
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1993

A State Minimization Algorithm for Communicating State A State Minimization Algorithm for Communicating State

Machines With Arbitrary Data Space Machines With Arbitrary Data Space

Inhye Kang
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Inhye Kang and Insup Lee, "A State Minimization Algorithm for Communicating State Machines With
Arbitrary Data Space", . January 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-07.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/305
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/305
mailto:repository@pobox.upenn.edu

A State Minimization Algorithm for Communicating State Machines With A State Minimization Algorithm for Communicating State Machines With
Arbitrary Data Space Arbitrary Data Space

Abstract Abstract
A fundamental issue in the automated analysis of communicating systems is the efficient generation of
the reachable state space. Since it is not possible to generate all the reachable states of a system with an
infinite number of states, we need a way to combine sets of states. In this paper, we describe
communicating state machines with data variables, which we use to specify concurrent systems. We then
present an algorithm that constructs the minimal reachability graph of a labeled transition system with
infinite data values. Our algorithm clusters a set of states that are bisimilar into an equivalent class. We
include an example to illustrate our algorithm and identify a set of sufficient conditions that guarantees
the termination of the algorithm.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-07.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/305

https://repository.upenn.edu/cis_reports/305

A State Minimization Algorithm for Communicating
State

Machines with Arbitrary Data Space

MS-CIS-93-07
LOGIC & COMPUTATION 55

DISTRIBUTED SYSTEMS LAB 13

Inhye Kang
Insup Lee

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

January 1993

A State Minimization Algorithm for Communicating State
Machines with Arbitrary Data Space *

Inhye Kang and Insup Lee
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

Abstract

A fundamental issue in the automated analysis of communicating systems is the efficient generation
of the reachable state space. Since it is not possible to generate all the reachable states of a system
with an infinite number of states, we need a way to combine sets of states. In this paper, we describe
communicating state machines with data variables, which we use to specify concurrent systems. We then
present an algorithm that constructs the minimal reachability graph of a labeled transition system with
infinite data values. Our algorithm clusters a set of states that are bisimilar into an equivalent class. We
include an example to illustrate our algorithm and identify a set of sufficient conditions that guarantees
the termination of the algorithm.

1 Introduction

As distributed computer systems have become widely available, more and more safety-critical applications

are implemented as concurrent systems. Because of the importance of their correct operation, interests in

analysis techniques for concurrent systems have been increasing. Moreover, due to high complexity inherent

in such applications, i t is desirable to develop analysis techniques that can be automated. Several automatic

analysis techniques for finite systems have been developed and used in practice [CES86, CPS881. Such

techniques are based on s ta te space exploration. The major weakness of the state space exploration based

approach is tha t the size of the state space grows exponentially with the number of processes and thus

creates the state space explosion problem. Thus, some techniques such as compositional analysis [YY91]

and symbolic representation [BCMDSO] of systems have been developed to avoid this problem. However,

these techniques are limited to finite state systems and still cannot handle systems with an extremely large

number of resulting states due to the storage and speed limitations of computers.

Another approach to reduce the number of states that need to be represented is to cluster states that

are bisimilar into an equivalent class. This approach is practical in the case that the reachability graph

contains a lot of states which are equivalent. Bouajjani et al.[BFH90] have proposed an efficient algorithm

which constructs the minimal reachability graph of an unlabeled transition system. Alur e t aE.[ACH+92]

have extended the algorithm to deal with timed transition systems without data variables. An unlabeled

'This research was supported in part by ONR N0001489-5-1131 and DARPA/NSF CCR90-14621.

transition system, however, is not suitable in describing concurrent systems since it cannot capture internal

actions or communication actions.

The algorithm described in this paper extends the algorithm by Bouajjani e t al. to a labeled transition

system which may have infinitely many states. In this paper, concurrent systems are specified using Coni-

municating State Machines (CSMs). Each CSM has local data variables whose values are from arbitrary

domains, and is basically a transition system with transitions that are guarded by enabling conditions over

variables. CSMs also support one-to-many synchronous communication with value passing. Although our

minimization algorithm does not guarantee termination, we believe it to be powerful enough to handle many

interesting communicating systems with an infinite number of reachable states. As a continuing work, we

have identified a set of sufficient conditions on the syntax of CSMs that guarantees termination.

The rest of the paper is organized as follows. In Section 2, we overview other methods related with

our work. Section 3 defines the syntax and semantics of CSM. Section 4 describes our state minimization

algorithm, presents an example, and states a set of properties. Section 5 concludes the discussion.

2 Related Work

Several approaches have been proposed to generate a minimal transition system with respect to the greatest

bisimulation. Kanellakis and Smolka [KS90] show that the strong bisimulation equivalence of two labeled

transition systems with finite states can be reduced to the relational coarsest partition problem. Their algo-

rithm is based on the state minimization algorithm for deterministic finite automata by Hopcroft [Hop71].

Fernandez [FerSO] provides an algorithm for minimizing the number of states of a labeled transition system

with respect to bisimulation equivalence. This algorithm is based on a more efficient algorithm for the rela-

tional coarsest partition problem developed by Pagie and Tarjan [PT87]. The main drawback of Fernandez's

algorithm is that it explores the whole set of states including unreachable states. Thus, it can be applied

only to systems with a finite state space.

For unlabeled transition systems, Bouajjani e t a/. [BFHSO, BFHR921 describe an algorithm to find the

coarsest partition with respect to an equivalence relation. This equivalence relation identifies two states if

they can reach the same class of states.

To handle infinite data values, Jonsson and Parrow [JP89] provide a technique to change a program

with infinite states due to data variables into an equivalent finite state program. The approach used in the

algorithm is to represent the data values of a variable using a finite number of symbols. This technique,

however, is limited to programs in which control statements are data-independent.

3 Communicating State Machines

We use Communicating State Machines (CSMs) for the specification and analysis of concurrent communi-

cating systems. They are state transition systems which support data variables and one-to-many communi-

cation. CSM extends Shaw's communicating state machines [Shag11 with one-to-many commuiiication and

composition.

In CSMs, a system consists of a finite set of concurrent components. The components may execute

concurrently or communicate with other components. They communicate messages through channels called

events. The basic strategy of communication is one-to-many synchronization.

Definition 3.1 A communicating state machine is a tuple M = (V, N, no, I, C , T) , where

V = {xl, 2 2 , - . . , xk} is a finite set of data variables,

N is a finite set of nodes,

no is the initial node in N ,

I is the initialization function over V,

a C is a finite set of events, and

T is a finite set of transitions.

Variables. We do not restrict the domains of variables in V. Each variable x E V has an associated

domain dom(x). We denote the data space of M by D~ = dom(x1) x dom(x2) x . . .dom(xk). Let v in D~

represent a list of values of variables. We view v as a function from V to D = Uidom(xi), where for each xi

in V, v(xi) is the ith element in u.

Initialization. The initialization function maps each variable to the set of its possible initial values. As

an example, the initialization of an integer variable can be given by:

I (x) ::= x = ilx 5 i l i < xli < x 5 i' where i and it are integers.

We use D' = {vlVx E V.v(x) E I(2)) to represent the set of the initial values.

Events. CSMs synchronously communicate messages through events. The number and order of messages

associated with events is fixed. For each commuiiicatioii event, there can be one sender and multiple receivers.

Associated with an event e, there are two kinds of communication operations: e!(expl, . . . , exp,) for sending

messages expl, . . . , exp, through e, and e?X for receiving messages on a set X of tuples of variables through

e. For example, after two CSMs execute e!(1,5.5) and e?{(x, y), (xi, y')} simultaneously, the values of x , xi,

y, y' become 1, 1, 5.5, 5.5, respectively. For an event el we define size(e) to be the number of messages that

are sent or received simultaneously through the event e l and dom(e, i) to be the domain of the ith message

of the event e, for 1 < i 5 size(e).

Transitions. A transition, (n l , c, a , h, nz), from node n l to node nz, can be taken if the enabling condition

c is true and the set a of con~munication operations is ready. The values of variables are changed by

transformation function h from D~ to D ~ , where h can be represented as a set of assignments. As an

example, suppose a transition (n l , x 5 y, {el!, ez?), {x := x + y), nz) is taken. If the values of x , y are 0, 5

at node n l , the values of x and y are both 5 after the transition.

Composi t ion. A CSM process can be constructed by composing two CSM processes. We assume two

component processes do not share variables, that is, all variables used within each CSM are local. This

restriction is reasonable since the communication of CSMs is based on message passing instead of shared

variables, and also makes it easier to define composition. Unlike variables, events can be shared among

processes and are used to define communication channels.

For a communication operation o and a set a of communication operations, let event(o) and events(a)

represent the event in o and the set of events appearing in a , reprectively. For example, event(e?S) is e l , and

events({el!(l, 5.5), ez?{(x, y)), es!} is {el, ez, e3). And let var,(a, i) represent the set of variables associated

with the ith message of e such that e is an event for receiving messages in a . If event e?{(x, y), (x', y')) is

in a, var,(a, 2) is {y, y'}. For any operation o, out(o) is true only if o is a receive operation.

Definition 3.2 Suppose MI = (Vl, N1, nlo, I1, C1, TI) and Mz = (Vz, N2, nZ0, Iz, C2, T2). The composition

of M1 and MZ (MlIIM2) is defined as a tuple M = (V, N, no, I, C ,T) , where

The initial node no is (~ I o , nzo),

The initialization function I is given by:

I(.) = I1 (x) if x E Vl
IZ(X) otherwise

T is defined as follows:

for each transition (nl , c l , a1, h l , ni) in TI and each transition (nz, c2, an, hz, n',) in Tz,

- Asynchronous action:

((721, nz), C I , al, h ~ , (4,722)) E T if events(a1) n CZ = 0.

((nl , nz), cz, az, hz, (n ~ , n;)) E T if events(a2) fl C1 = 0.

- Concurrent action:

((711, nz), ci A CZ, a1 U a 2 , h i 0 hz, (n:, n;)) E T if events(a1) fl Cz = events(a2) n C1 = 0.

- Synchronization:

((n l , nz), cl A cz, a , h, (n:, ni)) E T if events(a1) n CZ = events(a2) r l C1 # 0, where
{o E a1 U a21(event(o) @ C1 n Cz) V (event(o) 6 C1 fl Cz A out(o))}U

(Y =
{e?(S1 U S2)(e?S1 E a1 A e?S2 E az)

expi if 3e, i.((e?S, e!(ezp) E a1 U az) A (x E vare(a l U az, i)))
h(V)(x) = { (hl o hz)(v)(x) otherwise.

Execution. In CSMs, a state s is of the form (n, v) where n is a node and v is a valuation of variables in

D" If a CSM executes a transition (n l , c, a , h, n2) with the valuation v of variables at node n l , the set of

next valuations is given by the following function f :

f (v, a, h) = {v'((Vx E V. vl(x) E dom(e, i) if x E var,(a, i) for some e, i
(x) = h(v)(x) otherwise) A

(Vx, y E V. vi(x) = vl(y) if x , y E var,(a, i) for some el i))

That is, the value of each variable x is changed by h except when the variable is associated with any receive

operation in o. In that case, the value can be one of possible inputs associated with the operation, but the

values of variables associated with the same message should be the same.

An execution of a CSM is defined as follows:

Definition 3.3 An execution of a CSM M = (V, N, no, I, C , T) is a finite or infinite sequence of the form

where si = (ni l vi) satisfying

1. Initiality: vo(x) E I(x) for every x E V

2. Succession Constraint: for each i, there exists (nil cil ail hi, nd+1) in T such that ci(vi) is true and

v i+~(x) E f (vi ail hi)(.).

An Example of a Communication Protocol. To illustrate the expressiveness of CSM, consider the

simple communication protocol. Figure 1 shows the communication system as consisting of four components:

a receiver, two senders, and a medium.

Sender I Sender 2

Medium

Receiver

Figure 1: A Communication System

5

Figure 2 shows the CSM processes of the communication system. The processes are specified as follows:

1) The receiver waits for a message. When a message arrives, it sends an acknowledgement to the source

of the message; 2) The sender i for i = 1,2 sends a message, waits an acknowledge, and returns to the

initial node; 3) The medium accepts an input (a message or an acknowledgement) and sends an output to

an appropriate sender or a receiver. Figure 3 shows the composition of the receiver and the medium.

M ? (source-n, m)

(a) Sender i (b) Receiver

(c) Medium

Figure 2: CSMs of A Communication System

Figure 3: The Composition of A Receiver and A Medium

4 The Minimal Transition System of A CSM

We now describe an algorithm to coiistruct the minimal reachability graph of a CSM with respect to bisimu-

lation. Since our algorithm is based on the algorithm that computes the minimal graph of transition systems

given by Bouajjani et al. [BFHSO], we briefly sketch that algorithm first.

4.1 Notations

A labeled transition system is defined as S = (Q, A, -, Qo) where Q is a set of states, A is a set of actions,

+C Q x A x Q is the transition relation, and Qo is a set of the initial states. For convenience, we use a

notation :

q 3 q' for (q, a , q') E- .
The notion of bisimulation as defined by Milner in [Mi1891 is used.

Definition 4.1 Given a labeled transition system S = (Q, A, -+, Qo), a binary relation p C Q x Q is a

bisirnulation iff

V(q1,qz) E p. Va E A. Vrl.(ql$ * 3r~.(q2 5 7-2 A (r l , r2) E p)) ~
Vr2.(42 r2 * 3 ~ 1 .(qi 5 T i (TI, ~ 2) E p)).

For q, q' E Q, q and q' are said to be bisirnilar if (q, q') E p for some bisimulation p E Q x Q.

We represent an equivalence relation p C_ Q x Q as a partition p = {Xi(i E I} where Xi represents an

equivalence class in p. A partition p' is a refinement of a partition p denoted p' p iff :

VX' E p1.3X E p.(Xt g X).

Let [qlp denote the class in p which includes q and let [&Ip denote the set of classes in p which include

some state in Q, that is, [Q], = {[qlplq E Q). The reduction of a labeled transition system S = (&,A, -
, Qo), according to a bisimulation p of Q is the transition system S/p = (p, A, + p , [QOIp) where -p=

{([qIp,a, [q']p)I(q,ar Q') E-1.

Given a CSM M = (V, N, no, I, C, T) , the corresponding labeled transition system is SM = (Q, A, -, Qo),

where

-= {((n, v), events(a), (n', v1))13(n, c, a, h, n') E T.c(v) A v' E f(v, a, h)),

We note that - is a subset of Q x A x Q.

4.2 State minimization of an unlabeled transition system

Bouajjani et al. [BFHSO] provided an algorithm to compute the coarsest partition of the state space in a

given system. Since the algorithm plays an important role in our approach, we briefly review the algorithm.

In the algorithm, a system is defined as an unlabeled transition system S = (Q, +, go) where Q is the

set of states, +c Q x Q is the transition relation, and qo is the initial state. For a state q in Q and a subset

X of Q, the notation q - X is used to denote q + q' for some q' E X.

The notion of bisimulation of unlabeled transition systems is slightly different from that of labeled

transition systems in Definition 4.1. A binary relation p Q x Q is a bisimuiation iff

Given a partition p of Q, a class X E p is said to be stable with respect to p iff

VY E p.[(3x E X.x - Y) implies (Vx E X.x --t Y)].

A partition p is said to be stable iff every class of p is stable with respect to p.

Proposition 4.1 [BFHSO] A partition p is stable z a p is a bisimulation.

Therefore, the problem of finding the greatest bisimulation that refines a given partition is reduced to the

problem of finding the coarsest stable partition that refines the given partition.

The state minimization algorithm of [BFHSO] is as follows: 1) Given the initial partition pa, the set S of

stable and reachable classes is initially empty. Let the initial class be a class including the initial state. 2) If

S does not include the initial class, then let X be the initial class; otherwise, select a class X @ S which is

immediately reachable from S. If X is stable with respect to any class in the current partition, then insert

X in S; otherwise, split X into the largest subclasses in which each subclass is stable with respect to all

classes in the current partition. In the latter case, the classes in S from which X is immediately reachable

are removed from S. 3) Repeat step 2 until all reachable classes are stable with respect to one another.

In order to use the algorithm it must be possible to define the following three operators for a class X of

p from the transition systems:

1) spIit(X, p) divides X into the largest subclasses which are all stable with respect t o p.

2) pre , (X) denotes the set of classes of p which contains at least one state from which a state of X is

immediately reachable.

3) post,(X) denotes the set of classes of p which contains at least one state immediately reachable from

a state of X.

By Proposition 4.1, the set S of stable and reachable classes from the algorithm is the greatest bisimulation

refining pa.

4.3 Construction of the minimal transition system from a CSM

We now describe an algorithm that finds the coarsest partition of a CSM to construct its minimal state graph

with respect t o bisimulation. First, we extend the algorithm of Bouajjani et al. [BFHSO] to handle more

Given an initial partition po:

p := po; S := 0;
R := { [Q o l p l ;
while R # S do

choose X in R - S;
N := split(X, p);
if N = {X) then

S : = S U { X) ;
R := R U postp(X);

else
R := R - {X);
R : = R u { Y € N I Y n Q o # O) ;
S := S - pre,(X);
P = (P - { X)) U N ;

Table 1: State Minimization Algorithm

than one initial states. We then explain how to define an initial partition for a given CSM. After defining

the notion of stability in CSM, we redefine the functions split, prep and postp that are used in the algorithm

of Bouajjani et a!.

State Minimization with Bisimulation. The state minimization algorithm for CSM , called SMB, is

shown in Table 1. Our algorithm is similar to the algorithm by Bouajjani et al., except that we have modified

to deal with a system with more than one initial states. This modification is necessary since a CSM can

have finitely or infinitely many initial states.

The Initial Partition. Given a CSM M = (V, N, no, I, C, T), the initial partition of its whole state space

N x Dk is given as po = {(n, Dk)ln E N) for efficiency of implementation. The reason is that it is important

to partition the data space since the number of states depends on the data space rather than the number of

nodes. Furthermore, it is possible to equate a set of states from the same node since enabling conditions in

transitions from a given node are good criteria for dividing the data space. Let 2, called a region, represent

a subset of the data space D k . An equivalence class is of the form {(n, v)lv E Z) , which we represent as

(n , 2) .

Stability. We define a notion of stability for our labeled transition system, which is different from that

for the unlabeled transition system used in [BFHSO]. Let p be a partition of N x D ~ . We overload the first

argument of the function f (defined in Section 3) to allow a region as well as a valuation. Given a region 2,

an action CY and a transformation h, the set of possible next valuations f (Z, a, h) is computed by:

f (Z , & , h) = U U E Z f (v , a , h) .

Given a valuation v', an action a and a transformation h , we let f-'(v', a , h) be the set of valuations whose

next valuations include valuation v' and f-'(Z', a, h) be the set of valuations whose next valuations include

a valuation in region 2 ' . They are defined as follows:

if vl(x) # v' (y) for some x, y E Vsuch that x , y E war, (a , i) for some e, i)
f - l (v ' , a , h) =

{V E D')v'(x) = h(v)(x) if x @- vare(a , i) for any e, i} otherwise

f-'(z', a, h) = U f-'(v', a, h)
V'EZ'

For a E A and X , Y E p, we define @,,y(X), which is the set of states in X which can lead t o Y through

action a , as follows:

@ a , ~ (X) = u (n , Z n c n f-'(z', a , h))
(n,c,a,h,nl)ET.a=euent J(a)

where X = (n , Z) , Y = (n', 2') for n , n' E N, 2, Z' D ~ .

Definition 4.2 1. A class X is said to be a-stable with respect to a class Y iff whenever some state in

X can lead to Y through a , every other state in X can also lead to Y through a, i.e.,

@,,y(X) = x v @,,y(X) = 0.

2. A class X is said to be stable with respect to a class Y iff for every action a E A, X is a-stable with

respect to Y, i.e.,

Va E A.(@a,y(X) = X V @a,y(X) = 0).

3. A class X is said to be stable with respect to a partition p iff for every class Y E p, X is stable with

respect to Y, i.e.,

VY E p.Va E A.(@,,y(X) = X V @,,y(X) = 0).

4. A partition p' is said to be stable with respect to a partition p iff for every class X E X is stable

with respect to p, i.e.,

VX E pl.VY E p.Va E A.(@,,y(X) = X V @,,y(X) = 0).

5. A partition p is said to be stable iff p is stable with respect to itself.

Proposition 4.2 A partition p is stable iff p is a bisimulation.

Proof. Suppose a partition p is stable. By definition of stability,

That is,
V x , y E p . V q ~ , q z E X . V a E A .

Vrl E Y(q1 rl + 3r2 E Y.q2 r Z) ~
Vrz E Y.(qz 5 r z + 3 r l E Y.ql 5 r l) .

This is equivalent t o the definition of bisimulation since p is a partition.

Proposition 4.2 is the same as Proposition 4.1 in the previous section. Thus, we can use the algorithm by

Bouajjani et al. to find the minimal graph of a CSM with our notion of stability.

Three Operators. We define the operators split(X, p), p rep (X) , and post,(X) that are used in SMB.

Let .rr represent a partial partition or a partition of Q (i.e., N x D ~) . We define the operators ~ p l i t , , ~ (a) ,

splity (a) and spl i tp(a) needed t o compute a stable partition.

For each a E A and Y E p, we define the operator ~ p l i t , , ~ (a) as follows:

 split,,^ (a) = { @ a , y (X) I X E a) U { X - @,,Y (X) I X E a) .

That is, splitaty (a) splits each class X in a into at most two subclasses: one for a set of states that can lead

to Y through a and another for a set of states that cannot lead to Y through a .

Proposition 4.3 (properties of splita,y(a))

3. Each class in split,,y(a) is a-stable with respect to Y .

Proof.

1. For each X' E split,,y(a), there exists X E a such that @ a , y (X) = X' or X - @,,y (X) = XI , that is,

X' c x.

2. We first show that (spl i tal ,y osplit,,,y)(a) E (split,,,y osplit,,,y)(?r). By Proposition 4.3, (~ p l i t , , , ~ o

split,,, y) (a) E a . That is, for every X' E (split,, ,y o splita, ,y)(x), there is X E a such that X' c X .

Then X' is one of the following four classes:

{q E XI(3r E Y.q 3 r) A (3 r E Y . ~ % r)) ,

{q E Xl(j3r E Y.q 2 r) A (3. E Y.q 2 r)) ,

{q E XI(% E Y.q 2 r) A (B r E Y.q 3 r)) ,

{q E X I (@ E Y.q 3 r) A (F r E Y.q 2 r) } .

Since (~ p l i t , , , ~ o s p l i t , , , y) (~) also partitions X into the above classes, X' E (split,,,y o split,,,y)(a).

Thus (splital ,Y 0 s ~ l i t a , , ~) (n) E (split,, ,Y 0 split,, , r) (a) .

Similarly, we can show that (~ p l i t , , , ~ o split,,,y)(a) (split,,,y o ~ p l i t , , , ~) (a) .

3. For every X' E split , ,y(a), either X' = @ , , y (X) or X t = X - @a,Y(X) . Suppose X' = @,,y (X) .

For all q E X ' , there exists r E Y such that q 5 r . Thus X' is a-stable with respect t o Y . Suppose

X t = X - @,,y(X) . For all q E XI , q can not lead to Y , i.e., X' is a-stable with respect t o Y .

Let a l l az, ..., an be the elements of A. For each Y E p, we define the operator spl i ty(x) as follows:

splity = split,,,^ o o . . . o splitan,y.

The operator sp l i ty (a) splits each class X in a into several subclasses with the following property: for every

subclass Xi in X , if there is a state q in Xi such that q --t Y by an action a , then for every q' in X i , q' -+ Y

by an action a .

Propos i t ion 4.4 (properties of splity (s))

1. split (s) C s

2. splitx o splity = split y o splitx

3. Each class in splity (s) is stable with respect to Y

Proof. These can be proved using Proposition 4.3.

Let Yl , Yz , ..., Yn be the equivalent classes in p. We define the operator splitp(n) as follows:

split,, = splityl o splityz o . . . o splity,.

Propos i t ion 4.5 (properties of split,(.))

2. split,, o split,, = split,, o split,,

3. spl i tp(s) is stable with respect to p.

Proof. These can be proved using Propositioii 4.4.

Defini t ion 4.3 The operator split(X, p) is defined as follows:

split(X, p) = split ,({X)).

This definition is valid since { X) is a partial partition of Q. We note that every class in spdit(X, p) is stable

with respect to p from Proposition 4.5(3).

Definition 4.4 The pre-condition prep(X) and post-condition post,(X) are defined as follows:

pre,((n, 2)) = U {(n ' , 2') E p13(n1, c, 0 , h , n) E T . f (Z i n c, o, h) n Z # 0 A a = events(o))
aEA

postp((., 2)) = U {(n ' , 2') E p13(n, c, o, h , n') E T . f (Z r l c, o, h) n 2' # 0 A a = events(o))
aEA

Proper t ies . Now, we can apply the algorithm SMB to CSM with the initial partition po and the above

three operators. Given a CSM M = (V, N , no, I , C, T) , let p represent the final partition resulted from the

algorithm SMB. Let Acc(p) = S be the set of all accessible classes from some initial class in [QO],, and let

Ace(&) be the set of all accessible states from some initial state in Qo.

Propos i t i on 4.6 (Properties of the state minimization algorithm) [BFHSO]

1. For any X E Acc(p), X n Acc(Q) # 0 .

3. For ql, q 2 E Acc(Q) which are in the same partition, q l and 92 are bisimilar iff ql and q2 are in the

same class in Acc(p).

In order to construct the minimal reachability graph of a given CSM, we need to find the greatest

bisimulation, called ~ G B , of the reachable states Acc(Q), which also refines the initial partition po; that is,

PGB p o Then, the minimal reachability graph is SM/pGB. Our algorithm, however, gives the reachability

graph SIM/Acc(p). Notice that Acc(p) may include some states not in Acc(Q), that is, SM/Acc(p) may be

different from the minimal reachability graph S I M I ~ ~ ~ . Fortunately, they are isomorphic in the following

sense: Two transition systems S = (Q, A, -+, Qo) and S' = (Q', A, +I, Qb) are isomorphic iff there exists a

bijection f from Q to Q' such that
a

9 E Q0 C' f(q) E Qb and 91 92 * f(q1) +' f(q2).

Theorem 4.1 SM/pGB and SM/Acc(p) are isomorphic.

Proof. For each X E ~ G B , f (X) is defined as [q], such that q is in X . For any two states ql and q2 in

X E ~ G B , q1 and 92 are bisimilar by the definition of ~ G B . Then [ql], is equal to [qz], by Proposition 4.6

3. Therefore, f is a function. Suppose f (X) = f (Y). Let ql and qz be states in X and Y, respectively.

Then [ql], = [q~], which means that ql and 92 are bisimilar by Proposition 4.6 3. Thus X = Y, that is, f is

one-to-one. And for X' E Acc(p), [q],,, E PGB such that q E Acc(Q) n X' is mapped to X' by f , that is,

f is onto. Therefore, f is a bijection. First we prove that X is in [QOIPGB iff f (X) is in [QO],. (J) If X in

[Q0lPGB, then X has at least one initial state qo in Qo. Thus f (X) = [go], is a class in [Qo], (e) If f (X) is

in [Q o] ~ , then f (X) has at least one initial state qo in Qo. Thus X = [qO]PGB is a class in [QOIPGB. Secondly,

We show that X Z,,, Y iff f (X) 5, f(Y). (a) If X 5pGB Y then there exists some q 5 q' such that

q E X and q' E Y. Thus [qlp $, [q'],, that is, f (X) 5, f(Y). (e) If f (X) 5, f (Y) then there exists some

q E f (X) such that q E Acc(Q), that is, q E X by Proposition 4.6 1. And there exists some q' E f (Y) such

that q 5 q'. qt E Acc(Q) since q E Am(&), that is, q' E Y. Thus X $,,, Y.

Thus, without loss of generality S ~ / A c c (p) is considered as the minimal reachability graph with respect t o

bisimulation that refines the initial partition po.

Sufficient Conditions. Since the state minimization algorithm does not guarantee termination, we now

identify the sets of sufficient conditions on the syntax of CSMs which insure the termination as follows: 1)

CSMs with finite data space. 2) CSMs with data-independent controls, that is, no enabling condition. 3)

CSMs with the form of assignments z := i where i E dorn(x): Suppose that the numbers of nodes, enabling

conditions and assignments of a CSM are j, Ic and I, respectively. The number of classes in the initial

partition is j . The class is divided into at most two subclasses by an enabling condition. The effect of each

assignment in split operations can be thought of as increasing the number of enabling conditions to a t most

Ic x 2'. Thus, the number of classes in the coarsest partition is at most j x 2kx2'.

4.4 Example

Figure 4 shows a CSM with two data variables x and y whose domains are reals and whose initial values are

any non-negative reals. Suppose dom(e, 1) is the set of reals, that is, this CSM can receive any real value

through event e. Here, r represents an empty operation, i . e . , an internal action

x> =3, {e?{(y)]] , x:=x+5

true, T, y: = y + 5

Figure 4: A Communicating State Machine

We present how to construct the minimal reachability graph from the CSM shown on Figure 4. The

initial domain D I is (no, {vo E R ~ ~ V O (X) 2 0 A vo(y) > O)), and the initial partition p is {Co, C1, C2) , where

C; = {(n; , R2)) .

We start with the only reachable class Co since any initial state is in C o split(Co, p) = {Coo, Col) , where

Coo = (no, {v (v(x) < 3 A v(x) 5 v(y)) and Col = (no, {vlv(x) > 3 V v(x) > v(y)). We get a new partition

p = {Coo, Co1, c1, C2).

Coo and Col are all initial classes since they include initial states of the CSM, that is Coi n D' # 8 for

i = 0 or 1. Considering Coo and Col, the two classes are all stable with respect to the current partition since

the CSM in any state of Coo cannot proceed any more and the CSM in any state of Col can proceed only t o

C1 by executing the event e.

Class C1 is included in the set of reachable classes. Considering X = C1, split(C1, p) = {Clo, C l l , C12, C13,

C14), where

Cl0 = (n1, {vlv(y) > v(x) A v(x) > 3)) ,

c11 = (n1, {vlv(y) > v(x) A v(x) < 311,

(712 = (n1, {vl(v(y) I v(x) A v(x) > 3) V (4 ~) < v(x) - 5 A v(x) 2 O))) ,

C13 = (n l , { v l v (~) 5 v(x) A U (Y) > U (X) - 5 A V (X) < 3)) , and

C14 = (n l , {vlv(y) < v(x) - 5 A v(x) < 0)).
Now, the new partition is p = {Coo, Col, Clo, Cll , C12, C13, C14, C2).

Let's reconsider Col since C1 which is not stable is immediately reachable from C o l split(Col,p) =

{C010, COll, C012), where

Cola = (no, {vlv(x) > 3 A v(x) F ~ (y))) ,

Co11 = (no, {vIv(x) > 3 A ~ (2) > v (Y))) ,

Con = (no, {vlv(x) < 3 A v(x) > ~ (y) }) .

All of the new classes Cola, Coil, and COl2 include some initial states of the CSM.

Since the CSM in every state of Cola may go to Clo or C12, the CSM in every state of Coil may go t o

Clo, C12, or CI3, and the CSM in every state of (3012 may go to C12 or C13, we know that these three classes

COIO, COII, C012 are all stable with respect to P = {Coo, Colo, Coil, Con, G o , GI, C12, C13, C14, C2). Thus,

Clo, C12, and C13 become reachable classes.

Since Clo may go t o Clo or Cola, and C13 may go to Coo, these two classes Clo and C13 are stable. Now,

C12 is divided into three subclasses:

C120 = (n1, {vIv(y) I v(x) A v(x) 2 3 A v(y) 2 v(x) - 5)),

C121 = (121, {~ Iv (Y) < v(x) - 5 A v(x) > 311,

c 1 2 2 = (121, {vIv(y) < ~ (2) - 5 A (0 I 4 2) < 3))).

Let's consider Cola, Coil, and Co12 again since C12 was immediately reachable from them. All of them

are stable since Clo, Clzo, and C121 are immediately reachable from every state in Cola; Clo, Cl20, C121,

and C13 are immediately reachable from every state in Coil; Clzo and C13 are immediately reachable from

every state in COl2. Moreover, C120 is stable since it can lead to Cola, and C121 is stable since it can lead t o

C0ll.

Therefore, all reachable classes Coo, Cola, Coil, C012, (710, C120 , C121, and C13 from the initial classes

Coo, Cola, Coil, COl2 are stable with respect to the current partition. Figure 5 shows the minimal reach-

able graph of the CSM in Figure 4.

5 Conclusion

We have presented an algorithm to compute the minimal reachability graph with respect t o bisimulation of

a system described in CSM. This algorithm extends the algorithm in [BFHSO] to a labeled transition system

with infinitely many initial states. Our algorithm can deal with systems which have the infinite data domain

without restricting systems into data-independent ones as done in [JP89]. We have identified some sufficient

conditions on the syntax of CSMs that guarantee termination. We are currently investigating other sets of

sufficient conditions.

Acknowledgments. The authors would like t o thank Rance Cleaveland for pointing out related research

and for clarifying research directions. The paper was improved by the comments made by HanGne Ben

Abdallah and Duncan Clarke.

References

[ACH+92] R. Alur, C. Courcoubetis, N. Halbwaclis, D. Dill, and H. Wong-Toi. Minimization of Timed

Transition Systems. In W.R. Cleaveland, editor, Proceedings of International Conference on

Concurrency Theory, Lecture Notes in Computer Science vol. 630. Springer-Verlag, August 1992.

[BCMDSO] J . R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification using

Symbolic Model Checking. In Proceedings of Design Automation Conference, 1990.

[BFHSO] A. Bouajjani, J .-C. Fernandez, and N. Halbwachs. Minimal Model Generation. In Proceedings

of Workshop on Computer-Aided Verification, 1990.

[BFHR92] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, and P. Raymond. Minimal State Graph Genera-

tion. Science of computer programming, 18:247-269, 1992.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-state Concurrent

Systems using Temporal Logic Specifications. ACM Transactions on Programming Languages

and Systems, 8(2):244-263, April 1986.

[CPS88] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: Operating Instructions.

Technical Note 10, Lab. for Foundations of CS, Univ. of Edinburgh, September 1988.

[FergO] J.-C. Fernandez. An Implementation of an Efficient Algorithm for Bisimulation Equivalence.

Science of Computer Programming, 13:219-236, 1990.

[Hop711 J.E. Hopcroft. An n log n Algorithm for Minimizing States in a Finite Automaton. In Z. Kohavi

and A. Paz, editors, Theory of Machines and Computations, pages 189-196. Academic Press,

1971.

[JP89] B. Jonsson and J . Parrow. Deciding Bisimulation Equivalences for a Class of Non-finite-state

Programs. Technical Report SICSIR-8918908, Swedish Institute of Computer Science, August

1989.

[KS90] P. C. Kanellakis and S. A. Smolka. CCS Expressions, Finite State Processes, and Three Problems

of Equivalence. Information and Computation, 86:43-68, 1990.

[Mi1891 R. Milner. Communication and Concurrency. Prentice Hall, 1989

[PT87] R. Paige and R.E. Tarjan. Three Partition Refinement Algorithms. SIAM J. Comput., 16(6),

December 1987.

[Shag11 A. C. Shaw. Comnlunicating Real-Time State Machines. Technical Report 91-08-09, Dept. of

Computer Science and Engineering, Univ. of Washington, 1991.

[YY91] W. J. Yeh and M. Young. Compositional Reachability Analysis using Process Algebra. In

Proceedings of Conference on Testing, Analysis and Verification, August 1991.

	A State Minimization Algorithm for Communicating State Machines With Arbitrary Data Space
	Recommended Citation

	A State Minimization Algorithm for Communicating State Machines With Arbitrary Data Space
	Abstract
	Comments

	tmp.1185307040.pdf.2PEA4

