated while the long motion is still in effect. Therefore, the apply function must turn off the body
constraint at each iteration to ensure that it is off.

This is true of all motions which control parts of the human body in this manner.

The inputparams function calls the manipulation command RotatePelvis so that the user can manipulate
the pelvis into the desired orientation. After this, it gets the final value of the goal of the pelvis constraint
and saves that as the ending orientation for the motion.

It is absolutely essential that the inputparams function deal properly with the JCL arguments, through the
arglist and outargs arguments, since JCL is the way in which motions are stored in files and later retrieved.
In this case, the function RotatePelvis does this. In other circumstances, it may be necessary to parse the
arguments explicitly.

The recordparams function uses the RecordArgument functions to generate a JCL representation of the
arguments of the motion command. It is abolutely essential that the arguments match in number, type,
and, order of occurrence between inputparams and in recordparams.

The Jack command function CHDCreatePelvisHotion is responsible for allocating the Pelvisnotion struc-
ture an for creating the constraint and setting its parameters. This is done only once. This constraint
should be off initially. It should also have its motion field set to indicate that it belongs to a motion.

5.3 Creating Motions

Motions may be create with the function NewMotion.

5.3. CREATING MOTIONS

typedef s t rnc t {
Constraint *COMtr;
Transf o m start ,end;
f loa t vaight ;

) Pelvislot ion;

pelvispreact ion(&
Hot ion h;

PelrisHotion *pm;
Human *hum;

p = (PelrisHotion *) r->mrar.data;
hum = r > f igure->human;

pelr iapostact i o n b)
Hot ion h;

p = (PelrisHot ion *) m-hrar .data;
hum = r->figure->human;

p e l r i s ~ p p l ~ (r . t)
Hot ion -;

long t ;
{

PalvisHotion * p ;
Hmun *hum;
f l o a t 6.f;
Transform H;

p I (Palrialotion *) r -hrar .da ta ;
hum = m->f igure->haran;

s = (t-m->startthe) / (f loat) (a->duration - 1);
f relocitycontrolG->relocitycontrol,s);

I I

Figure 5.1: PelvisMotion, Part I

CHAPTER 5. THE MOTION SYSTEM

pelrisinputparama(arglist ,outargs ,pm,m)
V U I E rearglint ;
char rroutargs ;
PelvislIot ion*p;
not ion -;

{
E- +hum;
f l oa t angle ;
char buf 1801 ;
int n;

if (! Inputnoat (arglist ,outargs,~p->weight, "weight : "1 {
return(0) ;

sprintf (b u f , " ~ . l f] * * , p r - > s e ~ t) ;
if <r>description) {

free(m->description) ;

pelris~ecordparams (r, args)
Motion +1;
char **are;
t

PelvisHotion*p;

Figure 5.2: Pe lv i s notion, Part 11

5.3. CREATING MOTIONS

C1IDCreatePelrisIotion(args,outargs)
VALUE *arga ;
char **ontargs ;

{
Figure *f igare ;
int duration;
lot ion w;
PelrisIot ion *pl;

Vector D;
Bluan *hum;
char bnf C801;

r = lewllotion(0);
r > f igure = f i p e ;
r h t y p e = IPELVIS;
r>jclpref ix = atrdup(Ja&.cllrrentargs) ;

if < ! InputSt€u.tTiDe (&args,ontargs ,3) {
goto abort;

1
if (! InputI(ndTire(targ ,outergs ,m)) {

goto abort ;

1

pm->constr = CreateHoldConatraint(hnm->losertorao,"pelris");
pm->constr->motion = TRUE;
pm->conntr->off = TBUE;
pm->constr->ptype = C-IOIE;

-->apply = pelriaapply;
r>preaction = pelriapreaction;
r>postaction = pelrispostaction;
r->inputparama = pelrisinpntparamu;
r>recordparam = pelria~ecordpararmr;

if (!pelrislnputparam<&args .outargs.p,m)) {
goto abort;

1
Jack.reaortrotions TRUE;
Createhirat ionUindos 0 ;
retarn(1) ;

abort :
DeleteHotion(r);
return(0) ;

3

Figure 5.3: Pelvis Hotion, Part I11

58 CHAPTER 5. THE MOTION SYSTEM

This function BerrMotion allocates memory for the motion structure and fills in default values for some of the
parameters, but it doesn't do anything else. YOU must fill in the fields explicity after allocating it. The process
for doing this is described below.

The following functions are useful in inputing parameters of motions:

int
InputVeightFunction(arg1ist , outargs ,m)
VALUE **argliat;
char **outargs;
Hotion *m;

int
InputVelocityControl (arglist , outargs ,m)
VALUE **arglist;
char **outargs ;
Hotion *m;

int
InputSide(arglist,outargs,side)
VALUE **arglist ;
char **outarga;
int *side;

Inputside selects the keywords right or left, for motions that apply to a part of the body on the right or
left side, like hands or feed. It returns 0 for left, 1 for right.

5.4 How the Animation System Works

The animation system works through the simulation procedure described in Section 3.4. The simulation p r e
cedure AdvanceSimulation invokes the function AdvanceTime, provided the Jack. advancetime flag is set. This
function advances the current time indicator Jack. currentt ime. The Jack. advancet h e provides a means of
turning "time" off and on. As described below, the function AdvanceTime resets this flag when it detects that
nothing else is t o occur in the future. There are other functions for setting the time counter backwards, or to an
arbitrary point. The function AdvanceTime is shown in Figure 5.4.

Jack's notion of time is currently an integer corresponding to frames numbers, i.e. 30 time ticks per second.
However, this notion of time is quite arbitrary until a sequence of frames is put onto videotape, because Jack
usually cannot generate the animation at 30 frames per second. What you see interactively is much slower.

This function invokes the function UpdateActiveMotiorm which examines each motion to determine if it is
"active" at the current time. The term active here means that Jack.currenttime is between the motion's
starttime and ending time, so the motion is currently in effect. It sets the motion's flags.active field accordingly.
Thus, this flag designates which motions are currently in effect. In addition, UpdateActiveMotions executes
the preaction functions for the motions whose starttime coincides with the current time, and it executes the
postactions for the motions whose ending time is equal to the current time.

AdvanceTime then invokes ApplyActiveHotions to execute the apply functions for the currently active motions.
AdvanceTime then evalutes the constraints. The constraiilt evaluation process automatically considers only

constraints which are currently "on," as described in Section 6.4.1. The process here involves handling the
special cases of the center of mass constraints. This process is done in a loop to ensure that First, the procedure
computes the center of mass of each human figure and stores it in the the human-ibalancepoint field. It then

5.4. IIOTY T H E AATIAfATION SYSTEM \IrORI(S 5 0

{
Figure
List
int
Transf o m
int
Vector
float
Boolean

*human ;
1;
niter ;
G;
done ;
v;
d;
more ;

Jack. currentt he++ ;

/*
Execute the appropriate preaction, postaction, and apply functions

* for the current time. If this is a motion's starttime, execute its
* preaction. If this is a motion's ending time, execute its postaction

* /
more = UPdateActiveUotions();
ApplyActiveUotionsO;
Execut eBehaviorFunctions 0 ;

/ *
Evaluate the constraints in a loop that terminates when the
centers' of mass converge.

* /
niter = 0;
do {

1 = 0;
while ((l=circlistiterator(env->humans .l))) {

human = LISTDATA(Figure,l);
FigureCenterOfnass(human);
GetSiteGlobal(human->centerofmass,kG);
cpvector(human->human->balancepoint .G.v .p) ;

1

/*
* Get each human's center of mass again and compare it to its
previous location. If any center of mass moved more than
'thresholdJ, we're not done yet.

/
done = TRUE;
1 = 0;
while ((l=circlistiterator(env->humans ,1) 1) {

human = LISTDATA(Figure,l);
FigureCenterOflass(human);
GetSiteGlobal(human->centerofmass,kG);
vecsub(v .human->human->balancepoint .G . v .p) ;
d = MAG(v);
if (d > Jack.balance.threshold) {

done = FALSE;
1
cpvector(human->human->balancepoint,G.v.p);

1
) while (!done k0 niter++ < 3ack.nbalanceiterations);

Figure 5.4: AdvanceTime

CHAPTER 5. THE MOTIOA7 S17STEAI

List 1;
long endtime;
notion em;
Boolean moremot ions;

moremotions = FALSE;

1 = 0;
while ((1 = circlistiterator(Jack.motions .l) 1) {

m = LISTDATA(Hotion, 1) ;
endtime = m->starttime + m->duration;

if (endtime > Jack.currenttime) {
moremotions = TRUE;

3

if (m->starttime == Jack.currenttime kt m->preaction) {
(*m->preact ion) (m) ;

1
if (endtime == Jack. currentt ime kk m->post act ion) {

(*m->postaction) (m) ;
m->flags.active = FALSE;

1
if (m->starttime <= Jack.currenttime kt Jack.currenttime < endtime) {

m->flags.active = TRUE;
} else {

m->flags.active = FALSE;
3

1

I I

Figure 5.5: UpdateAct iveMotions

List 1;
notion *m;

1 = 0;
while ((1 = circlistiterator(Jack.motions .1))) {

m = LISTDATA(Uotion. 1);
if (m->flags.active kC !m->flags.afterconstrs kt m->apply) {

(*m->apply)(m,Jack.currenttime);

Figure 5.6: ApplyActiveMotions

5.5. FRAMES

ExecutePostAct i o n s o

1
L i s t 1 ;

1 = 0 ;
while ((1 = circlistiterator(Jack.motions,l))) {

m = LISTDATA (Motion. 1) ;
if (m->flags .act ive) {

if (m->postaction) {
(*rn->postaction) (m) ;

m->flags .act ive = FALSE;

1
I

I

I I

Figure 5.7: ExecutePostActions

5.5 Frames
Jack records frames in terms of joint angles and figure locations in a Frame data structure, defined in the include
file frame. h. Frames can be saved with SaveFrame and set with SetFrame.

Frame *frame
SaveFrame(int id)

SaveFrame takes an id argument which is the time indicator for the frame. If id is greater than or equal to 0,
then the frame is stored in a list of frames which can be played back with the command play frames and recorded
to the video disk with record frames to vdisk. If id is negative, then the frame is not added to the list of frames.
These frames can be used to store other kinds of postures.

The Frame structure also holds information about the goals of constraints which are active for that frame.
The function SetFrame sets the joint angles, figure root, figure location, and constraint goals associated wit11 that
frame.

5.6 Controlling Time

The function SetCurrentTime sets Jack's current time. It also sets the frame to be that tie, if such a frame
exists. Because this might be called wliile motions are active, and because it may be moving the current time into
an interval in which other motions are active, it is important to execute the motion postactions before setting
the time, and the moiton preactions after it 1las been set. SetCurrentTime is slio~vn in Figure 5.8.

CHAPTER 5. THE AlOTION S'S'STEh1

void
SetCurrentTime(1ong t)

1
int f;

Figure 5.8: Set CurrentTime

Chapter 6

Constraints

6.1 Constraints

This section describes tlle implementation of constraints. This assumes that you are already familiar with the
terminology of constraints, as described in the Jack User's Guide, including end effectors, goals, starting joints,
objeciive types, and weights.

Constraints are regarded as an integral part of the peabody environment, so many of the routines for dealing
with them are distributed throughout the source code into such files as s rc / l ib /peanew. c++, s r c / l i b / p e a d e l e t e . c++,
etc. In addition, the files s rc / l ib /pea-cons t ra in t . c++ includes many of the low-level routines described
below. The higher-level functions having to do with constraint evaluation as a part of Jack are defined in
s rc / l ib / jack-cons t ra in t . c++. The constraint solver Solve~onstraintsis defined in the file s r c / l i b /peaso lve . c++.

The most important aspect of constraints is now they are evaluated. This is done by the inverse kinematics
algorithm, commonly referred to as "Jianmin7s Reach Algorithm." This is discussed in Section 6.6.

6.2 The Constraint Data Structure

A synopsis of the constraint data structure is:

typedef s t r u c t cons t r a in t Cons t r ian t ;

s t r u c t cons t r a in t
char
Object iveType
Obj ectiveType
f l o a t
f l o a t
VALUE
VALUE
Jo in t
Transform
i n t
L i s t
PosPar&n
Orientparam
f l o a t
unsigned

t
*name ;

Pt YPe ;
o t ype ;
poweight;
weight ;
end ;
goal ;
* s t a r t j o i n t ;
displacement;
p r i o r i t y ;
j o i n t s ;
pos ;
o r i e n t ;
d i s t ance ;
roo t ing : 1;

CHAPTER 6. COArSTRAINTS

unsigned off : I ;
unsigned hasdisplacement : 1 ;
unsigned ju s t c r ea t ed : I ;

1;

The ptype and otype fields are of type ObjectiveType, which is defined as:

typedef enwn {
C-UNDEF, CJONE,
CTOS, CLINE, CSLANE, CEDGE, C J A C E ,
CTRAME, CAIM, CDIR, C-VIEW, CSLANEDIR,
CAESTANGLE. C-JOINTLIMIT,

) Obj ectiveType;

The poweight and weight fields are the position/orientation weight and the constraint weight, respectively.
The end and goal fields are VALUE structures representing the end effector and goal, respectively. The end effector
may be a VSITE or a V-IJODE. The goal may be a VSITE, a V-IJODE, a V-FACE, or a VHATRIX. The startjoint field
is the starting joint. The displacement field is a matrix offset which describes the placement of the "true" goal
used for the inverse kinematics routine relative to the goal as specified in the goal field. Tliis allows goals to be
attached to objects a t points or orientations other than that associated with sites, nodes, or faces. If this value
is used, then the field hasdisplacement must be set. Otherwise, the displacement field is ignored.

The off flag determines whether the constraint is to be evaluated along with the others. If this flag is set, the
constraint is not evaluated.

Some of the fields in the constraint data structure are for internal bookkeeping. The joints field is the
constraint's list of joints, generated by the function ConstraintJoints. It includes all joints between the end
effector and the starting joint which have degrees of freedom and are not frozen.

The pos structure stores the position component of the goal, in both local and global coordinates. The
PosParam structure is defined as:

typedef union {
s t r u c t {

Vector p;
) p o i n t ;
s t r u c t {Vector v ;

Vector v ;
Vector P;

) l i n e ;
s t r u c t {

Vector n ;
Vector N;

6.2. THE CONSTRAINT DATA STRUCTURE

Vector p;
) plane;
s t r u c t {

Vector normal ;
i n t nver t i ce s ;
Vector *ve r t i ce s ;
Vector4 *eqns ;

} f a c e ;
) PosParam;

Actually, it's a union, with a structure corresponding to each position objective type. The upper case fields
are position components resolved to global coordinates. They are filled in internally by the peabody routine
InitializeGoal. The lower case fields are parameters of the constraint which must be set. The 1ine.v field is the
direction of the line for a line constraint, specified in the coordinate frame of the goal. The plane.n field is the
direction of the plane for a plane constraint, specified in the coordinate frame of the goal. The face goal stores
the vertices of the polygon of the face, and a set of equations used for testing whether a point is inside the face.

The orient structure stores the orientation component of the goal, in both local and global coordinates. The
OrientParam structure is defined as:

typedef union {
s t r u c t {

Vector
) aim;
s t r u c t {

Vector
Vector
Vector

} d i r ;
s t r u c t {

Vector
Vector
Vector

) p laned i r ;
s t r u c t {

Vector
Vector

} frame;
s t r u c t {

Vector
Vector

} view;
) OrientParam;

CHAPTER 6. CONSTRAINTS

Actually, it's a union, too, with a structure corresponding to each position objective type. The upper case
fields are in global coordinates, and the lower case fields are in local coordinates. These lower case fields are the
ones which you must supply as parameters when creating a constraint.

The aim.v field gives the viewing vector in the coordinate frame of the end effector. The dir.e field gives the
direction vector on the end effector, and the dir.v field gives the direction vector on the goal, both for a direction
constraint. The planedir fields are similar. The frame and view fields do not have parameter values because they
take their orientation directly from the orientation of the goal.

6.3 Creating Constraints

The process of creating constraints is rather tricky because of the way they are evaluated. Constraints are created
with the function NewConstriant, but follow the instructions below.

Constraint *
NewConstraint (char *name)

List
ConstraintJoints(Constraint *constr,Joint *startjoint)

AddConstraintToGlobalList(constr)
Constraint *constr ;

The function ConstraintJoints sets the starting joint of a constraint. The return value of the function is the
list of joints for the constraint. It's not necessary to do anything with this list. I t is stored in the constraint in
the field joints. I t is acceptable t o reference this field for information, but you should not assign directly to it.

Jack keeps constraints in the global list env->constraints. This list is tlie source of constraints that Jack
evaluates automatically. The function NeuConstraints does nof add the constraint t o this list. The reason for this
is that the list of constraints is repeatedly evaluated in Jack, and the constraint is not valid until all of its fields are
filled in - they aren't filled in with valid values by NewConstraint itself. The function AddConstraintToGlobalList
does this. Therefore, t o create a new constraint:

1. Create the data structure itself with NewConstraint

2. Fill in tlie essential fields. These are:

end The end effector. Set both the type and the value.
goal The goal. Set both the type and the value.
ptype The position objective type. If this value is C L I N E , then the pos.1ine.v field must be

filled in. If this value is CSLANE, then the p0s.plane.n field must be filled in.
otype The orientation objective type. If this value is CAIM, then the orient.aim.vfie1d must be

filled in. If this value is C D I R , then tlie 0rient.dir.e and 0rient.dir.v fields must be filled in.

poweigllt The position/orientation weight.
startjoint The starting joint. Set this with the function ConstraintJoints.

3. Add the constraint t o the global list with, you guessed it, AddConstraintToGlobalList

6.4. COhTTROLLING COATSTRAINTS

6.3.1 More on Creating Coi~strail~ts

Cons t ra in t *
CreateHoldConstraint(Site * s i t e , c h a r *name)

Cons t ra in t *
~ e t ~ r e f e r r e d ~ n g l e (J 0 i n t * j o i n t s f l o a t angles[] ,Constraint *cons t r)

Cons t ra in t *
Set JointLirni tSpring(J0int * j o i n t , f l o a t expO ,Cons t ra in t *cons t r)

The function CreateHoldConstraint creates a constraint whose goal type is V-MATRIX and whose end effector
is a site, specified by the argument site. This is very common in Jack. The name argument gives a name to the
constraint.

The function setpref erredAngle creates a constraint whose type is a joint spring. The angles argument gives
the angle to which the joint will spring. If the constr argument is not null, then no new constraint is created.
Instead, this constraint is transformed into the joint spring constraint.

The function SetJointLimitSpring creates a constraint whose type is a joint limit spring. Human figures in
Jack have these constraints on the elbows and knees to discourage them from becoming locked. The objective
function for type of constraint adds an exponential amount of potential energy as the angle reaches the limit.

6.4 Controlling Constraints

In the original design of the inverse kinematics system, Jack required t ha t end effectors and goals be sites. This
proved t o be be cumbersome, so the types of end effector and goal fields were expanded t o include other data
types. Now, the most common type of goal is a VJATRIX, which is sometimes called a hold constraint because
i t causes the end effector t o hold its current global position and/or orientation. Jack still uses the term hold
constraint t o mean a constraint which is not attached t o an object. The function SetHoldConstraint sets the
value of the goal matrix for such a constraint. If the transform T is nil, then the function uses the current
placement of the end effector as the goal. SetHoldConstraint automatically eliminates the displacement of a
constraint.

void
SetHoldConstraint(Constraint *constr,Transform *T)

vo id
SetActiveHoldConstraints(list)

Because of the way in which Jack determines whether a constraint set needs to be solved, it is essential that
you use SetHoldConstraint to fill in the value of the matrix. It serves the dual purpose of actually filling in the
value and notifying the constraint set that it should be evaluated again.

The function SetActiveHoldConstraints invokes SetHoldConstraint with a nil transform on each hold con-
straint which is currently on. This sets the goals for all hold constraints to be the currelit location of their end
effectors.

Constraints can also have displacements, which are offsets between the goal as represented in the goal field
of the constraint and the actual location of the goal as seen by the inverse kinematics algorithm. An example

CHAPTER 6. CONSTRAINTS

of the need for this is when an end effector needs to be constrained t o the position of a site but with a different
orientation. The difference in orientation can be maintained in the displacement.

The function SetConstraintDisplacement sets the displacement. If the transform T is nil, then the function
resets the displacement t o the identity transform. SetHoldConstraint automatically eliminates the displacement
of a constraint.

void
SetConstraintDisplacement(Constraint *constr,Transform *T)

6.4.1 Turning Constraints On and Off

Once constraints are created, they can be activated and deactivated with the function SetConstraintStatus.
Turning a constraint off makes it transparent, as it if doesn't exist. However, it can be turned back on again
later. This function changes the offield of the constraint, but it is essential that you not change this field except
through the use of this function.

int
SetConstraintStatus(Constraint *constr,Boolean on)

The on argument tells whether the constraint is on (TRUE) or off (FALSE).
Alternatively, the constraint evaluation process can be disabled altogether with the flag Jack. constr . on. If

this flag is not TRUE, then Jack skips the constraint evaluation procedure altogether.

6.4.2 Constraint Priority

Constraints can have a priori ty , which determines whether they should be evaluated collectively with other
constraints. If two constraints have different priorities, Jack will evaluate the one with lower priority first, then
the one with higher priority, even if they affect the same joints. Normally, all constraints have priority of 0.

int
SetConstraintPriority(Constraint *constr,int priority)

The constraints on the arms of human figures in Jack have priority 1.

6.5 Getting Information about Constraints

Segment *
EndEffectorSegment(Constraint *constr)

Segment *
GoalSegment(Constraint *constr)

6.6. THE CONSTRAINT EVAL UATION PROCESS

i n t
~etEndEffectorTransform(Constraint *constr,Transform *E)

i n t
GetGoalPoint(Constraint *constr.Vector p)

i n t
GetGoalTransform(Constraint *constr,Transform *G)

Constraint goals and end effectors are abstract data types: the values of their fields can be of several different
types. These functions return homogeneous transforms which describe the location of the end effector and the
goal of a constraint. EndEffectorSegment returns the segment to which an end effector belongs. Goalsegment
does the same for a goal, except that it will return nil if the goal does not belong to a segment, as in the
case of a VAATRIX goal, that is, a hold constraint. GetGoalPoint returns the vector at the origin of a goal.
GetGoalTransform returns the transform describing the global coordinate frame of the goal, except that if the
goal is a node or a face, then the transform is the transform of the segment, so it is necessary to call GetGoalPoint
in order to find the actual global position.

GetGoalTransf o m automatically incorporates the constraint displacement into the returned value, if there is
a displacement.

6.6 The Constraint Evaluation Process

Normally, the evaluation of constraints takes place in the Jack control structure, so it is not necessary to invoke
the evaluation functions explicitly in other routines. The explanation given here provides background on how
Jack performs the process.

Before Jack evalutes constraints, it divides them into independent sets. The constraint solution procedure
Solveconstraint operates on constraint sets. For the most part, this is for efficiency, since the inverse kinematics
algorithm will operate more efficiently when invoked twice with two small sets of constraints than it will if
invokded once with a larger set. It is also efficient because some information maintained in the constraint set
data structure can be reused from one evaluation to next. In addition, however, constraints can have a priority,
which gives an order in which the constraints should be evaluated. This is sometimes beneficial when overlapping
constraints should not affect one another. The mechanism for dividing constraints into independent sets examines
the priority and groups constraints of similar priority into the same set.

The master constraint evaluation procedure is EvaluteConstraints, defined in the file s r c / l i b / jack-constraint . c++.
If the flag Jack. cons t r . on is not TRUE, this function returns immediately, so no constraints will be evaluted.
EvaluteConstraints begins by generating constraint sets if necessary. Jack keeps the constraint sets in the global
list env->constraintsets , and it uses this list to determine whether the sets need to be generated. If the list
is non-nil, then the sets exist and should be evaluted. If the list is nil, then the constraint sets need to be gen-
erated, using the function OrderConstraints. This function computes the constraint sets and places them in the
list env->constraintsets . This function traverses the peabody tree to find constraints which are completely
independent of each other t o place them in separate sets.

The function OrderConstraints arrives a t lists of constraints which are dependent upon one another (Two
constraints are dependent upon one another if either one contains any joints which affect the segments in the
other's joint chain). It generates a constraint set data structure with each of these lists with the function
GenConstraintSet. This function operates on a list of constraints, and it returns a pointer to the new constraint
set data structure.

Before solving the constraints, EvaluateConstraints invokes the function InitializeGoal on each constraint.
This function resolves the local coordinates in the goal and end effector structures to global coordinates. The
constraint solver SolveConstraints needs information about the goal in global coordinates. It uses only the
information in the pos structure in the constraint. InitializeGoal fills this in. InitializeGoal is also responsible
for implementing the step factor feature, whereby the goals are not allowed to be too far away from the end

70 CHAPTER 6 . CONSTRAINTS

effectors. It measures the distance from the end effectors to their goals, and if this is beyond the allowable
threshold, which is an argument to EvaluateConstraints, then it interpolates between the iwo and fills the
interpolated data into the constraint's pos structure.

After initializing the goals, EvaluteConstraints then invokes Solveconstraints on each constraint set. This is
the actual inverse kinematics algorithm. solveconstraints also accepts a constraint time limit, and Jack keeps
this data in the constraint set data structure. EvaluateConstraints attempts to balance the time limit between
the constraint sets so that constraint sets which need more time get more time.

solveconstraints will invoke the inverse kinematics algorithm on a constraint set only if the set is out of date,
which means that something has moved since the last time it was evaluated. This avoids the overhead of invoking
the inverse kinematics algorithm when no positioning needs to be done. The constraint set data structure has a
time stamp that is set whenever it is evaluated. SolveConstraints calls the function ConstraintSetOutOfDate to
determine whether any of the joints in any of the constraints has changed since the last evaluation. It also checks
to see whether the goals of the constraints have movqd. For goals which are sites, it compares the time-of-update
setting of the site. For hold constraints, it uses the constraint's time-of-update field.

6.7 Evaluating Your Own Constraints

The process described above allows Jack to maintain a set of constraints which describe desired geometric
relationships and to evaluate them in the presents of movement, coming either from the direct manipulation
operator or from the motion system. However, it is sometimes convenient to use the inverse kinematics algorithm
as a subroutine in some other operation. In this case, you must create constraints and evaluate them in a context
which is not visible to the rest of Jack. This is easy to do using the procedure described here.

A good example of this type of operation is the function PositionChain. This function is shown in Figure 6.1.
It accepts a site, a joint, and a homogeneous transform, and it uses the inverse kinematics algorithm to position
the figure in such a way that the given site is located at the given transform, in both position and orientation.
Only the joints between the given joint and the site will move.

PositionChain(Site *site. Joint joint .Transf o m *TI

t
Constraint *constr ;
List list;
ConstraintSetcs ;
float f;
int drawreach0 ;

constr = IeaConstraint(0) ;
constr->end. type = VSITE;
constr->end.v.site = site;
constr->goal.type = VJIATRIX;
SetHoldConstraint (constr ,T) ;
ConstraintJoints(constr. joint) ;
InitializeGoal(constr .O .0) ;

list = 0;
appendcirclist(klist.constr);
cs = GenConstraintSet (list) ;
f = ~olveConstraints(cs .drawer .O) ;

DeleteConstraint(con8tr);
killcirclist (tlist -0) ;

1

Figure 6.1: PositionChain

6.8. THINGS TO WATCH OUT FOR

This function may do what you need, in which case you can just use it as is. If you need something slightly
different, then just use it as a guide. This constraint is evaluated in isolation of the other constraints in the
environment. The important points in the process are:

a Create the constraint with Newconstraint. Don't bother giving it a name.

a Set the types and values of the end effector and goal.

a Set the objective function. Positionchain doesn't do this because it uses the defaults: position and orien-
tation, with a position/orientation weight of 0.5.

a Set the starting joint with the function ConstraintJoints.

a Initialize the constraint with InitializeGoal. Use a step factor of 0.0.

a If this is a temporary constraint, one that will be used only once and then discarded, do noi add the
constraint to the global list with AddConstraintToClobalList.

a Generate a constraint set with GenConstraintSet. This requires that the constraint be in a list. This also
makes it possible to the this same thing with two constraints siinultaneously.

a Call SolveConstraints with constraint set. You call optionally pass in a function which will be executed at
each iteration of the solution process. I11 this case, the function dravreach draws the graphics windows in
Jack, which will illustrate the intermediates st,eps of the solution process.

a Use a time limit of 0 as the final argument to SolveConstraints.

a SolveConstraints returns the dist,ance between the final position of the end effector and the goal, weighted
according to the constraint's weight.

When done, delete the const.raint with Deleteconstraint and delete the temporary list.

6.8 Things to Watch Out For
When creating constraints or changing their parameters, it is essential that you follow the procedure outlined
here. Some of the fields of the constraint structure can be referenced explicitly, but several should be set only
through the routines outlined above because of the internal bookkeeping that the evaluation process maintains.

Because of the way in which constraints are grouped into constraint sets for evaluation, it's essential that the
constraint sets be regenerated when necessary. The process for signaling this is to delete the constraint sets with
DeleteConstraintSets. This function is called by Jack in the following circumstances:

a A new constraint is created (~ew~onstraint).

a A constraint is deleted (~elete~onstraint).

a A constraint is turned on or turned off (Set~onstraintstatus).

a The starting joint of a constraint changes. In this case, it is up to you to ensure that the constraints sets are
deleted. You can set the starting joint either by assigning to the startjoint field or by calling the function
Constraint Joints.

a The priority of a constraint changes.

6.9 Miscellaneous Things
a The behavior field of the constraint. tells whether the constraint is a human behavior constraint, pointed

to by the human figure structure. These constrai11t.s are internal, and they are not written to environment
files like constraints created by users.

a The motion field of the constraint tells whether the constraint belongs to a motion. These constraints are
internal, and they are not written to environment files like constraints created by users.

CH.4PTER 6. CONSTRAINTS

Chapter 7

The Peabody Object Representation

7.1 The Peabody Environment

The Peabody environment consists of a collection of figures, segments, joints, and constraints. For convenience,
figures, segments, sites, joints, and constraints are sometil~les referred to collectively as peabody "constructs."

A segment is the basic geometric primitive. Typically, each segment has an associated psurf. The psurf
describes the geometry relative to the local coordinate system of the segment. -

A site is a coordinate frame specified relative to the segment's base coordinate system. A site represents a
"handle", or a significant point on a segment. A site defines an attachment point where one segment is connected
to another through a joint. Typically, the sites will lie on the surface of the segment. Each segment may have
multiple sites associated with it. A joint connects two sites from different segments.

The transformation a t each joint may have arbitrary degrees of freedom. Degrees of freedom may be specified
by the user as a sequence of rotations and translations about arbitrary axes.

This mechanism provides flexibility in designing and manipulating articulated figures. Generally speaking,
the site transformation will not be changed escept as the figure is being designed. The figure is moved by
adjusting the joint transformations.

Peabody represents articulated figures without imposing a predefined hierarchy upon them. From the user's
point of view, the environment is a collection of segments connected by joints and constraints. However, an
underlying hierarchy does exist through connections to the world segment. The global position of a segment
or site in the environment is determined by the ~ollect~ive displacements across the joints which link each figure
together.

Operations to be performed on the environment must have access to the global position of each segment and
site. Peabody provides routines for accessing this information, as well as the connectivity of the objects.

Much of the source code in the peabody library is organized by action rather than by object. This means that
routines for creating things are grouped together in one file (new. c++), routines for deleting things are grouped
together in another file (new. c++), routines for writ.ing things are grouped together in another file (wr i te . c++),
etc. Some of the source code is organized by object, though, in the case of segment. c++, j o i n t . c++, f i g u r e . c++,
and c o n s t r a i n t . c++, each of which contain routines which specificallly operate on that particular type of data
structure.

7.2 The Peabody Data Structure

The peabody data structures are declared in the include file peabody. h. Peabody encorporates a strong naming
convention. Segments, sites, joints, and figures all have names associated with them. Site names are local to the
segment to which they belong. Segment and joint names are local to their figure. In this way, segments belonging
to different figures may have the same name. This mechanism allows easy reference in a textual description. In
the peabody language, the full name of a segment is formed by appending the name of the segment to the name
of the segment's figure, separated by a period. Joint names are formed similarly. Full site names are formed by
concatenating the figure name, segment name and site name, all separated by periods.

74 CHAPTER 7. T H E PEABODY OBJECT REPRESENTATION

Peabody maintains information about the environment which makes it easy to reference its component parts.
It keeps lists of which segments, sites, and joints belong to which figure, as well as global lists of the figures,
segments, sites, joints, and constraints for the entire environment. This implementation relies heavily on the list
facility described in Section 9.6.

At times this information is redundant, but it provides a very simple means of accessing the various com-
ponents of the environment. An example is that each figure maintains a list of the segments in the figure, and
another list of all sites in the figure. The site list is redundant, since this information can be determined from the
segments, but it makes the application of functions which opera.t,e on all sites in a particular figure very simple.

7.2.1 The World Segment

Peabody maintains a pseudo-segment called the world which is not part of any figure and which cannot be moved.
This segment exist as a handle for the world coordinate frame. The world may have several sites. By default, it
has one called base. The world has no geometry.

7.2.2 The Spanning Tree

Although peabody does not formally impose a hierarchy on the object.^, a hierarchy does exist. This spanning
tree fans out from the world segment across joints and constraints, through segments and sites throughout th
entire environment.

Internally, the environment tree collsists of special "root" fields i11 the peabody constructs which point to
the "parent" consruct in the tree. Joints have a rootsite which points to the site closest to the world. Segments
have a rootsite which is the site through which the tree "enters" the segment. Sites have a rootjoin t field which
points to the joint leading towards the world, if there is one. These fields allow access "upwards" in the tree.

7.2.3 The Segment

A synopsis of the data structure for the segment is:

typedef struct segment Segment;

struct segment {
char *name ;
char *f ullname ;
Figure *figure ;
S i t e *rootsite;
List s i t e s ;
char *filename;
Psurf *psurf ;
Lightsource * l ight;
Transf o m *global;
in t (*drawer) (1 ;
void *data;
unsigned uptodate : 1 ;
unsigned needsglobal : 1;

1;

Each segment has a name. The name field gives the local name, local to the figure to which the segment
belongs. The fullname field gives the fully qualified name of t.he seg~nent, prefixed with the name of the segment's

7.2. THE PEABODI' DATd4 STRUCTURE 75

figure. The figure field points to the figure to which the segment belongs. The sites field is a list of sites which
belong to the segment.

The segment is the basic geometric primitive in the environment. Each segment may have a psurf associated
with it, pointed to by the psurf field. The filename field give the name of the file from which the psurf was read.
Under certain circumstances, a segment inay not have a psurf. In this case, the psurf and filename fields are nil.

There is important distinction between segments and psurfs. Psurfs represent purely geome t r i c information.
A segment is an object which exists in the world; a psurf is the physical representation of the object.

The rootsite field points to the site through which this segment is attached to the world. Joints leading out
of all other sites on the segment lead outwards in the environment tree.

The light field points to a light source, represented by the a t t r i b u t e library. This allows light sources to be
manipulated as true physical objects. You may think of this field as specifying the luminance properties of the
segment. If the light pointer is nil, then the segment is an ordinary, non-luminous object. No special geometry
is currently associated with the light source; lights are simply directed point sources.

The global field stores the global trailsformation describing the placement of the segment in the world coor-
dinate frame. This field is for internal bookkeeping only, and should never be accessed directly. Access to this
transform should always be tllrough the GetSegmentGlobal function described below.

7.2.3.1 Accessing t h e Segment Posi t ion

The global position and orientation of a segment may be deterniined with GetSegmentGlobal:

GetSegmentGlobal(segment,T)
Segment *segment ;
Transform *T;

This routine fills in the transform T with the global transform describing the position of the segment. This
routine relies on a series of internal flags to efficiently maintain the global position depending upon which joints
have changed.

7.2.4 The Site

A synopsis of the data structure for the site is:

typedef struct site Site;
struct site {

char *name ;
char *f ullname ;
Segment *segment ;
Joint *root j oint ;
List joints;
Transform *global;
unsigned uptodate : 1;
unsigned needsglobal : 1;
unsigned needspush : 1;

1 ;

A site is a local coordinate system specified relat.ive to t.he coordinate frame of its segment. The site's segment
is pointed to by the segment field. The primary purpose of a site i t to define attachment frames for joints. The

76 CH.4PTER 7. THE PEABODY OBJECT REPRESENTATION

joints field is a list of which joints reference this site, since more than one joint may be connected to a single
site. The constraints field is a list of which constraints reference this site.

As mentioned before, a site is an attachment point, and it can represent any significant point relative to
a segment. It is important to understand that a site is not just a point, but a complete coordinate frame,
representing location and orientation. Any application which needs to access significant points on a segment
should make their access through the site structure. Recall that there is a pseudo-segment representing the base
of the environment, called the world. Siglrificant points in world coordinates may be conveniently defined as
sites on the world segment.

The rootjoint field points to the joint through which this segment is attached to the world. This field will
be non-nil for only one site on each segment. This site is tlie the rootsite of the segment. To traverse the
environment tree towards the world from a given segment, first travel from the segment to its rootsite, and then
to the rootjoint of that site.

The global field stores the global transformation describing the placement of the site in the world coordinate
frame. This field is for internal bookkeeping only, and should never be accessed directly. Access to this transform
should always be through the GetSiteGlobal function described below.

7.2.4.1 Accessing the Pos i t ion of a Site

The location of a site is a transform which specifies its position rela.tive to tlie coordinate origin of its segment.
This field may be accessed with the pair of functions SetSiteLocation and GetSiteLocation:

Se tS i t eLoca t ion (s i t e ,L)
S i t e * s i t e ;
Transform *L;

GetSi teLocat ion(s i te ,L)
S i t e * s i t e ;
Transform *L;

The function SetSiteLocation assigns the location transform L to tlie site. CetSiteLocationfills in the transform
L with the site's location transform.

The global position of a site may be determined by tlie function GetSiteClobal:

GetSi teGlobal (s i te ,T)
S i t e * s i t e ;
Transform *T;

This routine relies on a set of interna.1 flags to maint.ain the joint. angles and efficiently determine the global
position. This ensures that the miniillum amount of comput.ation is necessary to determine the position, so this
routine is highly efficient.

7.2.5 The Joint
A synopsis of the data structure for the joint is:

typedef s t r u c t j o i n t J o i n t ;

7.2. THE PEABODY DATA STRUCTURE

struct joint {
char
char
Figure
Site
Joint
DOF
int
Transf o m
unsigned

1;

*name ;
*f ullname ;
*figure ;
*sitel,*site2;
*rootsite;
*dof s ;
ndof s ;
*displacement;
uptodate : 1;

The name field gives the joint's name within its figure. The fullname field gives the name qualified by the
figure's name. The figure field points to the figure to ~rhich t.he joint belongs.

A joint connects two sites, sitel and site2. The displacement of a joint is defined as the transformation from
sitel to site2. This is regardless of how the segment is rooted. The rootsite field points to the site closer to the
world in the environment tree. This field will be either sitel or site2.

A joint may have a user-defined set of degrees of freedom. A degree of freedom is defined as a rotation or
translation about an arbitrary axis.

A synopsis of the data structure for the degree of freedom is:

typedef struct dof DOF;

struct dof {
char type;
float axis C31;
float angle ;
float llimit,ulimit;
DOF *next ;

1

The type may be either 'r' for rotation or 't ' for translation. The translational or rotational axis is given by
axis. A list of DOF's represents a nested sequence of rotations and translations. The rotations are applied left
to right, so a t each step the transformations are with respect to the local (current) coordinate frame. The DOF
specifies both the axes of rotation and translat.ion, and the current angle or distance, in angle. Normally, the
axis remains fixed once it is set, and only the angle ever changes.

7.2.5.1 Accessing the Joint T r a ~ l s f o r m a t i o ~ l

The transformation across the joint depends upon t.he degrees of freedom of the joint. If the joint has no
degrees of freedom, then the transformation across the joint is an arbitrary l~omogeneous transform, stored in
the displacement field. If the joint does have specific degrees of freedom, then the displacement is specified
by a number of joint angles. The number of angles depends upon the number of degrees of freedom. The
displacement field should never be accessed direct.ly, either for reading or writ.ing. It should only be accessed
through the routines described below. The process of determining the composite joint transform from the degrees
of freedom is handled internally by these routines.

78 CHAPTER 7. THE PEABODY OBJECT REPRESENTATION

The angles of a joint can be accessed through the routines SetJointAngles and GetJointAngles. The displace-
ment transform across a joint can be accessed through GetJointDisplacernent.

~et~oint~ngles(joint,angles,internal)
Joint *joint ;
float angles [I ;
Boolean internal;

int
~ e t ~ o i n t ~ n ~ l e s (joint ,angles, internal)
Joint *joint;

float angles [I ;
Boolean internal;

GetJointDisplacement(joint,D,I)
Joint *joint;
Transf o m *D ,*I ;

The functions GetJointAngles and SetJointAngles take arrays. The length of the array should a t least match
the number of degrees of freedom of the joint, which is never more than 6. GetJointAngles returns the number
of degrees of freedom.

The function SetJointAngles assigns the joint angles regardless of the joint limits. However, it returns a
boolean value specifying whether the angles are with the joint limits. This gives a method of determining when
joint limits are exceeded.

Both of these functions take a flag internal \\~hic11 determines the ordering of angles within the array. If this
flag is FALSE, then the angles are returned in the order in ~irl~ich they are defined by joint, i.e. from site1 to
site2. This happens regardless of how the figure is rooted, so it is possible that the ordering of the angles will
be upwards in the object hierarchy. This is sonletimes objectionable, so if the internal is FALSE, the angles are
returned in the direction of the object hierarchy. This ordering is illustrated in Figure 7.1 and is described in
greater detail in Section 7.2.5.2. For practically all operations, it is best to pass this argument as FALSE.

The function GetJointDisplacement returns the composite transformation between the two sites of a joint. It
takes two transform arguments for interi~al efficiency reasons. The D arguments refer to the transformation from
sitel to site2. The I arguments refer to the transformation from site2 t o sitel, which is the inverse of D. Only
one of these arguments need be supplied. Either of these arguments may be nil, in which case the necessary
displacement is determined from the one provided. This is purely for efficiency sake to avoid needlessly inverting
a transformation before supplying it for the joint. displacement.

The displacement across a joint with no degrees of freedom]nay be set with the function Set JointDisplacement.
This function should not be called wit,ll a joint which does have degrees of freedom.

SetJointDisplacement(joint,D,I)
Joint *joint;
Transf o m *D, *I ;

7.2. THE PEABODY DATA STRUCTURE 79

7.2.5.2 The Joint Transformation

The transformation across a joint is always defined as from sitel to sjte2. This also defines the sequence in which
the degrees of freedom should be interpreted.

There is a correspondence between the ordering of the dof list of the joint structure and the terms in the
degree of freedom expression in the peabody language definition of the joint. The first element in the doflist is the
leftmost term and the last list element is the rightmost term. The conventional interpretation for the primitive
rotational and translational transforma.tio11 terms which compose the joint transformation is left to right in
local coordinates. Therefore, the transformation across a joint from site1 to site2 is composed of a primitive
transformation by the rightmost term in the type field, which corresponds to the last element in the joint's dof
list, followed by a transformation by the term second from the right in the type field, which corresponds to the
next-to-last element in the joint's dof list, etc.

7.2.6 The Figure

A synopsis of the data structure for the figure is:

typedef struct figure Figure;

struct figure {
char *name ;
char *filename ;
List segments ;
List sites;
List joints;
Site *root ;
Transf o m location;

1;

The segments and sites fields are lists of all of the segments and sites in the figure. The joints fields is a list
of all the joints in a figure. Note that a joint may not belong to two different figures. If it did, the figures would
not be separate1 ! Using these lists, functions can easily reference those segments, sites, and joints.

7.2.6.1 Accessing the F igu re Locat ion

The location of a figure is defined through the location of its root site, pointed to by the root field. The global
location of this site is given by the figure's location field, and the location of all other sites and segments within
the figure are subsequently defined in terms of this.

The location of the figure can be controlled by the following functions:

SetFigureRoot(figure,site)
Figure *figure;
Site *site;

Siamese twins are one figure, not two!

80 CH.4PTER 7. T H E PEABODI' OBJECT REPRESENTATION

SYNTAX:

type = R(z) * R(y) * R(x);

displacement = (IOdeg. 20deg. 30deg);

SetJointAngles(joint, angles)
GeUointAngler(joint. angles) / 1 axis (2)

axis (v) ?l

Figure 7.1: The Joint Tra~lsforination

7.2. THE PEABODY DATA STRUCTURE

~et~i~ure~ocation(figure,L)
Figure *f igure ;
Transform *L;

GetFigureLocation(f igure ,L)
Figure *figure;
Transform *L;

~ e t ~ i t e ~ l o b a l (s i t e , L)
Figure *figure ;
Transform *L;

The function SetFigureRoot takes pointers to a figure and a site and makes the site the root for the figure.
The site must belong to the figure. This function automatically adjusts the figure's location field so that the
figure doesn't "move."

The function GetFigureLocation returns with the global location of the figure's root site. This is identical to
calling GetSiteGlobal with the figure's root site. SetFigureLocation takes a new transform for the root site.

The function SetSiteGlobal is an alternative way of setting the location of a figure. It takes a pointer to a site
and global transform for that site. It sets the site's figure's location so that that site lies at the given transform.

7.2.7 The Environment

A synopsis of the data structure for the environment is:

typedef s t r u c t environment Environment;

s t r u c t environment {
L i s t f igu res ;
L i s t segments ;
L i s t s i t e s ;
L i s t j o i n t s ;
L i s t cons t ra in t s ;
L i s t cons t ra in t se t s ;

1;

An environment is a complete graph of a geometric world. For convenience, all the figures, segments, sites,
joints, and constraints are referenced here. The root of the environment graph is the a pseudo-segment world.
The world segment has no geometry, but it has sites through which constraints attach each figure to it.

7.2.7.1 The Environment Variable

There is only one environment structure in Jack, and is is pointed to by the global variable called env.

82 CHAPTER 7. THE PEABODY OBJECT REPRESENTATION

7.3 The Peabody Hierarchy
This section describes the internal workings of the peabody hierarchy. It describes the set of flags in each of the
structures which maintain information about the hierarchy. This information is transparent to the casual user
of the routines in the peabody environment. It is included here only as an explanation of how it works.

The maintenance of the peabody tree is a t the heart of Jack, because it is through the tree that information
about the geometric relationships of the environment is available. It is vitally important that this representation
be as efficient as possible. Jack's relatively simple access routines described above are designed to be easy to use
from a programmer's point of view but still function efficiently.

Jack runs on Silicon Graphics IRIS workstations, and it is designed to take advantage of the IRIS hardware,
particularly the matrix stack. The implementation of the peabody library does not depend heavily on the IRIS
hardware except for the matrix stack, which is accessible through five simple subroutines: pushmatrix, popmatrix,
loadmatrix, multmatrix, and getmatrix. The peabody library can function independently of the IRIS hardware by
simulating the function of these routines in software. Such a library has been implemented in gen/src/lib/glng
(named for IRIS GL with "no graphics")

Although it is important to ensure the portability of the peabody library, it is also beneficial make sure that
its primary implementation, on the IRIS, is as efficient as possible. This means taking advantage of the matrix
stack and the ability to multiply 4 x 4 matrices in hardware.

This facility has some peculiar features, however, which have a significant impact on the efficiency of the
code. In particular, matrix multiplications in hardware are many times faster than they can be performed in
software, but the function getmatrix is very expensive. A single call to getmatrix can take as long as 15 matrix
multiplications!

The peabody library is designed with the following principles:

When only two matrices need to be multipled, it is faster to do it in software, using the function
matmult .
Calls to getmatrix should be minimized. In other words, only matrices which are absolutely
essential should be stored internally.

The matrix stack is 32 levels deep, but there is no maximum level to the peabody data structure. The
peabody structure is very general in the way it allows joints to branch off of sites. A niave traversal of a
moderately complex human figure model in peabody can reach 50 levels! I t is important to make sure that the
pushes and pops of the matrix stack are performed only when absolutely necessary.

7.3.1 The cleantree Flag

The environment structure has a flag called cleantree. This flag tells whether the peabody tree is valid. Every
internal peabody routine examines this flag to make sure the tree is valid before proceeding to access the tree. If
it is not, it calls the function MkPeabodyTree, which remakes the tree. Technically, this need only be done when
a new object is read in, or when a figure is rerooted, or when the connectivity of a joint is changed. In practice,
it is called more frequently because it is the best way of guaraneeing the validity of the other flags in the data
tree.

Any routine which disturbs the peabody tree can signify that the tree needs to be rebuilt simply by setting
the env->cleantree flag to 0.

7.3.2 The uptodate Flags
The segment and site structures have flags called uptodate which specify whether their global fields are currently
valid. These are maintained by the functions SetJointAngles, GetSiteGlobal and GetSegmentGlobal. The function
SetJointAngles traverses the tree from tlie given joint outwards and sets the uptodate flags of every site and
segment to false. GetSegmentGlobal and GetSiteGlobal first examine the flag to determine if the segment or site
is uptodate. If it is, then it returiis with the already-computed transform. Otherwise, it recurses upwards in the
tree until it either reaches a site or segment which is up to date or it reaches the figure's root. It then loads
that transform onto the matrix stack, and as the resursion unravels downward in the tree, it multiples by the
successive transformations, across joints and sites.

7.4. ACCESSING THE SPAATATING TREE

7.3.3 The needsglobal Flags

The update procedures described above compute global transformations for all segments between the world and
the segment for which the information has been requested, but because of the expensive nature of the getmatrix
subroutine, it does not automatically retrieve and store these transforms. To do so would cause excessive
unnecessary retrievals for segments for which the information will not be needed.

The peabody library uses a form of heuristics to predict which segments and sites will need global information
by recognizing that in the Jack environment, many things happen in loops and many operations are performed
repeatedly with slight changes to the positions of certain figures or joints. Therefore, peabody maintains a
needsglobal field in the segment and site which is set by the routines GetSegmentGlobal and GetSiteGlobal.
Whenever peabody computes a transformation for a segment or site which has this flag set, it retrieves it off the
stack and stores in internally, under the assumption that if it was requested before, it is likely to be requested
again.

This flag is reset when the peabody tree is remade with MkPeabodyTree. This ensures that the flags do not
remain set long after they stop being needed.

7.3.4 The needspush Flags

The site and segment data structure also maintain a needspush flag to define where the tree branches. This allows
the tree traversal routine to selectively push and pop the matrix stack only where it is absolutely necessary. The
peabody data structure is very general in the way it represents joints connected to sites; segments may branch
to several sites, and sites may branch to several joints, but in practice, many parts of commonly used figures like
the human figure, consist of long chains that don't require pushing and poping. A niave traversal of a typical
human figure model can easily overflow the matrix stack. Thus the needspush flags determine when there are
branches in the figure tree where the stack must be pushed or popped. These flags are determined by the function
settreetraverslflags. They are used by the traversal functions traverseenvfromroot and traverseenvfromsite,
all defined in the source code file gen/src/ l ib/pea-tree. c++.

7.4 Accessing the Spanning Tree

The primary way of accessing the spanning tree of the environment is through the function Jointpath, which
returns the path of joints from one site to another.

i n t
JointPath(~itel~site2,joints)
S i t e * s i t e l , * s i t e 2 ;
J o i n t * j o i n t s [I ;

This function fills the array joints with pointers to the joints in the path from site1 to site2, and it returns
the number of joints in the path. Notice that since every site in the environment must be rooted, so there will
always be a path between the two sites. Some of the joints may be constraints, as determined by their type field.
Remember that the direction of a joint is defined by its site1 and site2 fields, so the direction of the individual
joints in the joints array not all be the same.

For convenience, the function JointPathList performs the same function but instead constructs a L i s t out
of path rather than returning the joints in an array.

L i s t
~ o i n t ~ a t h ~ i s t (s i t e l , s i t e 2 1
S i t e * s i t e l , * s i t e 2 ;

84 CHAPTER 7. THE PEABODY OBJECT REPRESENTATIOhT

7.5 Reading the Peabody Language

The syntax of the peabody language is described in the Jack User's Guide. There are two distinct types of
peabody files. Environment files contain any legal peabody syntax. Figure files contain "template" definitions
for figures. Files are read primarily with ReadEnvironment and ReadFigure.

VALUE *
ReadEnvironment (f ilename)
char *filename ;

VALUE *
ReadFigure(name.filename)
char *name ;
char *filename ;

VALUE *
ReadPeabodyString(string)
char *string;

VALUE *
ReadPeabodyStatement (f ile)
FILE *env;

Environment files may be read with ReadEnvironment. The file may contain any valid peabody input. It may be
figure definitions, constraints, joint displacements, etc. I t need not be a "complete" environment. ReadFigure
reads a figure file and constructs a figure from it . I t returns a pointer to the figure, or nil if the figure could not
be read. The name argument specifies the name of the figure. The function ReadPeabodyString reads peabody
from a internal character string.

The function ReadPeabodyStatement reads a peabody statement from an open stream. Exactly one statement
will be read from the file. A peabody statement is any simple single statement terminated by a semicolon, or a
block of simple statements enclosed in curly braces.

The peabody language resembles "definitions" for figures, segments, etc. Actually, peabody constructs are
defined, or created, when they are first referenced, whether inside a block or not. Subsequent occurrences of
constructs refer t o the original ones, instead of creating new one. This allows the same peabody file to be read
twice. The first time will cause the creation of all referenced constructs. The second time will only have the
effect of re-initializing the fields declared in the file.

7.6 Peabody Values

At the heart of the peabody language is a data structure defining a value, which has a type and a data component.
This structure can be used to represent a kind of abstract data type, that is, a quantity that may optionally
have one of several types. The peabody parser is based heavily on this notion o VALUE types. The routines for
reading the peabody language return pointers to structures of these types. Since these values can represent many
differen things, including numbers, strings, matrices, and arithmetic expressions, it allows the peabody parser to
be used t o read expressions of a quite arbitrary nature.

The VALUE structure is defined as:

7.6. PEABODY VALUES

typedef s t r u c t value VALUE;
typedef enum valuetype VALUETYPE;

enum valuetype {
V-UNDEF , V-UNSUPPLIED ,
V-VARIABLE, VDP , VIUNCALL ,
VJUMBER, VAATRIX , VSTRING , VDOF . V-VECTOR.
VIIGURE, VSEGMENT, V L I G H T . VSITE, VJOINT, V-CONSTRAINT,
V J O D E , VXDGE, VIACE, VATTRIBUTE

1;
s t r u c t value {

VALUETYPE type ;
union {

f l o a t number;
Matrix matr ix;
char s t r i n g 1641 ;
DOF *dof ;
VALUE *vector;
Figure *f igure ;
Segment *segment;
S i t e * s i t e ;
J o i n t * j o i n t ;
Cons t ra in t *cons t r a in t ;
A t t r i bu t e * a t t r i b u t e ;
s t r u c t {

Segment *segment ;
s h o r t n ;

} i tem;
s t r u c t

char
{

*name ;
VALUE *args ;

} f u n c a l l ;
s t r u c t

char
{

type ;
VALUE * l e f t , * r i g h t ;

1 OP;
1 v;
VALUE *next ;

1;

The types are:

V-UNDEF Undefined type. This means that none of the union fields are valid.
V-UNSUPPLIED A special type which corresponds to a the special symbol $ in the peabody

language. This is used by Jack to signal that a parameter has been left unsupplied.
V-NUMBER A numerical value. There is no distinction between integers and floating point values.

The number field stores the number, as a float.

86 CHAPTER 7. THE PEABODY OBJECT REPRESENTATION

V-MATRIX A homogeneous transform. In the language, this value is generated as a product of
xyz, t r a n s , and s c a l e expressions. The matrix field contains the transform.

VSTRING A character string. In the language, this is anything inside double quotes. The string
field contains the string, which is limited to 64 characters (the size of the rest of the union).

V-VARIABLE A character string, generally assumed to be referring to a value stored in the
peabody symbol table. In the language, this is any character string not inside double quotes.
The string field contains the name of the variable. M'hen this type of value is evaluated by
evalval described below, it looks up the value in the symbol table. Values are placed in the
symbol table in the language through assignment statements to variables which are not peabody
keywords. An exception to this is the interpretation of variables as strings. When a character
string occurs in a place where a string is expected, peabody assumes that the variable is the
character string and it uses the variable's name for its value.

V D O F A degree of freedom list. In the language, this value is a product of R and T operators. The
dof field points to the DOF structure.

V-VECTOR An arbitrary list of values. In the language, this is a comma-separated list of values
inside parentheses. The list may be of arbitrary length. The list of values is stored in the vector
field. The next field points to the next element of the list.

V-FUNCALL A "function call." Syntactically, this is an identifier followed by an arglist. This
is returned in the f u n c a l l structure, with name as the name of the "function'' and args its
arguments. No function is evaluated.

V-OP An arithmetic operation. Syntactically, this is any sequence of numbers or variables, together
with +, -, , /, or . The type is a character giving the symbol. The operation operates on
the left and right values. The operands may in turn be values of this type, thus forming an
expression tree. The evaluation of these values is discussed below.

V-FIGURE A figure. The figure field points to the figure.

VSEGMENT A segment. The segment field points to the segment.

VLIGHT A light. The light field points to the light.

VSITE A site. The site field points to the site.

VJOINT A joint. The joint field points to the joint.

V-CONSTRAINT A constraint. The constraint field points to the constraint.

VlVODE An node. The item structure holds the reference to the node. The field itemsegment
points to the node's segment; the item.n field gives the node's index.

V-EDGE An edge. The item structure holds the reference to the edge. The field item.segment
points to the edge's segment; the item.n field gives the edge's index.

V-FACE An face. The item structure holds the reference to the face. The field itemsegment points
to the face's segment; the item.n field gives the face's index.

VATTRIBUTE An attribute. The attribute field points to the attribute.

The following functions operate on value structures. They are most useful in manipulating the values returned
by the peabody parser.

VALUETYPE
e v a l v a l (r e s u l t , v a l)
VALUE * r e s u l t ;
VALUE *val ;

7.7. C R E A T I N G PARTS OF T H E EATT'IRONAIENT

int
valtovec(vec ,max,val)
float vec [I ;
int max ;
VALUE *val;

valtostringvec(strings ,max,val)
char *strings [I ;
int max;
VALUE *val;

char *
valtostring(va1)
VALUE *val;

VALUE *
dupval (val)
VALUE *val;

The function evalval evalutes a value. If the value is a VaP, it recursely evaluates the left and right operatands
and applies the operation to them. If it is a variable, it looks the value up in the symbol table and returns it.
Otherwise, the value doesn't need evaluating, and the function just copies val into result.

The function valtovec converts a value into an array of numbers. It expects the value to be of type V-VECTOR.
It loops over the elements of the vector and evaluates them in turn, placing the result in the vec array. The
function returns the number of values it filled in. It will not fill in more than max elements. If the value passed
in is a VJUHBER, it places i t in the first element and returns 1. valtovec first evaluates the value passed in, so if
the passed in value is of type V-VARIABLE, the conversion will be done on the looked-up value of the variable.

The function valtostringvec converts a value into an array of strings. It expects the value to be of type
V-VECTOR, and it expects that each element of the vector to be of type V-VARIABLE or VSTRING. It loops over
the elements of the vector, placing the result in the strings array. The function returns the number of values it
filled in. I t will not fill in more than max elements. Unlike valtovec, this function does not evaluate the value
first. If the value passed in is a V-VARIABLE, or if an element of the vector is a V-VARIABLE, it uses the name of
the variable as the value.

The function valtostring converts a single value to a character string. This function returns NULL if the value
is not a V-VARIABLE or VSTRING.

The function dupval duplicates a value, including any sup-elements, as in the case of a V-OP. This is critical in
the case of the values returned by the peabody parser, since the parser uses a static internal storage area which
is overwritten each time the parser processes a line. If you need to store an expression tree internally which has
been generated by the parser, you must duplicate its value and store the duplicated value.

7.7 Creating Parts of the Environment
Parts of the environment are created with the "new" functions.

Figure *
NevFigure(name)
char *name ;

CHAPTER 7. THE PEABODY OBJECT REPRESENTATION

Segment *
leusegment (name ,f igure)
char *name ;
Figure *figure;

Site *
HewSite(segment ,name)
Segment *segment;
char *name ;

Joint *
NewJoint (name ,figure)
char *name ;
Figure *figure;

Newsegment requires a pointer to the figure to which the segment belongs. Newsite requires a pointer to the
segment to which the site belongs. NewJoint requires a pointer to the figure to which the joint belongs, along with
a type, which must be one of the enumerated types internal or type. These functions allocate the necessary
memory and update the necessary lists, but they do not fill in any of structure the values.

The function NewJoint is not much use by itself, since it doesn't specify the sites which the joint connects.
This is done by AssignJointConnectivity.

AssignJointConnectivity(joint,sitei,site2)
Joint *joint ;
Site *sitel;
Site *site2;

At a higher level, it is frequently necessary to create figures and segments and initialize them in the process.
The following two routines read psurfs and construct things out of them.

Figure *
CreateFigure(filename,name)
char *filename ;
char *name ;

CreateFigure reads a psurf from filename and creates a figure with a single segment, assigning the psurf to
the segment.

7.8 Dealing with Names

The "find" routines search for constructs with specific names. Each function searchs a list of constructs for the
one with the given name. The name argument should be a identifier, not a compound name.

7.8. DEALING W I T H NAAlES

Figure *
~ind~igure(figures,name)
List figures ;
char *name ;

Segment *
Findsegment (segments ,name)
List segments ;
char *name ;

Site *
FindSite(sites,name)
List sites;
char *name;

Joint *
~ind~oint (joints ,name)
List joints;
char *name ;

Constraint *
FindConstraint(constraints.name)
List constraints;
char *name ;

Each function takes a name and a list to search. If the named part is not in the list, then the function returns
nil. FindJoint may, of course, be used to find constraints as well.

In the peabody language, environment parts are referenced using the "dot" notation, by using a period
between the names of the part and its "parent" part. For instance, f oo .bar. x may refer to site x on segment
bar, which is part of figure f 00. Identifiers of this syntax may be parsed using the "FindNamed" functions. Each
function take a pointer to a character string name and an optional pointer to the "parent" part. If the parent
pointer is not nil, then the function acts like the corresponding "Find" function. If the parent pointer is nil, then
the identifier is assumed to give the name of the parent in the dot notation. In this case, the bufp argument is
set to point to the remaining part of the string. Therefore, the bufp argument must be a modifiable variable!

Site *
FindNamedSite (segment, buf p)
Environment *env;
Segment *segment ;
char **buf p;

Segment *
FindNamedSegment (f igure .buf p)
Figure *figure ;
char **bufp;

CHAPTER 7. THE PEABODY OBJECT REPRESENTATION

Joint *
FindNamedJoint(figure,bufp)
Environment *env;
Figure *figure;
char **bufp;

These functions work in tandem to parse a string which may contain multiple dots.

7.8.1 Generating Unique Names

The names are local to the environment part to which they belong, but they must be unique within that part.
In an interactive setting, sometimes names aren't commonly used, so determining unique names can be difficult.
To avoid this, there are routines which generate unique names for figures, segments, sites, and joints. These
routines take a "base" name and append it with an integer to generate a unique name. Each function takes a
list of parts to search through in determining whether the name is unique.

UniqueFigureName(name,base,figures)
.char *name;
char *base;
List figures ;

UniqueSegmentName(name,base,segments)
char *name;
char *base;
List segments;

UniqueSiteName(name,base,sites)
char *name;
char *base;
List sites;

UniqueJointName(name ,base, joint)
char *name;
char *base;
List joint ;

The base argument is the initial name, and name is the generated unique name. If there is no conflict with
the name base, then it is copied directly to name.

These functions must generate legal peabody names, which means that the names must be legal peabody
identifier, consisting of legal symbols but also not conflicting with peabody keywords. An example of when this
conflict may easily occur is in attempting to name a figure "light." light is a peabody keyword! The function
ispeakey returns whether or not a string is a peabody keyword.

Boolean
ispeakey(word)
char *word;

7.9. IVRITING THE ENVIROhTAIENT

legalizepeaname(legal,word,suffix)
char *legal;
char *word;
char *suffix ;

The function legalizepeaname takes a string and makes it into a legal peabody name, by converting all illegal
symbols to underscores and ensuring that the name is not a keyword. If the original word is a keyword, the
string suffix is appended to it. The legal name is returned in legal.

7.9 Writing the Environment

Parts of the environment may be written to files with the "write" functions. The results of these functions may
then be read with the peabody parser.

Write~nvironment(filename,doconstraints)
char *filename ;
Boolean doconstraints;

VriteEnvironmentFile(file.doconstraints)
FILE *file;
Boolean doconstraints;

The function UriteEnvironment writes out a complete copy of the environment to the named file. The function
UriteEnvironmentFile writes out a complete copy of the environment to an opened file. If the doconstraints flag
is set, it writes the constraints, too.

The following functions are useful for printing out the current values of figure locations and joint displace-
ments. The level argument is either 0 or 1, specifying the indentation level. The figurename flag specifies whether
the figure name should be printed. If it is not, then it is important to make sure that this is printed inside of a
block in which the figure name is printed.

WriteFigureLocation(figure.file,level,figurenme)
Figure *figure;
FILE *file;
int level;
Boolean f igurename;

WriteFigureRoot(figure,file,level,figurename)
Figure *figure;
FILE *file ;
int level;
Boolean figurename;

CHAPTER 7. THE PEABODY OBJECT REPRESENTATION

WriteJointDisplacement(joint,file,level,figurename)
Joint *joint ;
FILE *file;
int level ;
Boolean f igurename ;

7.9.1 Printing Things to Strings

The function sprintdisplacement prints the angles of a joint into the character string buf The return value of
the function is the length of the resulting string.

int
sprintdisplacement (buf , dof)
char buf [I ;
DOF *dof;

Homogeneous transformations may be formatted with sprinttransform, which formats the transform as a
rotation component times a translation component. The return value of the function is the length of the resulting
string.

int
sprinttransform(buf,t)
char buf [I ;
Transform *t;

Most of the numerical values in the peabody language have physical significance, in terms of angles, distances,
and masses. The peabody language allows various units of measure to be used in inputting the values, and the
printing routines allow the values to be formatted in the same way. The following functions format dimensioned
values with the unit identifier, using the "current" units. The precision argument is number of digits to the right
of the decimal point. The return value of the function is the length of the resulting string.

int
sprintangle(buf,angle,precision)
char buf [I ;
float angle;
int precision;

int
sprintdistance(buf ,d,precision)
char buf [I ;
float d ;
int precision;

7.1 0. COLLISION DETECTION

int
sprintmass(buf ,m,precision)
char buf [I ;
float rn;
int precision;

VALUE structures may be formatted using sprintvalue. Numbers are printed without decimals if their values
are integral. Vectors are formatted with parentheses and commas. Strings are formatted in double quotes.
Peabody constructs are printed as typecasts. The return value of the function is the length of the resulting
string.

int
sprintvalue(buf,value)
char buf [I ;
VALUE value;

7.10 Collision Detection

Peabody has a collision detection mechanism that works efficiently on convex objects. I t is an implementation of
the algorithm of Gilbert and Johnson, which measures the minimum distance between to convex point sets and
returns the points on either point set closest to the other. I t uses frame to frame coherence to achieve near-linear
speed. The principle behind this approach is to maintain information about the closest points between two
objects as the routine is invoked over and over again. I t uses the asumption that the previously-closest points
will be a good first guess a t the closest points for the current iteration.

The peabody implementation of this facility measures the distance between between two segments with the
function SegmentSegmentDistance.

Couple *
SegmentSegmentDistance(segmentl,segment2)
Segment segmenti;
Segment segment2;

This routine returns a pointer to a couple structure which records information about the distance between the
segments.

typedef struct {
Segment *segl;
Segment *seg2;
Vector pti,pt2,dist;
char typei.type2;
short kl ,k2;

) Couple;

CHAPTER 7. THE PEABODY OBJECT REPRESEATTATION

This structure maintains in pt l and pt2 the closest points on segl and seg2 respectively. These points may
lie a t a node of the psurf, along an edge, or in the interior of a face. The fields type1 and type2 specify mliich
with a value of 'n' , ' e ', or 'f ', respecively. k l and k2 give the corresponding index of the psurf item.

Peabody maintains an internal list of tliese Couple structures so that when tlie distance between two segments
is requested, it will first look to see whether a couple structure exists for tliese segments.

7.11 The Peabody Parser
The peabody parser is generated with Yacc. The yacc input specification defines the basic structure of the
language, including the blocks delimited by curly braces, the references to figure files, the assignment statements,
and arithmetic expressions. It does not, however, define the peabody keywords and functional primitives. The
peabody keywords are stored in internal tables. The parser consults these tabless to determine if a given character
string is a keyword. The tables pair functions with the keywords. These functions perform the basic operations
of the language.

Since the tables are independent of the parser, it is relatively easy to extend the language by adding new
keywords. In previous versions of Jack, these tables were static and adding to them required modifying the code
which defined them. There is now an algorithmic procedure for creating and adding things to the tables, through
the pair of functions Def inePeabodyBlock and Def inePeabodyAssign. Peabody blocks are the things delimited by
curly braces. There are currently blocks for figures, segments, sites, joints, and constraints. Peabody assignment
statements go inside of blocks, and each assignment statement can be local to a particular type of block.

i n t
DefinePeabodyBlock(char *name,int (*blockfunc)())

The function Def inePeabodyBlock returns with a block type. This can be used as the block argument to
Def inePeabodyAssignto define assignment statements inside of that block. The name argument t o Def inePeabodyBlock
defines the name of the block (i.e. f i g u r e , segment, s i t e , etc. The blockfunc function argument sets the
state for the peabody parser. To see how to do this, consult one of the examples where blocks are created. The
blockfunc is invoked by the parser with the name of the object (the figure name, segment name, etc.), and the
function must determine wlietlier the object needs to be created or whether it is a reference to an existing one.
I t then sets the parser's current state indicator mitli the block type.

The Def inePeabodyAssign accepts the name of tlie assign statement (the identifier left hand side), the name
of the blocli inside of which it sliould occur, and a pointer to the function to execute when it occurs. Tlie block
identifier allows the same cliaracter string to be used in different blocks to mean different things. Tliis particular
function will only be invoked when the assignment statement occurrs inside of this type of block. Tlie structure
of the assignment functions is described below.

An example of theis procedure is shown in Figure 7.2, which illustrates the peabody figure block definition
and the definition for the a r ch ive assignment statement.

There are separte keyword tables for the constructs, the functions, and the assignment statements. Most
extensions come in the form of new assignment statements, since these correspond to fields in figures, segments,
sites, and joints.

The file gen/src/lib/peakeyword.c++ contains the source code for the keyword table for the peabody
parser. This file declares arrays of type Peakey. The first entry is the character string name of the keyword,
which must contain only alpha-numeric characters, and must begin with a letter. The second argument is
an internal numerical identifier. These identifiers are defined in the include file gen/ include/parse .h. The

7.1 1 . THE PEABODY PARSER 95

peastatef igureckey ,name)
Peakey *key;
char *name;

i
Figure *figure ;

if (peastate->block != PK-UBDEF) (
error ("invalid figure block\n") ;

3
if ((f igure=lookupf igure (name .TRUE))) (

setpeastate(key->key.figure.O);

3
1

. . .

PXIIGURE = Def ine~eabod~Block("f igure",peastate fire) ;

~efine~eabod~~ssi~n("aschive",PKEIGURE,assignarchive);

Figure 7.2: The Peabody Figure Block Definition

numerical values are arbitrary, but each one must be unique. The third field in the Peakey structure is the
address of a function which is invoked when the keyword occurs.

The functions for the assignment statements in the peabody language are defined in the source code file
gen / src / l ib /peaas s ign . c++. Each function is invoked with the following arguments:

Peakey *peakey;
i n t block;
void *val ;
VALUE *expr ;

Each function must accept these arguments. The first argument pealiey is a Peakey structure pointing the
t o the current keyword structure. I t is passed here mostly for reference. The second block argument is the type
of the current block. It is passed so that each assignment statement can check to make sure that i t occurs in
the proper block. Note that some statements are legal in several different types of blocks, (e.g. l o ca t ion may
appear in either a site or a figure). The third argument is a generic pointer to the data element of the current
block. Thus, if the current block is a segment, then val will be a pointer to a segment. The final argument expr
is a VALUE structure giving the right hand side of the assignment statement. This expression is un-evaluated, so
it should be evaluted before being used.

CIiAPTER 7. TIiE PEA BODY OBJECT REPRESENTATION

Chapter 8

The Psurf Geometric Primitive

The basic geometric primitive used in the Graphics Lab is called the psurf, for Polygonal SURFace. It represents
the boundary of a geometric object as a graph of nodes, edges, and faces. The psurf library has functions for
reading psurfs from files in both test and binary form.

The psurf data structure and library represent objects as simple geometric primitives. There is no hierarchy,
and all coordinates are in local coordinate systems. The psurf library is used in conjunction with the peabody
environment representation. Each segment in the peabody environment is a single primitive, and has a psurf
associated with it. There is no explicit modeling transform built into the psurf structure. It is the responsibility
of peabody to represent the modeling transformation which place a segment in the world coordinate system.

The structure definitions for a psurf are declared in the include file psurf . h. psurf . h includes a t t r ibute .h,
so a t t r ibute . h and the files which it includes (vec . h, g l . h, math. h, s t d i o . h) need not be included explicitly.

The Psurf Data Structure

A psurf represents the boundary of an object as a graph of nodes, edges, and faces. Each element of the graph
points t o each other element, so complete connectivity information is available. Basically, a psurf has a table of
nodes, a table of edges, and a table of faces. The references from nodes t o faces, etc. are represented as indices
into the corresponding table. No pointers are used. Since the table indices are stored as short integers (two
bytes), much space in conserved.

For convenience, the nodes, edges, faces, curves, and patches of a psurf are sometimes referred to collectively
as "items".

A synopsis of the psurf data structure is:

typedef s t ruc t psurf Psurf;

s t ruc t psurf {
short nnodes ;
short nedges ;
short nf aces ;
s t ruc t {

Vector *coords ;
Vector *normals ;
FaceIndex **faces;
short *nf aces;
EdgeIndex **edges;
short *nedges ;

) nodes;

struct {
VertexIndex *heads;
VertexIndex *tails;
FaceIndex *lefts;
FaceIndex *rights;
DLEntry *displaylist;

. } edges;
struct {

short *nvert ices ;
VertexIndex **vertices;
short *nedges ;
EdgeIndex **edges;
Vector *normals ;
Vector *centers ;
short *attributes;
DLEntry *displaylist;

} faces;
Attribute **attributes ;
float min [31 , max [3];
float span [3], extent ;
float sX~sY,sz; .
Csurf *csurf s;
int ncsurf s ;

1;

CHAPTER 8. THE PSURF GEOAlETRIC PRIAIITIVE

Each of the fields in the above structures is a pointer to an array of the appropriate length. The length of
the fields in the nodes structure is given by nnodes. The length of the fields in the edges structure is given by
nedges. The length of the fields in the faces structure is given by nfaces.

8.1.1 Lazy Evaluatioil and Psurf Fields

The psurf library uses a form of lazy evaluation to maintain the data structure. This means that only information
which is absolutely necessary is computed and stored internally. This is the reason that each field in the data
structure has its own array: each array will be allocated and filled in only if it needs to be.

This organization facilitates storing and retrieving information in binary psurf files. A binary psurf file is
basically a binary "dump" of the fields in the data structure, each preceeded by an identifying header. This file
is generated by a program, bps or Jack, which generates all these fields and writes them to a file. Subsequently,
when Jack reads information from the psurf file, it can read only the information which it absolutely needs,
saving space and time.

When accessing the data structure or performing operations on it , it is important to make sure that the
needed fields exist beforehand. This is done through the routine getpsurff ields.

Psurf *
getpsurf f ields(psurf ,f ields)
Psurf *psurf ;
unsigned int fields;

The fields argument is a bit-string wliicli is formed by OR-ing together the values:

8.1. THE PSURF DATA STRUCTURE

PSURFDIMENSIONS NODE-COORDS NODE-NORMALS
NODEEACES BODEIDGES EDGEHEADS
EDGE-TAILS EDGE-LEFTS EDGEAIGHTS
EDGEDISPLAY FACE-VERTICES FACE-NORMALS
FACEXDGES FACEATTRIBUTES FACEDISPLAY
FACE-CENTERS

Each value corresponds directly to the field in the data structure. This function examines the state of the psurf
to make sure that the requested fields exist. If it does not, then if the psurf came from a binary psurf file, it
opens the file and reads the information from it. Otherwise, it computes the information from the existing fields.

For example, the following call ensures that the node coordinates and face vertices fields have been read and
filled in.

I I

Figure 8.1: getpsurf f i e lds

8.1.2 Psurf Nodes

Each of the arrays in the nodes structure has nnodes entries, one per node. The description of the k-th node is
taken from the k-th entry in each of the arrays.

Each node represents a point in space as a vector coords, along with its surface normal norm, which is an
average of the normals of the neighboring faces. Each node also "points" to the faces and edges which contain
it. There are nfaces faces which reference the node. The faces field is a dynamic array of indices into the psurf's
face table. There are nedges edges which reference the node. The edges field is a dynamic array of indices into
the psurf's edge table. The ordering of the entries in the faces and edges arrays is not currently significant.

The example code segment in Figure 8.2 prints out the coordinates of each node in the psurf.

f o r (i=O; icpsurf->modes; i++) {
pr in t f ("(Xf ,%f .%f)\n".

psurf ->nodes. coords [il [O] ,
psurf ->nodes. coords [i] [I] ,
psurf ->nodes. coords [i] C21) ;

1

Figure 8.2: Psurf Nodes

There is a minor difference in the terminology used to describe the nodes in a psurf. The nodes are the actual
points in space. When references to the nodes occur in the faces and edges, they are called vertices. Therefore,
faces and edges have vertices, which are references to nodes.

8.1.3 Psurf Edges

Each of the arrays in the edges structure has nedges entries, one per edge. The description of the k-th edge is
taken from the k-th entry in each of the arrays.

100 CHAPTER 8. THE PSURF GEOMETRIC PRIMITIVE

An edge points to two vertices, one at the head and one at the tail. It also points to the faces on its left and
right side. If you were walking along the surface from the tail to the head, the left face would lie on your left
and right face would lie on your right. This orientation is significant.

The edges are not stored directly in the psurf text file. The file lists only sequences of nodes which form
faces. The edges are defined implicitly by the sets of nodes which are adjacent some face. Computing the edges
is very time consuming: the psurf library uses a linear-time algorithm to compute the edges from the face vertex
information, but the algorithm is O(n2) in space, which can make it very slow. This is the benefit of using
a binary psurf file: the edges can be calculated once and then stored directly in the psurf file. The routine
psurf edges which computes the edges is in the source code file gen/src/lib/psurf -edge. c++.

The edges are important because they are what Jack draws as the image of the psurf in wireframe. Since the
speed of Jack is many times bounded by the speed with which the graphics hardware and draw the objects, it is
important that the drawing mechanism be as efficient as possible. For this reason, it is not acceptable to draw
objects by outlining each face. This would draw each edge twice.

8.1.4 Edge Display Lists
The psurf library has another optimizing mechanism to speed up the drawing process, in the form of display lists.
The display list field is a preprocessed array containing information necessary to draw the edges of the psurf.
This array exists to accelerate the drawing of psurfs in Jack. The array consists of vertex and color information,
ordered in such a way that it is very efficient to loop over the array and pass its contents to the IRIS Graphics
Library. In particular, the IFUS Graphics Library can draw connected line sequences much more efficiently than
drawing each line segment individually. The edge display list generation routine, genedgedl, searches through
the psurf for long sequences of edges which it can draw as single connected line sequences. The display list then
consists of sets of sequences of vertex and color data.

The displaylist is an array of DLentry structures. This type is a union of a single float and a single integer.
This allows the contents of the array to be stored accessed as either a float or an integer.

typedef union {
float f ;
int n;

) DLentry;

The edge and face display lists have different formats. The format of the edge display list is described here.
The format of the face display list is described in the next section.

The first entry in the edge display gives the length of the data portion of the list, not including the first entry,
or the last, which is a 0 in it signifying the end of the list. Therefore, if the first entry in the list is n, then the
actual length of the chunk of memory storing the list is n+2. After the first entry, the display list is a number of
sets of vertex data:

nvert ices
color

half intensity color
xo

Yo
20

x 1
Yl
z1

8.1. THE PSURF DATA STRUCTURE 101

The n v e r t i c e s field gives the number of (x, y, z) coordinates in the vertex set. The co lo r field gives the the
color in the form of the GL subroutine cpack. In addition, the uppermost byte of the color field gives the index
of the attribute which this line is drawn in. This is necessary only for redoing the color of the display list when
the properties of the display list change. The half intensity color gives the color required to draw the coordinate
axis projections in Jack. The display list is terminated by an entry with nvertices=O.

The display list stores actual color values in RGB coordinates, although the colors of psurf actually come
from the attributes which the faces refer to. If the parameters of the attributes change, the display list must
be updated to reflect the change in color. This is handled by the timestamp field in the attribute structure and
the edges.timestamp field in the psurf. The attribute timestamp tells when the attributes have last changed
values. The edge timestamp tells when the edge displaylist was last updated. Jack draws the display list with
the function dravedgedl, which first compares the two timestamps to see if the display list is out of date with
respect oo the attributes. These functions are in the file gen/src/ l ib/psurf d i s p l a y . c++.

Therefore, whenever the attribute parameters change, the timestamp of the attribute should be updated,
using gettimestamp, described in Section 9.7. This will cause the display lists to be updated the next time Jack
draws the psurf.

The edge timestamp should be set to zero if the the attribute information in the psurf changes, for example,
if a face is given a new attribute.

8.1.5 Psurf Faces

Each of the arrays in the faces structure has nfaces entries, one per face. The description of the k-th face is taken
from the k-th entry in each of the arrays.

The vertices of the face are specified in the vertices field, which contains indices into the psurf's node table.
There are nvertices of them. The edges of the face are specified in the edges field, which contains indices into
the psurf's edge table. There are nedges of them. The ordering of the edges is not currently significant; the
ordering of the vertices i s significant. The vertices are specified in counter-clockwise direction, so that traversal
according to the right-hand rule yields an outward-pointing normal. Typically, the traversal of faces is done by
looping through the vertices, not the edges.

.
The surface normal of the face is specified by norm. If the face is not planar, then norm will be as close as

possible to the true normal. The center of the face is maintained in center. This is merely the average of the
positions of the vertices.

8.1.6 Face Display Lists

The display list field is a preprocessed array containing information necessary to draw the faces of the psurf.
This array exists to accelerate the drawing of psurfs in Jack, when the object is shaded. The array consists of
vertex and material property information, ordered in such a way that it is very efficient to loop over the array
and pass its contents to the IRIS Graphics Library.

The display list is an array of DLentry structures, but its format is different from the edge display list
described above.

The first entry in the face display gives the length of the data portion of the list, not including the first entry,
or the last, which is a 0 in it signifying the end of the list. Therefore, if the first entry in the list is n , then the
actual length of the chunk of memory storing the list is n+2. After the first entry, the display list is a number
of sets of vertex and surface normal data. There can be one normal per face or one normal per vertex. This is
signified in the list by the sign of the nve r t i c e s entry: if nve r t i c e s is positive, there is one normal per vertex;
if n v e r t i c e s is negative, there is one normal for the entire face.

The vertex section for a face with a normal for each vertex is:

CHAPTER 8. THE PSURF GEOMETRIC PRIhfITIVE

I nve r t i ce s I
ma te r i a l

The vertex section for a face with one normal for the whole face is:

mater ia l P==+l

The ma te r i a l field gives the IRIS GL library lighting index of the face, for the GL subroutine lmbind. The
uppermost byte of the ma te r i a l field gives the index of the attribute which this face is drawn in. This is
necessary only for redoing the color of the display list when the properties of the display list change. The display
list is terminated by an entry with nvertices=O.

Unlike the edge display list, the face display list makes a reference to the properties of the attribute, through
the material index, so i t is not necessary to compare the time stamps of the attributes and faces when the
attribute parameters change. However, the face timestamp should be set to zero if the the attribute information
in the psurf changes, for example, if a face is given a new attribute.

8.1.7 Attributes

Each face refers to an attribute indirectly, through an index into the psurf's attribute table, the attributes field
in the psurf structure. This field is an array of pointers to surface attributes. Each face has an attribute field
which is an array of indices into this table.

8.1.8 Psurf Dimensions

Several useful pieces of information are maintained about the psurf primitive. The bounding box of the psurf is
maintained in the min and maxfields. Also, the field span is the difference between min and max, and extent is
the magnitude of the span. This information gives an approximation of where the psurf is in space, and how big
it is. These fields are accessible by calling getpsurff i e l d s with the argument PSURFDIMENSIONS.

8.2. S Y N T A C T I C REPRESENTATION OF PSURFS 103

8.1.9 The Psurf Scale

The psurf has a scale parameter, maintained in the fields sx, sy, and sz. Each is a scale along the specified axis.
This scale represents the scale factor applied to the psurf's coordinates as specified in the psurf file to yield the
coordinates as they are stored internally in the node coords field.

This scale factor typically comes from the reference to the psurf in the peabody language. The peabody
statement which references the file may specify an optional scale:

psurf = " m . p s s " * scale(5.6,7.3,30.1);
These numbers are store in the psurf's scale parameter, and this scale is applied to the coordinates as they are
read from the file.

When the coordinates of a psurf are written out to a file, the node coordinates are multiplied by the inverse
of this scale.

8.2 Syntactic Representation of Psurfs
Psurfs may be described syntactically in text files. A psurf file is a textual representation for the node, edge,
and face tables of the psurf. By convention, these files have the suffix .pss. The file lists a set of nodes, edges,
and faces.

0 0 0
0 1 0
1 1 0
1 0 0
0 0 1
0 1 1
I l l
1 0 1
; (end of nodes)
; (end of edges)
1 2 3 4 ; < back 3
1 4 8 5 ; (bottom 3
3 7 8 4 ; C right side 1
I 5 6 2 [attribute I]; < left side)
5 8 7 6 ; (front 1
2 6 7 3 ; < top 1

Figure 8.3: An example psurf

A psurf file is a list of nodes, which are specified as triplets of real numbers. There is an optional comma
between the triplets. The numbers may contain decimal points, but the decimals are not necessary. No leading
0 is required for fractions less than 1.0. The nodes are numbered implicitly starting at 1. The node table is
terminated with a semicolon.

Following the semicolon which ends the nodes are the edges, which are pairs of indices into the nodes. The
pairs of numbers may be separated by an optional comma. The edges are terminated by a semicolon.

Following the edges are the faces, which are lists of indices into the nodes. Each lists specifies the vertices of
the face, and is terminated with a semicolon. The faces are terminated by an empty vertex list, i.e. two adjacent
semicolons. There is no predefined limit on the number of vertices in each face.

Between the last vertex of the list and the semicolon which ends the face there may be an attribute specifi-
cation, which is the keyword attribute followed by an index into the psurf's attribute table, all delimited by
square brackets. By default, the attribute index is 0, and its value carries over from one face to the next, so the
attribute specification actually sets the "current" value, to be assigned to all subsequent faces until its value is
changed again.

104 CHAPTER 8. THE PSURF GEOAIETRIC PRIRIITIVE

Comments may appear anywhere in the file and are delimited by curly braces. An example psurf is shown in
Figure 8.2.

The indices listed in the psurf file all start at 1 for historical reasons. Beware that this can causes some
confusion, since internally the indices start at 0, since they are stored in arrays.

8.3 Csurfs
Psurfs files may contain several "psurfs" of the above syntax. You can achieve this by concatenating several
psurf files into one. Each separate sub-psurf is called a csurf. This name is a historical relic.

The advantage of doing this is that each the faces in each csurf refer to nodes only in that psurf. Sometimes,
it can be much easier to generate psurfs in this format. It is also more efficient to do so, because the psurf edge
genertation routine takes advantage of the fact that each csurf is a separate, disconnected unit.

The csurf information is store internally in the psurf in the csurfs field. The csurf data structure is:

typedef struct csurf Csurf;

struct csurf {
short nnodes ;
short nedges ;
short nf aces ;

1 ;

Each structure gives the number of nodes, edges, and faces which that csurf contains. The ordering of the
array of csurf structures determines which nodes, edges, and faces belong to which csurf.

This information is kept only in the form of these tables. The face vertices and other indices are resolved to
the global arrays when they are read in, to the indices themselves do not reflect the face that they came from
different csurfs. It is the responsibility of any routine which needs the csurf information to adjust the indices
accordingly.

8.4 How Psurfs are Read from Files
The principal routine for reading psurfs from files is readpsurf, defined in gen/src/lib/psurf z p . y.

Psurf *
readpsurf (filename , archive,parentdir. scale)
char *filename ;
char *archive ;
char *parentdir;
float scale [I ;

In Jack, this routine is called only from within the peabody parser, which is where the elements of the
peabody data structure are created, as they are read in from a file. The filename argument gives the file name
as it occurred in the peabody line

8.5. PSURF UTILITIES

psurf = "cube .pssl';

The archive is the archive for the segment's figure, in which the psurf can reside. The parentdir argument is the
directory of the peabody file in which the psurf reference was made. The scale parameter is the scale given on
the psurf line. The scale is discussed below.

The readpsurf routine first looks for the file in the current directory, i.e. the one in which the Jack program
was run. It looks for a binary psurf file first. If it finds both a binary psurf file and a text file, it compares the
date of modification to make sure that the binary psurf file was generated since the last modification of the text
file. If the binary psurf is out of date, it issues a warning message and reads the text psurf.

If the file is not in the current directory, then it looks for the archive in the current directory, doing the same
search for the binary and text forms. If no archive exists, then it looks in the parent directory, first for the file,
then for the archive. If it cannot be found there, it looks to see if the file is installed.

8.5 Psurf Utilities

Psurfs may be transformed by a homogeneous transformation with transf ormpsurf. This routine transforms the
coordinates of each node and rotates the face and node normals by the rotation part of the transformation. This
function is defined in gen/src/lib/psurf xtil. c++.

transf ormpsurf (psurf .M)
Psurf *psurf;
Hatrix M;

The function PsurfInertia computes the inertial properties of the shape of the psurf. These operations work
on any shape of psurf, convex or not. The density is an input parameter, in grams per cm3. The output mass
is in grams, and the volume is in cm3. The center of mass is in centimeters, and the inertia tensor is in gcm2.
This function is defined in the source code file gen/src/l ib/psurfinertia. c++.

~surf~nertia(psurf,density,volume,mass,centerofmass,inertia)
Psurf *psurf ;
double density;
double *volume;
double *mass;
double cent erof mass C31;
double inertia C31 C31;

8.6 Distance Measuring Utilities

The following functions measure distances from points, lines, and planes in space to parts of a psurf.

CHAPTER 8. THE PSURF GEOMETRIC PRIAIITIVE

i n t
pt-to_facedistance(ps~rf , f .p .d,x, item)
Psurf *psurf ;
s h o r t f ;
Vector p;
f l o a t *d;
Vector x ;
s h o r t *item;

i n t
l ine-to~acedistance(psurf , f ,p ,v.d,x, item)
Psurf *psurf ;
shor t f ;
Vector p ;
Vector v ;
f l o a t *d ;
Vector x;
s h o r t *item;

i n t
plane~olacedis tance(psurf ,f . r , n ,d .x , item)
Psurf *psurf ;
s h o r t f ;
Vector r ;
Vector n;
f l o a t *d;
Vector x;
s h o r t *item;

i n t
pt-to-edgedistance(p,head,tail ,d ,x)
Vector p ;
Vector head;
Vector t a i l ;
f l o a t *d ;
Vector x ;

i n t
line-to-edgedistance(p,v ,head, t a i l , d ,x)
Vector p ,v ;
Vector h e a d , t a i l ;
f l o a t *d;
Vector x ;

The function names describe the distances they measure. pt - to f acedistance returns the distance to the
point p. l i n e - t o 3 acedistance returns the distance to the line defined by reference point p and direction v.
plane-tof acedistance returns the distance to the plane defined by reference point r and normal n.

8.7. WRITING PSURFS 107

Each of these functions operates in the local coordinate frame of the psurf. If you use the functions on psurfs
associated with peabody segments, transform the coordinates of the point, line, or plane to the local coordinate
frame of the segment before measuring the distance. This is more efficient than transforming the coordinates of
the psurf to the coordinate frame of the point, line, or plane.

The distances are along the shortest path, and the point on the face which lies closest is returned in x. The
distance is returned in d. x may lie in the interior of the face, along an edge of the face, or a t a vertex of the
face. This is specified by the return value of the function, together with the item argument.

The return values are as follows:

0 The point, line, or plane lies inside the face, so d = 0.

1 The closest point x lies in the interior of the face.

2 The closest point x lies along an edge of the face. The pair of vertices is (item,item+l)%nvertices).
Note that the item field is not an index of a psurf edge, but is rather an index into the face's
vertex array.

3 The closest point x is a vertex. referenced by item.

The -tosdge functions return the distance to a line segment, defined by the two vectors head and tail. They
return 0 if the closest point is the head endpoint, 1 if the closest is the tail endpoint, and 2 if the closest point
in in the interior of the line segment. In each case, the functions place the coordinates of the closest point in x
and the distance in d.

The function rayfaceintersection tests whether a ray intersects with a face of a psurf.

int
rayf aceintersection(x,p,v,psurf.face)
Vector x;
Vector p;
Vector v;
Psurf *psurf ;
short face;

The ray is defined with starting point p and direction v If it intersects, it returns the intesection point in x,
and the return + 1 or -1 depending upon whether the ray intersects the face in the +v or -v direction from p.
Otherwise, the function returns 0.

Like the distance routines above, this function operates in the local coordinate frame of the psurf. If you
use this function on psurfs associated with peabody segments, transform the coordinates of the ray to the local
coordinate frame of the segment before doing the intersection test. This is more efficient than transforming the
coordinates of the psurf to the coordinate frame of the ray.

8.7 Writing Psurfs

Psurfs may be printed in a format readable by readpsurf in several different ways. The routines for printing
psurfs are defined in the file gen/src/lib/psurf qrint . c++.

xvrit epsurf (psurf ,filename. verbose, off set)
Psurf *psurf;
char *filename;
Boolean verbose;
short off set ;

108 C H A P T E R 8. T H E PSURF GEOAIETRIC PRIIIIITIVE

fwritepsurf (psurf ,file ,verbose, off set)
Psurf *psurf ;
FILE *file;
Boolean verbose;
short off set ;

xvritepsurf opens a file and writes the psurf to it. furitepsurf writes the psurf to a standard 110 stream.
The verbose and offset arguments control the format of the printing. Sometimes, it is helpful to print information
about a psurf, such as the connectivity information and surface normals. This is called a verbose printing, and
is produced when verbose is TRUE. The extra information is placed in comments, so the resulting file is readable
by readpsurf.

Also, the discrepancy between the internal indices of a psurf and its textual description can cause great
confusion during debugging. Sometimes it is convenient to print a psurf as is, with the indices starting a t 0
instead of 1. This can be controlled with the offset argument, which specifies the offset index of the nodes. 1
is the default; 0 is helpful for debugging. Printing a psurf with nodes starting a 0 is only good for diagnostics,
since it is not readable!

For convenience, there are macros for calling these two functions with the different arguments:

#define printpsurf (p)
#define printpsurf 0 (p)
#def ine vprintpsurf (p)
#define vprintpsurf 0 (p)
#def ine writepsurf (p ,f)
#define writepsurf 0 (p, f)
#define vwritepsurf(p,f)
#define vvritepsurfO(p,f)
#define fwritepsurfO(p,f)
#define vfwritepsurf(p,f)
#define vf writepsurf 0 (p , f)

f writepsurf (p, stdout ,FALSE , 1)
fwritepsurfO(p,stdout,FALSE,O)
f writepsurf (p, stdout .TRUE, I)
fwritepsurf(p,stdout,TRUE80)
xwritepsurf (p ,f ,FALSE, I)
xwritepsurf (p .f ,FALSE , 0)
xwritepsurf (p , f ,TRUE, 1)
xwritepsurf (p ,f ,TRUE ,0)
f writepsurf (p .f ,FALSE,O)
fwritepsurf(p,f,TRUE,l)
furitepsurf(p,f,TRUE,0)

When a psurf is written out, it is written as a number of csurfs, in the form in which i t was read in. If you
want to collapse all csurfs into now, just change the counters in the first csurf to include all nodes, edges, and
faces in the psurf.

8.8 Modifying Psurfs
Modifying psurfs by adding or deleting nodes, edges, or faces is difficult because of the tabular internal repre-
sentation. The psurf structure was originally designed as a space-efficient representation for geometric objects,
without too much concern for the ease of modifying data structure once it has been read in from a file.

There is, however, a simple mechanism for changing psurfs. This involves making changes only to the basic
set of fields in the psurf and then using the routine zappsurf to erase the other fields which depend on the basic
ones. It is important to use this mechanism whenever you write an application which changes a psurf internally.

zappsurf (psurf , docsurf s)
Psurf *psurf ;
Boolean docsurfs;

8.8. MODIFYING PSURFS 109

The psurf data structure maintains information about its current status in several internal flags. These flags
make the storage and retrieval of information from binary psurf files very efficient. It is important that changes in
the psurf structure be reflected in these internal flags, it is important to change the psurf structure only through
this mechaism.

The psurf is completely defined in terms of the following fields:

nnodes The number nodes. This gives the length of the arrays in the nodes structure.

nodes.coords The coordinates of tlie nodes.

nodes-flags The array of flags associated with the nodes.

nfaces The number faces. This gives the length of the arrays in the faces structure.

faces.nvertices The array specifying tlie number vertices in each face.

faces.vertices The array pointing to the vertex arrays for each face.

faces.attributes The array specifying the attribute index of each face.

faces.flags The array of flags associated with tlie faces.

Any changes to the psurfs, in terms of creating or deleting nodes, edges, or faces, should explicitly modify
these fields and ensure that they are properly allocated and filled in. After doing so, you should call zappsurf.
The other fields of the psurf will then be recomputed as they are requested by getpsurff ie lds .

CHAPTER 8. THE PSURF GEOMETRIC PRIAIITIVE

Chapter 9

The VEC Library

The ^library implements many simple mathematical operations which are common to many applications. It
implements operations on vectors, 4 x 4 matrices, and quaternions, as well as some miscellaneous functions
which don't really belong anywhere else.

The type declarations and macros for this facility are defined in the include file vec. h. vec. h includes
stdio . h, math. h, and the IRIS Graphics Library file gl . h. Source code files which include vec . h thus need not
include these files.

9.1 Macros

The following macros are defined in vec . h:

DOT (u, v)
DOT4 (u , v)
ABS(x)
HIN(x,y)
MAX (x, y)
SIGN(x)
MAG (u)
RTOD (r)
DTOR(d)
INTERP(x,y,t)
CLAMP(x,min,max)

Dot product of 3-vectors u and v.
Dot product of Cvectors u and v.
Absolute value of x.
Minimum of x and y.
Maximum of x and y.
Sign of x: +1 or -1.
hiagnitude of 3-vector u.
Convert radians r to degrees.
Convert degrees d to radians.
Interpolated value between x and y, according to t.
x, clamped to interval (min,max):

min if x < min
x i f m i n < x < r n a x
max if max < x

INTERP returns x if t = 0, or y if t = 1. To remember this, think of a "t" numberline with x on the left at 0
(it's the argument on the left) and y on the right at 1, (it's the argument on the right).

The following macros are defined for "fuzzy" comparison:

FUZZ Standard fuzz factor: 0.0001
EQ(X,Y) Fuzzy equal: true if x and y are within FUZZ
LEQ(x,y) Fuzzy less than or equal

CHAPTER 9. THE VEC LIBRARY

GEQ(x, y) Fuzzy greater than or equal
VECEQ (u . v) Fuzzy comparison of 3-vectors

FEQ(X,Y,~) Fuzzy equal, given fuzz factor f
FLEQ(x , y .f) Fuzzy less than or equal, given fuzz factor f
FGEQ(x, y ,f) Fuzzy greater than or equal, given fuzz factor f.
FVECEQ (us v , f) Fuzzy comparison of 3-vectors, given fuzz factor f

9.2 Vectors

The vec .h include file defines the type Vector

float vector C31;

This type is used interchangably with floating point arrays of length three. I t is not always used consistently
in the Jack source code, but i t is sometimes convenient.

Vectors are arrays of floating point numbers. There are routines in the library for adding, subtracting,
multiplying, and crossing 3-vectors. There is no explicit type declaration for vectors: the routines operate on
floating point arrays. The following operations are defined in the file gen/src/lib/vec-vector . c++.

crossproduct(r.u.v)
float rC31;
float u C31, v C31;

vecadd(r ,u,v)
float r C31;
float u C31, v C31;

vecsub(r,u,v)
float r C31;
float u C31, v Dl;

vecinterp(r,u,v,t)
float rC3l ;
float u C31, v C31;
float t;

vecscalarmult(u,v,f)
float u 131 , v L31 ;
float f;

9.2. VECTORS

u n i t i z e (u)
f l o a t uC31;

cpvector (u ,v)
f l o a t u[31,vC31;

Boolean
zerovec(u)
f l o a t u C31;

Each of these functions takes arguments in the order of an assignment statement: the first argument is the
result and the remaining arguments are taken left to right. uni t ize makes a vector into a unit vector. cpvector
copies the 3-vector v to u. It is a macro, not a function. zerovec returns whether or not u is the zero vector,
using fuzzy comparison. vecinterp interpolates between the two vectors. If t = 0, then r = u; if t = 1, then
r = v . This is the same sense as the INTERP macro. In the actual arguments to crossproduct, r should not be
the same vector as u or v.

The following routines for transforming vectors are defined in gen / s r c / l i b /vecsec to r . c++.

vecmult (r ,u.M)
f l o a t r C31;
f l o a t u C31;
Matrix M;

vecmultO(r,u,M)
f l o a t rC31;
f l o a t u [3] ;
Matrix M;

vecmult4(r,u,M)
f l o a t r C41;
f l o a t u C41;
Matrix H;

vec ro t (p ,q , ax i s , r e f p t .angle)
f l o a t p C31;
f l o a t qC31;
f l o a t axis C31;
f l o a t r e f p t C31;
f l o a t angle;

vecmult multiplies u by A f , using a 1 in the fourth position, thereby performing translation. It performs the
following computation: r x l x 2 0 1

114 CHAPTER 9. THE VEC LIBRARY

vecmulto performs the multiplication using a 0 in the fourth position of u, thus it does not perform translation.
Remember that vectors are represented here as rows, so the matrices have the translational part in the bottom
row! None of the vector multiplicatio~l routines make any assumptions about the contents of the matrices. In
the actual arguments to each of these functions, r may be the same vector as u. Hence, to transform a vector
"in place," it is legal to say:

vecrot rotates the vector q around the axis defined by the direction axis and the reference point refpt, through
an angle angle, given in radians. If refpt is null, then the origin (0,0,O) is used. In the actual arguments, p and
q may be the same vector.

9.3 Matrices

The ^library uses the IRIS Graphics Library's typedef for a matrix, Matrix, which is a 4 x 4 array of floating
point numbers, represented with the translation component along the bottom row:

This representation requires the interpretation of a product of matrices right to left in local coordinates, or
left to right in absolute coordinates. Thus, the transformation M defined as

may be interpreted as:

1. A transformation by TI with respect to the base coordinate frame, followed by a transformation by T2
, w.r.t. to the base frame, followed by a transformation by T3 w.r.t. to the base frame.

2. A transformation by T3 with respect to the base coordinate frame, followed by a transformation by T2
w.r.t. to the transformed frame, followed by a transformation by TI w.r.t. to the doubly transformed
frame.

This sense of the ordering of the transformations is maintained internally as well as externally in the syntax of
the transformations in the peabody language.

The ^library has a declaration of an identity matrix, called idmat:

ex t e rn Matrix idmat;

This matrix may be used, but sliould never be modified!
The following operations are defined in the file gen/s rc / l ib /vecmatr ix . c++.

matmult (r , a , b)
Matrix r ;
Matrix a , b ;

9.3. MATRICES

invertmatrixcr ,m)
Matrix r,m;

cpmatrix(a,b)
Matrix a.b;

eqmat(a,b)
Matrix a,b;

printmat (r)
Matrix r;

f printmat (f ile , r)
FILE *file;
Matrix r;

matmult performs the matrix product r = a * b. cpmatrix copies b to a. It is defined as a macro, not a
function. invertmatrix inverts an arbitrary 4 x 4 matrix. eqmat returns whether or not the two matrices are
equal, using fuzzy comparison. The right column of the matrix is ignored, since it is typically 0. printmat prints
a matrix to standard output, as 4 lines of 4 floating point numbers. fprintmat does the same thing but prints to
a file.

There are also some miscellaneous routines for constructing matrices. These functions are also defined in the
file gen/src/lib/vecmatrix . c++.

xyztomatrix(M,x,y ,z)
Matrix M;
float x.y,z;

transtomatrix(M,x, y ,z)
Matrix M;
float x,y,z;

axisangletomatrix(M,axis,angle)
Matrix H;
float axis C31;
float angle;

xyztomatrix constructs a matrix given by a rotation of x around the z-axis, followed by a rotation of y around
the rotated y-axis, followed by a rotation of z around the rotated z-axis. transtomatrix constructs a translation
matrix out of x, y, z components. axisangletomatrix constructs a matrix which rotates around axis through an
angle angle, given in radians.

There are also routines for converting from a matrix to other representations:

CHAPTER 9. THE VEC LIBRARY

mattorot (angles,type,M)
float angles C31;
char type C31;
Matrix M;

mattorot converts the rotation part of M to euler angles. The type argument specifies the euler axes. It is a
character string which should be three characters long. Each character must be an X , y, or z . The legal values
are: "XYZ", "ZXY", "YZX", "xZX", "ZXZ", "YXZ", and "ZYX". The values filled into the angles array are the
rotations around each of the given axes such that the product of the three rotations gives M. The results will be
incorrect if M is not homogeneous.

9.3.1 Homogeneous Transformations

A homogeneous transformation is a product of simple rotations and translations. Homogeneous transforms have
some very nice properties. vec. h defines the type Transform as:

typedef union transform Transform;

union transform {
Matrix matrix;
struct {

float x C41;
float y C41;
float z 141 ;
float p C43 ;

) v;
1 ;

The structure of vectors overlaps the matrix so that the vectors correspond to the rows of the matrix. When
a transform is considered as a local coordinate frame, tlie x vector lies along the x axis of the local coordinate
frame, the y vector lies along the y axis of the local coordinate frame, the z vector lies along the 2 axis of the
local coordinate frame, and tlie p vector lies a t the origin of the local coordinate frame. This structure is defined
so that these vectors may be easily associated with the transform.

There are also several routines which deal with matrices as homogeneous transformations, which are ma-
trices formed by the product of simple rotations and translations. These functions are defined in tlie file
gen/src/lib/vecmatrix.c++.

hmatmult (r,a,b)
Matrix r;
Matrix a,b;

inverthomomatrix(r,m)
Matrix r,m;

ishomo(r)
Matrix r ;

homogenize (x .Y , z)
f l o a t x C31, y C31 . z C31;

l i n t e r p m a t r i x (r , a , b , t)
Matrix r ;
Matrix a , b ;
f l o a t t ;

hatmul t multiplies two homogeneous transforms. This is a highly-optimized routine which takes advantage of
the special structure of the homogeneous transform, and it is much more efficient than matmult. inverthomomatrix
computes the inverse of a homogeneous transform. If the matrix is not a product of simple rotations and
translations, the inverse will not be correct, but no warning will be issued. The function invertmatrix inverts
an arbitrary 4 x 4 matrix, not just a homogeneous one. However, if you know a matrix to be homogeneous, use
inverthomomatrix, since it is many times more efficient.

ishomo returns TRUE if the matrix is a homogeneous transform, FALSE if not.
The function homogenize is useful for constructing the three perpendicular vectors necessary to describe a

homogeneous transform. The function takes x and y as inputs, computes z as their cross product, then computes
y as the cross product of z and x. Finally, all three vectors are unitized. Thus, the direction of x remains
unchanged, z is the cross product of x and y, and y is "corrected" to be perpendicular to x and z.

The function linterpmatrixlinearly interpolates between the two matrices a and b, according to the parameter
t , which is between 0.0 and 1.0. Like the INTERP macro, If t=O, then r=a; if t=l, then r=b. This function linearly
interpolates the translation component, and it linearlyy interpolates the orientation component around the single
axis of revolution which rotates a into b.

9.4 Quaternions

Quaternions are useful for representing and manipulating rotational transformation. vec. h defines a quaternion
as a 4-vector of floats, (w , x, y, r) , where w is the angle part and (x, y, I) is the axial part. The operations here
are an implementation of the equations described in "Animating Rotations with Quaternion Curves," by Iien
Shumakel.

typedef f l o a t quaternion[43 ;

The following operations on quaternions defined in the source code file gen/src/lib/vec-quaternion. c++.

qmul t (q ,a ,b)
qua tern ion q;
quat e rn ion a, b ;

'Ken Shumake, "Animating Rotations with Quaternion Curves," Computer Graphics, Vol. 19, No. 3. (1985) pp. 245-254.

CHAPTER 9. THE VEC LIBRARY

qinverse(q,a)
quaternion q;
quaternion a;

slerp(q,a,b,t)
quaternion q;
quaternion a, b ;
float t ;

qdouble(q,a)
quaternion q;
quaternion a;

qbisect (q,a.b)
quaternion q;
quat ernion a, b ;

matrixtoq(q,H)
Quaternion q;
Uatrix H;

qtomatrix(H,q)
Matrix H;
quaternion q;

qtomatrix and matrixtoq convert between rotation matrices and quaternions.

9.5 Intersections of Planes and Lines
These routines compute simple intersections of planes and lines. They are defined in the source code file
gen/src/lib/vecintersect.c++.

Boolean
planelineint(x,n,r.p,v)
float x C31;
float n[31,rC31;
float pC31.vC31;

Boolean
commonnormal(x, y ,n,p,u.q.v)
float xC31,yC31,n[33;
float p C31 ,u C31;
float q C31, v Dl;

planelineint determines the intersection of the plane defined by normal n and reference point r with the
line defined by direction v and reference point p. The intersection is returned in x. The function returns FALSE
if the line is parallel to the plane. commonnormal determines the common normal between the two lines defined
by reference points p and q with directions u and v, respectively. The intersection of the common normal with
the p line is returned in x, and the intersection wit11 the q line is returned in y. The common normal itself is
returned in n, as a unit vector. u and v need not be unit vectors. If the lines are parallel, then x = p, and y
is set accordingly. The function returns TRUE if the lines are parallel, FALSE otherwise. If the lines intersect,
then x and y are equal.

9.6 Lists

Lists are collections of objects. There are routines in the library for manipulating circular linked lists which
contain arbitrary pointers t o objects. The fact that the lists are circular should have no impact on the applications
(except that insertion and appending are both O(1) operations). A list is defined by the type L i s t . The actual
contents of the structure is unimportant. Notice that the use of the L i s t type does no1 require an asterisk,
except to refer t o the address of list list.

The following functions construct lists. They are defined in the source code file gen/src/ l ib /vecl is t . c++.

void
appendcirclist (p l i s t , pdata)

. List * p l i s t ;
int *pdat a ;

void
i n s e r t c i r c l i s t (p l i s t , pdata)
List * p l i s t ;
in t *pdata ;

void
addcircl i s t (p l i s t , p-data)
List * p l i s t ;
i n t *pdata;

appendcircliet appends p-data to the list point.ed to by p-list. An appended item becomes the last item in
the list. Note that a pointer to the list must be passed as well as a pointer to the data. insertcirclist inserts
p-data in the list pointed to by p-list. An insert,ed item becomes the first item in the list. The item that was
previously the first in the list becomes the second item. Note that a pointer to the list must be passed as well
as a pointer to the data. The function addcirclist appends the data element p-data to the list only if ti isn'i
already there. This is convenient when you need to make sure a list doesn't contain duplicate entries for the
same data element.

The function circlistiterator is used to loop over a list.. It is used in conjuction with macro LISTDATA, which
casts the data field of the list to the appropriate type. This function, when called repeatedly, successively returns
each node in list. It must be called with the list to be iterated over and the last return value. The first time
this function is called, lastreturn should be NULL. This function will return NULL when all items have been
returned. The macros L-NEXT and LsREV ret,urn the next. and previous elements in a list, for cyling over the list
explicitly.

120 CHAPTER 9. THE VEC LIBRARY

List
circlistiterator(list, lastreturn)
List list;
List lastreturn;

Figure 9.1 shows an example of the list. operations. It is important to make sure that you initialize the
list variable, both before inserting information into the list, and before looping over the list. The diagram a t
the bottom of Figure 9.1 shows the layout of the list as it would be constructed by the operations in the code
segment. It also shows where in the list an appended or inserted value will go, and which element is returned
first by circlistiterator.

Segment *segment, *A. *B, *C;
List 1;

list = 0 ;

Figure 9.1: circlist iterator

The function circlistlength returns the length of a list. The function sortcirclist sorts a list, according to
a comparion function crnp. This function takes a pointer to two list data elements and returns -1 if the first is
less than the second, 0 if the two are equal, and 1 if t,he second is greater than the first.

int
circlistlength(1ist)
List list;

sortcirclist (list. cmp)
List list;
int (*cmp) () ;

9.7. TIMESTAMPS

circlistiterator returns this first

Figure 9.2: Circular Lists

There are also routines for deleting entire lists and single elements from lists.

deletecirclistdata(plist , p d a t a ,p-cmpf , p d e l f)
L i s t * p l i s t ;
i n t * p d a t a ;
i n t (*p-cmpf) () ;
i n t (* p d e l f) (;

k i l l c i r c l i s t (p l i s t , p - d e l f)
L i s t * p l i s t ;
i n t * p d a t a ;
i n t (* p d e l f) () ;

For the function deletecirclistdata, the argument p-cmpf is a comparison function used t o locate the node
to delete. I t takes a pointer to two list elements, and should return 1 if the element matches p-data, 0 otherwise.
Note that it need not compare all fields of t,he list data. If this function is NULL, then the function just searchs for
the list element whose data pointer is p-data. Tlie argument p-del-f is a function to invoke on the data element
as the list entry is deleted. This function typically frees the data associated with the entry. If this function is
NULL, then it is not executed.

9.7 Timestamps

Jack uses the idea of a timestanzp to record when certain events have occurred. Several of the data structures
contain timestamp fields. The values of these fields are set by the function gettimestamp.

122 CHAPTER 9. THE VEC LIBRARY

This function returns an integer. Each time the function is invoked in returns a value greater than the
previous invokation. When stored in the appropriate places, these values may be compared to see when certain
events took place relative to other events. This is not a true notion of time because it has no relation to a clock,
but it is a useful mechanism for determining when certain values need to be updated.

An example of how this is used is with the psurf display lists, described in Section 8.1.4. The display
lists contain information about the psurf geometry which can be passed quickly to the IRIS Graphics Library.
This information includes color information, although the actual color of the psurf is kept inside an attr ibute
structure pointed to by the psurf. If the attribute parameters change, the psurf display list must be updated.
When the parameters of an attribute change, Jack sets the timestamp field in the attribute structure, rather
than searching for psurfs which refer to the attribute and updating them immediately. The psurf display list
also has a timestamp, which is updated when the display list is generated or modified. Setting the timestamp
for the attribute forces the psurf display list to be "out of da.ten with respect to the attribute. The routine which
actually draws the display list compares the timestamps of the display list and the attributes to which the psurf
refer. If the display list is out of date, it updates it before drawing it.

9.8 Miscellaneous Utilities

The vec library also contains some miscellaneous routines and declarations of general usefulness which don't
properly belong anywhere else.

9.8.1 Strings

The following macros are defined for string manipulation:

isvoael(c) true if c is a vowel
CONTROL (c) control character corresponding to c
S L E B G T H (s the length of a string formatted with spr intf

The isvovel macro determines whether a character is a vowel. The CONTROL macro provides a way of nicely
specifying a control character, in terms of its "partner" alphabetic character. For example, CONTROL('C') is 'C.

The SLENGTH macro is useful since the System V (IRIS) version of the function sprintf returns the number
of characters formatted, while the BSD version returns a point,er to the resulting string. This macro makes it
convenient to advance a pointer through a buffer while printing into it , and have the same code work in both
environments. An example of the use of sLEiiGTH is shown in Figure 9.3.

9.8.2 Memory Allocation

Most memory allocation is done in allocatiilg space for st,ructures, particularly for linked lists. There is a macro
talloc which allocates memory and casts it. as a pointer to a given type:

9.8. MISCELLANEOUS UTILITIES 123

char bsi[1024];
int i;

n = SLEIOTB(8printf (buf ,"hello, world: ")) ;
for (i4; i<3; i++) {

n += SLEIGTH(sprintf (bnf+n,"%d ", i) ;
1
J

n += SLEIGTB(8printf (bnf+n,"good bye Xd now\n",4)) ;

1 I

Figure 9.3: SLENGTH

#def ine talloc(typ8 ,n) (type *) calloc(n,eizeof (type))
#define trealloc(type,ptr,n) (type *) reallloc(ptr,n,sizeof(t~r~e))

CHAPTER 9. THE VEC LIBRARY

Index

.............................. ARGS (type) 35. 125
................ Activateconstraint (function) 125

...... AddConstraintToGlobdList (function) 66. 71
................... AdvanceClock (function) 32. 125

AdvanceShlat ion (function) 23. 35. 36. 37. 43. 44.
58

............ AdvanceSimulationClock (function) 125
AdvanceTime (function) 37. 58. 59

............. ~ p p l activen notions (function) 58. 60
....... AssignJointCoanectivity (function) 88. 125

BCEEET (type) 47
BCEOLD (type) 47
BCHOLDELEV (type) 47
BCRELEASEELEV (type) 47
BCSEATED (type) 47. 48
BalanceBehavior (function) 43.44. 46
BalanceSteppingBehavior (function) 48
BindAuxDraver (function) 18. 125
BindSimulat ionFunct i o n (function) 23. 125
CHD (function) 10. 11. 24. 125
CIlDCreatePelvi~otion (function) 53. 54
COATROL (function) 21. 122. 125
CPACK (function) 32. 125
CLIHE (type) 47
CSOS (type) 47
Changeview (function) 34. 37. 125
CorputeFootBalancePoint (function) 43.44. 48
ConstraintJoints (function) 64. 66. 71. 125
C o n s t r a i n t s e t (type) 125
ConstraintSetOut Of Date (function) 70
C o u p l e (type) 93. 125
ReateFigure (function) 88. 125
CreateHoldConstraint (function) 67
DLentry (type) 100. 101. 125
DOF (type) 77. 86. 125
Def inePeabodyAssign (function) 94
Def inePeabodyBlock (function) 94
Deleteconstraint (function) 71
Deleteconstraintsets (function) 71
Docmds (function) 32. 33. 34. 125
DoKeyboardCommand (function) 34. 125
DravAllYindoos (function) 19. 125
DravMeterYindov (function) 29. 125
DravOtherVindovs (function) 18. 19. 125
DravPeabodyYindoo (function) . . 29. 30. 31. 32. 125

............. DravVindov (function) 18. 19. 29. 125
................ DravYindovs (function) 18. 19. 125

................. ~ n d ~ f f ectorsegment (function) 69
........................... Environment (type) 49

........................ EvalCmd (function) 35. 125
............ EvaluateConstraints (function) 69. 70

............. EvaluteConstraints (function) 69. 70
....... ExecuteBehaviorFunctions (function) 37. 43

................. ExecutePostActions (function) 61
... ExecutePostBehaviorFunctions (function) 37. 44

.............................. FCALOBAL (type) 47
............................... FCLOCAL (type) 47
............................... FCJIVOT (type) 47

............................ FC-RELSASE (type) 47
................................ F i g u r e s (type) 49

FindFootBalanceInterp (function) 43. 48
FindJoint (function) 89. 125
FindType (function) 26
FindWid (function) 19. 125

..................... Findwindov (function) 19. 125
Frame (type) 61

........... GenConstraintSet (function) 69. 71. 125
............. GetFigureLocation (function) 81. 125

GetGoalPoint (function) 69
................... GetGoalTranef o m (function) 69

Get JointAngles (function) 78. 125
.......... Get JointDisplacerent (function) 78. 125

........... GetSegmentGlobal (function) 75. 82. 125
G e t S i t e G l o b a l (function) 76. 81. 82. 125
GetS i teGoa l (function) 43
GetS i teLocat ion (function) 76. 125
Goalsegment (function) 69
HCPLOBAL (type) 47
H C I I P S (type) 47
HCXNEES (type) 47
HC-LOCAL (type) 47

............................ HCRELEASE (type) 47
HCSITE (type) 47

................... HandleCollisions (function) 37
Human (type) 39. 49

.......... HumanBehaviors (function) 43. 44. 45. 48
INTERP (function) 111. 113. 117. 125
InitHumanFigure (function) 41
InitHumanFigureConstraints (function) 41
In i tMenus (function) 6. 9. 125

INDEX

......... Initidlizdoal (function) 65. 69. 71. 125
............ Input (function) 10. 11. 15. 24. 53. 125

.................... InputFigure (function) 15. 125
................. InputFloat (function) 12. 15. 125

................... InputHunanFigure (function) 48
................ InputInputFile (function) 12. 125

................... ~ n p u t ~ n t (function) 12. 15. 125
..................... ~nput~oint (function) 15. 125

.................. InputUamedType (function) 24. 25
............... InputOutputFile (function) 12. 125

................... Inputsegment (function) 15. 125
Input Side (function) 58

...................... Inputsite (function) 15. 125
................ Inputstring (function) 12. 15. 125

Inputstringcompete (function) 12. 22. 125
Inputstringcomplete (function) 22. 125
Inputvector (function) 12. 125
InputVindow (function) 15. 125
IsEvent (function) 32. 34. 125
Jack . windov (function) 19. 125
Jointpath (function) 83. 125
JointPathList (function) 83. 125
LISTDATA (function) 119. 125
L-WEXT (function) 119. 125
LJREV (function) 119. 125
List (type) 83. 119. 125
LogHeg (function) 16. 125
nakef ile (function) 6. 125
Matrix (type) 114. 125
m e n u (function) 10. 125
WLnenuCmd (function) 10. 35. 125
KLPeabodyTree (function) 82. 125
notion (type) 51
noveConstraint (function) 23.42. 43
WoveTransf om. (function) 125
HoveTransf o m (function) 22. 23. 34.37. 42.43. 125
EamedType (type) 24.25. 44
Ueoconstraint (function) 66. 71
~ewConstraints (function) 66. 125
tiewconstriant (function) 66. 125
UewJoint (function) 88. 125
~ e w ~ o t ion (function) 54. 58
Iterrsegment (function) 88. 125
Yewsite (function) 88. 125
IiewUindow (function) 19. 20. 125
ObjectiveType (type) 64. 125
Orderconstraints (function) 69. 125
Orientparam (type) 65. 125

................................ PCEEET (type) 47

................................ PCHOLD (type) 47
Peawin (type) 30. 125
PeaUinHandler (function) 34. 125
Peakey (type) 94. 95. 125

.................. PelvisHotion (type) 53. 54. 55

............. PelvisSteppingBahavior (function) 48
Pick (function) 37. 38. 125
PosParam (type) 64. 125
Positionchain (function) 70. 71

.................... Psurf lodes (function) 99. 125
Psurf Inertia (function) 105. 125
R (keyword) 86. 125
RGBmode (function) 29. 125
ReadEnvironment (function) 83. 84. 125
ReadFigure (function) 83. 84. 126

.......... ReadPeabodyStatement (function) 84. 126
ReadPeabodyString (function) 84. 126

.............. RecordArguent (function) 24. 53. 54
............... RecordArgumentString (function) 24

.................... RootBehavior (function) 44. 47
....................... Rotatepelvie (function) 54

SHIFT (function) 21. 126
SLEUGTH (function) 123. 126

......................... SUPLEFTSOOT (type) 47
....................... SUPLOVER-TORSO (type) 47

SUPRIGHT3OOT (type) 47
SaveFrame (function) 61
ScreenBuf (function) 17. 126
Screenhg (function) 17. 126

........ SegmentSegmentDistance (function) 93. 126
........... SetActiveHoldConstraints (function) 67

SetBalanceControl (function) 44. 47. 48
.......... SetConstraintDisplacement (function) 68

............ SetConstraintStatus (function) 68. 71
Setbenttime (function) 61. 62
SetFigureLocation (function) 23. 81. 126
SetPigureRoot (function) 81. 126
SetFigureSupport (function) 44. 47
SetPootControl (function) 47
Sethame (function) 61
SetHandControl (function) 47
SetHoldConstraint (function) 67. 68
SetJointAngles (function) 78. 82. 126

.......... Set JointDisplacement (function) 78. 126
................ Set JointLimitSpring (function) 67

SetPelvisControl (function) 47
SetPref erredhgle (function) 67
SetSiteGlobal (function) 81. 126
SetSiteLocation (function) 23. 76. 126
SetToreoControl (function) 47
SimFunc (type) 23. 126
SimulateUntilEvent (function) 32. 33. 37. 126

............... Simulat ionUntilEvent (function) 34
SolveConstraint (function) 69
Solveconstraints (function) ... 63. 69. 70. 71. 126
StatusError (function) 16. 17. 126
Status&g (function) 15. 126
statuspause (function) 16. 126

............. SwapVindowBuf f era (function) 19. 126

INDEX

.............................. T (keyword) 86. 126
TCHOLD (type) 47
TCSOEE (type) 47
TCSETPARAM (type) 47

........................... TC-VERTICAL (type) 47
....................... Transf o m (type) 116. 126

........ TraverseEnvironment (function) 30. 32. 126
............................ TypeName (function) 26
........................... Typelames (function) 26

............... UnBindAuxDra~er (function) 18. 126
...... UnBindSimulationFunct ion (function) 23. 126

............ Update ActiveWotions (function) 58. 60
....... VALUE (type) 10. 15. 35. 64. 84. 92. 95. 126

..................... VALUETYPE (type) 35. 38. 126
............................ VJACE (type) 64. 126

VAATRIX (type) 23. 35. 41. 64. 67. 69. 126
VJODE (type) 64. 126

...................... VdUnBER (type) 15. 35. 126
VSITE (type) 64. 126
VSTRIEG (type) 15. 35. 126
VJNDEF (type) 15. 35. 126
VJJMSUPPLIED (type) 15. 35. 126
Vector (type) 112. 126
Vert icalizeTorso (function) 44
WaitForEvent (function) 21. 34. 126
VaitForKeyEvent (function) 21. 34. 126
UaitForHouseEvent (function) 21. 126
VaitUntilEvent (function) 21. 34. 126
VriteEnvironment (function) 91. 126
VriteEnviroxmentFile (function) 91. 126
3 o s d g e (function) 107
addcircl is t (function) 119. 126
appendcirclist (function) 119. 126
a t t r i b u t e (type) 103. 122. 126
axisangletomatrix (function) 115. 126
a x i s c o l o r (variable) 3 1. 126
bend torso (command) 41. 42
blockfunc (function) 94
change motion (command) 53
c i r c l i s t i t e r a to r (function) 119. 120. 121. 126
c i rc l i s t length (function) 120. 126
cononnormal (function) . ' 119. 126
cpack (function) 28. 32. 101. 126
cpratr ix (function) 115. 126
cpvector (function) 113. 126
create pelvis motion (command) 53
crossproduct (function) 113. 126
deletecircl is tdata (function) 122. 126
devname (function) 21. 126
drawedgedl (function) 101. 126
draoreach (function) 71
dupval (function) 87. 126
edges (type) 98. 126
eqmat (function) 115. 126

.......................... error (function) 17. 126
evalval (function) 85. 87. 126
f aces (type) 98. 126

..................... fprintmat (function) 115. 126
........................... func (function) 35. 126
........................... f u n c a l l (type) 86. 126

furitepsurf (function) 108. 126
genedgedl (function) 100. 126

.......... getkeyboardstring (function) 21. 34. 126
getmatrix (function) 81. 82. 126
getpsurffielde (function) ... 98. 99. 102. 109. 126

.......... gets (function) .-. 21. 126
gettimestamp (function) 101. 122. 126
hmatmult (function) 117. 126
homogenize (function) 117. 126
idmat (variable) 114. 126
inf omsg (function) 17. 126
inputparams (function) 24. 54
inser tc i rc l i s t (function) 119. 126

.................... interactive reach (command) 23
i n t e r n a l (type) 88. 126
inverthomomatrix (function) 117. 126
invertmatrix (function) 115. 117. 126
ishomo (function) 117. 126
ispealrey (function) 90. 126
isvowel (function) 122. 126

................ keep torso ver t ica l (function) 41
............... legalizepeaname (function) 90. 126

l i g h t (keyword) 90. 126
......... l ine-tof acedistance (function) 106. 126

linterpmatrix (function) 54. 117. 126
lmbind (function) 102. 126
loadmatrix (functi.on) 81. 126
l oca t ion (keyword) 81. 95. 126
r a in (function) 9. 28. 126
ma jorgridcolor (function) 31. 126
ratmult (function) 82. 115. 117. 126
matrixtoq (function) 118. 126
mattorot (function) 116. 126
menu.c (function) 7. 9. 126
minorgridcolor (function) 31. 126
move figure (command) 23. 41
move foot (command) 41.43. 48
move site (command) 23
multmatrix (function! 81. 126
namer (function) 38. 126
nodes (type) 98. 126

........................ pelvisapply (function) 53
................. pelvisinputparams (function) 53

.................. pelvispostaction (function) 53
................... pelvispreaction (function) 53

................ pelvis~ecordparams (function) 53
.................... perspective (function) 31. 126

........................... pick (function) 38. 126

INDEX

........ plane-to3 acedistance (function) 106. 126
................. planelineint (function) 119. 126

......................... play frames (command) 61
...................... popmatrix (function) 81. 126

...................... printmat (function) 115. 127
.................... pro jectfunc (function) 31. 127

.................... psurfedges (function) 100. 127
........... pt-to3 acedistance (function) 106. 127

..................... puatmatrix (function) 81. 127
qread (function) 20. 21. 127

..................... qtomatrix (function) 118. 127
rayfaceintersection (function) 107. 127

...... readpsurf (function) 104. 105. 107. 108. 127
record frames to vdisk (command) 61
recordparamei (function) 54
reaetressagetimer (function) 17. 127
scale (keyword) 85. 127
scanf (function) 21. 127
acreexdines (function) 17. 127
sueerusg (function) 17. 127
segmentpicklist (function) 38. 127
setlighting (function) 32. 127
aettreetraverslf lags (function) 83. 127
sitepicklist (function) 38. 127
sortcirclist (function) 120. 127
sprintdisplacement (function) 91. 127
sprintf (function) 122. 123. 127
sprinttransf o m (function) 92. 127
aprintvalue (function) 92. 127
swabuff era (function) 18. 127
swapbuff era (function) 19. 127
talloc (function) 123. 127
t imef ormessage (function) 17. 127
trann (keyword) 23. 85. 127
transf ormpsurf (function) 105. 127
transtomatrix (function) 115. 127
trarerseenvfronoot (function) 83. 127
trarermeenvfroraite (function) 83. 127
treedrawsegment (function) 30. 32. 127
treedrawsite (function) 30. 32. 127
type (type) 47. 79. 127
unitize (function) 113. 127
updateconstr (function) 23. 42
valtostring (function) 87. 127

................ valtostringvec (function) 87. 127
valtovec (function) 87. 127
vecinterp (function) 113. 127
vecmulto (function) 114. 127
vecrult (function) 113. 127
vecrot (function) 114. 127

................. velocitycontrol (function) 52. 54
view (function) 66. 127
void (type) 32. 127

.................. weightf unction (function) 52. 54

windoseventhandler (function) 34. 127
winopen (function) 20. 127
winset (function) 20. 29. 127
xvritepsurf (function) 108. 127
xyz (keyword) 85. 127
xyztomatrix (function) 115. 127
zappsurf (function) 108. 109. 127

	Programming With Jack (Fourth Edition)
	Recommended Citation

	Programming With Jack (Fourth Edition)
	Abstract
	Comments

	tmp.1187102640.pdf.MD3yP

