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The correctness of real-time distributed systems depends not only on the function they 
compute but also on their timing characteristics. Furthermore, those characteristics are 
strongly influenced by the delays due to synchronization and resource availability. Pro- 
cess algebras have been used successfully to define and prove correctness of distributed 
systems. More recently, there has been a lot of activity to extend their application to real- 
time systems. The problem with most current approaches is that they ignore resource 
constraints and assume either maximum parallelism (i.e., unlimited resources) or pure 
interleaving (i.e., single resource). Algebra of Communicating Shared Resources (ACSR) 
is a process algebra designed for the formal specification and manipulation of distributed 
systems with resources and real-time constraints. A dense time domain provides a more 
natural way of specifying systems compared to the usual discrete time. Priorities provide 
a measure of urgency for each action and can be used to ensure that deadlines are met. 
In ACSR, processes are specified using resource bound, timed actions and instantaneous 
synchronization events. Processes can be combined using traditional operators such as 
nolldetermillistic choice and parallel execution. Specialized operators allow the specifica- 
tion of real-time behavior and constraints. The semantics of ACSR is defined as a labeled 
transition system. Equivalence between processes is based on the notion of strong bisim- 
ulation. A sound and complete set of algebraic laws can be used to transform almost any 
ACSR process into a normal form. 
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1 Introduction 

Reliability in real-time systems can be improved through the use of formal methods for 

t heir specification and analysis. Formal methods treat systems as mathematical objects 

and provide niatheniatical models to describe aiid predict the observable properties and 

behaviors of these objects. There are several advantages to using formal methods for the 

specification and analysis of real-time systems. They are, firstly, the early discovery of 

;~inbiguities, inconsistencies and incompleteness in informal requirements; secondly, the 

automatic or machine-assisted analysis of the correctness of specifications with respect 

to requirements; and, thirdly, the evaluation of design alternatives without expensive 

prototyping. 

Process algebras, such as CCS [45], CSP [28], and ACP [ll], have been developed to 

describe and analyze communicating, concurrently executing systems. They are based 

on the premises that the two most essential notions in understanding complex dynamic 

systems are concurrency and communication [45]. The most salient aspect of process 

algebras is that they support the modular specification and verification of a system. This 

is clue to the algebraic laws that form a compositional proof system, and thus, it is possible 

to verify the whole system by reasoning about its parts. Process algebras without the 

notion of time are being used widely in specifying and verifying concurrent systems. To 

espand their usefulness to real-time syst,ems, several real-time process algebras have been 

developed by adding the notion of time and including a set of timing operators to process 

algebras. 

The timing behavior of a real-time system depends not only on delays due to process 

synchronization, but also on the availability of shared resources. Most current real-time 

process algebras adequately capture delays due to process synchronization; however, they 

abstract out resource-specific details by assuming idealistic operating environments. On 

the other hand, scheduling and resource allocation algorithms used for real-time sys- 

tems ignore the effect of process synchronization except for simple precedence relations 

between processes. What is needed is a formal framework that combines the areas of 
process algebra and real-time scheduling, and thus, can help us to reason about systems 

that are sensitive to deadlines, process interaction and resource availability. Algebra of 

('ominuiiicating Shared Resources (ACSR) is an attempt at providing sucli a framework. 

ACCR exhibits several salient features that differenciates it from other process alge- 

bras. The ilotioll of resources is integral to ACSR, it allows a close modeling of situations 

where several processes compete for the same resources. A common method to arbitrate 

such conflits is to assign priorities to processes; this method is formally supported in 

.4CSR. Alnoiig the new operators introduced by ACSR are the interrupt which allows to 

model reaction to asynchronous signals and the exception operator which now commonly 



used in modern programming languages. Finally, ACSR uses a dense time paradigm, 

which provides more flexibility than the alternative, discrete time, in the specification of 

real-time processes; dense time also requires the formal treatment of time intervals which, 

in turn, leads to smaller normalized processes. 

A formal method coniprises a mathematical model, a syntax and a semantics. The 

mathematical model is the domain in which the objects of the language take a meaning. 

In our case it involves the definition of a time domain, a set of resources and actions, 

and a structured labelled transition system. These are the subject of Section 2. The 

syntax defines the rules for constructing valid sentences in the language. In ACSR, this 

coiisists of a simple algebraic expressions with a small set of operators and is described 

in Section 3. The semantics of the phrases of the language is elaborated in two steps. 

Section 3.1 provides a set of unprioritized (i.e., priority-ignored) operational rules. In this 

section we also discuss the intuitive meaning of each operator and give some examples 

of their usage. Priorities are treated in Section 3.2. A prioritized semantics is derived 

from the unprioritized one. We define a notion of compositionality, which ensures that 

prioritization can be enforced in ally context, and prove that ACSR has that property. 

Finally, we describe our motivating example to give an ACSR specification of tlie system. 

Section 4 is dedicated to the definition of a notion of equivalence based on strong 

I~isiinilarity; we present a sound and complete set of algebraic laws. The details of the 

proofs of soundness and completeness of these laws can be found in the appendix. Again 

we re-visit our example and give a partial proof of correctness. 

Section 5 contains survey of relevant research related to the formal treatment of real- 

time system. We look at logics based methods, models based on automata theory and 

other work concerned with the incorporation of time and priorities in process algebras. 

The conclusion in Section 6 reflects on the strengths and weaknesses of our work and 

explore areas where additional research is waranted. 

ACSR Model 

An AClSR process is a term over the ACSR signature, which will be described in the next 

section. We note Proc the set of all processes and use P, Q, R and S to range over Proc. 

Furthermore, we use a set of process variables Proci/'krs and let W ,  X, Y and Z range 

over it. A process evolves by executing successive actions. We denote by Act the set of 
all actions and use the Greek letters a and /3 to range over Act. There are two kinds of 

actions, timed and untimed. Timed actions are used to model the passage of time and 

the consumption of resources. Untimed actions are used to label instants in time and to 

affect inter-process synchronization. 



2.1 Resource Consuming and Timed Actions 

We assume a finite set of serially reusable resources Res. We use r to range over Res. A 
resource consuming action, A, represents the usage of a subset of these resources. It is 

defined by the set of resources used, noted p(A), and a total function r A ( r ) :  Res + R 2' 

such that 7iA(r) is the priority of the resource r in the action A, and 7iA(r) = 0 when 

!- # ~ ( 4 .  
Our time domain is the set of real numbers plus infinity: R + U {m). We use u, v and 

ZL? to denote time values. 

A timed action A" is the execution of a resource consuming action for a duration u, 

n~llere u is a positive and finite real number. In addition to A, the letters B and C are 

used to denote resource consuming actions and correspondingly Bv and Cw are used for 

timed actions. 

We write a resource consuming action A as a set of pairs {(rl ,  pl),  . . . , (r,, p,)} such 

that only the resources in p(A) appear in the set and each one appears exactly once, 

paired with its priority. For example, we write: A = {(IOP, 2), (BUS, 3)) for the action 

that consists of using the IOP resource at priority 2 and the BUS resource at  priority 3; 

and A2.Vor the execution of that action during 2.4 units of time. 

We define two operations on resource consuming and timed actions: synchronous 

composition and closure. 

The synchronous composition, noted "AIB" creates a single action, equivalent to two 

actions occurring simultaneously. Synchronous composition is only defined if the two 

actions are using disjoint sets of resources. This enforces the serial reusability aspect of 

the resources. Synchronous composition over timed actions requires, in addition, that 

the two action have the same duration. This ensures the uniform passage of time. The 

coillposition of two actions preserves timing, resource usage and priorities; in other words, 

aqsuming that p(A) fl p(B) = 0 we have: 

It follows immediately from the definition that the synchronous composition of resource 
coiisuming and timed actions is commutative and associative. 

The closure operation, [AIu, consists of increasing the set of resources used by the 

resource consuming action A to include all the resources of the set U .  The priority 
function is not affected by this operation: the incremental resources remain at priority 0. 
Closure over timed action is similar and is independent of timing, that is: 
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The idea behind this operation is to be able to reserve a set of resources for a process, 

even though some of its actions may not be using all of them. 

It follows immediately from the definition that closure over resource consuming and 

t,irried actions is idempotent and associative in the sense that: 

nloreover, closure over an empty set has no effect: [A]@ = A. 

2.2 Instantaneous Events 

Inst,antaneous actions, or events, provide the basic synchronization mechanism of ACSR. 

An instantaneous event, e has a label, l(e) and a priority ~ ( e ) .  The labels are drawn from 

a countable set A = C U ( 7 ) .  The priority is a non-negative real number. We assume tlie 

esistence of a complement operation over L such that 

- 

'da E L: 3% E C and a = a and 7i # a 

We use a ,  b and c to range over A and the lowercase letters e and f to denote events. 

Events are used for pair-wise synchronization whicli is modeled as a composition op- 

eration over events. As in CCS, the special label T # C denotes internal actions. It will 

l ~ e  coiivenient to overload the synchronous composition symbol that we have used for 

actions. The coinposition of two events, noted "elf" is defined only when the two events 

have complementary labels, such as a and a. The priority of the resulting event is the sum 

of the priority of the two original events. The reason for this choice will become clearer 
- 

wlien we discuss compositionality in Section 3.2.2. Formally, assuming that l(e) = l ( f ) ,  

we have: 

It follows from this definition that the composition of two events is commutative, i.e., 

t I f  = f Je. For example, "(char-in,5)" denotes the event with label "char-in" and 
priority 5. The composition: (char-in, 5)l(char_iia, 2) = ( r , 7 )  . 

2.3 Computation Model 

The behavior of a process is given by a labelled transition system, which is a subset of 

Proc x Act x PI-oc. For example, a process P can execute an action a and turn into a 



process P' if (P, a, PI) is in the labelled transition system. We call this an execution step 

and write it P 5 P'. A process evolves by executing a succession of steps as follows: 

all p ", p' L> p" -> . . . . 

3 ACSR Syntax and Operational Semantics 

The following grammar describes the syntax of processes: 

p ..- . 0 I Au:P 1 e .P  I P + P I P 1 1  P I 
P A ,  P I P t P [PIU P\F I rec X.P X 

The process 0 executes no action (i.e., it is initially deadlocked). There are two prefix 

operators, corresponding to the two types of actions. The first, Au:P, executes a resource 

coilsuining action A for a duration u,  and then proceeds to the process P. In this prefix 

operation. it will be convenient to let the range of u extend over the whole time domain, 

i.e., the set of real numbers plus infinity. However, the operational semantics is such that 

a null duration can be ignored, a negative duration corresponds to a deadlock and an 

infinite duration cannot be exhausted. For the second kind of prefix, e .P  executes tlie 

ilistai~taneous event e, and proceeds to P .  The difference here is that we consider no time 

to pass during the event occurrence. There are times when we do not want to distinguish 

I~etween timed and untimed prefixes; in those cases we will use juxtaposition with a generic 

action, for example, aP stands for a : P  when a is a timed action, and for a . P  when a 

is an instantaneous event. The choice operator P + Q represents nondeterniinism: either 

of the processes may be chosen to execute, subject to the constraints of the environment. 

The operator P 1 1  Q is the parallel composition of P and Q. In addition to these traditional 

ol~erations we define specialized operators to express real-time behaviors. 

The timeout operator P A, Q allows the process P to execute for exactly v time 

units; the execution of P is then abandoned and the execution of Q starts. The exception 

operator allows the specification of a process that can permanently interrupt another 

process. In the expression P t Q, the execution of the process P can be abandoned at 

any time in favor of the execution of the process Q. The execution of Q is started in 

one of three ways: the resources it requires are available, it synchronizes with a parallel 

process, or P executes an event that synchronizes with a starting event of Q. This last 

l~ehavior is useful to model the exception construct of modern programming languages; it 
can also be used as sequential composition. The Close operator, [PIu, produces a process 
Y that monopolizes the resources in U C: Res. The Restriction operator, P\F, with 

F C L, limits the behavior of P .  Here, no event whose label, or its complement, is in F 
is permitted to execute. The process rec X .P  denotes standard recursion, allowing the 

specification of infinite behaviors. 



In order to lighten the presentation by reducing the number of parenthesis required to 

uila,~nbiguously parse a term, we associate with each operator a binding power. We give to 

t#he prefix operators the highest binding power and to the choice operator the lowest, the 

ot,her operators being of equal binding power, in between choice and prefix. For example, 

the t,erm: 

e.AU:P Q + AV:RJJ f.S 

is to be interpreted as: 

3.1 Unprioritized Operational Semantics 

The first two rules for the prefix operators are axioms; i.e., they have premises of true. 

There is one for a timed action and another for an instantaneous event. The third rule 

states that when a timed action has been completed, the system proceeds with the next 

possible action or event. 

Act1 ActT I 0 < u 1 < u  A u l < m  
e.P "i P AU:P A" _, AU-u' : p  

As an example, the process (a ,p) .P  executes the event "(a,p)," and proceeds to P. 
Alternatively, the process {(rl ,  pl), (r2,  p 2 ) } 2 : ~  simult~aneously uses resources 1.1 and 7.2 

for a t,otal of two time units before executing P. 
Note that there is no transition labelled by A". Furthermore, because no operational 

semantics rule apply, a process of the form AU:P with u  < 0 has no behavior; it is 

deadlocked. Finally, the process Am:P can never proceed to P since it can only execute 

actions of finite duration A". 

ActT is the foundation of the dense time semantics. It states that a timed action can 

Ile split arbitrarily into any number of consecutive segments. 

The rules for Choice are identical for both timed actions and instantaneous events 
(and hence we use "a" as the label). 

P  "t PI 
ChoiceL 

P + Q 5 P 1  
ChoiceR 

&A&' 

P + Q - f Q 1  



For example, "(a, 7). P + {(r l ,  3) ,  ( r2 ,  7))1.2:Q:' may choose between executing the event 
,,(a. 7)" or the timed action "{(rl, 31, (7-2, 7))1.2." The first behavior is deduced from rule 
ActI, while the other is deduced from ActT. 

The Parallel operator provides the basic constructor for concurrency and communica- 

tion. The first rule, P a r T ,  conibines two tinied transitions. 

Note that timed transitions are truly synchronous. in that the resulting process advances 
only if both constituents take a step. The condition p(Al) n p(A2) = 0, which ensures 

that (A1 1A2) is defined, mandates that each resource be truly sequential, that is only one 
process may use a given resource at any instant. 

The case where two actions have different timings is implicitly handled by this single 

rule. Incleed, as we will prove in Theorem 3.1, if a process can perform a transition labelled 
-4'" it can perform a transition A ~ '  for all 0 < u' 5 u. Therefore, all the transitions with 

coininon time values (up to the shortest duration of tlie two actions) will be combined by 
virtue of the rule ParT. 

The next three laws are for event transitions. As opposed to timed actions, events 
may occur asynchronously (as in CCS and related interleaving models.) 

The first two rules show that events may be arbitrarily interleaved. The last rule is for two 

ij-nchronizing processes: that is, P executes an event with the label a ,  while Q executes 
an event with the inverse label a. This model allows sequences of events to occur at the 
same instant in time. This is useful to express causality relations between events that no 

nleasurahle amount of time separate. 
IVhen two events synchronize, their resulting priority is the sum of their constituent 

priorities. Example 3.6 illustrates why we find it useful to allow events with different 
priorities to synchronize together. The choice of using the sum of the synchronizing 
events for the resulting priority was dictated by mathematical considerations that are 
esplained in Section. 3.2.2. 



Example 3.1 Consider the following two processes: 

The compound process P 1 )  Q admits the following transitions: 

P 1 1  Q % PI 1 1  Q [by P~I-ILI 
( a ,  5) P I  QFPII &I [by ParIR] 

P I I  Q PI 1 1  QI [by ParCom] 

p I 1  Q 
{ ( T I ,  7 ) ,  ( ~ 3 , s ) ) ~  

P' I I Q' [by ParT] 

with P' de' {(r3, 8)}2-U:P2, Q' { ( T ~ ,  7)}3-U:Q2 and 0 < u 5 2. 
Note than an event transition, if chosen, always executes immediately, i.e., before any 

t.iliie elapses. 

The construction of ParCom helps ensure that the relative priority ordering among events 

wi tb  the same labels remains consistent even after communication takes places. 

The timeout operator possesses three transition rules. The first two rules correspond 

to timed and untimed transitions occurring before the t imeout has expired, i.e., when 

(1 > 0. The third rule, TimeoutE is applied when the timeout expires, i.e., when v = 0. 

A" P + P' 
TimeoutCT 

A" 
(u 5 .> 

P nu Q + PI nu-, Q 

P ". P' 
Timeout CI 

P A U Q L P ' A u Q  
(v > 0) 

TimeoutE 
Q 5 Q' 

(v = 0) 

The exception operator has three transitions: Except C corresponds to the continua- 

t#ioii of the process P; Except1 is the start of an interrupt due to synchronization with 

another process or availability of resources; ExceptE applies when the process P raises 

an exception caught by the process Q. 

P ". P' 
Except C Except1 

Q Q' 

P t  Q A P ' t Q  P t QAQ' 
( a ,  n) (a ,  m )  P - P', Q - Q' 

ExceptE 
(7, n + m )  

PtQ-Q' 



Example  3.2 Consider the following specification: Send a message (denoted by the event 

"sendMsg") and wait until an answer is received. If a response (event "rcvAckn) is received 

within 100 time units execute the process Q, otherwise start over. This system may be 

realized by the process P defined recursively. 

The exception operator, along with the infinite execution of the empty action "0"" 
allow us to define an indefinite delay operator 6, for which we use a prefix notation: 

The Restriction operator defines a subset of instantaneous events that are excluded 

from the behavior of the system. This is done by establishing a set of labels, F L,  
and deriving only those behaviors that do not iilvolve events with those labels or their 

complement. Timed actions, on the other hand, remain unaffected. 

A" P . P' 
R e s T  

P\F A P'JF 

(a, n) P - P' 
Res I  

a, n 
(a, a sr F )  

P\F ). P'JF 

Example  3.3 Restriction is particularly useful in "forcing" the synchronization between 

coilcurrent processes. In Example 3.1, synchronization on a and a is not forced, since 

P ( 1  Q has transitions labelled with a and a. On the other hand, (P 1 1  &)\{a) has only the 

t,ransitions: 

( P  I &)\{a) = (PI I &I)\{.) 
and 

(P I1 &)\{a} 
{(rl r 7)r ( ~ 3 .  S)}U 

(f"IIQ'>\{a) 

In effect, the restriction declares that a and a define a "dedicated channel" between P 
and Q. 

While Restriction assigns dedicated channels to processes, the Close operator assigns 

dedicated resources. Embedding a process P in a closed context such as [PIu, ensures that 
there is no further sharing of the resources in U .  Instantaneous events are not affected. 

A" P d P' 
CloseT 

Au1u 
[Plu I [P'], 



In the context of the prioritized transition system, the Close operator is useful to force 

progress. A process may have a choice between progressing using some resources, or idling 

in ca.se some other process requires the same resources at a higher priority. Closure ensures 

t,hat no other process can compete for the closed resources and therefore those resources 

ca,n be committed to the action with the highest priority. For example, as we shall see 

later, the actions {(r,  5)) and 0 are not comparable under the preemption relation - 

l~ecause the high priority action uses more resources than the low priority one. However 

[{(r, ,5))]i,l and are comparable and the former will preempt the latter. 

The operator "rec X.P7' denotes recursion, allowing the specification of infinite be- 

haviors. 
p ["' " . P / ~ ]  PI 

Rec  
rec X.P 4 P' 

xvhere "P ['c' x.p/X]n is the standard notation for substitution of "rec: X.P"  for each free 

occurrence of X in P .  

Example  3.4 Consider the process "rec X.(A1:X)," which indefinitely executes the re- 

source coiisuming action A. By A c t T  and ActTZ,  

~l A1:(rec X.(A1:x)) - rec x . (A1:x)  

so by Rec ,  

rec x.(A':x) A rec x.(A':x) . 

We are now in a position to prove the following theorem which, in essence, characterizes 

dense time. 

AU Theore in  3.1 If a process P is such that P P' then, for all 0 < v 5 u there exists 
A" PI' such that P P". 

Proof:  By algebraic induction on the structure of processes. It is vacuously true for 

0, it is true for prefix (from ActT) ,  and it is preserved by all other operators. 

3.2 Preemption and Prioritized Transitions 

Not all the actions that are ready for execution at a given point in time have the same 

urgency. It is often the case in real-time systems that the choice made between possible 

alternative directly impacts the correctness of the system. 
In this section we define a relation between ACSR actions that specifies when an 

action must be preferred over another in a choice; we call this preemption. Based on 



this relation, we derive a prioritized semantics for ACSR terms in the form of a subset of 

t,he labelled transition system in which all preempted transitions have been eliminated. 

We call this the prioritized labelled transition system. Preemption should be applicable 

regxdless of the context, splice, this property is called compositionality. Section 3.2.2 
contains a formal definition of compositionality and a proof that it applies to ACSR. 

3.2.1 The Preemption Relation 

'l'he prioritized transition system is based on the notion of preemption, which incorpo- 

ra,tes our treatment of synchronization, resource-sharing, and priority. The definition of 

preemption is straightforward. Let "+", called the preemption relation, be a transitive, 

irreflexive, binary relation over actions. For two actions a and p, if a + P ,  we say that 

"a is preempted by P." This means that any real-time system that has a choice between 

executing either a or p will not execute a. 

Definition 3.1 (Preemption Relation) For two actions, a, P, we say that ,L? preempts 

a (a 4 P), if one of the following cases hold: 

(1) Both a and /3 are timed actions, where 

i) P(P> C ~ ( 4 ,  
ii) 'dr : n,(r) 5 ~ ~ ( r ) ,  and 

iii) 37- : xa(r)  < ~ ~ ( r )  

( 2 )  Both cr and ,8 are instantaneous events, where l (a)  = 1(P) and ~ ( a )  < ~ ( p )  

( 3 )  cr is a timed action, ,B is an event, with l(P) = r and T(@) > 0. 

Case (1) applies when two timed actions, a and P, compete for common resources, and 

in fact, the preempted action a may use a superset of /3's resources. However, ,6 uses no 

resource at a lower priority level than a and at least one at a higher level. 
Case (3) shows that an event may be preempted by another event sharing the same 

label, but with a higher priority. 

Finally, case (3) shows the only case in which an event and a timed action are com- 

parable under "4." That is, when p > 0 in an event ( r ,p) ,  we let the event preempt any 

t,iined action. This, in effect, makes synchronization take precedence over the passage of 
time and is similar to the notion of maximum progress found in [26, 46, 531. The case 

where p = 0 is treated differently. It is meant to allow the specification of nondeterminis- 
tic behaviors, e.g., to model an environment that can interact with a process at any time 

rather than at the earliest possible time. 



Note that the preemption relation is independent of the duration of each action. To 

see why this is required, assume that the preemption relation be restricted to actions with 

tihe same duration, and that {(r, 1))' 4 {(r, 2))'. Then the process 

P = {(r, 1))':Pl + {(r, 2)I1:{(r, 2 ) ) ' : ~ ~  

((7, 1)12 
can still take the transition PA PI. However, Theorem 3.1 tells us that this process 

ma)- always take an initial "step" of {(r,  1)) l ,  which should be preempted. This leads to 

an inconsistency, as do other ways of associating time with preemption. 

Example 3.5 The following examples show some comparisons made by the ~ r e e m ~ t i o n  

rela.tion, "4." 

a. {(w 21, ( T - ~ ,  5)) 4 { ( r ~ ,  7), (7-2,5)} 

11. { (TI ,  2), (r2,5)} + {(TI ,  7), 0.2, 3))  
c. {(TI ,  21, (r2,O)) 4 {(r1, 7)) 

d. { ( T I ,  2). ( r 2 , l ) I  + {(TI ,  7)) 
f?. ( ~ ~ 1 )  4 (T, 2) 

f. ( a ,  1) + (b ,  2) if a # b 
g (a ,  2) 4 (a ,  5 )  
11. { ( T I ,  '4, (7-295)) 4 ( 5 2 )  

i. {(1'1,2), (r2,5)) IC: ( T O )  

.i. ( ( ~ 1 ~ 2 ) ~  ( ~ 2 ~ 5 ) )  71: (a,2)  

We define the prioritized transition system " +, , " which simply refines " --+ " to account 

for preemption. 

Definition 3.2 The labelled transition system "-+, " is defined as follows: P A, PI 

!f rrisd only if 

i )  P A PI is an unprioritized transition, and 

P 
i i )  There is no unprioritized tra~zsition P 4 P" such that ct 4 P .  

It is straightforward to see that the preemption relation defined above is transitive and 

irreflexive. This ensures that the prioritized transition system is well-defined. Namely, if 
an action a preempts an action /3, then any action that would have been preempted by 
,-/ will be preempted by a. In addition, no action will preempt itself. 

Example 3.6 This example illustrates the use of synchronization and priorities to model 

a semaphore. The event label s, represents the P operation of the semaphore and the 

event label s, represents the V operation. The semaphore M is defined as follows: 



To see how this works, let PI and P2 be two processes that must execute a critical 

section using two robot arms, CR = {(le ft-arm, 1)) (right-arm, 1)) followed by a non- 

crit,ical section! NCR.  Assume that the process PI has priority 1 and the process P2 has 

priority 2. 

PI 6 (s,, l).CR:(s,, l ) .NCR: 

P, gf 6 (s,, 2).CR:(s,, P).NCR: 

s dl' (PI I P2 I1 M ) \ { s ~ J U )  

Before entering the critical section, each process must execute the event s,. By apply- 

ing the rules of the operational semantics, we see that there are only three unprioritized 

transitions that the system S can take: 

Only transition (3)  remains admitted by the prioritized transition system. This allows P2 
t,o proceed. From this point and until P2 executes (s,, 2), both PI and M will have to 

idle, i.e., execute flu transitions matching the duration of CR. The execution of (s,, 2) by 

PL will release the semaphore and subsequently allows PI to acquire it. 

The application of preemption is used to eliminate unwanted transitions from the 

labelled transition system. It is natural to extend this notion to processes and define that 

a process is preempted by another if all of its possible transitions are preempted. We will 

over1oa.d the symbol for the preemption relation over actions to denote preemption over 

processes. 

Definition 3.3 (Preemption over Processes) We say that a process P preempts a 

proces.s- Q! noted P > Q if and only if 

This notion will be useful in the definition of equivalence laws between processes in Sec- 

tion 4.2. 



3.2.2 Compositionality of Preemption 

It will be important in the syntactical manipulation of ACSR processes to  be able to  prune 

out preempted branches as early as possible, without regard to  the context. This property 

is known as compositionality. Namely if two processes P and Q differ only in behaviors 

t,hat are preempted, the prioritized transitions of any context will not be changed if P is 

replaced by Q or vice versa. 

The action of pruning out transitions that are preempted can be defined using a 

priority operator, for which we use a prefix nota.tion "OP," from [7], with the following 

operational semantics: 

Pr ty  
BP ". BPI 

Coinpositionality can be stated inforinally as when the priority operator is applied to 
n term, the meaning of that term does not change when the priority operation is applied 

to nny of its subterms. 

Before giving a formal definition, let us introduce a notation: 

Definition 3.4 Let "30" be a binary relation such that P 5 Q if and only if P = Q or 

t h e r ~  exists a context C[-] and a term R such that P = C[R]  and Q = C[OR]. 
Let " Z s "  be the reflexive transitive closure of "3s." 

I11 other words, two processes P and Q are equivalent up to 8 ,  noted P Q, when they 

are syntactically identical, or when they differ only by the introduction of 8 operators. 

Now for the formal definition of compositionality: 

Definition 3.5 (Compositionality) A priority operator 8 is compositional relative to 

a n  opei-ational semantics + when, for all contexts C[-1, processes P ,  P' and actions a: 

If 8C[P] "+ P' then 3P1' EB P': BC[BP] "-t P" 
and conversely: 

If BC[OP] P' then 3P1' Es P': 8C[P] P" 

Of course we intent to  prove that the preemption relation that we have i~itroduced 

in Definition 3.1 is compositional. A direct proof is very long, tedious and does not 
hring much insight. There is, however a sufficient condition that can be applied to the 

set of operational rules, in conjunction with the preemption relation, to  determine the 

compositionality of the operator 0. 



Lell~ma 3.1 (Sufficient Condition for Compositionality) Let I = { i l , .  . . , in}  
arzd J = {jl,. . . , j,) C I be two index sets. Let C ( - -  .) be a boolean condition, O p ( . - )  
an ilCSR term and C[. . -1 an ACSR context. If the set of operational semantics rules, 
~;.ccludiny those of the 0 operator, is such that, whenever for a rule R of th.e form 

the condition C holds (2.e. the rule fires) then for all a' + aj, there is a rule R', possibly 

d<fere~zt from R but with the same premises, such that C1(aj1, .  . . , a', . . . aJm) holds and 

f r (a j1 , .  . . , a',. . . ajm) + f ( a j l , .  . . , aj,, . . . ajm) 

then the priority operator 0 is compositional. 

Proof: By induction on the algebraic structure of Op(Pi,, . . . ,Pi,). The details can 

he found in [17] 17 

Theorem 3.2 Preemption based on Definition 3.1 is compositional in the ACSR opera- 
tion,al semantics. 

Proof: We prove that the operational semantics of ACSR complies with the hypothesis 

of lemilla 3.1. For every rule and every premise, we need to check that if the rule fires 

for an action a, resulting in an action a', then for any P + a there is a rule (often the 

same) tliat fires, and the resulting action P' preenipts a'. Note that some of the ACSR 

rules have implicit conditions in the premises. To comply with the form of lemma 3.1 it is 

straightforward to rewrite these rules so that the premises use the generic action a with 
( a ,  P) the appropriate side condition. For example, a premise P - P' would be replaced 

Ily P A P' and the side condition a = ( a ,  p). 
The only non-trivial cases are the operational rules involving the application of an 

operation over actions, or a condition other than a pure timing condition. (Pure timing 

conditions satisfy the requirements by virtue of the fact that the preemption relation is 

illdependelit of time.) The details can be found in [17] 

4 Strong Equivalence 

'There are processes that are syntactically different but have the same behavior, that is, 

they can execute the same first step and then become syntactically equal. Such is the case 
of P+& and Q+ P. This equivalence, however is of little use because it is not a congruence 

- take for example P t (Q + R) and P t (R + Q),  after an initial step of P they will not 



IF 5ylltactically equal. This problem is easily solved by requiring that the end-point of 

the transitions be themselves equzvulent. Such is the notion of strong biszrnulatzon, due 

to  Park 1481. This section defines strong bisimulation as applied to ACSR and provides 

a sound and complete set of laws that can be used to prove bisinlulation between finite 

i t a te  agents through syntactic manipulations. 

Bisimulation is too fine for 111ost practical purposes hut it seems to  be the finest con- 

gruence that equates terms that  cannot he differentiated by their operatiorla1 semantics. 

A5 sucli. it is a subset of most other equivaleiice and preorder relations. Consequently, any 

law that is sound for strong bisimulation is also sound for most other relations. Strong 

l~isimilarity is a stepping stone towards more useful relations. 

4.1 Prioritized Strong Bisimulation 

Definition 4.1 For closed ter~rzs, z.e., t f r m s  wlth no free varzables, and for a gzven tran- 
.\rtron s y s t ~ m  'i-+''l any bznary rrlatzon R rs a strong bisimulation if, for ( P ,  Q )  E R 
c r ~ l c l  ct. E Act, 

1 .  i f  P P' then,  for somr Q ' ,  Q & Q' and (PI,  Q1) t X, and 

2. !f Q & Q' then, for some PII P & P' and (P ' .  Q'j E R . 

In other words. if P (or Q )  can execute a step a,  then Q (or P )  must also be able to  

esecute a step 0 and the two next states are also bisimilar. There are some very obvious 

\~isirnulation relations; e.g. 0 (wl~icli certainly adheres to  the above rules) or syntactic 

identity. However, using the theory found in [42, 43, 451, it is straightforward to  show 

t llat there exists a largest sucli bisimulation over "+," which we denote as "N,.' and that 

~t i5 an equivaleiice relation. 

411 the operational semantics rules of ACSR, including the priority operator 0 follow 

the format of "GSOS" [2] and "Grand" [14]. It follows from those theoriei that  strong 

l~isimulation is a congruence. Furthermore, [2] gives an algorithm for the development 

of a sound and complete set of proof rules. In general we will follow this algorithm; we 

will deviate ill a few cases when we found a better set of rules but we will note those 

tleviat ions. 

\We note ' , N ~ "  the largest bisimulation over '' +, ,". It follows immediately from the 

clefinition of the operator 0 that P 4, P' if ancl only if OP A OP1 whence P k5- Q 
1f and only if OP - OQ. This ensures the existence and uniqueness of -,. That -, 
i i  a congruence follows from the compositionalit~ of 0: indeed, the very definition of 

compositionality implies that BC'[P] dC[BP]. 



4.2 Equational Laws for Prioritized Bisimulation 

In this section, we present a set of algebraic manipulation laws that preserve prioritized 

strong bisimulation. The idea behind these laws is to be able to transform ACSR processes 

into some normalized form that can be easily compared. Normalized processes are coded 

exclusively with prefix and choice operators. 

The strategy for building this sets of laws is fairly straight forward and has been de- 

scribed in some details in [2]. For non recursive processes, the basic idea is to eliminate 

each operation (except choice and prefix) in two steps. First, operations over a summa- 

tion are transformed into a summation of operations using a distribution law. Second, 

ol~erations over prefixed processes are transformed into either prefix over an operation 

(via an action law) or a NIL process via an inaction law. Some operations, however, are 

not distributive over summation. In those cases we utilize auxiliary operators to effect 

clistributivity. In ACSR, Parallel and Exeption fall in that category. The operational 

iemantics for these operators is presented in the next subsection. 

The exception operator poses a unique challenge in dense time because it denotes a 

choice over a continuous interval of time. We work around this difficulty by introducing 

a new prefix operation that embodies the concept of continuous choice and replaces the 

timed action prefix in normalized processes. 

The complete set of ACSR laws is given in Tables 1 and 2 
By induction on the depth of prefix operations on a term, it is straightforward to prove 

that this strategy leads to a normal form, in the absence of infinite behavior. Bisimilarity 

of recursive processes can always be proved via an induction principle, but this method 

is sometimes difficult to apply. By limiting ourselves to some specific form of process, 

I~isimilarity is always provable with a sniall set of recursion laws. 

We refer to the whole set of ACSR laws as A. In the sequel, we use the equality 

symbol "=" to mean provable bisimilarity using A. In other words, we use P = Q as a 

short halld for A k P wn Q . 

4.3 Distributivity of the Parallel Operator 

The parallel operator is not distributive over choice. To work around this problem, in- 

spired by GSOS and ACP [ll] we introduce auxiliary operators that are distributive. The 

synchronous execution operation P 1 Q forces both P and Q to take a first step simultane- 
ously, either a synchronized-events execution or a combined timed action. The left-merge 
operation " P  L&" forces P to take the first step while the process Q remains still; the 
coimbined process is deadlocked when P can execute only timed actions. 

The synchronous execution operator has two operational rules. One for timed actions, 
SyncT,  which corresponds exactly to P a r T  and one for events, Sync1 which corresponds 



P 5 P', Q 5 Q' 
SyncT A I B ) "  (~(4 n P(B) = 0)  

P I Q L P f  I I  Q' 

There is only one rule for the left merge operator: LeftM. If the process on the left 

of the operator can take an event transition, the left merge process can do the same. 

P ". P' 
LeftM 

p IIQ A P '  1 1  Q 

It is worth noting that both left-merge and synchronous execution lead to a term 

defined using the parallel operator. 

Unfortunately, compositionality is not preserved by the synchronized execution opera- 

tor. The consequence is that the prioritized strong bisimulation is not a congruence under 

this extended signature. To see this, take P ( T ,  l ) .Pl  + Au:PZ and Q Bu:Q' with 

p ( A )  n p(B) = 0,  and let P' (7, l ) .Pl .  Obviously P 5T P I ,  but ( P Q )  +, (P'IQ) since 
(AIB)"  

( PI&) A, (P2 1 1  Q') while (P'IQ) is deadlocked. 
This does not invalidate completely the strategy, simply the elimination of preempted 

processes by application of the law Choice(5) of Table 1 cannot be used within the context 

of a sync operator. It is however possible to delay application of Choice(5) until all the 

sync and left merge operators have been eliminated. More formally, if we call ACSR1" the 

A\CSR signature augmented by left-merge and sync; let C[-] be a context and P a term 

over the ACSR signature; let CIS and P2" be a context and a process over ACSR". Given 

that A is the set of ACSR laws, and using the usual symbols, "t" for provability and "k" 
for truth, we have the following: 

Since the ACSR signature is a subset of ACSR1" and the set of laws A - (Choice(5)) is 
a subset of A, any valid proof over ACSR" is valid over ACSR. Starting with an ACSR 
t,erm, application of Par(3) transforms it into an ACSR1" term, from then on, and until 

a.11 left merge and sync operators have been eliminated, the proof system A - (Choice(5)) 
lllust be used. 



4.4 Distributivity of the Exception Operator 

The exception operator is not distributive over its second argument, therefore we need to 

i~lt,roduce auxiliary operators. In this case, it is a family of unary operators Guard indexed 

over the set of events. Guard allows the process to which it applies to proceed only when its 

first action is an event which complements the specified event. The operational semantics 

is as follows: 

(a, m )  

Guard Q - Q' 

In a dense time setting, the exception denotes a continuous choice, i.e., a choice that 

remains open during an interval of time. It is the only ACSR operator to do so. For that 

reasoil it cannot be replaced by any of the operators already defined. The problem gets 

even more complicated in presence of the parallel operator as illustrated by the following 

esample. 

Example 4.1 Consider the following process: 

P '?? ((a,  n).Q + A2:R) 1 )  (B3:S (b, m).T) 

Assume that there exists a process P' that has the same transitions as P but is written 

without the parallel operator. P', or one of its subterms, must have the form PI i P2. 
Before any time has elapsed, the exception P2 should be: 

After t time units have elapsed, with 0 < t < 2 the exception becomes: 

(b,  m).(A2-t:R 1 1  T) 

After exactly 2 time units, the exception takes the form: 

This example illustrates the need to limit the scope of an exception handling process 

to the execution time of a single timed action. In addition, it shows that time variables 

are required to express the exception itself. 

Just as we have defined a unary prefix operator for each timed action, we now define a 

l~inary operator called Interruptible Timed Prefix or ITP, indexed over the set of all timed 

actions, with the following syntax: 



where A" is the interruptible action, t is a time variable and P  and Q  are processes. 

The operational semantics of is defined ITP such that at any time during the execution 
of .AU, but not before it has started, the process P can interrupt; the variable t is then 

bound to the actual starting time of P, relative to the start time of A". Therefore, t 
\vill always be positive and at most u .  If P does not interrupt AU, then the execution 
continues with Q. We will refer to the process P and the interrupt and the process Q as 
the continuation. When there is no variable to bind, the behavior of P remains constant 
regardless of its starting time and we write A" ( P ,  Q). This is the case, for example in the 
following equation that will be justified by the operational semantics and can be derived 

from the laws ITP(1) and Except(4a). 

('4":Q) t P = P $ A" (P, Q t P )  (1) 

ITP has two transition rules. I tpT states that tlie process can execute any portion 

of tlie tinied action, then choose between executing the interrupt P  and carrying on with 
the tiined action. The operational rule ItpZ specifies that an ITP with zero duration 

can be ignored. This behavior is consistent with the behavior of the original timed action 

prefix. 

I tpT A~ 0 < 21'5 U ,  u l <  OC) 

A'SU (P, Q)  -2 P I"'/,] + A " ~ - ~ '  (P [" 'f t / t ]  , 8)  

ItpZ 
Q ". Q' 

AtS0 (P, Q) 4 Q' 

Note that the condition expressed by these rules satisfies the hypothesis of lemma 3.1 
and therefore the priority operator remains compositional when ACSR is extended with 
the ITP operator. 

4.5 Normalization of ACSR processes 

Miith ITP we can define a normal form for processes with exception and dense time: 

Definition 4.2 (Head Normal Form) A process P is in head normal form (or HNF) 
i f  it has the form: 

C ei.Pi + C ~~"11'13 ( Q j ,  R j )  
i e I  j€ J 

zilitlz all the u, > 0 .  



Table 1: The ACSR bisimulation laws 

ITP(1) 
ITP(2) 
ITP(3) 
ITP(4) 
ITP(5) 
Choice(1) 
Choice(2) 
Choice(3) 
Choice(4) 
Choice(5) 
Par(1) 
Par (2) 
Par (3) 
LeftM(1) 
Left M(2) 
LeftM(3) 
LeftM(4) 
Sync(1) 
Sync(2) 

A" : P = At<" (0, P )  
At<" (P, Q) = 0 if P k A:Q 
AtS0 (P, Q) = Q 
At<" (P, Q) = AtlW (P, 0) 
At<" (P ,  Q) = 0 i f u < O  
P + O = P  
P + P = P  
P + Q = Q + P  
( P + Q ) + R =  P + ( Q + R )  
P + & = &  i f P < Q  
PIlQ=QIIP 
( P  I I  Q) I I  R = P I I  (Q I R) 
PI lQ=PlQ+P[IQ+QlLP 
"P LQ = e.(P I I  Q) 
(At<" (P,  Q)) U_ R = 0 i f u > O  
( P + Q )  l lR  = (PlLR) + (Q lLRJ 
OU_R=O 
( a ,  p1.P I (a, q).Q = (r ,  P + q).(P I 1  Q) 
(At1<" ( P I ,  PC)) I(Bt2<" (QI,  QC)) = (AIB)~'"  (RI,  RC) 
if p(A) fl p(B) = 0 and w = min(u, v) 
and 121 = PI [t/tl]  L(QI  [t/t,] + BtzSudt (QI  [t+t2/ t , ] ,  QC)) 

+ PI [ t l t l l  I (QI [t/t21 + Bt2<u-t  (QI  [t+t21t2] , QC)) 
+ QI ["It,] [ ( P I  [ t l t l l  + ( P I  [t+t ' / t , l  , PC)) 
+ &I [t/t2] I ( P I  [t/tl] + ( P I  [t+tl/tl] , PC))  

and RC = (PI ["Itl] + Atl<"-" ( P I  [ W + t l / t l ]  ,PC)) 
1 1  ( Q I  ["/t2] + (QI  [ W + t Z / t 2 ] ,  QC)) 

e.P I f . ~  = o if l(e) # KG 
e . P  1 At<" (Q, R) = 0 
At'LU (Pi ,  Ql) 1 Bt2sV (P2, Q2) = 0 

i f u > O  A v > O  A p (A) f lp (B)#Q)  
P l Q = Q l P  
( P + Q ) I R = P I R + Q I R  
O I R = O  
rec X . P  = P[rec X.P/X] 
If P = &[PIX] and X is guarded in Q then P = rec X.Q 
rec X . (P  + [X\E]u) = rec X.(P + [P\EIU]) 

As usual, we define CiEO Pi to be 0. Tlie omission of parenthesis is legitimated by the 

laws Choice(2) to Choice(4) of Table 1. We also refer to a full normal form, or simply 
llormal form, where all the Pi Qi and R, are also in normal form. Processes in normal 
form are coded exclusively using the prefix and summation operators. 



Table 2: The ACSR bisimulation laws (cont.) 

Tiineout (1) 
Tirneout (2) 
Tirneout (3) 

Timeout (4) 
Tirneout (5) 
Res(1) 
Res(2) 
Res(3) 
Res(4) 
Res(5) 
Res(6) 
Res(7) 
Close(1) 
Close(2) 
Close(3) 
Close(4) 
Close(5) 
Close(6) 
Close(7) 
Except (1) 
Except (2) 
Except (3) 
Except (4) 
Except (5) 
Except (6) 
Except (7) 
Guard(1) 
Guard(2) 
Guard(3) 
Guard(4) 
Guard(5) 

O ~ , Q = O  i f v > O  
(PI +p2) A, Q =  PI a, Q + p2au Q 
( ~ ~ 1 ~  (P, Q)) a, R = ~~5~ (P a,-, R, Q a,-, R) 

if t is not free in R and 0 < w = rnin(u, v) 
e . P  A, Q = e . (P  A, Q) i f v > O  
P A o Q = Q  
O\F = 0 
(P + Q)\F = ( P \ F )  + (Q\F? 

t < u  p A - ( , Q) \F = At<" ( P \ F ,  Q\F)  
((a, n ) . P ) \ F  = ( a ,  n) . (P \F )  i f a , i i #  F 
( ( a ,  n ) . P ) \ F  = 0 i f a g F V a E F  
P\E\F = P\E U F 
P\Q = P 
[Olu = 0 
[P + Qlu = [Plu + [Qlu 
[AU:PlU = [A];:[P]u 
[e.PIv = e.[P]u 
[[Plulv = [Pluuv 
[PI0 = P 
[P\E]u = [PIu\E 
O t Q = Q  
P t O = P  
( P + Q ) t R = P t R  + Q t R  
Atsu (P, Q) t R = R + At<" ( ( P  + R), Q t R) if t is not free in R 
e . P t Q = Q + e . ( P t Q ) + ( e l Q )  
( P t Q ) t R = P t ( Q t R ?  
P t Q = Q + P t Q  
((1, P )  1 (a, q1.Q = (T ,  P + q1.Q 
e l  ~ . Q = o  if /(el # l(f) 
e 1 AtSu (P, Q)  = 0 
e t ( P + Q ) = ( e ~ P ) + ( e l Q )  
e 1 0 = 0  

Exanlple 4.2 Using the ACSR laws we can transform the term of Example 4.1 into an 

equivalent term in head normal form. By ITP(1) we obtain: 

P = ( ( a , n ) - &  + A2 (0, R ) )  1 )  (B3 (0, S) t (b ,  m).T) 

I-ising Except (4a) gives: 

P = ( ( a ,  7z)-Q + A2 (0 ,R))  1 1  ((6, m).T + B3 ( (b ,  m).T, S t (b,  m).T)) 
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By Par(3) and the distributivity laws LeftM(3) and Sync(7) we obtain: 

P = (a,  4.Q I l ( ( b ,  m).T + B3 ((6, m).T, S t (b ,  m).T)) ( a )  
+ A2(0 ,R)  I l ( (b ,m) .T+B3((b ,m) .T ,  S t  (b,m).T)) (b) 
+ (a, 4.Q I (b, 4 . T  (4 
+ (a, 4 . Q  I B3 ( ( b ,  m).T, S t ( b ,  m).l') (4 + A2 (0, R) I ( b ,  m).T (4 
+ A2 (0, R) I B3 ( (b ,  m).T, S i (6, m).T) (f) 
+ (b,  4 . T  I l ( (a ,  n).Q + A2 (0, R))  (9) 
+ B3 ((4 m).T, S i (b,  m).T) II ((a, n).Q + A2 (0, R) ) ( h )  

On t,he terms (a) and (9) we apply LeftM(l), on the terms (b) and ( h )  we apply LeftM(2a); 

on (c) we apply Sync(3) then LeftM(4) and Sync(8); on (d) and (e) we apply Sync(4a) 

aild on ( f )  we apply Sync(2a). Finally, by Choice(1) we can eliminate 0 terms to obtain 

the head normal form: 

P = ( a ,  n).(Q I I  ( (6,  m1.T + B3 ((4 m).T, S t (b, m).T)))  (a)  
+ ( A I B ) ~ ~ '  ((4 4 . T  11A2-t (0, R) , Rll((b, m).T + B1 ((b,  m).T, S t ( b ,  m).T)) ) ( f )  
+ ( b y  ln).(T ) I  ( ( a ,  n1.Q + A2 (0, R)))  (9) 

Kote the iiltroduction of the variable t. It is used to capture how much of the action A2 

has been executed when the event (b,  m)  occurs. 

4.6 Soundness of the Bisimulation Laws 

Theorem 4.1 The ACSR laws of tables I and 2 are sound with respect of bisimulation 

rquivalence. 

Tlle traditional way of proving the soundness of a bisimulation equational law has been 

to identify a bisimulation that relates the two sides of the equation. A more systematic 

apl~roach consists of characterizing and comparing the set of transitions (i.e., pairs label- 

~ndpoin t )  both sides of the equation can take. To facilitate this process we define two 

functions 7 :  Proc + P(Act  x Proc) and 7,: Proc + P (Act x Proc) by 

I ( P )  = { (a ,P1 )  I P A  PI} and I , ( Y )  = {(a,P1) I P A ,  P'} . 

Since the behavior of a process must be derived from the rules of the operational 

semantics, for any process P the set 7(P) is the union of all the sets that can be derived 
horn each rule that applies. This leads to the set of equations of Table 3, where the 
operational rule applied to calculate each term is shown in brackets. 

The proof of soundness of some typical laws we can be found in Appendix A. Most of 
the laws are proved using the equations of Table 3 to compare the value of the 7 or 7, 
function and apply either of the following two lemmas. 
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Table 3: The function 7 yields the set of transitions of a process 

7 ( P  lL Q) 
7 ( ( a ,  P) 1 Q) 

I(At'" (Pl Q)) 

7(At'" (P ,  Q)) 
At "O (P ,  Q )  

0 
1 (el p) 1 [ActI] 
{(A"', A"-"':P) I 0 < U' < U )  [ActT] 

7 ( p )  [ActTZ] 
7 ( P )  U 7 (Q)  [ChoiceL and ChoiceR] 

{((AIB)", P' II Q') I (AU> P') E 7(P) A ( B U >  Q') E 7 ( Q )  
A P(A) n P(B) = 0) [ParT] 

u { (e ,p l  l l  Q) I E 7 ( P ) )  [Par I L] 
u { ( e , P  11 Q') I (e, Q') E T(Q)} [ParIR] 

u {((T, P + q), P' 1 1  &I)  1 ( ( a ,  P ) ,  PI) E I ( P )  
A ((a, qI1 Q') c 7 ( Q ) 1  [Parcorn] 

I ( Q >  [TimeoutE] 
{(A", PI A,-, Q) I (A", PO E T(P) A u 5 V )  [Tirneout CT] 

u {(el A, Q) 1 (el PI) E 7 ( P ) )  [Timeout CT] 

I ( Q )  [ExceptI] 
u {(a1 p' t Q) I ( a ,  P') E ~ ( P ) I  [Except C] 

u {((T, P + q), &I)  I 3% P' : ((a,  P), P') E I ( P )  
A ((z, q), Q') E 7(Q)) [Except E] 

{(AU, P1\E) I (AU, P I )  E 7 ( p ) )  [ResT] 

u {((a,  P), P1\E)  I ( ( a lp ) ,  P I )  E 7 ( P )  A a ,  a @ E l  [ResI] 

{([AuIu1 [P'lu) I (Au, PI) E 7 ( p ) )  [CloseT] 

u {(e, [ ~ ' I u )  I (el P') E I ( P ) }  [CloseI] 
I ( P [ r e c  X.P/X])  [Red 

{((AIB)", P' 1 1  &I) I (Au.  P') E 7 ( P )  A (BU1 &I) E 7 ( Q )  
A P(A) n P(B) = 01 [SyncTI 

u {((T, 12 + m) ,  P' I Q') 1 ( ( a ,  121, P') 7 ( P )  
A Kc, 4, Q') E T(Q)}  [Sync11 

{(el P' I /  Q) 1 (el P') E 7 ( P ) )  [LeftM] 

{((T) P + Q') I ((a, q), Q') E 7 ( Q ) I  [Guard] 

{(Au',  P [ Y I / ~ ]  + A ~ ' ~ - ~ '  (P [l i l t t / t ]  Q ) )  I 0 < u' 5 u )  [ItpT] 
(When u > 0 A ,B(a, P') E I ( P ) :  a + A) 

0 (When u > 0 A 3 ( a ,  P I )  E 7 ( P ) :  a + A) 

{(a,&') I (al&') E 7 ( Q ) )  [ItpZI 



Proof: It follows from the definition of the prioritized transition system that T,(P) 
ca,n be calculated from 7 ( P ) :  

Z ( P )  = {(a, P') E 7 ( P )  I B ( P ,  Q )  E 7 ( P ) :  a 3 P I -  

And therefore I ( P )  = T ( & )  + I , ( P )  = I , (Q).  
From the definition of 7, we have: 

Va: P A, P' ==+ Q 4 PI, and 
if 7,(P)  = I,(&) then Va:  Q A, Q' ==+ P 4 Q' 

The ident,it,y being a bisimulation, we conclude that P -, Q. 

Leinma 4.2 If "-" is a bisimulation and R is a relation such that all the pairs (P ,  Q )  E 

'R. nre S Z L C ~ ~ ,  that 

( a , )  € ( P ) :  3Q1,Q": (a ,Qi ' )  E z ( Q )  A Q" - Q'A  (P' ,Q1)  E R 
c112 cl 

( a ,  Q )  E ( Q ) :  3P1, P": ( a ,  P") E I , (P)  A P" - P' A (P ' ,  Q') E R 

then the relation R is a strong bisimulation. 

Proof: Follows directly from the definitions of the strong bisimulation and of the 

functions 'T and 7, and the fact that the union of two bisimulations is a bisimulation. 17 

4.7 Completeness for Recursive Processes 

' I  here are two ways to handle the recursion operator. The first one is an induction 

principle. This says that if two processes are bisimilar in all their finite approsimations, 

then they are bisimilar. This lam7 is sound for ACSR but it is sometimes very hard to  

apply in practice. 

The secorld approach is to liinit the scope to finite state agents and use the three Rec 

laws of Table 1. Rec(1) is the straightforward unrolling of the recursion. Rec(2) is the 

unique solution to guarded equations. Finally Rec(3) allows the elimination of unguarded 
~ariables. 



4.7.1 Characterization of FS Processes 

'The definition of "finite state agents." that previous authors have used, such as [44] 
a,nd [15], has been processes coded without the parallel operator, and since the restriction 

operator becomes useless in this environment, it lias been eliminated as well. This simple 

solution does not work for ACSR because infinite state agents can be generated even 

~ i t ~ h o u t  the use of the parallel operator as is illustrated by the following example. 

Example 4.3 Consider the process P %f rec X.(A:X B:O)). It has two possible tran- 
sitions: 

B P-0 

and 

P A ( rec  X.A:X t B:o) t B:o 

call P' this last process; it has three possible transitions: 

and 

P' A ( ( r e c  X.(A:X B:O)) t B:o) t B:O 

and so forth as shown in Figure. 1. 

Figure 1: An infinite state agent 

A way to ensure finite-state is to require that processes do not have recursion through 
parallel, tirneout or exception. Unfortunately, this is very difficult to characterize syn- 

t,actically - for example, the process rec X. (A.X ( 1  0) is equivalent to 0 and therefore 
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does not actually have recursion through parallel, while the process rec X.(e.X I (  0) does. 

Nevertheless there are obvious advantages to a syntactic characterization and therefore 

11.c liinit our proof to processes that have "no free variable in a process under parallel, 

exception or timeout operators." We say that such processes are "FS." It seems that most 

finite-state agents are either FS processes or are provably equivalent to an FS process. 

We use an auxiliary predicate, fs to characterize FS processes. (We assume the usual 

definition of the function f v ( P )  which yields the set of free variables of a process P.) 

fs(0) = true 

fs(X) = true 

fs(aP) = fs(P) 

f s (P  + Q) = f s (P )  A f4Q) 
fs (P  A, Q) = ( f v ( P )  = @) fs(P) A f4Q) 

f s ( ~  Q )  = ( f v (P )  = 0) A fs(P) Afs(Q) 

f s ( ~  ) I  Q) = ( f v ( P )  = f v ( Q )  = 0) Afs(P) Us(&)  

fs([Plu) = f s (P>  

f s ( P \ F )  = f4P) 
fs(rec X.P)  = fs(P) 

Definition 4.3 (FS Process) A process is said to be FS iffs(P) = true. 

I11 a discrete time setting, the set of FS processes would in fact be a very large subset 

of the finite state agents. In dense time, however, only processes encoded without timed 

action can truly be finite state, but the syntactical definition given given above remains 

useful to describe the set of processes for which we can prove equivalence. 

4.7.2 Bisimulation and Free Variables 

The presence of recursion will require us to have a formal treatment for free variables. In 

particular, we need a definition of bisimulation that takes the presence of free variables 

into account. In [44], Milner extends the notion of bisimulation to encompass unguarded 
free variables. In our case, the presence of the restriction and closure operators requires 
illore discrimination. Consider, for example, X\E and [X I I ;  even though the variable X 
is unguarded in both cases, the two expressions are certainly not equivalent. 

Let us define a relation " + " (without label) as the minimum relation that satisfies 

the rules in Table 4. Note that this definition is valid because of the soundness of the laws 



Res(5), Res(6), Close(5), Close(6) and Close(7). Based on this, we can define the notion 
of bisimulation that we will be using throughout this section. 

Table 4: Unguarded Variables 

- Q - [X\E]u 
x - [X\@le P t ( Q )  --I [X\EIu 

P - [X\EIu P - [X\E]u 
P + Q - [X\E]u PI1 Q -  [X\Elu 

Q - [X\Elu Q - [X\EIu 
P + Q - [X\E]u P I 1  Q - [X\Elu 

P - [X\Elu 
t > O  

P - [X\Elu 
P at Q - [X\Elu [Plv - [X\Eluuv 

Q - [X\Elu t = O  P - [X\Elu 
P At Q - [X\Elu P\F - [X\(E U F)]u 

P - [X'\Elu P- [X\Elu X f y 
P t (&) - [X\E]u rec Y.P - [X\EIU 

Definition 4.4 A process P is bisimilar to a process Q ,  noted P wZ7 Q ,  if) for all a E Act,  
IT c Res and E C 

1. i f  P Pr F' thenl for some Q', Q a, Q' and P' N n  Q'> and 

2. i f  Q 2, Q' then, for some P', P 5, P' and P' -, Q'. and 

It is straightforward to see that this refined definition corresponds to  our previous 
definition in the absence of free variables. None of tlie laws deal explicitly with free 
variables, and one can easily check that they remain sound under this new definition. 

4.8 Completeness 

Theoreil~ 4.2 The set of ACSR laws presented in Tables I and I are complete to prove 
hisimilarity of any ACSR processes in discrete time and ACSR processes coded without 
the exception operator in dense time. 



The proof of completeness, whose details can be sound in [17], follows the scheme 

described in [44]. We first prove that all the unguarded recursions can be eliminated by 

application of the law Rec(3). In the absence of unguarded recursion, any FS process 

proven to be the solution of a set of normalized kind of equation. If two processes are 

I~isirllilar, then they satisfy a common set of equations. Finally, we prove that those sets 

of equations have a unique solution up to a bisimulation. 

This proof applies equally to a discrete time setting as well as a dense time setting, in 

the absence of the exception operator. We conjecture that the completeness result also 

holds for dense time with the exception operator, but the proof is complicated by the 

introduction of time variables. 

Related Research 

The formal specification of real-time systems is a very active field of research. Most of 

the work can be classified in three main categories: timed logics, automata theory and 

process algebra. 
In methods based on timed logics, systems are described by a set of assertions and 

properties are theorems. A property holds for a system if it can be logically inferred from 

the assertions. Such methods do not have an execution model per s e  and therefore they 

do not directly lead to an implementation. Temporal logic [49] views a program as a 

sequence of states and allows the expression of logical formulae relating those states. New 

quantifiers such as (for all states) and 0 (for some future state) provide the capability 

of specifying invariance and eventuality and generally reason about time in a qualitative 

fashion. A quantitative notion of time can be introduced by allowing the specification 

of time bounds with the eventuality and invariance quantifiers [36, 35, 34, 31. Another 
approach is to introduce a mechanism to access the value of a real-time clock; in [37, 11 

it is read from a state variable; in [31, 32, 211 it is denoted by a predicates; and in [5, 61 
it is bound by a new quantifier called "freeze." 

Finite state automata have been used extensively in the specification and analysis 

of reactive systems. Several attempts have been made to extend their usage to  real- 

time systems. Modechart [30] is a graphical language for the formal specification of the 

l~ehavior of real-time systems. It is a hierarchical representation of finite state machines. 

State transitions are the consequences of event occurrences and timing constraints. The 
semantics of modecharts can he expressed as a set of events with their time of occurrence 

(timed traces) or as a Real-Time Logics formula [30]. In Timed Automata [4, 31 a set of 
clocks is associated to a traditional (untimed) automaton; these clocks can be tested and 

reset with each transition. The semantics of such automaton is the language it accepts, 

which is a set of timed traces. Hierarchical Multi-State Machines, or HMS [24, 221 is an 



estension of finite state automata where multiple states can be active at the same time, 

and multiple transitions can occur simultaneously. Transitions are controlled (enabled 

or disabled) based on temporal and state constraints. In addition, states can hold and 

pass tokens, and HMS machines can be organized hierarchically. Timed 1 / 0  Automata 
are based on input-output automata model [38]. An 110 automaton is defined over an 

alphabet of actions, by a set of states, a set of start states and a set of transitions. 1/0 
automata are input enabled which means that any input is accepted in any state and will 

cause a transition, possibly to the same state. In [39] states are assigned a time stamp and 

time passage is denoted by time passing transitions. Timed automata can be composed 

by action transducers [52]. These offer a much wider variety of compositions than simple 

parallel composition. 

Process algebras have been successfully used to specify untimed distributed systems. 

hlany extensions liave been introduced to extend their application to real-time enviroii- 

ments. We distinguish between the algebras based on CSP [28] with a denotational 

semantics, those based on CCS [45] whose semantics is typically given operationally and 

ACP [ lo ,  111 which is defined as an algebraic theory. 

Tlie algebra of Communicating Sequential Processes, or CSP 127, 281, was introduced 

for the formalization and mathematical treatment of concurrent systems. The syntax of 

C'SP includes prefix operators to denote actions to be executed, external choice to allow 

interaction with an environment and internal choice to model nondeterminism. There is a 

parallel operator that also enforces synchronization. In addition, CSP provides operators 

for abstraction and renaming of actions. The semantics of CSP is given as an algebraic 

theory and there are a number of models used to provide a denotational semantics. 

Real-time is introduced into CSP by means of a delay operation tliat can be a separate 

operator [50, 251 or combined with the action prefix [55]. The semantic models are usually 

based on timed traces, that is, a trace where each action is associated a time stamp. Timed 

1 races do not adequately capture nondeterministic behaviors and therefore additional 

illformation is attached such as refusals [50], failures 1251 or acceptances [55]. 

X CSP like process algebra is defined in [54] with an operator, claim t which denotes 

the exclusive usage of a processor for t time units, as opposed to the operator delay t which 

deilotes the idling of a process, for t time units. The semantics of processes is given in 

duration calculus, an extension to interval temporal logic. Using duration calculus, several 

scheduling algorithms such as first-ready-first-run or fair time-slicing can be specified. The 

intent of this work is to answer the question, given a set of processes, what scheduling 

algoritlini will satisfy a particular system specification. 

Communicating Concurrent Processes, or CCS, is a process algebra that introduces the 

notion of communication through the execution of complementary actions, which are then 

converted into an internal action. The semantics of CCS is given by a labelled transition 



syst,em, and the interpretation of the parallel operator is interleaving. Equivalence in CCS 

is based on the notion of bisimulation. 

There has been many extensions to CCS to accommodate real-time. Most of them 

simply add a time passing action which is assimilated to idling. Actions, on the other 

hand, are instantaneous and the semantics of the parallel operator is interleaving, as in 

untimed CCS. In most cases, the parallel and choice operators are patient with regard to 

t,ime, that is, if the two arguments of the operator can let time elapse the combined process 

ca,n let time elapse without committing to a particular behavior. Another common notion 

is that of maximal progress [26,46,53] by which if two parallel processes can communicate, 

this communication occurs as early as possible. 

Temporal CCS (or TCCS) 1461 which CCS not only with time passing actions but also 

with a weak choice operator. Both operators are patient with regard to the passage of 

time, but while the choice operator (also referred to as strong choice) deadlocks if one 

of the branches refuses to wait, the weak choice operator will commit to one branch if 

the other is not willing to wait. The weak choice operator can be used to build more 

sophisticated constructs such as timeout. The operational semantics of TCCS is given 

via two transition systems, one for time passage and another for instantaneous actions. 

t'TCrCS is a subset of TCCS in which each process can be delayed for any amount of time. 

This allows the definition of a preorder that implements the intuitive notion of a process 

being faster than another. This relation turns out to be a precongruence and admit a 

sound proof system which is complete for the subset of the language that excludes the 

parallel operator. 

The salient aspect of Timed CCS [la]  is that time variables are explicitly included. An 

act8ion is associated lower and upper bounds for its execution and a time variable which 

is bound to the actual tinie when the action occurs. Here, the choice operator is patient 

with regard to elapsed time as long as both processes can wait; after that,  if delay is 

still required (e.g., the other branch cannot synchronize), then the branch that can wait 

is talien. This behavior is similar to the weak choice of Temporal CCS. The semantics 

of Timed CCS is defined in terms of a labelled transition system indexed over the time 

cloma,in. That is, a transition is defined as P tP' where P can perform an action 

u. at time t .  Idling is denoted by a transition without label, only the subscript denotes 

t8he elapsed time. Equivalence for Timed CCS is defined as strong or weak bisimulation. 

'I'here is an alternate characterization based on modal logics. Two finite image (i.e., finite 

state and finitely branching) processes are equivalent if and only if they satisfy the same 
set of formulae. 

A version of CCS with priorities is found in [19, 201. Each action is assign one of two 
priority levels and only actions of the same level can synchronize; they then turn into r- 

action of the same priority. Operators to change the priority of a process are also defined. 



The authors show that, in order for strong bisimulation to be a congruence, only high 

priority T actions can preempt low priority actions, i.e., prevent them from occurring. 

WTe have given a formal explanation for this fact in our treatment of compositionality, in 

Section 3.2.2. 
Tlle Algebra of Communicating Processes, ACP [ lo ,  111 differs from CSP and CCS 

ill some interesting ways. First, actions are considered as processes and are combined 

by sequential composition, instead of being used as prefix operators. 'This allows the 

definition of processes whose behavior is described as a regular expressions. For example, 

the behaviors of the process "I: ab + orb" is to execute any finite number of actions 

.'a" followed by the same number of "b." Communication is defined as the result of a 

binary operation on processes which yields another process (a generalization of the T 

action of CCS) when communication is possible, or a deadlock when the two processes 

cannot communicate. The semantics of ACP is given by an equational theory. Infinite 

I~ehaviors are defined as the solution of process equations. 

ACPp [9] is a generalization of ACP where all actions can be assigned a time stamp. 

Time stamps can be absolute or relative. Absolute time stamps require the introductioii of 
o def time variables in the recursive definition of processes. For example, the process x ( t )  = 

c~( t ) . z ( t  + 1)" performs an action "a" at every time unit. Integration is also used to 

specify a process that can execute an action at any time within an interval: the process 
,, clef .r = JwE[1,21 a(v ) "  can execute the action a as early as time 1, as late as time 2, or at 

any time in between. ACPp, like ACP, is defined as an equational theory. However, it 

call be given an operational semantics where both processes and transitions are assigned 
4 2 )  a time stamp. For example, "(a(2)x, 1) - (x, 2)" denotes that a process that has the 

form a(2)1: at time 1, can execute the action a at time 2 and thus become the process 

.I.. Strong bisimlilation equivalence can be defined on this transition system and the 

equational theory is sound and complete with respect to it. Interestingly enough, even 

though ACPp is a generalization of ACP and therefore has weaker axioms, the original 

asioins can be recovered if all the actions take the form JWE(,,+) a jv ) .  
ACP is added a priority operator 6' in [7] ,  This work differs from ours in the sense 

that application of priority must be explicitly expressed in the syntax, while in our case 

it is implicit. Nevertheless, our treatment of compositionality was inspired by it. In [8] 
it is shown that some equivalence relations such as ready and failure equivalence are no 

longer congruences when priorities are introduced. 

Algebra of Timed Processes or A'I'P [47] is another process algebra with discrete time. 

The execution model is similar to ours in that processes evolve in two-pliase steps; in 

the first phase, all instantaneous actions are executed in an asynchronous (interleaved) 

manner with some possible communication. When no more component can execute any 
instantaneous action, time passes synchronously in all the components via the execution 



of the timed action "X." Unlike other algebras, X is not used as a prefix but is the 

result of a, unit-delay operator which is similar to one time unit timeout. Other operators 

allow the specification of arbitrary delays and timeouts. ATP is defined by an operational 

semantics; it has an axiomatization which is sound and complete with regard to strong 

l~isimulation. 

RTSL (Real-Time Specification Language) [23] couples a real-time process algebra 

with a global priority function. The behavior of processes is specified by algebraic terms. 

There are constructs to specify timing constraints and deadlines. The priority function 

returns the set of highest priority processes at each execution time. A reachability analysis 

allows the detection of failure states. The separation of the priority function from process 

espressions makes it easy to test the effectiveness of various scheduling algorithm. 

Conclusion 

We have developed a formal, algebraic method for the specification and verification of 

distributed real-time systems. ACSR differs from most other process algebras in that it 

distinguishes between timed actions that consume resources, and instantaneous events 

that are used for synchronization. In addition, it features specialized operators to specify 

real-time behaviors, including timeout and exception constructs. Priorities are assigned 

to give an action and an event a measure of its urgency. The execution model of ACSR 

ensures that the most urgent actions are executed first. The dense time domain used in 

the model provides a versatile way of specifying durations without being tied to particular 

time base. 

Preemptioil defines when a less urgent action can be ignored in favor of a more urgent 

one. It is important that preemption be compositional, that is, when an action preempts 

another, no ACSR context would prefer the preempted action. We have given a formal 

\vay to ensure the compositionality of a particular preemption scheme. 

XCSR can adequately be used to specify fairly complex real-time systems. There are, 

however, some aspects of the model that could be improved upon. The first one concerns 

the fact that ACSR actions are monolithic, that is, once started, an action must either 

1~ executed to completion without relinquishing its resources or completely abandoned 

if a timeout or interrupt occurs. Points where an action may be suspended in favor of 

a more urgent process (such as a hardware device service interrupt) and later resumed 
have to be explicitly specified through a delay operator (6). This behavior is necessary 

to adequately model processes that can capture their resources (by disabling interrupts 
for example) and non-preemptive scheduling systems. In the other cases, it is difficult in 

XCSR to define patient actions that can be suspended at almost any time. 
We have defined ACSR with static priorities. This is a necessary step in the un- 



derstanding of the formal treatment priorities. Nevertheless, many actual systems use 

dynamic priority schemes such as first-in-first-out or earliest-deadline-first . One way to 

support such schemes would be to provide a mechanism for the priority function ( T )  to 

get timing information about the current execution (such as a relative time of occurrence 

of certain events) and adjust its value accordingly. 

XC'SR is an algebraic language and as such is very terse and easy to treat formally. Its 

terseness, however, may not be very appealing to many practitioners. A coat of syntactic 

sugar should be applied to ACSR to give it the readability and intuitiveness of a high 

level language. 

Equivalence between ACSR processes is defined as strong bisimulation. This is a very 

fine equivalence relation; it differentiates between terms that would often be considered 

~cluivalent in practice. There are other equivalence relations such as failure equivalence [8] 
and ready simulation equivalence [13] that are less discriminating. Unfortunately, as 

5howii in [8] these relations are not congruences in the presence of priorities and therefore 

are not very useful. Nevertheless there is a need for less discriminating relations. 

In summary, ACSR provides the theoretical foundation for a practical system to spec- 

ify real-time distributed systems. The addition of higher level notions such as dynamic 

priorities, refinement and a more appealing syntax would improve its usefulness in prac- 

tice. With adequate automation tools it can be a significant help in the design of correct 

distributed real-time systems. 

A Selected Proofs of Soundness of ACSR Laws 

Tllese proofs are based on the application of the lemmas 4.1 and 4.2. For each law, using 

Table 3, we calculate the value of the 7 (or sometimes 7,) function for both sides of 

t.he equation and verify that the results are equal or related in a way that satisfies the 

condition of lemma 4.2. 

ITP (4) 

~ ( A ~ S "  (P, Q))  = {(A"!, P 
7(At5" (P, 0 ) )  = {(A"', P 

It follows from lemma 4.2 that the relation defined by {(At<" (P, Q) , Atso" (P, 0)))  is a 
prioritized strong bisimulation. 

Choice(4) 7((P + Q) + R)  = 7(P + Q) U I ( R )  = (7(P) U I(&)) U I ( R )  
= 7(P)  U (I(&) U 7 ( R ) )  = 7(P + (Q + R)) 



Tii11eout(3) We distinguish two cases. 
i )  1Yl~c~r1 11 < v wc have: 

T ( ( : lU :P)  A,, Q )  

= {(A"', (Au-"':P) A,-,I Q)  1 (Au', A"-"': P) t 7(A7 ' :  1') A 11' 5 I L )  

7(24fL:(1J At,-u Q))  - {(Au', L1"-7':(~ Al,-, a) I (A'", A"-"':P) E 7 ( A u : P )  A u' < 11) 

It follows from lemma 4.2 that ,  urider the condition u < v, t,hc relation defined by 
{(_A1?:_Y A,  1; A7':(X A,-, Y ) ) }  is a prioritized strong hisimulation. 

ii)\Yllen ( I  < 11 we have: 

'T ( (Au :P)  A,  Q) 
- - { (AU' ,  (A~I-TL'. .ll) A ~ - ~ , I  Q )  1 ( . ~ 4 ~ ~ ' ,  A 4 7 L - 1 L ' : ~ )  t 7(kt71:11) A l l f  5 U }  

'T(AU:( P A0 Q ) )  
= {(A'~ ' ,  A ~ - ~ ' : ( P  A,  Q j )  1 (Au', A"-"':P) E 7 ( A u : P )  A r,' < v} 

And therefore, when v < u tllc relation defined by {(Au:X A,  Y, AV:(X A" L'))) is a 

~'riorit~izecl s t ro i~g  hisiniulatiori. It follo~vs, that i r ~  all cases, the relation defined by 

{(Au:X A ,  Y; Atu:(X A,-, If)) 1 w = min(u, u ) }  

is a prioritized strong bisimulation. 

Par (3) 

'WIIQ) = 
{((14IB)", 1" 1 1  Q') 1 (Au, P') E 7 ( P )  A (ll", Q1) E 7 ( Q )  A p(A) n ~ ( 1 3 )  = fl} 

u {(e ,  Pf l l  62) I (e, PI) 7 ( P ) )  
u ( ( € 7  P I I  Q') I ( e ,  Q') T(Q)}  
LJ { ( ( T ,  77 + 7 ~ 2 ) ~  1" 1 1  Q1) 1 ( ( a ,  n ) ,  PI) 7(1') A ( ( a ,  7 1 1 ) ~  (2') t T ( Q ) }  

T(PIG,, + 1' L Q  + Q U_P) = 

{((AJB)" ,  P' 1 1  Q') I (A1;  p') E ' W 1 )  A (flu,  Q1) E I ( & )  A p(A) n P(B) = 0)  
u ( ( (7 ,  n + n4, P' I1 Q') I ( ( a ,  4, P') E 7 ( P )  A ((a ,  4, Q') E 7(QU 
u {(t. r1 1 1  62) 1 (% P" )E 7 ( P ) )  
u { ( e ,  8' I 1  P) I ( c ,  Q') E 7(C?)) 

At this ~ ~ o i n t ,  we need t,o observe that,  by Par ( l ) ,  P( IQf  = Q'lIP It follows, from 
1c.riirna 4.2 that the relation defined I>y {(XJ(k7,XIY + X L Y  + Y L X ) }  is a prioritized 
s i  ~ . o r ~ g  1,isimulat ion. 



Par(4) FVc can calcula,te: 

, ~ ( a  l 0, 
= {((A1 B)", 1'"' 1 1  Q"') 1 (Au, P"') E 7(?) A (B". Q"') E 7(Q) A p(A) n p(B) = 0) 

U { ( ( ,  P'" 1 1  Q)  1 ( e ,  P'") E ' T ( P ) }  

u {(i. i) 1 1  Q"') I ( F , c J " ' )  E 7 ( Q ) }  

U ( ( ( 7 , ~  + v) .  I"" I I  Q"') I ( (a ,p) ,PU')  E ~ ( p )  A ( ( n ,  dl Q"') t T ~ Q ) )  
= {((A, IBk)wLk, Ayt-Wtk:Pt' 1 )  BTPWzk :Q:) I i E 1 A k E I< A p(AZ) n P ( H A )  = Q) 

Res (6) 

7 P \ E \ b 7 )  = {(Au, Pr\F) ( (A'" PI) E T ( P \ E ) )  

u { ( ( a ,  n ) ,  P'\F) I ( (a ,  n ) ,  P') E 7 ( Y \ E )  A a ,  a  $! F )  
= { ( A " ,  P1'\E\k') I (A7" P") E T ( P ) }  

U {((a,  n ) ,  P1'\E\F) 1 ( ( a ,  I % ) ,  P") E 7 ( P )  A ( 1 ,  (1 @ Id A ( 1 ,  (L $! I< '}  

= {(A".P"\E\F))(Au,P~')~7(P)) 

u { ( ( u ,  n ) .  P U \ E \ F )  I ( ( ( I ,  rr ). I.'") E 7 ( P )  A (1, a @ E U F )  

I(P\E u F )  = {(A". P'\E u F )  1 (/111, P I )  E T (  P ) )  

U {((a,  n ) ,  Yf\E U F )  I ( ( a ,  1 2 ) ,  P') E I ( P )  A a ,  a $! 15 U b') 

It follows from lenlnla 4.2 that tllc rclation {(,Y\E\F, X\E U k ' )  / El k' CI C} is a  priori- 

tizc-d stroilg I>isimulation. 



7( [P\EIu> = { ([A]" ,  [P'lu) I ( A U ,  P') E 7 ( P \ E ) )  
u { ( ( a , n > ,  [P11u> I ( (a ,  4, PI) E 7 ( P \ E ) )  

= { ( [A]" ,  [P"\Elu) I (AU? P") E 7 ( P ) }  
u { ( ( a ,  4 ,  [P"\EIu) I ( ( a ,  n ) ,  P") (2 7 i P )  A a ,  a # E l  

However, 

~ ( [ P I u \ E )  = {(A",P'\E)I(AU,P')E~([P1u)) 
u { ( ( a ,  n>? P'\E) I ( ( a ,  4, P') E I ( [ P l u )  A a ,  a # E )  

= { ([A]" ,  [PU1u\E) I ( A U ,  P") E 7 ( P ) )  
u { ( ( a ,  4 ,  [PU1u\E) I ( ( a ,  4, PI') E 7 ( P )  A a ,  a 61 E )  

It follows that tlie relation {([X\EIU, [XIU\E) ( U 5 Res A E  5 L) is a prioritized strong 
l~isiinulation. 

Except (6) 

I ( ( P  t Q )  t R )  
= 7 ( R )  

u { ( a ,  PI t R )  I (a ,  PI) E 7 ( P  t Q ) )  
u ( ( ( 7 ,  P + r ) ,  R') I 3P1, a: ( ( a , p ) ,  PI) E T ( P  t Q )  A ( (a ,  r ) ,  R') E 7 ( R ) )  

= 7 ( R )  
u { ( a ,  (p' t Q )  t R )  I (a ,  PI) E 7 ( P ) )  
u { ( a ,  Q' t R )  I (a ,  Q') E 7(Q)} 
u ( ( ( 7 ,  P + 4, Q' t R )  I 3P', a :  ( (a ,  P ) ,  PI) (2 7 ( P )  A ((a, q ) ,  Q') E I (&))  
u { ((7,  P + r ) ,  R') I 3P', a :  ( (a ,  P ) ,  P') E 7 ( P )  A ( (a ,  r ) ,  R') E 7 ( R ) )  
u ( ( ( 7 ,  4 + r ) ,R ' )  I 3Qt,a: ( ( a , q ) ,  Q') E 7(Q) A ((a, r ) ,  R') E 7 ( R ) )  

However, 

It, follows from lemma 4.2 that the relation defined by { ( ( X  t Y )  i 2, X t (Y i 2))) is a 

prioritized strong bisimulation. 



Sync(3) Wlien p(A) n p ( B )  = 0 and w = min(u, v )  we have: 

7 ( A t l l U  (PI, P C )  j Bt2'" (QI ,  QC)) 
= { ( ( A B ) ~ ' ,  PflQ') I (Au', PI) E 7(At1su ( P I ,  P C ) )  A (BU', Q') E I (Bt2su (PI, QC))} 
={((AIB)u ' ,  R') I U' 5 w) 

iri th: 

After using Par(3) and LeftM(2) we obtain: 

However, 

I ( ( A  B ) ~ ~ ~  (RI ,  RC) 

= { ( ( A I B ) ~ ' , R I  ["'/,I + ( A I B ) ~ ~ ~ - " '  (HI [u1+t/,] , RC)) 1 u < w 1 

Rec(1) From the operational semantic rule Rec we have: 

Rec(2) Let R rec X.Q; by Rec(l), R = Q [ ~ l x ] .  We need to prove that P c, R, 

assuming that P = Q [ P / ~ ]  and X is guarded in Q. We do this by making use of 
leinma 4.2 and proving that the relation R defined by 

(where E ranges over the set of ACSR processes) is a prioritized strong bisimulation. The 
key to this proof is the observation that, when X is guarded in Q, the first step of Q 



does not depend on the value of P, niore formally: 

Q [ P / ~ ]  AT Q1 [ P / ~ ]  zf and only d Q AT Q' 
and 

Q [ R / ~ ]  AT Q' IR/x] if and only if Q 5, Q' 

We proceed by induction on the structure of E. 
If E is 0, 7 ( E  [ P I X ] )  = 0 = 7 ( E  [ Q / x ] ) .  

If E is I, we obtain the E = P = Q [ ' / X I  and similarly E [R /x]  = R = 

Q [ R / ~ ]  and therefore 

7 ( E  [ P / ~ ] )  = { (a,  Q' [ P / ~ J  ) I Q 5 r  QI ) 
and 

7 ( E  [ R / x ]  ) = { (a .  &' [ R / x ] )  I & AT 8') 
If E is a F  then 

7 ( E  [ P / x ]  = { (a ,  F [Pix] ) } 
and 

7 ( E  [ Q l X ] )  = { (a> F [ " / X I )  } . 

The other cases follow from the induction hypothesis and the fact that prioritized 

strong bisimulation is a congruence. 

Rec(3) The proof is by transition induction, i.e., induction on the depth of the inference 

tree. Let 

Q !Ef T C C  X . ( P  + [X\EIo) and R E r e c  X . (P  + [P\EIU) . 

We prove that the relation S = {(G [ P I X ]  , G [ Q / x ] ) }  is a bisimulation. The proof 

goes by cases on the structure of G. Most cases follow directly from the fact that bisim- 

ulation is a congruence. The only interesting case is when G is X .  
We have X [ P I X ]  91 P' if and only if P Pi PI. That is rec X . (P  + [X\EIu) PI, 

or P [ Q / x ]  + [&\ElU 9- PI. There are two possible cases: 

i )  If P [9/1] A P' then, by induction hypothesis we have P [ R / x ]  P" with 

(PI ,  P") E S .  
ii) If [Q\EIu 5 P' then, by induction hypothesis we have [R\EIu 91 P I ' .  We 

replace R by its definition to obtain [rec X . (P  + [P\EIU)\E], 5 P'. That is 

[P [ R / X ]  + [ p  [?XI \E] \E] I; A P" 

and using the distributivity and idempotence of both closure and restriction we obtain: 

[P  [ R / ~ ~ ]  \E] A PI' whence P [ R / x ]  A PI1. 

The reverse case is immediate. 
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