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New Algorithms for Capacity Allocatioll and Scl~etluling: of 
Multiplexed Variable Bit Rate Video Sources 

A m a r n a t h  Mukhe r j ee  

Ja f fa r  Rehman 

D e p a r t m e n t  of Computer and Informat ion  Science 
Universi ty  of Pennsylvania  

P h i l a d ~ l l ~ h i a ,  PA 19104 

Abstract 

This study presents sinlple and accurate heurist.,ics for deter~nining the equivalent bandwidth 
for multiplexed varia.ble hit ra1.e (\;BR) vitlro sources. The result,s a.re based on empirical studies 
of mea.surement, data of various classes of \'BR video sources. They are also validated through 
extensive simula.tions. The principal result. is tl1a.t t,he equivalent I3anclwidtli per source for n 
independent a,nd identically distributed I'BR video sources may be approsiiliated by a hyperbolic 
function of the form: a coth-I 17 + 6 where a and 6 are independent of 72. Further, assuming 6 

is the acceptable loss tolera.nce, st,atist.ical regression s1ion:s that. A is a linear fi~i~ctioll of mean 
and log(t), while a is a polynonlial in Iog(c). 

The capa.city a.ssignment, problem is fnrt.lier a.ugment,ed with a scheduling algorit.l~m that, is 
an extension of the \;irt,ua.l Clock Algorithnl. The new algorithm belongs to a class of a lge  
rithrns which we refer to  as Generalized Virt,ual Clock (GIJ(=) algorithms. The particu1a.r GVC 
algorithm investigated in t,liis paper estiliiat'es the instmanta.neous rate of' transmission of' each 
source, and uses t,his estii11at.e instead of tlie st.at,ic average rat,es, for prioritizing pacliet,~. I11 so 
doing, it attempts to syiichronize t,he s\vitcli schedulii~g rates aiid t,he packet a.rrival rates of each 
source, and i~nproves upon t,he spat.ial loss dist,ribution cliaract,eristics of \'irtual Clock. 'The 
combined allocat.ion and schrduling algoritll~ns are proposrtl as Ilrtlans for g~~a.raut,eeiiig Quality 
of Service in high speed netmorlis. 

1 Introduction 

Optical fibers ha,ve provided large techilological advances ill t he  field of telecoil~~liunications. Net- 
work prototypes with bandwidths of few hundreds of Mbps have been available for sorrletirne and  
prototyping of networlis wit11 Gbps da t a  rates is in progress. T h e  availability of enorlnous band- 
width in high speed net \~orI is  a1lon.s suppol.t for applications nfitll very high hit rates such as 
motion video. Video traffic, in fact,  is likely to be t .11~ most dominant loat1 coillponent of t he  fu- 
t u r e  multimedia communications environment. Whereas the  support for video applications is not 
entirely new, t he  mult i tude of end-use1.s n.ho would be able t o  use these services si~nultaneously 
will be a new phenomenon. This  potential scale of availability of services however, poses ma,lly new 
challenges in networking. Ba.l~tl\viclth allocation a.nd proper scheduling a.re t\vo such cha,llenges. 
Efficient bandwidth allocat,iorl is a difficult ta.sk because it iilvolves sinlult,ai~eous pursuit  of two 
conflicting goals, namely provision of desired Quality of Service ( Q O S )  to  the  users and  efficient 
utilization of network resources. Tl~i:, is t l ~ e  subject of t,his pa.per. 



The capacity assignment problem is further augmented with a scheduling algoritl-lm that  is an 
extension of the Virtual Clock Algorithm. This algorith~ll belongs to a class of algorithms that  
is referred to  as Generalized Virtual Clock (GVC) Algorithms. The particular GVC algorithm 
investigated in this paper is sho\v~l to improve up011 the spatial loss distribution characteristics 
of Virtual Clock. The combined allocation and scheduling algorith~lls are proposed as means for 
guaranteeing Quality of Service in high speed networks. 

In the rest of this section, we first give the problem statement and then overview the issue 
involved in capacity allocation and scheduling. 

1.1 The problein stateilleilt 

The capacity allocation problem addressed in this paper may be stated as follo~vs. Given a known 
probability distribution of the number of bits per frame transmitted by a variable bit rate video 
source and the need to  ensure that a snitching node drops less than sonle c > 0 number of bits, what 
is the necessary switching capacity to support i\- buch sources? The source5 ma!, he homogeneous 
(i.e., i.i.d.) or heterogeneous. 

The scheduling prohlenl 1lla-j be stated as follo~vs. Once a certain capacity is allocated for N 
sources, what are the tradeoffs involled ill using one scheduling itrateg! o ~ c r  anothel? 

1.2 Capacity Allocatioil 

The easiest algorithm is to alloca,te bandwidth to a connection ba.sed on it,s peak bit rate. Such an 
allocation results in deterministic gua.rantees for the clua.lity of service but results in underutilization 
of network bandwidth. This is because it ignores dynanlics of the norliload in an environrnellt 
where several sources are being nlultiplesed over the same communica.tion channel. The loss of 
the potential statistical multiplexing atlvant,a.ges a,ct,ually may he quite significant if peak rate is 
allocated. For instance, as reported in [36] .  the pea.k ha.ltdwidtll allocatioi~ for a video conferencing 
source was 14 Mbit,s/sec. For 16 sources. t,his allocat,ion would sul l~  up t,o 224 Mbitsjsec. The 
probability of achieving a. colnbinetl peak bit rate of 224 hlbitsjsec. however. was found to be only 

In fact, for a cell loss rate of 10-K a ttotal alloca.tion of 1OS.S l'Ihits/sec or approximately 
7 Mbitsjsec per source was Sound to I)e suilicient. 'The s t  at,ist.ic.i~l I I I ~ L I  t i plcsi~lg ga i i~  in this case 
would result in a ba.ndwidt11 sa.ving of a fa.ctor of 2. 

The other extreme to peak rate allocation is to alloca,te band\vidtll based on the sum of the 
average bandwidths of the sources. -1verage ba,ndwidtll alloca,tion a,ddresses the concern of under- 
utilization of bandwidth, but may result in intolerable pemlties on Quality of Service, unless the 
number of sources being multil>lesed ( degree of multiplesing) over a lillli is l a . rg~ .  An appropriate 
capacity alloca,tion algorit,l~m lllust take into account both the desired Quality of Service require- 
ments and the efficieilcy of tlle coninlunication channel, and should allocate an amount somewhere 
between the sum of the peak and the sum of the avera.ge rates of the sources. This amount is 
usually referred to as ecluivalent l,a.ndnitltl~. (.-I precise definition of equi\.ale~~t handwidt.11 will be 
given in Section 3.)  

Several sche~nes have bee11 proposed recently [4. 6 ,  10, 11. 12. :35. 36. 371 for deterlrlirling 
equivalent bandwidth. [4, 6, 10, 111 propose using precolllputed bandwidth recluirenlent curves 
defined through simula.tion. [12] 1)roposes a. comhinatioll of fluid approsima.tion illethod and a 
stationary approxima.tion lllet,llod for on-off sources with exponential holding times in each state. 
[36, 371 suggest the use of a.verage rate and variance of sources to colnpute the equivalent bandwidth. 
[35] suggests the use of probability tlensity functions (pdf 's)  of sources to calcula.t,e t,lle equivalent, 
bandwidth. The pdf's are to be calcl~lat,cd using sources' a.verage and  pea.li data rates. The 



convolved pdf of these individual pdf's gives the bandwidth requirements. Such on-line calculation 
of the convolved pdf may, however, not be colnputationally feasible in a real time environment. 

In this paper, tve investigate sinlple and accurate heuristics for determiniilg the equivalent 
bandwidth for variable bit rate video sources. We use steady state hit-rate distributions of sources 
t o  determine these formulae. The bit-rate distributions are extracted froin lneasurelnellt da ta  of 
traffic from fifteen different VBR video sources described in the next section. Our study shows that 
equivalent bandwidth may be closely approxinlated by a class of Hyperbolic functions. Specifically, 
if ZN is the bandwidth needed t o  guarantee Quality of Service (precise definition of Quality of 
Service is given in the nest section) for *Ar i.i.d. sources, then 

The rationale for this is also discussed. although a rigorous theoretical proof is not available at  this 
time. 

1.3 Scheduling 

A related issue in resource mana.gelnent of varia.ble hit rat.e video sources is that of schedulil~g and 
policing. Several new algorithms have been proposed recently, e.g., Virtual ('lock [40], Hierarclrical 
Round Robin [24], Pulse [27'], Ea.rliest Due Date [S] and Stop-and-Go Queueing [13, 1.11. While 
the exact details differ (e.g.. Stop-and-Go is designed to Ile non-n.ork-co~~servi~ig, ot,l~ers are not), 
these algorithms assume a, cont.ract bet\\:een the netivorli and end-users and att,enlpt t,o prioritize 
packets according t o  that  contract. The contra.ct is static. in tl1a.t it does not adapt to the time 
correlation structure of the packet arri\:al process. However, they are effective policing devices 
against misbehaving transmitters. 

The algorith~n proposed and studied here belongs to a class of C:eneralized 1-irtual C'locli (GVC) 
algorithms. Earlier, we have studiecl a. GIr(.' algorithlll t.hat ma.s sui ta l~le  for da.ta. t,ra.ffic [27] .  The 
particular algorithm proposed here is applicable to  variable bit ra.t,e sources with real-time deadlines, 
and is centered around the idea of esploititlg the time-correla.t,iol~ structure of the source arrival 
processes. 

The outline of the paper is as follo\vs. Section 2 describes the data used in the study, the 
model used t o  c,l~a.ract,erize the sources, alltl the precise defiltitioiis of' various niea.sures tised 1a.ter. 
Section 3 investiga,tes the capa,city assignn~el~t problem, [vhile Seetioil 4 investiga.tes the scheduling 
problem. Section 5 briefly coinpares related 117ork and Section 6 present's the conclusions of this 
paper and outlines future work. The apljendices document some of the det,ails o~nit t~ed from the 
main sectioils for clarity of presentation. 

2 Preliminaries 

2.1 Classificatioll of Measurell1ellt Data 

The study reported here is based on ineasurement data 011 video traffic [:3X]. The data comprised 
of sequences of numbers indicating the nunlher of bits translllitted in succes~ive frames. We have 
data  for a total of fifteen different video sources. The data may he categorized into four different 
classes according t o  their statistical properties: 

Video Telephony: head ant1 slloultlcr vien of one yerholl. 

Video Conferencing: head a~itl s l ~ o r ~ l ~ l e ~  \.ie\< of t ~ ' o  people 



a Normal Quality Broadcast Video: Different T V  progralns captured fro111 the Belgian Cable 
Television network. 

a High Quality Broadcast Video: Different T V  programs taken directly fro111 the studios of the 
Belgian Radio and Television. 

Important statistical characteristics of ea.ch class of tra,ffic is sulnrnarized in the followiilg table. 

As the table indicates, the data used wa5 collected okel long periods of tinie. The length varied 
from a minimum of 18 rniirutes and 30 seconds (27750 frames) to a masimum of 3.5 minutes and 
38 seconds (53450 frames) of video activity. Each source generatetl 25 fiaiiies per second. i.e, the 
interframe gap was 40 111s. 

Table 1. Statistical Characteristics of VBR Video Data 

2.2 Source Characterization 

A bandwidth mana.gement algorithm needs to  know the characterist,ics of a, source based on which 
i t  will try t o  allocate appropriate amouilt of baildwidth to satisfy t,he recluested QOS by the source 
during the connection. The most ~videly suggested parameters to  chara,cterize a, source include av- 
erage bit rate, peak bit ra.te, burst lellgtll a,nd inter burst ga,p. These pa.ra.ineters rnay be considered 
sufficient to  accurately describe the beha,vior of ( i)  continuous hit streamill sources that transmit at  
a fixed or a fairly consistent rate, ( i i )  sources which oscilla.te between idle a.nd busy periods with 
transmission at  a fised or fa,irly collsistellt rate (peak rate)  during the I~usy periotls. The type (ii) 
sources are often cha,racterized as t\r:o-statt. llarkov processes [ I .  12. 71. 

Capturing all the sta.tistica1 c l~aract~~. is t ics  of' a sonr,ce ~v l~ ich  does not ~railslilil aL a. fixed rate 
is, however, aon-trivial. Sources sucll as varia.hle hit rate video. t,ra.nsmit across a witle range of 
bit-rates, and their characterizatioi~ 1 ) ~  only pea,k and average rates cannot sufficiently ca.pture their 
statistical beha.vior. Consider. for instance\. Figure 1 which shows tlie n~lml)er of bits t,ransmitted 
in each frame as a fu~lction of t.ime. 

Some researchers have quantized tlie bit rates per fra,nle int,o :Id levels and then modeled the 
sources as Af-state Markov processes [32]. Sucll inodeli~ig also ca.ptures t,he teiilporal behavior of 
a source. The knowledge of tlie t,e~nporal c1ial.a.cteristics of very high bit ra.te bursty sources may, 
however, not be useful, a.s suggested in [:36. 371. Their argument is that ~iet\vorli cluelles are too 
small for any significant absorption of very high bit ra.te burst,s of sources such as V B R  video, 
and should be used only to absorb the a.sync1~ronicities genera.t,etl 1)y t.110 iiet\vorli itself' [ 3 7 ] .  It is 
argued in [ 2 5 ,  361 that tlie contribution of networl; queues for st,at,jsticad multiplesing of VBR video 
sources is nzarginal, a.nd t11a.t they ilia? Ile o~rlitted while describing the process. This implies that 
no knowledge of the temporal behavior of t.he sources is required. I 'he kno\vledge of stationary bit- 
rate probability distributions of the sources is however: needed, to  determine the joint probability 
distribution of bit,-ra,tes when tlie sources are multiplesed. 

Service Class 
Video telephony 
Video conference 
Normal quality 
broadcast video 
High quality 
broadcast video 

Peak R.ate(s) (Mbits/s) 
28.5 
28.5 

24.4 - 39.4 

:36.6 - -2i3.2 

Average Rate(s) (h4bits/s) 
4.5 
4.4 

15.-4 - 19.1 

2.5 - :30.6 

Length Data Used 
2.5 min's 
2(i inin's, 26 sec's 
30 min's, 52 sec's to 
3.5 min's, 35 sec's 
IS mill's, 30 sec's to 
31 min's, 27 sec's 



Raw Video Data as a Function of Time 
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Figure 1: The number of bits transinitted per frame as a fulictioil of time for a typical VBR video 
source. 

Our approach has been to characterise the variable bit rate video sources by their stationary 
bit-rate probability density functioils for determining equivalent bandn idth and to incorporate the 
time correlation structure into the scheduli~ig algorithnl. 

2.3 Assumptio~ls and Definitions 

The capacity allocation problem assulllei that the variable bit rate sources have known stationary 
distributions, Fx(2), of tlle the number of bits transmitted in a frame For the case when the 
sources are independent and identicallj distributed, the sum of the bits transmitted by N such 
sources in the duration of a frame time is assumed to be ,Snr ( irrespecti~e of whether the frames 
are synchronized or not). That  i h .  if S, is tlle rlulllber of hits trarlsmitted by the ith source, then 

It is assumed that  the inasimum toleiable probabilit\. of loss for each soulce is c l'he capacity 
allocation problem may now be vien etl i n  two eclui\dlent \\a> s .  

One view is to assume that ( a )  the s\titcli hh\ iilfiii~te buffe~s. and that ( I , )  all sources are 
synchronized (technicallj, with i~lfinite buffeih, it is easy to  sho~v that thib is not necesbary, but it 
simplifies exposition). Tlle problenl then is to  allocate an equivalent l)and\vidth Zv such that 

ZN is the number of hits that  ale cleared out by the end of a frame. Notice that since 6 is assu~lled 
t o  be the same for all sources. the indi\idnal loss prohabillt~e\ per \ource g i ~ e n  bv ( I ) ,  may be 
made equal t o  E with a proper sclleduler (because C.S'~\ = €1-1 + + . . + €I,\ ). 

An alternate but equivalent vieii is to assume that t h e ~ e  are \er> fen I ~ u f f e r ~  conipared to the 
amount received over a frame [2j .  .30] .  Lct t l ~ e  instnntaneou~ t ~ n n s ~ i l l s \ ~ o ~ r  I dtcs of tile bources be 



il, i 2 , .  - - , iN, where i, are independent of each other. If SN is set t o  + X2 + . . . + X N ,  then the 
equivalent bandwidth ZN may again be defined by (1). Now 6 would indicate the proportion of 
dropped packets given lack of availabilit~ of buffers. (In this case, however, the worst case scenario 
of synchronized frames must be assumed.) The two views therefore, lead to  the same analysis 
methodology. An analysis with finite buffers is not addressed in this paper. 

3 Capacity Allocation 

We assume that  the transmission of bit streams of all the sources being ~liultiplesed over a single 
link are statistically independent of each other. 

As mentioned in Section 2, the problem of capacity allocation may be stated as follows. Given 
a known probability distribution of the number of bits per frame transmitted by a variable bit rate 
video source and the need to  ensule that a switching node drops less tllall sollie E > 0 number of 
bits, what is the necessary s ~ i t c h i n g  capacity to support A \  such sources? Lhe sources Irlay be 
homogeneous (i.e., i.i.d.) or heterogeneou5. 

Homogeneous multiplesillg refers to nlu1til)lesing: of i .i .(I. video sourceh. For inst,ance, multiplexing 
of traffic from several video t,elephony sources which are tlefined 1,)- tllc sallle tlen.;ity function, 
would be categorized a.s homogeneous nlultiplesing. 

Let X I ,  X 2 , .  . . , X N  be i.i.d. random \:aria.bles ivith a. know~l distril~ut,ion k'.y(m). Figure 2 shows 
the stationary proba,bility density function. ,f.y ( 2 . )  ( = c lF( :~ - ) / c l x ) ,  of t,he number of bits transmitted 
in a frame of a particular source. Let Sjv = .XI t .Y2 t . . . t The proble~u is to  determine the 
minimum capacity (2,~) requiretl by the sxvitch such t,lla.t illost of t,lle hits tra.nsnlitted in a frame 
may be cleared out by the end of frame. i.e.. if the video sources require a prohahilit,y of loss less 
than E ,  then 

Z,\- = inl' : P T { , S , ~  > n . )  < 6 ( 2 )  
S 

One approach to  solving this is to ahhllme that the central lilllit theorem lloldh. i.e., 

where ~ ( z )  is the Standard Nor~llal distril~ution. ancl ~1 and a' are the 1nea11 and variance of ,Y1 
Assuming (3) holds. let t = r 7 ( . r q )  .z. = r1-l(c) xvhich toget her with ( 2 )  yields 

To check the validity of (4). f.\.(.~.) 111it?- I)e convolvc~d .\' ti111es 1.0 gi\x* t 1 1 ~  clellsit. of' ,S!v. As all 
example, for M = 2, the joir~t density of .Yl $ .4-? i h  

The convolutions as a function of . \  for Figure 2 are sllo\vn in Figure :3. Notice that  these indeed 
look similar to the Norlrlal density function. However, when the tail is integrated to  determine 
ZN, and Z N / N  is plotted as a functioil of A\1. we see an apparent discrepancy bet\\-eel1 ( 4 )  and the 
actual ZN/N computed from the c.on\.olvetl distributiol~ (see Figure 1). 



Probability Density Function 
 XI 10-3 

Figure 2: Prolja bi l i t )  tiensity of a \'BK vicleo mu1 ce. 



Probability Density Function 

Figure 3: ('onvol~.etl t l r ~ ~ ~ i t  ic:, of the saule video holli.cr. 



Figure 4: Zs/,Y vs. -Y f1o111 co~rvo lu t ion  a n d  from N o r ~ n ; ~ l  ; ~ s , u m p t i o n  



This may be explained by checkillg for the validity of the observed distribution to see if it indeed 
is Normal. Figure 5 shows a quantile-quantile plot of the convolved distribution for N = 11. To 
obtain this plot, one computes F;,n'(.z.)-l vs. I ~ ( X ) - ' ,  i.e., consider the points (x, , y,)  such that  for 
some q,, 0 5 q, 5 1, ~ * ~ ( y , )  = q, and q(z,)  = q 2 .  Then the plot of y, vs. .c, ,hould be a straight 
line if the two distributions being coinpared match. (For the purposes of comparison, this may be 
carried out with a Standard Norlnal distribution with mean 0 and variance 1, see [23]. Figure 5 
shows that  the convolved distributions are indeed Normal for the most part (in the middle), but 
diverge from it  sharply at  the tails. Further, it shows that  the tail of the esperilllental distribution 
is longer than that of the Normal distribution. Since our interest is esactl) on this part of the 
distribution, the central limit theorem does not hold, and in fact predict, loner capacity than is 
actually required. The important question is what is the corlect equation foi Z l  /J. Esperiinents 
with curve fitting show that  

ZN - x cot11-l *I' 
-1 (6) 

Figure 6 demonstrates this: Here n e  1 1 a ~ e  plotted ZsIAY (as ol~tained fioill the convolution) 
vs. coth-I N and the result is a straight line. Surprisingly, this relation>llip hold, for all the fifteen 
different VBR video sources ~vllo>e data n.as available to us. 

From (6) we have 
zv - = (L cot11-~ 1Y + I) 
S (7) 

The coefficients a and b wele obtained using linear regression. Thew \cele then investigate 
further t o  determine possible relation>hips betiyeen thelll. c ,  ant1 the properties of the distributions. 
We investigate these in detail nest. 

3.2 The coefficieilt b 

To determine the relatio~lship bet.ween b anrl the parameters of the distribution a.nd the Quality of 
Service parameter E ,  first, we need t.o identify sonle dolninant pa.tterns similar to the one for Z N / N  
vs. N. 

Let m denote the mean and (T the st,andard devia,tion of a clist.ri11ution. Let t denote the loss 
tolerance of a source, and let. [ = - log,, c .  

Figure 7 shows b vs. 177, for scvt.1.;11 sources \ v i t h  6 a.s a parntrletc~,. l\;ot,ice \.hat b vs. In is a. 
straight line. 

Figure 8 shows b vs. < for t,he difhrer~t sources. Again, notice that t,liey have a linear rela.tionship. 
Experiments were conducted to checli i f  I )  deyended on any of the higher nlolnents of the 

distributions. No significant pat,t.er~is were observed for t.he nest 16 higher ~ilolnerlt,~ aad central 
mo~nents,  a t  which point the esperin~ent wa.s stopped. 

The above observations suggest, the follo~t-ing form for 6 : 

Statistical regression from the data gives1 

'Appendix B overviews hlultiple 1,inear Regression. Analysis of \'ariat.ion, Analysis of \ ' a r i t ~ ~ ~ c r  and generation of 
confidence intervals. T h e  key idea i n  rcgrrssion is to ~l l ini~uize the sum of squares of errors between t,he actual data  
points and the model t , l~a t  is developetl from i t .  If S S E  is the sum of squares of errors and S S T  is the sum of squares 
of the total variation, then an amount equal to S S R  = S S T  - S S E ,  is successfully account,ed for by the regression. 
The  coefficient of determination R2 is defined as  S S R I S S T .  and it gives a measure of tlle goodness of the regression. 
Acceptance on rejection of a hypotlresis is hasrtl on t,he analysis of variance wlrich yield FCornpule~. This value must 
be greater than Ftable(P) for t.he regl.ession to he accepted a t  a confidence Irvel .i. 
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Figure 5: Quantile-Quantile plot of o l~~e rve t l  and Stanclarcl Soriual tlistril~utions. 



Z(N)/N vs. arccoth (N) 
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Figure 6: Enlpirical validntiol~ 01' l11cn Arccot11 a s ~ n n i p t i o n  for Ecluivalent bandwidth.  
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Figure S: L vb. - log," t for the h a ~ n e  d a t a  hc3t 
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where the numbers in parentheses are the 90% confidence intervals for the coefficients. The coeffi- 
cient of determination, R~ = 0.998 and Fcomputed = 23682.89. From tables, FtaGle = 9.46: for a 90% 
confidence level, and Ftable = 99.48 for a 99% confidence level. Since Fcomputed >> Ftable, for both 
these confidence levels, this regressioil can be accepted with a high level of confidence. Further, the 
value of R~ also indicates that  the regression explains over 99% ( = fi) of the variance. 

Notice that  the confideilce interval for bo includes 0, so 0 cannot be rejected a t  the 90% confidence 
level, (i.e., bo might as well be set to  0 for all practical purposes). Hence we have 

This then is the equa.tion for tlie coefficient h in  ( 7 ) .  

3.3 The coefficient n 

Figure 9 shows a vs. ( for several of the sources. This figure suggests a non-linear relationship 
between tlie two. In fact it looks similar to a hypoexponential. -4s \ve shall see sllor.t,l F. it turlls out 
that  a polynomial approsima.tion for (1 vs. < yields pretty a.ccurate results. 

Figure 10 shows (1 vs. a for [ = -1 whicll suggests a 1inea.r relationslxip. flowever, this does 
not hold for smaller values of [ as sceil in Figure 11. 

Regression of a involving both a ant1 ( in fact. did not yield sa.tisfact.or result,s. For instance, 
experiments with the form 

7 1 ,  

o = ,lo + [llrr + C f, ,+l,cf 
1=1 

yielded a coefficient of determination. R'. of 0.(54 or less (i.e. the confidelice level one could place 
on this regression was only 0 = O.d 01. SO%, at beht ). 

When regression was tried on individual sources however, the coefficient of deterlilination shot 
up to 0.99. For instance. consider a quadratic illode1 for (1 as an al)prosiiiiation for the data: 

(10) was regressed individually against each source dist,rihut,ion. The coefficient values conlputed, 
yielded a. high level of a,ccuraty ( R 2  > 0.90). The stat,ist,ical test 1.esu1t.s i'or one par.t.icular source is 
included in Appendix C. The results for tlie coefficieiits a.nd their coi~fitlence iiltervals for several 
sources are summa.rized in Table 2.  Tlie a ~ ~ a l y s i s  of variation a.nd va.riance for the correspondiilg 
coefficients is shown in Ta,ble 3. Kotice t.liat in all cases, the coefficient of deterlili~lation R~ is 
large, and Fcomputed >> Ftaijle ind ica t i~~g  that the regression ma,! 1)e accepted wit11 a high level of 
confidence. Illvest,igat,ioll is is1 l~rogi~c~ss 1 0  tlctermine how to co~nbine all the ecl~~a.tioiis iilt,o one. 

Table 2 Estiinat~oli of (1 Coeffic~ents and 90 percent Conficlellce Interbals 

I filmdoc 1 970699 (674823 952. 12665751 1 1866265 (1752942 777. 1979588) 1 -71539 ( -80737. -62341) I 

dutch 
film 

u? and 90% Conf Int. Source I a* and 90% Calif lnt 

I viphone i -2590536 i -3620172. -1i60399j i 4750290 (5931.971. 3144649) -178501 (~-210509, -146491) 1 

divers 1 -2309786 (3045880. 157.3692) I 1709942 (4428012 49918721 1 -161427 (-184310. -138545) 
u1 and 90% Conf Int 

1257487 (855991, 1658983)' 
673455 (56790,1238121.013) 

isaural 
viconf 

1490605 (1345829, 165:3:331) 
3404385 (3168963. 639806) 

-14583'5 ( -407089, 115418) ' 
-3678783 ( -6261656. -1088910) 

-77611 (-90092 , -65130) 
-132489.516 ( -151597, -113381) 

3655070 (3555007, 3755132) 
449'2990 (3501048, 548493'2) 

-159839 ('-167960, -151717) 
-143843 ( -224353. -63333) 



Table 3. Ailalpsis of Variation and Analysis of Variance for (10) 

- Source 1 R' 1 Fcolnputed ( F t a b ~ e  

divers 1 0.998 1 2614.38 1 99.37 

viphone 1 0.997 1 1193.94 1 99.37 

99.37 
99.37 
99.37 

isaural 
viconf 

3.4 Heterogeneous Source Multiplexiilg 

411.91 
1629.29 
2164.36 

dutch 
film 

filmdoc 

Heterogeneous source multiplexing refers to  multiplexing solirces with different tlistributions. This 
subject is currel~tly under investigation ant1 only pleliminar> rehult\ are ava~lable at tllis time. 

If the Quality of Service parametpi t i\ the saine (ant1 this neetl not be in a real world situ- 
ation), the convolution approach 1na.v be l~setl to  generate the data for the capacity needed. Let 
Z(n l ,  n2, - .  . , n k )  be the minimum capacity needed for supporting I r l  sources of type 1. 122 sources 
of type 2, etc., such that the Quality of Service guarantees ale met. I h e n .  preliminary experi- 
ments with 1; = 2 sources shoiv that Z ( t , l .  I , ~ ) / I ~ ~  is proportional to to th- ' (n l  ) ant1 Z ( r c l ,  n 2 ) / n l  
is proportiollal to coth-'(n2), see Figure, 12 and 13. 

The exact relationship is cusientl> u ~ l d c i  in~estigation and \vill 1)e reported n hell available. 

0.990 
0.998 
0.998 
0.999 
0.981 

4 Scheduling 

Once sufficient capacity has been allocated. it i q  of inteiest to knom \\hat role a sclletluli~lg discipline 
plays a t  the switch. Specificall?.. is it necehhary to provide a scheduler that  is any Illore complicated 
than First-Come-First-Serve (F( 'FS) to achieve Qliality of Service gl~aranteehl The answer is 
positive, as discussed below. 

8458.92 
209.19 

4.1 Role of A Scheduling Discipline 

99.37 
99.37 

The purpose of a scheduling disciplille is to regulate competi~lg traffic ~ c i t h  some for111 of fairness. 
In the contest of VBR video tra1ismis5ion. thi:, role tran,latei to the follon ing: 

a Provide firewall against mi~l~ehaving transmitters. In thib role, the scheduler acts as a policing 
agent and ensures that those n lio violate d11 i~litiall! agleed t~poti ( ont r,lc t (lo not adversely 
affect those rvho are well b ~ I i a \  PCI . 

a Provide priority disciplilles in o~.der to facilihte different rates to different t,ransmitt.ers. There 
are two cases that ileecl t,o I)c iitltlressetl. one \vhen all translilitters i1l.e \\-ell I~ehaved, and one 
when they are not. 

If transmitters could niisbehave. a priority discipli~le could provit l~ the necessary firewall 
to  each illdiviclual class of tra.ffic. For iust,ance. Virtual C'lock. Hierarchical Round R.obin 
and Pulse try to ma.tch usage rate of resource ~vi th  t,he contra.ct a.greed upon and prevent 
misbehaving users fro111 nlol~opolozing resources. 

If all VBR video transmitters are well behaved however. and ellough capacity has been al- 
located, then is a. scheduling cliscipline still potentially useful'? The anslvel appears to be 
positive, given a, variable bit rate traa~slnission. The nest, i ten1 atldresses t,his snbject. 



a vs. - log(epsi1on) 

E i g l i l ~  9: (1 1,s. - logloc for the da ta  set. 



Figure 10: (L vs. S t a n t l n ~ t l  Deliation ( 0 )  for the  data set f o ~  c = 0.1. 
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Figure 11: a vs. Standard Deviation ( a )  for. the d a t a  set for. other val i~es  of' 6 .  



Z(n1, n2)/nl vs. arccoth(n1) 
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Provide good spatial loss distributioil characteristics. In tlle contest of I'BR video sources, 
this means that  the scheduler should not relegate all the losses to  large frames. The motivation 
for this comes from these observations: 

- compression of bits in VBR video sources usually implies that .  the larger the number 
of bits transmitted, the inore important they are in that  there are illore differences 
across frames. Screen refreshes are the extreme example of this scenario. Therefore, it 
may in fact be a good idea give large frames a break, but this could lead to difficulties 
in distinguishing large fran~es from misbehaving sources. Fortunat~ly.  the next bullet 
suggests a property of stochastic processes, that  may be used to diqtinguish well behaved 
sources from illisbehaving ones. 

- the slim of the bits transmitted over several frames by well behavrtl video sources wo~ild 
come close to each other everv so often as stated in the fo l lo~v i~~g  theorem: 

Theorem 1 (Griffeath 1978 [lG]) Lcl i l  . 1 2 . .  . . nltrl jl. jz,. . . lx inclcpcr~clc I [ /  ct110 ~( len f l ca l l y  dis- 
tributed randonz val-ic1blc.5. Lcf  

. 5 , (1<)  = r l  + 1 2  + . . . + i A  

and 

* ? , ( A ' )  .I1 + .IL f . .  . f J I , .  

Then 3N  such thcit 
>st ( -\- ) = >SJ ( ) n..L.. 

i.e., after some  Jinite 17111nbti of 1 1 ~ f c r 1 ~ 1 1 ~ .  fhc tot[11 r/11011)c1 ofl~(rcXct6 t1.(l11~1n7tfc(l  by I [ l ) / d j  inust 
be equal with prok~bilz fy  011~. 

As a consequence of this theorem, the two 1.1.d. sources itould ha \e  transnlitted the sanle number 
of packets for some N with probability one. (Esperiments sholv that  this convergence occurs for 
reasonably small values of .IT.) In l)et\veel~. however, they may follow different sample paths. 

The algorithm proposed nest, \\ill by developed under the a>\umption that bources are well 
behaved. A n~etllod to built1 a fi rcn all agairi\t ~~li\l)eliaving \ourtc\ \\ i l l  t l i \c ~l\\etl ,ubsequently. 

4.2 A Generalized Virtual Clock Algorith~m for Variable Rate Video 

The key idea in the schedulii~g algoritl1111 is to estinla.te t.11~ insta.ntaneous ~.a.t,e of trailsinission of 
a source and use it to drive the Virtual (llocli algorit.11111 (or Hierarchical Round Robin algorithm). 
We shall call this, a,n instance of the class of Ckneralized Virtual C'locli (GI:(-') .Algorithms. 

The classical Virtual Clocli algorithru uses the average trailsillission rate of' a. source to prioritize 
the latter's  packet,^, i.e.. if X clenotes the ayerage rate o l  a source. then its x."' j)acl<et is st,amped 
with a priority nl~mber k/X. Tlle scheduler then gives the llighest priority to tllc packet that  has 
the smallest priorit,y n u n ~ h ~ r .  The C;\.-C' algorithm prol~osed here for \'BK video sources would 
prioritize packet,s of a source accort l i~~g to its inst;-lntaneous trans~nihsion rate X instread of the 
average rate X. This is t,o ensure that the scheduler docs not excessively penalize larger frames 
(e.g., refresh screens) of well behaved sources. In fa.ct. if the capa.city is exceeded, (and this is 
designed to happen very infrecluent.ly). the losses a.re distributed a.cross the transmitt.ers, with the 
hope that  due t,o C;riffeatli's coupling t l~eore~n .  the scena.rio \[:ill he reversed shortly. Simula.tion 
results on the performance of this a.lgorit,hiu will verify this. 

The first step in the GVC! a.lgorithm is to devise a good estima.tor for the iilstailtaileous rate. 
One possibility is to  assullle tl1a.t the instarltaneous rat.e for fra.ule r l  + 1 is tlle same a.s the observed 
rate during fra.me 11 hut  this does not n.or.1.; \\-ell ill practice h e c a ~ ~ s c  



a )  there is noise in the measured rate, and 

b) the algorithm does not model the correlatioil structure of the data accurately. 

It turns out that  the Filter given in Appendix A estimates the ra.tes quit,e accurately. The 
performance of this estimator is shown in Figure 14. The y-axis represents the actual and the 
predicted rates, while the x-axis represerlts time, in units of frames. 

With the rate-estimator incorpora,ted into the Virtual Clock algorithm. we nest  address the 
performance of the GVC algorithm. Specifically, the spatial loss distributions of C;\;C' and Virtual 
Clock are investigated with the help of si~nulation. 

A simple and efficient simulation algorithm was written for this purpose. It 's description is not 
in the scope of this pa.per. The algorithm is simple, and takes oilly a few ~lliliutes of real time t o  
run on a Sparc 11, t o  silllulate a 30 nliilute video trace. 

The simulator kept t,ra.ck of the unmber of pacliet,s lost in a frame on a per source basis whenever 
the allocated ca,pacity was esceetled. Let S be tlre number of packet,s dropl~etl in a, fi.a.me for a 
designated source, given that  ca.pacity was esceedetl. Figures 15 and l(i slio\v P r { S  = k }  vs. b for 
GVC and Virtual Clock for a pa.rt,iculal. sinlula.tion. The s-axis is k .  anti the y-axis is P r { X  = k}. 
Notice that GVC reduces the probabilit,y of {S = k )  for large k. a.s compa.red to i'irtual Clock (as 
it should). This, hoivever. camps at t I I P  cost of increasing t l ~ e  loss prol~al~ilities for smaller values 
of I;. 

4.3 Protectio~l of GVC froin Abuse 

It is possible that some sources migllt attelllpt to abuse the rate estiluat~on featule of the Gener- 
alized Virtual Clock algorithm. Therefore some forln of protection need\ to be in place. We are 
currently investigating this problem. antl 0111) sollle initial thoughts are plesented. 

We believe that  the law of largc I ~ I I I I I ~ I ~ I \  maq be used to detect n~~\beha\ring sources. For 
suppose, , -T2, .  - - , Sn are the nunll~er of hits transluittetl over huccessl\e frames hy a particular 
source and let 

S a  = \-I + .YL + . . . + .IYi.. ( 12) 

Then, by the (weak) law of large n i l~~ l l ) r .~ \ .  

Now, for large k ,  the curve vs. k hlio~ilti esqentially have a con>tant slope EX1. (We verified 
this for the data and it \ t d h  t lue etell for t lre data in Figure 14 . )  To protect nell behaved sources 
from misbehaving ones, one posbibility I \  to  prebcribe an envelope arouncl the average slope line, 
and ascertain that  Sk renlain nitllin this envelope. (In other wolds. plescl~be two functions l ( k )  
(lowMark) and h ( b )  (highhlarl\) aild me C4 i . r  onl! if I ( k )  < ,SI, < h(X ).) The en\elope should be 
wider for small k and approach the avclage slope line as k increaws. ultiruately rnerging with it as 
k i oo. (An example envelope is the 99% confitlence intcl\al a round  hi, . )  Silllulatio~l studies are 
are currently in progresh. ant1 tllc. rc\~llts \\ i l l  be reported in t l ~ c .  jo111 r 1 ~ 1 1  \ P I . \ I O I ~  of the paper. 

5 Related Work 

Resource allocation and equivalelrt Ix+ntl~vidtli conlputations have bee11 uiitler considerable investi- 
gation lately 11, 2, 3, 9, 139, 17. 18. 19. 32. 26. 30. 31, 33, 34. 20. 21. 22. 4, 6. 10. 11, 12, 35 ,  36, 371. 
[4, 6, 10, 111 propose using precon~puletl l)and\iitlth requirement curves clefined tlu.ougI1 simulation. 



Predicted and Actual Rates 
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Figure 14: Performance of t,he rate  esti~liatiorl algorithm for a, video-phone source. Only a small 
section of the data is shown to increase readability. Other  sources pcrf'orruetl si~ililarly. 



set 1 

Figure 15: Spatial loss distribution of G I v ( ' .  The figure sho~vs the prol>ability of number of packets 
lost per frame, given that  t11el.e was losb. 



set 1 

Figure 16: Spatial  lot, tlistribution of i ' ir tual ('lo( li. 



Anick et a1 [l] and Gueren et  al [12] study equivalent bandwidth for on/off soulces \\,it11 exponential 
holding times in each state. The solution proposed in [12] uses a combinatiou of fiuid npproxima- 
tion method and what is called stationary approxirnatio~l method by the authois, to determine the 
equivalent bandwidth. [36. 371 suggest the use of average rate and variance of sources to compute 
the equivalent bandwidth. [35] suggests the use of probability density functions of sources to calcu- 
late the equivalent bandwidth. The main differeilce between [35] and this paper is that the latter 
has derived simple heuristics for capacity allocation from convolved densitj functions of real data, 
instead of using the density functions themselves. 

Hyman et a1 [20, 21, 221 view the Quality of Service collstrairlts in terms of an admissible load 
region. Given a Quality of Service co~~s t ra in t  and traffic characteristics, they forinulate a constraint 
optimization problem t o  maximize the systeln utility, and this forms an admis.;iIjle load region. The 
admissible load region is determined through extensive simulations in [20] and through a linear 
programming model in [22]. The ~imilari ty betiveen [20. 21. 221 and the problenl addressed here is 
that  the value of N fol a hicll Z \ equals the capacit! of the switch is the iuaximum admissible load. 
For heterogeneous traffic. a himilar n~apping lloltls l~etneen the convol\ed (lath nild their nunlerical 
solutions, if t is held con.jtant. 

There has also been a consitlc~ablc alrlolillt of norli reported lately on schetluling disciplines, 
see for instance, Earliest-Deadline [S]. Fair Queueiilg [29. 28, 51 Hie~aichiral-Round-Robin [24] 
Stop-and-Go [13. 141 and 1-iitual ('loel, [-lo] and Pulse [27]. 

6 Conclusion 

Video applications are expected to clo~uinate the networl; \vorkloatl in fut.ure broadband networks. 
Therefore, efficient ca.pa.city alloca.tiotl ant1 sclleduling strat,egies, specific to video traffic, can result 
in large savings in terms of netiiror.l; resolrrces ~vllile s in~ul taneousl~ delivering cjuality service to 
users. 

This paper present.ed simple ant1 accurat,e heurist,ics for ca.pacity allocat,ioi~ for va,ria.ble bit rate 
video sources using deta.iled traffic a.nalysis of fift,eeil long tra.ces of video da.ta. The ailalysis found 
that  if ZN was the minim11111 capacity neetled to  support -4' i.i.cl. sources. each of ~vllich had a loss 
tolerance E ,  then for sillall t. Ziv/S could I)e al>prosima.ted \\-it11 u coth-' .lr + b. lvhere n and b were 
independent of N .  Further cr was found to l)e a 1inea.r function in in ( n ~ e a n )  and l o g ( € )  whereas b 
was found to  be approximat,el\. a, cl~~a.clra.tic i n  l og (<) .  The exact ecluat.ion> for ( 1  ant1 b,  given by 
(10) and (9), had a, coiifidence l e ~ e l  greater t ha11 99%. 

A new algorithm wa.s a.lso pro1,osed for effective scheduling of pacliet s beloilging to  variable bit 
rate video sources. This a.lgorit11111 \\:as a gr~~c~ralization of the \'irt,ual ~ ' locli  algorithm. I t  estimated 
the instantaneous ra.te of transinission of each source and used this inst,ead of a static average rate 
to  prioritize packets. In so doing. i t  t l.ie<l to s~~nchronize the swit,ch sclled~~ling rates and the pa.cket 
arrival rates of ea.ch source. For w ~ l l  1,chavcd sources. this ~vas  found to i~nprove the spa.tial loss 
distributions. 

Much work rema.ins to 1)e done. ILOIVPV~~I.. LVe are currently invest~igating analysis of heteroge- 
neous traffic mixes, a.nd also a, illeans to conll)ine the different eclliations for tr int,o a single equation. 
Parallel work is a.lso in progress to cletei.mine a theoretical proof for the nla.in observation of this pa- 
per, the coth-lN coiljectlire. llorc. sinlr~la~ion> stutlics arc. also untlcrway on algorithnls to thwart 
misbehaving sources. 
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A Instantaneous Rate Estimator for Generalized Virtual Clock 

The following filtering algorithm was used for estimating the installtal~eous rate of trar~smission of 
a source. The rea.der is referred to  [15] for details. 

Let x(.) be the quantity of interest, ill this case the rate of transmission. Let n'. = dzldt be the 
rate of change of x with respect to  time. 

Let i ( t l J t o )  be the estimated value of x for time t l  given that  the current tinle is to .  Similarly, 
let i ( t l l t o )  be the estimated value of .i. for time tl at  time to. 

Suppose that  the current tiiue is t .  Then the values i ( t l t  - 1) and ; ( t i t  - 1 )  and a new rnea- 
surement m(t)  is currently available. The filtering algorithm proceeds in t ~ i o  stc115: 
Step 1: Correct the estimate of . i ( t J t )  and i ( t l t )  : 

where 0 < a ,  ,i3 < 1. We assllllie At = I .  
Step 2: Predict for time t + 1. 

B Multiple Linear Regression 

This appendis overviews multiple linear regsession. For detail?. stc [2:3] or an\  \tatistics book on 
experimental design. 

1. The model for multiple regression is 

or in matris  form: y = Xb + e irhcrr 

b = A coluill~l vector \i it11 k + I elementb. 
y = A ~ o l u l n n  vector of I ,  obwrvetl valnes. 
X = A11 12 .T ( k  + 1 )  matrix nltotc ( I .  j + 1 ) t h  eleluent S,,,+l = 1 i f j  = O elbe .rtg 

2. Parameter estimation: b = (xTx)-~ (xTy) 
3. Allocatioil of variance: 

Let SSI' = SUKI of squares of 9,'s = C:;, y , L  
S,SO = n y r  
SST = ,S'5'1--55'0 
SSE = y T y -  bTxTy 
S,SR = , S 3 5 T - , S , S F  

S S E  is the sum of squares of tllt erlols. where error in the tth rucasure~~~en t  i 4  defined as 
the difference between the ol)servetl value y, nnd the model's prediction. Linear regression 
minimizes SSE. ,5',S'T is the sum of sqnarei of the total variation. and the difference between 
SST and S S E  is the variiltion that is ~ ~ r c c e s ~ f u l l ~  acco~~nted  for I ) \  rcgicssion. 



4. Coefficient of deternlina,bion: R' = S S R I S S T .  This fra.ction gives a, goodness measure. 

5. Standard deviation of errors: s, = 

6. Standard deviation of paramet,ers: sb, = s e a  where Cjj is tlle j th  diagonal term of 

C = (xTx)-l. 
7. Confidence intervals of the parameters: bJ t(l-a/2,n-k-l) wllerc 1 - u is the desired 

confidence level, and t~l-,lz,,-k-l) is obtained from the t-distribution. -A rule of thumb is 
that for n-  k - 1 greater than 30, one nlay use the Standard Normal dihtril~ution. The results 
reported here were therefore conlputed from the Standard Normal distril~ution. 

8. Analysis of variance: Let M S R  = S S R / k  and M S E  = S S E / ( n  - k - 1 ) ant1 let F,,,,,puuted = 
M S R / A 4 S E .  Then regression is significallt if Fcomputed is greater than  F{ , ,k  ,L -k - l ) .  The 
latter is the F distribution and its values ale given in illost stati,ticb books. J is the desired 
confidence level. For the esamplei i l r  this palwl. F ,.,,,,,,,,,,, naq 11111th gieatei than EiP.k,n-k-l) 
even at the 99% co~lfidellce Ie\.el. 

C Sample Output of a Regression Test for Coefficient cr. 

Note: The matris  b = (bo,bl,b2)' are tlie coefficiellts of interest. The ilalne b sllould not be 
confused with the coefficient 6 in Section 13. It \vas chosen in lieeping \vit 11 the ilotatioi~ of Appendix 
B. 

b Matrix:  e s t imated  c o e f f i c i e n t s  
bCO] = 673455.5597 
bCll = 3404385.2469 
b[2] = -132489.5156 

RSq = 0.997551, R= 0.998775 
s-e  = 340242.327178 

S t d  dev i n  bO, b l ,  b2 e s t i m a t e s :  373656.813858 143113.493093 11615.681527 

90-confidence i n t e r v a l  f o r  bO: 673455.560 ( 58790.101 , 1288121.018) 
90-confidence i n t e r v a l  f o r  b l :  3404385.247 ( 3168963.551 , 3639806.943) 
90-confidence i n t e r v a l  f o r  b2: -132489.516 ( -151597.312 , -113381.720) 
F-computed = 1629.296154, k = 2 ,  DegreesOfFreedom = 8 
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