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Abst rac t  

Or-sets were introduced by Imielinski, Naqvi and Vadaparty for dealing with limited forms 
of disjunctive information in database queries. Independently, Rounds used a similar notion for 
representing disjunctive and conjunctive information in the context of situation theory. In this 
paper we formulate a query language with adequate expressive power for or-sets. Using the notion 
of normalization of or-sets, queries at the "structural" and "conceptual" levels are distinguished. 
Losslessness of normalization is established for a large class of queries. We have obtained upper 
bounds for the cost of normalization. An approach related to that of Rounds is used to provide 
semantics for or-sets. 

1 Introduction 

Applications within design, planning, and scheduling areas have motivated Imielinski, Naqvi, and 
Vadaparty t o  introduce the notion of or-set [15, 161. Although or-sets are in essence disjunctive 
information, they are distinguished from the latter by having two distinct interpretations. An or-set 
can either be treated at a structural level or at a conceptual level. The structural level concerns the 
precise way in which an or-set is constructed. The conceptual level sees an or-set as representing an 
object which is equal to a member of the or-set. For example, the or-set (1,2,3) is structurally a 
collection of numbers; however it is conceptually a number that is either 1, 2, or 3. (In this report 
angle brackets () are used for or-sets and {) for the usual sets.) 

The two views of or-sets are complementary. Consider a design template used by an engineer. The 
template may indicate that component A can be built by either module B or module C. Such a 
template, as explained in [15], is structurally a complex object whose component A is the or-set 

*An extended abstract of this paper will appear in The Proceedings of the 12th Symposium on Principles of Database 
Systems, 1993. 
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containing B and C .  A designer employing such a template should be allowed to query the structure 
of the template, for example, by asking what are the choices for component A. On the other hand, 
the designer should also be allowed to query about possible completed designs, for example, by asking 
is there a cheap complete design. In the latter case, as the designer is still in the process of creating a 
design, the "completed design" is purely conceptual. Both views of or-sets are important and should 
be supported. 

The structural interpretation of or-sets is quite clear. However, the conceptual interpretation requires 
further exposition. A few operators at  the structural level prescribing the interaction of or-sets, prod- 
ucts and ordinary sets are needed for this purpose. These operators are used to  express transformations 
among objects that are conceptually equivalent. As will be seen in Section 3, these operators are the 
only crucial ones for the passage from the structural to the conceptual level. 

The operator or-pS : ((s)) -+ (s) flattens an or-set of or-sets of type s.  For example, applying or-p 
to ((1,2,3), (2,4)) produces the or-set (1,2,3,4). The most important thing to note here is that or-p 
preserves the conceptual value of the input. First (1,2,3) is conceptually either 1, 2, or 3. Similarly, 
(2,4) is conceptually either 2 or 4. The input is conceptually either (2,4) or (1,2,3); that is, it 
conceptually represents 1, 2, 3, or 4. This is of course what the output is at  the conceptual level. 

The operator or-p2s9t : s x (t) -+ (s x t) takes in a pair of type s x (t) and pairs the first component 
with every item in the second component, which is an or-set. For example, or-p2 (1, (2,3)) yields the 
or-set ((1,2),(1,3)). Here the input stands conceptually for a pair whose first component is 1 and 
whose second component is either 2 or 3. That is, the input is conceptually either (1,2) or (1,3). 
Hence or-p2 also has the important property of preserving meaning at the conceptual level. We also 
use or-plsyt : (s) x t + (S x t)  for the operator that does pairing the other way round. 

The operator as : {(s)) -t ({s)) takes in an ordinary set containing or-sets of type s and produces an 
or-set containing sets of type s obtained by combining the or-sets componentwise in all possible ways. 
For example, a {(2,3), (4,5,3)) produces the or-set ({2,4),{2,5), {2,3), {3,4), {3,5), (3)). This is 
also an operator that preserves conceptual meaning. In the above example, the input is conceptually 
a set of two elements such that one of them is either 2 or 3 and the other is either 4, 5, or 3. This is 
precisely what the output is conceptually. Note that sets such as (21, (4)) etc. are not part of the 
output, even though (3) is because it arises by letting both the first and second elements be 3. 

As a further example, consider the result of applying cr to {(1,2), (), (3)). It is not ({1,3), {2,3)). 
The correct output is the empty or-set (). To see this, let us find out what the input is at  the 
conceptual level. It represents a set of three elements, they are conceptually the values represented 
respectively by (1,2), (), and (3). Hence the first element is either 1 or 2 and the third is 3. But 
what is the second element? Recall that an or-set represents at the conceptual level an object that 
is equal to one of its elements. Since () has no element, it does not represent any object at the 
conceptual level. Consequently, our input represents at the conceptual level "a set having an element 
which is not anything." As there is no such set, the input does not represent any object either. This 
coincides precisely with the meaning of the output. An item which does not represent any object 
at  the conceptual level indicates a conceptual inconsistency. (But note that it is still structurally 
meaningful .) 



The above operators provide an idea of what to include in a structural query language. But what 
kind of operators should be provided in a conceptual query language? Should there be an operator 
for testing whether two objects are conceptually equivalent? Should there be an operator for testing 
whether one object is amongst the objects that a second object can conceptually be? 

Fortunately, it is not necessary to make such chaotic "enhancements." It is found that any two objects 
which are conceptually equivalent can be reduced to the same object by repeated applications of the 
above operators. The normal form induced happens to be independent of the precise sequence of 
applications of these operators. Moreover, given the type of any object, the type of its normal form 
can be read off. Therefore, one can robustly take the conceptual meaning of any object to be its 
normal form under the rewriting induced by the above operators. Consequently, a conceptual query 
language can be built by extending a structural language with a single operator normalize which takes 
the input object to  its normal form. A query at the conceptual level is then simply a query performed 
on normal forms. 

Related work. Imielinksi, Naqvi, and Vadaparty stressed the applications of or-sets in design and 
planning areas and informally explained the distinction between structural and conceptual queries 
[15, 161. The semantics and query language proposed by [15] are rather involved. They defined a 
concept of order-independence which is related to the notion of normalization but is based on assigning 
object identifiers, and demonstrated a sufficient condition for order-independence. In addition, they 
were able to demonstrate a coNP-complexity result for tha.t particular proposal. In [16] they studied 
some intrinsic lower bounds on complexity of LVC-style [22] queries on or-sets. The language can 
express queries of hyper-exponential complexity. Nevertheless, they were successful in identifying 
certain restricted tractable fragments that are useful in real-life applications. 

Rounds [24] studied complex object databases from the situation-theoretic point of view. Connections 
with natural language problems motivated him to introduce the notions of conjunctive and disjunctive 
information which correspond exactly to our notions of sets and or-sets. He studied order relations 
on complex objects and their logical representations. However, it is unclear whether his use of non- 
well-founded set theory is helpful in designing a database programming language. 

Organization. The main contributions and organization of this report aae summarized below. A 
query language o r - N m  that cleanly integrates or-sets and more traditional types of data at the 
structural level is proposed in section 2. 

In Section 3 we give two semantic representations which are in the spirit of Rounds' work [24] but 
using simpler machinery. For example, using our representations we were able to provide a simple 
proof that as is the isomorphism of semantic domains of types {(s)) and ({s)). 

A query at the conceptual level is exactly a query on an object that is in a certain normal form. 
In section 4, the normal form is properly characterized. Moreover, we show that the process of 
normalization is coherent. That is, the normal form of any object is independent of how the object is 
normalized. This allows us to define a query language or-niR4' at the conceptual level by adding a 
new operator normalize to or-N??.A. 

Since objects of different structures may have the same normal form, it is clear that certain structural 



information is lost by normalization. In section 5 ,  a Eosslessness theorem is proved. Consequently, loss 
of structural information has no effect with respect to a general class of queries. 

Queries a t  the conceptual level are much simpler than those at  the structural level. Unfortunately, 
conceptual queries must be performed on normalized data. In section 6, we study a few important 
costs of normalization. In particular, an upper bound on the number of elements in normal forms of 
complex objects and an upper bound on the actual size of normal forms of complex objects are given. 
Also significant is that we have been able to demonstrate that every definable query in or-NRA+ is at 
most exponential in the size of input, in contrast to the proposal of Imielinski, Naqvi, and Vadaparty 
[16] which contains some hyperexponential queries. 

2 Structural Query Language 

A nested relational language based on the idea of structural recursion [4, 31 and on monads [20, 
251 was proposed in [5]. This language is of polynomial time complexity and smoothly generalizes 
many approaches to nested relational algebras, cf. [2]. It is extensible and has an appealing syntax. 
For example, (x I x E normalize(DB), is-cheap(x)) selects cheap completed designs assuming that 
is-cheap and normalize are defined. (In section 4, normalize is added as a primitive to obtain the 
conceptual query language.) 

The algebraic version of the language is used in this report. We denote this language by NRsZ(C) 
where C are some additional primitives like operations on integers. As observed by Wadler in [25], 
the same syntax can be used for many "collection" types besides sets. In particular, by replacing the 
set operators of NR4 by the corresponding operators for or-sets, a language for programming with 
or-sets can be obtained. This language is denoted by mOT. 
For example, the above query becomes or-p o or-rnap(cond(is-cheap, or-?, Ir'()o!)) o normalize. Here 
cond is a primitive: cond(p,t, f ) (x)  = t(x) if p(x) is true and f(x)  otherwise. Then cond( is-cheap, 
or-7, K ( ) o ! )  (x) is (x) if x is cheap and () otherwise. or-map applies it to every element in the 
normalized database, returning (x) for each cheap x and () for each expensive one. or-p flattens this 
or-set of or-sets, producing an or-set containing precisely the cheap completed designs. 

In this section, the language for sets NStA and the language for or-sets NRAOT are integrated into 
a single language we called the structural query language, denoted by or-NRA. or-NRA supports 
structural manipulations of complex objects containing a mixture of freely combined tuples, sets, and 
or-sets. This language is obtained by the union of NRA and JV??.A,, and an operator a prescribing 
the interaction between sets and or-sets. 

Types. A type in or-NRA is either an object type or a function type s + t ,  where s and t are both 
object types. The object types are given by the grammar: t ::= b I t x t I {t} I (t), where b denotes 
a collection of base types such as booleans and integers. Included in b is a special base type unit 
containing precisely one element. In this report (t)  stands for the or-set of type t, while {t) is the 
ordinary set of type t. 



Morphisms (expressions). The "morphisms" (or expressions) of o r - A f ~  are formed according to 
the rules in Figure 1. The language is parameterized by a collection of primitives p of function type 
Type(p), amongst them are the equality tests =,: s x s -+ bool for each object type s ,  and a collection 
of constants c of base type Type(c). Type superscripts are usually omitted because the most general 
type of any given morphisms can be inferred (see [12] for example). 

Semantics. nl and n2 are first and second projections. ! maps anything to the unique element of 
type unit. (f ,g) is pair formation, f o g is the composition of f and g. id is the identity function. 
or-p2, or+ and a have already been described. or-7 is the singleton forma.tion: or-q(x) = (x). or-U 
makes union of two or-sets. or-map(f) applies f to all elements of an or-set. I< ( )  produces an empty 
or-set. or-pl has been omitted because it is definable or-map(r2, nl) o o r 4  o (82, nl). The operators 
from NR4 have similar meaning for the usual sets. 

We have included I ( ( ) ,  the morphism which produces the empty or-set, in or-NR4. We note that 
if f is a morphism of or-NRA such that K ( )  does not occur in it and such that each p in it does 
not involve or-sets, then f applied to any complex object x not containing any empty or-set yields a 
complex object f (x) containing no empty or-set . 

One of or-NRA's primitives, a ,  is essentially a translation of conjunctive normal form into disjunctive 
normal form. This operation may be very expensive. Indeed, if its argument is a collection of n two- 
element or-sets, all 2n elements being distinct, then cr produces an or-set containing 2n 12-element sets. 
Several query languages use expensive (exponential) operations. For example, in the Abiteboul-Beeri 
algebra [I, 51, one of the primitives is powerset: {t) i {{t)) which takes a set and returns the set of 
all its subsets. The result that we are going to formulate can be intuitively understood as follows: the 
expressive power of a is that of powerset. However, powerset does not use the () type constructor. 
To be able t o  speak of the equivalence of expressive power of languages one of which uses or-sets 
and the other does not, for technical purposes only, we introduce the functions or-to-set : (t) + {t) 
and set-to-or : {t) + (t) with the obvious semantics: or-to-set((xl, . . . , 2,)) = {xl, . . . , x,} and 
set-to-or({xl,. . . ,x,)) = (XI , .  . . , x,). We remark here that, if or-to-set and set-to-or are given, then 
NnA and NRA,, are interdefinable. That is, NRA(or-to-set, set-to-or) E :'RA,,(or-to-set, set-to-or). 

Proposition 1 A@U(or-to-set, set-to-or, a )  Ei W ( o r - t o - s e t ,  set-to-or, powerset). 

Proof. It is not hard t o  see that powerset can be expressed as follows: 

Conversely, we must show that a is definable in NRA(or-to-set, set-to-or, powerset). For the sake 
of clarity we use cond to show that a is definable. A clumsier proof that does not use cond is also 
possible. It is known that the test for equal cardinality can be implemented (see [5]). To check whether 
1 X (5 I Y 1 ,  notice that 

p o map(XZ.cond(equal-card?(X, Z ) ,  X, {}))(powerset(Y)) 

returns X if I X 151 Y I and {) otherwise, thus giving us the test for lesser cardinality. 



Operators shared by M'7.A and JVR~,, 

g : u + s  f : s - t t  u s  g : u + t  
f o g : u - + t  qt : s x t  + s n2stt : s x t  -+ t  ( f , g ) :  u  -+ s  x t  

!t : t -+ unit Kc : unit -+ Type(c) P : T Y P ~ ( P )  idt : t  -t t  

Operators from M'7.A 

p>t : s  x { t )  -+ { s  x t )  qt : t  + { t )  ut : { t )  x { t )  -+ { t )  

f : s - + t  

pt 1 { { t ) )  + I t )  : unit + { t )  map f : ( 4  -+ i t )  

Operators from JU??.A,, 

f : s + t  
or-map f : ( s )  -+ ( t )  or-p,"J : s  x ( t )  + ( s  x t )  or-# : t  + ( t )  

or-ut : ( t )  x ( 1 )  -+ ( t )  or-# : ( ( t ) )  -+ ( t )  I<()t : unit -+ ( t )  

Interaction of sets and or-sets 

at : { ( t ) }  + ( i t } )  

1 

Figure 1: Syntax of or-NR4 



Now, given an input of type {(t)), first apply map(or-to-set) to  it and then flatten the result, thus 
obtaining the set of elements that occur in the input. Applying powerset now gives the set of all sets 
of those elements. A set of elements of the input makes it to the output if and only if two conditions 
hold: first, its cardinality does not exceed the cardinality of the input (i.e. the number of or-sets) and 
it has a nonempty intersection with any element of the input, unless the input is {). Since selection, 
lesser cardinality test, intersection and test for nonemptiness are definable in NR4 (see [5] and above), 
selection over the powerset followed by an application of set-to-or yields the desired result. 

3 Partial Information and Or-sets 

In this section we address some semantic issues. Presence of or-sets in a database means presence 
of partial information. We assume that partiality can be expressed by means of a partial order on 
database objects, i.e. x 5 y expresses the fact that x is more partial than y or y is more informative 
than x. The idea of using partially ordered sets to model partial information has been around since 
early 80s: Codd's tables, for example, can be captured by so-called flat domains which are obtained 
from unordered sets by adding a unique bottom element (null). Zaniolo's approach of having three 
kinds of nulls - unknown, nonexistent, existent unknown - is another example of ordering on objects. 
In fact, a general approach to the treatment of partial information as ordering on the set of objects 
was proposed in [7] and further developed in [6, 181. We remark here that this approach is also suitable 
for databases without partial information. In such a case, values of base types are totally unordered. 

Assume that orders on values of the base types are given. It is clear how to order pairs: (x, y) _< (x', y') 
iff x 5 x' and y 5 y'. However, there is no immediate answer to the question how to  extend the ordering 
to the set and or-set types. In [7, 6, 18, 241 two ways to extend an ordering to  subsets of a partially 
ordered set were studied. Let (X, <) be a poset and A, B C_ X .  The Hoare and the Smyth orderings 
are defined as follows: 

A L ~ B ( $ v ~ E A ~ ~ E B : ~ ~ ~  

Traditionally the condition B = 0 + A  = 0 is omitted because the S~nyth powerdomain does not 
contain the empty set. Observe that if X is totally unordered, sb is the subset and _<fl is the superset 
ordering on non-empty sets. The Hoare ordering was also used in [14] to order relations with partial 
information. We will try to justify using sb to order values of the set types and <f to order the values 
of the or-set types. 

Assume that a set A  C X is given. How can we improve our knowledge about the real world situation 
represented by this set? There are two ways to do so: first, by replacing an element a  E A  by a 
set A' of elements greater than a. For example, if a record [Name + I, Office 3 '515'1 is contained 
in the database, we can improve our knowledge about the office assignment by replacing this record 
by [Name + 'Joe', Office + '515'1 and [Name =+ 'Mary', Office + '515'1. Secondly, we can add 
an element to  the set. For example, adding a record [Name + 'Bill', Office + '212'1 g' ives us more 
information about office allocation. 

Define a binary relation + on subsets of X as follows: A I., ( A  - { a ) )  U A', where a  5 a' for all 



a' E A', and A -u A U {a). A set B is said to be more informative than A, denoted A 2 B, if B can 
be obtained from A by a sequence of transformations -. In other words, 2 is the transitive closure 
of -A. 

Similarly for or-sets we define H by A H ( A  - {a)) U A', where a 5 a' for all a' E A', and A H A - { a )  
provided that A - {a) is not empty (removing an element from an or-set makes it more informative). 
Again, A is defined as the transitive closure of H. 

Proposition 2 2 coincides with sb and coincides with <ti. 

Proof. First notice that - &sb and ~ ( I l f l .  Therefore, transitivity of - and H implies CC_<~ and 
Ac<N. 

To prove the reverse inclusion, let A sb B. The case of empty sets is obvious, so assume A, B # 0. 
Let B, = { b  E B I a 5 b) and BA = UaEA B,. Notice that BA # 0. For each a E A, apply the 
following transformations to  A: A 2.i (A - {a)) U (B, U {a)) for each a E A in any order. This shows 
A 4 (A U BA). For any a E A, pick b, E B, and apply transformations A U BA 2.i ( A  - {a)) U {b,) 
in any order, thus obtaining A 2 BA. Finally, if B - BA # 0 and B - BA = {bl , .  . . , blc), BA 2.i 

BA U {bl) - . . . - BA U {bl,. .. , bk)  = B,  i.e. A ...f. B. This shows sbc;. The proof of < B E &  is 
similar. 

This proposition justifies the semantics defined inductively below on types. Notice that the semantics 
for or-sets is given in such a way that the empty or-set is incomparable with any other or-sets. This 
matches very well the intention that the empty or-set stands for inconsistency. 

For each base type b a poset ([[b], Sb)  is given; 

1s x tn = (Us] x Ut], I s  X 51); 

IIitIll = (Pfin(IIt])r 5:); 

1(t)ll = (Pfin(Itl)? 19. 

In several papers dealing with partial information in databases it was proposed that instances of type 
{t) be restricted to those containing no comparable elements, commonly called antichains, see [7, 181. 
For example, if one field of a record plays the role of object identifier, then instead of having two 
comparable elements with the same oid their join should be taken, provided the records with the 
same oid are consistent. One way to obtain an antichain from an arbitrary finite set is to take all 
the maximal elements. Dually, we can take the minimal elements. Thus obtained antichains will be 
denoted by max< A and min< A or just max and min if the ordering is understood. We suggest using 
rnax for the usual sets and min for or-sets (cf. [24]). Then the relations - and I-+ must be redefined as 
follows: A -, max((A - a) U A'), A -, max(A U a) and A min((A - a )  U A'), A H, min(A - a). 



Proposition 3 On the family of finite antichains of (X, I), d, coincides with sb and 2, coincides 
with < d .  

Proof. Again, as in the proof of proposition 2, only the case of nonempty should be considered and 
only one direction, namely sbc; and < t f ~ A  must be proved as the other direction is immediate. 
The empty set case is immediate, so throughout this proof all the sets are nonempty. We also need 
the following ordering on sets, called the Plotkin ordering (cf. [ll]): A < h  B A sb B and A IH B. 

Let A, B # 0, A n B = 0. Define BA is in the proof of proposition 2. Similarly, Ab = { a  E A [ a 5 b) 
and AB = UbEB Ab. 

Claim 1: Let A <b B, A n B = 0. Then A a B and, moreover, only elements of A U B are used in 
the transformations. 
Proof of claim 1 is by induction on the size of A U B. The base case I A U B I= 2 is obvious. In the 
general case, let B' be a minimal subset of B such that A jh B'. Our goal is to  show that there exist 
a E A and b E B' such that A - Ab sb B' - b. Then, by induction hypothesis, A - Ab B' - {b} and, 
therefore, A 4 Ab U (B' - {b) (the same transformations can be used). Since Ab U (B' - {b)) - B', 
A 2 B' follows, and adding elements of B - B' gives us A 4 B. 

Assume that no pair (a, b) such that A - Ab < b  B' - b exists. A - Ab sb B' - b always hold. Therefore, 
whenever a < b, there exists b l  E B' such that bl 2 a1 implies a1 E A*. Since a1 < bl ,  there exists 
bz E B' such that a;! E Abl whenever a2 j b2. Notice that a2 5 b since a;! 5 bl and therefore must 
be in Ab. Since A and B are finite, continuing this process, we obtain a finite number of elements 
bl, .  .. , bk # b (k may not be zero) such that Abi Ab for all i = 1,. . . ,k.  We now claim that 
A < b  B' - {bl,. . . , bk). Clearly, A B' - {bl , .  . . , bk). To prove A sb B' - {bl,. . . , b k ) ,  let a0 E A. 
There is bo E B' such that a0 < bo. If bo is one of b,'s, i = 1, .  . . , k, then a0 < b. Hence, bo can be 
chosen from B' - {bl, . . . , bk). Therefore, A < b  B' - {bl,. . . , bk) which contradicts minimality. This 
contradiction finishes the proof of claim 1. 

Claim 2: Let A <b B, A n B = 0. Then A A B and, moreover, only elements of A U B are used in 
the transformations. 
Proof of claim 2 is similar to the proof of claim 1. Again, use induction on I A U B I. Since removal is 
now allowed, assume w.1.o.g. that no proper subset of A is less than B w.r.t. jb. We claim that there 
exists a E A such that A - {a) jb B - B,. Suppose not; then for every a E A there exists a1 E A such 
that B,, C B,. Continuing, we obtain B, > B,, 2 B,, > . . .. Since all the sets are finite, Bat = Ba, 
for some distinct a; and aj which contradicts minimality of A for A - {a;) < h  B. Now, given a E A 
such that A - {a) jb B - B,, apply the hypothesis to A - {a) and B - B, and observe that a is not 
under any element of B - B,. Hence, A A ( B  - B,) U {a) since only elements of (A  - { a ) )  U ( B  - B,)  
were used in transformation. ( B  - B,) U {a) - B finishes the proof of claim 2. 

Claim 3: Let A B (or A B) and all -A and ti transformations use only elements of A and 
B. If C is a finite set such that both A U C and B U C are antichains, then A U C ..f. B U C (or 
A U C A  B U C ) .  
Proof of claim 3. Clearly, C does not interact with any or - transformation, provided they use 
only elements of A U B. 



Now, let A sb B. Since A, B are antichains, for A' = A - B and B' = B - A one has A' sb B'. 
Therefore, A' sh B> and by claim 1 A' 2+ Ba. Moreover, all transformations use only elements from 
A' U Bk. Then, by claim 3, A 4 Bk U ( A  n B). Adding elements to the right hand side one obtains 
A 4 B. The proof that A ~ f l  B implies A B is similar and it relies on claims 2 and 3. The 
proposition is proved. 17 

This proposition shows that if we deal with antichains, we can change the last two clauses in the 
inductive definition of the semantics of types into 

where Ah(X) is the set of finite antichains of X .  It is clear how to define semantics of or-niRA 
expressions if either semantics for types is used. In the case of the antichain semantics, if an application 
produces a set (or or-set), max (or min) operation is used to make the resulting object into an antichain. 

a in the case of the antichain semantics requires some care: a, = lala is a function from [{(t)}], to  
[({t))],. Given an element of [{(t)}],, i.e. an antichain A = {A1,. . . ,A,) w.r.t. <b, of antichains 
from [t],, let A; = {at,. . . , ahi). Let .FA be the set of all choice functions f : {I, .  . . , n) -+ IN such 
that 1 < f (i) 5 ni. For f E FA, f (A) is defined to be {a;(l), . . . , a Y(~)). Then 

a,(A) = min b(max f (A)) 
f G 3 . 4  5 

Furthermore, the famous result that iterated powerdomains a,re isomorphic [13] can now be given a 
very simple description (cf. [19]): 

Theorem 1 a, establishes an isomorphism between [{(t))], and [({t))],. The converse Pa is 

Pa(A) = m u  < I  (minf  (A)), A E [({t))Ila- 
f E 3 d  - 

Proof. We have to show that a,  maps [{(t))] to [({t))], Pa maps [({t))] to [{(t))] and a, and Pa 
are mutually inverse and monotone. The first two claims follow immediately from the definitions of 
a, and pa. To complete the proof, show that a,  is monotone and pa o a, = id. By duality the proof 
of monotonicity of pa and a, o pa = id can be obtained. 

We start with two easy observations. If Yl, Y2 are finite subsets of an arbitrary poset, then 
1) Yl sb Y2 iff maxYl <b m a y 2 ;  
2) Yl 5fl Y2 iff min Yl <I  min Y2. 

Throughout this proof, A is defined as above, i.e. A = {A1,. . .,A,) and each A; consists of elements 
a:, j = 1,.  . . , ki. 
Claim 1: a, is monotone. 



Proof of claim 1: Let A ,B  = {B1, ..., B,} E [{ ( t ) } ]  and A sb B. We must prove cu,(A) aa(B). 
In view of the above observations, it is enough to show that for any f E 3&3 there exists g E .FA 
such that g(A) sb f (B). Since for each i = 1,. . . , n there exists j; such that A; stf Bj,, there 
is an element ahi E A; such that a i i  5 bF(jil. Let g(i) = pi. Then for this function g one has 

{a' . ( i = 1 , .  . . , n} <b {bif(i) I i = 1,. . . , m},  i.e. g(A) sb f(f?). Claim 1 is proved. 
g(r) 

Let A E [{ ( t ) } ]  and B = {BI,. . ., B,} = cra(A) E [ ( { t } ) ] .  By 1) and 2) above, to show that 
pa o a, = id, i.e. that Pa(B) = A, it suffices to prove 
Claim 2: For any f E FB there exists A; E A such that f(B) sfl A;. 
Claim 3: Every Ai is in P,(B). 

P m f  of claim 2: Let C be the collection of all sets f (A) where f E FA; C = {GI,. . . , Ck}. Then for 
any g E Fc, there exists A; E A such that A; is contained in g(C) because, if this is not the case, for 
any A; E d there exists j; 5 k; such that aii E A; and, for any f E FA, g on f ( d )  picks an element 
different from a;,. If we define fo such that fo(i) = j;, g may pick only elements of form a;, on fo(A), 
a contradiction. Therefore, g(C) jn A; for some i. 

Let f E FB. Let H be the set of functions in 3+4 that correspond to elements of B = a,(A) or, in 
other words, rnax h(A) E B for h E H. Then, for any h' E 3+4 - H ,  there exists a function h E H such 
that rnax h(A) sb rnax h1(A), i.e. h(A) sb ht(A). Since h E H ,  rnax h(A) E B, i.e. rnax h(A) = B; . If 
f ( i )  = j ,  then there is an element in ht(A) that is greater than bi .  Define a function g E Fc to coincide 
with f on those C;'s that are given by functions in H. On Ci that corresponds to  f E - H, let g 
pick an element which is greater than some bi  where f( i )  = j (we have just shown it can be done). 
Then f(B) {c;(;, I i = 1,. . . , k} = g(C). We know that there exists A; E A such that g(C) <fl A;. 

Thus, f (B) A;. Claim 2 is proved. 

Proof of claim 3: Prove that for any a: E A; there exists BI E f? such that a$ E Bl. Consider the set 
. . F? of functions f E FA such that f (i) = j. If for no f E F;: a) E rnax f ( A ) ,  then there exists A, E d 

such that all elements of A, are greater than a:, i.e. A; jH A, which contradicts our assumption that 

A is an antichain w.r.t. 5" Hence, a; E rnax f (A)  for at least one function in Fz. Since A is an 
antichain, for any p # i there exists a: E A, which is not greater than any element of A;. Change f to 
pick such an element for any p # i. Then a; is still in rnax f (A). There exists a function f' E FA such 

that rnax f1(A) sb rnax f (A) and rnax f1(A) E a,(A). If f1(i) = j' # j ,  then, since f1(A) sb f (A) 
and A; is an antichain, a:, 5 a$ for some p and q, where p # i. But this contradicts the definition of 
f .  Hence, fi(i) = j and a; E rnax ff(A) because a: E rnax f (A). Since rnax f t (A)  = BI for some index 
1, a: E Bl E B.  

Let B' be the collection of elements of f? that contain elements of A;. Then we can define a function 
f E FB on elements of B' to pick all elements of A;. Each Bj E f? - f?' either contains an element of 
A; or contains an element which is greater than some a; E A;. Let f pick any such element. Then 
min f(B) = A;. Suppose A; $! ,Ba(B). Then A; sn ming(B) for some function g E 3&3 such that 
ming(B) E Pa(U). By claim 2, g(B) <ti  Aj for some Aj. Hence, ming(B) <ti  Aj and since A is an 
antichain w.r.t. I#, A; = Aj = ming(B) E Pa(f?). This finishes the proof of claim 3 and the theorem. 



It was shown in [26] that the orderings sb and <n can be given a logical interpretation. Motivated by 
applications in the semantics of concurrent programming, Winskel used the modal connectives and 
0 to describe sb and I#. Rounds [24] used a similar logic to show the interaction between derivable 
properties of complex objects and their ordering. Here we present what we believe is the simplest 
interpretation of logics of [24, 261 for complex objects with or-sets. 

Start with an unspecified language C that contains the symbol V for disjunction but does not contain 
&, and 0. With each element x E [b], where b is a base type, associate a collection of formulas 
in ,C closed under V,  called the theory of x and denoted Th(x) in such a way that x < y implies 
Th(x) > Th(y) and x # y implies Th(x) # Th(y). For example, if [b] is a flat domain, i.e. an 
unordered collection of values with added bottom element I which is less than anything else, the 
above requirement says that theories of distinct nonbottom elements do not coincide and the theory 
of I contains all other theories (i.e. bottom implies everything). 

The theory of a pair is a collection of pairs of statements from the theories of the components. The 
theory of a set is informally defined as those facts which are true of all elements of the set. A theory 
of an or-set contains facts which are true of at  least one element of the or-set. These descriptions are 
known as unary connectives in modal logic usually denoted by and 0 .  

Now we can give a formal definition of theories of objects in an extended language C U {&, 0 , O ) .  A 
theory of an object x, Th(x), is the minimal collection of formulas closed under V which contains 

(04 I 3i : 4 E Th(x;)) if x = (31, . . . , x,). 

Proposition 4 Given two objects 2, y of the same type, 

Proof. Induction on the type of x and y. The base case follows immediately from the definition. The 
case of pair is easy. Let x = {xl, . . . , x,), y = {yl, . . . , y,}, x 5 y means x Ib y. If U# E Th(y), then 
for all i = 1, . . . , m: 4 E Th(y;). Given any xj,  there exists y; such that x j  2 y;; hence # E Th(xj) and 
therefore 04 E Th(x). Conversely, let Th(x) 2 Th(y). Suppose that x gb y, i.e. there exists xi such 
that xi 5 yj for no yj. Then, by hypothesis, there exists a formula dj E Th(yj) such that q5j @ Th(x;). 
Let 4 = V . . . V 4,. Then 4 E Th(yj) for all j = 1,. . . ,m.  Therefore, 04 E Th(y) Th(x), i.e. 

V . . . V 4, E Th(x;) which means that for at least one j :  dj E Th(x;). This contradiction proves 
x sb y. A similar proof for the case of or-sets which is based on the properties of <fl is omitted. 

Since X sb Y iff max X sb maxY and X sfl Y iff min X min Y, proposition 4 is true if either [.] 
or [.I, semantics is used. 



4 Conceptual Query Language and Normalization 

As it has been pointed out already, there are two levels of manipulation of objects - structural and 
conceptual. This section is dedicated to the query language for the conceptual level. 

We start with a few examples. If a pair (x, y) of or-sets is given, say, ((1,2), (3,4)), on conceptual 
level we must deal with all possible objects it can conceptually stand for, that is, with or-set of 
pairs ((1,3), (1,4), (2,3), (2,4)). In this case the function that carries out transformation of structural 
representation to  conceptual one can be given as or+ o or-map(or-pl) o or-p2. Another example of 
the passage from structural to conceptual level is given by the primitive as : {(s)} -t ({s)), provided 
that s is in the or-set free fragment. 

Let us consider a more sophisticated example. Given an object x = ({(I, 2), (3)), (1,2)) of type 
{(int)) x (int). Denote the first component by y. Applying or4 ,  to x first yields ((y, l ) , (y ,  2)) which 
is an object of type ({(int)} x int). Applying or-map(a o TI, n2) yields an object 

of type ((tint}) x int). Finally, applying or+ o or-map(or-pl) yields 

of type ({int) x int). This can be considered as a conceptual level object for all the possibilities are 
listed. 

However, one could have used another strategy to list all the possibilities. For example, to apply 
(a o r l ,  7r2) first to obtain an object of type ({int)) x (int) and then o r 4  o or-map(or-pl) o or-p2 to 
obtain an object of type ({int} x int). It is easy to  check that such a strategy results in precisely the 
same object as the previous one. 

In fact, there is a general result saying that each type has a unique representation at the conceptual 
level - such that no or-set type occurs in the type expression except as the outermost type constructor. 
For reasons that should emerge shortly we call such a type a normal form. Furthermore, for each 
object of type t there exists its unique representation at the conceptual level whose type is the normal 
form of t. 

To state these results precisely, we need some definitions about rewrite systems, see [8]. If a signature 
is fixed, a rewrite system is a set of rules of form rl - 72 where TI, r 2  are terms. If a is obtained 
from r by rewriting a subterm of r, we also write T - a. If a is obtained from r by a (possibly 
empty) sequence of applications of rewrite rules, we write T - a. 

A term r is called a normal form if there is no other term a such that r - a. A rewrite system is 
called terminating if there is no infinite sequence of terms 71 - 72 - . . .. It is called Church-Rosser 
if, whenever r - and r - 7 2 ,  there exists a term T I  such that rl - T I  and ~2 - TI. In 
a Church-Rosser terminating system for every term r there exists a unique normal form n f ( r )  such 
that T - nf( r ) .  



Now introduce the rewrite rules for type expressions: 

t x (s) - (t X s)  (t) X S - (t X s)  

Proposition 5 The above rewrite system is terminating and Church-Rosser. The normal forna n f (t) 
for type t can be found as follows: If t does not use (), then n f( t )  = t. Otherwise, remove all angle 
bmckets from t. If the resulting type is t', then n f (t) = (t'). 

Proof. To show that the rewrite system is terminating, define the following function on types. 
Considering types as their derivation trees, let k; be the number of occurrences of () on the ith level 
of the derivation tree of type t. If the height of the derivation tree is n, define p(t) as Cy=lk; . i. It is 
easy to see that if t - to, then cp(t) > q(to). Hence, any rewriting terminates. 

To prove Church-Rosserness, one has to find so-called critical pairs, see [8], which in essence are pairs 
of terms that can give rise to ambiguity in rewriting, and show that for any critical pair ( 7 1 , ~ ~ )  
there exists a term T such that 71 - T and 72 - T. We refer the interested reader to  [8] for 
the definitions and proof of the critical pair lemma. A straightforward analysis of our rewrite system 
reveals the following critical pairs: 1) (({(t))), {(t))); 2) ((t x (s)),  t x (s));  3) ( ( (s)  x t) ,  (s x (t)))  and 
4) (((s) x t), ((s)) x t)  and their symmetric analogs. The terms to which both components of critical 
pairs rewrite are ({t)) for I), ( t  x s) for 2) and (s x t) for 3) and 4). Thus, the rewrite system is 
Church-Rosser and, therefore, has unique normal forms. 

The proof of the last statement is by induction on the structure of a given type. We limit ourselves 
only to  types containing (). The base case is immediate. In general case, consider three subcases: 1) 
t = tl x t2, 2) t = i t l ) ,  3) t = (tl). In subcase 1, t' = t i  x t;, hence, if both tl and t2  contain or-sets, 
nf(tl)  = (ti), nf(tz) = ( t i )  and t - ( t i )  x (t;) - (ti x t i )  = (t') which is a normal form. Thus, 
n f( t )  = (t'). The simple proofs of other cases are omitted. 

Having defined rewrite rules for types, we must show how to apply these rules to instances. First, 
associate a morphism with each rule as follows: 

or-p2 : t x (s) - ( t  x s)  or-pl : ( t )  x s - (t  x s)  

Let t be a type and p a position in the derivation tree for t such that applying a rewrite rule with 
associated function f to t at p yields type s. Our aim is to define a function app(t,p, f )  : t -+ s 
showing the action of rewrite rules on objects. Define it by induction on the structure of t: 

if p is the root of the derivation o f t ,  then app(t,p, f )  = f ;  

if t = tl x t2 and p is in tl , then app(t,p, f )  = ( ~ P P ( ~ I , P ,  f )  0 r i , ~ ~ ) ;  

if t  = tl x t2  and p is in t2,  then app(t,p, f )  = (TI, app(tz,p, f )  ~ 2 ) ;  



if t  = {t ' )  then app(t,  p, f )  = map(app(t1, P ,  f 1); 
if t = (t') then app(t,p, f )  = or-map(app(tl,p, f ) ) .  

Notice that the definition of app relies on the fact that the functions associated with the rewrite rules 
are polymorphic. 

f 1  f2 f n Given a type t and a rewriting strategy T := t  --t tl  - . . . - t ,  = n  f ( t )  such that the rewrite rule 
with associated function f; is applied at a position pi, we can extend the function app to app( t , r )  : 

t  + n f ( t )  by ~ P P ( ~ , T )  = a ~ ~ ( t n - l , ~ n ,  f n )  0 . - 0 ~ P P ( ~ I ,  P Z ~  f 2 )  0 app(t,  P I ,  f i )  

Notice that app(t,  p, id)  = id.  Therefore, app(t,  p, f )  destroys our informal notion of conceptual mean- 
ing if and only if f  does. Since all of the f;'s we use in the rewriting rules preserve conceptual meaning 
(see section I), so does app(t,  T ) .  Now we can formalize this informal notion of conceptual meaning 
by proving the following theorem. 

Theorem 2 (Coherence) Given a  type t ,  any two rewrite strategies r l ,  r2 : t  - n f ( t )  yield the 
same result on objects. That is, for any object x  of type t ,  app(t,  r l ) ( x )  = app(t ,  r 2 ) ( x ) .  

Proof. By proposition 5 ,  it suffices to prove the weaker property that for any complex object x : s  
and any two rewrite steps app(s ,p l ,  f l )  : s  -+ t l  and app(s,p2, f2) : s -+ t2, there are app(t1, r l )  : tl -+ 

n f (s) and app(t2, r 2 )  : t 2  -+ n  f  ( s )  such that the diagram below commutes. 

The proof is a straight forward case analysis. We present two cases for illustration. Suppose s  is 
sl x (s2), app(s, pl ,  f i )  is or-p2 and app(s, p2, f2 )  is ( f  o T I ,  r2),  where f : sl -+ si . Then t l  = ( s l  x s 2 )  



and ta = (s', x (s2)). Moreover, the diagram 

commutes for any strategy r .  Then r l  and r2 can be obtained readily. Hence the case. 

Suppose s is {((s'))}, app(s,pl, f l )  is a, and app(s,pz, f2) is map(or-p). Then t~ = ({(sf)}) and 
t2 = {(st)}. The diagram 

commutes for any strategy r because or-p o or-map(cr) o cr = cr o map(or-p). From which r l  and rz 
can be derived. So the case holds. 

Therefore, all objects with the same meaning at the conceptual level rewrite to  the same normal form. 
The intuitive notion of the conceptual meaning can now be rigorously defined as the normal form. So 
now we can define the conceptual query language or-NRA+ by adding the new construct 

normalizet : t + n f (t) 

to or-NRA. By the coherence theorem, normalizet can be implemented as app(t,r) where r : t - 
n f (t). Notice that,  for any given t, normalizet can be expressed in or-n/RA (maybe in more than one 
way) but it is impossible to  express it polymorphically. 



There are two questions to  be asked about this new query language. First, how much information is 
lost by normalization? There are different objects that normalize to the same one, i.e. information 
from the structural level could be lost. Secondly, how costly is normalization? We address these 
problems in the subsequent sections. In the next section it is shown that normalization is lossless, 
i.e. practically all queries are unaffected by the loss of structural information. In Section 6 the upper 
bounds for the size of normalized objects are found. 

5 Losslessness of Normalization 

This section investigates whether the process of normalization loses anything "that can be regarded as 
critical." If loss of information is inevitable in the general case, then one would like to  obtain a set of 
general sufficient (and, if possible, necessary) conditions that guarantee losslessness of normalization. 
In order to proceed, a criterion on what normalization can be regarded as "losing nothing essential" 
has to be formulated. The following is a reasonable choice. 

Definition. Given a definable morphism f : s + t .  Suppose there is a morphism preserve( f )  : 
n f ( ( s ) )  + n f ( ( t ) )  such that preserve( f )  o normalize(s) o or_qs = normalize(t) o o r q t  o f, provided 
the input is restricted t o  objects not containing any empty or-set. Then normalization is lossless with 
respect t o  f .  

Let us first justify the definition given above. The proviso on the input is necessary because all 
objects containing empty or-set have the same normal form, namely (). Recalling that () stands for 
inconsistency, such objects are conceptually inconsistent and should be omitted. The use of or-qs and 
or-$ is a technical device to ensure that the normal forms produced always look like (dl, ..., d,) where 
d l ,  .., d, have no or-sets. This is justified since or-l;l d is conceptually d for any d. conceptual meaning 
of the input to f and returns the conceptual meaning of the output of f .  

It turns out that it is not easy to achieve losslessness of normalization with respect to an arbitrarily 
given morphism f .  There is no simple method to  discover the required preserve(f) .  However, we 
have been able to  isolate the morphisms that can give rise to possible difficulty. Any morphism not 
containing KO, p where Type(p)  contains some or-set, and p;'t where s contains some or-set does not 
lead to losslessness. 

Theorem 3 (Losslessness) Let f : s -i t be a morphism of' or-NRA not containing any K O ,  p 
where some or-set appears in Type(p) ,  and p;3u where u has some or-sets. Then normalization is 
lossless with respect to f. Moreover, the preserve( f )  that makes normalization lossless has a map-like 
property; that is, preserve( f )  = or+ o or-map(preserve( f )  o or-q). 

Proof. For each type t ,  define the type preserve t and the morphism preservet : t + preserve t as 
follows. 



preserve b = ( b )  preserveb = or-7 b 

preserve ( s  x t )  = preserve s x preserve t preserve(,,t) = (preserves 0 n~,preserve t  0 ~ 2 )  

preserve { t }  = {preserve t }  preserve(t) = map(preservet) 
preserve ( t )  = (preserve t )  preservep) = or-map(preservet) 

Using the fact that normalization is coherent, it is easy to  show by induction on t that normalize o 
or-$ = normalize o preservet. Consequently, we can instead prove the commutativity of 

preserves normalize 
x : S -> . : st A . : (st ') 

. : t -> . : tt - . : ( t")  
preservet normalize 

for complex object x : s having no empty or-set and any morphism f : s + t satisfying the precondi- 
tions of the theorem, where preserve( f )  is defined by structural induction on f below. 

Case f is id. Then preserve( f )  = id. 

Case f is 7 ,  x l ,  n2, p, K ( ) ,  Ilc,  !, U, p z ,  or p. Then preserve(f)  = or-map(f ) .  

Case f is ( g ,  h ) .  Then preserve(g, h )  = or-p o or-map(or-pl) 0 or-p2 0 (preserve g,preserve h ) .  

Case f is g o h. Then preserve(g o h )  = preserve(g) o preserve(h). 

Case f is map(g).  Then preserve(map g )  = or-p o or-map(cw) o or-map(map(preserve(g) or-7)). 

Case f is a, or-7, or-p2, or or+. Then preserve(f)  = id. 

Case f is or-map(g). Then preserve(or-map(g)) = p r e s e ~ v e ( ~ ) .  

It is readily verified that preserve( f )  is map-like. The proof that the diagram commutes is by induction 
on f and uses the coherence theorem in several places. We present a few illustrative cases below. 

Suppose f is or-map(g), where g : u -+ v.  Then s = ( u )  and t = ( v ) .  By hypothesis, preserve(g) 
exists and is map-like. Now consider the diagram below. 

preserve or-map( normalize) o r-p 
x : ( u )  . : (21') > . : ( (ut ' ) )  . : (ut') 

or-map(L7) I or-map(preserve g )  

> I preserve g 

. : ( v )  . : ( v t )  
or-p 

I . : ( (v t ' ) )  A . : (vlt) 
preserve or-map( normalize) 



The left rectangle commutes by hypothesis. The right rectangle commutes because preserve(g) 
is map-like. Hence the entire diagram commutes. By the coherence theorem, normalize('"') = 
or-pull o or_map(normalizeul) and normalize(u1) = or-pu" o or-map(normalizeU1). So the original dia- 
gram commutes and the case follows. 

Suppose f is map(g)  where g : u -, v. Then s = {u} and t = { v ) .  By hypothesis, preserve(g) exists 
and is map-like. Consider the diagram below. 

preserve map(normalize) a 
x : {u}  - : { u t }  > : { ( u t l ) }  : ( { u ~ ~ } )  

map(g)  I map(preserve g )  J preserve(map g )  

preserve map(norma1ize) a 

I 
: { v }  -> : { v l }  - : { ( v t t ) )  - : ( { v t l ) )  

The left rectangle commutes by hypothesis. To see that the right rectangle commutes, we calculate 
as follows: preserve(map g )  o a = or-p o or-map(a) o or-map(map(preserve(g) 0 or-7)) 0 a = or-p 0 
or-map(a) o a o map(or-map(preserve(g) o or-7)) = a o map(or-p o or-map(preserve(g) o or-7)) = 
a o map(preserve g) .  The last equality follows from the map-likehood of preserve(g). The second last 
equality follows from the fact that or-p o or-map(a) o a = a o rnap(or -~) .  Hence the entire diagram 
commutes. The case then follows by an application of the coherence theorem. 

Suppose f is n,"'". Then s = u x v and t = u. Let or-cp = or-p o o r - m a p ( ~ r - ~ ~ )  o or-p2. Consider the 
diagram below. 

preserve (normalize o T I ,  normalize o n2)  or-cp 
x:Uxv'*:u1xv > y : (u") X (v")  : (u" X v") 

. : u p >  * : u t  a : (ut ')  -> a : (ut l )  
preserve norma,lize id 

The two left rectangles obviously commutes. By assumption, x has no empty or-set. Thus y has no 
empty or-sets. Therefore, the right rectangle commutes. Hence the whole diagram commutes. Finally, 
the coherence theorem is applied to conclude the case. 

The requirement on pg'w can be relaxed. In particular, a p;'" such that u has or-set but v has no or-set 
can appear in f so long as it does not appear in any subexpression of the form (-, .), or-map(-), or 
map(.). Losslessness can be maintained in such a situation, although the required pre.serve(f) is no 
longer map-like. 



Figure 2: Conceptual analog of morphism f 

Since p is generally an uninterpreted primitive, the qualification that Type(p)  has no or-set is necessary. 
This means that equality tests =t where t has or-set have been excluded. However, =t is an equality 
test that is structural. Normalization is a process that removes structural differences from objects 
that are conceptually identical. Hence one cannot expect normalization to  be lossless with respect to 
such =t .  

Given an or-NR4 morphism f : s t t and an object x : s containing some or-sets. Then x conceptually 
represents several values X I ,  ..., x,. Suppose f x is an object containing or-sets; then it conceptually 
represents several values yl, ...,y,. It is desirable to  discover which one of xl, ..., x, leads to  which 
one of yl, ..., y,. This is a question of searching for a conceptual analog of f that associates each xi in 
normalize x to  a subset of normalize(f x ) .  

The idea of conceptual analog of morphism is illustrated in Figure 2. One would like to  know which 
combination of the conceptual values of the input give rise to  which subset of the conceptual values 
of the output. However, the ideal situation can only be approximated. As a first attempt, for each 
possible conceptual value x; of the input x, we aim only to account for some of the conceptual values 
in the output that are due t o  it. This approximation to  conceptual analog is illustrated in Figure 2. 
Some conceptual values yj in the output may be left unaccounted for. For example, the last element 
of normalize y in the figure. Similarly, the picture given for each input xi is only partial. For example, 
the second element of normalize x in the figure might in reality contributes to  3 values in the output 
but the conceptual analog discovers only 2. 

This approximation to  conceptual analog is formalized below. 

Definition. Let f : s t t be a definable morphism of o r - N W .  Then its conceptual analog is a map- 
like morphism preserve( f )  such that for all x : s,  (preserve( f )  o normalize(s) o or-qs)(s)  is included 
in o o r q t  o f ) ( x ) .  

There is some relationship between losslessness and conceptual analog. A conceptual analog of f that 



accounts for every element in the output is a morphism that makes normalization lossless with respect 
to  f .  Hence the search for a lossless preserve( f )  can be generalized as a search for a conceptual analog 
o f f  that accounts for each possible conceptual value of the output. A result similar to  theorem 3 can 
be proved. 

Proposition 6 Let f : s + t be a morphism of or-NRA not containing any p where T y p e ( p )  involves 
some or-set. Then preserve( f ) ,  as defined in  the proof of the losslessness theorem, is a conceptual 
analog of f .  

Proof. The precondition of this proposition is weaker than that of theorem 3 because we merely 
required that (preserve( f )  o normalize o or-q)(x)  be included in (normalize o or-7 o f ) ( x ) ,  as oppose 
to  being equal. The proof is a simple adaptation of the proof of theorem 3. The most involved case 
is presented below. 

Suppose f is map(g)  where g : u -, v.  Then s = { u )  and t = { v ) .  By hypothesis, preserve(g) is a 
conceptual analog of g. Consider 

preserve Q 

map(g)  I m a p ( h 1  g )  

: {v} - : { v l )  - w : { (v ' l ) }  - 2 : ( {u I t } )  
preserve nzap(norma1ize) cr 

If x contains some empty or-set, then y is (). In this case, the inclusion is trivially satisfied. So 
assume x has no empty or-set. Let h : (u") i (v")  be a map-like function, not necessarily definable 
in or-~V72.4, such that m a p  h x = w and preserve g d is included in h d for all singleton d : (u"). 
It is easy to see that (preserve(map g )  o cr)(x)  = ( a  o map(or-p o or-map(preserve(g) o or -q ) ) ) ( x )  is 
included in ( a  o map(or-p o or-map(h o or-11)))(x) = cr o map(h) .  Since such a h can always be found 
given x ,  w, and preserve(g),  the case holds. 

6 Costs of Normalization 

We have seen before that the complexity of or-NR4+ queries can be exponential. In particular, the 
cardinality of normalize(x) can be exponential in the size of x provided that cr was used in the course 
of normalization. In fact, the example given in section 2 shows that even one application of cr may 
result in an or-set of exponential cardinality. If one tries to estimate the cost of normalization by 
"brute force," a hyperexponential upper bound can be immediately obtained: indeed, if n is the size 
of x ,  applying the costly cr O ( n )  times seems to yield a hyperexponential bound. 

In this section we show that the fear of hyperexponentiality is not justified. In fact, both cardinality 
of normalize(x) and its size are in the worst case exponential in the size of x .  The first result in this 



section explains why consecutive applications of a still yield objects of exponential size. Then we 
proceed to  find upper bounds on the cardinality and the size of normalized objects. The last result 
in this section shows that there exist existential queries involving normalization which can not be 
evaluated in polynomial time. 

Let x be an object and y = normalize(x). Define m(y) as the number of elements in y if it is an or-set 
and 1 otherwise. Uniformly, m(x) = Inormalize(or-q(x))I. The size of an object is defined inductively: 
the size of an atomic object is 1, size (x, y) = size x + size y, size (21,. . . , x,) = size (x17. . . , x,) = 
size x l  + . . . + size x,. 

To work with objects, it is convenient to associate rooted labeled trees with them. A tree T x  associated 
with an atomic object x is defined as a one-node tree labeled by x. T ( x ,  y) is a tree with the root 
labeled by x and two subtrees rooted a t  its children are T x  and Ty. 71x1 , .  . . , x,) (or 7 ( x l , .  . . , x,)) 
is a tree whose root is labeled by {) (or ()) and n subtrees rooted at  its children are T x l ,  . . . , Tx,. In 
view of this definition, m(x) can be redefined as the number of children of the root of 7normalize(x) 
if the root is labeled by () and 1 otherwise. sizex is the number of leaves in 7 x .  

Intuitively, the following proposition says that the "internal" structure of 7 x  does not contribute to  the 
creation of new possibilities in normaIize(x), and the number of such possibilities m(x) is determined 
by the or-sets which are closest t o  the leaves. 

Proposition 7 Let x be an object, and vl, . . . , vk the nodes in T x  labeled by 0, such that the subtrees 
rooted at  vi's do not have other nodes labeled by () (i.e. they are or-sets closest to the leaves). Let mi 
be the number of children of v;, i = 1, ..., k. Then, if k # 0, 

Proof is by induction on the structure of the object. We consider only objects containing or-sets. 
The base case (i.e. or-sets of objects of base types) is obvious. Let x = (xl,x2). Assume that 
both x1 and 2 2  contain or-sets and vl,. . . , v, are nodes of 7 x 1  and vp+l,. . . , vk are nodes of 7x2.  
Then, by induction hypothesis, m(xl) 5 nY=,(mi + 1) and 4 x 2 )  < nf=,+,(mi + 1). By coherence, 
nornaalize(x) = or-p((normalize(xl), normalize(x2))) where or-p pairs each item in its first argument 
with each item in its second argument (it can be easily expressed in or-NRA). Therefore, m(x) 5 
m(x1)m(x2) < n L l ( m i  + 1). Two other cases when either XI or x2 contains or-sets are similar. 

Let x = {xl, . . . , x,). Then all xi's contain or-sets. Again, by coherence, 

Therefore, m(x) 5 ny=l m(xi) and the result follows from the induction hypothesis. 

Finally, if x = (xl , . . . , x,) , there are two cases. If xi's do not contain or-sets, then m(x) = n 5 n + 1. 
If they do contain or-sets, then by coherence 

normalize(x) = or-p((normalize(xl), . . . , normalize(x,))) 

i.e. m(x) < Xy=lm(xi) < ny=l m(xi) because m(.)  2 2. The case now follows from the hypothesis. 



This proposition explains why there is an exponential upper bound for m(x) despite the fact that a 
can be applied many times. The following result finds a sharp upper bound in terms of the size rather 
than the tree structure. 

Theorem 4 Let x be an object with sizex = n. Then 

Moreover, for any n divisible by 3 there exists an object x such that sizex = n and m(x) = an. 
Proof. As in the proof of proposition 7,  consider only objects containing or-sets. Procced by induction 
on the number of steps of normalization. If the object is already normalized, we are done. Assume 
normalize(x) is obtained by one step of normalization. Then this step is one of the maps associated 
with the rewrite rules, so we have for cases. Notice that in the base cases we may assume w.1.o.g that 
everything that any element of a set or an or-set is of base type since this will give us the maximal 
possible m(x) for a given size x. 

Case 1. x = (z1,x2) where x l  = (x i , .  . .,x:-~). Then normalize(x) = or-pl(x) and it is an easy 
arithmetic exercise to  show that m(x) = n - 1 5 fin. 

Case 2 when or-p2 is applied to  obtain the normal form is similar. 

Case 3. Let x = {XI, .  . . , Xk)  where each Xi is an or-set (x i , .  . . , x i )  where all x j  are elements of base 
types. Since we are interested in upper bound, assume w.1.o.g. that all xi's are distinct (if they are 
not, some of sets in normalize(x) could collapse). Let X = Ui,j xi. Define a graph G = (X, E) where 

(22, x k )  is in E iff il f i2. Let normalize(x) = a(x)  = (Yl, . . . , Yp) (Yk7s are sets). Then it  follows 
from the definition of a that Yl, . . . , Yp are precisely the cliques of G. Since n = size x = w, applying 
the upper bound on the number of cliques for a graph with n vertices [21], we obtain p = m(x) 5 fln. 

Case 4. x = (XI, .  . . ,Xk)  where Xi's are or-sets of a base type. Then normalize(x) = or-p(x) and 
m(x) 5 n. Again, simple arithmetic shows that n < $6". Hence, m(x) 5 an. 
The proof of the general case is very similar to  the proof of proposition 7 and we will show only step. 
Let x = {xl, .  . . , xk) where xi's are not normalized. Then normalize(x) is obtained by applying cr to 
{normalize(xl), . . . , normalize(x,)). Let size xi = n;. By induction hypothesis, m(xi) 5 sn'. We 
now have 

k k 

The other cases are similar. To show the sharpness of the upper bound, let n = 3k, k > 0. Assume 
that we have a base type whose domain is infinite (typical example is int). Let bl,  . . . , bn be n distinct 
elements of such a type. Let 

Then sizex = n and normalize(x) = a ( x )  contains 3k = 8" elements. The theorem is completely 
proved. 



Using theorem 4, one can prove the following upper bound on the size of normal forms by induction 
on the steps of the normalization process: 

Theorem 5 Let x be an object with size(x) = n where n > 1. Then 

sire normalire(x) 5 2 en 
2 

Proof. Similarly to  the proof of theorem 4, proceed by induction on the steps of normalization. We 
start with base cases, i.e. consider application of or-p, or or-pl or a or or+. 

Case 1. x = ( 2 1 ,  2 2 )  where x1 = (x : ,  . . . , x i ) .  Let size X I  = s l ,  size sf = a;. Then sl +al +. . .+ak = n. 
Since normalize(x) = or-pl(x), size normalize(x) = ksl +al + . . .+ak = ksl  +(n-s l  ) 5 ( n  -sl )sl +n-  
sl 5 2n-2. Since empty sets and or-sets are excluded, n 2 2 in this case and therefore 2n-2 5 ;fin. 

Case 2 when or-p, is applied is similar. 

Case 3. Let x = { X I , .  . . , XI} where each Xi is an or-set ( x i ,  . . . , xi,) where all xi  have types containing 
no or-set. Let size x i  = si and 

Then an easy calculation shows that size normalize(x) = size a ( x )  is given by 

Therefore, we need to maxin~ize 1 .  a1 . . . . - a1 under constraint a1 + . . . + 01 = n. A standard argument 
shows that such a maximum is bounded above by 

If it easy to see that for n > 1, the upper bounds given above are less than q ~ n .  If n = 1, then the 
size of the normal form is also 1. 

Case 4. x = ( X I , .  . . , X I )  where Xi's are or-sets of a type t11a.t does not contain or-sets. Then 
normalize(x) = or_ll(x). Since the or-p does not change size, size normalize(x) < $fin for all n >_ 2. 
If n = 1, then size normalize(x) = 1. 

To complete the inductive proof, we show that after each step of normalization that produces a 
normalized subobject xrr, that is, xfr  = normalize(xr) for a subobject x' of x ,  either size x" 5 ;an 
is satisfied if n = sizexr > 1, or sizestr = 1 if n = 1. This will complete the proof. Two cases 
corresponding to  application of or-pl or or-p2 are similar to the case of a ,  so we show here only the 
case of application of a. 



Let x = {xl, . . . , xk)  where each xi is an unnormalized object. Let xi = normalize(x;) and k; be the 
cardinality of x:, i.e. k, = m(xi). Let n; = size x;. By theorem 4, k; 5 f in'. First consider the case 
when all ni > 1. 

Let x: = (y:,. . . ,y i , ) ,  i = 1,. . . , k. By s j  we denote size yj. By induction hypothesis, 

ki , 

V l k :  ')C si 3 -  < lf?-Wi 9 

normalize(x) is obtained by applying cr to  {x!, . . . , x i ) ,  i.e. its elements are sets of representatives 
of x i , .  . . , x i .  Since we are interested in an upper bound, we may assume that  all the elements of 
x i , .  . . , x i  are distinct. Then each element of xi will be present in k(') = kj)/ki sets. Therefore, 
the upper bound for size normalize(x) can be calculated as the sum of the sizes of all elements of 
x i , .  . . , x i  multiplied by the number of their occurrences in the normalized object, i.e. 

size normalize(x) C 2 k(;))s = ')C k(i) ')C s' 3 < - 

If all ni = 1, then size normalize(x) = k = n. If n > 1, then n 5 :fin and if n = 1, that is, size% = 1, 
then size normaliae(x) = 1. 

Now consider the general case, i.e. n l , .  . . , n, > 1 and np+l , .  . . , nk = 1. Normalization of xi for i > p 
results in a size one object. Let a0 = n l  + . . . + n, and al = k - p. Clearly a0 + al = n. Had we 
applied a only t o  {x i , .  . . , xk), it would have resulted in an object whose size is bounded above by 
?flu' according to  the calculations for the case where all ni > 1. But taking into account al size 
one objects adds size a1 to  every element of the or-set normnlize(z). Since there are a t  most fiuO 
such sets, we obtain 

size norrnaiire(x) 5 2% O0 + ol  Z Oo 

2 

Since a 0  > 1, a0 + 201 5 (ao + a1)Bu1 which shows 

0 0  3 
size normalize(x) 5 -Au0 2 + aDO < !!%n 

- 2 

Finally, if or-p is applied in the process of normalization, it does not change size. Assume x = 
(xl, . . . , xk) where each x; is an unnormalized object. Let xi = normalite(x;) and n; = size xi. 
Assume n l ,  . . . , n, > 1 and n,+l = . . . = nk = 1. Define 00 and a1 as in the case of applying a. Then, 
by induction hypothesis, 

size normalite(x) 5 2 3 % n' + 5 7 %lo + < an 
i = l  

2 ' - 2  
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If all n; = 1, then two cases arise. If n > 1, then size normalize(x) = n 5 $fin, and if n = 1, then 
size normalize(x) = n = 1. 

Theorem is proved. 

Corollary 1 Let x = normalize(y) and size x = n .  Then 

O(1og n )  < size y 5 n 

The upper bound of theorem 5 is not sharp. The following result exhibits a sharp upper bound for a 
large class of objects. This shows that the previous theorem can not be significantly improved. 

Theorem 6 Let x be an object with sizes = n containing or-sets. Assume that every subobject of 
type { ( t ' ) }  has size at least 21, every subobject of type t' x (t") or (t") x t' has size at least 6 and every 
subobject of type ( ( t ' ) )  has size at least 3, where t' and t" do not use the or-set type constructor. Then 

size normalize(r) < R%n 
3 

Moreover, for any n divisible by 3 there exists an object x such that size x = n and size normalize(x) = 
"8". 3 

Proof. We have to  rework the base cases only. Since no subobject involving or-sets can have size 
one, the induction step easily goes through, cf. the proof of theorem 5. 

The case of applying a was already proved, see proof of theorem 5. For the case of applying or-pl or 
or-p2, we established an upper bound 2n - 2. It is easily seen that 2 n  - 2 2 $fin for n 2 6. Finally, 
applying or-,u does not affect size, and n 5 5s" for n 2 3. 

To show sharpness, consider example from the proof of theorem 5. Let 

where all b;'s are distinct elements of a base type. Then a ( x )  contains fin elements, each having 
cardinality $. Thus, size normalize(x) = $ $6 ". 

The importance of existential queries was emphasized in [15, 161. Essentially, an existential query 
asks whether there exists a possibility - in the normal form - satisfying a given property. In terms of 
or-NnA+, if n f ( s )  = ( t )  and p : t i bool is a predicate, 3 ( p )  : ( t )  -4 bool is a predicate which is true 
of y : ( t )  if or-map(p)(y)  : (bool) is an or-set containing the true value. Given an object y of type s ,  
one may ask a query 3(p)(normalize(y)) .  Clearly, this query call be answered in time polynomial in 
the size of normalize(y), but can it be answered in time polynomial in the size of y? 

The following example gives a negative answer to  this question, provided P # N p .  Assume pk : { t )  i 
bool evaluates t o  true if and only if cardinality of the set is at most k. Let b a base type. For an object 



x of type {(b)), one may ask a query Q(k, x) = 3(pk)(normaEize(x)). It is immediately seen that this 
query evaluates to  true iff there exists a system of distinct representatives of elements of x (which are 
or-sets) whose size is at  most k. The problem of finding a system of distinct representatives of size 
5 k is known to  be NP-complete, see [9]. Therefore, the problem whether Q(k, x) evaluates to  true is 
NP-complete. 

7 Future Work 

There are many further problems which we would like to investigate. The languages we have proposed 
give rise to interesting equational theories which can lead to useful optimizations. For instance, 
or-rnap(map f )  o a = a o map(or-map f )  and or+ o or-map(a) o (Y = a o map(or-~) .  

There is also an appealing possibility of using or-sets in merging databases. For example, we can use 
a merge operator for combining databases as follows: merge(((id1, a), (id2, b)), {(id1 1 a'), (id21 b'))) = 
((id17 (a1 a?), (id21 (by u)) ) .  
There are two further questions concerning losslessness. First, given a query at the conceptual level 
and an unnormalized object, can we discover an equivalent structural query which does not force 
normalization on the object. Second, the condition that I < ( )  does not appear in f in our losslessness 
theorem can be removed in some situations. But we do not yet have a full characterization of those 
situations. 

There are various sophisticated order theoretic models of partial information in databases - sand- 
wiches [6], mixes [lo], snacks [17, 231. They enjoy universality properties and therefore can be in- 
corporated into the programming language syntax. We plan to investigate the applicability of such 
models to the study of or-sets. 

Our languages have been extended to include variant types. It is known that the coherence result still 
holds in the extended languages. The validity of the remaining results of this report remains to be 
checked for this extension. 
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