
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1995

A Process Algebra of Communicating Shared Resources With A Process Algebra of Communicating Shared Resources With

Dense Time and Priorities Dense Time and Priorities

Patrice Brémond-Grégoire
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Patrice Brémond-Grégoire and Insup Lee, "A Process Algebra of Communicating Shared Resources With
Dense Time and Priorities", . January 1995.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-95-08.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/205
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/205
mailto:repository@pobox.upenn.edu

A Process Algebra of Communicating Shared Resources With Dense Time and A Process Algebra of Communicating Shared Resources With Dense Time and
Priorities Priorities

Abstract Abstract
The correctness of real-time distributed systems depends not only on the function they compute but also
on their timing characteristics. Furthermore, these characteristics are strongly influenced by the delays
due to synchronization and resource availability. Process algebras have been used successfully to define
and prove correctness of distributed systems. More recently, there has been a lot of activity to extend
their application to real-time systems. The problem with most current approaches is that they ignore
resource constraints and assume either maximum parallelism (i.e., unlimited resources) or pure
interleaving (i.e., single resource). Algebra of Communicating Shared Resources (ACSR) is a process
algebra designed for the formal specification and manipulation of distributed systems with resources and
real-time constraints. A dense time domain provides a more natural way of specifying systems compared
to the usual discrete time. Priorities provide a measure of urgency for each action and can be used to
ensure that deadlines are met. In ACSR, processes are specified using resource bound, timed actions and
instantaneous synchronization events. Processes can be combined using traditional operators such as
nondeterministic choice and parallel execution. Specialized operators allow the specification of real-time
behavior and constraints. The semantics of ACSR is defined as a labeled transition system. Equivalence
between processes is based on the notion of strong bisimulation. A sound and complete set of algebraic
laws can be used to transform almost any ACSR process into a normal form.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-95-08.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/205

https://repository.upenn.edu/cis_reports/205

A Process Algebra of Communicating Shared
Resources with Dense Time and Priorities

Patrice Bremond-Gregoire
Insup Lee

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

March 1995

A Process Algebra of Communicating Shared
Resources with Dense Time and Priorities *

Patrice Brkmond-Grkgoire, Insup Lee
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

March 8, 1994

The correctness of real-time distributed systems depends not only on the function they
compute but also on their timing characteristics. Furthermore, those characteristics are
strongly influenced by the delays due to synchronization and resource availability. Pro-
cess algebras have been used successfully to define and prove correctness of distributed
systems. More recently, there has been a lot of activity to extend their application to real-
time systems. The problem with most current approaches is that they ignore resource
constraints and assume either maximum parallelism (i.e., unlimited resources) or pure
interleaving (i.e., single resource). Algebra of Communicating Shared Resources (ACSR)
is a process algebra designed for the formal specification and manipulation of distributed
systems with resources and real-time constraints. A dense time domain provides a more
natural way of specifying systems compared to the usual discrete time. Priorities provide
a measure of urgency for each action and can be used to ensure that deadlines are met.
In ACSR, processes are specified using resource bound, timed actions and instantaneous
synchronization events. Processes can be combined using traditional operators such as
nolldetermillistic choice and parallel execution. Specialized operators allow the specifica-
tion of real-time behavior and constraints. The semantics of ACSR is defined as a labeled
transition system. Equivalence between processes is based on the notion of strong bisim-
ulation. A sound and complete set of algebraic laws can be used to transform almost any
ACSR process into a normal form.

*This research was supported in part by DARPAINSF CCR90-14621 and NSF CCR 93-11622.

1

March 22. 1995

Contents

1 Introduction 3

2 ACSR Model 4
. 2.1 Resource Consuming and Timed Actions 5

. 2.2 Instantaneous Events 6

. 2.3 Computation Model 6

3 ACSR Syntax and Operational Semantics 7
. 3.1 Unprioritized Operational Semantics 8

. 3.2 Preemption and Prioritized Transitions 12
. 3.2.1 The Preemption Relation 13

. 3.2.2 Cornpositionality of Preemption 16

4 Strong Equivalence 17
. 4.1 Prioritized Strong Bisimulation 18

. 4.2 Equational Laws for Prioritized Bisimulation 19
. 4.3 Distributivity of the Parallel Operator 19

. 4.4 Distributivity of the Exception Operator 21
. 4.5 Normalization of ACSRprocesses 22

. 2.6 Soundness of the Bisimulation Laws 25
. 4.7 ('ompleteness for Recursive Processes 27

. 4.7.1 Characterization of FS Processes 28
. 4.7.2 Bisimulatioll and Free Variables 29

. 4.8 Completeness 30

5 Related Research 31

6 Conclusion 35

A Selected Proofs of Soundness of ACSR Laws 36

1 Introduction

Reliability in real-time systems can be improved through the use of formal methods for

t heir specification and analysis. Formal methods treat systems as mathematical objects

and provide niatheniatical models to describe aiid predict the observable properties and

behaviors of these objects. There are several advantages to using formal methods for the

specification and analysis of real-time systems. They are, firstly, the early discovery of

;~inbiguities, inconsistencies and incompleteness in informal requirements; secondly, the

automatic or machine-assisted analysis of the correctness of specifications with respect

to requirements; and, thirdly, the evaluation of design alternatives without expensive

prototyping.

Process algebras, such as CCS [45], CSP [28], and ACP [ll], have been developed to

describe and analyze communicating, concurrently executing systems. They are based

on the premises that the two most essential notions in understanding complex dynamic

systems are concurrency and communication [45]. The most salient aspect of process

algebras is that they support the modular specification and verification of a system. This

is clue to the algebraic laws that form a compositional proof system, and thus, it is possible

to verify the whole system by reasoning about its parts. Process algebras without the

notion of time are being used widely in specifying and verifying concurrent systems. To

espand their usefulness to real-time syst,ems, several real-time process algebras have been

developed by adding the notion of time and including a set of timing operators to process

algebras.

The timing behavior of a real-time system depends not only on delays due to process

synchronization, but also on the availability of shared resources. Most current real-time

process algebras adequately capture delays due to process synchronization; however, they

abstract out resource-specific details by assuming idealistic operating environments. On

the other hand, scheduling and resource allocation algorithms used for real-time sys-

tems ignore the effect of process synchronization except for simple precedence relations

between processes. What is needed is a formal framework that combines the areas of
process algebra and real-time scheduling, and thus, can help us to reason about systems

that are sensitive to deadlines, process interaction and resource availability. Algebra of

('ominuiiicating Shared Resources (ACSR) is an attempt at providing sucli a framework.

ACCR exhibits several salient features that differenciates it from other process alge-

bras. The ilotioll of resources is integral to ACSR, it allows a close modeling of situations

where several processes compete for the same resources. A common method to arbitrate

such conflits is to assign priorities to processes; this method is formally supported in

.4CSR. Alnoiig the new operators introduced by ACSR are the interrupt which allows to

model reaction to asynchronous signals and the exception operator which now commonly

used in modern programming languages. Finally, ACSR uses a dense time paradigm,

which provides more flexibility than the alternative, discrete time, in the specification of

real-time processes; dense time also requires the formal treatment of time intervals which,

in turn, leads to smaller normalized processes.

A formal method coniprises a mathematical model, a syntax and a semantics. The

mathematical model is the domain in which the objects of the language take a meaning.

In our case it involves the definition of a time domain, a set of resources and actions,

and a structured labelled transition system. These are the subject of Section 2. The

syntax defines the rules for constructing valid sentences in the language. In ACSR, this

coiisists of a simple algebraic expressions with a small set of operators and is described

in Section 3. The semantics of the phrases of the language is elaborated in two steps.

Section 3.1 provides a set of unprioritized (i.e., priority-ignored) operational rules. In this

section we also discuss the intuitive meaning of each operator and give some examples

of their usage. Priorities are treated in Section 3.2. A prioritized semantics is derived

from the unprioritized one. We define a notion of compositionality, which ensures that

prioritization can be enforced in ally context, and prove that ACSR has that property.

Finally, we describe our motivating example to give an ACSR specification of tlie system.

Section 4 is dedicated to the definition of a notion of equivalence based on strong

I~isiinilarity; we present a sound and complete set of algebraic laws. The details of the

proofs of soundness and completeness of these laws can be found in the appendix. Again

we re-visit our example and give a partial proof of correctness.

Section 5 contains survey of relevant research related to the formal treatment of real-

time system. We look at logics based methods, models based on automata theory and

other work concerned with the incorporation of time and priorities in process algebras.

The conclusion in Section 6 reflects on the strengths and weaknesses of our work and

explore areas where additional research is waranted.

ACSR Model

An AClSR process is a term over the ACSR signature, which will be described in the next

section. We note Proc the set of all processes and use P, Q, R and S to range over Proc.

Furthermore, we use a set of process variables Proci/'krs and let W , X, Y and Z range

over it. A process evolves by executing successive actions. We denote by Act the set of
all actions and use the Greek letters a and /3 to range over Act. There are two kinds of

actions, timed and untimed. Timed actions are used to model the passage of time and

the consumption of resources. Untimed actions are used to label instants in time and to

affect inter-process synchronization.

2.1 Resource Consuming and Timed Actions

We assume a finite set of serially reusable resources Res. We use r to range over Res. A
resource consuming action, A, represents the usage of a subset of these resources. It is

defined by the set of resources used, noted p(A), and a total function r A (r) : Res + R 2'

such that 7iA(r) is the priority of the resource r in the action A, and 7iA(r) = 0 when

!- # ~ (4 .
Our time domain is the set of real numbers plus infinity: R + U {m). We use u, v and

ZL? to denote time values.

A timed action A" is the execution of a resource consuming action for a duration u,

n~llere u is a positive and finite real number. In addition to A, the letters B and C are

used to denote resource consuming actions and correspondingly Bv and Cw are used for

timed actions.

We write a resource consuming action A as a set of pairs {(rl , pl), . . . , (r,, p,)} such

that only the resources in p(A) appear in the set and each one appears exactly once,

paired with its priority. For example, we write: A = {(IOP, 2), (BUS, 3)) for the action

that consists of using the IOP resource at priority 2 and the BUS resource at priority 3;

and A2.Vor the execution of that action during 2.4 units of time.

We define two operations on resource consuming and timed actions: synchronous

composition and closure.

The synchronous composition, noted "AIB" creates a single action, equivalent to two

actions occurring simultaneously. Synchronous composition is only defined if the two

actions are using disjoint sets of resources. This enforces the serial reusability aspect of

the resources. Synchronous composition over timed actions requires, in addition, that

the two action have the same duration. This ensures the uniform passage of time. The

coillposition of two actions preserves timing, resource usage and priorities; in other words,

aqsuming that p(A) fl p(B) = 0 we have:

It follows immediately from the definition that the synchronous composition of resource
coiisuming and timed actions is commutative and associative.

The closure operation, [AIu, consists of increasing the set of resources used by the

resource consuming action A to include all the resources of the set U . The priority
function is not affected by this operation: the incremental resources remain at priority 0.
Closure over timed action is similar and is independent of timing, that is:

March 22, 1995

The idea behind this operation is to be able to reserve a set of resources for a process,

even though some of its actions may not be using all of them.

It follows immediately from the definition that closure over resource consuming and

t,irried actions is idempotent and associative in the sense that:

nloreover, closure over an empty set has no effect: [A]@ = A.

2.2 Instantaneous Events

Inst,antaneous actions, or events, provide the basic synchronization mechanism of ACSR.

An instantaneous event, e has a label, l(e) and a priority ~ (e) . The labels are drawn from

a countable set A = C U (7) . The priority is a non-negative real number. We assume tlie

esistence of a complement operation over L such that

-

'da E L: 3% E C and a = a and 7i # a

We use a , b and c to range over A and the lowercase letters e and f to denote events.

Events are used for pair-wise synchronization whicli is modeled as a composition op-

eration over events. As in CCS, the special label T # C denotes internal actions. It will

l ~ e coiivenient to overload the synchronous composition symbol that we have used for

actions. The coinposition of two events, noted "elf" is defined only when the two events

have complementary labels, such as a and a. The priority of the resulting event is the sum

of the priority of the two original events. The reason for this choice will become clearer
-

wlien we discuss compositionality in Section 3.2.2. Formally, assuming that l(e) = l (f) ,

we have:

It follows from this definition that the composition of two events is commutative, i.e.,

t I f = f Je. For example, "(char-in,5)" denotes the event with label "char-in" and
priority 5. The composition: (char-in, 5)l(char_iia, 2) = (r , 7) .

2.3 Computation Model

The behavior of a process is given by a labelled transition system, which is a subset of

Proc x Act x PI-oc. For example, a process P can execute an action a and turn into a

process P' if (P, a, PI) is in the labelled transition system. We call this an execution step

and write it P 5 P'. A process evolves by executing a succession of steps as follows:

all p ", p' L> p" ->

3 ACSR Syntax and Operational Semantics

The following grammar describes the syntax of processes:

p ..- . 0 I Au:P 1 e .P I P + P I P 1 1 P I
P A , P I P t P [PIU P\F I rec X.P X

The process 0 executes no action (i.e., it is initially deadlocked). There are two prefix

operators, corresponding to the two types of actions. The first, Au:P, executes a resource

coilsuining action A for a duration u, and then proceeds to the process P. In this prefix

operation. it will be convenient to let the range of u extend over the whole time domain,

i.e., the set of real numbers plus infinity. However, the operational semantics is such that

a null duration can be ignored, a negative duration corresponds to a deadlock and an

infinite duration cannot be exhausted. For the second kind of prefix, e .P executes tlie

ilistai~taneous event e, and proceeds to P . The difference here is that we consider no time

to pass during the event occurrence. There are times when we do not want to distinguish

I~etween timed and untimed prefixes; in those cases we will use juxtaposition with a generic

action, for example, aP stands for a : P when a is a timed action, and for a . P when a

is an instantaneous event. The choice operator P + Q represents nondeterniinism: either

of the processes may be chosen to execute, subject to the constraints of the environment.

The operator P 1 1 Q is the parallel composition of P and Q. In addition to these traditional

ol~erations we define specialized operators to express real-time behaviors.

The timeout operator P A, Q allows the process P to execute for exactly v time

units; the execution of P is then abandoned and the execution of Q starts. The exception

operator allows the specification of a process that can permanently interrupt another

process. In the expression P t Q, the execution of the process P can be abandoned at

any time in favor of the execution of the process Q. The execution of Q is started in

one of three ways: the resources it requires are available, it synchronizes with a parallel

process, or P executes an event that synchronizes with a starting event of Q. This last

l~ehavior is useful to model the exception construct of modern programming languages; it
can also be used as sequential composition. The Close operator, [PIu, produces a process
Y that monopolizes the resources in U C: Res. The Restriction operator, P\F, with

F C L, limits the behavior of P . Here, no event whose label, or its complement, is in F
is permitted to execute. The process rec X .P denotes standard recursion, allowing the

specification of infinite behaviors.

In order to lighten the presentation by reducing the number of parenthesis required to

uila,~nbiguously parse a term, we associate with each operator a binding power. We give to

t#he prefix operators the highest binding power and to the choice operator the lowest, the

ot,her operators being of equal binding power, in between choice and prefix. For example,

the t,erm:

e.AU:P Q + AV:RJJ f.S

is to be interpreted as:

3.1 Unprioritized Operational Semantics

The first two rules for the prefix operators are axioms; i.e., they have premises of true.

There is one for a timed action and another for an instantaneous event. The third rule

states that when a timed action has been completed, the system proceeds with the next

possible action or event.

Act1 ActT I 0 < u 1 < u A u l < m
e.P "i P AU:P A" _, AU-u' : p

As an example, the process (a ,p) .P executes the event "(a,p)," and proceeds to P.
Alternatively, the process {(rl , pl), (r2, p 2) } 2 : ~ simult~aneously uses resources 1.1 and 7.2

for a t,otal of two time units before executing P.
Note that there is no transition labelled by A". Furthermore, because no operational

semantics rule apply, a process of the form AU:P with u < 0 has no behavior; it is

deadlocked. Finally, the process Am:P can never proceed to P since it can only execute

actions of finite duration A".

ActT is the foundation of the dense time semantics. It states that a timed action can

Ile split arbitrarily into any number of consecutive segments.

The rules for Choice are identical for both timed actions and instantaneous events
(and hence we use "a" as the label).

P "t PI
ChoiceL

P + Q 5 P 1
ChoiceR

&A&'

P + Q - f Q 1

For example, "(a, 7). P + {(r l , 3) , (r2 , 7))1.2:Q:' may choose between executing the event
,,(a. 7)" or the timed action "{(rl, 31, (7-2, 7))1.2." The first behavior is deduced from rule
ActI, while the other is deduced from ActT.

The Parallel operator provides the basic constructor for concurrency and communica-

tion. The first rule, P a r T , conibines two tinied transitions.

Note that timed transitions are truly synchronous. in that the resulting process advances
only if both constituents take a step. The condition p(Al) n p(A2) = 0, which ensures

that (A1 1A2) is defined, mandates that each resource be truly sequential, that is only one
process may use a given resource at any instant.

The case where two actions have different timings is implicitly handled by this single

rule. Incleed, as we will prove in Theorem 3.1, if a process can perform a transition labelled
-4'" it can perform a transition A ~ ' for all 0 < u' 5 u. Therefore, all the transitions with

coininon time values (up to the shortest duration of tlie two actions) will be combined by
virtue of the rule ParT.

The next three laws are for event transitions. As opposed to timed actions, events
may occur asynchronously (as in CCS and related interleaving models.)

The first two rules show that events may be arbitrarily interleaved. The last rule is for two

ij-nchronizing processes: that is, P executes an event with the label a , while Q executes
an event with the inverse label a. This model allows sequences of events to occur at the
same instant in time. This is useful to express causality relations between events that no

nleasurahle amount of time separate.
IVhen two events synchronize, their resulting priority is the sum of their constituent

priorities. Example 3.6 illustrates why we find it useful to allow events with different
priorities to synchronize together. The choice of using the sum of the synchronizing
events for the resulting priority was dictated by mathematical considerations that are
esplained in Section. 3.2.2.

Example 3.1 Consider the following two processes:

The compound process P 1) Q admits the following transitions:

P 1 1 Q % PI 1 1 Q [by P~I-ILI
(a , 5) P I QFPII &I [by ParIR]

P I I Q PI 1 1 QI [by ParCom]

p I 1 Q
{ (T I , 7) , (~ 3 , s)) ~

P' I I Q' [by ParT]

with P' de' {(r3, 8)}2-U:P2, Q' { (T ~ , 7)}3-U:Q2 and 0 < u 5 2.
Note than an event transition, if chosen, always executes immediately, i.e., before any

t.iliie elapses.

The construction of ParCom helps ensure that the relative priority ordering among events

wi tb the same labels remains consistent even after communication takes places.

The timeout operator possesses three transition rules. The first two rules correspond

to timed and untimed transitions occurring before the t imeout has expired, i.e., when

(1 > 0. The third rule, TimeoutE is applied when the timeout expires, i.e., when v = 0.

A" P + P'
TimeoutCT

A"
(u 5 .>

P nu Q + PI nu-, Q

P ". P'
Timeout CI

P A U Q L P ' A u Q
(v > 0)

TimeoutE
Q 5 Q'

(v = 0)

The exception operator has three transitions: Except C corresponds to the continua-

t#ioii of the process P; Except1 is the start of an interrupt due to synchronization with

another process or availability of resources; ExceptE applies when the process P raises

an exception caught by the process Q.

P ". P'
Except C Except1

Q Q'

P t Q A P ' t Q P t QAQ'
(a , n) (a , m) P - P', Q - Q'

ExceptE
(7, n + m)

PtQ-Q'

Example 3.2 Consider the following specification: Send a message (denoted by the event

"sendMsg") and wait until an answer is received. If a response (event "rcvAckn) is received

within 100 time units execute the process Q, otherwise start over. This system may be

realized by the process P defined recursively.

The exception operator, along with the infinite execution of the empty action "0""
allow us to define an indefinite delay operator 6, for which we use a prefix notation:

The Restriction operator defines a subset of instantaneous events that are excluded

from the behavior of the system. This is done by establishing a set of labels, F L,
and deriving only those behaviors that do not iilvolve events with those labels or their

complement. Timed actions, on the other hand, remain unaffected.

A" P . P'
R e s T

P\F A P'JF

(a, n) P - P'
Res I

a, n
(a, a sr F)

P\F). P'JF

Example 3.3 Restriction is particularly useful in "forcing" the synchronization between

coilcurrent processes. In Example 3.1, synchronization on a and a is not forced, since

P (1 Q has transitions labelled with a and a. On the other hand, (P 1 1 &)\{a) has only the

t,ransitions:

(P I &)\{a) = (PI I &I)\{.)
and

(P I1 &)\{a}
{(rl r 7)r (~ 3 . S)}U

(f"IIQ'>\{a)

In effect, the restriction declares that a and a define a "dedicated channel" between P
and Q.

While Restriction assigns dedicated channels to processes, the Close operator assigns

dedicated resources. Embedding a process P in a closed context such as [PIu, ensures that
there is no further sharing of the resources in U . Instantaneous events are not affected.

A" P d P'
CloseT

Au1u
[Plu I [P'],

In the context of the prioritized transition system, the Close operator is useful to force

progress. A process may have a choice between progressing using some resources, or idling

in ca.se some other process requires the same resources at a higher priority. Closure ensures

t,hat no other process can compete for the closed resources and therefore those resources

ca,n be committed to the action with the highest priority. For example, as we shall see

later, the actions {(r, 5)) and 0 are not comparable under the preemption relation -

l~ecause the high priority action uses more resources than the low priority one. However

[{(r, ,5))]i,l and are comparable and the former will preempt the latter.

The operator "rec X.P7' denotes recursion, allowing the specification of infinite be-

haviors.
p ["' " . P / ~] PI

Rec
rec X.P 4 P'

xvhere "P ['c' x.p/X]n is the standard notation for substitution of "rec: X.P" for each free

occurrence of X in P .

Example 3.4 Consider the process "rec X.(A1:X)," which indefinitely executes the re-

source coiisuming action A. By A c t T and ActTZ,

~l A1:(rec X.(A1:x)) - rec x . (A1:x)

so by Rec ,

rec x.(A':x) A rec x.(A':x) .

We are now in a position to prove the following theorem which, in essence, characterizes

dense time.

AU Theore in 3.1 If a process P is such that P P' then, for all 0 < v 5 u there exists
A" PI' such that P P".

Proof: By algebraic induction on the structure of processes. It is vacuously true for

0, it is true for prefix (from ActT) , and it is preserved by all other operators.

3.2 Preemption and Prioritized Transitions

Not all the actions that are ready for execution at a given point in time have the same

urgency. It is often the case in real-time systems that the choice made between possible

alternative directly impacts the correctness of the system.
In this section we define a relation between ACSR actions that specifies when an

action must be preferred over another in a choice; we call this preemption. Based on

this relation, we derive a prioritized semantics for ACSR terms in the form of a subset of

t,he labelled transition system in which all preempted transitions have been eliminated.

We call this the prioritized labelled transition system. Preemption should be applicable

regxdless of the context, splice, this property is called compositionality. Section 3.2.2
contains a formal definition of compositionality and a proof that it applies to ACSR.

3.2.1 The Preemption Relation

'l'he prioritized transition system is based on the notion of preemption, which incorpo-

ra,tes our treatment of synchronization, resource-sharing, and priority. The definition of

preemption is straightforward. Let "+", called the preemption relation, be a transitive,

irreflexive, binary relation over actions. For two actions a and p, if a + P , we say that

"a is preempted by P." This means that any real-time system that has a choice between

executing either a or p will not execute a.

Definition 3.1 (Preemption Relation) For two actions, a, P, we say that ,L? preempts

a (a 4 P), if one of the following cases hold:

(1) Both a and /3 are timed actions, where

i) P(P> C ~ (4 ,
ii) 'dr : n,(r) 5 ~ ~ (r) , and

iii) 37- : xa(r) < ~ ~ (r)

(2) Both cr and ,8 are instantaneous events, where l (a) = 1(P) and ~ (a) < ~ (p)

(3) cr is a timed action, ,B is an event, with l(P) = r and T(@) > 0.

Case (1) applies when two timed actions, a and P, compete for common resources, and

in fact, the preempted action a may use a superset of /3's resources. However, ,6 uses no

resource at a lower priority level than a and at least one at a higher level.
Case (3) shows that an event may be preempted by another event sharing the same

label, but with a higher priority.

Finally, case (3) shows the only case in which an event and a timed action are com-

parable under "4." That is, when p > 0 in an event (r ,p) , we let the event preempt any

t,iined action. This, in effect, makes synchronization take precedence over the passage of
time and is similar to the notion of maximum progress found in [26, 46, 531. The case

where p = 0 is treated differently. It is meant to allow the specification of nondeterminis-
tic behaviors, e.g., to model an environment that can interact with a process at any time

rather than at the earliest possible time.

Note that the preemption relation is independent of the duration of each action. To

see why this is required, assume that the preemption relation be restricted to actions with

tihe same duration, and that {(r, 1))' 4 {(r, 2))'. Then the process

P = {(r, 1))':Pl + {(r, 2)I1:{(r, 2)) ' : ~ ~

((7, 1)12
can still take the transition PA PI. However, Theorem 3.1 tells us that this process

ma)- always take an initial "step" of {(r, 1)) l , which should be preempted. This leads to

an inconsistency, as do other ways of associating time with preemption.

Example 3.5 The following examples show some comparisons made by the ~ r e e m ~ t i o n

rela.tion, "4."

a. {(w 21, (T - ~ , 5)) 4 { (r ~ , 7), (7-2,5)}

11. { (TI , 2), (r2,5)} + {(TI , 7), 0.2, 3))
c. {(TI , 21, (r2,O)) 4 {(r1, 7))

d. { (T I , 2). (r 2 , l) I + {(TI , 7))
f?. (~ ~ 1) 4 (T, 2)

f. (a , 1) + (b , 2) if a # b
g (a , 2) 4 (a , 5)
11. { (T I , '4, (7-295)) 4 (5 2)

i. {(1'1,2), (r2,5)) IC: (T O)

.i. ((~ 1 ~ 2) ~ (~ 2 ~ 5)) 71: (a,2)

We define the prioritized transition system " +, , " which simply refines " --+ " to account

for preemption.

Definition 3.2 The labelled transition system "-+, " is defined as follows: P A, PI

!f rrisd only if

i) P A PI is an unprioritized transition, and

P
i i) There is no unprioritized tra~zsition P 4 P" such that ct 4 P .

It is straightforward to see that the preemption relation defined above is transitive and

irreflexive. This ensures that the prioritized transition system is well-defined. Namely, if
an action a preempts an action /3, then any action that would have been preempted by
,-/ will be preempted by a. In addition, no action will preempt itself.

Example 3.6 This example illustrates the use of synchronization and priorities to model

a semaphore. The event label s, represents the P operation of the semaphore and the

event label s, represents the V operation. The semaphore M is defined as follows:

To see how this works, let PI and P2 be two processes that must execute a critical

section using two robot arms, CR = {(le ft-arm, 1)) (right-arm, 1)) followed by a non-

crit,ical section! NCR. Assume that the process PI has priority 1 and the process P2 has

priority 2.

PI 6 (s,, l).CR:(s,, l) .NCR:

P, gf 6 (s,, 2).CR:(s,, P).NCR:

s dl' (PI I P2 I1 M) \ { s ~ J U)

Before entering the critical section, each process must execute the event s,. By apply-

ing the rules of the operational semantics, we see that there are only three unprioritized

transitions that the system S can take:

Only transition (3) remains admitted by the prioritized transition system. This allows P2
t,o proceed. From this point and until P2 executes (s,, 2), both PI and M will have to

idle, i.e., execute flu transitions matching the duration of CR. The execution of (s,, 2) by

PL will release the semaphore and subsequently allows PI to acquire it.

The application of preemption is used to eliminate unwanted transitions from the

labelled transition system. It is natural to extend this notion to processes and define that

a process is preempted by another if all of its possible transitions are preempted. We will

over1oa.d the symbol for the preemption relation over actions to denote preemption over

processes.

Definition 3.3 (Preemption over Processes) We say that a process P preempts a

proces.s- Q! noted P > Q if and only if

This notion will be useful in the definition of equivalence laws between processes in Sec-

tion 4.2.

3.2.2 Compositionality of Preemption

It will be important in the syntactical manipulation of ACSR processes to be able to prune

out preempted branches as early as possible, without regard to the context. This property

is known as compositionality. Namely if two processes P and Q differ only in behaviors

t,hat are preempted, the prioritized transitions of any context will not be changed if P is

replaced by Q or vice versa.

The action of pruning out transitions that are preempted can be defined using a

priority operator, for which we use a prefix nota.tion "OP," from [7], with the following

operational semantics:

Pr ty
BP ". BPI

Coinpositionality can be stated inforinally as when the priority operator is applied to
n term, the meaning of that term does not change when the priority operation is applied

to nny of its subterms.

Before giving a formal definition, let us introduce a notation:

Definition 3.4 Let "30" be a binary relation such that P 5 Q if and only if P = Q or

t h e r ~ exists a context C[-] and a term R such that P = C[R] and Q = C[OR].
Let " Z s " be the reflexive transitive closure of "3s."

I11 other words, two processes P and Q are equivalent up to 8 , noted P Q, when they

are syntactically identical, or when they differ only by the introduction of 8 operators.

Now for the formal definition of compositionality:

Definition 3.5 (Compositionality) A priority operator 8 is compositional relative to

a n opei-ational semantics + when, for all contexts C[-1, processes P , P' and actions a:

If 8C[P] "+ P' then 3P1' EB P': BC[BP] "-t P"
and conversely:

If BC[OP] P' then 3P1' Es P': 8C[P] P"

Of course we intent to prove that the preemption relation that we have i~itroduced

in Definition 3.1 is compositional. A direct proof is very long, tedious and does not
hring much insight. There is, however a sufficient condition that can be applied to the

set of operational rules, in conjunction with the preemption relation, to determine the

compositionality of the operator 0.

Lell~ma 3.1 (Sufficient Condition for Compositionality) Let I = { i l , . . . , in}
arzd J = {jl,. . . , j,) C I be two index sets. Let C (- - .) be a boolean condition, O p (. -)
an ilCSR term and C[. . -1 an ACSR context. If the set of operational semantics rules,
~;.ccludiny those of the 0 operator, is such that, whenever for a rule R of th.e form

the condition C holds (2.e. the rule fires) then for all a' + aj, there is a rule R', possibly

d<fere~zt from R but with the same premises, such that C1(aj1, . . . , a', . . . aJm) holds and

f r (a j1 , . . . , a',. . . ajm) + f (a j l , . . . , aj,, . . . ajm)

then the priority operator 0 is compositional.

Proof: By induction on the algebraic structure of Op(Pi,, . . . ,Pi,). The details can

he found in [17] 17

Theorem 3.2 Preemption based on Definition 3.1 is compositional in the ACSR opera-
tion,al semantics.

Proof: We prove that the operational semantics of ACSR complies with the hypothesis

of lemilla 3.1. For every rule and every premise, we need to check that if the rule fires

for an action a, resulting in an action a', then for any P + a there is a rule (often the

same) tliat fires, and the resulting action P' preenipts a'. Note that some of the ACSR

rules have implicit conditions in the premises. To comply with the form of lemma 3.1 it is

straightforward to rewrite these rules so that the premises use the generic action a with
(a , P) the appropriate side condition. For example, a premise P - P' would be replaced

Ily P A P' and the side condition a = (a , p).
The only non-trivial cases are the operational rules involving the application of an

operation over actions, or a condition other than a pure timing condition. (Pure timing

conditions satisfy the requirements by virtue of the fact that the preemption relation is

illdependelit of time.) The details can be found in [17]

4 Strong Equivalence

'There are processes that are syntactically different but have the same behavior, that is,

they can execute the same first step and then become syntactically equal. Such is the case
of P+& and Q+ P. This equivalence, however is of little use because it is not a congruence

- take for example P t (Q + R) and P t (R + Q), after an initial step of P they will not

IF 5ylltactically equal. This problem is easily solved by requiring that the end-point of

the transitions be themselves equzvulent. Such is the notion of strong biszrnulatzon, due

to Park 1481. This section defines strong bisimulation as applied to ACSR and provides

a sound and complete set of laws that can be used to prove bisinlulation between finite

i t a te agents through syntactic manipulations.

Bisimulation is too fine for 111ost practical purposes hut it seems to be the finest con-

gruence that equates terms that cannot he differentiated by their operatiorla1 semantics.

A5 sucli. it is a subset of most other equivaleiice and preorder relations. Consequently, any

law that is sound for strong bisimulation is also sound for most other relations. Strong

l~isimilarity is a stepping stone towards more useful relations.

4.1 Prioritized Strong Bisimulation

Definition 4.1 For closed ter~rzs, z.e., t f r m s wlth no free varzables, and for a gzven tran-
.\rtron s y s t ~ m 'i-+''l any bznary rrlatzon R rs a strong bisimulation if, for (P , Q) E R
c r ~ l c l ct. E Act,

1 . i f P P' then, for somr Q ' , Q & Q' and (PI, Q1) t X, and

2. !f Q & Q' then, for some PII P & P' and (P ' . Q'j E R .

In other words. if P (or Q) can execute a step a, then Q (or P) must also be able to

esecute a step 0 and the two next states are also bisimilar. There are some very obvious

\~isirnulation relations; e.g. 0 (wl~icli certainly adheres to the above rules) or syntactic

identity. However, using the theory found in [42, 43, 451, it is straightforward to show

t llat there exists a largest sucli bisimulation over "+," which we denote as "N,.' and that

~t i5 an equivaleiice relation.

411 the operational semantics rules of ACSR, including the priority operator 0 follow

the format of "GSOS" [2] and "Grand" [14]. It follows from those theoriei that strong

l~isimulation is a congruence. Furthermore, [2] gives an algorithm for the development

of a sound and complete set of proof rules. In general we will follow this algorithm; we

will deviate ill a few cases when we found a better set of rules but we will note those

tleviat ions.

\We note ' , N ~ " the largest bisimulation over '' +, ,". It follows immediately from the

clefinition of the operator 0 that P 4, P' if ancl only if OP A OP1 whence P k5- Q
1f and only if OP - OQ. This ensures the existence and uniqueness of -,. That -,
i i a congruence follows from the compositionalit~ of 0: indeed, the very definition of

compositionality implies that BC'[P] dC[BP].

4.2 Equational Laws for Prioritized Bisimulation

In this section, we present a set of algebraic manipulation laws that preserve prioritized

strong bisimulation. The idea behind these laws is to be able to transform ACSR processes

into some normalized form that can be easily compared. Normalized processes are coded

exclusively with prefix and choice operators.

The strategy for building this sets of laws is fairly straight forward and has been de-

scribed in some details in [2]. For non recursive processes, the basic idea is to eliminate

each operation (except choice and prefix) in two steps. First, operations over a summa-

tion are transformed into a summation of operations using a distribution law. Second,

ol~erations over prefixed processes are transformed into either prefix over an operation

(via an action law) or a NIL process via an inaction law. Some operations, however, are

not distributive over summation. In those cases we utilize auxiliary operators to effect

clistributivity. In ACSR, Parallel and Exeption fall in that category. The operational

iemantics for these operators is presented in the next subsection.

The exception operator poses a unique challenge in dense time because it denotes a

choice over a continuous interval of time. We work around this difficulty by introducing

a new prefix operation that embodies the concept of continuous choice and replaces the

timed action prefix in normalized processes.

The complete set of ACSR laws is given in Tables 1 and 2
By induction on the depth of prefix operations on a term, it is straightforward to prove

that this strategy leads to a normal form, in the absence of infinite behavior. Bisimilarity

of recursive processes can always be proved via an induction principle, but this method

is sometimes difficult to apply. By limiting ourselves to some specific form of process,

I~isimilarity is always provable with a sniall set of recursion laws.

We refer to the whole set of ACSR laws as A. In the sequel, we use the equality

symbol "=" to mean provable bisimilarity using A. In other words, we use P = Q as a

short halld for A k P wn Q .

4.3 Distributivity of the Parallel Operator

The parallel operator is not distributive over choice. To work around this problem, in-

spired by GSOS and ACP [ll] we introduce auxiliary operators that are distributive. The

synchronous execution operation P 1 Q forces both P and Q to take a first step simultane-
ously, either a synchronized-events execution or a combined timed action. The left-merge
operation " P L&" forces P to take the first step while the process Q remains still; the
coimbined process is deadlocked when P can execute only timed actions.

The synchronous execution operator has two operational rules. One for timed actions,
SyncT, which corresponds exactly to P a r T and one for events, Sync1 which corresponds

P 5 P', Q 5 Q'
SyncT A I B) " (~(4 n P(B) = 0)

P I Q L P f I I Q'

There is only one rule for the left merge operator: LeftM. If the process on the left

of the operator can take an event transition, the left merge process can do the same.

P ". P'
LeftM

p IIQ A P ' 1 1 Q

It is worth noting that both left-merge and synchronous execution lead to a term

defined using the parallel operator.

Unfortunately, compositionality is not preserved by the synchronized execution opera-

tor. The consequence is that the prioritized strong bisimulation is not a congruence under

this extended signature. To see this, take P (T , l) .Pl + Au:PZ and Q Bu:Q' with

p (A) n p(B) = 0, and let P' (7, l) .Pl . Obviously P 5T P I , but (P Q) +, (P'IQ) since
(AIB)"

(PI&) A, (P2 1 1 Q') while (P'IQ) is deadlocked.
This does not invalidate completely the strategy, simply the elimination of preempted

processes by application of the law Choice(5) of Table 1 cannot be used within the context

of a sync operator. It is however possible to delay application of Choice(5) until all the

sync and left merge operators have been eliminated. More formally, if we call ACSR1" the

A\CSR signature augmented by left-merge and sync; let C[-] be a context and P a term

over the ACSR signature; let CIS and P2" be a context and a process over ACSR". Given

that A is the set of ACSR laws, and using the usual symbols, "t" for provability and "k"
for truth, we have the following:

Since the ACSR signature is a subset of ACSR1" and the set of laws A - (Choice(5)) is
a subset of A, any valid proof over ACSR" is valid over ACSR. Starting with an ACSR
t,erm, application of Par(3) transforms it into an ACSR1" term, from then on, and until

a.11 left merge and sync operators have been eliminated, the proof system A - (Choice(5))
lllust be used.

4.4 Distributivity of the Exception Operator

The exception operator is not distributive over its second argument, therefore we need to

i~lt,roduce auxiliary operators. In this case, it is a family of unary operators Guard indexed

over the set of events. Guard allows the process to which it applies to proceed only when its

first action is an event which complements the specified event. The operational semantics

is as follows:

(a, m)

Guard Q - Q'

In a dense time setting, the exception denotes a continuous choice, i.e., a choice that

remains open during an interval of time. It is the only ACSR operator to do so. For that

reasoil it cannot be replaced by any of the operators already defined. The problem gets

even more complicated in presence of the parallel operator as illustrated by the following

esample.

Example 4.1 Consider the following process:

P '?? ((a, n).Q + A2:R) 1) (B3:S (b, m).T)

Assume that there exists a process P' that has the same transitions as P but is written

without the parallel operator. P', or one of its subterms, must have the form PI i P2.
Before any time has elapsed, the exception P2 should be:

After t time units have elapsed, with 0 < t < 2 the exception becomes:

(b, m).(A2-t:R 1 1 T)

After exactly 2 time units, the exception takes the form:

This example illustrates the need to limit the scope of an exception handling process

to the execution time of a single timed action. In addition, it shows that time variables

are required to express the exception itself.

Just as we have defined a unary prefix operator for each timed action, we now define a

l~inary operator called Interruptible Timed Prefix or ITP, indexed over the set of all timed

actions, with the following syntax:

where A" is the interruptible action, t is a time variable and P and Q are processes.

The operational semantics of is defined ITP such that at any time during the execution
of .AU, but not before it has started, the process P can interrupt; the variable t is then

bound to the actual starting time of P, relative to the start time of A". Therefore, t
\vill always be positive and at most u . If P does not interrupt AU, then the execution
continues with Q. We will refer to the process P and the interrupt and the process Q as
the continuation. When there is no variable to bind, the behavior of P remains constant
regardless of its starting time and we write A" (P , Q). This is the case, for example in the
following equation that will be justified by the operational semantics and can be derived

from the laws ITP(1) and Except(4a).

('4":Q) t P = P $ A" (P, Q t P) (1)

ITP has two transition rules. I tpT states that tlie process can execute any portion

of tlie tinied action, then choose between executing the interrupt P and carrying on with
the tiined action. The operational rule ItpZ specifies that an ITP with zero duration

can be ignored. This behavior is consistent with the behavior of the original timed action

prefix.

I tpT A~ 0 < 21'5 U , u l < OC)

A'SU (P, Q) -2 P I"'/,] + A " ~ - ~ ' (P [" 'f t / t] , 8)

ItpZ
Q ". Q'

AtS0 (P, Q) 4 Q'

Note that the condition expressed by these rules satisfies the hypothesis of lemma 3.1
and therefore the priority operator remains compositional when ACSR is extended with
the ITP operator.

4.5 Normalization of ACSR processes

Miith ITP we can define a normal form for processes with exception and dense time:

Definition 4.2 (Head Normal Form) A process P is in head normal form (or HNF)
i f it has the form:

C ei.Pi + C ~~"11'13 (Q j , R j)
i e I j€ J

zilitlz all the u, > 0 .

Table 1: The ACSR bisimulation laws

ITP(1)
ITP(2)
ITP(3)
ITP(4)
ITP(5)
Choice(1)
Choice(2)
Choice(3)
Choice(4)
Choice(5)
Par(1)
Par (2)
Par (3)
LeftM(1)
Left M(2)
LeftM(3)
LeftM(4)
Sync(1)
Sync(2)

A" : P = At<" (0, P)
At<" (P, Q) = 0 if P k A:Q
AtS0 (P, Q) = Q
At<" (P, Q) = AtlW (P, 0)
At<" (P , Q) = 0 i f u < O
P + O = P
P + P = P
P + Q = Q + P
(P + Q) + R = P + (Q + R)
P + & = & i f P < Q
PIlQ=QIIP
(P I I Q) I I R = P I I (Q I R)
PI lQ=PlQ+P[IQ+QlLP
"P LQ = e.(P I I Q)
(At<" (P, Q)) U_ R = 0 i f u > O
(P + Q) l lR = (PlLR) + (Q lLRJ
OU_R=O
(a , p1.P I (a, q).Q = (r , P + q).(P I 1 Q)
(At1<" (P I , PC)) I(Bt2<" (QI, QC)) = (AIB)~'" (RI, RC)
if p(A) fl p(B) = 0 and w = min(u, v)
and 121 = PI [t/tl] L(QI [t/t,] + BtzSudt (QI [t+t2/ t ,] , QC))

+ PI [t l t l l I (QI [t/t21 + Bt2<u-t (QI [t+t21t2] , QC))
+ QI ["It,] [(P I [t l t l l + (P I [t+t ' / t , l , PC))
+ &I [t/t2] I (P I [t/tl] + (P I [t+tl/tl] , PC))

and RC = (PI ["Itl] + Atl<"-" (P I [W + t l / t l] ,PC))
1 1 (Q I ["/t2] + (QI [W + t Z / t 2] , QC))

e.P I f . ~ = o if l(e) # KG
e . P 1 At<" (Q, R) = 0
At'LU (Pi , Ql) 1 Bt2sV (P2, Q2) = 0

i f u > O A v > O A p (A) f lp (B)#Q)
P l Q = Q l P
(P + Q) I R = P I R + Q I R
O I R = O
rec X . P = P[rec X.P/X]
If P = &[PIX] and X is guarded in Q then P = rec X.Q
rec X . (P + [X\E]u) = rec X.(P + [P\EIU])

As usual, we define CiEO Pi to be 0. Tlie omission of parenthesis is legitimated by the

laws Choice(2) to Choice(4) of Table 1. We also refer to a full normal form, or simply
llormal form, where all the Pi Qi and R, are also in normal form. Processes in normal
form are coded exclusively using the prefix and summation operators.

Table 2: The ACSR bisimulation laws (cont.)

Tiineout (1)
Tirneout (2)
Tirneout (3)

Timeout (4)
Tirneout (5)
Res(1)
Res(2)
Res(3)
Res(4)
Res(5)
Res(6)
Res(7)
Close(1)
Close(2)
Close(3)
Close(4)
Close(5)
Close(6)
Close(7)
Except (1)
Except (2)
Except (3)
Except (4)
Except (5)
Except (6)
Except (7)
Guard(1)
Guard(2)
Guard(3)
Guard(4)
Guard(5)

O ~ , Q = O i f v > O
(PI +p2) A, Q = PI a, Q + p2au Q
(~ ~ 1 ~ (P, Q)) a, R = ~~5~ (P a,-, R, Q a,-, R)

if t is not free in R and 0 < w = rnin(u, v)
e . P A, Q = e . (P A, Q) i f v > O
P A o Q = Q
O\F = 0
(P + Q)\F = (P \ F) + (Q\F?

t < u p A - (, Q) \F = At<" (P \ F , Q\F)
((a, n) . P) \ F = (a , n) . (P \F) i f a , i i # F
((a , n) . P) \ F = 0 i f a g F V a E F
P\E\F = P\E U F
P\Q = P
[Olu = 0
[P + Qlu = [Plu + [Qlu
[AU:PlU = [A];:[P]u
[e.PIv = e.[P]u
[[Plulv = [Pluuv
[PI0 = P
[P\E]u = [PIu\E
O t Q = Q
P t O = P
(P + Q) t R = P t R + Q t R
Atsu (P, Q) t R = R + At<" ((P + R), Q t R) if t is not free in R
e . P t Q = Q + e . (P t Q) + (e l Q)
(P t Q) t R = P t (Q t R ?
P t Q = Q + P t Q
((1, P) 1 (a, q1.Q = (T , P + q1.Q
e l ~ . Q = o if /(el # l(f)
e 1 AtSu (P, Q) = 0
e t (P + Q) = (e ~ P) + (e l Q)
e 1 0 = 0

Exanlple 4.2 Using the ACSR laws we can transform the term of Example 4.1 into an

equivalent term in head normal form. By ITP(1) we obtain:

P = ((a , n) - & + A2 (0, R)) 1) (B3 (0, S) t (b , m).T)

I-ising Except (4a) gives:

P = ((a , 7z)-Q + A2 (0 ,R)) 1 1 ((6, m).T + B3 ((b , m).T, S t (b, m).T))

March 22, 1 995

By Par(3) and the distributivity laws LeftM(3) and Sync(7) we obtain:

P = (a, 4.Q I l ((b , m).T + B3 ((6, m).T, S t (b , m).T)) (a)
+ A2(0 ,R) I l ((b ,m) .T+B3((b ,m) .T , S t (b,m).T)) (b)
+ (a, 4.Q I (b, 4 . T (4
+ (a, 4 . Q I B3 ((b , m).T, S t (b , m).l') (4 + A2 (0, R) I (b , m).T (4
+ A2 (0, R) I B3 ((b , m).T, S i (6, m).T) (f)
+ (b, 4 . T I l ((a , n).Q + A2 (0, R)) (9)
+ B3 ((4 m).T, S i (b, m).T) II ((a, n).Q + A2 (0, R)) (h)

On t,he terms (a) and (9) we apply LeftM(l), on the terms (b) and (h) we apply LeftM(2a);

on (c) we apply Sync(3) then LeftM(4) and Sync(8); on (d) and (e) we apply Sync(4a)

aild on (f) we apply Sync(2a). Finally, by Choice(1) we can eliminate 0 terms to obtain

the head normal form:

P = (a , n).(Q I I ((6, m1.T + B3 ((4 m).T, S t (b, m).T))) (a)
+ (A I B) ~ ~ ' ((4 4 . T 11A2-t (0, R) , Rll((b, m).T + B1 ((b, m).T, S t (b , m).T))) (f)
+ (b y ln).(T) I ((a , n1.Q + A2 (0, R))) (9)

Kote the iiltroduction of the variable t. It is used to capture how much of the action A2

has been executed when the event (b, m) occurs.

4.6 Soundness of the Bisimulation Laws

Theorem 4.1 The ACSR laws of tables I and 2 are sound with respect of bisimulation

rquivalence.

Tlle traditional way of proving the soundness of a bisimulation equational law has been

to identify a bisimulation that relates the two sides of the equation. A more systematic

apl~roach consists of characterizing and comparing the set of transitions (i.e., pairs label-

~ndpoin t) both sides of the equation can take. To facilitate this process we define two

functions 7 : Proc + P(Act x Proc) and 7,: Proc + P (Act x Proc) by

I (P) = { (a ,P1) I P A PI} and I , (Y) = {(a,P1) I P A , P'} .

Since the behavior of a process must be derived from the rules of the operational

semantics, for any process P the set 7(P) is the union of all the sets that can be derived
horn each rule that applies. This leads to the set of equations of Table 3, where the
operational rule applied to calculate each term is shown in brackets.

The proof of soundness of some typical laws we can be found in Appendix A. Most of
the laws are proved using the equations of Table 3 to compare the value of the 7 or 7,
function and apply either of the following two lemmas.

March 22, 1995

Table 3: The function 7 yields the set of transitions of a process

7 (P lL Q)
7 ((a , P) 1 Q)

I(At'" (Pl Q))

7(At'" (P , Q))
At "O (P , Q)

0
1 (el p) 1 [ActI]
{(A"', A"-"':P) I 0 < U' < U) [ActT]

7 (p) [ActTZ]
7 (P) U 7 (Q) [ChoiceL and ChoiceR]

{((AIB)", P' II Q') I (AU> P') E 7(P) A (B U > Q') E 7 (Q)
A P(A) n P(B) = 0) [ParT]

u { (e ,p l l l Q) I E 7 (P)) [Par I L]
u { (e , P 11 Q') I (e, Q') E T(Q)} [ParIR]

u {((T, P + q), P' 1 1 &I) 1 ((a , P) , PI) E I (P)
A ((a, qI1 Q') c 7 (Q) 1 [Parcorn]

I (Q > [TimeoutE]
{(A", PI A,-, Q) I (A", PO E T(P) A u 5 V) [Tirneout CT]

u {(el A, Q) 1 (el PI) E 7 (P)) [Timeout CT]

I (Q) [ExceptI]
u {(a1 p' t Q) I (a , P') E ~ (P) I [Except C]

u {((T, P + q), &I) I 3% P' : ((a, P), P') E I (P)
A ((z, q), Q') E 7(Q)) [Except E]

{(AU, P1\E) I (AU, P I) E 7 (p)) [ResT]

u {((a, P), P1\E) I ((a lp) , P I) E 7 (P) A a , a @ E l [ResI]

{([AuIu1 [P'lu) I (Au, PI) E 7 (p)) [CloseT]

u {(e, [~ ' I u) I (el P') E I (P) } [CloseI]
I (P [r e c X.P/X]) [Red

{((AIB)", P' 1 1 &I) I (Au. P') E 7 (P) A (BU1 &I) E 7 (Q)
A P(A) n P(B) = 01 [SyncTI

u {((T, 12 + m) , P' I Q') 1 ((a , 121, P') 7 (P)
A Kc, 4, Q') E T(Q)} [Sync11

{(el P' I / Q) 1 (el P') E 7 (P)) [LeftM]

{((T) P + Q') I ((a, q), Q') E 7 (Q) I [Guard]

{(Au', P [Y I / ~] + A ~ ' ~ - ~ ' (P [l i l t t / t] Q)) I 0 < u' 5 u) [ItpT]
(When u > 0 A ,B(a, P') E I (P) : a + A)

0 (When u > 0 A 3 (a , P I) E 7 (P) : a + A)

{(a,&') I (al&') E 7 (Q)) [ItpZI

Proof: It follows from the definition of the prioritized transition system that T,(P)
ca,n be calculated from 7 (P) :

Z (P) = {(a, P') E 7 (P) I B (P , Q) E 7 (P) : a 3 P I -

And therefore I (P) = T (&) + I , (P) = I , (Q).
From the definition of 7, we have:

Va: P A, P' ==+ Q 4 PI, and
if 7,(P) = I,(&) then Va: Q A, Q' ==+ P 4 Q'

The ident,it,y being a bisimulation, we conclude that P -, Q.

Leinma 4.2 If "-" is a bisimulation and R is a relation such that all the pairs (P , Q) E

'R. nre S Z L C ~ ~ , that

(a ,) € (P) : 3Q1,Q": (a ,Qi ') E z (Q) A Q" - Q'A (P' ,Q1) E R
c112 cl

(a , Q) E (Q) : 3P1, P": (a , P") E I , (P) A P" - P' A (P ' , Q') E R

then the relation R is a strong bisimulation.

Proof: Follows directly from the definitions of the strong bisimulation and of the

functions 'T and 7, and the fact that the union of two bisimulations is a bisimulation. 17

4.7 Completeness for Recursive Processes

' I here are two ways to handle the recursion operator. The first one is an induction

principle. This says that if two processes are bisimilar in all their finite approsimations,

then they are bisimilar. This lam7 is sound for ACSR but it is sometimes very hard to

apply in practice.

The secorld approach is to liinit the scope to finite state agents and use the three Rec

laws of Table 1. Rec(1) is the straightforward unrolling of the recursion. Rec(2) is the

unique solution to guarded equations. Finally Rec(3) allows the elimination of unguarded
~ariables.

4.7.1 Characterization of FS Processes

'The definition of "finite state agents." that previous authors have used, such as [44]
a,nd [15], has been processes coded without the parallel operator, and since the restriction

operator becomes useless in this environment, it lias been eliminated as well. This simple

solution does not work for ACSR because infinite state agents can be generated even

~ i t ~ h o u t the use of the parallel operator as is illustrated by the following example.

Example 4.3 Consider the process P %f rec X.(A:X B:O)). It has two possible tran-
sitions:

B P-0

and

P A (rec X.A:X t B:o) t B:o

call P' this last process; it has three possible transitions:

and

P' A ((r e c X.(A:X B:O)) t B:o) t B:O

and so forth as shown in Figure. 1.

Figure 1: An infinite state agent

A way to ensure finite-state is to require that processes do not have recursion through
parallel, tirneout or exception. Unfortunately, this is very difficult to characterize syn-

t,actically - for example, the process rec X. (A.X (1 0) is equivalent to 0 and therefore

March 22, 1995 2 9

does not actually have recursion through parallel, while the process rec X.(e.X I (0) does.

Nevertheless there are obvious advantages to a syntactic characterization and therefore

11.c liinit our proof to processes that have "no free variable in a process under parallel,

exception or timeout operators." We say that such processes are "FS." It seems that most

finite-state agents are either FS processes or are provably equivalent to an FS process.

We use an auxiliary predicate, fs to characterize FS processes. (We assume the usual

definition of the function f v (P) which yields the set of free variables of a process P.)

fs(0) = true

fs(X) = true

fs(aP) = fs(P)

f s (P + Q) = f s (P) A f4Q)
fs (P A, Q) = (f v (P) = @) fs(P) A f4Q)

f s (~ Q) = (f v (P) = 0) A fs(P) Afs(Q)

f s (~) I Q) = (f v (P) = f v (Q) = 0) Afs(P) Us(&)

fs([Plu) = f s (P>

f s (P \ F) = f4P)
fs(rec X.P) = fs(P)

Definition 4.3 (FS Process) A process is said to be FS iffs(P) = true.

I11 a discrete time setting, the set of FS processes would in fact be a very large subset

of the finite state agents. In dense time, however, only processes encoded without timed

action can truly be finite state, but the syntactical definition given given above remains

useful to describe the set of processes for which we can prove equivalence.

4.7.2 Bisimulation and Free Variables

The presence of recursion will require us to have a formal treatment for free variables. In

particular, we need a definition of bisimulation that takes the presence of free variables

into account. In [44], Milner extends the notion of bisimulation to encompass unguarded
free variables. In our case, the presence of the restriction and closure operators requires
illore discrimination. Consider, for example, X\E and [X I I ; even though the variable X
is unguarded in both cases, the two expressions are certainly not equivalent.

Let us define a relation " + " (without label) as the minimum relation that satisfies

the rules in Table 4. Note that this definition is valid because of the soundness of the laws

Res(5), Res(6), Close(5), Close(6) and Close(7). Based on this, we can define the notion
of bisimulation that we will be using throughout this section.

Table 4: Unguarded Variables

- Q - [X\E]u
x - [X\@le P t (Q) --I [X\EIu

P - [X\EIu P - [X\E]u
P + Q - [X\E]u PI1 Q - [X\Elu

Q - [X\Elu Q - [X\EIu
P + Q - [X\E]u P I 1 Q - [X\Elu

P - [X\Elu
t > O

P - [X\Elu
P at Q - [X\Elu [Plv - [X\Eluuv

Q - [X\Elu t = O P - [X\Elu
P At Q - [X\Elu P\F - [X\(E U F)]u

P - [X'\Elu P- [X\Elu X f y
P t (&) - [X\E]u rec Y.P - [X\EIU

Definition 4.4 A process P is bisimilar to a process Q , noted P wZ7 Q , if) for all a E Act,
IT c Res and E C

1. i f P Pr F' thenl for some Q', Q a, Q' and P' N n Q'> and

2. i f Q 2, Q' then, for some P', P 5, P' and P' -, Q'. and

It is straightforward to see that this refined definition corresponds to our previous
definition in the absence of free variables. None of tlie laws deal explicitly with free
variables, and one can easily check that they remain sound under this new definition.

4.8 Completeness

Theoreil~ 4.2 The set of ACSR laws presented in Tables I and I are complete to prove
hisimilarity of any ACSR processes in discrete time and ACSR processes coded without
the exception operator in dense time.

The proof of completeness, whose details can be sound in [17], follows the scheme

described in [44]. We first prove that all the unguarded recursions can be eliminated by

application of the law Rec(3). In the absence of unguarded recursion, any FS process

proven to be the solution of a set of normalized kind of equation. If two processes are

I~isirllilar, then they satisfy a common set of equations. Finally, we prove that those sets

of equations have a unique solution up to a bisimulation.

This proof applies equally to a discrete time setting as well as a dense time setting, in

the absence of the exception operator. We conjecture that the completeness result also

holds for dense time with the exception operator, but the proof is complicated by the

introduction of time variables.

Related Research

The formal specification of real-time systems is a very active field of research. Most of

the work can be classified in three main categories: timed logics, automata theory and

process algebra.
In methods based on timed logics, systems are described by a set of assertions and

properties are theorems. A property holds for a system if it can be logically inferred from

the assertions. Such methods do not have an execution model per s e and therefore they

do not directly lead to an implementation. Temporal logic [49] views a program as a

sequence of states and allows the expression of logical formulae relating those states. New

quantifiers such as (for all states) and 0 (for some future state) provide the capability

of specifying invariance and eventuality and generally reason about time in a qualitative

fashion. A quantitative notion of time can be introduced by allowing the specification

of time bounds with the eventuality and invariance quantifiers [36, 35, 34, 31. Another
approach is to introduce a mechanism to access the value of a real-time clock; in [37, 11

it is read from a state variable; in [31, 32, 211 it is denoted by a predicates; and in [5, 61
it is bound by a new quantifier called "freeze."

Finite state automata have been used extensively in the specification and analysis

of reactive systems. Several attempts have been made to extend their usage to real-

time systems. Modechart [30] is a graphical language for the formal specification of the

l~ehavior of real-time systems. It is a hierarchical representation of finite state machines.

State transitions are the consequences of event occurrences and timing constraints. The
semantics of modecharts can he expressed as a set of events with their time of occurrence

(timed traces) or as a Real-Time Logics formula [30]. In Timed Automata [4, 31 a set of
clocks is associated to a traditional (untimed) automaton; these clocks can be tested and

reset with each transition. The semantics of such automaton is the language it accepts,

which is a set of timed traces. Hierarchical Multi-State Machines, or HMS [24, 221 is an

estension of finite state automata where multiple states can be active at the same time,

and multiple transitions can occur simultaneously. Transitions are controlled (enabled

or disabled) based on temporal and state constraints. In addition, states can hold and

pass tokens, and HMS machines can be organized hierarchically. Timed 1 / 0 Automata
are based on input-output automata model [38]. An 110 automaton is defined over an

alphabet of actions, by a set of states, a set of start states and a set of transitions. 1/0
automata are input enabled which means that any input is accepted in any state and will

cause a transition, possibly to the same state. In [39] states are assigned a time stamp and

time passage is denoted by time passing transitions. Timed automata can be composed

by action transducers [52]. These offer a much wider variety of compositions than simple

parallel composition.

Process algebras have been successfully used to specify untimed distributed systems.

hlany extensions liave been introduced to extend their application to real-time enviroii-

ments. We distinguish between the algebras based on CSP [28] with a denotational

semantics, those based on CCS [45] whose semantics is typically given operationally and

ACP [lo , 111 which is defined as an algebraic theory.

Tlie algebra of Communicating Sequential Processes, or CSP 127, 281, was introduced

for the formalization and mathematical treatment of concurrent systems. The syntax of

C'SP includes prefix operators to denote actions to be executed, external choice to allow

interaction with an environment and internal choice to model nondeterminism. There is a

parallel operator that also enforces synchronization. In addition, CSP provides operators

for abstraction and renaming of actions. The semantics of CSP is given as an algebraic

theory and there are a number of models used to provide a denotational semantics.

Real-time is introduced into CSP by means of a delay operation tliat can be a separate

operator [50, 251 or combined with the action prefix [55]. The semantic models are usually

based on timed traces, that is, a trace where each action is associated a time stamp. Timed

1 races do not adequately capture nondeterministic behaviors and therefore additional

illformation is attached such as refusals [50], failures 1251 or acceptances [55].

X CSP like process algebra is defined in [54] with an operator, claim t which denotes

the exclusive usage of a processor for t time units, as opposed to the operator delay t which

deilotes the idling of a process, for t time units. The semantics of processes is given in

duration calculus, an extension to interval temporal logic. Using duration calculus, several

scheduling algorithms such as first-ready-first-run or fair time-slicing can be specified. The

intent of this work is to answer the question, given a set of processes, what scheduling

algoritlini will satisfy a particular system specification.

Communicating Concurrent Processes, or CCS, is a process algebra that introduces the

notion of communication through the execution of complementary actions, which are then

converted into an internal action. The semantics of CCS is given by a labelled transition

syst,em, and the interpretation of the parallel operator is interleaving. Equivalence in CCS

is based on the notion of bisimulation.

There has been many extensions to CCS to accommodate real-time. Most of them

simply add a time passing action which is assimilated to idling. Actions, on the other

hand, are instantaneous and the semantics of the parallel operator is interleaving, as in

untimed CCS. In most cases, the parallel and choice operators are patient with regard to

t,ime, that is, if the two arguments of the operator can let time elapse the combined process

ca,n let time elapse without committing to a particular behavior. Another common notion

is that of maximal progress [26,46,53] by which if two parallel processes can communicate,

this communication occurs as early as possible.

Temporal CCS (or TCCS) 1461 which CCS not only with time passing actions but also

with a weak choice operator. Both operators are patient with regard to the passage of

time, but while the choice operator (also referred to as strong choice) deadlocks if one

of the branches refuses to wait, the weak choice operator will commit to one branch if

the other is not willing to wait. The weak choice operator can be used to build more

sophisticated constructs such as timeout. The operational semantics of TCCS is given

via two transition systems, one for time passage and another for instantaneous actions.

t'TCrCS is a subset of TCCS in which each process can be delayed for any amount of time.

This allows the definition of a preorder that implements the intuitive notion of a process

being faster than another. This relation turns out to be a precongruence and admit a

sound proof system which is complete for the subset of the language that excludes the

parallel operator.

The salient aspect of Timed CCS [la] is that time variables are explicitly included. An

act8ion is associated lower and upper bounds for its execution and a time variable which

is bound to the actual tinie when the action occurs. Here, the choice operator is patient

with regard to elapsed time as long as both processes can wait; after that, if delay is

still required (e.g., the other branch cannot synchronize), then the branch that can wait

is talien. This behavior is similar to the weak choice of Temporal CCS. The semantics

of Timed CCS is defined in terms of a labelled transition system indexed over the time

cloma,in. That is, a transition is defined as P tP' where P can perform an action

u. at time t . Idling is denoted by a transition without label, only the subscript denotes

t8he elapsed time. Equivalence for Timed CCS is defined as strong or weak bisimulation.

'I'here is an alternate characterization based on modal logics. Two finite image (i.e., finite

state and finitely branching) processes are equivalent if and only if they satisfy the same
set of formulae.

A version of CCS with priorities is found in [19, 201. Each action is assign one of two
priority levels and only actions of the same level can synchronize; they then turn into r-

action of the same priority. Operators to change the priority of a process are also defined.

The authors show that, in order for strong bisimulation to be a congruence, only high

priority T actions can preempt low priority actions, i.e., prevent them from occurring.

WTe have given a formal explanation for this fact in our treatment of compositionality, in

Section 3.2.2.
Tlle Algebra of Communicating Processes, ACP [lo , 111 differs from CSP and CCS

ill some interesting ways. First, actions are considered as processes and are combined

by sequential composition, instead of being used as prefix operators. 'This allows the

definition of processes whose behavior is described as a regular expressions. For example,

the behaviors of the process "I: ab + orb" is to execute any finite number of actions

.'a" followed by the same number of "b." Communication is defined as the result of a

binary operation on processes which yields another process (a generalization of the T

action of CCS) when communication is possible, or a deadlock when the two processes

cannot communicate. The semantics of ACP is given by an equational theory. Infinite

I~ehaviors are defined as the solution of process equations.

ACPp [9] is a generalization of ACP where all actions can be assigned a time stamp.

Time stamps can be absolute or relative. Absolute time stamps require the introductioii of
o def time variables in the recursive definition of processes. For example, the process x (t) =

c~(t) . z (t + 1)" performs an action "a" at every time unit. Integration is also used to

specify a process that can execute an action at any time within an interval: the process
,, clef .r = JwE[1,21 a(v) " can execute the action a as early as time 1, as late as time 2, or at

any time in between. ACPp, like ACP, is defined as an equational theory. However, it

call be given an operational semantics where both processes and transitions are assigned
4 2) a time stamp. For example, "(a(2)x, 1) - (x, 2)" denotes that a process that has the

form a(2)1: at time 1, can execute the action a at time 2 and thus become the process

.I.. Strong bisimlilation equivalence can be defined on this transition system and the

equational theory is sound and complete with respect to it. Interestingly enough, even

though ACPp is a generalization of ACP and therefore has weaker axioms, the original

asioins can be recovered if all the actions take the form JWE(,,+) a jv) .
ACP is added a priority operator 6' in [7] , This work differs from ours in the sense

that application of priority must be explicitly expressed in the syntax, while in our case

it is implicit. Nevertheless, our treatment of compositionality was inspired by it. In [8]
it is shown that some equivalence relations such as ready and failure equivalence are no

longer congruences when priorities are introduced.

Algebra of Timed Processes or A'I'P [47] is another process algebra with discrete time.

The execution model is similar to ours in that processes evolve in two-pliase steps; in

the first phase, all instantaneous actions are executed in an asynchronous (interleaved)

manner with some possible communication. When no more component can execute any
instantaneous action, time passes synchronously in all the components via the execution

of the timed action "X." Unlike other algebras, X is not used as a prefix but is the

result of a, unit-delay operator which is similar to one time unit timeout. Other operators

allow the specification of arbitrary delays and timeouts. ATP is defined by an operational

semantics; it has an axiomatization which is sound and complete with regard to strong

l~isimulation.

RTSL (Real-Time Specification Language) [23] couples a real-time process algebra

with a global priority function. The behavior of processes is specified by algebraic terms.

There are constructs to specify timing constraints and deadlines. The priority function

returns the set of highest priority processes at each execution time. A reachability analysis

allows the detection of failure states. The separation of the priority function from process

espressions makes it easy to test the effectiveness of various scheduling algorithm.

Conclusion

We have developed a formal, algebraic method for the specification and verification of

distributed real-time systems. ACSR differs from most other process algebras in that it

distinguishes between timed actions that consume resources, and instantaneous events

that are used for synchronization. In addition, it features specialized operators to specify

real-time behaviors, including timeout and exception constructs. Priorities are assigned

to give an action and an event a measure of its urgency. The execution model of ACSR

ensures that the most urgent actions are executed first. The dense time domain used in

the model provides a versatile way of specifying durations without being tied to particular

time base.

Preemptioil defines when a less urgent action can be ignored in favor of a more urgent

one. It is important that preemption be compositional, that is, when an action preempts

another, no ACSR context would prefer the preempted action. We have given a formal

\vay to ensure the compositionality of a particular preemption scheme.

XCSR can adequately be used to specify fairly complex real-time systems. There are,

however, some aspects of the model that could be improved upon. The first one concerns

the fact that ACSR actions are monolithic, that is, once started, an action must either

1~ executed to completion without relinquishing its resources or completely abandoned

if a timeout or interrupt occurs. Points where an action may be suspended in favor of

a more urgent process (such as a hardware device service interrupt) and later resumed
have to be explicitly specified through a delay operator (6). This behavior is necessary

to adequately model processes that can capture their resources (by disabling interrupts
for example) and non-preemptive scheduling systems. In the other cases, it is difficult in

XCSR to define patient actions that can be suspended at almost any time.
We have defined ACSR with static priorities. This is a necessary step in the un-

derstanding of the formal treatment priorities. Nevertheless, many actual systems use

dynamic priority schemes such as first-in-first-out or earliest-deadline-first . One way to

support such schemes would be to provide a mechanism for the priority function (T) to

get timing information about the current execution (such as a relative time of occurrence

of certain events) and adjust its value accordingly.

XC'SR is an algebraic language and as such is very terse and easy to treat formally. Its

terseness, however, may not be very appealing to many practitioners. A coat of syntactic

sugar should be applied to ACSR to give it the readability and intuitiveness of a high

level language.

Equivalence between ACSR processes is defined as strong bisimulation. This is a very

fine equivalence relation; it differentiates between terms that would often be considered

~cluivalent in practice. There are other equivalence relations such as failure equivalence [8]
and ready simulation equivalence [13] that are less discriminating. Unfortunately, as

5howii in [8] these relations are not congruences in the presence of priorities and therefore

are not very useful. Nevertheless there is a need for less discriminating relations.

In summary, ACSR provides the theoretical foundation for a practical system to spec-

ify real-time distributed systems. The addition of higher level notions such as dynamic

priorities, refinement and a more appealing syntax would improve its usefulness in prac-

tice. With adequate automation tools it can be a significant help in the design of correct

distributed real-time systems.

A Selected Proofs of Soundness of ACSR Laws

Tllese proofs are based on the application of the lemmas 4.1 and 4.2. For each law, using

Table 3, we calculate the value of the 7 (or sometimes 7,) function for both sides of

t.he equation and verify that the results are equal or related in a way that satisfies the

condition of lemma 4.2.

ITP (4)

~ (A ~ S " (P, Q)) = {(A"!, P
7(At5" (P, 0)) = {(A"', P

It follows from lemma 4.2 that the relation defined by {(At<" (P, Q) , Atso" (P, 0))) is a
prioritized strong bisimulation.

Choice(4) 7((P + Q) + R) = 7(P + Q) U I (R) = (7(P) U I(&)) U I (R)
= 7(P) U (I(&) U 7 (R)) = 7(P + (Q + R))

Tii11eout(3) We distinguish two cases.
i) 1Yl~c~r1 11 < v wc have:

T ((: lU :P) A,, Q)

= {(A"', (Au-"':P) A,-,I Q) 1 (Au', A"-"': P) t 7(A7 ' : 1') A 11' 5 I L)

7(24fL:(1J At,-u Q)) - {(Au', L1"-7':(~ Al,-, a) I (A'", A"-"':P) E 7 (A u : P) A u' < 11)

It follows from lemma 4.2 that , urider the condition u < v, t,hc relation defined by
{(_A1?:_Y A, 1; A7':(X A,-, Y)) } is a prioritized strong hisimulation.

ii)\Yllen (I < 11 we have:

'T ((Au :P) A, Q)
- - { (AU' , (A~I-TL'. .ll) A ~ - ~ , I Q) 1 (. ~ 4 ~ ~ ' , A 4 7 L - 1 L ' : ~) t 7(kt71:11) A l l f 5 U }

'T(AU:(P A0 Q))
= {(A'~ ' , A ~ - ~ ' : (P A, Q j) 1 (Au', A"-"':P) E 7 (A u : P) A r,' < v}

And therefore, when v < u tllc relation defined by {(Au:X A, Y, AV:(X A" L'))) is a

~'riorit~izecl s t ro i~g hisiniulatiori. It follo~vs, that i r ~ all cases, the relation defined by

{(Au:X A , Y; Atu:(X A,-, If)) 1 w = min(u, u) }

is a prioritized strong bisimulation.

Par (3)

'WIIQ) =
{((14IB)", 1" 1 1 Q') 1 (Au, P') E 7 (P) A (ll", Q1) E 7 (Q) A p(A) n ~ (1 3) = fl}

u {(e , Pf l l 62) I (e, PI) 7 (P))
u ((€ 7 P I I Q') I (e , Q') T(Q)}
LJ { ((T , 77 + 7 ~ 2) ~ 1" 1 1 Q1) 1 ((a , n) , PI) 7(1') A ((a , 7 1 1) ~ (2') t T (Q) }

T(PIG,, + 1' L Q + Q U_P) =

{((AJB)" , P' 1 1 Q') I (A1; p') E ' W 1) A (flu, Q1) E I (&) A p(A) n P(B) = 0)
u (((7 , n + n4, P' I1 Q') I ((a , 4, P') E 7 (P) A ((a , 4, Q') E 7(QU
u {(t. r1 1 1 62) 1 (% P")E 7 (P))
u { (e , 8' I 1 P) I (c , Q') E 7(C?))

At this ~ ~ o i n t , we need t,o observe that, by Par (l) , P(IQf = Q'lIP It follows, from
1c.riirna 4.2 that the relation defined I>y {(XJ(k7,XIY + X L Y + Y L X) } is a prioritized
s i ~ . o r ~ g 1,isimulat ion.

Par(4) FVc can calcula,te:

, ~ (a l 0,
= {((A1 B)", 1'"' 1 1 Q"') 1 (Au, P"') E 7(?) A (B". Q"') E 7(Q) A p(A) n p(B) = 0)

U { ((, P'" 1 1 Q) 1 (e , P'") E ' T (P) }

u {(i. i) 1 1 Q"') I (F , c J " ') E 7 (Q) }

U (((7 , ~ + v) . I"" I I Q"') I ((a ,p) ,PU') E ~ (p) A ((n , dl Q"') t T ~ Q))
= {((A, IBk)wLk, Ayt-Wtk:Pt' 1) BTPWzk :Q:) I i E 1 A k E I< A p(AZ) n P (H A) = Q)

Res (6)

7 P \ E \ b 7) = {(Au, Pr\F) ((A'" PI) E T (P \ E))

u { ((a , n) , P'\F) I ((a , n) , P') E 7 (Y \ E) A a , a $! F)
= { (A " , P1'\E\k') I (A7" P") E T (P) }

U {((a, n) , P1'\E\F) 1 ((a , I %) , P") E 7 (P) A (1 , (1 @ Id A (1 , (L $! I< '}

= {(A".P"\E\F))(Au,P~')~7(P))

u { ((u , n) . P U \ E \ F) I (((I , rr). I.'") E 7 (P) A (1, a @ E U F)

I(P\E u F) = {(A". P'\E u F) 1 (/111, P I) E T (P))

U {((a, n) , Yf\E U F) I ((a , 1 2) , P') E I (P) A a , a $! 15 U b')

It follows from lenlnla 4.2 that tllc rclation {(,Y\E\F, X\E U k ') / El k' CI C} is a priori-

tizc-d stroilg I>isimulation.

7([P\EIu> = { ([A]" , [P'lu) I (A U , P') E 7 (P \ E))
u { ((a , n > , [P11u> I ((a , 4, PI) E 7 (P \ E))

= { ([A]" , [P"\Elu) I (AU? P") E 7 (P) }
u { ((a , 4 , [P"\EIu) I ((a , n) , P") (2 7 i P) A a , a # E l

However,

~ ([P I u \ E) = {(A",P'\E)I(AU,P')E~([P1u))
u { ((a , n>? P'\E) I ((a , 4, P') E I ([P l u) A a , a # E)

= { ([A]" , [PU1u\E) I (A U , P") E 7 (P))
u { ((a , 4 , [PU1u\E) I ((a , 4, PI') E 7 (P) A a , a 61 E)

It follows that tlie relation {([X\EIU, [XIU\E) (U 5 Res A E 5 L) is a prioritized strong
l~isiinulation.

Except (6)

I ((P t Q) t R)
= 7 (R)

u { (a , PI t R) I (a , PI) E 7 (P t Q))
u (((7 , P + r) , R') I 3P1, a: ((a , p) , PI) E T (P t Q) A ((a , r) , R') E 7 (R))

= 7 (R)
u { (a , (p' t Q) t R) I (a , PI) E 7 (P))
u { (a , Q' t R) I (a , Q') E 7(Q)}
u (((7 , P + 4, Q' t R) I 3P', a : ((a , P) , PI) (2 7 (P) A ((a, q) , Q') E I (&))
u { ((7, P + r) , R') I 3P', a : ((a , P) , P') E 7 (P) A ((a , r) , R') E 7 (R))
u (((7 , 4 + r) ,R ') I 3Qt,a: ((a , q) , Q') E 7(Q) A ((a, r) , R') E 7 (R))

However,

It, follows from lemma 4.2 that the relation defined by { ((X t Y) i 2, X t (Y i 2))) is a

prioritized strong bisimulation.

Sync(3) Wlien p(A) n p (B) = 0 and w = min(u, v) we have:

7 (A t l l U (PI, P C) j Bt2'" (QI , QC))
= { ((A B) ~ ' , PflQ') I (Au', PI) E 7(At1su (P I , P C)) A (BU', Q') E I (Bt2su (PI, QC))}
={((AIB)u ' , R') I U' 5 w)

iri th:

After using Par(3) and LeftM(2) we obtain:

However,

I ((A B) ~ ~ ~ (RI , RC)

= { ((A I B) ~ ' , R I ["'/,I + (A I B) ~ ~ ~ - " ' (HI [u1+t/,] , RC)) 1 u < w 1

Rec(1) From the operational semantic rule Rec we have:

Rec(2) Let R rec X.Q; by Rec(l), R = Q [~ l x] . We need to prove that P c, R,

assuming that P = Q [P / ~] and X is guarded in Q. We do this by making use of
leinma 4.2 and proving that the relation R defined by

(where E ranges over the set of ACSR processes) is a prioritized strong bisimulation. The
key to this proof is the observation that, when X is guarded in Q, the first step of Q

does not depend on the value of P, niore formally:

Q [P / ~] AT Q1 [P / ~] zf and only d Q AT Q'
and

Q [R / ~] AT Q' IR/x] if and only if Q 5, Q'

We proceed by induction on the structure of E.
If E is 0, 7 (E [P I X]) = 0 = 7 (E [Q / x]) .

If E is I, we obtain the E = P = Q [' / X I and similarly E [R /x] = R =

Q [R / ~] and therefore

7 (E [P / ~]) = { (a, Q' [P / ~ J) I Q 5 r QI)
and

7 (E [R / x]) = { (a . &' [R / x]) I & AT 8')
If E is a F then

7 (E [P / x] = { (a , F [Pix]) }
and

7 (E [Q l X]) = { (a> F [" / X I) } .

The other cases follow from the induction hypothesis and the fact that prioritized

strong bisimulation is a congruence.

Rec(3) The proof is by transition induction, i.e., induction on the depth of the inference

tree. Let

Q !Ef T C C X . (P + [X\EIo) and R E r e c X . (P + [P\EIU) .

We prove that the relation S = {(G [P I X] , G [Q / x]) } is a bisimulation. The proof

goes by cases on the structure of G. Most cases follow directly from the fact that bisim-

ulation is a congruence. The only interesting case is when G is X .
We have X [P I X] 91 P' if and only if P Pi PI. That is rec X . (P + [X\EIu) PI,

or P [Q / x] + [&\ElU 9- PI. There are two possible cases:

i) If P [9/1] A P' then, by induction hypothesis we have P [R / x] P" with

(PI , P") E S .
ii) If [Q\EIu 5 P' then, by induction hypothesis we have [R\EIu 91 P I ' . We

replace R by its definition to obtain [rec X . (P + [P\EIU)\E], 5 P'. That is

[P [R / X] + [p [?XI \E] \E] I; A P"

and using the distributivity and idempotence of both closure and restriction we obtain:

[P [R / ~ ~] \E] A PI' whence P [R / x] A PI1.

The reverse case is immediate.

References
[I] M. Abadi and L. Lamport. An Old-Fashioned Recepi for Real Time. In Proceedings of REX

Workshop on Real Time: Theory and Practice, LNCS 600. Springer Verlag, June 1991.

121 L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS Rules into Equations. Technical Report
CS-R9218, CWI, Amsterdam, The Netherlands, 1992.

[3] R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis, St,anford Uni-
versity, 1991.

[4] R. Alur and D. Dill. Automata for modeling real-time systems. In Proc. of 17th ICALP, LNCS 443,
pages 322-335. Springer Verlag, 1990.

[5] R.. Alur and T. Henzinger. A Really Temporal Logics. In Proc. of 30th IEEE FOCS, 1989.

[ii] R. Alur and T. Henzinger. Real-Time Logics: Complexity and Expressiveness. In Proc. of IEEE
Sy~nposium on Logic in Computer Science, 1990.

[i] J . Baeten, J . Bergstra, and J . Klop. Syntax and defining equations for an interrupt mechanism in
process algebra. Fundamenta Informaticae, IX(2):127-168, 1986.

[8] J . Baeten, J . Bergstra, and J . Klop. Ready-Trace Semailtics for Concrete Process Algebra with a
Priority Operator. Computer Journal, 30(6):498-506, 1987.

[9] J.C.M. Baeten and J.A. Bergstra. Real Time Process Algebra. Technical Report CS-R9053, Centre
for Mathematics and Computer Scieiice, Amsterdam, the Netherlands, 1990.

[I U] J . A. Bergstra and J . W. Klop. Algebra of Communicating Processes. Technical Report CS-R8420,
Centre for hilathematics and Computer Science, Amsterdam, the Netherlands, 1984.

[I I] J.A. Bergstra and J.W. Klop. Algebra of Communicating Processes with Abstraction. Journal of
Theoretical Computer Science, 37:77-~121, 1985.

[12] A. Bernstein and P.K. Harter J r . Proving Real-Time Properties of Programs with Temporal Logic.
I11 Proc. Symposium on Operatzng Systems Principles, 1981.

[13] B. Bloom. Ready, Set, Go: Structural Operational Semantics for Linear-Time Process Algebras.
Technical Report T R 93-1372, Cornell Universiy, 1993.

[14] B. Bloom. Structural Operational Semantics for Weak Bisimulation. Technical Report T R 93-1373,
Cornell Uiliversiy, 1993.

[15] T . Bolognesi and S.A. Smolka. Fundamental Results for the Verification of Observational Equiva-
lence. In Protocol Specification, Testing and Verificatzon. North-Holland, 1987.

[I (51 P. BrCmond-GrCgoire. A Process Algebra of Commuilicating Shared Resources with Real-Time and
Priorities. Dissertation Proposal, University of Pennsylvania, 1993.

[I?] P. Brkmond-GrCgoire. An Algebra of Communicating Shared Resources with Dense Time and Pri-
orzfzes. PhD thesis, Department of Computer and Information Science, University of Pennsylvania,
1994.

[18] Liang Chen. Specification and Verification of Real-Time Systems. Unpublished report, 1992.

[19] R. Cleaveland and M. Hennessy. Priorities in Process Algebras. In Proc. of IEEE Symposium on
Logzc zn Computer Science, 1988.

['LO] R. Cleaveland and M. Hennessy. Priorities in Process Algebras. Information and Computation,
87:58-77, 1990.

[21] A.K. Mok I?. Jahanian and D. Stuart. Formal Specification of Real-Time System. Technical Report
T R 88-25, Department of Computer Science, University of Texas at Austin, 1988.

1221 M.K. Franklin and A. Gabrielian. A Ttansformational Method for Verifying Safety Properties in
Real-Time Systems. In Proc. of IEEE Real-Time Systems Symposium, pages 112-123, December
1989.

[23] A. Fredette and R. Cleaveland. RTSL: A Formal Language for Real-Time Schedulability Analysis.
Technical Report TR-93-09, North Carolina State Univesity, 1993.

[24] A. Gabrielian and M.K. Franklin. State-Based Specification of Complex Real-Time Systems. In
Proc. of IEEE Real-Time Systems Symposium, December 1988.

[25] R. Gerth and A. Boucher. A Timed Failure Semantics for Extended Communicating Processes. Tech-
nical Report TR. 4-4(1), Department of Mathematics and Computing Science, Eindhoven University
of 'Technology, March 1987.

[26] M. Hennessy and T . Regan. A Process Algebra for Timed Systems. Technical Report 5/91, Univ.
of Sussex, U K , April 1991.

[27] C. A.R. Hoare. Communicating sequential processes. Communications of the A CM, 21(8):666-676,
August 1978.

['LP] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[29] F. Jahanian and A. Goyal. A Fornialisn~ for Reasoning about Real-Time Constraints at Run
Tirne. Technical Report RC 15252, IBM Research Division, T.J. Watson Research Center, Yorktown
 height,^, New York, December 1989.

[30] F. .Jahanian, R.S. Lee, and A. Mok. Semantics of Modechart in Real Time Logic. In Proc. 21st
Hawazz Int. Conf. on System Sciences, Jan. 88.

[31] F. Jahanian aiid A.K. Mok. Safety analysis of timing properties in real-time systems. IEEE Trans-
actzons on Software Engineering, SE-12(9):890-904, September 1986.

[32] F. Jahanian aiid A.K. Mok. A Graph-Theoretic Approach for Timing Analysis and its Implementa-
tion. IEEE Transactions on Computers, C-36(8):961-975, August 1987.

[:33] F. Jahanian and D.A. Stuart. A Method for Verifying Properties of Modechart Specifications. In
Pror. of IEEE Real-Time Systems Symposium, pages 12-21, December 1988.

[34] R. ICoymans. Specifying Message Passing and Time-Critical Systems with Temporal Logic. Real-
Time Systems, 16(11), November 1990.

[35] R. Icoymans and W.P. de Roever. Examples of real-time temporal specification. In The Analisys of
Concurrent Systems, LNCS 207, pages 231-252. Springer Verlag, 1985.

[3G] R. ICoymans, J . Vytopil, and W.P. de Roever. Real-time programming and asynchronous message
passing. In 2rd ACM Symposzum on Princzples of Distributed Computing, pages 187-197. ACM
Press, 1983.

[37] Leslie Lamport. The Temporal Logics of Actions. Technical report, DEC Systems Research Center,
Palo Alto, California, 1991.

[3X] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. Technical Report
MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts Institute of Technology, 1988.

[39] N. Lynch and F. Vaandrager. Forward and Backward Simulations for Timing Based Systems. In
Proc. REX Workshop "Real-Time: Theory in Practice". LNCS 600, Springer-Verlag, 1991.

1401 G.H. hlacEwen and T.A. Montgonlery. The RNet Programming System: Distributed Real-Time
Logic. Technical Report Report 87-3, Dept. of Computing and Information Science, Queen's Uni-
versity, Kingston, Ontario, November 1987.

[41] M. Merritt, F. Modungo, and M. Tuttle. Time-Constrained Automata. In COiVCUR '91, August
1991.

[42] R. Milner. A Calculus for Communicating Systems. IJniCS 92, Springer-Verlag, 1980.

[43] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Science, 25:267-310, 1983.

[.I41 R. Milner. A Complete Axiomatisation for Observational Congruence of Finite-State Behaviors.
Information and Computation, 81:227-247, 1989.

[45] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[46] F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems. In Proc. of CONCUR
'90, pages 401-415. LNCS 458, Springer Verlag, August 1990.

[47] X. Nicollin and J . Sifakis. The Algebra of Timed Processes ATP: Theory and Application. Technical
Report RT-C26, Institut National Polytechnique De Grenoble, November 1991.

[4P] D. Park. Concurrency and Automata on Infinite Sequences. In Proc. of 5th GI Conference. LNCS
104, Springer Verlag, 1981.

[49] A. Pnueli. The Temproal Logic of Programs. In Proc. of Foundations of Computer Science, pages
46-57, 1077.

[50] G.M. Reed and A.W. Roscoe. A Timed Model for Communicating Sequential Processes. In Proc.
of Int. Conf. on Automata, Languages and Programming. LNCS 226, Springer Verlag, 1986.

[51] Douglas Stuart. Implementing a Verifyer for Real-Time Systems. In Proc. 11th IEEE Real-Time
Systenzs Symposium, 1990.

[52] F. Vaandrager and N . Lynch. Action Transducers and Timed Automata. In Proc. COlVCUR '92,
International Conference on Concurrency Theory. LNCS 630, Springer-Verlag, August 1992.

[53] Y. Wang. CCS + Time = An Interleaving Model for Real Time Systenls. In Proc. of Int. Conf. on
Awtomata, Languages and Programming, July 1991.

[54] C. Zhou, M. Hansen, A. Ravn, and H. Rischel. Duration Specification for Shared Processors. In Proc.
Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 57l, pages 21-32. Springer-
Verlag, 1992.

[55] A. Zwarico, R. Gerber, and I. Lee. A Complete Axiomatization of Real-Time Processes. Techni-
cal Report MS-CIS-88-88, University of Pennsylvania, Department of Computer and Information
Science. November 1988.

	A Process Algebra of Communicating Shared Resources With Dense Time and Priorities
	Recommended Citation

	A Process Algebra of Communicating Shared Resources With Dense Time and Priorities
	Abstract
	Comments

	tmp.1183132407.pdf.0NYqJ

