
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

February 1990 

Parsing With Lexicalized Tree Adjoining Grammar Parsing With Lexicalized Tree Adjoining Grammar 

Yves Schabes 
University of Pennsylvania 

Aravind K. Joshi 
University of Pennsylvania, joshi@cis.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Yves Schabes and Aravind K. Joshi, "Parsing With Lexicalized Tree Adjoining Grammar", . February 1990. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-11. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/542 
For more information, please contact repository@pobox.upenn.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/542
mailto:repository@pobox.upenn.edu


Parsing With Lexicalized Tree Adjoining Grammar Parsing With Lexicalized Tree Adjoining Grammar 

Abstract Abstract 
Most current linguistic theories give lexical accounts of several phenomena that used to be considered 
purely syntactic. The information put in the lexicon is thereby increased in both amount and complexity: 
see, for example, lexical rules in LFG (Kaplan and Bresnan, 1983), GPSG (Gazdar, Klein, Pullum and Sag, 
1985), HPSG (Pollard and Sag, 1987), Combinatory Categorial Grammars (Steedman, 1987), Karttunen's 
version of Categorial Grammar (Karttunen 1986, 1988), some versions of GB theory (Chomsky 1981), and 
Lexicon-Grammars (Gross 1984). 

We would like to take into account this fact while defining a formalism. We therefore explore the view that 
syntactical rules are not separated from lexical items. We say that a grammar is lexicalized (Schabes, 
AbeilK and Joshi, 1988) if it consists of: 

(1) a finite set of structures each associated with lexical items; each lexical item will be called the anchor 
of the corresponding structure; the structures define the domain of locality over which constraints are 
specified; 

(2) an operation or operations for composing the structures. 

The notion of anchor is closely related to the word associated with a functor-argument category in 
Categorial Grammars. Categorial Grammar (as used for example by Steedman, 1987) are 'lexicalized' 
according to our definition since each basic category has a lexical item associated with it. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-11. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/542 

https://repository.upenn.edu/cis_reports/542


Parsing With Lexcalized 
Tree Adjoining Grammar 

MS-CIS-90-11 
LINC LAB 164 

Yves Schabes 
Aravind K. Joshi 

Department of Computer and Information Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 19104-6389 

February 1990 

Acknowledgements: 
This work is partially supported by DARPA grant 

NOOOl4-85-K-0018, ARO grant DAAL03-89-C-OOSPRI, 
NSF grant IRI84-10413 A02. 



Parsing with Lexicalized Tree Adjoining Grammar * 

Yves Schabes and Aravind K. Joshi 
Department of Computer and Information Science 

University of Pennsylvania, Philadelphia, PA 19104-6389 

schabes/joshi@linc.cis.upenn.edu 

Introduction 

Most current linguistic theories give lexical accounts of several phenomena that used to  be considered purely 
syntactic. The information put in the lexicon is thereby increased in both amount and complexity: see, 
for example, lexical rules in LFG (Kaplan and Bresnan, 1983), GPSG (Gazdar, Klein, Pullum and Sag, 
1985), HPSG (Pollard and Sag, 1987), Combinatory Categorial Grammars (Steedman, 1987), Karttunen's 
version of Categorial Grammar (Karttunen 1986, 1988), some versions of GB theory (Chomsky 1981), and 
Lexicon-Grammars (Gross 1984). 

We would like t o  take into account this fact while defining a formalism. We therefore explore the view 
that syntactical rules are not separated from lexical items. We say that a grammar is lexicalized (Schabes, 
AbeilK and Joshi, 1988) if it consists of:' 

a finite set of structures each associated with lexical items; each lexical item will be called the anchor2 
of the corresponding structure; the structures define the domain of locality over which constraints are 
specified; 

an operation or operations for composing the structures. 

The notion of anchor is closely related to the word associated with a functor-argument category in 
Categorial Grammars. Categorial Grammar (as used for example by Steedman, 1987) are 'lexicalized' 
according t o  our definition since each basic category has a lexical item associated with it. 

Lexicalized grammars are finitely ambiguous. A sentence (of finite length) selects a finite number of 
structures which can be combined in finitely many ways since each structure is associated with at least one 
lexical item. The finite ambiguity of lexicalized grammars is relevant for processing. For example, it ensures 
that the recognition problem of feature based lexicalized grammars is decidable. 

There is a natural general two-step parsing strategy that can be defined for 'lexicalized' grammars. In 
the first stage, the parser selects a set of elementary structures associated with the lexical items in the input 
sentence, and in the second stage the sentence is parsed with respect to  this set. The strategy is independent 
of the nature of the elementary structures in the underlying grammar. In principle, any parsing algorithm 
can be used in the second stage. 

The first step selects a relevant subset of the entire grammar, since only the structures associated with 
the words in the input string are selected for the parser. The number of structures filtered during this pass 
depends on the nature of the input string and on characteristics of the grammar such as the number of 
structures, the number of lexical entries, the degree of lexical ambiguity, and the languages it defines. 

Since the structures selected during the first step encode the morphological value of their anchor (and 
therefore its position in the input string), the first step also enables the parser to use non-local bottom-up 
information to  guide its search. The encoding of the value of the anchor of each structure constrains the 
way the structures can be combined. This information is particularly useful for a top-down component of 
the parser. 

*This paper will appear in Current Issues in Parsing Technologies (Tomita, Masaru editor), Kluwer Accademic Publishers. 
'By 'lexicalized' we mean that in each structure there is a lexical item that is realized. We do not mean simply adding 

feature structures (such as head) and unification equations to the rules of the formalism. 
21n previous publications, the term 'head' was used instead of the term 'anchor'. Henceforth, we will use the term anchor 

instead; the term 'head' introduces some confusion because the lexical items which are the source of the elementary trees need 
not be the same as the traditional syntactic head of those structures. 



This parsing strategy is general and any standard parsing technique can be used in the second step. Since 
in the worst case, the grammar filtering may select the entire the strategy does not intrinsically 
lead to a better upper bound (worst case complexity) of the parsing problem. However, according to our 
intuition that words anchoring the structures may give useful information for parsing, we have experienced 
in practice an improvement of the performance of the parser when used on natural language grammars. 

We consider Lexicalized Tree Adjoining Grammars as an instance of lexicalized grammars. We take 
three main types of parsing algorithms: purely top-down (as in definite clause parsing), purely bottom-up 
(as the CKY-algorithm), bottom-up parsing with top-down information (as the Earley-type parser). For 
each type, we investigate if the two-step strategy provides any improvement. For the Earley-type parser, 
we evaluate the two-step strategy with respect to two characteristics. First, the amount of filtering on the 
entire grammar is considered: once the first pass is performed, the parser uses only a subset of the grammar. 
Second, we evaluate the use of non-local information: the structures selected during the first pass encode 
the morphological value (and therefore the position in the string) of their anchor. 

1 Lexicalization of CFGs 

In the process of lexicalizing a grammar, we require that the 'lexicalized' grammar produce not only the 
same language as the original grammar, but also the same structures (or tree set). 

Not every grammar is in a 'lexicalized' form. Because of its restricted domain of locality, a CFG, in 
general, will not be in a 'lexicalized' form. The domain of locality of CFGs can be easily extended by using 
a tree rewriting grammar (Schabes, Abeilli. and Joshi, 1988) that uses only substitution as a combining 
operation. This tree rewriting grammar consists of a set of trees that are not restricted to be of depth 
one (as in CFGs). Substitution can take place only on non-terminal nodes of the frontier of each tree. 
Substitution replaces a node marked for substitution by a tree rooted by the same label as the node (see 
Figure 1; the substitution node is marked by a down arrow 1). 

CFGs cannot be 'lexicalized', if only tree substitution is used. Even when a CFG can be lexicalized 
with tree substitution, in general, there is not enough freedom to choose the anchor of each structure. This 
is important because we want the choice of the anchor for a given structure to  be determined on purely 
linguistic grounds. 

If adjunction is used as an additional operation to combine these structures, finitely arr~biguous CFGs can 
be lexicalized. Adjunction builds a new tree from an auxiliary tree ,O and a tree a . It inserts an auxiliary 
tree in another tree (see Figure 1). Adjunction is more powerful than substitution. It can weakly simulate 
substitution, but it also generates languages that could not be generated with subs t i t~ t ion .~  

Figure 1: Combining operations 

A 

3There are grammars for which the two-step parsing strategy will not help at all. A grammar generating {a*) in which the 
elementary structures are headed by a is such an example. 

(It is also possible to encode a context-free grammar with auxiliary trees using adjunction only. However, although the 
languages correspond, the set of trees do not correspond. 

Substitutzon Adjnnction 



2 Lexicalized TAGs 
Elementary structures of extended domain of locality (each associated with a lexical item) combined with 
substitution and adjunction yield Lexicalized TAGs. This system falls in the class of mildly context-sensitive 
languages (Joshi, 1985). 

TAGS~ were first introduced by Joshi, Levy and Takahashi (1975) and Joshi (1985). For more details on 
the original definition of TAGs, we refer the reader to  Joshi (1985,1988), Kroch and Joshi (1985), or Vijay- 
Shanker (1987). It  is known that Tree Adjoining Languages (TALs) are mildly context sensitive. TALs 
properly contain context-free languages. 

A Lexicalized Tree Adjoining Grammar is a tree-based system that consists of two finite sets of trees: a 
set of initial trees, I and a set of auxiliary trees A (see Figure 2). The trees in I U A are called elementary 
trees. Each elementary tree is constrained to  have at least one terminal symbol which acts as its anchor. 

Initial tree Aun'liary tree: 

A A 
Oneanchor node 
tenninnl nods -0 
or suhftitutwn nodes 

Figure 2: Schematic initial and auxiliary trees 

The tree set of a lexicalized TAG G, I ( G )  is defined to be the set of all derived trees starting from 
S-type6 initial trees in I (all substitution nodes being filled). The string language generated by a TAG, 
C(G), is defined to be the set of all terminal strings of the trees in ?(G). 

By lexicalizing TAGs, we have associated lexical information to the 'production' system encoded by the 
TAG trees. We have therefore kept the computational advantages of 'production-like' formalisms (such as 
CFGs, TAGs) while allowing the possibility of linking them to lexical information (AbeillC, 1990). Formal 
properties of TAGs hold for Lexicalized TAGs. 

As first shown by Kroch and Joshi (1985), the properties of TAGs permit us to encapsulate diverse 
syntactic phenomena in a very natural way. TAG'S extended domain of locality and its factoring recursion 
from local dependencies enables us to localize most syntactic dependencies (such as filler-gap) as well as 
some semantic dependencies (such as predicate-arguments). Abeilli (1988) uses the distinction between 
substitution and adjunction to  capture the different extraction properties between sentential subjects and 
complements. Abeilld (1988) makes use of the extended domain of locality and lexicalization to account 
for NP island constraint violations in light verb constructions; in such cases, extraction out of NP is to be 
expected, without the use of reanalysis. The relevance of Lexicalized TAGs to  idioms has been suggested by 
Abeilld and Schabes (1989,1990). 

We will now give some examples of structures that appear in a Lexicalized TAG lexicon. In the following 
trees, 1 is the mark for substitution nodes, * is the mark for the foot node of an auxiliary tree, o is the mark 
for the node under which the anchor is lexically inserted. We put numerical indices on some non-terminals 
to express semantic roles. The index shown on the empty string ( 6 )  and the corresponding filler in the same 
tree is for the purpose of indicating the filler-gap dependency. 

'In some earlier work of Joshi (1969, 1973), the use of the two operations 'adjoining' and 'replacement' (a restricted case of 
substitution) was investigated both mathematically and linguistically. However, these investigations dealt with string rewriting 
systems and not tree rewriting systems. 

'Trees whose root is labeled by S .  



Some examples of initial trees are (for simplicity, we have omitted unification equations associated with 
the trees): 

S 

boy I e f t  saw 

NP&( -h) s 

N P ~ ~  V P  

VO NPI 

I I I 
saw ~i tbe bucket 

Examples of auxiliary trees (they correspond to predicates taking sentential complements or modifiers): 

A 
N P ~ ~  VP 

A 
N P ~ S  VP 

A 
NP,,~ VP 

A 
VO Sl* ( P I )  

/I-', 
vo NPlJ. Sz* ( Pz) 

A A A 
V0 S1* ( 03) VO VP ( P4) A0 N* ( P 5 )  

I 1 I I I 
think promise saw h i s  pretty 

A Lexicalized TAG is organized into two major parts: a lexicon and tree families (sets of trees). 
Although it is not necessary to separate trees from their realization in the lexicon, we chose to do so in 
order to  capture some generalities about the structures. TAG'S factoring recursion from dependencies, 
the extended domain of locality of TAGS, and lexicalization of elementary trees make Lexicalized TAG 
an interesting framework for grammar writing. AbeillC (1988) discusses the writing of a Lexicalized TAG 
for French. AbeillC, Bishop, Cote and Schabes (1989) similarly discuss the writing of a Lexicalized TAG 
grammar for English. 

A tree family is essentially a set of sentential trees sharing the same argument structure abstracted from 
the lexical instantiation of the anchor. Because of the extended domain of locality of Lexicalized TAG, the 
argument structure need not be explicitly represented or explicitly enforced since it is implicitly stated in 
the topology of the trees in a tree family. The syntactic structure is constructed with the lexical value of the 
predicate and with all the nodes of its arguments. This fact eliminates the redundancy often noted between 
phrase structure rules and subcategorization frames.? Each tree in a family can be thought of as  a possible 
syntactic 'transformation' of a given argument structure. Information (in the form of feature structures) 
that is valid independently of the value of the anchor is stated on the trees of the tree families. For example, 
the agreement between the subject and the main verb or auxiliary verb is stated on each tree of the tree 
family. Currently, the trees in a family are explicitly enumerated. 

'optional arguments are stated in the structure. 



The following trees, among others, compose the tree family of verbs taking one object (the family is 
named np~Vnpl):a 

NP P 

anpOVnpl is an initial tree corresponding t o  the declarative sentence, PROnpOVnpl is an auxiliary tree 
corresponding to a relative clause where the subject has been relativized, PRlnpOVnpl corresponds t o  the 
relative clause where the object has been relativized, a WOnpOVnpl is an initial tree corresponding to a 
wh-question on the subject, a WlnpOVnpl corresponds to  a wh-question on the object. 

The lexicon associates a word with tree families. Words are not associated with basic categories as in a 
CFG-based grammar, but with tree-structures corresponding to minimal linguistic structures. 

The lexicon also states some word-specific feature structure equations that have to  be added to the ones 
already stated on the trees (such as the equality of the value of the subject and verb agreements).g In our 
approach the category of a word is not a non-terminal symbol but a multi-level structure corresponding 
to minimal linguistic structures: sentences (for predicative verbs, nouns and adjectives) or phrases (NP  for 
nouns, AP for adjectives, PP for prepositions yielding adverbial phrases). 

3 Parsing Lexicalized TAGS 
In order to  evaluate the two-step parsing strategy, we divide the parsing algorithms in three main types: 
purely top-down (as in the usual definite clause ~ars ing) ,  purely bottom-up (as the CKY-algorithm), bottom- 
up parsing with dynamic top-down information (as the Earley-type parser). We will also mention current 
work on bottom-up parsing with compiled top-down information (as LR-style parsing). 

For each algorithm, we discuss the possible advantages provided by the two-step strategies. 

Two ways to take advantage of lexicalization 

An offline parsing algorithm can take advantage of lexicalization in two ways. 
The trees corresponding t o  the input string are selected and then the parser parses the input string 
with respect to  this set of trees. We will refer to this process as grammar filtering. 

The fact that,  after the first pass, each structure encodes the morphological value (and therefore the 
positions in the string) of its anchor imposes constraints on the way the structures can be combined 
(the anchor positions must appear in increasing order in the combined structure). We will refer to  this 
information as bottom-up information. It seems that this free bottom-up information is particularly 
useful in a top-down component of the parser. 

'The trees are simplified. o is the mark for the node under which the anchor word of the tree is attached. 
'In practice, there is a morphological lexicon that associates the inflection forms of a word to its base form and to their 

morphological features. Then the syntax associates the base form of the word with tree families or individual trees. Attributes 
specific to the anchor are passed by unification to the node under which it is lexically inserted. 



For example, given the sentence: 
The 1 men 2 who 3 hate 4 women 5 that 6 smoke 7 cigarettes 8 are 9 intolerant 10 

the trees shown in Figure 3 are selected (among others) after the first pass.10 

Ni" s 

n 
N P , ~  + W ~ J  s 

n NP N P ~ ~  VP 
NPo 

DO DL NO NPO I +WU E~ I vo A NP,L VO A& AO 
I 
NO 

A 
I 

the 
I I 

men wboltbat 
I 

hat el smoke 
I 

women/ cigarettes 
I 

are 
I 

intolerant 

Figure 3: Trees selected by: The men who hate women that smoke cigarettes are intolerant 

The fact that no adverbial or no bi-transitive trees will be selected after the first pass illustrates the 
filtering process on the grammar. 

The anchor positions of each structure impose constraints on the way the structures can be combined 
(the anchor positions must appear in increasing order in the combined structure). The tree corresponding to 
men cannot be substituted at  NPl in the tree selected by hate and smoke since the anchor positions would 
not be in the right order. This constitutes an example of the use of bottom-up information. 

Internal Representation of Lexicalized Trees 

The definition of lexicalized grammar does not imply a particular internal representation of a tree that a 
specific parsing algorithm may use. Each parsing algorithm may use the representation which is most efficient 
for it. 

We present two ways (see Figure 4) according to which a parsing algorithm may internally represent a 
lexicalized tree. We will call a parser- tree,  the internal representation that a parser has of a tree selected 
by an anchor in a given input string. 

Figure 4: Internal representations of a lexicalized tree 

I 
a/b 

trees differentiated 
by their topology only 

The first representation (first box in Figure 4) considers each tree with a pre-terminal node that cor- 
responds to the anchor node. All lexical items that are anchoring a tree can be lexically inserted at  the 
node below which the anchor appears and the tree holds this information as part of its definition. This 

I I 
a(i) d 

trees differentiated by their topology, 
by the position of their anchor in the 
input string (and tkerefore also by their 
anchor). 

1°The example is simplified to illustrate our point. 



representation differentiates trees by their topology only. The representation is close to the usual notion 
of pre-terminals in CFGs. It does not violate the notion of lexicalization since the tree itself contains the 
information which specifies which lexical items can appear as anchor. If attributes in the form of feature 
structures are used, the tree will have attributes stated abstractly from the the anchor and the anchor will 
specifies attributes that will be passed through the anchor node (See section 3.5). This representation will 
be used for the CKY-type, the Earley-type and the LR-like parsers for Lexicalized TAGs. 

The second representation (second box in Figure 4) differentiates trees by their topology, by the value 
of their anchor and also by the position of the anchor in the input string. In this case, two identical words 
but at different positions in the input sentence are not associated t o  the same trees (since the position of 
the input differentiate them). This representation multiplies the number of trees (compared to  the first one) 
by the number of terminals and by the length of the input sentence. However, this representation allows 
the parser to use a specific tree only once in the derivation since a tree corresponds to a specific word a t  a 
given position in the input string1'. This representation will be used by the DCG-type parser for Lexicalized 
TAGs. 

3.1 Bottom-up Parsing 

Vijay-Shanker and Joshi (1985) designed a CKY-type parser for TAGs. It  is a pure bottom-up parser that 
uses dynamic programming techniques. Since this algorithm is data driven, the bottom-up information given 
by the first pass has no effect on the algorithm. However, the grammar filtering fill reduces the number of 
nodes put in the recognition matrix. 

3.2 Top-down Parsing 

In a similar manner as CFGs, TAG can be axiomatized with definite clauses. Bernard Lang (1990) uses 
logical PDAs to interpret with dynamic programming techniques such axiomatization. Four indices instead 
are required for TAGs (instead of two for CFGs). The four positions correspond to the positions of the 
strings to  the left and right of a foot node of an auxiliary tree (see Figure 5). 

Figure 5: Four positions needed for an auxiliary tree 

For example, the trees for left and quickly can be axiomatized as in Figure 6. 
connects axiomatizes the fact that a terminal spans the substring from position I to J. 

auxnode (Cat, I ,  J ,K , L) axiomatizes the fact that an auxiliary tree spanning the substrings ai . . . a, and 
ak . . . a,, can be adjoined at a node labeled by Cat. Initial trees span a contiguous substring (ai . . . aj) and 
auxiliary trees span two substrings (ai  . . . a j  and ak . . . a!,) .  

The set of definite clauses can be interpreted in a top-down fashion. As in CFGs, this algorithm loops on 
left recursive rules. This problem is particularly acute for TAGs since left recursive rules are quite frequent. 

However, the two-step parsing strategy enables us to define a top-down interpretation of the axioma- 
tization of a lexicalized TAGs which will halt in all cases. Given an input sentence, the parser considers 
the trees selected by the first pass. If the parser internally distinguishes the trees by their topology and by 
the position of their anchor, each parser-tree should be used only once since it corresponds to a word at a 
unique position in the input string. Therefore each time the recognition of a parser-tree is attempted by the 

l1 Using it more then once would imply using the same word more then once in the parse 



interpreter, this parser-tree is deleted from the set of parser-trees available. When backtracking is necessary, 
the parser-tree will be put back into the list of available parser-trees. 

Figure 6: Axiomatization of a TAG 

N P ~  VP 

I 
VO 

I 
left 

7, 
VPI ADVO 

1 
quickly 

Since lexicalized grammar are finitely ambiguous, the search space of a top-down parser can be made 
finite. One can therefore design a pure top-down parser that will halt on all cases. 

connects(Terminal,I,J) :- ... 
% if the terminal spans the substring from position I to J 

% node on which adjunction can be performed 
aux-node (- , I, I ,L , L) . % no adjunct ion 
aux-node(Cat , I, J, K ,L) : - 
aux,tree(Cat,I,J.K,L). 

% initial tree left 
init-tree(alpha.s.1.L):- 
aux-node(s,I, J,K,L), 
init-tree(Tree-name,npssJ,J1), 
aux-node(vp,Jl,M,N,K), 
aux-node(v,M,Q,P,N), 
connects (left ,Q ,P) . 

% auxiliary tree quickly 
aux~tree(beta,vp,I,J,K,L) :- 
aux-node(vp,I,Jl,Kl,L), 
aux-node(vp,Jl, JsKSQ), 
aux~node(adv,Q,M,N,K1), 
connects(quickly,M,N). 

3.3 Bottom-up Parsing with Top-down Information 

An Earley-type parser for TAGs has been designed by Schabes and Joshi (1988).12 As Earley's CFG parser, 
it is a bottom-up parser that uses top-down information provided by prediction. This parser can take 
advantage of lexicalization. It uses the structures selected after the first pass t o  parse the sentence. The 
parser is able t o  use the non-local information given by the first step to  filter out prediction and completion 
states. It has been extended to deal with feature structures for TAGs as defined by Vijay-Shanker and Joshi 
(1988). The extended algorithm we propose always halts when used on Lexicalized TAGs without special 
devices such as restrictors. Unification equations are associated with both extended linguistic structures 
and lexical information given by the anchor. This representation allows a more natural and more direct 
statement of unification equations. 

12The system is available on Symbolics machines. It includes a graphical tree editor, the Earley-type parser for lexicalized 
feature-based TAGS and tools for developing lexicons. 



Taking Advantage of Lexicalization 

An offline version of the Earley-type parser for TAGs can be used with no modification for parsing Lexicalized 
TAGs. First, the trees corresponding to the input string are selected and then the parser parses the input 
string with respect to  this set of trees. 

However, Lexicalized TAGs simplify some cases of the algorithm. For example, since by definition each 
tree has a t  least one lexical item attached to it (its anchor), it will not be the case that a tree can be predicted 
for substitution and completed in the same states set. Similarly, it will not be the case that an auxiliary tree 
can be left predicted for adjunction and right completed in the same states set. 

But most importantly, the algorithm can be extended to make crucial use of the twestage parsing of 
Lexicalized TAGs. Once the first pass has been performed, a subset of the grammar is selected. Each 
structure encodes the morphological value (and therefore the positions in the string) of its anchor. Identical 
structures with different anchor values are merged together (by identical structures we mean identical trees 
and identical information, such as feature structures, stated on those trees).13 This enables us to use the 
anchor position information while efficiently processing the structures. For example, given the previous 
sentence: 

The 1 men 2 who 3 hate 4 women 5 that 6 smoke 7 cigarettes 8 are 9 intolerant 10 

The trees in Figure 3 (among others) are selected after the first pass. The anchor positions of each structure 
impose constraints on the way that the structures can be combined (the anchor positions must appear in 
increasing order in the combined structure). This helps the parser to filter out predictions or completions for 
adjunction or substitution. For example, the tree corresponding to men will not be predicted for substitution 
in any of the trees corresponding to hates or smoke since the anchor positions would not be in the right 
order (see Figure 3). 

We have evaluated the influence of the grammar filtering and the use of anchor position information 
on the behavior of the Earley-type parser. We have conducted experiments on a feature structure-based 
Lexicalized English TAG whose lexicon defines 200 entries associated with 130 different elementary trees 
(the trees are differentiated by their topology and their feature structures but not by their anchor value). 
Twenty five sentences of length ranging from 3 to 14 words were used to evaluate the parsing strategy. For 
each experiment, the number of trees given to  the parser and the number of states were recorded. 

In the first experiment (referred to as one pass, OP), no first pass was performed. The entire grammar 
(i.e., the 130 trees) was used to  parse each sentence. In the second experiment (referred to as two passes 
no anchor, NA), the twc~pass strategy was used but the anchor positions were not used in the parser. And 
in the third experiment (referred to  as two passes with anchor, A) ,  the two-pass strategy was used and the 
information given by the anchor positions was used by the parser. 

The average behavior of the parser for each experiment is given in Figure 7. The first pass filtered on 
average 85% (always at least 75%) of the trees. The grammar filtering alone decreased the number of states 
((NA - OP)/OP)  by 86%. The additional use of the information given by the anchor positions further 
decreased ((A - NA)/NA) the number of states by 50%. The decrease given by the filtering of the grammar 
and by the information of the anchor positions is even bigger on the number of attempts to add a state (not 
reported in the table) .I4 

This set of experiments shows that the two-pass strategy can greatly increase the performance of the 
Earley-type parser for TAGs. The more significant factor is the filtering of the grammar. The information 
given by anchor position in the first pass allows further improvement of the parser's performance ( 50% 
reduction of the number of states). The bottom-up non-local information given by the anchor positions 
improves the top-down component of the Earley-type parser. 

We performed our evaluation on a relatively small grammar and did not evaluate the variations across 
grammars. The lexical degree of ambiguity of each word, the number of structures in the grammar, the 
number of lexical entries, and the length (and nature) of the input sentences are parameters which certainly 
must be considered. Although it might appear easy to  conjecture the influence of these parameters, the 

13Unlike our previous suggestions (Schabes, AbeillC and Joshi, 1988), we do not distinguish each structure by its anchor 
position since it increases unnecessarily the number of states of the Earley parser. The Earley parser enables us to process only 
once parts of a tree that are associated with several lexical items selecting the same tree. 

'*A state is effectively added to a state set if it does not exist in the set already. 



Figure 7: Empirical evaluation of the two-pass strategy 

# trees 
# states 

actual experiments are difficult to perform since statistical data on these parameters are hard to  obtain. We 
hope to perform some limited experiments along those lines. 

3.4 LR-style parsing 
In LR-style parsing, a machine is driven by a parsing table built before run-time. Although this type 
of algorithm behaves purely bottom-up, it uses pre-compiled top-down information provided by the parsing 
table. However, in case of LR-parsing of lexicalized TAGs even when the table is built for the entire grammar 
before run-time, this strategy may be useful to solve conflicts of moves if they occur. 

LR-type parsers for TAGs have been recently proposed by Schabes and Vijay-Shanker (1990). The 
algorithm drives a machine called Bottom Up Embedded Automaton (a stack of stacks) in a bottom-up 
fashion. At run-time, before the point where a tree is reduced, two partial reductions can be performed 
(those partial reductions correspond to  partial recognition of auxiliary trees). These partial reductions may 
occur a t  a point where the anchor has not yet be scanned. Therefore, the grammar filtering (and also the 
non-local bottom-up information) can be used to solve at run-time some conflicts of moves. We plan in the 
near future to collect empirical data to  determine to what extent this two-step strategy is useful in solving 
conflicts of moves in parsing natural language grammars. 

(A - NA)/NA 

(%I 
0 

-50 

(NA-OP)/OP 

(%I 
-85 
-86 

3.5 Parsing Feature Based Lexicalized TAGs 

(A-OP)/OP 

-85 
-93 

As defined by Vijay-Shanker (1987) and Vijay-Shanker and Joshi (1988), feature-based TAGs attach two 
feature structures to each adjunction node in an elementary tree: a top and a bottom feature structure. When 
the derivation is completed, the top and bottom feature structures of all nodes are unified simultaneously. 
If the top and bottom feature structures of a node do not unify, then a tree must be adjoined at that node. 
This definition can be easily extended t o  substitution nodes. To each substitution node we attach one feature 
structure which acts as a top feature structure. The updating of feature structures in the cases of adjunction 
and substitution is shown in Figure 8. 

Figure 8: Updatang of feature structures 

/ tr 

t U h 

when adjunction occurs when substztuiion occurs 



Figure 9: Examples of unification equations 

S-r.t:cmodc> = i n d  
S-r.b:<mode> = VP.t:<modc> 
NP-O:<agr> = S-r.b:<agr> 
S-r.b:<agr> = VP.t:<agr> 
VP.b:<mode> = V.t:<made> 
V.b:<mode> = ppart 

3.5.1 Unification Equations 

As in PATR-I1 (Shieber, 1984, 1986), we express with unification equations dependencies between DAGs'~ 
in an elementary tree. The extended domain of locality of TAGs allows us to state unification equations 
between feature structures of nodes that are not be at the same level in the tree. 

The system consists of a TAG and a set of unification equations on the DAGs associated with nodes in 
elementary trees. An example of the use of unification equations in TAGs is given in Figure 9.16 

The coindexing may occur between feature structures associated with different nodes in the tree. Top or 
bottom feature structures of a node are referred to by a node name (e.g. S,)17 followed by .t (for top) or 
.b (for bottom). The semicolon states that the following path specified in angle brackets is relative to the 
specified feature structure. The feature structure of a substitution node is referred to  without .t or . b. For 
example, VP-r.t:<agr num> refers to the path <agr num> in the top feature structure associated with the 
adjunction node labeled by VP, and NP-O:<agr> refers to the path <agr> of the substitution node labeled 
by NPo. 

The top and bottom feature structures of all nodes in the tree a7 (Figure 9) cannot be simultaneously 
unified: if the top and bottom feature structures of S are unified, the mode will be ind which cannot unify 
with ppad ( V P  node). This forces an adjunction to be performed on S (e.g. adjunction of ,Bs t o  derive a 
sentence like Has John written a book?) or on V P  (e.g. adjunction of ,B7 to derive a sentence like John has 
written a book). The sentence John written a book is thus not accepted. 

In the tree a7 agreement is checked across the nodes NPo,  S and V P .  These equations handle the two 
cases of auxiliary : NPo has wra'tten N PI and has NPo written N PI 2. The corresponding derived trees are 
shown in Figure 10. as derives sentences like John has wn'tten a book. It  is obtained by adjoining P7 on 
the V P  node in (~7. ag derives sentences like Has John written a book?. It  is obtained by adjoining P6 on 
the S node in a,. The obligatory adjunction imposed by the mode feature structure has disappeared in the 
derived trees and as. However, to be completed, and a9 need NP-trees to be substituted in the 
nodes labeled by NP (e.g. John and a book). 

15Directed Acyclic Graphs which represent the feature structures. 
161n these examples we have merged the information stated on the trees and in the lexicon. We write unification equations 

above the tree to which they apply. We have also printed to the right of each node the matrix representation of the top and 

bottom feature structures. 

'?we implicitly require that each node have a unique name in an elementary tree. If necessary, subscripts differentiate nodes 

of the same category. 

nod. : c - : Ind 
has 

written 

VP-r.b:<nod.> - v . t  :<node> 
VP-r.t:(aqr, - v . t : ~ a q r >  
VP .b:<mod., - ppart 
v.b:<mod.> - ind 
V.b:<agr nun> - singular 
V . b : < L g r  per.> - 3 

S-r.b:<inv> = + 
S-r.b:<mode> = V.t:<mode> 
V.t:<agr> = S.b:cagr> 
S.b:<inv> = - 
V.b:<agr num> - singular 
V.b:<agr pers> = 3 
V.b:<mode> = ind 



( c.8) 
bas 

written 
written 

Figure 10: NPo has written NPl  and Has NPo written NPl  ? 

3.5.2 Decidability of the recognition problem of Feature-based Lexicalized TAGS 

As for context-free based unification based grammar, the problem of knowing whether a string is recognized 
by a unification-based TAG is undecidable. To make the system decidable, Vijay-Shanker and Joshi (1988) 
restrict the feature structures a node to  be of bounded size. The resulting system is more expressive than 
TAGs and is still weakly equivalent to  TAGs. 

Lexicalization of feature-based TAGs guarantees by itself the decidability of the recognition problem. 
Since lexicalized grammars are finitely ambiguous, for a given sentence only a finite number of structures 
must be considered as possible parses. Furthermore, the Earley-type parsing algorithm can be extended to 
handle feature-based lexicalized TAGs in a simple way without the use of special mechanisms. 

3.5.3 Extension to the Earley-type Parser 

The Earley-type algorithm for TAGs (Schabes and Joshi, 1988) can be extended to parse Lexicalized TAG 
with unification equations on elementary trees. The extension is similar t o  the one proposed by Shieber 
(1985) for parsing the PATR-I1 formalism, but it does not require the use of restrictors. For the recognition 
of a substituted tree, we check that unification constraints are compatible a t  the prediction step and pass 
information only at the completion step. For the recognition of an adjunction, we check only that unification 
constraints are compatible a t  the Left Predictor, Left Completor and Right Predictor steps and we pass 
information only a t  the Right Completor step. 

What follows is an informal explanation of the extension to  the Earley-type parser. A new component 
D is added t o  the states manipulated by the Earley-type parser. D specifies a set of feature structures 
associated with the nodes of the tree represented by the state. The manipulation of the other components 
of a state remain the same. We will ignore these components of a state and focus our attention here on the 
manipulation of the set of feature structures D. 

The Scanner, Move-dot-down and Move-dot-up processors behave as before and copy the DAG D to  the 
new state.'"he Left Predictor predicts all possible adjunctions and also tries t o  recognize the tree with 
no adjunction. In case no adjunction is left predicted, the Left Predictor adds the new state only if the top 
and bottom feature structures are compatible (see Figure 7). If they are compatible, a new state is added 
but top and bottom feature structures are not unified. They will be unified in the Right Predictor. Then, 

181dentical states have identical components, identical feature structures D. 



if no adjunction has been left predicted, the Right Predictor moves the dot up and unifies top and bottom 
feature structures (see Figure 7). 

The recognition of an adjunction with feature structures is shown in Figure 7.'' At each step of the 
recognition of an adjunction, the compatibility of the feature structures is checked. The information is 
passed only at the Right Completor step. 

Ldt 

b noadjunction 

2 f t U b  

Left Predictor, no adjunction 

Right Predictor, no adjunction 

Sx 

Left Predictor_ 
added to Sx 

if i f t u t r  LZ, andbUbf 

sy kz " Lefi b m e t o ~  
added to Sy 

tf 

i f t U k S  
and b U bf' 

oA- bf 

Sz added to Sz 

Right Predidor L54 St Vtrn 
t' - /&-w and b' U bf 

bf' 

Sw 
added to Sw 

Right Completor 

b'Ubf" 

Figure 7: No Adjunction Recognition of an adjunction 
For non-lexicalized TAGs, this approach does not guarantee that the algorithm halts (for similar rea- 

sons as CFG-based unification grammar). However for Lexicalized TAGs, even when recursion occurs, the 
termination of the algorithm is guaranteed since the recognition of a tree entails the recognition of at least 
one input token (its anchor) and since information is passed only when a tree is completely recognized. If 
information were passed before the Right Completor step (in case of adjunction), restrictors can be used 
to guarantee halting of the algorithm. However we believe that in practice (for the Lexicalized TAGs for 
French and English) passing information a t  an earlier step than the Right Completor step does not improve 
the performance. 

4 Concluding Remarks 

In 'lexicalized' grammars, each elementary structure is systematically associated with a lexical anchor. These 
structures specify extended domains of locality (as compared to the domain of locality in CFGs) over which 
constraints can be stated. The 'grammar' consists of a lexicon in which each lexical item is associated with 
a finite number of structures for which that item is the anchor. 

We have seen that lexicalized grammars suggest a natural two-step parsing strategy. The first step 
selects the set of structures corresponding to each word in the sentence. The second step tries t o  combine 
the selected structures. 

Lexicalized grammars allow us to make the search space of a pure top-down parser (as DCG-type parser 
for TAGs) finite and prevent looping on left-recursive rules. Experimental data show that the performance 
of the Earley-type parser is drastically improved. The first pass not only filters the grammar used by the 
parser to produce a relevant subset but also enables the parser to use non-local bottom-up information to 
guide its search. Current work done in collaboration with Vijay-Shanker indicates that some conflicts of 
move of LR-type parsers for TAGs can be solved a t  run-time with this strategy. We plan to  study in practice 
to what extend the strategy improves the performance of an LR-parser for TAGs used in a pseudo-parallel 
way. 

19A substituted tree is recognized in a similar way and is not explained here. 

13 



Finally, we showed that lexicalization makes the recognition problem for feature-based TAGS decidable. 
Then we explained how constraints over these structures expressed by unification equations can be parsed 
by a simple extension of the Earley-type parser. 

The organization of lexicalized grammars and the simplicity and effectiveness of the two-pass strategy 
are therefore attractive from both a linguistic and for processing point of view. 

Acknowledgments 

This work is partially supported by Darpa grant N0014-85-K0018, ARO grant DAAL03-89-C-0031PRI NSF 
grant- IRI84-10413 A02. 

We have benefited from our discussions with Anne AbeillC, Bob Frank, Lauri Karttunen, Bernard Lang, 
Mitch Marcus, Stuart Shieber, Mark Steedman and K. Vijayshanker. We would also like to  thank Ellen 
Hays and Patrick Paroubek. 

References 

Abeilli, Anne, 1988. A Lexicalized Tree Adjoining Grammar for French: the General Framework. Technical 
Report MS-CIS-88-64, University of Pennsylvania. 

AbeillC, Anne, 1988. Light Verb Constructions and Extraction out of NP in Tree Adjoining Grammar. In 
Papers from the 24th Regional Meeting of the Chicago Linguistic Society. Chicago. 

AbeillC, Anne, August 1988. Parsing French with Tree Adjoining Grammar: some Linguistic Accounts. In 
Proceedings of the 1 2 ~ ~  International Conference on Computational Linguistics (COLING'88). Budapest. 

Abeilli, Anne, 1990. Lexical Constraints on Syntactic Rules in a Tree Adjoining Grammar. To appear in 
the proccedings of the 28th Meeting of the Association for Computational Linguistics (ACL'90). 

Abeilli, Anne and Schabes, Yves, 1989. Parsing Idioms in Tree Adjoining Grammars. In Fourth Conference 
of the European Chapter of the Association for Computational Linguistacs (EACL'89). Manchester. 

AbeillB, Anne and Schabes, Yves, 1990. Non Compositional Discontinuous Constituents in Tree Adjoining 
Grammar. In Proceedings of the Symposium on Discontinuous Constituents. Tilburg, Holland. 

Abeilli, Anne; M., Bishop Kathleen; Cote, Sharon; and Schabes, Yves, forthcoming, 1990. A Lexicalized 
Tree Adjoining Grammar for English. Technical Report, Department of Computer and Information Science, 
University of Pennsylvania. 

Chornsky, N., 1981. Lectures on Government and Binding. Foris, Dordrecht. 

Gazdar, G.; Klein, E.; Pullum, G.  K.; and Sag, I .  A., 1985. Generalized Phrase Structure Grammars. 
Blackwell Publishing, Oxford. Also published by Harvard University Press, Cambridge, MA. 

Gross, Maurice, 2-6 July 1984. Lexicon-Grammar and the Syntactic Analysis of French. In Proceedings of 
the l o th  International Conference on Computational Linguistics (COLING'84). Stanford. 

Joshi, Aravind K., August 1969. Properties of Formal Grammars with Mixed Type of Rules and their 
Linguistic Relevance. In Proceedings of the International Conference on Computational Linguistics. Sanga 
Saby. 

Joshi, Aravind K., 1973. A Class of Transformational Grammars. In M. Gross, M. Halle and Schutzenberger, 
M.P. (editors), The Formal Analysis of Natural Languages. Mouton, La Hague. 



Joshi, Aravind K., 1985. How Much Context-Sensitivity is Necessary for Characterizing Structural 
Descriptions-Tree Adjoining Grammars. In Dowty, D.; Karttunen, L.; and Zwicky, A. (editors), Natu- 
ral Language Processing-Theoretical, Computational and Psychological Perspectives. Cambridge University 
Press, New York. Originally presented in a Workshop on Natural Language Parsing at Ohio State University, 
Columbus, Ohio, May 1983. 

Joshi, Aravind K., 1988. An Introduction to  Tree Adjoining Grammars. In Manaster-Ramer, A. (editor), 
Mathematics of Language. John Benjamins, Amsterdam. 

Joshi, A. K.; Levy, L. S.; and Takahashi, M., 1975. Tree Adjunct Grammars. J. Cornput. Syst. Sci. lO(1). 

Karttunen, Lauri, 1986. Radical Lexicalism. Technical Report CSLI-86-68, CSLI, Stanford University. Also 
in Alternative Conceptions of Phrase Structure, University of Chicago Press, Baltin, M. and Kroch A., 
Chicago, 1989. 

Kroch, A. and Joshi, A. K., 1985. Linguistic Relevance of Tree Adjoining Grammars. Technical Report MS- 
CIS-85-18, Department of Computer and Information Science, University of Pennsylvania. 

Lang, Bernard, 1990. Towards a Uniform Formal Framework for Parsing. In Tomita, Masaru (editor), 
Current Issues in Parsing Technologies. Kluwer Accademic Publishers. 

Pollard, Carl and Sag, Ivan A., 1987. Information-Based Syntax and Semantics. Vol 1: Fundamentals. CSLI. 

Schabes, Yves and Joshi, Aravind K., June 1988. An Earley-Type Parsing Algorithm for Tree Adjoining 
Grammars. In 26th Meeting of the Association for Computational Linguistics (ACL'88). Buffalo. 

Schabes, Yves and Vijay-Shanker, 1990. Deterministic Left to  Right Parsing of Tree Adjoining Languages. 
To appear in the proceedings of the 28th Meeting of the Association for Computational Linguistics (ACL'90). 

Schabes, Yves; AbeillC, Anne; and Joshi, Aravind K., August 1988. Parsing Strategies with 'Lexicalized' 
Grammars: Application to  Tree Adjoining Grammars. In Proceedings of the 12th International Conference 
on Computational Linguistics (COLING'88). Budapest. 

Shieber, Stuart M., July 1984. The Design of a Computer Language for Linguistic Information. In 22nd 
Meeting of the Association for Computational Linguistics (ACL '84). Stanford. 

Shieber, Stuart M., July 1985. Using Restriction t o  Extend Parsing Algorithms for Complex-feature-based 
Formalisms. In 23'd Meeting of the Association for Computational Linguistics (ACL'85). Chicago. 

Shieber, Stuart M., 1986. A n  Introduction to Unification-Based Approaches to Grammar. Center for the 
Study of Language and Information, Stanford, CA. 

Steedman, M., 1987. Combinatory Grammars and Parasitic Gaps. Natural Language and Linguistic Theory 
5:403439. 

Vijay-Shanker, K., 1987. A Study of Tree Adjoining Grammars. PhD thesis, Department of Computer and 
Information Science, University of Pennsylvania. 

Vijay-Shanker, K. and Joshi, A. K., 1985. Some Computational Properties of Tree Adjoining Grammars. In 
23'd Meeting of the Association for Computational Linguistics, pages 82-93. 

Vijay-Shanker, K. and Joshi, A.K., August 1988. Feature Structure Based Tree Adjoining Grammars. In 
Proceedings of the 1 2 ' ~  International Conference on Computational Linguistics (COLING'88). Budapest. 


	Parsing With Lexicalized Tree Adjoining Grammar
	Recommended Citation

	Parsing With Lexicalized Tree Adjoining Grammar
	Abstract
	Comments

	tmp.1187806246.pdf.lOzTW

