
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1991

Model Based Teleoperation to Eliminate Feedback Delay NSF Model Based Teleoperation to Eliminate Feedback Delay NSF

Grant BCS89-01352 First Report Grant BCS89-01352 First Report

Richard P. Paul
University of Pennsylvania

Janez Funda
University of Pennsylvania

Simeon Therry
University of Pennsylvania

Thomas Lindsay
University of Pennsylvania

Masahiko Hashimoto
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Richard P. Paul, Janez Funda, Simeon Therry, Thomas Lindsay, and Masahiko Hashimoto, "Model Based
Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 First Report", . January 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-02.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/394
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F394&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/394
mailto:repository@pobox.upenn.edu

Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352
First Report First Report

Abstract Abstract
We are conducting research in the area of teleoperation with feedback delay. Delay occurs with earth-
based teleoperation in space and with surface-based teleoperation with untethered submersibles when
acoustic communication links are involved. the delay in obtaining position and force feedback from
remote slave arms makes teleoperation extremely difficult. We are proposing a novel combination of
graphics and manipulator programming to solve the problem by interfacing a teleoperator master arm to
a graphics based simulator of the remote environment coupled with a robot manipulator at the remote,
delayed site. the operator's actions will be monitored to provide both kinesthetic and visual feedback and
to generate symbolic motion commands to the remote slave. the slave robot will then execute these
symbolic commands delayed in time. While much of a task will proceed error free, when an error does
occur the slave system will transmit data back to the master and the master environment will be "reset" to
the error state.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-02.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/394

https://repository.upenn.edu/cis_reports/394

Model Based Teleoperation To
Eliminate Feedback Delay
NSF Grant BCS89-01352

(First Report)

MS-CIS-91-02
GRASP LAB 248

Richard P. Paul
Janez Funda

Simeon Thierry
Thomas Lindsay

Masahiko Hashimoto

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

January 1991

Model Based Teleoperation to
Eliminate Feedback Delay
NSF Grant BCS89-01352

First Report

Richard P. Paul
Janez Funda Thomas Lindsay

Simeon Thierry Masahiko Hashimoto

The University of Pennsylvania
GRASP Laboratory

Philadelphia PA 19104

ABSTRACT

We are conducting research in the area of teleoperation with feed-
back delay. Delay occurs with earth-based teleoperation in space and
with surface-based teleoperation with untethered submersibles when
acoustic communication Links are involved. The delay in obtaining po-
sition and force feedback from remote slave arms makes teleoperation
extremely difficult. We are proposing a novel combination of graphics
and manipulator programming to solve the problem by interfacing a
teleoperator master arm to a graphics based simulator of the remote
environment coupled with a robot manipulator at the remote, delayed
site. The operator's actions will be monitored to provide both kines-
thetic and visual feedback and to generate symbolic motion commands
to the remote slave. The slave robot will then execute these symbolic
commands delayed in time. While much of a task will proceed error
free, when an error does occur the slave system will transmit data
back to the master and the master environment will be "reset" to the
error state.

Contents

1 Introduction 1

2 Current Research 5

3 Talks and Presentations 6
References.. 7

A APPENDICES 10
A. 1 Teleprogramming: Overcomming Communication Delays in

Remote Manipulation . 11
A.2 Robot Slave System . 107

1 Introduction

We are conducting research in the area of teleoperation with feedback delay.
Delay occurs with earth-based teleoperation in space and with surface-based
teleoperation with untet hered submersibles when acoustic communication
links are involved. The delay in obtaining position and force feedback from
remote slave arms makes teleoperation extremely difficult. We are proposing
a novel combination of graphics and manipulator programming to solve the
problem by interfacing a teleoperator master arm to a graphics based sim-
ulator of the remote environment coupled with a robot manipulator at the
remote, delayed site. The operator will work without delay in this displayed
environment. The operator's actions will be monitored to provide both kines-
thetic and visual feedback and to generate symbolic motion commands to the
remote slave. The slave robot will then execute these symbolic commands
delayed in time. While much of a task will proceed error free, when an error
does occur the slave system will transmit data back to the master and the
master environment will be "reset" to the error state. From this point, the
operator will correct the error by some alternative operations.

There is a clearly established need and corresponding capability to per-
form work remotely [I] [2]. Teleoperators were developed with the advent of
the nuclear industry and have been used extensively since their development
in 1945 [3]. A problem occurs, however, when teleoperation is attempted if
there is delay between commands from the master arm and the response from
the slave arm [4] [5] . Such problems occur when the operator, controlling the
master arm and observing the slave (with a delay between command and
response), attempts to bring the slave into contact with an object. When
contact is perceived and motion of the master is stopped, the slave continues
to move during the delay, causing a potentially damaging interaction. If a
liquid is being poured and the master arm is lifted to stop the flow when the
correct quantity is observed to have been poured, the slave continues to pour
for the full extent of the time delay. Any delay in the feedback loop makes
it very difficult to control such processes [3] [6].

Approaches to solving the delay problem involve slowing down the motion
so as to minimize the effect of the delay [6] and on strengthening the slave
arm and the objects with which it works in order to avoid damage. It has
been shown that delays of the order of one second can produce instability and
can dramatically slow down the performance of even the simplest tasks, such

as driving a vehicle [6]. With delays corresponding to 10 seconds, predicted
for the Telerobotic Servicer working in synchronous orbit, for autonomous,
deep underwater vehicles relying on low bandwidth acoustic communication,
the control problem will become severe [7]. Proposed solutions to this prob-
lem include predictive displays [8] and the use of automated, sensor-driven
programs [9] to accomplish the interactive parts of task performance.

We do not believe that either approach will prove satisfactory. While
a totally autonomous manipulative capability would solve the problem, its
realization is beyond the state of the art of robotics. We are combining
computer graphics and sensing with teleoperation and robotics to solve the
problem.

The use of sensors, such as vision or dense range, to produce a high
level three-dimensional scene description consisting of such objects as edges,
planes, vertices, is within the state of the art in computer vision [lo] [ll] [12].
It has also been demonstrated that an operator can interactively match such
a description of a scene to a CAD model. We generate and display such a
CAD image and have interfaced a six-degree-of-freedom input device to the
display such that we can also display and move an image of a remote slave
arm and any object that it is carrying.

We then monitor the position of the slave arm to detect penetration of
any work objects by the slave arm or by any object it is carrying. When
this occurs, we backdrive the input device (PUMA 250) so as to maintain
positional and orientational correspondence between the input master device
and the image.

With the first two capabilities in place, We can feel, kinesthetically, the
objects represented in the display. When the inside of a box is displayed we
can feel along a surface to a corner between two surfaces; we can slide along
the edge into the corner of the box; we could can close our eyes and feel
the displayed object. The combination of the visual display of a scene with
kinesthetic feedback from the scene provides an extremely strong telepres-
ence. The operator can really feel that she/he is "there."

Our current research is to detect motion of the input CAD manipulators
and their contact with the image, together with forces the operator might
exert on the objects in the image, and to turn these into symbolic motion
commands [13]. For example, the operator might bring the slave arm into
contact with a surface and then slide along it until the arm is brought into
a corner between two surfaces. As we detect the collision with the surface

and detach motion in the surface normal direction we can issue symbolic
instructions:

move to <xyz, where contact occurred> while monitoring force
in surface normal direction;

on detection of force comply with surface in normal direction and
exert force <observed to have been exerted by operator>

move along surface to <xyz position where corner is detected>
while monitoring force in direction of corner.

The above statements may be represented in any number of robot program-
ming languages [14]. We believe that, given some general task description,
and by monitoring the image and detecting interactions, we can generate
such robot program statements. A task description will also simplify the im-
age interactions, which must be monitored in real time. We propose to use
input such as " moving into the corner of the box " to alert us that contact
between the arm and the box is to be expected and that it will be in the
vicinity of the corner. This type of mixed command interface is known as
hybrid analog/symbolic interface [15]. This approach vastly reduces our task
of detecting and monitoring image interactions. In the context of the box
example, for instance, we would also expect sliding motions in the general di-
rection of the corner. Such task information is a natural component of team
procedures where the team leader announces intended operations before their
execution is commenced such that other team members can take supportive
action. We would see that this form of input would involve voice recogni-
tion, although we will limit ourselves to text string input corresponding to a
reasonable transformation of potential speech input.

Notice that the robot programming commands do not include any con-
ditionals such as '5f a happened then do b else do c." These conditionals
plague robot programming in which a situation must be anticipated and ev-
ery possible outcome of an action predicted and programmed. As any robot
programmer knows, it is impossible to account for everything that can hap-
pen during task execution, especially when one realizes that the corrective
action for every error will itself involve errors - a hopeless situation [16].

The symbolic robot commands describing the operations that are being
performed on the image can then be executed by a slave manipulator at a
remote site. Notice that the time delay between the operator input and the

slave execution may be quite arbitrary; the slave is simply following along as
if someone were sitting at a terminal writing a program and executing it line
by line.

Of course, something might not work in the slave's world as it did in
the image world. At this point we would alert the operator by "flashing"
the image and then returning the display to the point at which the slave
is "hung-up." We would also change the constraints on the input device to
correspond to the situation the slave has detected. The operator would then
try some other actions to move ahead in the task. Once again, these actions
would be translated into symbolic robot commands and sent to the slave.
We have not yet started on this final component of our proposed research:
to provide feedback from the slave to the image modifying the state of the
input device to represent the current situation.

We believe that our system will facilitate teleoperation with feedback
time delay by providing a very natural interaction between the operator and
an image of the task. This interaction involves immediate, simultaneous
visual and kinesthetic feedback from a model of the task. The system allows
for considerable feedback time delays limited only by the extent that the
operator is allowed to move ahead of actual task execution. The system
provides kinesthetic feedback, determined to be essential in the teleoperator
industry back in 1948 [I], and eliminates the need to write elaborate robot
manipulator programs attempting the impossible task taking account of any
possible error.

Application of such technology to undersea manipulation would free us
from the need to maintain wide bandwidth communications between an op-
erator and the vehicle. While it appears possible to eliminate vehicle tethers
based on energy considerations [li'], it is still impossible to eliminate the
tether based on manipulation control considerations due to the delays in
bringing acoustic signals to the surface. Operators must either be in the
vehicle or in a surface ship at the end of a tether. With the proposed tech-
nology it would be possible to drop a submersible from a plane together with
an acoustic relay buoy and then to control operations at the ocean bottom
remotely over a radio link from either the plane or the shore. The princi-
pal cost saving is, of course, the elimination of the need for a surface ship
maintaining station during the entire underwater operation. Secondary cost
savings relates to the elimination of the tether and the possibility of working
in environments in which the tether might become tangled, also the possibil-

ity of using more than one submersible in the same working area when the
control of tethers becomes impossible [IS].

Cost justification for work in shallow space relate to the possibility of
eliminating the need for an astronaut on EVA to perform the task, vastly
reducing the cost involved.

2 Current Research

During the first year of the grant we have made substantial progress with
the master station. We have built a data base using the Jack graphics sys-
t em [19]. Simeon Thierry, representing the the Laborat oire d' Automat ique
et d7Analyse des Systemes with whom we are jointly conducting this research,
developed the distance algorithm based on the approach of Gilbert [20] so
that we could monitor collisions between objects. A small PUMA 250 robot
manipulator was interfaced to the Sun control computer to act as the kines-
thetic master input device. A Lord force/torque sensor, located at the wrist
of the manipulator, was also interfaced to the Sun as part of the master.
Programs have been written, running on both the Sun and the Jiffe proces-
sors [21] to control the image of the slave robot by means of the kinesthetic
input device. See Appendix A.1. The kinesthetic input is quite dramatic
providing a good sense of "telepresence," The operator can both see and feel
what is going on in the simulation of the remote site.

We have also been working on the slave robot system. An initial inter-
preter was developed to run the robot fitted with the passively compliant
wrist, developed here by Yangsheng Xu [22]. The wrist allows us to come
into contact with the environment and to control forces of interaction. We
are currently modifying this system to provide a communications link to the
Master system and will provide a simple demonstration of the total system
before the end of the summer. See Appendix A.2. This system is based on
an intermediate language which will be generated at the master station as
the task is performed in simulation and interpreted on receipt by the slave
system. Masahiko Hashimoto, visiting from Japan, is working on the inter-
mediate form and its parsing using yacc.

We have established connections with International Submarine in Van-
couver, Canada and are discussing the possibility of a demonstration experi-
ment on their autonomous vehicle in the third year of the grant. We have also

established connections with Monash University in Melborne, Australia and
are jointly supervising a project to develop a low cost, low speed manipulator
suitable for either AUV's of small ROV's.

3 Talks and Presentations

1. Richard P. Paul, February 1990, Carnegie-Mellon University, "Manip-
ulation in Unstructured Environments," invited talk.

2. Richard P. Paul, March 1990, LAAS Toulouse, "Teleprogramming: A
Basis for Programming Robots and Teleoperators," invited talk.

3. Richard P. Paul, March 1990, Univeristy of British Columbia, "Manip-
ulation in Unstructured Environments," invited talk.

4. Richard P. Paul, Janez Funda, Simeon Thierry, Thomas Lindsay, June
1990, Intervention '90 Conference, Vancouver, Canada, "Teleprogram-
ming for Autonomous Underwater Manipulation Systems ," conference
paper.

5. Richard P. Paul, July 1990, IROS '90 Conference, "Manipulation in
Unstructured Environments," tutorial lecture.

References

[l] Ray C. Goertz. Manipulators used for handling radioactive ma-
terials. In E. M. Bennett, editor, Human Factors in Technology,
chapter 27, McGraw Hill, 1963.

[2] Robert W. Corell. Closing summary. In The Fifth International
Symposium on Unmanned, Untethered Submersible Technology,
pages 618-625, Marine Systems Engineering Laboratory, Univer-
sity of New Hanpshire, June 1987.

[3] T. B. Sheridan. Telerobotics. In Workshop on Shared Autonomous
and Teleoperated Manipulator Control, 1987. IEEE International
Conference on Robotics and Automation.

[4] W. R. Ferrell. Delayed force feedback. IEEE Trans. Human Fac-
tors in Electronics, 449-455, October 1966.

[5] W. R. Ferrell and T. B. Sheridan. Supervisory control of remote
manipulation. IEEE Spectrum, 81-88, October 1967. 4-1 0.

[6] W. R. Ferrell. Remote manipulation with transmission delay.
IEEE Trans. Human Factors in Electronics, 1965. HFE-6, 1.

[7] Marine Systems Engineering Laboratory. The Fifth International
Symposium on Unmanned, Untethered Submersible Technology.
University of New Hanpshire, 1987.

[8] M. Noyes and T . B. Sheridan. A novel predictor for telemanip-
ulation through a time delay. In Proc. Annual Conf. on Manual
Control, Moffett Field, CA: NASA Ames Research Center, 1984.

[9] F . Schenker, R. French, and A. Sirota. The nasa/jpl telerobot
testbed : an evolvable system demonstration. In IEEE Interna-
tional Conference on Robotics and Automation, March 1987.

[lo] Martin Herman. Generating detailed scene descriptions from
range images. In IEEE International Conference on Robotics and
Automation, pages 426-431, 1984.

[ll] C. I. Connolly, J. L. Mundy, J . R. Stenstrom, and D. W. Thomp-
son. Matching from 3-d range models into 2-d intensity scenes.
In IEEE First International Conference on Computer Vision,
pages 65-72, 1987.

[I21 David R. Smith and Takeo Kanade. Autonomous scene descrip-
tion with range imagery. Computer Vision and Graphics Image
Processing, 3 1, September 1985.

[13] Richard P. Paul. Sensors and the off-line programming of robots.
In Proceedings of 1983 International Conference on Advanced
Robotics, pages 307-312, Tokyo, JAPAN, September 1983.

[14] Richard P. Paul. WAVE: a model-based language for manipulator
control. Industrial Robot, 4(1):10-17, March 1977.

[15] Antal K. Bejczy. Data-driven automation in remote applications
of robots. In Workshop on Shared Autonomous and Teleoper-
ated Manipulator Control, 1988. IEEE International Conference
on Robotics and Automation.

[16] Richard P. Paul. Programming languages for manipulation. In
G. Saridis, editor, Advances in Automation and Robotics: Theory
and Applications, JAI Press, 1983.

[17] Marilyn Niksa. Aluminum-oxygen batteries as power sources
for submersibles. In The Fifth International Symposium on
Unmanned, Untethered Submersible Technology, pages 121-127,
Marine Systems Engineering Laboratory, University of New
Hanpshire, June 1987.

1181 Richard P. Paul and Georges Giralt. An autonomous sensor-
controlled manipulation capability for an untethered, unmanned,
submersible. In Proceedings of AUVS-88, June 1988.

[19] Cary B. Phillips and Norman I. Badler. Jack: a toolkit for manip-
ulating articulated figures. In Proceedings of ACM/SIGGRAPH
Symposium on User Interface Software, Banff, Alberta, Canada,,
1988.

[20] E.G. Gilbert, D.W. Johnson, and S.S Keerthi. A fast procedure for
computing the distance between objects in three space. In IEEE
International conference on Robotics and Automation, 1987.

[21] R. L. Andersson. Computer architectures for robot control: a
comparison and a new processor delivering 20 real Mflops. In
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1162-1 167, 1989.

[22] Yangsheng Xu and Richard P. Paul. Hybrid position force con-
trol of robot manipulator with an instrumented compliant wrist.
In V. Hayward and 0. Khatib, editors, Experimental Robotics 1,
Lecture Notes in Control and Information Science, pages 244-270,
Springer-Verlag , 1990.

A APPENDICES

A.l Teleprogramming: Overcomming Communi-
cation Delays in Remote Manipulation

'l'eleprogramming:
Overcoming communication delays in remote

manipulation

Janez F'unda
GRASP Laboratory

Computer and Informat ion Science Department
University of Pennsylvania

Dissertation Proposal
Supervised by Dr. Richard P. Paul

June 14, 1990

Contents

1 Introduction 1

2 Problem Statement 3

. 2.1 Communication delays 3

. 2.2 Communication delays and task performance 3

. 2.3 Communication delays and telepresence 4

. 2.4 Resea.rch goals 5

3 Related Work and State of the Art 6

. 3.1 Overcoming communication delays 6

. 3.2 Kinestheticfeedback 8

. 3.3 Programming robots 9

4 Outline of the Proposed Solution 12

. 4.1 Approach 12

. 4.2 Modeling the environment 13

. 4.3 Controlling the motion of the slave 14

. 4.4 Generating kinesthetic feedback 15

. 4.5 Aiding the operator 16

. 4.6 Generating remote slave motion commands 17

. 4.7 Using task information 17

. 4.8 The remote workcell 18

. 4.9 Error handling and model consistency 19

. 4.10 Summary and applications 20

5 The Graphical Simulator 2 4

. 5.1 The polyhedral model 24

. 5.2 The simulation technique 24

. 5.3 Distance computation 25

. 5.4 Collision detection 28

. 5.5 Contact type determination 29

. 5.6 Constraint information 30

. 5.7 Contact type transitions 32

6 Computing Kinest hetic Feedback

. 6.1 Classification of allowable motions

. 6.2 Free space motion

. 6.3 Contact motion

. 6.3.1 Types of contact

. 6.3.2 Constraint normals

. 6.3.3 Kinesthetic feedback and graphics

. 6.3.4 Contact motion modes - overview

. 6.3.5 'Freeze' mode

. 6.3.6 'Slide' mode - single contact

. 6.3.7 'Slide' mode - multiple contacts

. 6.3.8 'Pivot' mode - single contact

. 6.3.9 'Pivot' mode - multiple contacts

. 6.4 Pushing

. 6.4.1 Single-contact pushing

. 6.4.2 Multiple-contact pushing

7 Filtering Operator's Motions

8 Generating Symbolic Slave Commands

. 8.1 Types of motion commands

. 8.2 Task frame specification

. 8.3 Motions to keep contact

. 8.4 Motions to change contact

. 8.4.1 Sliding case

. 8.4.2 Pivoting case

9 Contribution of This Work

10 Current Status

. 10.1 The experimental hardware/software testbed

. 10.2 Preliminary results and discussion

11 Proposed Work Plan

A Notation and Coordinate Transformations 1

. A.l Notation. i

A.2 Coordinate frames and rotational matrices 1

. A.3 Mapping rotations between frames ii
. .

A.4 Displacement of a point due to motion of the frame 11

...
B The symbolic command language 111

. B.l Task frame management iii

. B.2 Force control commands iv

. B.3 Motion commands v

. B.4 Effector commands vi

. B.5 Issues vi

C Independence of the torque measurement site v i

List of Figures

Total task completion time versus task length for elementary task

length t = 1 sec and different values of the communication delay r
. (in seconds)

. Interpretation of the force/torque sensor readings

Total task completion times versus task length r = 10 sec. t = 1 sec.

and three different values of n . Note that n = 1 corresponds to the

. move-and-wait strategy

. Overview of the proposed solution

edgelface --+ faeelface + edgelface contact type transition
. Types of polyhedral contacts

Constraint normals for the three types of polyhedral features
Single-contact sliding .

. Multiple- contact sliding

Tangential and contact frames .
Computing AOy of the contact frame
Single-contact pivoting - line contact
Single-contact pivoting - plane contact
Multiple-contact pivoting .

. Single-contact pushing

Trajectory filter - the "closeness test"
Changes of contact during a sliding motion
Transition between two vertex/face contacts
The hardware architecture of the experimental testbed

. The operator's station

1 Introduction

Modern industrial processes (nuclear, chemical industry), public service needs (fire-

fighting, rescuing), and research interests (undersea, outer space exploration) have

established a clear need to perform work remotely. Whereas a purely autonomous

manipulative capability would solve the problem, its realization is beyond the state

of the art in robotics [Stark et a1.,1988]. Some of the problems plaguing the deve-

lopment of autonomous systems are: a) anticipation, detection, and correction of

the multitude of possible error conditions arising during task execution, b) develop-

ment of general strategy planning techniques transcending any particular limited

task domain, c) providing the robot system with real-time adaptive behavior to

accommodate changes in the remote environment, d) allowing for on-line learning

and performance improvement through "experience", etc. The classical approach

to tackle some of these problems has been to introduce problem solvers and expert

systems as part of the remote robot workcell control system. However, such systems

tend to be limited in scope (to remain intellectually and implementationally man-

ageable), too slow to be useful in real-time robot task execution, and generally fail

to adequately represent and model the complexities of the real world environment.

These problems become particularly severe when only partial information about the

remote environment is available.

Consequently, teleoperators remain the most reliable option for performing work

remotely, in hazardous circumstances, and in unstructured (or partially structured)

environments [Hayati et a1.,1990]. Teleoperators were developed with the advent

of nuclear industry in the mid 1940's and have since found applications in many

other areas, such as undersea resource exploration, waste management, and pollu-

tion monitoring, as well as in outer space for sample acquisition, satellite deployment

and repair, etc. From the early prototypes which provided for mechanical linking

of kinematically similar master and slave arms [Goertz,1963], teleoperators have

evolved into sophisticated systems, offering substantial dexterity of manipulation at

maximum convenience to the operator [Ballard,1986], [NASA,1988], [Schenker,l987],

[Hirtzinger719S9]. These systems feature dissimilar master and slave manipulators,

where each is custom-designed to best perform its function, high bandwidth com-

munication between the master and slave sites, high fidelity stereo visual feedback

2 1 INTRODUCTION

from the remote site, as well as force-reflecting, bilateral servo control to allow the

operator to kinesthetically "feel" the interactions of the slave arm with its envi-

ronment. The combination of the above affords the operator an effective working

environment and a good sense of telepresence, i.e., the illusion that she is actively

present in the remote environment.

This document is organized as follows: Section 2 defines the problem that we

are addressing. Related work and the current state of the art in the field of remote

manipulation are described in Section 3. Section 4 introduces the basic modules

of the proposed conceptual architecture, whereas Sections 5-8 address separate

components in more detail. The graphical simulation module is described in Sec-

tion 5. The section presents the simulation technique and offers some detail on the

manner in which distances between objects in the simulated (slave) environment

are monitored and collisions, as well as contact types, are identified. In Section 6

we introduce the envisioned operator-machine interface and describe the manner

in which we compute a real-time approximation to the (delayed) actual kinesthetic

feedback. Section 7 proposes a simple G degree-of-freedom (DOF) filter to smooth

the operator supplied motion trajectories, whereas Section 8 describes the method-

ology for partitioning the task in progress and generating a sequence of symbolic

command strings to be executed by the remote slave.

2 Problem Statement

2.1 Communication delays

The above scenario of teleoperation assumes high-speed, high-bandwidth commu-

nication between the operator's station and the remote site. While this can be

achieved for most land-based close proximity telerobotic applications, it becomes

a problem when the master and slave sites are separated by a large distance (e.g.,

earth - moon) and/or are forced to communicate over a limited bandwidth com-

munication link (e.g., acoustic link to an underwater manipulator) [Ferre11,1966],

[Ferrell&Sheridan,l967]. Under such circumstances, both the instructions to the

slave manipulator (desired velocities and forces) and the feedback from the slave

back to the operator (visual and kinesthetic information) are delayed. This, clearly,

will adversely affect the efficiency and "fluidity" of task performance, as the result

of the operator's motion commands to the slave is not known to her until a commu-

nication delay later. A typical operator's response under such circumstances is to

adopt a "move-and-wait" strategy ([Ferre11,1965], [Ferre11,1966]), where the operator

repeatedly issues small motion commands and then waits for the feedback (resulting

state) from the remote environment.

2.2 Communication delays and task performance

To illustrate the delay problem in more concrete terms, consider a situation where we

are teleoperating in the presence of a (one-way) time delay r, due to the combination

of transmission delay and limited bandwidth. Let A denote a task, which takes Task
time to execute without delay, by executing elementary task commands, each of

which takes on average t time to execute. Then it can be shown, that the total

time to execute the task in the delayed environment by using the move-and-wait

approach, is

Figure 1 illustrates the effect of communication delays on the total task com-

pletion time using the move-and-wait strategy (t = 1 sec). Thus, if we consider

a twenty minute task (T,,,, = 20 min) with an elementary task execution time of

1 second (t = 1 sec) and with a transmission delay time of 10 seconds (r = 10

Total Completion Time vs Task Length
800

task length [min]

Figure 1: Total task completion time versus task length for elementary task length

t = 1 sec and different values of the communication delay r (in seconds).

sec), then the total time to execute task A would be 7 hours! Clearly this is not

satisfactory.

2.3 Communication delays and t elepresence

As we have seen, time delays can severely reduce the efficiency of task performance

by forcing the operator to wait. Moreover, delays can also degrade or even destroy

the sense of telepresence, which is essential for fluid and confident teleoperation.

This is particularly true when the slave manipulator is in contact with the environ-

ment. Clearly, both the video signal and the information about the forces experi-

enced by the slave arm are going to be delayed by 2r. While delays in both cases

cause a problem, the delay in the latter signal has been shown to be perceptually

more significant in contact manipulation [Ouh-young,l989]. Physiological studies

have shown that the neurological control of normal human movements operates at

the rate of approximately 5 Hz [Stark,1987] and that a time delay of 300 ms (z 113

sec) is clearly perceptible to humans [Stark&I<im,l988]. Consequently, feedback

delays approaching the one second level have severe destabilizing effects on the per-

2.4 Research goals 5

formance of a human operator relying on this feedback information [Ferre11,1966],

[Black,1971], [Bejczy&Kim,l990].

Unfortunately, in space and undersea applications, communication delays often

exceed this threshold. Round-trip communication link delays between the ground

station and a slave workcell in low earth orbit (e.g., Space Shuttle) are normally in

the 2 - 8 second range, depending on the number of intermediate geosynchronous

satellite relay stations, the exact nature of the computer processing/buffering at the

sending and receiving stations, etc. [Kim et a1.,1990], [Sheridan,l990]. If teleoper-

ation is to be performed in shallow space (e.g., moon), then delays approaching or

exceeding 10 seconds should be expected. Similarly, substantial delays arise when

remote control of autonomous underwater vehicles (AUV) is employed to avoid the

problems of dragging and tangling power/control tethers. Acoustic communication

links are normally established between the AUV and the surface ship (or land-

based operator station), and with the sound transmission underwater being limited

to 1460 m/s, a round-trip time delay over a distance of 1 mile exceeds 2 seconds

[Sheridan,l990].

2.4 Research goals

The goal of this research is to address the issue of communication delays in tele-

robotics and to propose, as well as test, some ideas which may help alleviate the

problem. As basic control theory tells us, sustained, stable closed-loop control over a

finite time delay is not possible [Sheridan,l990]. However, various control strategies

and ways of sharing the necessary control functions between the remote site and

the ground station in a remotely controlled robotic system are possible, which can

dramatically improve our chances of being able to perform useful and effective work

over large distances. We will in this work propose a possible solution to this prob-

lem, based on a notion of teleprogramming the remote robotic workcell. The basic

components of the system will include a high-quality predictive display, real-time

extraction of approximate kinesthetic feedback from the graphical simulation, and

automatic generation of elementary task commands to be sent to the slave. The

proposed solution is detailed in Section 4.

6 3 RELATED WORK AND STATE O F THE ART

3 Related Work and State of the Art

3.1 Overcoming communication delays

Overcoming communication delays has been recognized as one of the central areas of

research in telerobotics for some time [Stark,1987]. Among the proposed approaches

to solve the problem are:

r slowing down the motion so as to minimize the effect of the delay [Ferrell,1965]

r strengthening the slave arm and the objects which it manipulates in order to

avoid damage (e . g . , underwater remotely operated vehicles, ROV's, for off-

shore oil exploration)

r adopting a "move-and-wait" strategy, where the operator proceeds through a

sequence of incremental open-loop motions, each one followed by a wait of one

round-trip delay t o receive the correct feedback [Ferre11,1965]

r "supervisory control": limited autonomy at the remote site - sensory feed-

back loops are closed locally, the slave makes low-level decisions on its own,

whereas the operator supervises the execution of tasks and supplies high-level

goal information [Ferrell&Sheridan,l967]

r formally modelling up-link and down-link delays by augmenting the dynamic

state-space model of the system (environment $ slave) - delays are modelled

as delay lines on the output and introduce (a potentially large number of)

additional states [Hirtzinger et a1.,1989]

r control theoretic approaches, such as introducing a control law which makes

the communication link appear as a passive two-port lossless transmission line

[Anderson&Spong,l988]

r using predictive visual (graphical) displays to allow the operator to "preview"

the effects of her commands on the remote environment [Noyes&Sheridan,l984],

[Bejczy&Kim,l990]

full autonomy a t the remote site: automatic on-line sensing, sensory data in-

terpretation, strategy generation, task and motion planning, execution moni-

toring, error detection, replanning and error recovery

3.1 Overcoming communication delays 7

None of the above approaches to overcoming communication delays, by itself,

has proven to be entirely satisfactory. In the presence of delays in excess of one

second, simple move-and-wait strategies become impractical. On the other hand,

full autonomy at the remote site is beyond the state of the art. At present, it seems

that the integration of supervisory control, carefully designed control laws, and

sophisticated operator station based predictive displays offers the best compromise

between the desirable and the feasible.

In supervisory control, the sensory feedback from elementary actions of the slave

is processed locally to make the necessary adjustments to the motion strategy in

executing its current short-range goal. This partial remote autonomy reduces the

sensitivity to the delays in communication with the operator's station and reduces

the mental and physical burden on the operator. It also results in greater indepen-

dence of the supervisory and the remote control loops, the two now being coupled

only through the occasional asynchronous exchange of commands (from the oper-

ator to the remote workcell) and state information (from the remote workcell to

the operator). In this type of remote control, the operator's station must make

use of computer models of the remote environment and the remote workcell. These

models are then graphically displayed to the operator, and the effects of operator's

commands are computed in this simulated environment, offering the operator an

immediate visual feedback of her actions.

The pioneering work in predictive display technology was done at the MIT

Man-Machine Systems Laboratory [Noyes&Sheridan,l984], [Hashimoto et a1.,1986],

[Buzan,1989]. Other experiments have shown that 2-D perspective projections alone

are not sufficient to represent 3-D information [Stark,1987], [Stark,1988]. Additional

depth cues are needed to aid the operator in performing motions along the line of

sight of the TV camera or along the graphical projection axis. Alternatively, stereo-

scopic displays can be used [Stark,1988]. [Pepper et al.,1981] have demonstrated the

superiority of stereo displays over mono displays, and shown that the advantage of

visual stereo increases with the complexity of the scene. State of the art predictive

displays synchronize and overlay real-time computer graphics (complete with shad-

ing and a realistic lighting model) with the incoming delayed video camera signal

on the same physical display [Bejczy et aE.,1990].

8 3 RELATED W O R K A N D S T A T E OF T H E A R T

3.2 Kinesthetic feedback

It is well established that force-reflection dramatically improves the sense of "tele-

presence" in teleoperation [Ferrell,1966], [Hannaford,l988], [Hannaford,l989]. Since

visual and kinesthetic information can be supplied to the operator through different

sensory input channels, they naturally integrate and augment each other. In fact, it

has been shown that kinesthetic feedback can be at least as important as 3-D visual

information [Kilpatrick,l976] and that, in some circumstances, force feedback alone

can be more valuable than visual feedback alone [Ouh-young et aE.,1989].

Communication delays preclude direct reflection of the reaction forces, experi-

enced by the slave, to the operator's hand controller. Numerous studies have shown

that delayed force feedback can destabilize the control loop. Moreover, experiments

indicate that no force information at all may be better than delayed force feedback,

since the perceived loss of the action/reaction causality tends to be confusing to

the operator [Buzan,1989]. This confusion and disorientation arises regardless of

whether the delayed force signal is fed to the active hand (i.e., the one controlling

the master arm) or the passive hand.

Consequently, delays in force information motivated research in generating syn-

thetic, "quasi" kinesthetic feedback, which would approximate the expected actual

force signal. Most of the effort concentrated on extracting force information from

the predictive displays, i .e . , graphical simulations of the slave's interaction with the

remote environment. Since too few physical parameters of the remote world and

the objects therein are known for a full dynamic model to be useful and meaningful

(even if there was time to compute it), remote environment simulations are almost

invariably non-dynamic. Thus, the best one can do is to compute a reasonable ap-

proximation to the actual forces. A possible solution is to monitor contacts between

objects in the graphical environment and compute the pseudo interaction force as

an inverse function of decreasing distance between objects (beyond some proximity

threshold). Both quadratic [No11,1972] and linear laws [Fong et a1.,1986] have been

proposed.

An interesting application for extracting force information from a graphical dis-

play was proposed by [Ouh-young et al.,1988], [Ouh-young et al.,1989]. In this work,

researchers simulate the interaction forces between a drug molecule and a specific

3.3 Programming robots 9

receptor site on a protein or nucleic acid molecule to find "good fits" by feel, rather

than visualization alone. "Goodness of fit" is characterized by minimizing the inter-

action energy, which is a function of electric charges of the atoms and inter-atomic

distances. The operator interacts with a magnified graphical display of the molecules

and attempts to find, kinesthetically, the best geometric and electrostatic fit.

The state of the art telerobotic systems currently use sophisticated predictive

displays but rarely attempt to generate pseudo-force information from the graphical

slave/environment interactions. Normally, slave contact interactions are handled

via local compliant control strategies at the slave site without generating kinesthetic

feedback to the operator [Kim et a1.,1990].

3.3 Programming robots

Robots can only perform useful work when they are in contact with the environment.

However, interaction with the environment complicates control of robot manipula-

tors due to sudden transitions between free-space and contact motion. Such transi-

tions tend to excite high-frequency dynamics and cause control instabilities. Conse-

quently, more sophisticated control strategies are needed to deal with contact manip-

ulation and a variety of such control laws have been proposed: resolved acceleration

control [Luh et aZ.,1980], operational space method [Khatib,1985], impedance control

[Hogan,1980], stiffness control [Salisbury,l980], hybrid control [Raibert&Craig,l981]

(see [Whitney,l987] or [An&Hollerbach,l989] for an overview of force control tech-

niques).

The hybrid position/force approach separates the robot's Cartesian DOF's of

motion into force and position (velocity) controlled directions. [Mason,l981] pro-

posed a theoretical framework which allows us to analyze the geometry of contact(s)

between the robot and the environment and define mutually orthogonal "natu-

rally constrained" and "artificially constrained" directions. These directions can

be though of as specifying a task frame, centered at the contact point, in which

the robot's desired force and position trajectories can be conveniently specified. A

task planlstrategy can thus be though of as a specification of a sequence of task

frames and position/force trajectories along the artificially and naturally constrained

DOF's, respectively.

10 3 RELATED WORK AND STATE OF THE ART

While force control enables the robot to perform more skillful and more stable

manipulation, programming such behavior is significantly more complex and intri-

cate than programming simple positioning tasks. In order to facilitate easier and

more convenient programming, a variety of programming languages has emerged:

MANTRAN [Barber,1967], WAVE [Pau1,1977], AL [Finkel e t a1.,1974], AUTOPASS

[Lieberman&Wesley,l977], VAL [Shimano,l979], AML [Taylor et aE.,1982], etc. The

target application for most of these languages were assembly problems in manufac-

turing and automation, and programs were designed either off-line or interactively

through a step-by-step interpretative process.

Recently, work has been done on at least partially automating the process of

generating robot programs. [Grossman&Taylor,l978] used the manipulator itself

as a three-dimensional pointing device to interactively generake object models and

automatically produce the corresponding object declarations for the AL language.

Asada et al. ([Asada&Izumi,l987], [Asada&Yang71989]) have used a "teaching-by-

showing" technique to automatically generate simple hybrid position/force control

instructions for the robot. In this approach, the operator performs the task by

holding on to the robot end-effector. During the teaching phase, the interaction

forces and position trajectories are recorded and later processed off-line by using

pattern matching techniques to map sensor signals to elementary motion commands.

De Schutter et al. ([DeSchutter,l987], [DeSchutter&VanBrussel,1988]) proposed a

method for automatically tracking and adjusting task frame position and orientation

during task execution. The strategy consists of monitoring (on-line, through sensory

readings) the evolution of the natural constraints and aligning the task frame with

these dynamically determined constraints.

Most of the work on automatic robot program generation, to date, ha.s concen-

trated in the area of automatic assembly task planning and strategy generation.

Some of the major areas of research in this domain are:

a representational formalisms

- representation of assembly parts (polyhedral models [Lozano-Perez et

a1.,1987], boundary representation models [Liu&Popplestone,l987], CSG

models [Hoffman71989])

- representations of assembly sequences (AND/OR graphs [Sanderson ,19881,

3.3 Programming robots

other types of graphs and trees),

- representations of part mating geometric constraints (Clifford algebra of

projective 3-space [Ge&McCarthy,l990])

a formal frameworks for planing strategies

- formal models for synthesizing compliant motion strategies from geomet-

ric descriptions of assembly operations and explicitly estimating errors in

sensing and control [Lozano-Perez et a1.,1983]

- mathematical models for describing strategies which are guaranteed to

succeed in the presence of sensory, control, and modeling errors [Don-

ald,1986], [Jennings et a1.,1989]

- automatically generating assembly programs from design information by

searching through a graph of contact fornlations [Desai&Volz,l989]

What emerges clearly from these efforts is that automatic generation of robot

programs in the presence of significant modeling, sensory, and control errors is ex-

tremely difficult, and, in general, quite possibly unachievable [Desai&Volz,l989].

Typically, these methods analyze the problem of disassembly (a mathematically

more constrained problem), produce a tree or a graph of d l possible plans and call

any reverse path through the graph a solution, i.e., an assembly sequence. The

search for a good (or a t least feasible) solution in this graph may be guided by rule-

based systems, heuristic data-bases, etc. Consequently, plan searching and selection

must often be done off-line. In order to cope with the complexities of the problem,

many simplifying assumptions are normally introduced into problem analysis (e.g.,

planar surfaces only, translations only, etc), which limit the scope and usefulness

of such schemes. Adaptive behavior and on-line learning techniques are needed for

successful autonomous planning, error detection and replanning in the presence of

uncertainties (e.g., in unstructured environments).

12 4 OUTLINE OF THE PROPOSED SOLUTION

4 Outline of the Proposed Solution

4.1 Approach

One of the guiding principles of our proposal is our belief that completely au-

tonomous robotic systems are presently not feasible. A major problem with au-

tonomous systems is the necessity to anticipate and provide corrective strategies for

all possible error conditions [Brooks,1982]. This is difficult to do even when the

robot is operating in a structured environment and hopeless in situations where the

environment is only partially known and significant modeling, sensing and control

uncertainties exist. Classical approaches to programming robots for such applica-

tions end up being bogged down with large amounts of error detection and recovery

code. To make matters worse, recovery procedures are themselves subject to errors

and the actual program may easily become dwarfed by the amount of error handling

code.

Thus, we believe that there is a need for a human operator in the control loop of

a remotely controlled manipulator system. Moreover, we propose that the human

operator participate in the control and decision making process in a supervisory

role. We will refer to the particular form of supervisory control, described in this

document, as teleprogramming. Teleprogramming a remote manipulator essentially

corresponds to visually and kinesthetically interacting with a virtual world (a graph-

ical simulation of the remote environment), and generating, on-line, a sequence of

symbolic instructions to the remote robotic system, based on the operator's inter-

actions with the virtual environment.

In designing a system, which would implement these ideas, a key consideration

was the notion that the most important long-term goal of remote manipulation re-

search was improvement and "optimization" of the interface between human and ar-

tificial intelligence [Ferrell&Sheridan,1967]. Towards this aim, the system attempts

to aid the operator by providing operational modes where the operator is expected

to control only a few task parameters at a time, by "guessing" the operator's intent

and making fine adjustments to her motions, etc. However, regardless of how the

operator's motion might be modified, it is crucial that this be done in a manner

which produces no surprises to the operator. This is because trust may well be the

most important factor in a man-machine interaction - so much so, that it may be

4.2 Modeling the environment 13

often worth sacrificing efficiency and functionality for consistency [Boissiere,l988].

The following sections (4.2-4.9) introduce the major conceptual building blocks

of the proposed solution. Section 4.10 evaluates the proposed approach in terms of

task completion time and describes some applications for the proposed technology.

Figure 4 at the end of this section (4) illustrates the place of these conceptual

modules in the overall system hierarchy. The figure also shows the main hardware

components of our laboratory experimental testbed, described in more detail in

Section 10.

4.2 Modeling the environment

We will assume in this work that we are manipulating in an a priori unknown en-

vironment. The initial description of the environment is obtained through the use

of sensors, such as vision or dense range data. The operator then interacts with the

image segmentation process and aids the system in identifying objects and features

in the remote environment, producing an unambiguous three-dimensional descrip-

tion of the scene in terms of object features such as planes, edges, and vertices. The

process of extracting this information is within the state of the art of computer vi-

sion [Connolly et a1.,1987], [Herman,1984], [Smith&Kanade,l985]. Moreover, it has

been demonstrated that such descriptions can be converted to polyhedral CAD- type

models [Hayati&Wilcox,l987], [Noyes&Sheridan,l984]. We propose to display such

a CAD image of the environment (including the slave manipulator) and interface

a 6 DOF input device (master) to the simulator, such that the images of the slave

manipulator and any objects that it may be manipulating could be moved under

the control of the operator.

Because the environment is assumed unstructured and we must rely on an ide-

alized and simplified approximation of the actual environment, we can not predict

all work situations (due to model incompleteness), nor can we predict the outcome

of a particular action exactly (due to model inaccuracy). Therefore, we are unable

to construct detailed, robust and reliable plans of action ahead of time. Instead, we

propose to keep the operator in the control loop at all times, and let her define the

plan incrementally as she interactively programs the slave robot actions by moving

the master.

14 4 OUTLINE O F THE PROPOSED SOLUTION

Figure 2: Interpretation of the force/torque sensor readings.

4.3 Controlling the motion of the slave

(t , r >

Motion parameters are specified to the (simulated) slave manipulator via the master

input device, which can be controlled in a variety of ways. We propose to use a

general 6 DOF force/torque sensor mounted at the tip of the master device, whose

force and torque readings are interpreted (through a series of filters and amplifiers)

as positional and orientational information, respectively (Figure 2). The pair (f, r)

is the 6-vector of raw forces and torques as read from the sensor. This information is

then filtered/smoothed and appropriately scaled to become the desired incremental

positional/orientational displacement of the master (operator's hand). The rotation

r is interpreted as roll/pitch/yaw (RPY) parameters.

The so obtained incremental displacement1

F/T sensor

is interpreted as master handle (sensor-based frame) displacement. The motion

of the master manipulator is then computed by mapping this handle displacement

into the master's end-effector frame (T6,) and using it as an incremental Cartesian

positional displacement in end-effector frame coordinates.

The motion of the slave simulator is coupled to the motion of the master by

establishing a correspondence of motion between the master's handle frame and the

slave's end-effector frame (T6,). In general, due to the fact that the master and

slave manipulators will be kinematically dissimilar (and will therefore have different

workspace volumes), this correspondence will not be a straight-forward one-to-one

positional/orientational equivalence of motion. Instead, another level of scaling for

translational motions will be needed to account for the workspace volume differences.

(t'. r ') .

We use the term incremental displacement instead of differential displacement, since we deal

with discrete rather than instantaneous changes in displacement.

6-D scaling
(f ,d

W 6-D filtering

4.4 Generating kinesthetic feedback 15

The master manipulator is controlled in position mode. Successive Cartesian

positions are computed from the incremental positional displacements and the mas-

ter arm is servoed to these positions at a constant rate. A key consideration in

controlling the master is ensuring that its particular kinematic properties do not

affect the process of controlling the slave. The operator should not be concerned

with the nature and implementation of the master device. Therefore, the master

controller must ensure that the mechanism never reaches a singular configuration

(where it becomes unstable) or approaches the boundary of its workspace volume.

The control techniques, aimed at solving this problem, are normally referred to as

reindexing methods. We propose to investigate three distinct reindexing schemes:

a offloading the reindexing responsibility to the operator: in this scenario, the

operator needs to identify that the master is approaching a singular configu-

ration and reindex (i. e., reposition) the manipulator manually

a reindexing through a continuous drift back to the "home position": here, the

magnitude of the restoring drift is a function of the distance (for translations)

and twist amplitude (for rotations) from the home position

automatic reindexing: the master device monitors its own motions and alerts

the operator when it approaches a singular configuration (e.g., by beeping); it

then automatically returns to the home position and signals the operator that

she may proceed with the task

All of the above approaches to reindexing imply that the display is decoupled from

the motions of the master during reindexing. We propose to implement and evaluate

relative advantages of the three methods.

4.4 Generating kinesthetic feedback

Having obtained an initial graphical description of the remote environment and be-

ing able to move the slave manipulator in this world, we now monitor the position

of the slave arm (and any object it may be carrying) for contacts with the envi-

ronment. This collision checking must be performed in real time and is used to

prevent interpenetration of colliding objects. Penetrating motions are stopped on

contact, thus modifying the intended motion of the (simulated) slave manipulator.

16 4 OUTLINE O F THE PROPOSED SOLUTION

In order for the system to feel natural to the operator, the positional/orientational

correspondence between the master device and the slave must be preserved at all

times, including on contact with the environment, as well as while one or more con-

tacts persist. We therefore need an input device, which is itself movable in space

and backdrivable, such as a specially designed teleoperator master arm or a back-

drivable general purpose robot manipulator. Such a device enables us to not only

specify the desired positional/orientational displacement to the slave arm, but also

gives the operator a sense of three-dimensional manipulation as it follows the oper-

ator's hand through space. More importantly, however, backdriving the master arm

to correspond to the state of the simulated slave arm provides the operator with

the ability to explicitly feel the constrained DOF of motion of the slave (and thus

master) and therefore allows the operator to kinesthetically "feel" contacts between

objects, examine shapes of objects, follow their contours, etc. This capability of

combining graphical object interference detection with backdriving the master de-

vice represents a crucial feature of the proposed system. It provides the operator

with a strong sense of telepresence (i.e., a simulated sense of force reflection in real

time), despite the communication delays, which cause the actual feedback to be

delayed and therefore not usable for direct reflection to the operator.

4.5 Aiding the operator

The operator can now move the slave manipulator in the simulated world, come

into contact with the environment and "feel" in a very natural way any constraints

that the geometry of the task world may be imposing onto the motion of the slave.

Moreover, we propose that the system provide a set of elementary classes of motion,

which are natural, convenient and easy to perform, yet powerful enough to allow the

operator sufficient flexibility in performing tasks. This is particularly crucial during

contact motion, when the operator may wish to concentrate on a certain subset of

motion parameters (e.g., sliding, reorienting), and be aided by the system in keeping

other parameters constant. The system can also assist the operator by biasing the

interpretation of her motions towards preserving achieved contacts (for instance, to

aid in feature tracking), while still allowing arbitrary changes of or departures from

the current contact state. We will address these issues in more detail in Section 6.

4.6 Generating remote slave motion commands

4.6 Generating remote slave motion commands

We next attempt to interpret the information accumulated by the simulator to ex-

tract a stream of elementary motion commands that are to be commanded to the

slave robot. In view of this, we first filter the gathered information and elimi-

nate the "noise" in the data. We then analyze this filtered information of posi-

tional/orientational parameters and contact state changes to produce a sequence of

symbolic instructions to the slave. Again, as our model of the slave world is only

approximate, the nature of these instructions must reflect and accommodate possi-

ble discrepancies between the model and the actual world. While this is not critical

during free space motion, it is vitally important when attempting to establish or

maintain contact with the environment. Consequently, for the case of contact mo-

tion, we propose to generate instructions of the type "move along a given direction

until contact" (guarded motion), or "move along a given feature while maintaining

contact in some direction" (compliant motion). There will be also a class of motions

(such as tight tolerance part mating, fine precision adjusting motions) which may

be difficult to perform using an incomplete model and approximate kinesthetic feed-

back. Such motions are therefore best executed by the slave autonomously, under

local sensor supervision and local high-bandwidth feedback processes. We will have

more to say about symbolic command string generation in Section 8.

4.7 Using task information

The process of interpreting the operator's actions in the simulated world can be a

difficult one in the absence of any other information about the nature of the task

in progress. For instance, a sequence of rapid contact changes may be interpreted

either as noisy data or a purposeful action, such as tapping, scraping, or rocking.

Similarly, a highly irregular path of an object during a sliding motion could be

taken as unintended (and therefore would be filtered out or smoothed) or it could

correspond to a motion such as polishing or sanding (in which case it should be

kept intact). In order to disambiguate between such interpretations, the system

needs additional information about the task, such as a description of the type of

expected primitive motions (e.g., pick and place, polishing, pounding). Moreover,

the graphical simulator should be supplied with some information as to which objects

18 4 OUTLINE O F T H E PROPOSED SOLUTION

are expected to come into contact during a given task to avoid having to monitor

every pair of objects for a possible collision.

These are but a few examples of why high-level task information may be essential

for correct interpretation of the operator's intent and for efficient internal computa-

tions. We feel that the design of the structure, organization, and content of such a

task-level database is a significant research problem in itself. Consequently, we may

not be able to address this aspect of the proposal fully in the preliminary stages of

the project. However, we envision the task related information being gathered in

the following manner:

- by loading and using a pre-existing task database

- by querying the user (operator) prior to the manipulation to extract the es-

sential features of the task to be performed

- by maintaining an on-line didogue with the operator to allow her to augment

and modify the current task information while the task is in progress, as well

as to allow the command stream generator to request additional information

from the operator when her intent is still unclear

This would allow on-line refinement of the task description and should greatly ex-

pand the repertoire of tasks that the system could interpret correctly and thus issue

appropriate motion commands to the remote slave.

4.8 The remote workcell

Although delayed communication with a human operator is available, the remote

slave manipulator must operate with a certain degree of autonomy. The slave must

be able to decide if an action is successful, and if not, it must decide what to do

during the time when an error is detected and the human operator sends appropriate

corrective instructions. When a command a.ction is terminated successfully, the slave

must be able to verify this and proceed to the next command.

Commands that are sent to the remote site are executed with caution - if the

manipulator senses unexpected forces, it must respond correctly. The slave must

first decide what action to take: to maintain the current position or to comply

with the force. If the unexpected forces are small and static, the manipulator can

4.9 Error handling and model consistency 19

stop and maintain its current position until a response from the operator arrives.

On the other hand, if the forces are large or dynamic, maintaining position could

damage the manipulator. In this case, the manipulator should comply with the

forces, trying to minimize the damage. Next, the slave must alert the operator

and send enough information to the operator, so that the unexpected forces can be

explained. If the resulting error state remains unclear, the operator may initiate

some local exploratory motions or request that additional sensory information be

gathered (e.g., additional camera views). When the state of the slave and the remote

environment has been determined, the graphical model at the operator's station is

updated and the operator can proceed to take appropriate corrective actions.

In order to support its expected degree of autonomy, the remote robotic system

needs t o be equipped with sufficient sensing capability to carry out elementary mo-

tion commands robustly despite small errors in the command parameters. This sen-

sory information from different sensors (TV cameras, range scanners, force/torque

sensors, etc.) must be integrated into the low-level control algorithms to provide

compliant and locally adaptive response in contact motion.

4.9 Error handling and model consistency

We now have a system where a human operator can teleprogram a remote slave

robot, overcoming the communication delay problem by using real-time simulated

visual and kinesthetic feedback. Of course, while all is well in the simulated world,

various things may go wrong in the actual work environment. The slave can detect

such error conditions by not reaching an expected motion-terminating condition, by

hitting an obstacle, by sensing excessive or premature motor torques, etc. Upon

detecting such a condition, the slave can signal the occurrence of an error state to

the operator's station, which in turn can alert the user through a variety of visual

or audio means (e.g., flashing the display, synthesized voice warnings, etc.). It is

then up to the operator to plan corrective actions. First, the operator's station

based model of the world may need to be updated to properly reflect the current

situation. This can be done through gathering and reconciling information from a

variety of remote site based sensors (e.g., video cameras, range finders, etc.) and/or

purposeful exploratory motions on the part of the operator (if this is possible) to

20 4 OUTLINE O F THE: PROPOSED SOLUTION

find or correct certain model parameters. Then, the operator can attempt to recover

from the error state and proceed with the task. Therefore, by keeping the human

operator in the control loop, the system eliminates the need for elaborate exception

and error handlers to be preprogrammed off-line.

It is important to note that discrepancies between the model and the world can

also arise due to effects of external environmental agents, i.e., other than slave's

actions. Such changes may not be discovered through the actions of the slave, but

may cause problems at a later stage in the manipulation. What is needed, therefore,

is a rather sophisticated environment updating mechanism, which continuously (in

reasonable intervals) checks at least the local portions of the environment model

(i.e., the immediate work area), but can also be brought into action by request

from the operator. The latter facility is important not only for situations when the

slave has entered an error state, but also when the operator wishes to verify poorly

recovered or uncertain features of the workspace.

We believe that the problem of ensuring consistency between the model and the

world is a very critical one for the successful operation of the proposed system and

again represents a challenging research topic in its own right. We will in this work

restrict ourselves to some general comments on how this problem may be solved and

will not attempt to provide a detailed solution.

4.10 Summary and applications

The teleprogramming concept, outlined above, distributes decision-making and con-

trol between the human operator (who provides for high-level planning and error

recovery) and the remote workcell control system (which provides for low-level au-

tonomous task execution and control, as well as error state identification). Within

this paradigm, commands may be sent from the operator's station one after an-

other in a continuous stream, relying on the partial autonomy at the remote site to

execute these commands under local sensory supervision a comniunication delay T

later. Therefore, the operator need not wait for explicit feedback from the remote

site following each elementary command. When an error does occur, however, the

remote control system stops the robot and alerts the operator. The operator then

replans from this point, once again starting a stream of commands to be executed

Task Completion T i e vs Task Length
800

task length [min]

Figure 3: Total task completion times versus task length T = 10 sec, t = 1 sec,

and three different values of n. Note that n = 1 corresponds to the move-and-wait

strategy.

autonomously by the slave. In view of our earlier discussion of the total comple-

tion times using the move-and-wait strategy (Section 2.2), we can now compute the

equivalent statistic for the teleprogramming paradigm. If n is the number of ele-

mentary commands that will be executed, on average, without the need for human

supervisory intervention (i . e . , without an error occurring), then the time to perform

a task will be given by
1 r

T o t a l = (l + 2--) Ttask n t (3)

In view of Eq.(3), it is easy to see that the overall time efficiency of performing

tasks will be improved by increasing either t (greater remote site autonomy) or n

(greater system reliability and error-tolerance). Figure 3 illustrates the effect of

increasing n on the total task completion time. It is evident from the figure that

even a modest degree of autonomy and error-tolerance at the remote site improves

the performance dramatically. In particular, for n = 100, the total completion time

for the twenty minute task A of Section 2.2 becomes 24 minutes, which is a dramatic

improvement over 7 hours.

22 4 OUTLINE OF THE PROPOSED SOLUTION

We believe that a system, such as the one described above, will facilitate remote

manipulation with time delay, allowing a very natural interaction between the oper-

ator and an image of the task involving both visual and kinesthetic feedback. The

system will also allow for considerable time delays limited only by the extent that

the operator is allowed to move ahead of actual execution.

Application of such technology to undersea manipulation would free us from

the need to maintain wide bandwidth communications between an operator and

the vehicle. While it appears possible to eliminate vehicle tethers based on energy

considerations [Niksa,1987], it is still impossible to eliminate the tether based on

manipulation control considerations due to the delays in bringing acoustic signals to

the surface. Operators must either be in the vehicle or in a surface ship at the end of

a tether. With the proposed technology it would be possible to drop a submersible

from a plane together with an acoustic relay buoy and then to control operations

at the ocean bottom remotely over a radio link from either the plane or the shore.

The principal cost saving is, of course, the elimination of the need for a surface ship

maintaining station during the entire underwater operation. Secondary cost savings

relate to the elimination of the tether and the possibility of working in environments

in which the tether might become tangled, as well as the possibility of using more

than one submersible in the same working area when the control of tethers becomes

impossible.

Cost justification for work in shallow space relate to the possibility of eliminating

the need for an astronaut in performing "extra-vehicular activities" (EVA), vastly

reducing the cost involved.

4.10 Summary and applications

Local Sensory
Supervision ti

Communication Delay

Symbolic

L - l

Figure 4: Overview of the proposed solution.

24 5 THE GRAPHICAL SIMULATOR

5 The Graphical Simulator

5.1 The polyhedral model

We propose t o adopt a polyhedral, boundary-representation based graphical model

of the world. While other representations are clearly possible (e.g., constructive

solid geometry (CSG), generalized cylinders), polyhedral models are widely used

and consequently a variety of algorithms exist for polyhedral analysis. Perhaps the

most important advantage, however, is the convenience of polyhedral models for

contact analysis, which is a central requirement and feature of this work.

An important component of the graphical simulator is an exact kinematic model

of the slave manipulator (and any attached equipment). This simulated slave robot

must accurately reflect the kinematic limitations of the actual slave (i.e., joint range

and workspace limitations) and the simulator software must ensure this. Moreover,

there should be no need for the slave and the master manipulator to bear any struc-

tural or kinematic resemblance to each other. While this significantly complicates

the control of the system (space transformations, two sets of singular configura-

tions, reindexing), i t is an important feature of a general purpose teleprogramming

software system.

5.2 The simulatioll technique

A key decision in this work has been to use a kinematic simulation of the motion of

the slave and the manipulated objects. The simulation therefore does not account

for the dynamic effects of either the slave robot or the environment. Moreover, the

slave (plus any held object) are the only moving parts in the environment during

each simulation time slice. Consequently, dynamic changes in the environment,

other than the slave's state, must be related to the operator's station through the

environment updating mechanism (Section 4.9), rather than direct simulation. This

applies to the dynamic changes caused by the slave (i.e., dropping or tipping an

object), as well as those produced by external environmental agents (i.e., winds,

water currents). While the choice of a kinematic simulation may seem restrictive,

we feel that it is the most practical approach for the following reasons:

5.3 Distance computation 2 5

a since only approximate information about the world is available, we can not

expect to have complete information about the masses, centers of mass, in-

ertias, frictional parameters, etc. about the objects in the environment; yet,

these are essential parameters for a dynamic simulation

a in many environments and situations, a rigid-body dynamic model may not

be adequate; we may be manipulating on a soft ocean bottom, or we may have

erroneous confidence in the hardness of the objects in the slave world

a a dynamic simulation of both the robot and the environment represents a

significant computational burden; in all but the simplest cases i t , in fact, may

not be computable in real time

a due to model uncertainty, only rough predictions based on dynamic computa-

tions are possible; such approximate, unreliable results do not justify the time

spent in computation

a unmodelable and unpredictable external agents (water turbulence, buoyancy

effects) may contribute to the dynamic state of the world, further diminishing

the utility of a costly dynamic simulation

Clearly, a kinematic simulation leaves much to be desired, but under the circum-

stances we feel that it is a more reasonable and more practical choice than a full

dynamic simulation of both the slave manipulator and the environment.

5.3 Distance computation

The kinesthetic feedback described in Section 6 relies heavily on the detection and

analysis of the contacts which arise during the motion of the slave in the simu-

lated environment. Expected contacts will normally occur between the slave's end-

effector, tool, or an object it is currently holding, and some part of the slave world

involved in the execution of the task. We will hereafter refer to the former as the

movable object and will abbreviate i t as MO. Moreover, the graphical simulator must

also provide an aid to the operator by checking that undesired collisions between

the slave arm and the environment do not occur during the motion.

26 5 THE GRAPHICAL SIMULATOR

Both desired and undesired collisions can be detected by monitoring the dis-

tances between pairs of objects. While the former requires precise models of the

objects, simpler, approximate, yet conservative models suffice for the latter. Sim-

plified models are preferred, whenever possible, in order to limit the computational

cost of the collision checking module.

During the execution of a task, many pairs of objects may need to be monitored

for contact at each step of the simulation. Consequently, there is a definite need for

an efficient distance computation algorithm.

Several methods exist to compute distance2 between polyhedral objects. Because

of its efficiency, we chose to implement the distance algorithm between convex sets

of points described in [Gilbert et ~1.~19871. The aim of this section is to summarize

the main features of this algorithm. For a more detailed description, the reader is

referred to [Gilbert et al.,1987].

Let A and B denote the two polyhedral objects, whose distance (from each

other) we are seeking. For the purposes of the algorithm the two objects need to be

represented simply as the respective sets of vertices S(A) and S(B). The algorithm

uses the following property of distance between the two sets

where 4 denotes the origin of the space and C = B 8 A represents Minkowsky's

diflerence between the sets A and B. Instead of first computing C3, the algorithm

is based on an iterative procedure which generates sequences of elementary sets Ck

containing 1 to 4 vertices of S(C). These Ck are such that their distance to the

origin converges to the desired distance between the objects A and B .

An efficient procedure is used to compute the closest point uk of the convex hull

of these simple sets of points Ck (line segments, triangular faces, tetrahedrons) to

the origin of the space. uk is obtained from the computation of the coefficients X i

of the set's barycentric representation, i.e.,

uk = EX; .xi with X i 2 O , C X i = 1, and xi E S(Ck) (5)

'Distance between two objects is defined as the smallest translation which will pu t them into

contact.

31f A and B have nA and nB vertices, respectively, then C can have up to nA . nB vertices.

5.3 Distance computation 27

The points xi of Ck whose A; > 0 define a Ci C Ck containing uk (for example, if Ck

is a triangular face defined by three vertices, then C t can be either one of the three

line segments, or one of the three vertices of the face, depending on the number of

positive A; computed). The sequence of uk generated is such that I I u ~ + ~ 1 1 5 llukll

and the norms converge to dist(A,B).

The generation of the next Ck+l from the current Ck and uk is based on the

notion of a support function. The support function of a set of points X is defined

by

hx(n) = max {n . xi}
x i € S (X)

and we will use sx(n) to denote one of the x; which satisfies this m a ~ i m u r n . ~

It is shown in [Gilbert et a1.,1987] that if 1 1 ukll + hc(-uk) = 0, then dist(A, 3) =

IIuk(l. Otherwise, the Ck+l to be checked at the next iteration is obtained from the

set of vertices S(C;) U {sc(-uk)}. The interest of using this support function for

the generation of the vertices of C comes from the fact that sc(n) and hc(n) can

both be computed in O(nA + nB) time, i.e.,

Each iteration is therefore performed in linear time in the total number of vertices

and as only a few iterations are needed for the convergence, the distance algorithm

is quasi-linear in the total number of vertices.

The overall structure of the algorithm also plays a important role in its efficiency:

The algorithm relies exclusively on simple computations (dot products and

vector additions). Moreover, the procedure used for the computation of uk

reuses many of the values already computed during the previous step. These

values are stored and each iteration needs to perform only a few additional

computations.

An extra speedup is obtained by providing an initial estimation of S(Co) to

the algorithm. This feature turns out to be particularly interesting when only

41n fact, for a given direction n, this function defines a plane x . n = hx(n) , such that all the

points of X lie on the same side of this plane.

5 THE GRAPHICAL SIMULATOR

small positional changes occur between two successive distance computations.

In this case, the set S(Ck) computed at the last iteration of the previous

distance computation can be used for this initial estimation. While the closest

point of C to the origin stays inside the convex hull of this set, only one

iteration will be needed to compute the new distance. Whenever changes

occur, a couple of iterations will be generally sufficient to update the new sets

of points and compute the distance.

5.4 Collision detection

Let x~ and XB denote the closest points between two convex objects A and B.

Their distance is then given by d = JlxB - xAll. If an incremental displacement

(Ap, Ar) is applied to A, it can be shown [Faverjon&Tournassoud,1987] that the

distance variation Ad can be expressed as

where n = (xB - xA)/d and AxA is the positional displacement of the point XA

due to the displacement (Ap, Ar). For technical reasons (the distance computation

algorithm returns reliable information only when the distance between objects is

positive), we define the objects A and B to be in contact whenever d < E . The

constant E is a small positive distance that is imperceptible to the human eye, but

keeps the mat hematics of collision computation well behaved.

Clearly, a positive Ad indicates that the motion causes the objects to be sepa-

rated further apart. Even if Ad is negative, there is no danger of collision as long as

\Ad/ < (d - E) . Otherwise, the intended incremental motion (Ap, Ar) will cause a

collision and must thus be modified to apply only the allowable portion of the mo-

tion, i.e., to stop the offending motion in a non-penetrating contact configuration.

The allowed fraction of the motion is given by the contact coeficient

It should be noted that this distance variation computation is only valid for

strictly convex sets of points5. Consequently, special steps are needed to handle

'Strictly convex set,s exhibit a continuous tangent along the surface.

5.5 Contact type determination 29

situations where the nearest point on (the surface of) either object crosses a local

surface tangent discontinuity. In practical terms, this corresponds to a sudden dra-

matic shift of the nearest point along the object's surface, such as during a facelface

to edgelface contact transition. We will address this problem in detail in Section 5.7.

5.5 Contact type determination

So far we are able to detect impending collisions and stop the offending motion

precisely in contact. Once in contact, the motion computation module of Section 6

filters6 the operator's motion in such a way as to aid her in maintaining contacts,

following environment features, etc. This module thus requires precise and noise-

tolerant information about the nature of the current contact, i.e., the contact type

and the contact feature centroids for both contacting objects. The following para-

graphs outline the manner in which this information is obtained.

The collision detection algorithm described above (Section 5.4) returns the fol-

lowing information:

- the contact coefficient t , where t E [O..l]

- the two nearest points, pl and pz, on the surfaces of the two objects

- the two contact features, fi and fi, where fi E {vertex, edge,face)

If a new contact occurred during the last incremental motion, then t < 1 and

Ipl - p~ I = E . Moreover, the pair of the returned contact features identify the

contact type (e.g., vertexlface, edgelface, etc.) and it seems that we have all the

information about the contact that we need.

However, the nearest points returned by the distance estimator may not neces-

sarily correspond to the contact feature centroids. More importantly, as contacting

objects slide and pivot with respect to each other, small numerical errors in comput-

ing their successive locations (Section 6) accumulate and cause small misalignments

of contacting features. These errors are negligible on the scale of the task world

parameters, but are sufficient to affect the mathematics of the distance estimator.

'For lack of a better term, we use filter(ing) here to denote a transformation of positional data.

Six DOF data is examined and altered component-wise, rather than time-smoothed.

3 0 5 THE GRAPHICAL SIMULATOR

Thus, an incremental motion that was intended (i.e., generated by the motion com-

putation module of Section 6) to place two objects into an edgelface contact, may

appear, due to small alignment errors, to the distance estimator as an vertexlface

contact. Consequently, an additional step is necessary to correct for this "numerical

noise". This is accomplished by establishing tolerance bounds on the relative orien-

tation of pairs of contacting features and upgrading the contact to a higher-order

contact type whenever the error lies within the tolerance interval. To improve the

numerical stability of the following computational steps, the misaligned features are

also physically adjusted in the simulator to remove the misalignment.

Finally, the exact contact feature centroids are computed for both contacting

objects. Once the final contact features are known, this is a relatively trivial mat-

ter of a few vectorial operations on the internal polyhedral data structures of the

respective objects.

5.6 Constraint information

As already mentioned, two types of collisions can occur in the system - wanted

and unwanted collisions. Wanted collisions are those that the operator intended to

achieve and will normally involve a part of the environment and the movable object.

Unwanted collisions, on the other hand, are all other collisions. Because the slave

(plus the held object, if any) is the only moving object in the environment, these

collisions will normally involve a part of the slave robot accidentally coming into

contact with some part of the environment (obstacle).

Corresponding to the two types of collisions we will define two lists of object pairs

(wanted and unwanted collision list). As we saw in Section 4.7, this information

must be supplied to the system either by the user or a task description module prior

to the execution of the task. At each simulation step, while the task is in progress,

the collision detection module then checks both lists for possible new or persistent

contacts. In the case of an unwanted collision, the system refuses to perform the

offending motion that would cause the collision and alerts the operator by "freezing"

the motion of the master arm and any other means necessary to unambiguously

communicate the problem to the operator (e.g., sound, altering display, console

messages, etc.). The operator can then adjust her intended motion to avoid the

5.6 Constraint information 3 1

collision or adopt a different strategy to accomplish the same task. Note that this

feature in a sense offers a rudimentary collision avoidance facility, where motion

adjustment and/or replanning are left to the operator.

In the case of a wanted collision, the system stops the motion short of causing

the collision, i.e., the system allows the two objects to come into contact but not

interpenetrate (see Section 5.4). Moreover, as we saw in Section 5.5, the system

extracts the relevant information about the contact. In particular, it records what

type of a geometric constraint this contact imposes on the motion of MO and adds

this information to the list of already active constraints. This information is then

used to filter commanded incremental motions to the master (and thus indirectly

to the slave), such that the resulting (filtered) motion does not violate any of the

currently active constraints on the motion of MO (Section 6).

A constraint can be defined as a pair of contacting features along with a set of

parameters that uniquely define the geometry of the given constraint. This infor-

mation will be needed both in the motion filtering process, where it will be used

to define a filtering coordinate frame (Section 6), as well as in the command string

generation process, where it will be used to define a task frame (Section 8). As we

will see, the following three parameters suffice to uniquely describe the geometry of

a constraint in all cases (i.e., regardless of the types of contacting features)

r the vector p connecting the slave wrist center (where the commanded mo-

tions are applied) and the contact point (feature centroid, associated with the

constraint)

r the constraint normal n (see Section 6.3.2 for the definition of constraint

normal)

r edge direction e , if the contact involves an edge

For convenience, all of the above vector quantities are computed w.r.t. the common

global reference frame FB. Therefore, a constraint c; can be encoded as the quintuple

where fi and f2 belong to the set {vertex, edge, face) and correspond to the contact

features of MO and the environment, respectively. The list of all (N) currently

5 THE GRAPHICAL SIMULATOR

active constraints can thus be encoded as

Depending on what types of motions the system allows and how the filtering process

is carried out, not all of the above information may be needed in all cases. Therefore,

for reasons of compactness and efficiency, an actual implementation may condense

the information contained in C to optimize run-time performance.

5.7 Contact type transitions

Let C denote the wanted collision list of all object pairs p = (01 ,02) which are

currently being monitored for mutual collisions and let Ad denote the current com-

manded incremental displacement of the slave manipulator. Moreover, let 01 in

each pair be the movable object, i.e., O1 is rigidly attached to the slave, whereas

O2 belongs to the environment. The skeleton of the collision checking algorithm is

as follows:

for each p E C

1. see if Ad causes the nearest point p l E 01 to viola.te the E envelope of

0 2

2. if so, perform only the allowable fraction of the motion t , t < 1

3. otherwise, perform the entire motion, t = 1

4. recompute the distance dist(Ol, 02) for the next step

The final constraint on the current motion of the slave is then derived from the

smallest t; over all p; in L.

Observe that only the current nearest point p l is being checked for penetration

in step 1 above. Still, all is well as long as the nearest point travels slowly and

continuously along the surface of O1. However, if the nearest point changes signifi-

cantly in a single simulation step (e.g., from one edge to another), then the motion

may seem acceptable based on the resulting motion of the old nearest point, but

nevertheless cause penetration of 02's E envelope. The nearest point pi following

the motion belongs to the penetrating portion of O1 and corresponds t o the deepest

5.7 Contact type transitions

step i -1 step i
edgefface I faced ace

step i + I

I edgefface

Figure 5: edgelface -+ facelface -+ edgelface contact type transition.

penetration point. Therefore, it is this point that the collision estimator should have

monitored for contact instead of p l .

Figure 5 illustrates the side view of a typical discontinuity in the location of

the nearest point on the movable object. The block in the figure is being pivoted

about its bottom left edge in the clockwise direction and it is the operator's intent

to tumble the block through the facelface contact into an edgelface contact, where

the edge now is the bottom right edge. Suppose that an incremental motion in the

(i - l) th step left the block as shown in Figure 5-a. Then, in the ith step, the intended

motion will be checked to ensure that p l does not penetrate 02 ' s E envelope. Since

the operator's commanded motion has been filtered such as to leave the contact

point fixed (see Section 6), it will pass the check and the motion will be applied in

full. This may result in the configuration of Figure 5-b, which, of course, constitutes

a collision.

Step 4 of the contact monitoring procedure above allows us to handle such situ-

ations. The call to the distance estimator will reveal that dist(O1, 02) < E and that

pi # p1 .7 Having determined the new contact point, we now set the block back into

its original position (Figure 5-a), set pl = pi and repeat steps 1-4. This time, the

motion will be found to be only partly realizable and only the corresponding fraction

7Because the results of the distance computation are reliable only when the distance between

the two polyhedra is positive, we must perform an extra step of separating the objects along the

direction of smallest translational distance, issue a call to the distance estimator while they are

separated, and subsequently return them to their original (penetrating) locations.

34 5 THE GRAPHICAL SIMULATOR

t (t < 1) of Ad will be applied, bringing the block into a facelface contact. The

post-processing realigning step of Section 5.5 will compute the new contact feature

centroids for the two objects as shown in Figure 5-c. Assuming that the pivoting

motion persists, the (i + l)th step will similarly produce the situation of Figure 5-d,

where the contact point pl again moves discontinuously to the right edge (pi). As

before, this is detected by the call to the distance estimator, the block is reset to

its faeelface configuration and the same motion is reapplied with pi serving as the

contact point. Clearly, this motion is allowable and the block transitions to the

edgelface contact of Figure 5-e.

This mechanism therefore allows us to transition between contact types smoothly,

with no burden to the operator.

6 Computing Kinesthetic Feedback

6.1 Classification of allowable motions

A teleoperation system must provide a wide range of motions both in free space

(while approaching/leaving the work area) and in contact with the surroundings

(while performing the work). At the same time the allowed motions should be

carefully partitioned and restricted to aid the operator in performing the type of

motion intended. A natural way to simplify general motion (both for the operator

and for the system) is to separate rotations and translations whenever possible.

This is particularly crucial in contact motion, as the contact point is physically

removed from the wrist center, where motion is commanded and rotations and

translations are kinematically d e c o ~ ~ l e d . ~ This separation gives rise to a remote

compliance center and consequently introduces complex and potentially confusing

coupling between rotational and translational parameters of the wrist and contact

frames. The choice of elementary motions should strive to eliminate such coupling

effects without compromising the flexibility and power of the system.

Another important consideration in deciding on the most convenient and effective

set of motion modes is the class of tasks that the system is expected to handle. In

view of the intended applications of our system (Section 4.10), the operator will need

to be able to perform a relatively wide range of tasks. Representative examples are :

accurate free-space motion, standard pick and place operations, basic exploratory

procedures (i.e., surface or feature following), simple assembly/disassembly tasks,

etc.

Therefore, in view of the above considerations, we propose the following set of

elementary classes of motions:

1. Free Space Motion

general motion (both rotations and translations)

freeze position (rotations + fixed position)

freeze orientation (translations + fixed orientation)

'Technically, this is only true for manipulators with Euler wrists, but most modern (single-

chain) manipulator designs tend to separate rotational and translational degrees of freedom at the

end-effector by serially connecting a positional linkage and a rotational wrist.

6 COMPUTING .KINESTHETIC FEEDBACK

2. Contact Motion

r freeze (no motion)

r slide (translation along constraint features, fixed orientation)

r pivot (rotational motion about contact point, fixed position)

3. Pushing

Given a set of elementary motion modes, the operator then specifies to the system

which mode she currently desires. To minimize the burden on the operator, the

motion mode selection information can be supplied to the system via a hand-held

push-button device.

The following sections elaborate on each type of elementary class of motions.

6.2 Free space motion

In free space the system should offer the operator the maximum possible maneuver-

ability. At the same time it should aid the operator preserve positional/orientational

parameters that she wishes to keep constant during a significant portion of a ma-

nipulation task. For instance, if the operator has achieved the desired approach

orientation, then the system should allow her to freeze (lock) it and subsequently

concentrate on translational motion of the slave robot (and MO) only. Similarly,

situations may arise (e.g., screwing, valve adjusting), where the operator has posi-

tioned the slave end-effector and wishes to freeze the position and concentrate on

grasping or turning the desired feature. Therefore, we provide three corresponding

elementary free space modes of motion. One could proceed further and introduce

single DOF motion modes restricting the operator's motion to translations along a

single direction at a time or rotations about a single axis. However, we have de-

cided against such fa.cilities as they increase the burden on the operator of having to

mentally keep track of some task-based coordinate frame in which these restrictions

would be specified, all at a dubious benefit to the operator's ability to perform tasks

more easily or more efficiently.

Therefore we feel that the above free space motions provide a reasonable com-

promise between convenience (for the operator) and functionality. Finally, in view of

Eq.(2), the three motion modes are realized in a straightforward fashion as follows:

6.3 Contact motion

Figure 6: Types of polyhedral contacts.

a general motion: Ad = (t , r)

a freeze position: Ad = (0, r)

a freeze orientation: Ad = (t , 0)

6.3 Contact motion

6.3.1 Types of contact

When the movable object (MO) is in contact with the (simulated) environment, its

motion (and therefore the motion of the slave manipulator) is restricted, depending

on the type of contact. Figure 6 lists the types of contacts that we will consider

in this work. Let us emphasize again that we are concerned with rigid polyhedral

contacts only. A few notes about Figure 6 are in order. It is easy to see that convex

vertex/vertex and vertexledge contacts are highly transient contact types and will

38 6 COMPUTING KINESTHETIC FEEDBACK

rarely occur in practice . However, as pointed out in [Sawada et a1.,1989], the

two types of contacts can be significant and persistent when one of the contacting

features is concave. Following this work and recognizing that vertices and edges can

be either convex or concave, we generalize the contacts involving these two features

to include both cases. This is reflected in Figure 6 by juxtaposing the two cases,

separating them with a vertical dashed line.

We will in the following sections have the occasion of referring to adjacent, as

well as high or low order contacts. All of these terms are to be interpreted in view

of Figure 6. We will define an adjacent contact to be one which can be reached in

one contact change from the current state. Also, we will say that a contact c; is

higher (of higher order) than contact cj, if c; offers fewer remaining DOF of motion

than cj.

6.3.2 Constraint normals

In Section 5.6 we discussed the nature of the constraint information maintained by

the graphical simulator and passed to the master's Cartesian level servo module.

Recall that for each active constraint this information includes an associated unit

normal direction. We now offer a convention to unambiguously define this constraint

normal in each contact type.

We will let the constraint normal in each case be directed away from the en-

vironment contact feature and towards the movable object (MO), i.e., the normal

specifies the direction against which MO can not move. Referring to Figure 6, it

seems natural to consider the geometry of both contacting features in determining

the direction of this normal. Still, different conventions may prove to be equally

reasonable and practical. We will choose to let the higher-order feature in each case

dominate the choice and will break the ties in favor of the environment feature. The

only exception to this rule will be the edge/edge point contact (see Figure 6), where

the normal is most naturally defined by the cross-product of the two edge directions.

In keeping with the above convention, then, the constraint normal direction for a

facelface planar contact is given by the face normal of the environment plane. Sim-

ilarly, for the two line contacts involving only edges, as well as for the vertex/vertex

point contact, the environment feature determines the normal. In all remaining

6.3 Contact motion

n = (n, + n,)'

Figure 7: Constraint normals for the three types of polyhedral features.

contact types (except the already mentioned edgeledge contact), the higher-order

feature (regardless of which object it belongs to) determines the axis (but not nec-

essarily the direction) of the constraint normal.

Finally, the normals for each of the three elementary polyhedral features are

defined in a straightforward fashion as illustrated in Figure 7.9 Note that this defi-

nition assumes that all face normals in our polyhedral models are outward pointing.

6.3.3 Kinesthet ic feedback a n d graphics

As we saw in Section 5, the graphical simulator maintains the current constraint

information on the motion of the movable object. Thus, following the initial motion

that caused a particular contact (and caused the new constraint to be reflected in the

constraint information) the intended (i.e., operator specified) motion of the mov-

able object (MO) can be checked against the active constraints and appropriately

modified. Therefore, in the context of a purely kinematic simulation, we propose

to provide pseudo kinesthetic feedback to the operator by filtering the intended mo-

tion of MO, bringing it into compliance with the existing geometric constraints. By

applying this filtered motion to the master manipulator as well (i.e., backdriving

the master manipulator appropriately), the operator holding the master feels these

constraints as resistance to motion.

'The asterisk (*) in Figure 7 denotes that the corresponding vector is of unit magnitude.

40 6 COMPUTING KINESTHETIC FEEDBACK

The filtering must be relatively simple, intuitively natural to the operator, fast

to compute and as general as possible, given the above requirements. Simplicity

and computational speed are necessitated by the requirement that the kinesthetic

feedback be provided to the operator in real time.

6.3.4 Contact motion modes - overview

As indicated in Section 6.1, we propose three basic types of contact motion. For

the case of fine precision motions, where even slight unintended changes in posi-

tionlorientation of MO caused by an impact (contact with a new constraint) are

unacceptable, we provide the trivial freeze mode (no motion at all). In other words,

all commanded motion of MO following a new contact is ignored until the operator

selects a higher-order contact motion mode. Two such modes are provided.

In slide mode, the operator can slide MO along the constraining feature(s) (sur-

faces, edges) in the permissible directions (i.e., the directions not violating any of

the constraints). The orientation of MO remains fixed for the duration of motion

in this mode. The system attempts to help the operator maintain contact with the

environment but will allow the operator to break the contact if she clearly indicates

such intent. A crucial feature of the way we propose to handle contact motion is to

require decisive actions on the part of the operator to transition to a lower-level con-

tact. This aids the operator in preserving high-order contacts (which are presumed

preferred), while still allowing her to transition to an arbitrary adjacent contact.

We will analyze this class of motions in the case of a single constraint, as well as in

a situation where multiple constraints are acting on MO simultaneously.

Alternatively, the operator can adjust the orientation of MO or transition be-

tween adjacent contacts by rotating or pivoting about the contact point (pivot

mode). In this mode the contact point is not allowed to translate (slide) along

or depart from the constraint feature. As the contact type (between MO and the

environment) changes, the contact point moves on the surface of MO and with it the

pivoting point about which rotational motions are con~puted. This allows a variety

of reorienting and contact changing motions of MO. Again, motion analysis will be

performed on the commanded displacements so as to aid the operator perform the

desired changes of orientation. We will provide a restricted version of this motion

6.3 Contact motion 4 1

modality t o the operator also in situations where multiple constraints are restricting

the motion of MO.

In the following sections we detail the proposed approach to contact motion

analysis in free space as well as in contact.

6.3.5 'Freeze' m o d e

This trivial mode (Ad = (0,O)) is included solely to prevent unwanted slippage

and twists of MO w.r.t. the environment upon the initial (or new) contact. This

mode is thus the default contact mode, entered automatically when a new contact

is detected.

6.3.6 'Slide' m o d e - single contact

In the case of a single contact, the constraint information, as defined in Section 5.6,

specifies the unit constraint normal Bn. Given the desired motion of the slave wrist

(ABd = ('t,'r)) , we compute the corresponding allowable subset of translational

motion nBdl as follows10

ABd' = (Btl , 0) (12)

where

t - (t . n) n , if (t a n) < E
t l = {

t , otherwise

Figure 8 illustrates a typical situation for single-contact sliding, where w.p. and

c.p. denote the slave wrist center and the contact point, respectively. Note that

choosing E to be a positive value, the operation of Eq.(13) above will filter out not

only the component of the commanded translation against the constraint normal

n;, but also the component along n; (i . e . , away from the contact) if its magnitude

is smaller than E (Figure 8). This, in effect, provides an illusion of contact surface

tension, i.e., with a proper choice of E the operator is forced to exert a decisive,

deliberate pull away from the contact in order to break it.

' O ~ o t e that the translational displacement of MO is the same as the commanded translational

displacement of the slave wrist, despite the offset between the two.

6 COMPUTING KINESTHETIC FEEDBACK

Figure 8: Single-contact sliding.

6.3.7 'Slide' m o d e - multiple contacts

In case of multiple contacts, the constraint information contains a list of constraint

normds Bn;, which are currently restricting the motion of the movable object (MO).

In general, these constraint normals will not be mutually orthogonal and we must

approach the filtering process with caution. We will in the following development re-

fer to a constrained direction as the negative of the corresponding constraint normal

n;, as defined in Figure 7, and denote it as iii.

Figure 9 illustrates a typical situation, where MO is in contact with two non-

orthogonal constraint^.'^ In this situation the operator should be able to slide MO

along both constraining surfaces, break either contact and slide along the other

contact's environment feature (surface), or even break both contacts and transition

to free-space motion.

Again we will assume that the commanded incremental slave wrist motion is

given as a B d = (Bt, 'r). The analysis of the multi-contact case centers on iden-

tifying the primary constrained direction n,, i.e., the one which is "closest to" the

desired translational motion t . The measure of closeness is the projection o f t along

a unit direction ii;. Given this closest ii; (i.e., ii,), we then construct an orthogo-

nal filtering frame FF, such that ii, is one of its axes, and the cross product with

any other constrained direction iij gives its second orthogonal axis. This choice of

''A two-constraint example has been chosen for illustrative convenience. The discussion and

results of this section apply to higher-multiplicity contacts as well.

6.3 Contact motion

Figure 9: Multiple-contact sliding.

a filtering coordinate frame is adopted because a commanded translational motion

t in a multi-constraint case will normally give rise to a sliding motion along the

constraint feature, whose associated constrained direction is closest to t.

Having constructed the filtering frame, we then express both the commanded

motion 't and the constrained directions Biik in this frame (i.e., Ft , Fiik) and

filter the commanded slave wrist motion accordingly. The sequence of steps below

formalizes the filtering procedure and supplies the necessary details.

1. for all ei E C, compute the projections pi = ('t aBiii)

2. let Bfip = Bii;, for which p; is most positive over C

3. construct the filtering frame FF,

where cj E {C - {cp)), i.e., 'iij # Biip ;

construct the rotational matrix B ~ F from FF (see Section A.2)

4. map Bt into FF, i.e., Ft = (BRF)-~ * Bt

5. for each c E C, filter Ft w.r.t. c,

a map into FF, i .e. , ~ i i = ('~F1-l *
a filter each component of Ft in turn, i.e.,

A (~ t , ~ i i , 2)) A (F t , ~ i i , y), A (~ t , ~ i i , Z)

44 6 COMPUTING KINESTHETIC FEEDBACK

6. map filtered Ft back into fi, i - e . , Bt' = B~~ * Ft

Procedure 1: Multi-constraint sliding motion filter

The core of the filtering process is Step 5, where each constrained direction n is in

turn rotated into the filtering frame and the components of the commanded motion

are filtered according to the A operator. This operator is defined as follows

t , , if (ii, = 0) or (t, . sgn(ii,)) 5 - E
A(t, fi,x) : t, =

0 , otherwise
(14)

Therefore, any constrained components of the commanded motion are zeroed. Also,

small components away from the constrained orthogonal directions are zeroed as

well, providing a sense of surface tension as in the single-contact case above.12 Hav-

ing performed the filtering operation on Ft, we then rotate the filtered commanded

displacement back into the reference frame (Step 6) and assemble the final filtered

motion of the slave wrist as a B d ' = (Bt', 0) .

Observe that a filtering frame is constructed even in the case where the original

commanded motion does not violate any constraints, i.e., when all p; in Step 1

are negative. This is done so that the filtering of small components away from the

constraint features in Step 5 (which must be done in this case as well) is performed in

an orthogonal frame. The requirement that filtering be done only w.r.t. orthogonal

axes is crucial.

Finally, for clarity, various optimizations of the above procedure have been omit-

ted (in particular, in Step 5). Any implementation must consider these carefully.

6.3.8 'Pivot' m o d e - single contact

Compu t ing t h e motion

As mentioned before, in this single contact mode the contact point is stuck in

contact and can not be moved (i.e., slid along a contact feature or pulled away

from the contact). Only rotations of MO about the contact point are allowed. The

class of allowed motions and the nature in which these motions are computed are

intended to give the operator the feel of manipulating in a "sticky" environment, as

12 The same e value may be used both in single and multiple-contact situations.

6.3 Contact motion

Figure 10: Tangential and contact frames.

well as allowing the operator to concern herself with the orientational parameters

of MO alone, while keeping the contact point position fixed.

The input to the filtering module are the commanded (operator supplied) motion

of the slave wrist (aBd) and the current constraint information C (Section 5.6).

Let the commanded motion be given as a displacement/RPY pair. Our task is to

compute the rotational motion of the contact frame (centered at the contact point),

based on the supplied slave wrist motion and subject to the above assumptions.

Toward this aim we will define two coordinate frames (with the same orientation)

as illustrated in Figure 10. In the figure, B n is the constraint normal, the vector Bp

denotes the (directed) distance between the slave wrist center point (w.p.) and the

contact point (c.p.), and E labels the constraint feature (plane in this case). The

first frame FT (tangential frame) is defined such that its x-y plane is tangential to

the surface of the sphere centered at c.p. and having radius Ip(. For convenience,

we will define a second frame FC (contact frame) with the same orientation as FT,

but slid along the p vector, such that its origin coincides with the contact point,
13 z.e.,

6 = 3c = { B ((p X n) X P)* , B (- ~ x n)* , B (- ~) * } (15)

The rotational matrix B ~ T , specifying the orientation of the frame .FT w.r.t. .FB, is

again derived directly from the above definition of the two frames (see Section A.2).

In fact, since the orientations of the frames FT and 3~ are identical, we have

131f (n 11 p), then any non-parallel vector v can be used instead of n.

6 COMPUTING KINESTHETIC FEEDBACK

B ~ T = B ~ C .

We will describe the (rotational) motion of the contact point in terms of the mo-

tion of the contact frame Fc due to the (operator supplied) motion of the wrist-based

tangential frame FT. In an attempt to kinematically simulate the rotational motion

of MO, whose contact point is stuck in contact, and at the same time minimize the

complexity of motion analysis, we propose to compute the rotational motion of Fc

as follows:

(a) rotational motion of w.p. about the z-axis of FT corresponds directly to the

rotational motion of c.p. about the z-axis of Fc

(b) translational motion of w.p. (along the x-y plane of FT) is used to compute

the remaining two orthogonal rotational displacements of Fc

In (b), the rotational displacement of Fc (about its x and y axes) is approximated

by considering the components of the commanded translational vector Tt (i.e., Bt

rotated into the FT frame) projected onto the x, y axes of FT. For the case of

computing the incremental rotation Ad, about the y-axis of Fc , we have

Figure 11 illustrates the ~ i t u a t i o n . ' ~ ~ ' ~

An important detail that must be noticed here is that the translational vector

Bt will only cause pivoting (rotation about c.p.) if it lies below the x-y plane of the

tangential frame FT, i.e., if
B B (t . P) 2 0 (17)

Therefore, the RPY rotation of Fc due to the (rotational and translational) motion

of FT, under the assumption of stiction, is

I4The y-axes of both 3~ and Fc frames are directed out of the page.
I5Note that the approximation of equating the tangential projections of the displacement vector

t with the corresponding great arc segments along the sphere surface is equivalent to assuming that

sin(A8) = A#, as sin(A8) = At? = Tt,/lpl in Figure 11. It is easy to verify that this approximation

is quite good for -x /6 < A0 < x/6 , which is more than sufficient for our purposes.

6.3 Contact motion

Figure 11: Computing Ad, of the contact frame.

The superscripts on the right hand side of the above equation indicate that the

corresponding displacement and RPY parameters have been rotated into the FT

coordinates. See Appendix A for details.

The computed rotational motion of the contact point (and thus MO), as given

by Eq.(18), is designed to provide a natural feel to the operator, as she is forced

to introduce translational motion at the slave wrist to achieve rotational (pivoting)

motion at the contact point. In the absence of a full dynamic model, the generated

model is only approximate, of course, but nevertheless it has an intuitive basis and

should feel natural to the operator.

Filtering

Having computed the rotational motion of the contact point based frame Fc ,

we now filter this motion on the basis of the contact type. The filtering is done

primarily to discard small (presumably unintended) rotational components and has

the effect of biasing (the interpretation of) operator's motions towards higher order

conta.ct types. In the following paragraphs we will outline the filtering procedure.

In order to filter the rotational motion of Fc, we will first define a contact point

based filtering frame FF, which is particularly convenient for the given constraint

type. We will then express the intended motion of the contact point in this frame

(FF) and perform the filtering w.r.t. its coordinates. In each case the filtering frame

will be constructed in terms of the geometric parameters supplied by the constraint

information, i .e . , the constraint normal (Bn), wrist-to-contact vector (B p) , and

6 COMPUTING KINESTHETIC FEEDBACK

Figure 12: Single-contact pivoting - line contact.

the edge direction (Be) (see Section 5.6). The input motion of the collision point

a c d ' = (0 , Cr') is as computed in Eq.(18) above.

(a) Point Contacts : A filtering frame need not be specified in this case as all three

orthogonal rotations are permissible in all point contacts (see Figure 6). Therefore,

no filtering is necessary.

(b) Line Contacts: A line contact always involves an edge (at least one, see

Figure 6), and it is this edge direction (Be), together with the constraint normal

(Bn), that defines the most convenient filtering frame, i.e.,

~ F = { ~ (e x n) , ~ e , 'n) (19)

where Be and Bn are assumed to be of unit magnitude. The specification of the

rotational matrix B ~ F follows immediately (see Section A.2). Figure 12 illustrates

the case of an edgelface line contact.

Filtering of the contact point motion Acd' can now be achieved as a two-stage

process:

1. map the motion (RPY rotation) of the contact point from FC ('r') into FF

(Fr'), using C ~ F = (BRC)-' * B ~ F (see Section A.3)

2. filter out small rotations about (e x n) tending to destroy the edge contact,

6.3 Contact motion

Figure 13: Single-contact pivoting - plane contact.

where the T operator is defined as follows16

0 , i f I x l < [
T(x) =

x , otherwise

(c) P l a n e Contacts: The only representative of this class of contacts is the

facelface contact (see Figure 6). Here, the filtering frame can be defined as fol-

lows

and the rotational matrix B ~ F can be constructed as before. Figure 13 illustrates

the situation.

Again, a two-stage filtering procedure is employed. The given rotational mo-

tion of the contact point is mapped from FC into FF (via the rotational matrix

'RF). The second filtering stage in this case attempts to remove from Fr' small

destabilizing rotations about the x and y-axes of the filtering frame, i.e.,

Postprocesing

''The T operator is a simple bidirectional threshold filter zeroing out rotations whose magnitude

is smaller than < (< > 0). A good candidate value for [may be a third or even a half of the maximum

magnitude of an incremental rotational displacement normally experienced by the system. This

forces the operator to indicate a decisive rotation about the edge in order to break the edge contact.

6 COMPUTING KINESTHETIC FEEDBACK

Figure 14: Multiple-contact pivoting.

Having computed the filtered motion of the pivoting contact point, we must

now produce the corresponding motion of the slave wrist in the reference (FB)

coordinates, as this is the motion ultimately commanded to the slave manipulator.

This is a.ccomplished by mapping the filtered contact point motion a F d " = (0 , Fr")

into FB coordinates nBd" (see Section A.3) and computing the corresponding FB

displacement of the slave wrist as described in Section A.4.

6.3.9 'Pivot' m o d e - multiple contacts

In this section we extend the results of Section 6.3.8 to accommodate a restricted, but

useful subset of multiple-constraint pivoting motions. The restrictions are imposed

both to aid the operator in performing simple and intuitive multi-contact rotations,

as well as to keep the geometrical and numerical complexity of the motion analysis

low.

A typical situation that this motion mode is intended to address is one where

the operator has brought the movable object into a multiple contact and wishes

to align MO w.r.t. the environment so as to obtain a higher order (i.e., more

stable) contact type. Figure 14-a illustrates an example, where MO has been slid

along a surface (faeelface contact) against a wall (vertex/face contact). This mode

will allow the operator to rotate the object into a stable configuration w.r.t. the

environment (i.e., edgelface wall contact, Figure 14-b) and align MO for subsequent

sliding along either or both of the constraining surfaces.

6.3 Contact motion 51

It is clear, that in view of the intended applications of this motion mode, the

only practical situations will involve two constraints. Also, we will assume that

realigning motions either preserve or raise the order of existing contacts. Finally,

as any pivoting multi-constraint motion will involve sliding of the moving object

along one of the constraints, we will require that one of the contacts be a facelface

contact.

While the imposed conditions may seem restrictive, the allowed motions still

spa.n a sizable set of useful realignment motions that may be needed in a practi-

cal application. For instance, most two-constraint situations will arise by sliding

the movable object against a second constraint, where the single-constraint sliding

motion will be performed in a facelface contact state for obvious reasons of con-

venience and stability. Similarly, upon encountering a second constraint, the most

likely subsequent motion (if any) is one where the object is pivoted about this new

contact into a higher order multiple contact state.

In order to compute the allowed motion of MO in a two-contact situation, we will

again make use of the notion of a primary constraint, and label the two contacts

as primary (cp) and secondary (c,) contact. By convention, we will refer to the

mandatory facelface contact as the secondary contact. The motion of MO will then

be computed as a pure rotation about the contact point associated with the primary

contact, and filtered such that it will not violate the secondary constraint. Clearly,

if any rotation is to take place, the primary contact must be of a lower order (e.g.,

vertex / face, edgelface, faceledge, etc) than the secondary contact. Moreover, if

the primary constraint forms a line contact (see Figure 6), then motion will only

be possible if the corresponding edge direction is parallel to the secondary contact

normal n, (see Figure 14).

Once again, let the original commanded motion of the slave wrist be given by

nBd = (Bt, Br). Assuming that the above set of conditions is satisfied, we identify

the primary constraint cp and compute rotational motion 'r' about its associated

contact point as in Section 6.3.8 (Eq.(18)). This contact-frame based RPY rotation

must then be filtered so as to retain only the rotation about the axis parallel to the

normal of the secondary constraint. We therefore define a filtering frame 3F, such

52 6 COMPUTING KINESTHETIC FEEDBACK

that one of its axes (e.g., z) coincides with this normal direction, i.e.,

and map the rotation Cr' into this frame to obtain 17r1 (see Section A.3). The filtered

rotation is then obtained trivially as

The remaining task is to compute the corresponding motion a B d l of the slave wrist

in the reference frame coordinates. This is accomplished in a straightforward fashion

as described at the end of the previous section.

6.4 Pushing

6.4.1 Single-contact pushing

It has been established that pushing motions are difficult t o analyze and predict

accurately [Peshkin&Sanderson,l987], [Mason,1985], [Mason,1986]. This is due pri-

marily to the fact that the motion of a pushed object depends critically on the

complex interaction between the microscopic features of the two sliding surfaces.

This in turn accounts for continuously changing frictional properties of the sliding

contact, making reliable predictions of the resulting motions impossible without a

detailed knowledge of the surface textures and the distribution of the support forces.

In order to facilitate rudimentary pushing operations and yet generate instruc-

tions which can be executed successfully and reliably under the slave's local super-

vision, we provide a simple pushing mode, where the operator can indicate to the

system that she wishes to push an object through a certain distance along a straight-

line trajectory. We require that the object to be pushed be in a planar (facelface)

contact with some supporting surface and that the task information (Section 4.7)

indicate that this object is in fact pushable. We also require that the slave establish

a planar contact with the pushed object (PO). The requirements of a straight-line

pushing motion and a planar pushing contact (between PO and the slave) minimize

the possibility of slippage along the pushing contact or unexpected twists of the

pushed object in the actual environment.

6.4 Pushing

Figure 15: Single-contact pushing.

Another requirement aimed at avoiding slippage along the pushing contact is

that the pushing contact plane have a "reasonable" orientation w.r.t. the sliding

surface. We quantify this condition by introducing a pushing frame

F~ = {B((np x n,) x n,)* , .(nP x n,)* , *n,)

centered at the contact point associated with the pushing contact, and requiring

that the pushing and sliding contact normals (np and n,) form a sufficiently large

angle a , so as to prevent slippage (see Figure 15)17:

a = arccos (n, - n,) > amin (27)

Moreover, in order to give the operator a sense of the frictional effects during

pushing, we filter the operator's motion such that no sliding motion occurs, unless

the pushing direction (*t) lies outside of the friction cone [Mason,1984]. The angle

of the friction cone is given by 4 = arctan (p), where p is the frictional coefficient of

the sliding contact (see Figure 15).18 Likewise, no sliding motion should be generated

17 The vector labeled t' in the figure is the projection of the commanded translation vector Bt

onto the x-z plane of Fp.
18Technically, the apex of the friction cone should be located a t the center of mass of the pushed

object. Within the context of a non-dynamic simulation, we use the approximation of locating it

at the pushing contact centroid.

54 6 COMPUTING KINESTHETIC FEEDBACK

unless the intended displacement vector Bt lies below and has a positive component

along the sliding direction d, (see Figure 15). Given a commanded motion nBd

of the slave wrist, we can therefore compute the straight-line sliding motion of the

pushed object as follows

where

Bt' = 't, , if (4 < 0 < ;)
0 , otherwise

In Eq.(29), P t denotes the operator-supplied translational displacement (Bt) rotated

into the pushing frame Fp (see Section A.3)) Pt, is the component of Bt along the

sliding direction Bd,, and 0 = arctan ('t,, -'t,) (see Figure 15). Moreover, in light

of our use of the friction cone and Figure 15, we may set amin = 4.

In order for pushing motion to take place, the operator must first establish

a planar contact with some environment object. We propose that the operator

signal her intent to push the object by exerting a significant (and therefore easily

identifiable) force against it. If this object is identified as pushable, the system then

enters the pushing mode. In this mode, the graphical simulator rigidly attaches the

pushed object to the slave at the point of pushing contact and filters commanded

slave wrist motions so as to move in a straight line along the sliding surface (Eq. 29).

Similarly, a decisive pull away from the pushing contact can be made to terminate

the pushing mode.

Whereas every precaution has been taken to ensure that pushing motion com-

mands generated at the operator's station are simple and easily executable by the

slave, things can still go wrong. In particular, as the operator's station relies on a

kinematic simulation of the slave world, error conditions such as the pushed object

tipping over in the remote world can not be predicted and detected ahead of time.

Avoiding such situations is thus left to the operator who can draw on her approx-

ima.te knowledge of the relevant dynamic parameters or simply on her intuition in

choosing a reasonable pushing contact.

6.4 Pushing

In order to enhance the versatility of the system, we again extend the single-

constraint pushing motion mode to multi-contact situations. We envision this class

of motions being used primarily to push and align an object with respect to two

simultaneously active environmental constraints or to slide the object along an edge

by pushing it. The analysis of such aligning and sliding pushing motions is therefore

analogous to the analysis of double-constraint pivoting and sliding motion cases, re-

spectively, with the movable object in this case being the pushed object together

with the (rigidly attached) slave's end-effector or tool, if any.

56 7 FILTERING OPERATOR'S MOTIONS

7 Filtering Operator's Motions

In this section we describe a simple filtering procedure, which is applied to the

positional data generated by the graphical simulator. The aim of this filtering stage

is to smooth the observed slave trajectories and eliminate the undesired noise in the

data.

The input to this module is the motion of the slave as computed in Section 6.

As we have seen, various filtering steps have already been applied to the operator-

generated motions so as to avoid object penetration and to force the operator to

clearly indicate her intent to break (or reduce the order of) an existing contact. We

will therefore assume that all the contact changes contained in the incoming data

were intended by the operator and that there is no further need to detect and to

eliminate transient changes of contact type.

During the same contact state (i.e., the same set of elementary contacts), the

information available from the graphical simulator is the trajectory of the slave end-

effector along the unconstrained degrees of freedom defined by this contact state.

This trajectory 7 is initially represented by the discrete set {pi : 0 5 i < n),

where pi = (t i , r i) describes the position and orientation of the frame FSw (the

frame attached to the slave wrist) at the i-th step of the simulation, and n is the

number of discrete positional data acquired since the generation of the last command

stream.lg

This trajectory needs to be filtered for two reasons:

The positional data will be inherently noisy due to the way in which this infor-

mation is acquired, i. e., operator-guided motions of the master. The filtering

will eliminate small oscillations and deviations introduced by the operator and

the sensor readings.

More importantly, this trajectory has to be represented in a more compact

fashion in order to reduce the number of motion commands to be sent to the

remote slave.

Given the set describing 7 and two thresholds ~ t , E,, the filtering algorithm

produces an approximate trajectory I, , composed of straight-line translations and

lg~eneration and partitioning of the command streams will be addressed in Section 8.

Figure 16: Trajectory filter - the "closeness test".

rotations of 3.947, such that I, stays inside the space tunnel defined by 7 and by

the radii ~t and Er (for the translational and rotational components, respectively).

The algorithm starts with the simplest approximation of 7 , i.e., the straight-

line segment between the initial generalized position20 po and the final one p,.

If this approximation is "close enough" to 7 , the algorithm simply returns this

straight-line motion. Otherwise, an intermediate position p j in 7 is added t o the

representation of I, and the two line segments Seg(po,pj) and Seg(pj,p,) are

respectively checked against the corresponding portions {pi : 0 < i 5 j) and

(pi : j 5 i 5 n) of the original trajectory 7 . The same process is iteratively

applied to each segment which needs to be refined and the algorithm converges to an

approximation of 7 by a polygonal path including generally only a few intermediate

points. Clearly, the larger the space tunnel defined by the radii ~t and Er around 7,

the fewer intermediate positions will be returned.

A line segment Seg(pi,, pi,) of I, is considered to be a good approximation of

the corresponding part of 7 defined by the set {pi : il 5 i 5 in), if all the pi satisfy

where t (resp. r) denotes the closest point on Seg(til, ti,) (resp. Seg(ri1 , r;,)) to

t; E 7 (resp. r;). Figure 16 illustrates the process.

Several approaches can be adopted for the selection of the intermediate position

to be introduced after each non-terminal iteration of the algorithm. The point on 7

which is farthest from the current approximation I, is in general a good ca.ndida.te.

"We use the term generalized position to denote the 6-vector of positional and orientational

parameters.

5 8 7 FILTERING OPERATOR'S MOTIONS

However, the drawback of this method is that it requires the computation of all

distances between the points pi E 7 and the line segment Seg(p;, ,p i2) , il < i < i2.

Consequently, a binary subdivision method offers a much more efficient approach:

as soon as the algorithm finds a pi which does not satisfy the "closeness test" of

Eq.(30) for a given line segment of I, , it immediately introduces a new generalized

position vector pi, where j = max (9, i), and cuts this segment into Seg(p;, , pi)

and Seg(pj, pi2 1-
Clearly, this method will sometimes produce a slightly larger number of inter-

mediate positions than the former approach. Notice, however, that the algorithm

will at each step at least halve the complexity of the problem.

This filtering procedure must be applied to all six components of the positional

information in the case of a general motion in free space. However, both in the

case of free-space motion with frozen orientation (resp. position), as well as in the

case of sliding (resp. pivoting) contact motion, only positional (resp. orient ational)

motion parameters need to be filtered. Moreover, in each motion mode, only the

components corresponding to the free degrees of freedom defined by the contact type

need this filtering stage. For example, during a sliding motion along a plane whose

normal coincides with the z axis of the reference frame FR, only the components of

translational motion along Rx and Ry will need to be filtered.

8 Generating Symbolic Slave Commands

In this section we detail our approach to using the sequence of contact state changes

(Section 6) and the filtered slave trajectory information within each contact state

(Section 7) to extract a stream of symbolic commands to the remote slave. The

resulting symbolic command language constructs are described in Appendix B.

The commands which will be issued to the slave by the system can be classified

into two groups. The first group is composed of low-level commands, essentially

encompassing guarded and compliant motions. These commands will be generated

to execute simple tasks such as free-space navigation, pick and place operations,

motion into contact with the environment, contour following, etc.

The high-level class of motions, on the other hand, contains more specific special-

purpose operations such as tight tolerance part mating, fine-precision motions, cam-

era repositioning etc. Even if the operator were able to perform a complex insertion

in the simulated world, the observed sequences of contacts clearly would not be

reproducible by the slave, due to the environment modeling errors. Therefore, such

tasks can not be decomposed into elementary motions and must be executed au-

tonomously by the slave under local sensory supervision. In this case, the graphical

simulator need only identify that the operator wishes to perform a high-level opera-

tion (either by using the information provided by the task model or by interpreting

the operator's motion information directly). The system then gathers the relevant

parameters of the task and sends this information to the remote slave, where the

information is used to instantiate a local special-purpose procedure.

A new stream of commands is issued after each addition or deletion of a new

contact. However, there is also a maximum time (e.g., on the order of the transmis-

sion delay) after which a new stream is automatically generated even if the same

contact state persists. This is done to avoid increasing the delay and to prevent

accumulation of the positional information to be processed.

In this section, we restrict our analysis to the generation of the low-level com-

mands and discuss the algorithms used to transform the contact-state and positional

information provided by the graphical simulator and by the kinesthetic feedback

module in order to produce a stream of guarded and compliant motion commands

to be executed by the slave.

60 8 GENERATING SYMBOLIC SLAVE COMMANDS

8.1 Types of motion commands

An important issue that must be addressed when generating these commands re-

sults from the presence of uncertainties in the world model used by the graphical

simulator. During free space motion, simple positioning commands will generally be

sufficient to be executed safely by the slave. However, as soon as the task involves

interactions between the robot and its environment, these discrepancies may cause

a failure during the command execution. This problem has been studied extensively

during the last decade [Mason,l981], [Whitney,l987] and various methods of using

the forces and torques occurring during the contact motion to suitably adapt the

robot's trajectory have been proposed. We will in our work make use of the hybrid

force-position approach [Inoue,l971], [Pau1,1976], [Raibert&Craig,l981], where the

free directions of the motion are controlled in position (or velocity), while the direc-

tions constrained by the contacts are controlled in force. Contact motions will thus

consist of two main types of commands: guarded motions and compliant motions.

A guarded motion is generally used when approaching a surface to avoid excessive

forces after the contact is established. A compliant motion is then required to move

along one or more constrained surfaces while maintaining a given force (or torque)

constraint in the directions normal to constraining surfaces.

The following section describes how the positioning and contact information

provided by the graphical simulator can be translated into a stream of such hybrid

control motions.

8.2 Task frame specification

In order to facilitate convenient specification of guarded and compliant motions

of the slave manipulator, we will define a task frame .FT, such that its position

and orientation is closely related to the constraints imposed by the geometry of

the current contacts. For each type of elementary contact, the task frame FT =

{p ; n,, n,, n,) is defined in the following manner:

Its origin p coincides with the centroid of the contact feature (see Section 5.5).

n, is aligned with the constraint normal (see Section 6.3.2).

8.3 Motions t o keep contact 6 1

For the three types of contact where an edge is involved (see Figure 6), n,

is aligned with the direction of this edge. For the other cases, an arbitrary

direction lying in the contact plane is chosen.

n, is obtained by n, x n,.

More work needs to be done to identify the optimal choice of task frame coordi-

nates for the case of multiple-constraint motions!

Whenever a new task frame needs to be specified, an assignment command is

sent to the slave. This command must specify the 3-dimensional vectors p,n,, ny

and n,. In general, this task frame will not have a fixed relation with respect to

the global reference frame FB or to the end-effector frame Fsw. Depending of

the contact type, each of these vectors can be defined with respect to any of the

currently defined coordinate frames.

We propose to use the following syntax to specify task frame axes:

CreateFrame (<name>:<ref-fm>; <origin>:<ref-fm>;

<x-axis>:<ref-fm>; <y-axis>:<ref-fm>, <z-axis>:<ref-fm>)

AssignFrame (<name>)

where the angle-bracketed expressions denote symbolic labels for the correspond-

ing entities. See Appendix B for more detail on the syntax and semantics of the

language.

8.3 Motions to keep contact

Motions, tending to maintain the current contact state, are compliant motions.

Several types of commands are issued to specify such motions. First, the Carte-

sian hybrid control axes must be designated either as position or force controlled

directions. The next step is to specify compliance forces and torques along force

controlled axes. Finally, a motion command must be issued, giving the desired dis-

placements along position controlled directions. Because the task frame has been

chosen to be aligned with the constraints imposed by the contact geometry, the

specification of the compliant commands becomes relatively straightforward.

62 8 GENERATING SYMBOLIC SLAVE COMMANDS

For the case of sliding motions, regardless of the contact type, the translational

motion along the x and y directions of &, will be position controlled while a force

will be specified along the z-axis to maintain the contact.

In point-contact pivoting mode (see Figure 6), any rotational motion around the

contact point is allowed and the three axes are therefore position controlled. Line

contacts will require that zero torque be maintained about the contact-plane axis

perpendicular to the edge direction. Finally, the only allowed rotation in a planar

contact is the rotation about the constraint normal direction (task frame z-axis)

and zero torques must therefore be commanded about the other two axes. In all

cases a force must also be maintained along the z-axis to maintain contact.

The force to be exerted will be specified by a symbolic value in order to indicate

what the intended result of this force is (for example Fstick or Fslide). The actual

values of these forces will depend on the physical parameters of the task (e.g.,

contact surface friction, etc.) and will be determined by the slave manipulator

control software.

For example, during an edgelface contact, the following sequence of commands

will be generated to execute a simple translational niotion through a distance d in

the direction of this edge (task frame y-direction):

AssignMode (P, P, F, F, P, P)

Force (< 0, 0, - Fs[ide >, 0)

Slide (< 0, d, 0 >)

where Fslide is a positive force, sufficient to ensure sustained contact during the

sliding motion.

8.4 Motions to change contact

Both sliding and pivoting motions can cause a change of contact. Sliding motions

can result only in the introduction of a new contact or deletion of a current one.

Pivoting motions, on the other hand, will generally cause a change of the current

contact type (for example, a transition from a vertezlface to an edgelface contact).

Whenever such changes are observed in the simulated world, the command gener-

ator must specify one (or more) terminating conditions for each of the corresponding

8.4 Motions to change contact

Figure 17: Changes of contact during a sliding motion.

motions.

8.4.1 Sliding case

When sliding motion along a given direction encounters a new contact (see Fig-

ure 17-a), it has to be stopped when a force discontinuity occurs along this direction.

Because of the modeling uncertainties, the location of the environment feature to

be contacted may not be known precisely. Therefore, in the interest of safety, the

slave should also be given the maximum allowable displacement (function of esti-

mated modeling uncertainties) - if the contact has not been encountered within

this distance, then the motion should be terminated in an error state. Figure 17-b

illustrates another situation where explicit terminating conditions need to be spec-

ified. The movable object is being slid along a surface towards the boundary of the

sliding surface. In this and similar situations, termination of the motion corresponds

to the occurrence of an acceleration discontinuity on the axis which was controlled

in force during sliding.

We provide the following language constructs to alert the slave to the possible

occurrence of the various terminating conditions during the upcoming motion:

GuardPos i t ion (p, o)

GuardForce (f, r)

GuardAccelerat ion (a, a)

8 GENERATING SYMBOLIC SLAVE COMMANDS

Figure 18: Transition between two vertexlface contacts.

8.4.2 Pivot ing case

When a change of the contact type occurs, this transition can be characterized by

a discontinuity of the torques about the contact edges. For example, figure 18-a

illustrates a situation where a vertex of the mobile object is in contact with a planar

surface of the environment. A rotational motion around the contact point pl is then

applied to put the edge e in contact with this face, while exerting a positive force f

along -n. In the frame defined by {pl ; (e x n)", (e x n)' x n, n), the component T,

of the torque acting on pl remains null while this point remains in contact with the

surface. However, when the transition occurs and the vertex p2 comes into contact

with the supporting plane, this torque r, will suddenly increase to f . E (where E is

the length of the edge) and the contact can thus be detected.

In fact, we show in Appendix C that this variation of torque remains constant,

independently of the position of the coordinate frame in which the torques are

expressed. This provides an easy way to detect such transitions directly from the

torques measured in the frame of the F I T sensor, mounted at the slave manipulator's

wrist.

The proposed symbolic encoding of the above pivoting motion is as follows:

8.4 Motions t o change contact

AssignMode (P, P, F, P, P, P)

Force (< 0, 0, - FStick >, 0)

GuardForce (0, < 1 . Fstick, 0, 0 >)
Pivot (edge, face; I ; < -8, 0, 0 >)

where 1 = lei, edgelface is the target contact type, and 1. Fstick is the expected

motion termination torque about the z-axis of the task frame (see Figure 18).

66 9 C O N T R I B U T I O N OF THIS W O R K

9 Contribution of This Work

The contribution of this research is the development and implementation of the

teleprogramming concept for remote control of robotic systems in the presence of

substantial communication delays. The essence of the this supervisory control tech-

nique is a high-fidelity kinesthetic and visual interaction with a graphically displayed

virtual world, allowing for continuous and fluid on-line task-level programming of a

remote robotic system. The operator is interrupted only when the remote control

system was unable to carry out the specified sequence of elementary instructions or

could not unambiguously verify the slave's resulting state. The two specific contri-

butions of this work are

1. producing natural, real-time kinesthetic feedback to the human operator de-

spite significant communication delays

2. on-line analysis of operator's motions and automatic generation of task-oriented

symbolic instructions to the remote robotic workcell

The proposed methodology of extracting pseudo-force information from a non-

dynamic graphical simulation represents a novel approach to providing the human

operator with a sense of kinesthetic telepresence. Most existing systems do not offer

this feature a t all and instead rely on the local control of the slave to execute compli-

ant motions autonomously without providing the operator with a kinesthetic "feel"

of the resistive forces encountered by the slave. On the other hand, the systems

which do attempt to provide this facility, are normally limited to simple linear or

quadratic repulsion rules, where the resistive force is computed from the graphical

simulation as an inverse linear (or quadratic) function of the decreasing distance d

between objects, i.e.,

where v denotes the unit length vector along the shortest distance between objects

and E represents the contact threshold.

In our work we propose to generate pseudo-force reflection to the operator by

analyzing polyhedral contact types and transitions between them. The kinesthetic

feedback is generated as a consequence of enforcing lost translational and rotational

degrees of freedom both in the graphical world and in the low-level control loop of

the master manipulator. A crucial component of this approach is a detailed model

of polyhedral contacts and interaction between polyhedral features, which has been

developed and implemented as part of the graphical simulation package. Both force

and torque information to the operator is generated in a uniform and consistent

manner.

The second area of contribution pertains to the automatic on-line generation of a

stream of elementary instructions to the slave. Toward this aim, we are developing a

symbolic language, which will encode sufficient information about the task geometry

and modeling, sensory, and control uncertainties, to facilitate reliable execution

of the elementary actions by the slave under its own local sensory supervision.

Again, a prerequisite for generating this instruction stream is a consistent model of

polyhedral feature interactions and the corresponding control issues (e .g . , how much

information must the operator's station communicate to the slave for the latter t o be

able to safely and accurately transition from a vertexlface to an edgelface contact).

Finally, this research has addressed a variety of important subproblems, such as

selection of a suitable control methodology for the master manipulator, ensuring that

the operator need not be concerned with encountering workspace volume limitations

or kinematic singularities on the master arm (reindexing techniques), automatically

maintaining a natural and convenient view and projection of the graphical environ-

ment to the operator, etc. We feel that our solutions, results, and experience gained

in exploring these issues will likewise contribute t o the general body of knowledge

in remote control of robotic systems.

10 CURRENT STATUS

VMEIPC

MMCS Unimation
Controller I

I

ethernet

1

(a) Operator's Station (b) Remote Workcell

pvAX II

Figure 19: The hardware architecture of the experimental testbed.

Unirnation
Controller

10 Current Status

Q-bus

axvl lc f i
I -

10.1 The experimental hardwarelsoftware testbed

The hardware architecture of our experimental operator's station setup is illustrated

in Figure 19. The master manipulator in our scenario is a Unimation Puma 250

manipulator. It provides a backdrivable 6 DOF "joystick" with a sufficient operat-

ing volume to afford the operator a true sense of spatial positioning and orienting.

Digital hardware control for the master is provided by the Modular Motor Control

System (MMCS) [Corke,l989]. This system was designed and built at the laboratory

as an experimental PC-bus based general purpose digital motor controller capable

of controlling up to 16 independent actuators simultaneously. The MMCS hardware

is interfaced to the original (factory-supplied) controller, whose sole remaining func-

tion is to provide power and the front panel interface. Finally, a custom-designed

PC/VME adaptor connects MMCS's backbone to the VME bus.

Mounted a t the wrist of the master is a 6 DOF force/torque sensor (LORD Corp.,

LTS-200) enclosed within a "whiffle-ball" handle for convenient grasping by the

operator (see Figure 20). The sensor is read over a serial line (RS-232) and provides

10.1 The experimental hardware/software testbed

Figure 20: The operator's station.

information at a rate of approximately 30 Hz2'. These readings are interpreted as

incremental displacement/RPY Cartesian motion parameters of the sensorlhandle

assembly, and thus (through a transformation) of the master manipulator.

The computational engine of the system is JIFFE - a very fast, very-long-

instruction-word floating point scalar processor delivering 20 real Mflops of com-

putational power [Andersson,l989]. The processor has a standard VME interface

and physically resides inside the Sun cage. It is fully C-programmable and sup-

ports most of the essential UNIX operating system facilities. JIFFE runs both the

low-level joint servo code for the master at 500 Hz (PD control loop + gravity feed-

forward), as well as the Cartesian level servo code, which runs at 30 Hz (Cartesian

setpoint computation and filtering as described in Section 6)22. It communicates

with the Sun (model 31160) via JIFFEresident shared memory and (via the Sun and

ethernet connection) with the Iris graphical workstation. The Sun currently serves

21There is a substantial variation about this nominal bandwidth, largely due to the unpredictable

UNIX-incurred delays in servicing the serial port accumulating incoming data.
22The Cartesian servo loop bandwidth is limited only by the rate at which force/torque sensor

can provide new information, and not by the JIFFE's computational capacity.

70 10 CURRENT STATUS

mostly as the accumulator and processor of the force/torque information from the

sensor and as an intermediary between JIFFE and the Iris. In later stages of the

system design and implementation, the Sun will provide a console for an on-line

task-level dialogue with the operator (see Section 4.7).

The incremental Cartesian displacements are appropriately scaled into the re-

mote slave's workspace and sent (via ethernet) t o the Iris, which tries to realize

them in the simulated slave environment. In case of a collision (see Section 5.4),

the offending motion is appropriately modified so as to stop colliding objects in a

contact but non-penetrating configuration. The new constraint information is added

to the existing set of constraints and communicated back to JIFFE, which in turn

filters subsequent operator-supplied motion demands so as to not violate any of the

current constraints on the motion of the slave (see Section 6). This filtered motion

is then applied both to the graphical model of the slave and the master manipulator,

thus providing a sense of kinesthetic feedback to the operator.

The link between JIF'FE and the Iris is a bidirectional communication channel

conveying filtered incremental Cartesian motions one way and newlupdated con-

straint information the other way. The link is implemented as a standard UNIX

socket communication channel (between the Sun and the Iris) and has a round-trip

latency of only a few miliseconds. The graphical workstation is a 16 MIPS Personal

Iris 4D-25 with a hardware turbo graphics option to boost its drawing speed. Even

so, its ability to render shaded graphical images of modest complexity (e.g., the slave

manipulator plus an object) lags far behind its scalar number crunching capacity.

We are able to obtain refresh rates of about 7 Hz for low complexity environments

and only partial shading. However, it is now within the realm of possibility to obtain

fully shaded graphic displays of relatively complex scenes at video rates using the

latest Silicon Graphics hardware [Bejczy&Kim,l990].

The software modeling environment for 3-D manipulation of articulated figures

was provided by the Computer Graphics Laboratory at the University of Pennsyl-

vania [Phillips&Badler,l988].

The remote manipulator in our experimental system is a PUMA 560, which is

controlled using a Unimation controller, interfaced to a Microvax 11. The robot is

programmed using RCI and RCCL commands [Hayward,l983], [Lloyd,1985]. In-

formation sent to this remote site will be parsed with a command langua,ge inter-

10.2 Preliminary results and discussion 7 1

preter, which will translate the symbolic task-level instructions into a sequence of

RCIJRCCL commands.

A six DOF instrumented compliant wrist, mounted at the slave's end-effector, is

used as the remote force sensing device [Xu&Pau1,1989]. With this wrist, a hybrid

forceJposition control algorithm allows the manipulator to move in free space and in

contact with surfaces. The passive compliance of the wrist and the active compliance

of the control algorithm eliminate the problems associated with transitions from free

space movement to constrained movement. Within the control loop, unexpected

forces are monitored by limits on the wrist deflection.

10.2 Preliminary results and discussion

The current implementation of the system allows the operator to move the master

and control the motion of the graphical model of the slave. The simulated slave

can be brought into contact with the environment and the master is appropriately

backdriven to provide a kinesthetic sense of contact to the operator. Recent ex-

periments have shown that purely translational and sliding tasks can be performed

with confidence and ease both for single and multiple constraining surfaces. The

kinesthetic feedback to the operator feels natural and allows her to easily identify

motion constraints and the shape of the constraining surfaces without looking at

the display.

We are currently implementing the rotational (pivoting) contact motion mode.

This should be completed in the near future and the resulting system should offer a

versatile 3-dimensional 6 DOF input device that will allow the operator to perform a

variety of probing tasks, exploratory procedures, surface following and identification

tasks, etc.

Preliminary experiments with the system showed that reindexing is an important

issue in control of the master arm. This is perhaps all the more true of our particular

implementation, where a general purpose manipulator is employed as the master

device, and as such is not designed to meet the requirements of a versatile master.

In particular, we found that due to a large number of kinematic motion singularities,

a relatively small workspace volume around any given initial "home" position can

be used for maneuvering. Of the three reindexing schemes described in Section 4.3,

10 CURRENTSTATUS

we have implemented the first two.

With the first method, the operator initiated reindexing by depressing a mouse

button, which in turn put the arm in a free, gravity compensated mode and allowed

the operator to reposition the master to an arbitrary new (presumably singularity-

free) configuration before resuming position servo mode. As expected, the drawback

of this approach lies in burdening the operator with having to be concerned with

the kinematics and the current state of the master. This is especially unacceptable

as the operator's full attention is often required to control the task in progress.

The second "drift-back" method was implemented using an exponential relation-

ship between the displacement/twist away from the home position and the magni-

tude of the restoring drift. Whereas this eliminated the need for operator's inter-

vention in the reindexing process, it significantly impaired the spatial resolution of

the master's motion (work volume), which in turn obscured the kinesthetic feedback

effects during contact motion. Since producing this kinesthetic feedback is a central

feature of the proposed system, we chose not to adopt this approach.

The third approach of reindexing automatically seems the most promising, but

it has not yet been experimentally verified. We intend to, in fact, offer a hybrid

reindexing scheme, using automatic reindexing, as well as allow the operator to at

any time reindex manually (the first approach).

Our current goal is to complete the implementation of the kinesthetic feedback

features as described in Section 6, implement a satisfactory reindexing scheme, and

concentrate our efforts on the problem of automatically partitioning the task in

progress and extracting the relevant parameters to generate a stream of robust

elementary task-level instructions to the remote slave.

11 Proposed Work Plan

I plan to complete the kinesthetic feedback portion of the graphical interface and

its integration into the overall system by the beginning of September, 1990. By this

time, we should have also completed the design of the symbolic language interface

between the master and slave sites, and as well as resolved the issues of filtering

the operator's motion trajectories as a preprocessing step to the symbolic command

generation module. In September, I plan to visit our collaborating laboratory in

Toulouse, France, and report on our progress, as well as ensure that our efforts

remain compatible and coordinated.

I anticipate that the fall will be dedicated to the implementation of the language

interface and the integration of both the operator's station modules (my work) and

the remote workcell modules (Tom Lindsay's work) into a working system. I hope

to complete the implementation of the proposed system by the end of December,

1990.

I would then like to spend some time investigating the performance issues, future

directions and expansions of the system, as well as documenting the experience that

I will have gained through this work.

I hope to submit my dissertation and graduate by May, 1991.

1 1 PROPOSED W O R K PLAN

A Notation and Coordinate Transformations

A. l Notation

Both 3 and 6-dimensional vector quantities are denoted as boldface (lower-case)

characters with an optional preceding superscript indicating the coordinate frame

with respect to which they are given, i.e., a ,Bn, etc.

A coordinate frame is specified by a triple of mutually orthogonal unit vectors,

with an optional indication of the frame's origin, i.e.,

Rotational matrices are denoted by upper-case boldface letters with optional

superscripts and subscripts indicating which two coordinate frames they relate, e.g.,

the matrix B ~ F describes the orientation of frame 3j7 w.r.t. FB.

Finally, we occasionally use the following non-standard vector notation

A.2 Coordinate frames and rotational matrices

Let .FA be a coordinate frame and let Ay and Az be two mutually orthogonal unit

vectors, expressed in F A ' S coordinates. Then the two vectors can be thought of as

defining a second coordinate frame

whose origin is coincident with and whose orientation w.r.t. FA is given by

the rotational matrix

Moreover, the rotational matrix A ~ B can be used to map (rotate) an arbitrary

vector Br expressed in FB's coordinates into its corresponding description in FA
coordinates, i.e.,

A R ~ + ~ v
(5)

. .
11 A NOTATION AND COORDINATE TRANSFORMATIONS

Likewise,
B B ~ = R A * ~ v

where B~~ = (ARB) -I.

A.3 Mapping rotations between frames

Let .FA and .FB be two arbitrary coordinate frames and let Ar = 6' . Ak* denote

a rotation expressed in FA'S coordinates. The same rotation can be expressed in

frame FB as
A B r = 8 . B k * = d . (B ~ A * A k *) r (7)

Alternatively, if the rotation Ar is expressed as a triple of roll/pitch/yaw parame-

ters, i .e. , *r = (d,, 8,, d,), the equivalent rotation expressed w.r.t. FB's coordinates

is obtained by

assembling a rotational matrix representing A r

transforming this matrix to FB7s coordinates

BR = (ARB)-' * AR * (9)

extracting the new triple of RPY parameters

See [Pau1,1981] for a detailed discussion of the RPYtoM and MtoRPY conversion

operators. For the linear-algebraic basis of these operations, the reader is referred

to [Nering,l970].

A.4 Displacement of a point due to motion of the frame

Let F be a coordinate frame undergoing a translational and rotational motion

AdF = (t , r) . Then the resulting displacement of a point located at p w.r.t. the

origin of .F is

A d p = (t + (R * p) - p , r) (11)

where R = RPYtoM(r), and Adp is given w.r.t. to the original frame F.

B The symbolic command language

This section of the appendix briefly summarizes the main constructs of the low-

level language interface between the operator's station and the remote workcell.

The details of the scope, syntax, and semantics of the language are still under

development - the following is the current conception of the low-level command

language.

In what follows, syntactic constructs are given informally. When the language

design is completed, we will derive the corresponding context free grammar descrip-

tion and produce the corresponding parser/interpreter. A brief semantic clarification

follows the statement which are not self-explanatory.

B.l Task frame management

Basic entities, such as vectors and coordinate frames, are given symbolic labels,

e.g. , <ref-fm> (reference frame). All subsequent higher order constructs refer to

these labels, instead of the actual numeric quantities. Besides labeling vectors and

frames, the slave controlling software can be asked to track the current contact

point(s), assemble right-handed orthogonal coordinate frames from discrete axis

information, and assign an arbitrary (defined) coordinate frame as the current task

frame. Note that in creation of a task frame, each of the component axes can be

specified w.r.t. an arbitrary known coordinate frame. Moreover, these axes are

functions of the task geometry and may, in general, not be mutually orthogonal.

The slave site controlling module will thus need to orthogonalize and normalize the

specified coordinate frames and associated transformations. An assigned task frame

remains in effect until overriden.

Labelvector (<label>, v)

LabelNorma1 (<label>)

LabelContactPt (<label>)

TrackContactPt (<label>)

CreateFrame (<name>:<ref-fm>; <origin>:<ref-fm>;

<x-axis>:<ref-fm>; <y-axis>:<ref-fm>, <z-axis>:<ref-fm>)

AssignFrame (<name>)

iv B THE SYMBOLIC COMMAND LANGUAGE

B.2 Force control commands

The following statements are designed to support (at a task level) the hybrid

force/position control paradigm.

AssignMode (X, X, X, X, X, X)) X E { F , P)

Specifies force (X=F) and position (X=P) controlled directions and thus

defines the selection matrix S. A force-controlled direction is assumed

to require 0 force compliance (default), unless otherwise specified by a

subsequent Force statement.

Force (f, r)

Specifies force preload. If preload is specified on a force-controlled axis,

it is interpreted as the compliance force. If preload is specified on a

position-controlled direction, it is interpreted as a preload force for op-

erations like pushing, screw or valve tightening, etc.

Velocity (v, w)

Specifies velocity preload for tracking moving parts of the environment.

T i m e (t)

Specifies the amount of time in which to accomplish the forthcoming mo-

tion command. Note that velocity information can be derived from the

motion displacement parameters and timing info. If and argument t=O is

given, the system is expected to compute the necessary timing/velocity

information, based on maximum allowed joint/Cartesian rates and accel-

erations. Default velocities should be used if no T i m e statement appears

prior to the motion command.

GuardPosi t ion (p, o)

GuardForce (f, r)

GuardAccelerat ion (a , a)

B.3 Motion commands

The guards are filtered through the inverse of the selection matrix S'.

Task level force guards only make sense along position controlled direc-

tions. Similarly, task level position guards are only relevant along the

force controlled directions. Low-level safety force guards should be active

at all times (task independent).

B.3 Motion commands

All motion commands are subject to velocity constraints imposed on the motion by

the preceding T i m e statement.

Free-space motions. p and o give the incremental translation and rota-

tion of the slave's end-effector frame (T6) w.r.t. the current task frame.

Slide (p)

Contact sliding - the slave must be in contact, a t least one axis should

be force controlled, and a force preload should be given along that axis. If

any are missing (or don't have defaults), the interpreter should complain

as we have an inconsistent motion request. This allows some cross-

checking for consistency.

P ivot (<featurel>, <feature2> ; <dim>; o)

Perform a pivoting motion about the contact point. <feature(i)> E {

vertex, edge, face), <featurel> belongs to the moving (i.e., held) object.

<featurel> and <feature2> specify the two feature types denoting the

target contact, e.g., edgelface, faeelface, etc. (Note: these are no t la-

bels of specific features, only feature types) <dim> gives the dimension

(size) of the critical target contact feature to help the slave monitor the

torques and decide when it has reached the desired contact. Normally

this will be an edge length (note that for both vertexledge and edgelface

transitions, edge length is the critical parameter). o is the string label

of the rotation parameters about the contact point (origin of the current

Task Frame).

vi C INDEPENDENCE OF T H E TORQUE MEASUREMENT SITE

B.4 Effector commands

Grasp (<featurel>, <feature2>)

Two-finger grasping - close the gripper such that finger(i) contacts

<feature(i)>.

Release ()

Release the grasp, i.e., open the gripper as wide as necessary to clear the

object by a reasonable tolerance.

B.5 Issues

a Syntax/Semantics: The scope of the statements must be clearly defined.

Labels: Certain labels can be assumed to be predefined (e.g., KB for slave's

Kinematic Base frame, WST for the slave's wrist position, etc), others are

defined for later reference as the task proceeds.

Tolerances: Maximum uncertainty bounds on modeling errors (cp, E,) must

be estimated - maximum displacements (tra/rot) during guarded moves are

then computed as functions of these tolerances.

a Symbolic Nature of Commands: The command stream should be mostly

symbolic in nature - the numeric values supplied by the operator station

are primarily: a) the wanted displacements (tra/rot) of the manipulated ob-

ject, and b) certain task frame axes derived from graphics. On the other hand

(since the simulation is kinematic), force/torque parameters are supplied sym-

bolically, i .e. , Fslide, Fpush, Fcontact and must be determined empirically by the

slave as a function of locally determined masses, inertias, and frictional pa-

rameters of the actual objects.

C Independence of the torque measurement site

We have seen in Section 8.4.2 that the motion terminating torque in a vertexlface

to a edgelface transition (Figure 18-a), as measured at the contact point pl , is

given by r = (1 e) x f . The force f corresponds to the stiction compliance force

during the pivoting motion. Because of the choice of the task frame orientation, the

terminating torque reduces to r =< f e l , 0,0 >.
Consider now a situation, where the termination torque is to be measured in a

coordinate frame with the same orientation as the task frame, but whose origin has

been displaced from p l (task frame origin) to p (Figure 18-b).

The torque acting at p due to the reaction force f = (0,0, f)T, applied at the

point of contact, is expressed in the frame {p ; (e x n)*, (e x n)* x n , n} as follows

where r is the vector from p to the point of contact. During a contact with p l , the

components of this vector rl = ppl are

ll cos a1 sin pl
l-1 = (l1 (sin crl sin 8 - cos a1 . cos ,Dl . cos 8)

-11 . (cos a1 . cos 8 + cos a1 - cos pl . sin 8) I
-

where a1 is the angle between plp and its projection p lp l onto the plane n whose

normal is obtained by a rotating n through Rot(x, 6') (see Figure 18-b). ,B1 denotes
-

the angle between plpr and the edge e.

Similarly, during a contact with the point p2, the vector 1-2 = PP2 is given by

l2 cos a 2 sin p2
r 2 = (12 (sin a 2 - sin B + cos a2 . cos p2 . cos 19)

-12 - (- cos a2 . cos 6' + cos a 2 . cos P2 . sin 8)

The transition from contact p l to contact p2 occurs for 6' = 0. Computing the

values of the two torques just before and after the edgelface contact gives

71 = lim e++o (r l x f) = f (-11 . cos a1 . cos PI, -11 . cos a1 . sin Dl, 0) T

72 = ~ m 8 + - 0 (r 2 ~ f) = f - (~ 2 - ~ ~ ~ a ~ ~ ~ ~ ~ ~ 2 , - ~ 2 ~ ~ ~ ~ a ~ ~ s i n ~ ~ , ~) T (I5)

The variation of the torque across the contact then is

11 cos a1 . cos PI + 12 . cos a2 . cos P2
A r = 7 ' 2 - ~ ~ = f . 1 1 - ~ o ~ a l - ~ i n p l - 1 2 . c o s a 2 . s i n p 2

0

viii C INDEPENDENCE OF T H E TORQUE MEASUREMENT SITE

It is easy to see from Figure 18 that

l l ~ c o s a ~ ~ c o s ~ l + 1 2 ~ ~ ~ ~ ~ 2 ~ ~ ~ ~ ~ 2 = 1 , and

ll cos a1 - sin pl = l2 . cos a2 - sin p2 (17)

and the change of contact therefore introduces a discontinuity on rZ only. Moreover,

the magnitude of this discontinuity is again given by f .l. Since the torque measuring

site was chosen arbitrarily, we conclude that the reaction torques will be the same

regardless of the location of the sensing device.

A.2 Robot Slave System

Slave Robot System

Tom Lindsay

January 8, 1991

Abstract
This research centers around the slave-side operations of teleoperation with sig-

nificant communication delays [I]. The tasks include dissassembly/salvage/repairs
in an unstructured environment. In order to speed the process, and overcome com-
munication time delays, the slave runs semi-autonomously - it receives commands
from a command queue, tries to complete each command, and if successful, contin-
ues with the next command. However, if there is a problem, the slave communicates
back to the master with the information the human operator needs to correct the
error.

The study of the remote slave operation can be divided into two areas: hard-
ware and software. Hardware for our research includes a PUMA 560 industrial robot
controlled with RCCL and RCI software through a MicroVax IT and the Unimation
controller. A force/torque sensing compliant wrist, based upon work by Xu [3], is
the current end effector. This wrist is being redesigned to improve its performance
and usefulness as the major sensing device used in the remote world. Two levels of
software are being developed for use at the remote site. A low level control program
is used for basic manipulator movement, and includes simple error detection algo-
rithms. A higher level communication language parser converts messages received
from the master site into information used by the control program. It also returns
information to the master about error states encountered.

1 Hardware

1.1 Robot

At the remote site, a PUMA 560 is used as the manipulator. It is dissimilar to the
PUMA 260 used as the master, to illustrate the fact tha t with the methods we are using
for teleoperation, the master robot can be designed for better interaction with the human
operator, while the slave robot can be designed to be more useful in the environment it
will be used in. Thus, the operator would not have to move a large,heavy robot, even
though the remote site requires one.

T h e puma is equipped with a compliant instrumented wrist, described below. Cur-
rently, there are no tools for the robot to use, although research is being conducted to
determine the feasibility of using a box end wrench [2] , and an impact wrench. The im-
pact wrench is a useful tool for dissassembly tasks, where bolts may b e frozen or rusted
in place. However, the vibrations caused by the wrench may present control problems for
the robot. We are working with an air impact wrench, but for underwater applications,
an electric impact wrench will probably be needed.

1.2 Wrist

The end effector is based upon Xu's compliant instrumented wrist [3]. The existing wrist
is compliant, yet has a serial linkage with potentiometers at the joints which determines
the deflection in the wrist. Thus position errors can be sensed, and forcesJtorques that
the end effector is subjected to can be calculated. The wrist has all of the benefits of
compliance, coupled with the accuracy of a much stiffer forceJtorque sensor.

For useful work at the slave site, there are several improvements being made. The
compliant element structure and the serial sensing linkage, which currently are placed in
series between the robot and the tool, have been redesigned as surrounding elements, so
as to reduce the distance between the end of the robot and the end of the tool. Two other
improvements come immediately from the new design. First, the ratio of translational
to rotational stiffness can be improved. Second, the serial linkage structure is made with
longer links, which increases the sensitivity. A further improvement that came about from
the redesign was an improved mechanical system, with simpler parts and more protection
for the electronics.

Improvements can also be made to the electrical system to increase the sensitivity of
the potentiometers, and to reduce noise. The working range of the potentiometers about
their home position is less than 30 degrees, while the potentiometer's full range is 270
degrees. By rescaling the voltage drop over the working range to the full range of the A/D
board we are using, a potential increase of nine times the sensitivity is possible. Also, by
using analog low pass filters, the need for digital filters can hopefully be eliminated.

1.2.1 Compliant Structure

The compliant structure of the new wrist is composed of 12 rubber elements, which provide
compliance and some degree of damping. Figure 1 shows the design, with the bottom
plate (attached to the robot) fixed to the four aluminum blocks at the corners, and the
top plate (where the tool is attached) fixed to the four compliant elements (cylinders) at
the top. The tool can then be partially enclosed in the middle of this structure.

The stiffness in each direction can be approximated as follows:

where I(, and KT are the angular and radial stiffnesses of a single element. A tabular
comparison of the old and new wrists is shown below.

oldwrist[3]
newwrist

I(,
lb/in
32.30
41.65

IC,
lb/in
32.30
41.65

I(2
lb/in
64.86
70.59

I
in-lb
6.65

61.37

ICe
in-lb
6.65

61.37

I<+
in-lb
3.97

68.81

Figure 1: Compliant Structure

Figure 2: Kinematic Skeleton of Sensing Mechanism

Notice that while there is a modest increase in stiffness for the translational directions,
the new wrist is much stiffer in the rotational directions.

1.2.2 Sensing Mechanism

The sensing mechanism is composed of six links, with potentiometers at each joint. Figure
2 roughly shows the kinematic skeleton of the sensing mechanism. From the change in
resistance across the potentiometers, the joint angles of the six links can be found, and
the position of the top plate relative to the bottom plate can be determined from the
kinematics of the linkage.

The D-H parameters for the wrist are:

Also needed to define the transform between robot and tool is:

joint
1
2

inches
0
0

inches
-0.875
3.875

deg.
-90
90

deg.
0
0

With this information, a transform from the end of the robot to the end of the wrist is
formed. A further transform from the end of the wrist to the end of the tool will complete
the transformation from the end of the robot to the tip of the tool.

The Jacobian matrix for the sensing mechanism in the home position is found to be:

The inverse Jacobian can be calculated:

Thus, the eigenvalues of the rotational and translational kinematic sensitivity matrices
[3] are:

Because the largest eigenvalue for each set is less than five times the smallest, we can
assume that the relative sensitivity for each direction in translation and rotation is fairly
similar. Although the new design is more sensitive because of longer link lengths, it is
not as isotropic in sensitivity.

1.2.3 Dynamics of Wrist

The dynamics of the new wrist have not yet been explored. The natural frequencies of
the wrist may become important when using tools, such as the impact wrench, that have
their own driving frequency. If the driving frequency matches a natural frequency of the
wrist, the resulting motion is likely to cause control problems. In such a case, the tool
would have to be mounted on vibration absorbers.

Figure 3: Control Structure

1.3 Vision system

It appears that some of the slave side motions will have to rely to some extent on a
vision system. Tasks such as pin-in-hole insertions, operations on bolts, and hook-in-
eye operations are much more suited to autonomous control with feedback from a vision
system than the semi-blind control from the master. Some research is being conducted in
this area.

2 Software

2.1 Robot control

The robot is controlled via RCI commands. RCI sends commands to the robot at 28
ms intervals, which is a limitation in the current system. Above the RCI control is a
PD controller which uses information from the instrumented wrist as feedback. Figure 3
shows a simplified schematic for the controller. Basically, the controller receives cartesian
force and motion commands, where the cartesian frame is known, but can be arbitrary.
Feedback is input as cartesian positional errors in the wrist frame. The control program,
using a hybrid force/position algorithm, converts motion commands to velocities in the
wrist frame, computes differential motion, converts the cartesian motion to joint space,
and sends the updated joint positions to the robot. There are also checks for deflection
limits in the wrist. If any constraint is violated, motion stops and the operator is alerted.

2.2 Communication Language

The communications language defines how the master and the slave interact. Because of
the communication limitations that are implicit in this research, the interaction must be
minimal. Therefore, a simple set of commands is being developed that must be sufficient
to perform undersea salvage/exploration/etc. tasks.

The language contains commands for task frame management, which basically de-
termines what tra.nsform goes in the "TF" and "Tg" boxes in Figure 3. Also, there

are force and motion commands, which specify z,,~ and Fc,F. The c subscript means
commanded, and the F denotes the frame of reference, which is arbitrary but known.
The AssignMode command specifies which directions are force controlled and which are
position controlled. Finally, there are commands for specific actions, such as Grasp and
Release. Actions which involve the vision system have not yet been investigated.

The slave works through a queue of commands, which are conveniently numbered
by the master. If and when an error occurs, the state of the slave manipulator and
the command number are sent back to the master operator. At this point, the queue of
commands is flushed, up to the point where a correcting command is issued. If commands
are successful, the task can be completed without direct feedback from the slave to the
master, and thus much time can be saved. When errors occur, the human operator is
available to make error corrections.

3 Conclusion

Within the slave framework discussed above, teleoperation with significant time delays
becomes possible. The human operator is able to perform tasks in the local world with
kinesthetic feedback, and the remote slave operates in a semi-autonomous mode, following
the queued instructions. However, when an error occurs, the human operator intervenes
and is able to use human reasoning powers to correct the error.

References

[l] Richard P. Paul, Janez Funda, Thierry Simeon, and Thomas Lindsay. Telepro-
grarnming for autonomous underwater manipulation systems. In Intervention '90,
pages 91-95, The Marine Technology Society, June 1990.

[2] Walter Santarelli. Wrench end effector project. 1990. To be published as a tech.
report.

[3] Yangsheng Xu. Compliant wrist design and hybrid position/force control of robot
manipulators. PhD thesis, University of Pennsylvania, 1989.

	Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 First Report
	Recommended Citation

	Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 First Report
	Abstract
	Comments

	tmp.1186683197.pdf.fT_Ps

