
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1992

Semantic Representations and Query Languages for Or-Sets Semantic Representations and Query Languages for Or-Sets

Leonid Libkin
University of Pennsylvania

Limsoon Wong
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Leonid Libkin and Limsoon Wong, "Semantic Representations and Query Languages for Or-Sets", .
December 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-88.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/469
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/469
mailto:repository@pobox.upenn.edu

Semantic Representations and Query Languages for Or-Sets Semantic Representations and Query Languages for Or-Sets

Abstract Abstract
Or-sets were introduced by Imielinski, Naqvi and Vadaparty for dealing with liimited forms of disjunctive
information in database queries. Independently, Rounds used a similar notion for representing disjunctive
and conjunctive information in the context of situation theory. In this paper we formulate a query
language with adequate expressive power for or-sets. Using the notion of normalization of or-sets,
queries at the "structural" and "conceptual" levels are distinguished. Losslessness of normalization is
established for a large class of queries. We have obtained upper bounds for the cost of normalization. An
approach related to that of rounds is used to provide semantics for or-sets.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-92-88.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/469

https://repository.upenn.edu/cis_reports/469

Semantic Representations and Query Langauages for
Or-sets

MS-CIS-92-88
LOGIC & COMPUTATION 53

Leonid Libkin
Limsoon Wong

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

December 1992

Semantic Representations and Query Languages for Or-sets*

Leonid Libkint Limsoon Wong$

Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 191046389, USA

email: (libkin, limsoon)@saul.cis.upenn.edu

Abst rac t

Or-sets were introduced by Imielinski, Naqvi and Vadaparty for dealing with limited forms
of disjunctive information in database queries. Independently, Rounds used a similar notion for
representing disjunctive and conjunctive information in the context of situation theory. In this
paper we formulate a query language with adequate expressive power for or-sets. Using the notion
of normalization of or-sets, queries at the "structural" and "conceptual" levels are distinguished.
Losslessness of normalization is established for a large class of queries. We have obtained upper
bounds for the cost of normalization. An approach related to that of Rounds is used to provide
semantics for or-sets.

1 Introduction

Applications within design, planning, and scheduling areas have motivated Imielinski, Naqvi, and
Vadaparty t o introduce the notion of or-set [15, 161. Although or-sets are in essence disjunctive
information, they are distinguished from the latter by having two distinct interpretations. An or-set
can either be treated at a structural level or at a conceptual level. The structural level concerns the
precise way in which an or-set is constructed. The conceptual level sees an or-set as representing an
object which is equal to a member of the or-set. For example, the or-set (1,2,3) is structurally a
collection of numbers; however it is conceptually a number that is either 1, 2, or 3. (In this report
angle brackets () are used for or-sets and {) for the usual sets.)

The two views of or-sets are complementary. Consider a design template used by an engineer. The
template may indicate that component A can be built by either module B or module C. Such a
template, as explained in [15], is structurally a complex object whose component A is the or-set

*An extended abstract of this paper will appear in The Proceedings of the 12th Symposium on Principles of Database
Systems, 1993.

'Supported in part by NSF Grant IRI-90-04137 and AT&T Doctoral Fellowship.
isupported in part by NSF Grant IRI-90-04137 and ARO Grant DAAL03-89-C-0031-PRIME.

containing B and C . A designer employing such a template should be allowed to query the structure
of the template, for example, by asking what are the choices for component A. On the other hand,
the designer should also be allowed to query about possible completed designs, for example, by asking
is there a cheap complete design. In the latter case, as the designer is still in the process of creating a
design, the "completed design" is purely conceptual. Both views of or-sets are important and should
be supported.

The structural interpretation of or-sets is quite clear. However, the conceptual interpretation requires
further exposition. A few operators at the structural level prescribing the interaction of or-sets, prod-
ucts and ordinary sets are needed for this purpose. These operators are used to express transformations
among objects that are conceptually equivalent. As will be seen in Section 3, these operators are the
only crucial ones for the passage from the structural to the conceptual level.

The operator or-pS : ((s)) -+ (s) flattens an or-set of or-sets of type s. For example, applying or-p
to ((1,2,3), (2,4)) produces the or-set (1,2,3,4). The most important thing to note here is that or-p
preserves the conceptual value of the input. First (1,2,3) is conceptually either 1, 2, or 3. Similarly,
(2,4) is conceptually either 2 or 4. The input is conceptually either (2,4) or (1,2,3); that is, it
conceptually represents 1, 2, 3, or 4. This is of course what the output is at the conceptual level.

The operator or-p2s9t : s x (t) -+ (s x t) takes in a pair of type s x (t) and pairs the first component
with every item in the second component, which is an or-set. For example, or-p2 (1, (2,3)) yields the
or-set ((1,2),(1,3)). Here the input stands conceptually for a pair whose first component is 1 and
whose second component is either 2 or 3. That is, the input is conceptually either (1,2) or (1,3).
Hence or-p2 also has the important property of preserving meaning at the conceptual level. We also
use or-plsyt : (s) x t + (S x t) for the operator that does pairing the other way round.

The operator as : {(s)) -t ({s)) takes in an ordinary set containing or-sets of type s and produces an
or-set containing sets of type s obtained by combining the or-sets componentwise in all possible ways.
For example, a {(2,3), (4,5,3)) produces the or-set ({2,4),{2,5), {2,3), {3,4), {3,5), (3)). This is
also an operator that preserves conceptual meaning. In the above example, the input is conceptually
a set of two elements such that one of them is either 2 or 3 and the other is either 4, 5, or 3. This is
precisely what the output is conceptually. Note that sets such as (21, (4)) etc. are not part of the
output, even though (3) is because it arises by letting both the first and second elements be 3.

As a further example, consider the result of applying cr to {(1,2), (), (3)). It is not ({1,3), {2,3)).
The correct output is the empty or-set (). To see this, let us find out what the input is at the
conceptual level. It represents a set of three elements, they are conceptually the values represented
respectively by (1,2), (), and (3). Hence the first element is either 1 or 2 and the third is 3. But
what is the second element? Recall that an or-set represents at the conceptual level an object that
is equal to one of its elements. Since () has no element, it does not represent any object at the
conceptual level. Consequently, our input represents at the conceptual level "a set having an element
which is not anything." As there is no such set, the input does not represent any object either. This
coincides precisely with the meaning of the output. An item which does not represent any object
at the conceptual level indicates a conceptual inconsistency. (But note that it is still structurally
meaningful .)

The above operators provide an idea of what to include in a structural query language. But what
kind of operators should be provided in a conceptual query language? Should there be an operator
for testing whether two objects are conceptually equivalent? Should there be an operator for testing
whether one object is amongst the objects that a second object can conceptually be?

Fortunately, it is not necessary to make such chaotic "enhancements." It is found that any two objects
which are conceptually equivalent can be reduced to the same object by repeated applications of the
above operators. The normal form induced happens to be independent of the precise sequence of
applications of these operators. Moreover, given the type of any object, the type of its normal form
can be read off. Therefore, one can robustly take the conceptual meaning of any object to be its
normal form under the rewriting induced by the above operators. Consequently, a conceptual query
language can be built by extending a structural language with a single operator normalize which takes
the input object to its normal form. A query at the conceptual level is then simply a query performed
on normal forms.

Related work. Imielinksi, Naqvi, and Vadaparty stressed the applications of or-sets in design and
planning areas and informally explained the distinction between structural and conceptual queries
[15, 161. The semantics and query language proposed by [15] are rather involved. They defined a
concept of order-independence which is related to the notion of normalization but is based on assigning
object identifiers, and demonstrated a sufficient condition for order-independence. In addition, they
were able to demonstrate a coNP-complexity result for tha.t particular proposal. In [16] they studied
some intrinsic lower bounds on complexity of LVC-style [22] queries on or-sets. The language can
express queries of hyper-exponential complexity. Nevertheless, they were successful in identifying
certain restricted tractable fragments that are useful in real-life applications.

Rounds [24] studied complex object databases from the situation-theoretic point of view. Connections
with natural language problems motivated him to introduce the notions of conjunctive and disjunctive
information which correspond exactly to our notions of sets and or-sets. He studied order relations
on complex objects and their logical representations. However, it is unclear whether his use of non-
well-founded set theory is helpful in designing a database programming language.

Organization. The main contributions and organization of this report aae summarized below. A
query language o r - N m that cleanly integrates or-sets and more traditional types of data at the
structural level is proposed in section 2.

In Section 3 we give two semantic representations which are in the spirit of Rounds' work [24] but
using simpler machinery. For example, using our representations we were able to provide a simple
proof that as is the isomorphism of semantic domains of types {(s)) and ({s)).

A query at the conceptual level is exactly a query on an object that is in a certain normal form.
In section 4, the normal form is properly characterized. Moreover, we show that the process of
normalization is coherent. That is, the normal form of any object is independent of how the object is
normalized. This allows us to define a query language or-niR4' at the conceptual level by adding a
new operator normalize to or-N??.A.

Since objects of different structures may have the same normal form, it is clear that certain structural

information is lost by normalization. In section 5 , a Eosslessness theorem is proved. Consequently, loss
of structural information has no effect with respect to a general class of queries.

Queries a t the conceptual level are much simpler than those at the structural level. Unfortunately,
conceptual queries must be performed on normalized data. In section 6, we study a few important
costs of normalization. In particular, an upper bound on the number of elements in normal forms of
complex objects and an upper bound on the actual size of normal forms of complex objects are given.
Also significant is that we have been able to demonstrate that every definable query in or-NRA+ is at
most exponential in the size of input, in contrast to the proposal of Imielinski, Naqvi, and Vadaparty
[16] which contains some hyperexponential queries.

2 Structural Query Language

A nested relational language based on the idea of structural recursion [4, 31 and on monads [20,
251 was proposed in [5]. This language is of polynomial time complexity and smoothly generalizes
many approaches to nested relational algebras, cf. [2]. It is extensible and has an appealing syntax.
For example, (x I x E normalize(DB), is-cheap(x)) selects cheap completed designs assuming that
is-cheap and normalize are defined. (In section 4, normalize is added as a primitive to obtain the
conceptual query language.)

The algebraic version of the language is used in this report. We denote this language by NRsZ(C)
where C are some additional primitives like operations on integers. As observed by Wadler in [25],
the same syntax can be used for many "collection" types besides sets. In particular, by replacing the
set operators of NR4 by the corresponding operators for or-sets, a language for programming with
or-sets can be obtained. This language is denoted by mOT.
For example, the above query becomes or-p o or-rnap(cond(is-cheap, or-?, Ir'()o!)) o normalize. Here
cond is a primitive: cond(p,t, f) (x) = t(x) if p(x) is true and f(x) otherwise. Then cond(is-cheap,
or-7, K () o !) (x) is (x) if x is cheap and () otherwise. or-map applies it to every element in the
normalized database, returning (x) for each cheap x and () for each expensive one. or-p flattens this
or-set of or-sets, producing an or-set containing precisely the cheap completed designs.

In this section, the language for sets NStA and the language for or-sets NRAOT are integrated into
a single language we called the structural query language, denoted by or-NRA. or-NRA supports
structural manipulations of complex objects containing a mixture of freely combined tuples, sets, and
or-sets. This language is obtained by the union of NRA and JV??.A,, and an operator a prescribing
the interaction between sets and or-sets.

Types. A type in or-NRA is either an object type or a function type s + t , where s and t are both
object types. The object types are given by the grammar: t ::= b I t x t I {t} I (t), where b denotes
a collection of base types such as booleans and integers. Included in b is a special base type unit
containing precisely one element. In this report (t) stands for the or-set of type t, while {t) is the
ordinary set of type t.

Morphisms (expressions). The "morphisms" (or expressions) of o r - A f ~ are formed according to
the rules in Figure 1. The language is parameterized by a collection of primitives p of function type
Type(p), amongst them are the equality tests =,: s x s -+ bool for each object type s , and a collection
of constants c of base type Type(c). Type superscripts are usually omitted because the most general
type of any given morphisms can be inferred (see [12] for example).

Semantics. nl and n2 are first and second projections. ! maps anything to the unique element of
type unit. (f ,g) is pair formation, f o g is the composition of f and g. id is the identity function.
or-p2, or+ and a have already been described. or-7 is the singleton forma.tion: or-q(x) = (x). or-U
makes union of two or-sets. or-map(f) applies f to all elements of an or-set. I< () produces an empty
or-set. or-pl has been omitted because it is definable or-map(r2, nl) o o r 4 o (82, nl). The operators
from NR4 have similar meaning for the usual sets.

We have included I (() , the morphism which produces the empty or-set, in or-NR4. We note that
if f is a morphism of or-NRA such that K () does not occur in it and such that each p in it does
not involve or-sets, then f applied to any complex object x not containing any empty or-set yields a
complex object f (x) containing no empty or-set .

One of or-NRA's primitives, a , is essentially a translation of conjunctive normal form into disjunctive
normal form. This operation may be very expensive. Indeed, if its argument is a collection of n two-
element or-sets, all 2n elements being distinct, then cr produces an or-set containing 2n 12-element sets.
Several query languages use expensive (exponential) operations. For example, in the Abiteboul-Beeri
algebra [I, 51, one of the primitives is powerset: {t) i {{t)) which takes a set and returns the set of
all its subsets. The result that we are going to formulate can be intuitively understood as follows: the
expressive power of a is that of powerset. However, powerset does not use the () type constructor.
To be able t o speak of the equivalence of expressive power of languages one of which uses or-sets
and the other does not, for technical purposes only, we introduce the functions or-to-set : (t) + {t)
and set-to-or : {t) + (t) with the obvious semantics: or-to-set((xl, . . . , 2,)) = {xl, . . . , x,} and
set-to-or({xl,. . . ,x,)) = (XI , . . . , x,). We remark here that, if or-to-set and set-to-or are given, then
NnA and NRA,, are interdefinable. That is, NRA(or-to-set, set-to-or) E :'RA,,(or-to-set, set-to-or).

Proposition 1 A@U(or-to-set, set-to-or, a) Ei W (o r - t o - s e t , set-to-or, powerset).

Proof. It is not hard t o see that powerset can be expressed as follows:

Conversely, we must show that a is definable in NRA(or-to-set, set-to-or, powerset). For the sake
of clarity we use cond to show that a is definable. A clumsier proof that does not use cond is also
possible. It is known that the test for equal cardinality can be implemented (see [5]). To check whether
1 X (5 I Y 1 , notice that

p o map(XZ.cond(equal-card?(X, Z) , X, {}))(powerset(Y))

returns X if I X 151 Y I and {) otherwise, thus giving us the test for lesser cardinality.

Operators shared by M'7.A and JVR~,,

g : u + s f : s - t t u s g : u + t
f o g : u - + t qt : s x t + s n2stt : s x t -+ t (f , g) : u -+ s x t

!t : t -+ unit Kc : unit -+ Type(c) P : T Y P ~ (P) idt : t -t t

Operators from M'7.A

p>t : s x { t) -+ { s x t) qt : t + { t) ut : { t) x { t) -+ { t)

f : s - + t

pt 1 { { t)) + I t) : unit + { t) map f : (4 -+ i t)

Operators from JU??.A,,

f : s + t
or-map f : (s) -+ (t) or-p,"J : s x (t) + (s x t) or-# : t + (t)

or-ut : (t) x (1) -+ (t) or-# : ((t)) -+ (t) I<()t : unit -+ (t)

Interaction of sets and or-sets

at : { (t) } + (i t })

1

Figure 1: Syntax of or-NR4

Now, given an input of type {(t)), first apply map(or-to-set) to it and then flatten the result, thus
obtaining the set of elements that occur in the input. Applying powerset now gives the set of all sets
of those elements. A set of elements of the input makes it to the output if and only if two conditions
hold: first, its cardinality does not exceed the cardinality of the input (i.e. the number of or-sets) and
it has a nonempty intersection with any element of the input, unless the input is {). Since selection,
lesser cardinality test, intersection and test for nonemptiness are definable in NR4 (see [5] and above),
selection over the powerset followed by an application of set-to-or yields the desired result.

3 Partial Information and Or-sets

In this section we address some semantic issues. Presence of or-sets in a database means presence
of partial information. We assume that partiality can be expressed by means of a partial order on
database objects, i.e. x 5 y expresses the fact that x is more partial than y or y is more informative
than x. The idea of using partially ordered sets to model partial information has been around since
early 80s: Codd's tables, for example, can be captured by so-called flat domains which are obtained
from unordered sets by adding a unique bottom element (null). Zaniolo's approach of having three
kinds of nulls - unknown, nonexistent, existent unknown - is another example of ordering on objects.
In fact, a general approach to the treatment of partial information as ordering on the set of objects
was proposed in [7] and further developed in [6, 181. We remark here that this approach is also suitable
for databases without partial information. In such a case, values of base types are totally unordered.

Assume that orders on values of the base types are given. It is clear how to order pairs: (x, y) _< (x', y')
iff x 5 x' and y 5 y'. However, there is no immediate answer to the question how to extend the ordering
to the set and or-set types. In [7, 6, 18, 241 two ways to extend an ordering to subsets of a partially
ordered set were studied. Let (X, <) be a poset and A, B C_ X . The Hoare and the Smyth orderings
are defined as follows:

A L ~ B ($ v ~ E A ~ ~ E B : ~ ~ ~

Traditionally the condition B = 0 + A = 0 is omitted because the S~nyth powerdomain does not
contain the empty set. Observe that if X is totally unordered, sb is the subset and _<fl is the superset
ordering on non-empty sets. The Hoare ordering was also used in [14] to order relations with partial
information. We will try to justify using sb to order values of the set types and <f to order the values
of the or-set types.

Assume that a set A C X is given. How can we improve our knowledge about the real world situation
represented by this set? There are two ways to do so: first, by replacing an element a E A by a
set A' of elements greater than a. For example, if a record [Name + I, Office 3 '515'1 is contained
in the database, we can improve our knowledge about the office assignment by replacing this record
by [Name + 'Joe', Office + '515'1 and [Name =+ 'Mary', Office + '515'1. Secondly, we can add
an element to the set. For example, adding a record [Name + 'Bill', Office + '212'1 g' ives us more
information about office allocation.

Define a binary relation + on subsets of X as follows: A I., (A - { a)) U A', where a 5 a' for all

a' E A', and A -u A U {a). A set B is said to be more informative than A, denoted A 2 B, if B can
be obtained from A by a sequence of transformations -. In other words, 2 is the transitive closure
of -A.

Similarly for or-sets we define H by A H (A - {a)) U A', where a 5 a' for all a' E A', and A H A - { a)
provided that A - {a) is not empty (removing an element from an or-set makes it more informative).
Again, A is defined as the transitive closure of H.

Proposition 2 2 coincides with sb and coincides with <ti.

Proof. First notice that - &sb and ~ (I l f l . Therefore, transitivity of - and H implies CC_<~ and
Ac<N.

To prove the reverse inclusion, let A sb B. The case of empty sets is obvious, so assume A, B # 0.
Let B, = { b E B I a 5 b) and BA = UaEA B,. Notice that BA # 0. For each a E A, apply the
following transformations to A: A 2.i (A - {a)) U (B, U {a)) for each a E A in any order. This shows
A 4 (A U BA). For any a E A, pick b, E B, and apply transformations A U BA 2.i (A - {a)) U {b,)
in any order, thus obtaining A 2 BA. Finally, if B - BA # 0 and B - BA = {bl , . . . , blc), BA 2.i

BA U {bl) - . . . - BA U {bl,. .. , bk) = B, i.e. A ...f. B. This shows sbc;. The proof of < B E & is
similar.

This proposition justifies the semantics defined inductively below on types. Notice that the semantics
for or-sets is given in such a way that the empty or-set is incomparable with any other or-sets. This
matches very well the intention that the empty or-set stands for inconsistency.

For each base type b a poset ([[b], Sb) is given;

1s x tn = (Us] x Ut], I s X 51);

IIitIll = (Pfin(IIt])r 5:);

1(t)ll = (Pfin(Itl)? 19.

In several papers dealing with partial information in databases it was proposed that instances of type
{t) be restricted to those containing no comparable elements, commonly called antichains, see [7, 181.
For example, if one field of a record plays the role of object identifier, then instead of having two
comparable elements with the same oid their join should be taken, provided the records with the
same oid are consistent. One way to obtain an antichain from an arbitrary finite set is to take all
the maximal elements. Dually, we can take the minimal elements. Thus obtained antichains will be
denoted by max< A and min< A or just max and min if the ordering is understood. We suggest using
rnax for the usual sets and min for or-sets (cf. [24]). Then the relations - and I-+ must be redefined as
follows: A -, max((A - a) U A'), A -, max(A U a) and A min((A - a) U A'), A H, min(A - a).

Proposition 3 On the family of finite antichains of (X, I), d, coincides with sb and 2, coincides
with < d .

Proof. Again, as in the proof of proposition 2, only the case of nonempty should be considered and
only one direction, namely sbc; and < t f ~ A must be proved as the other direction is immediate.
The empty set case is immediate, so throughout this proof all the sets are nonempty. We also need
the following ordering on sets, called the Plotkin ordering (cf. [ll]): A < h B A sb B and A IH B.

Let A, B # 0, A n B = 0. Define BA is in the proof of proposition 2. Similarly, Ab = { a E A [a 5 b)
and AB = UbEB Ab.

Claim 1: Let A <b B, A n B = 0. Then A a B and, moreover, only elements of A U B are used in
the transformations.
Proof of claim 1 is by induction on the size of A U B. The base case I A U B I= 2 is obvious. In the
general case, let B' be a minimal subset of B such that A jh B'. Our goal is to show that there exist
a E A and b E B' such that A - Ab sb B' - b. Then, by induction hypothesis, A - Ab B' - {b} and,
therefore, A 4 Ab U (B' - {b) (the same transformations can be used). Since Ab U (B' - {b)) - B',
A 2 B' follows, and adding elements of B - B' gives us A 4 B.

Assume that no pair (a, b) such that A - Ab < b B' - b exists. A - Ab sb B' - b always hold. Therefore,
whenever a < b, there exists b l E B' such that bl 2 a1 implies a1 E A*. Since a1 < bl , there exists
bz E B' such that a;! E Abl whenever a2 j b2. Notice that a2 5 b since a;! 5 bl and therefore must
be in Ab. Since A and B are finite, continuing this process, we obtain a finite number of elements
bl, . .. , bk # b (k may not be zero) such that Abi Ab for all i = 1,. . . ,k. We now claim that
A < b B' - {bl,. . . , bk). Clearly, A B' - {bl , . . . , bk). To prove A sb B' - {bl,. . . , b k) , let a0 E A.
There is bo E B' such that a0 < bo. If bo is one of b,'s, i = 1, . . . , k, then a0 < b. Hence, bo can be
chosen from B' - {bl, . . . , bk). Therefore, A < b B' - {bl,. . . , bk) which contradicts minimality. This
contradiction finishes the proof of claim 1.

Claim 2: Let A <b B, A n B = 0. Then A A B and, moreover, only elements of A U B are used in
the transformations.
Proof of claim 2 is similar to the proof of claim 1. Again, use induction on I A U B I. Since removal is
now allowed, assume w.1.o.g. that no proper subset of A is less than B w.r.t. jb. We claim that there
exists a E A such that A - {a) jb B - B,. Suppose not; then for every a E A there exists a1 E A such
that B,, C B,. Continuing, we obtain B, > B,, 2 B,, > Since all the sets are finite, Bat = Ba,
for some distinct a; and aj which contradicts minimality of A for A - {a;) < h B. Now, given a E A
such that A - {a) jb B - B,, apply the hypothesis to A - {a) and B - B, and observe that a is not
under any element of B - B,. Hence, A A (B - B,) U {a) since only elements of (A - { a)) U (B - B,)
were used in transformation. (B - B,) U {a) - B finishes the proof of claim 2.

Claim 3: Let A B (or A B) and all -A and ti transformations use only elements of A and
B. If C is a finite set such that both A U C and B U C are antichains, then A U C ..f. B U C (or
A U C A B U C) .
Proof of claim 3. Clearly, C does not interact with any or - transformation, provided they use
only elements of A U B.

Now, let A sb B. Since A, B are antichains, for A' = A - B and B' = B - A one has A' sb B'.
Therefore, A' sh B> and by claim 1 A' 2+ Ba. Moreover, all transformations use only elements from
A' U Bk. Then, by claim 3, A 4 Bk U (A n B). Adding elements to the right hand side one obtains
A 4 B. The proof that A ~ f l B implies A B is similar and it relies on claims 2 and 3. The
proposition is proved. 17

This proposition shows that if we deal with antichains, we can change the last two clauses in the
inductive definition of the semantics of types into

where Ah(X) is the set of finite antichains of X . It is clear how to define semantics of or-niRA
expressions if either semantics for types is used. In the case of the antichain semantics, if an application
produces a set (or or-set), max (or min) operation is used to make the resulting object into an antichain.

a in the case of the antichain semantics requires some care: a, = lala is a function from [{(t)}], to
[({t))],. Given an element of [{(t)}],, i.e. an antichain A = {A1,. . . ,A,) w.r.t. <b, of antichains
from [t],, let A; = {at,. . . , ahi). Let .FA be the set of all choice functions f : {I, . . . , n) -+ IN such
that 1 < f (i) 5 ni. For f E FA, f (A) is defined to be {a;(l), . . . , a Y(~)). Then

a,(A) = min b(max f (A))
f G 3 . 4 5

Furthermore, the famous result that iterated powerdomains a,re isomorphic [13] can now be given a
very simple description (cf. [19]):

Theorem 1 a, establishes an isomorphism between [{(t))], and [({t))],. The converse Pa is

Pa(A) = m u < I (minf (A)), A E [({t))Ila-
f E 3 d -

Proof. We have to show that a, maps [{(t))] to [({t))], Pa maps [({t))] to [{(t))] and a, and Pa
are mutually inverse and monotone. The first two claims follow immediately from the definitions of
a, and pa. To complete the proof, show that a, is monotone and pa o a, = id. By duality the proof
of monotonicity of pa and a, o pa = id can be obtained.

We start with two easy observations. If Yl, Y2 are finite subsets of an arbitrary poset, then
1) Yl sb Y2 iff maxYl <b m a y 2 ;
2) Yl 5fl Y2 iff min Yl <I min Y2.

Throughout this proof, A is defined as above, i.e. A = {A1,. . .,A,) and each A; consists of elements
a:, j = 1,. . . , ki.
Claim 1: a, is monotone.

Proof of claim 1: Let A ,B = {B1, ..., B,} E [{ (t) }] and A sb B. We must prove cu,(A) aa(B).
In view of the above observations, it is enough to show that for any f E 3&3 there exists g E .FA
such that g(A) sb f (B). Since for each i = 1,. . . , n there exists j; such that A; stf Bj,, there
is an element ahi E A; such that a i i 5 bF(jil. Let g(i) = pi. Then for this function g one has

{a' . (i = 1 , . . . , n} <b {bif(i) I i = 1,. . . , m}, i.e. g(A) sb f(f?). Claim 1 is proved.
g(r)

Let A E [{ (t) }] and B = {BI,. . ., B,} = cra(A) E [({ t })] . By 1) and 2) above, to show that
pa o a, = id, i.e. that Pa(B) = A, it suffices to prove
Claim 2: For any f E FB there exists A; E A such that f(B) sfl A;.
Claim 3: Every Ai is in P,(B).

P m f of claim 2: Let C be the collection of all sets f (A) where f E FA; C = {GI,. . . , Ck}. Then for
any g E Fc, there exists A; E A such that A; is contained in g(C) because, if this is not the case, for
any A; E d there exists j; 5 k; such that aii E A; and, for any f E FA, g on f (d) picks an element
different from a;,. If we define fo such that fo(i) = j;, g may pick only elements of form a;, on fo(A),
a contradiction. Therefore, g(C) jn A; for some i.

Let f E FB. Let H be the set of functions in 3+4 that correspond to elements of B = a,(A) or, in
other words, rnax h(A) E B for h E H. Then, for any h' E 3+4 - H , there exists a function h E H such
that rnax h(A) sb rnax h1(A), i.e. h(A) sb ht(A). Since h E H , rnax h(A) E B, i.e. rnax h(A) = B; . If
f (i) = j , then there is an element in ht(A) that is greater than bi . Define a function g E Fc to coincide
with f on those C;'s that are given by functions in H. On Ci that corresponds to f E - H, let g
pick an element which is greater than some bi where f(i) = j (we have just shown it can be done).
Then f(B) {c;(;, I i = 1,. . . , k} = g(C). We know that there exists A; E A such that g(C) <fl A;.

Thus, f (B) A;. Claim 2 is proved.

Proof of claim 3: Prove that for any a: E A; there exists BI E f? such that a$ E Bl. Consider the set
. . F? of functions f E FA such that f (i) = j. If for no f E F;: a) E rnax f (A) , then there exists A, E d

such that all elements of A, are greater than a:, i.e. A; jH A, which contradicts our assumption that

A is an antichain w.r.t. 5" Hence, a; E rnax f (A) for at least one function in Fz. Since A is an
antichain, for any p # i there exists a: E A, which is not greater than any element of A;. Change f to
pick such an element for any p # i. Then a; is still in rnax f (A). There exists a function f' E FA such

that rnax f1(A) sb rnax f (A) and rnax f1(A) E a,(A). If f1(i) = j' # j , then, since f1(A) sb f (A)
and A; is an antichain, a:, 5 a$ for some p and q, where p # i. But this contradicts the definition of
f . Hence, fi(i) = j and a; E rnax ff(A) because a: E rnax f (A). Since rnax f t (A) = BI for some index
1, a: E Bl E B.

Let B' be the collection of elements of f? that contain elements of A;. Then we can define a function
f E FB on elements of B' to pick all elements of A;. Each Bj E f? - f?' either contains an element of
A; or contains an element which is greater than some a; E A;. Let f pick any such element. Then
min f(B) = A;. Suppose A; $! ,Ba(B). Then A; sn ming(B) for some function g E 3&3 such that
ming(B) E Pa(U). By claim 2, g(B) <ti Aj for some Aj. Hence, ming(B) <ti Aj and since A is an
antichain w.r.t. I#, A; = Aj = ming(B) E Pa(f?). This finishes the proof of claim 3 and the theorem.

It was shown in [26] that the orderings sb and <n can be given a logical interpretation. Motivated by
applications in the semantics of concurrent programming, Winskel used the modal connectives and
0 to describe sb and I#. Rounds [24] used a similar logic to show the interaction between derivable
properties of complex objects and their ordering. Here we present what we believe is the simplest
interpretation of logics of [24, 261 for complex objects with or-sets.

Start with an unspecified language C that contains the symbol V for disjunction but does not contain
&, and 0. With each element x E [b], where b is a base type, associate a collection of formulas
in ,C closed under V, called the theory of x and denoted Th(x) in such a way that x < y implies
Th(x) > Th(y) and x # y implies Th(x) # Th(y). For example, if [b] is a flat domain, i.e. an
unordered collection of values with added bottom element I which is less than anything else, the
above requirement says that theories of distinct nonbottom elements do not coincide and the theory
of I contains all other theories (i.e. bottom implies everything).

The theory of a pair is a collection of pairs of statements from the theories of the components. The
theory of a set is informally defined as those facts which are true of all elements of the set. A theory
of an or-set contains facts which are true of at least one element of the or-set. These descriptions are
known as unary connectives in modal logic usually denoted by and 0 .

Now we can give a formal definition of theories of objects in an extended language C U {&, 0 , O) . A
theory of an object x, Th(x), is the minimal collection of formulas closed under V which contains

(04 I 3i : 4 E Th(x;)) if x = (31, . . . , x,).

Proposition 4 Given two objects 2, y of the same type,

Proof. Induction on the type of x and y. The base case follows immediately from the definition. The
case of pair is easy. Let x = {xl, . . . , x,), y = {yl, . . . , y,}, x 5 y means x Ib y. If U# E Th(y), then
for all i = 1, . . . , m: 4 E Th(y;). Given any xj, there exists y; such that x j 2 y;; hence # E Th(xj) and
therefore 04 E Th(x). Conversely, let Th(x) 2 Th(y). Suppose that x gb y, i.e. there exists xi such
that xi 5 yj for no yj. Then, by hypothesis, there exists a formula dj E Th(yj) such that q5j @ Th(x;).
Let 4 = V . . . V 4,. Then 4 E Th(yj) for all j = 1,. . . ,m. Therefore, 04 E Th(y) Th(x), i.e.

V . . . V 4, E Th(x;) which means that for at least one j : dj E Th(x;). This contradiction proves
x sb y. A similar proof for the case of or-sets which is based on the properties of <fl is omitted.

Since X sb Y iff max X sb maxY and X sfl Y iff min X min Y, proposition 4 is true if either [.]
or [.I, semantics is used.

4 Conceptual Query Language and Normalization

As it has been pointed out already, there are two levels of manipulation of objects - structural and
conceptual. This section is dedicated to the query language for the conceptual level.

We start with a few examples. If a pair (x, y) of or-sets is given, say, ((1,2), (3,4)), on conceptual
level we must deal with all possible objects it can conceptually stand for, that is, with or-set of
pairs ((1,3), (1,4), (2,3), (2,4)). In this case the function that carries out transformation of structural
representation to conceptual one can be given as or+ o or-map(or-pl) o or-p2. Another example of
the passage from structural to conceptual level is given by the primitive as : {(s)} -t ({s)), provided
that s is in the or-set free fragment.

Let us consider a more sophisticated example. Given an object x = ({(I, 2), (3)), (1,2)) of type
{(int)) x (int). Denote the first component by y. Applying or4 , to x first yields ((y, l) , (y , 2)) which
is an object of type ({(int)} x int). Applying or-map(a o TI, n2) yields an object

of type ((tint}) x int). Finally, applying or+ o or-map(or-pl) yields

of type ({int) x int). This can be considered as a conceptual level object for all the possibilities are
listed.

However, one could have used another strategy to list all the possibilities. For example, to apply
(a o r l , 7r2) first to obtain an object of type ({int)) x (int) and then o r 4 o or-map(or-pl) o or-p2 to
obtain an object of type ({int} x int). It is easy to check that such a strategy results in precisely the
same object as the previous one.

In fact, there is a general result saying that each type has a unique representation at the conceptual
level - such that no or-set type occurs in the type expression except as the outermost type constructor.
For reasons that should emerge shortly we call such a type a normal form. Furthermore, for each
object of type t there exists its unique representation at the conceptual level whose type is the normal
form of t.

To state these results precisely, we need some definitions about rewrite systems, see [8]. If a signature
is fixed, a rewrite system is a set of rules of form rl - 72 where TI, r 2 are terms. If a is obtained
from r by rewriting a subterm of r, we also write T - a. If a is obtained from r by a (possibly
empty) sequence of applications of rewrite rules, we write T - a.

A term r is called a normal form if there is no other term a such that r - a. A rewrite system is
called terminating if there is no infinite sequence of terms 71 - 72 - It is called Church-Rosser
if, whenever r - and r - 7 2 , there exists a term T I such that rl - T I and ~2 - TI. In
a Church-Rosser terminating system for every term r there exists a unique normal form n f (r) such
that T - nf(r) .

Now introduce the rewrite rules for type expressions:

t x (s) - (t X s) (t) X S - (t X s)

Proposition 5 The above rewrite system is terminating and Church-Rosser. The normal forna n f (t)
for type t can be found as follows: If t does not use (), then n f(t) = t. Otherwise, remove all angle
bmckets from t. If the resulting type is t', then n f (t) = (t').

Proof. To show that the rewrite system is terminating, define the following function on types.
Considering types as their derivation trees, let k; be the number of occurrences of () on the ith level
of the derivation tree of type t. If the height of the derivation tree is n, define p(t) as Cy=lk; . i. It is
easy to see that if t - to, then cp(t) > q(to). Hence, any rewriting terminates.

To prove Church-Rosserness, one has to find so-called critical pairs, see [8], which in essence are pairs
of terms that can give rise to ambiguity in rewriting, and show that for any critical pair (7 1 , ~ ~)
there exists a term T such that 71 - T and 72 - T. We refer the interested reader to [8] for
the definitions and proof of the critical pair lemma. A straightforward analysis of our rewrite system
reveals the following critical pairs: 1) (({(t))), {(t))); 2) ((t x (s)), t x (s)); 3) (((s) x t) , (s x (t))) and
4) (((s) x t), ((s)) x t) and their symmetric analogs. The terms to which both components of critical
pairs rewrite are ({t)) for I), (t x s) for 2) and (s x t) for 3) and 4). Thus, the rewrite system is
Church-Rosser and, therefore, has unique normal forms.

The proof of the last statement is by induction on the structure of a given type. We limit ourselves
only to types containing (). The base case is immediate. In general case, consider three subcases: 1)
t = tl x t2, 2) t = i t l) , 3) t = (tl). In subcase 1, t' = t i x t;, hence, if both tl and t2 contain or-sets,
nf(tl) = (ti), nf(tz) = (t i) and t - (t i) x (t;) - (ti x t i) = (t') which is a normal form. Thus,
n f(t) = (t'). The simple proofs of other cases are omitted.

Having defined rewrite rules for types, we must show how to apply these rules to instances. First,
associate a morphism with each rule as follows:

or-p2 : t x (s) - (t x s) or-pl : (t) x s - (t x s)

Let t be a type and p a position in the derivation tree for t such that applying a rewrite rule with
associated function f to t at p yields type s. Our aim is to define a function app(t,p, f) : t -+ s
showing the action of rewrite rules on objects. Define it by induction on the structure of t:

if p is the root of the derivation o f t , then app(t,p, f) = f ;

if t = tl x t2 and p is in tl , then app(t,p, f) = (~ P P (~ I , P , f) 0 r i , ~ ~) ;

if t = tl x t2 and p is in t2, then app(t,p, f) = (TI, app(tz,p, f) ~ 2) ;

if t = {t ') then app(t, p, f) = map(app(t1, P , f 1);
if t = (t') then app(t,p, f) = or-map(app(tl,p, f)) .

Notice that the definition of app relies on the fact that the functions associated with the rewrite rules
are polymorphic.

f 1 f2 f n Given a type t and a rewriting strategy T := t --t tl - . . . - t , = n f (t) such that the rewrite rule
with associated function f; is applied at a position pi, we can extend the function app to app(t , r) :

t + n f (t) by ~ P P (~ , T) = a ~ ~ (t n - l , ~ n , f n) 0 . - 0 ~ P P (~ I , P Z ~ f 2) 0 app(t, P I , f i)

Notice that app(t, p, id) = id. Therefore, app(t, p, f) destroys our informal notion of conceptual mean-
ing if and only if f does. Since all of the f;'s we use in the rewriting rules preserve conceptual meaning
(see section I), so does app(t, T) . Now we can formalize this informal notion of conceptual meaning
by proving the following theorem.

Theorem 2 (Coherence) Given a type t , any two rewrite strategies r l , r2 : t - n f (t) yield the
same result on objects. That is, for any object x of type t , app(t, r l) (x) = app(t , r 2) (x) .

Proof. By proposition 5 , it suffices to prove the weaker property that for any complex object x : s
and any two rewrite steps app(s ,p l , f l) : s -+ t l and app(s,p2, f2) : s -+ t2, there are app(t1, r l) : tl -+

n f (s) and app(t2, r 2) : t 2 -+ n f (s) such that the diagram below commutes.

The proof is a straight forward case analysis. We present two cases for illustration. Suppose s is
sl x (s2), app(s, pl , f i) is or-p2 and app(s, p2, f2) is (f o T I , r2), where f : sl -+ si . Then t l = (s l x s 2)

and ta = (s', x (s2)). Moreover, the diagram

commutes for any strategy r . Then r l and r2 can be obtained readily. Hence the case.

Suppose s is {((s'))}, app(s,pl, f l) is a, and app(s,pz, f2) is map(or-p). Then t~ = ({(sf)}) and
t2 = {(st)}. The diagram

commutes for any strategy r because or-p o or-map(cr) o cr = cr o map(or-p). From which r l and rz
can be derived. So the case holds.

Therefore, all objects with the same meaning at the conceptual level rewrite to the same normal form.
The intuitive notion of the conceptual meaning can now be rigorously defined as the normal form. So
now we can define the conceptual query language or-NRA+ by adding the new construct

normalizet : t + n f (t)

to or-NRA. By the coherence theorem, normalizet can be implemented as app(t,r) where r : t -
n f (t). Notice that, for any given t, normalizet can be expressed in or-n/RA (maybe in more than one
way) but it is impossible to express it polymorphically.

There are two questions to be asked about this new query language. First, how much information is
lost by normalization? There are different objects that normalize to the same one, i.e. information
from the structural level could be lost. Secondly, how costly is normalization? We address these
problems in the subsequent sections. In the next section it is shown that normalization is lossless,
i.e. practically all queries are unaffected by the loss of structural information. In Section 6 the upper
bounds for the size of normalized objects are found.

5 Losslessness of Normalization

This section investigates whether the process of normalization loses anything "that can be regarded as
critical." If loss of information is inevitable in the general case, then one would like to obtain a set of
general sufficient (and, if possible, necessary) conditions that guarantee losslessness of normalization.
In order to proceed, a criterion on what normalization can be regarded as "losing nothing essential"
has to be formulated. The following is a reasonable choice.

Definition. Given a definable morphism f : s + t . Suppose there is a morphism preserve(f) :
n f ((s)) + n f ((t)) such that preserve(f) o normalize(s) o or_qs = normalize(t) o o r q t o f, provided
the input is restricted t o objects not containing any empty or-set. Then normalization is lossless with
respect t o f .

Let us first justify the definition given above. The proviso on the input is necessary because all
objects containing empty or-set have the same normal form, namely (). Recalling that () stands for
inconsistency, such objects are conceptually inconsistent and should be omitted. The use of or-qs and
or-$ is a technical device to ensure that the normal forms produced always look like (dl, ..., d,) where
d l , .., d, have no or-sets. This is justified since or-l;l d is conceptually d for any d. conceptual meaning
of the input to f and returns the conceptual meaning of the output of f .

It turns out that it is not easy to achieve losslessness of normalization with respect to an arbitrarily
given morphism f . There is no simple method to discover the required preserve(f) . However, we
have been able to isolate the morphisms that can give rise to possible difficulty. Any morphism not
containing KO, p where Type(p) contains some or-set, and p;'t where s contains some or-set does not
lead to losslessness.

Theorem 3 (Losslessness) Let f : s -i t be a morphism of' or-NRA not containing any K O , p
where some or-set appears in Type(p) , and p;3u where u has some or-sets. Then normalization is
lossless with respect to f. Moreover, the preserve(f) that makes normalization lossless has a map-like
property; that is, preserve(f) = or+ o or-map(preserve(f) o or-q).

Proof. For each type t , define the type preserve t and the morphism preservet : t + preserve t as
follows.

preserve b = (b) preserveb = or-7 b

preserve (s x t) = preserve s x preserve t preserve(,,t) = (preserves 0 n~,preserve t 0 ~ 2)

preserve { t } = {preserve t } preserve(t) = map(preservet)
preserve (t) = (preserve t) preservep) = or-map(preservet)

Using the fact that normalization is coherent, it is easy to show by induction on t that normalize o
or-$ = normalize o preservet. Consequently, we can instead prove the commutativity of

preserves normalize
x : S -> . : st A . : (st ')

. : t -> . : tt - . : (t")
preservet normalize

for complex object x : s having no empty or-set and any morphism f : s + t satisfying the precondi-
tions of the theorem, where preserve(f) is defined by structural induction on f below.

Case f is id. Then preserve(f) = id.

Case f is 7 , x l , n2, p, K () , Ilc, !, U, p z , or p. Then preserve(f) = or-map(f) .

Case f is (g , h) . Then preserve(g, h) = or-p o or-map(or-pl) 0 or-p2 0 (preserve g,preserve h) .

Case f is g o h. Then preserve(g o h) = preserve(g) o preserve(h).

Case f is map(g). Then preserve(map g) = or-p o or-map(cw) o or-map(map(preserve(g) or-7)).

Case f is a, or-7, or-p2, or or+. Then preserve(f) = id.

Case f is or-map(g). Then preserve(or-map(g)) = p r e s e ~ v e (~) .

It is readily verified that preserve(f) is map-like. The proof that the diagram commutes is by induction
on f and uses the coherence theorem in several places. We present a few illustrative cases below.

Suppose f is or-map(g), where g : u -+ v. Then s = (u) and t = (v) . By hypothesis, preserve(g)
exists and is map-like. Now consider the diagram below.

preserve or-map(normalize) o r-p
x : (u) . : (21') > . : ((ut ')) . : (ut')

or-map(L7) I or-map(preserve g)

> I preserve g

. : (v) . : (v t)
or-p

I . : ((v t ')) A . : (vlt)
preserve or-map(normalize)

The left rectangle commutes by hypothesis. The right rectangle commutes because preserve(g)
is map-like. Hence the entire diagram commutes. By the coherence theorem, normalize('"') =
or-pull o or_map(normalizeul) and normalize(u1) = or-pu" o or-map(normalizeU1). So the original dia-
gram commutes and the case follows.

Suppose f is map(g) where g : u -, v. Then s = {u} and t = { v) . By hypothesis, preserve(g) exists
and is map-like. Consider the diagram below.

preserve map(normalize) a
x : {u} - : { u t } > : { (u t l) } : ({ u ~ ~ })

map(g) I map(preserve g) J preserve(map g)

preserve map(norma1ize) a

I
: { v } -> : { v l } - : { (v t t)) - : ({ v t l))

The left rectangle commutes by hypothesis. To see that the right rectangle commutes, we calculate
as follows: preserve(map g) o a = or-p o or-map(a) o or-map(map(preserve(g) 0 or-7)) 0 a = or-p 0
or-map(a) o a o map(or-map(preserve(g) o or-7)) = a o map(or-p o or-map(preserve(g) o or-7)) =
a o map(preserve g) . The last equality follows from the map-likehood of preserve(g). The second last
equality follows from the fact that or-p o or-map(a) o a = a o rnap(or -~) . Hence the entire diagram
commutes. The case then follows by an application of the coherence theorem.

Suppose f is n,"'". Then s = u x v and t = u. Let or-cp = or-p o o r - m a p (~ r - ~ ~) o or-p2. Consider the
diagram below.

preserve (normalize o T I , normalize o n2) or-cp
x:Uxv'*:u1xv > y : (u") X (v") : (u" X v")

. : u p > * : u t a : (ut ') -> a : (ut l)
preserve norma,lize id

The two left rectangles obviously commutes. By assumption, x has no empty or-set. Thus y has no
empty or-sets. Therefore, the right rectangle commutes. Hence the whole diagram commutes. Finally,
the coherence theorem is applied to conclude the case.

The requirement on pg'w can be relaxed. In particular, a p;'" such that u has or-set but v has no or-set
can appear in f so long as it does not appear in any subexpression of the form (-, .), or-map(-), or
map(.). Losslessness can be maintained in such a situation, although the required pre.serve(f) is no
longer map-like.

Figure 2: Conceptual analog of morphism f

Since p is generally an uninterpreted primitive, the qualification that Type(p) has no or-set is necessary.
This means that equality tests =t where t has or-set have been excluded. However, =t is an equality
test that is structural. Normalization is a process that removes structural differences from objects
that are conceptually identical. Hence one cannot expect normalization to be lossless with respect to
such =t .

Given an or-NR4 morphism f : s t t and an object x : s containing some or-sets. Then x conceptually
represents several values X I , ..., x,. Suppose f x is an object containing or-sets; then it conceptually
represents several values yl, ...,y,. It is desirable to discover which one of xl, ..., x, leads to which
one of yl, ..., y,. This is a question of searching for a conceptual analog of f that associates each xi in
normalize x to a subset of normalize(f x) .

The idea of conceptual analog of morphism is illustrated in Figure 2. One would like to know which
combination of the conceptual values of the input give rise to which subset of the conceptual values
of the output. However, the ideal situation can only be approximated. As a first attempt, for each
possible conceptual value x; of the input x, we aim only to account for some of the conceptual values
in the output that are due t o it. This approximation to conceptual analog is illustrated in Figure 2.
Some conceptual values yj in the output may be left unaccounted for. For example, the last element
of normalize y in the figure. Similarly, the picture given for each input xi is only partial. For example,
the second element of normalize x in the figure might in reality contributes to 3 values in the output
but the conceptual analog discovers only 2.

This approximation to conceptual analog is formalized below.

Definition. Let f : s t t be a definable morphism of o r - N W . Then its conceptual analog is a map-
like morphism preserve(f) such that for all x : s, (preserve(f) o normalize(s) o or-qs)(s) is included
in o o r q t o f) (x) .

There is some relationship between losslessness and conceptual analog. A conceptual analog of f that

accounts for every element in the output is a morphism that makes normalization lossless with respect
to f . Hence the search for a lossless preserve(f) can be generalized as a search for a conceptual analog
o f f that accounts for each possible conceptual value of the output. A result similar to theorem 3 can
be proved.

Proposition 6 Let f : s + t be a morphism of or-NRA not containing any p where T y p e (p) involves
some or-set. Then preserve(f) , as defined in the proof of the losslessness theorem, is a conceptual
analog of f .

Proof. The precondition of this proposition is weaker than that of theorem 3 because we merely
required that (preserve(f) o normalize o or-q)(x) be included in (normalize o or-7 o f) (x) , as oppose
to being equal. The proof is a simple adaptation of the proof of theorem 3. The most involved case
is presented below.

Suppose f is map(g) where g : u -, v. Then s = { u) and t = { v) . By hypothesis, preserve(g) is a
conceptual analog of g. Consider

preserve Q

map(g) I m a p (h 1 g)

: {v} - : { v l) - w : { (v ' l) } - 2 : ({u I t })
preserve nzap(norma1ize) cr

If x contains some empty or-set, then y is (). In this case, the inclusion is trivially satisfied. So
assume x has no empty or-set. Let h : (u") i (v") be a map-like function, not necessarily definable
in or-~V72.4, such that m a p h x = w and preserve g d is included in h d for all singleton d : (u").
It is easy to see that (preserve(map g) o cr)(x) = (a o map(or-p o or-map(preserve(g) o or -q))) (x) is
included in (a o map(or-p o or-map(h o or-11)))(x) = cr o map(h) . Since such a h can always be found
given x , w, and preserve(g), the case holds.

6 Costs of Normalization

We have seen before that the complexity of or-NR4+ queries can be exponential. In particular, the
cardinality of normalize(x) can be exponential in the size of x provided that cr was used in the course
of normalization. In fact, the example given in section 2 shows that even one application of cr may
result in an or-set of exponential cardinality. If one tries to estimate the cost of normalization by
"brute force," a hyperexponential upper bound can be immediately obtained: indeed, if n is the size
of x , applying the costly cr O (n) times seems to yield a hyperexponential bound.

In this section we show that the fear of hyperexponentiality is not justified. In fact, both cardinality
of normalize(x) and its size are in the worst case exponential in the size of x . The first result in this

section explains why consecutive applications of a still yield objects of exponential size. Then we
proceed to find upper bounds on the cardinality and the size of normalized objects. The last result
in this section shows that there exist existential queries involving normalization which can not be
evaluated in polynomial time.

Let x be an object and y = normalize(x). Define m(y) as the number of elements in y if it is an or-set
and 1 otherwise. Uniformly, m(x) = Inormalize(or-q(x))I. The size of an object is defined inductively:
the size of an atomic object is 1, size (x, y) = size x + size y, size (21,. . . , x,) = size (x17. . . , x,) =
size x l + . . . + size x,.

To work with objects, it is convenient to associate rooted labeled trees with them. A tree T x associated
with an atomic object x is defined as a one-node tree labeled by x. T (x , y) is a tree with the root
labeled by x and two subtrees rooted a t its children are T x and Ty. 71x1 , . . . , x,) (or 7 (x l , . . . , x,))
is a tree whose root is labeled by {) (or ()) and n subtrees rooted at its children are T x l , . . . , Tx,. In
view of this definition, m(x) can be redefined as the number of children of the root of 7normalize(x)
if the root is labeled by () and 1 otherwise. sizex is the number of leaves in 7 x .

Intuitively, the following proposition says that the "internal" structure of 7 x does not contribute to the
creation of new possibilities in normaIize(x), and the number of such possibilities m(x) is determined
by the or-sets which are closest t o the leaves.

Proposition 7 Let x be an object, and vl, . . . , vk the nodes in T x labeled by 0, such that the subtrees
rooted at vi's do not have other nodes labeled by () (i.e. they are or-sets closest to the leaves). Let mi
be the number of children of v;, i = 1, ..., k. Then, if k # 0,

Proof is by induction on the structure of the object. We consider only objects containing or-sets.
The base case (i.e. or-sets of objects of base types) is obvious. Let x = (xl,x2). Assume that
both x1 and 2 2 contain or-sets and vl,. . . , v, are nodes of 7 x 1 and vp+l,. . . , vk are nodes of 7x2.
Then, by induction hypothesis, m(xl) 5 nY=,(mi + 1) and 4 x 2) < nf=,+,(mi + 1). By coherence,
nornaalize(x) = or-p((normalize(xl), normalize(x2))) where or-p pairs each item in its first argument
with each item in its second argument (it can be easily expressed in or-NRA). Therefore, m(x) 5
m(x1)m(x2) < n L l (m i + 1). Two other cases when either XI or x2 contains or-sets are similar.

Let x = {xl, . . . , x,). Then all xi's contain or-sets. Again, by coherence,

Therefore, m(x) 5 ny=l m(xi) and the result follows from the induction hypothesis.

Finally, if x = (xl , . . . , x,) , there are two cases. If xi's do not contain or-sets, then m(x) = n 5 n + 1.
If they do contain or-sets, then by coherence

normalize(x) = or-p((normalize(xl), . . . , normalize(x,)))

i.e. m(x) < Xy=lm(xi) < ny=l m(xi) because m(.) 2 2. The case now follows from the hypothesis.

This proposition explains why there is an exponential upper bound for m(x) despite the fact that a
can be applied many times. The following result finds a sharp upper bound in terms of the size rather
than the tree structure.

Theorem 4 Let x be an object with sizex = n. Then

Moreover, for any n divisible by 3 there exists an object x such that sizex = n and m(x) = an.
Proof. As in the proof of proposition 7, consider only objects containing or-sets. Procced by induction
on the number of steps of normalization. If the object is already normalized, we are done. Assume
normalize(x) is obtained by one step of normalization. Then this step is one of the maps associated
with the rewrite rules, so we have for cases. Notice that in the base cases we may assume w.1.o.g that
everything that any element of a set or an or-set is of base type since this will give us the maximal
possible m(x) for a given size x.

Case 1. x = (z1,x2) where x l = (x i , . . .,x:-~). Then normalize(x) = or-pl(x) and it is an easy
arithmetic exercise to show that m(x) = n - 1 5 fin.

Case 2 when or-p2 is applied to obtain the normal form is similar.

Case 3. Let x = {XI, . . . , Xk) where each Xi is an or-set (x i , . . . , x i) where all x j are elements of base
types. Since we are interested in upper bound, assume w.1.o.g. that all xi's are distinct (if they are
not, some of sets in normalize(x) could collapse). Let X = Ui,j xi. Define a graph G = (X, E) where

(22, x k) is in E iff il f i2. Let normalize(x) = a(x) = (Yl, . . . , Yp) (Yk7s are sets). Then it follows
from the definition of a that Yl, . . . , Yp are precisely the cliques of G. Since n = size x = w, applying
the upper bound on the number of cliques for a graph with n vertices [21], we obtain p = m(x) 5 fln.

Case 4. x = (XI, . . . ,Xk) where Xi's are or-sets of a base type. Then normalize(x) = or-p(x) and
m(x) 5 n. Again, simple arithmetic shows that n < $6". Hence, m(x) 5 an.
The proof of the general case is very similar to the proof of proposition 7 and we will show only step.
Let x = {xl, . . . , xk) where xi's are not normalized. Then normalize(x) is obtained by applying cr to
{normalize(xl), . . . , normalize(x,)). Let size xi = n;. By induction hypothesis, m(xi) 5 sn'. We
now have

k k

The other cases are similar. To show the sharpness of the upper bound, let n = 3k, k > 0. Assume
that we have a base type whose domain is infinite (typical example is int). Let bl, . . . , bn be n distinct
elements of such a type. Let

Then sizex = n and normalize(x) = a (x) contains 3k = 8" elements. The theorem is completely
proved.

Using theorem 4, one can prove the following upper bound on the size of normal forms by induction
on the steps of the normalization process:

Theorem 5 Let x be an object with size(x) = n where n > 1. Then

sire normalire(x) 5 2 en
2

Proof. Similarly to the proof of theorem 4, proceed by induction on the steps of normalization. We
start with base cases, i.e. consider application of or-p, or or-pl or a or or+.

Case 1. x = (2 1 , 2 2) where x1 = (x : , . . . , x i) . Let size X I = s l , size sf = a;. Then sl +al +. . .+ak = n.
Since normalize(x) = or-pl(x), size normalize(x) = ksl +al + . . .+ak = ksl +(n-s l) 5 (n -sl)sl +n-
sl 5 2n-2. Since empty sets and or-sets are excluded, n 2 2 in this case and therefore 2n-2 5 ;fin.

Case 2 when or-p, is applied is similar.

Case 3. Let x = { X I , . . . , XI} where each Xi is an or-set (x i , . . . , xi,) where all xi have types containing
no or-set. Let size x i = si and

Then an easy calculation shows that size normalize(x) = size a (x) is given by

Therefore, we need to maxin~ize 1 . a1 - a1 under constraint a1 + . . . + 01 = n. A standard argument
shows that such a maximum is bounded above by

If it easy to see that for n > 1, the upper bounds given above are less than q ~ n . If n = 1, then the
size of the normal form is also 1.

Case 4. x = (X I , . . . , X I) where Xi's are or-sets of a type t11a.t does not contain or-sets. Then
normalize(x) = or_ll(x). Since the or-p does not change size, size normalize(x) < $fin for all n >_ 2.
If n = 1, then size normalize(x) = 1.

To complete the inductive proof, we show that after each step of normalization that produces a
normalized subobject xrr, that is, xfr = normalize(xr) for a subobject x' of x , either size x" 5 ;an
is satisfied if n = sizexr > 1, or sizestr = 1 if n = 1. This will complete the proof. Two cases
corresponding to application of or-pl or or-p2 are similar to the case of a , so we show here only the
case of application of a.

Let x = {xl, . . . , xk) where each xi is an unnormalized object. Let xi = normalize(x;) and k; be the
cardinality of x:, i.e. k, = m(xi). Let n; = size x;. By theorem 4, k; 5 f in'. First consider the case
when all ni > 1.

Let x: = (y:,. . . ,y i ,) , i = 1,. . . , k. By s j we denote size yj. By induction hypothesis,

ki ,

V l k : ')C si 3 - < lf?-Wi 9

normalize(x) is obtained by applying cr to {x!, . . . , x i) , i.e. its elements are sets of representatives
of x i , . . . , x i . Since we are interested in an upper bound, we may assume that all the elements of
x i , . . . , x i are distinct. Then each element of xi will be present in k(') = kj)/ki sets. Therefore,
the upper bound for size normalize(x) can be calculated as the sum of the sizes of all elements of
x i , . . . , x i multiplied by the number of their occurrences in the normalized object, i.e.

size normalize(x) C 2 k(;))s = ')C k(i) ')C s' 3 < -

If all ni = 1, then size normalize(x) = k = n. If n > 1, then n 5 :fin and if n = 1, that is, size% = 1,
then size normaliae(x) = 1.

Now consider the general case, i.e. n l , . . . , n, > 1 and np+l , . . . , nk = 1. Normalization of xi for i > p
results in a size one object. Let a0 = n l + . . . + n, and al = k - p. Clearly a0 + al = n. Had we
applied a only t o {x i , . . . , xk), it would have resulted in an object whose size is bounded above by
?flu' according to the calculations for the case where all ni > 1. But taking into account al size
one objects adds size a1 to every element of the or-set normnlize(z). Since there are a t most fiuO
such sets, we obtain

size norrnaiire(x) 5 2% O0 + ol Z Oo

2

Since a 0 > 1, a0 + 201 5 (ao + a1)Bu1 which shows

0 0 3
size normalize(x) 5 -Au0 2 + aDO < !!%n

- 2

Finally, if or-p is applied in the process of normalization, it does not change size. Assume x =
(xl, . . . , xk) where each x; is an unnormalized object. Let xi = normalite(x;) and n; = size xi.
Assume n l , . . . , n, > 1 and n,+l = . . . = nk = 1. Define 00 and a1 as in the case of applying a. Then,
by induction hypothesis,

size normalite(x) 5 2 3 % n' + 5 7 %lo + < an
i = l

2 ' - 2

25

If all n; = 1, then two cases arise. If n > 1, then size normalize(x) = n 5 $fin, and if n = 1, then
size normalize(x) = n = 1.

Theorem is proved.

Corollary 1 Let x = normalize(y) and size x = n . Then

O(1og n) < size y 5 n

The upper bound of theorem 5 is not sharp. The following result exhibits a sharp upper bound for a
large class of objects. This shows that the previous theorem can not be significantly improved.

Theorem 6 Let x be an object with sizes = n containing or-sets. Assume that every subobject of
type { (t ') } has size at least 21, every subobject of type t' x (t") or (t") x t' has size at least 6 and every
subobject of type ((t ')) has size at least 3, where t' and t" do not use the or-set type constructor. Then

size normalize(r) < R%n
3

Moreover, for any n divisible by 3 there exists an object x such that size x = n and size normalize(x) =
"8". 3

Proof. We have to rework the base cases only. Since no subobject involving or-sets can have size
one, the induction step easily goes through, cf. the proof of theorem 5.

The case of applying a was already proved, see proof of theorem 5. For the case of applying or-pl or
or-p2, we established an upper bound 2n - 2. It is easily seen that 2 n - 2 2 $fin for n 2 6. Finally,
applying or-,u does not affect size, and n 5 5s" for n 2 3.

To show sharpness, consider example from the proof of theorem 5. Let

where all b;'s are distinct elements of a base type. Then a (x) contains fin elements, each having
cardinality $. Thus, size normalize(x) = $ $6 ".

The importance of existential queries was emphasized in [15, 161. Essentially, an existential query
asks whether there exists a possibility - in the normal form - satisfying a given property. In terms of
or-NnA+, if n f (s) = (t) and p : t i bool is a predicate, 3 (p) : (t) -4 bool is a predicate which is true
of y : (t) if or-map(p)(y) : (bool) is an or-set containing the true value. Given an object y of type s ,
one may ask a query 3(p)(normalize(y)) . Clearly, this query call be answered in time polynomial in
the size of normalize(y), but can it be answered in time polynomial in the size of y?

The following example gives a negative answer to this question, provided P # N p . Assume pk : { t) i
bool evaluates t o true if and only if cardinality of the set is at most k. Let b a base type. For an object

x of type {(b)), one may ask a query Q(k, x) = 3(pk)(normaEize(x)). It is immediately seen that this
query evaluates to true iff there exists a system of distinct representatives of elements of x (which are
or-sets) whose size is at most k. The problem of finding a system of distinct representatives of size
5 k is known to be NP-complete, see [9]. Therefore, the problem whether Q(k, x) evaluates to true is
NP-complete.

7 Future Work

There are many further problems which we would like to investigate. The languages we have proposed
give rise to interesting equational theories which can lead to useful optimizations. For instance,
or-rnap(map f) o a = a o map(or-map f) and or+ o or-map(a) o (Y = a o map(or-~) .

There is also an appealing possibility of using or-sets in merging databases. For example, we can use
a merge operator for combining databases as follows: merge(((id1, a), (id2, b)), {(id1 1 a'), (id21 b'))) =
((id17 (a1 a?), (id21 (by u))) .
There are two further questions concerning losslessness. First, given a query at the conceptual level
and an unnormalized object, can we discover an equivalent structural query which does not force
normalization on the object. Second, the condition that I < () does not appear in f in our losslessness
theorem can be removed in some situations. But we do not yet have a full characterization of those
situations.

There are various sophisticated order theoretic models of partial information in databases - sand-
wiches [6], mixes [lo], snacks [17, 231. They enjoy universality properties and therefore can be in-
corporated into the programming language syntax. We plan to investigate the applicability of such
models to the study of or-sets.

Our languages have been extended to include variant types. It is known that the coherence result still
holds in the extended languages. The validity of the remaining results of this report remains to be
checked for this extension.

Acknowledgements. The authors are grateful to Val Breazu-Tannen, Anthony I<osky, Shamim
Naqvi and especially Peter Buneman for many interesting discussions.

References

[I] S. Abiteboul, C. Beeri, On the Power of Languages for the Manipulation of Complex Objects, In
Proc. of Int. Workshop on Theory and Applica.tions of Nested Relations and Complex Objects,
Darmstadt, 1988.

[2] S. Abiteboul, P. Fischer and H.-J. Schek, eds, LNCS 361: Nested relations and Complex Objects
in Databases, Springer-Verlag, 1989.

[3] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural Recursion as a Query Language. In
Proc. of 3rd Int. Workshop on Database Programming Languages, pages 9-19, Naphlion, Greece,
August 1991.

[4] V. Breazu-Tannen and R. Subrahmanyam. Logical and Computational Aspects of Programming
with Sets/Bags/Lists. In LNCS 510: Proc. of 18th ICALP, Madrid, Spain, July 1991, pages
60-75. Springer Verlag, 1991.

[5] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally Embedded Query Languages. In LNCS
646: Proc. ICDT, Berlin, Germany, October, 1992, pages 140-154. Springer-Verlag, October 92.

[6] P. Buneman, S. Davidson, A. Watters, A semantics for complex objects and approximate answers,
JCSS 43(1991), 170-218.

[7] P. Buneman, A. Ohori, A. Jung, Using powerdomains to generalize relational databases, T C S
91(1991), 23-55.

[8] N. Dershowitz and J.-P. Jouannand, Rewrite Systems, In: Handbook on Theoretical Computer
Science, Horth Holland, 1990, pages 243-320.

[9] M. Garey and D. Johnson, "Computers and Intractability : A Guide to the Theory of NP-
completeness", San Francisco, W .H. Freeman, 1979.

[lo] C. Gunter, The mixed powerdomain, T C S 103(1992), 311-334.

[ll] C. Gunter and D. Scott, Semantic Domains, In: Handbook on Theoretical Computer Science,
Horth Holland, 1990, pages 633-674.

[12] R. Harper, R. Milner, and M. Tofte. "The Definition of Standard ML", The MIT Press, 1990.

[13] R. Heckmann, Lower and upper power domain constructions commute on all cpos, Inform. Pro-
cess. Letters 40(1991), 7-1 1.

[14] T. Imielinski, W. Lipski. Incomplete information in relational databases. J. of ACM 31(1984),
76 1-791.

[15] T . Imielinski, S. Naqvi, and K. Vadaparty. Incomplete Objects - A Data Model for Design and
Planning Applications. In Proc. of ACM-SIGMOD, Denver, Colorado, May 1991, pages 288-297.
Full paper submitted to ACM TODS.

[16] T. Imielinski, S. Naqvi, and K. Vadaparty. Querying Design and Planning Databases. In LNCS
566: Deductive and Object Oriented Databases, pages 524-545, Berlin, 1991. Springer-Verlag.

[17] A. Jung, H. Puhlmann, private communication (October 1992).

[18] L. Libkin, A relational algebra for complex objects based on partial information, In LNCS 495:
Proc. of Symp. on Math. Fundamentals of Database Systems 91, pages 36-41, Rostock, 1991.
Springer-Verlag.

[19] L. Libkin, An elementary proof that upper and lower powerdomain constructions commute,
Bulletin of the EATCS 48(1992), 175-177.

[20] E. Moggi. Notions of Computation and Monads. Information and Computation, 93(1991), 55-92.

[21] J. Moon and L. Moser, On cliques in graphs, Isr. J. Math. 3(1965), 23-28.

[22] S. Naqvi and S. Tsur. "A Logical Language for Data and Ii'nowledge Bases", Computer Science
Press, 1989.

[23] T.-H. Ngair. Convex Spaces as an Order-theoretic Basis for Problem Solving, Technical Report
MS-CIS-92-60, University of Pennsylvania, 1992.

[24] B. Rounds, Situation-theoretic aspects of databases, In Proc. Conf. on Situation Theory and
Applications, CSLI vol. 26, 1991, pages 229-256.

[25] P. Wadler. Comprehending Monads. In Proc. of ACM Conf. on Lisp and Functional Programming,
Nice, June 1990.

[26] G. Winskel, Powerdonlains and modality, TCS 36(1985), 127-137.

	Semantic Representations and Query Languages for Or-Sets
	Recommended Citation

	Semantic Representations and Query Languages for Or-Sets
	Abstract
	Comments

	tmp.1187287053.pdf.t8TGl

