- . o
cnn) \ University of Pennsylvania

Libraries ,_
O UNIVERSITY 0f PENNSYLVANIA 4 ScholarlyCOmmonS
Technical Reports (CIS) Department of Computer & Information Science
December 1968

On-Line Computing With a Hierarchy of Processors

Richard P. Morton
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Richard P. Morton, "On-Line Computing With a Hierarchy of Processors", . December 1968.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-69-13.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/804
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F804&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/804
mailto:repository@pobox.upenn.edu

On-Line Computing With a Hierarchy of Processors

Abstract

Time shared computer systems have been based upon the two techniques of multiprogramming and
swapping. Multiprogramming is based on restricting each program to a portion of the total computer
memory. Swapping requires considerable overhead time for loading and unloading programs. To alleviate
the size restriction due to multiprogramming, segmentation is employed, resulting in fact in vastly
increased swapping.

A new system architecture is proposed for time shared computing that alleviates the high overhead or
program size restriction. It utilizes a hierarchy of processors, where each processor is assigned tasks on
the basis of four factors: interactive requirements, frequency of use, execution time, and program length.

In order to study the hierarchical approach to system architecture, the Moore School Problem Solving
Facility (MSPSF) was built and used. The study of the manner of operation and the reactions of the users
clarified and defined the Hierarchy of Processors system architecture.

The Moore School Problem Solving Facility was implemented on second generation equipment, the IBM
7040, and therefore it is not possible to adequately compare the efficiency with third generation
computers operating in a swapping mode. The conclusions of this dissertation center around the
methodology of designing such a system, including the specification of facilities for each level of the
hierarchy.

Six major conclusions are given:

(1) Three processors in the hierarchy have been necessary, but it is conceivable that more may be
employed in other future situations.

(2) Each of the processors in the hierarchy should be general purpose.
(3) Program compatibility between the processors is necessary.

(4) The assigning of tasks to the processors within the system should be optionally user directed or
automatic. Similarly, if a task exceeds the resources of the processor to which it has been assigned,
redirection should be possible either automatically or by the user.

(5) A macro language is necessary between every pair of processors for effective communication. Such a
language processor, IXSYS, has been constructed and its use is described in detail in the dissertation,
demonstrating the need and utility.

(6) In addition to the three hierarchical processors, a separate processor may be advantageously used for
storage, retrieval and management of information in files. Such a processor should be directly accessible
from each of the other processors.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-69-13.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/804

https://repository.upenn.edu/cis_reports/804

University of Pennsylvanie
THE MOORE SCHOOL OF EIECTRICAL ENGINEERING
Philadelphia, Pennsylvania 19104

'e

TECHNICAL REPORT

ON-LINE COMPUTING WITH
A HIERARCHY OF PROCESSORS

by

Richard P. Morton

December 1968

Submitted to the
Office of Naval Research
Information Systems Branch
Washington, D. C. 20360

and

Rome Air Development Center
Griffiss Air Force Base, New York

under
Contract NOnr 551(40)
Research Project No. 003-08-01

Reproduction in whole or in part is
permitted for any purpose of the
United States Government

Moore School Report No. 69-13

ON-LINE COMPUTING WITH A
HIERARCHY OF PROCESSORS

Richard Phillip Morton

A DISSERTATION
in

Electrical Engineering

Presented to the Faculty of the Graduate School of Arts and Sciences
of the University of Pennsylvania in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy.

1968

Mol Qg

Supervisor of Dissenffation

Graduate Group Chairman

ABSTRACT

Time shared computer systems have been based upon the two tech-
niques of multiprogramming and swapping. Multiprogramming is based on
restricting each program to a portion of the total camputer memory.
Swapping requires considerable overhead time for loading and unloading
programs. To alleviate the size restriction due to multiprogramming,
segmentation is employea, resulting in fact in vastly increased swapping.

A new system architecture is proposed for time shared computing
that alleviates the high overhead or progrem size restriction. It
utilizes a hierarchy of processors, where each processor is assigned
tasks on the basis of four factors: interactive requirements, frequency
of use, execution time, and program length.

In order to study the hierarchlcal approach to system architecture,
the Moore School Problem Solving Facility (MSPSF) was built and used.

The study of the manner of operation and the reactions of the users
clarified and defined the Hierarchy of Processors systam ar-hitecture.

The Moore School Problem Solving Facility was implemented on
second generation equipment, the IBM 7040, and therefore it is not possi-
ble to adequately compare the efficlency with third generation computers
operating in a swapping mode. The conclusions of this dissertation center
around the methodology of designing such & system, including the specifi-

cation of facilities for each level of the hierarchy.

Six major conclusions are given:

(1) Three proceésors in the hierarchy have been necessary, but
it is conceivable that more may be employed in other future situations.

(2) Each of the processors in the hierarchy should be general
purpose.

(3) Program compatibility between the processors is necessary.

(4) The assigning of tasks to the processors within the system
should be optionally user directed or automatic. Similarly, if a task
exceeds the resources of the processor to which it has been assigned,
redirection should be possible either automatically or by the user.

(5) A macro language is necessary between every pair of processors
for effective communication. Such & language processor, IXSYS, has been
constructed and its use is described in detail in the dissertation,
demonstrating the need and utility.

(6) In addition to the three hierarchical processors, a separate
processor may be advantageously used for storage, retrieval and manage-
ment of information in files. Such a processor should be directly

accessible from each of the other processors.

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my supervisor,
Dr. Noah S. Prywes for his guidance throughout the course of this
work. His assistance during the composition of this document has
been particularly invaluable.

Technical assistance was received from several members of
the Moore School Staff, notably Michael S. Wolfberg. Others include
D. K. Hsiao, D. M. Kristol, M. Gelblat, P. Flint, P. R. Weinberg,
and C. A. Kapps. Members of the University Computer Center staff that
assisted me in the generation of some of the programs include W. S.
Mosteller, R. B. Keller, R. Iovacchini, P. Wolfgang, and W. Jansen.

Administrative assistance came from Drs. J. F. Lubin and
G. L. Schrenk of the Computer Center. The entire Computer Center Staff
has my thanks for their help.

For typing and all the other secretarial functions which cause
things to get done, my sincerest thanks go to Miss Connie Murray.

My appreciation to Information Systems Branch of the Office of
Naval Research and the Rome Air Development Center is sincerely
acknowledged for their support of this research under Contract Nonr
551(40) .

Finally, I would like to thank my cheering squad for all that
they have contributed in the way of support and encouragement. Included
are my wife, parents, brother, sister, parents-in-law, aunts, uncles,

and friends.

INDEX

Freedman, H. -- 1k

Hierarchical system architecture -- Wff,17,71ff
Hsiao, David K. -- 14

IBSYS -- 9,10,17,18,33,47,54,56,57
IXOUT -- 79,125ff

Xsys -- 17,18,25,31,42fF,68,73, T4, 79£f
Macros -- L4L7£f,67,73,Th4

Moore School Problem Solving Facility -- 7,9,11,12f,17ff,6Lff
MULTILANG -- 14,17,18,25,26ff
Multiprogramming -- 3

Nielson, Norman R. -- 3,4

Paging -- 3

Priority -- 2,3

QUICKTRAN -- 4

Remote access computing -- 1ff
Schwartz, Jules I. -- 2

Swapping -- 2,3,4

Time sharing -~ 2,3

Virtual memory -- 3

Weissman, Clark -- 2

Wexelblat, R. -- 14

Wide applicability -- 4,11

ii

TABLE OF CONTENTS

Page

Chapter 1 Introduction 1
1.1 Problem Background 1
1.1.1 Remote Access Camputing 1
1.1.2 Problems with Existing Systems 2
1.1.3 Objectives of the Research Reported Here b

1.2 The Methodology Taken to Secure the Objectives 5

1.3 Development of the System Concept Through Design,

Implementation and Experimentation T

1.4 The Evolution of MSPSF 12
1.5 Outline of Report 15

Chapter 2 Description of the Moore School Problem Solving Facility 17

2.1 The Input/Output Processor 19
2.1.1 The Terminal and Communication Controller 19
2.1.2 Input/Output Files 20
2.1.3 The Input/Output Processor Language 21

2.2 The Job Scheduling Processor 24

2.3 The Special Computing Processor 25
2.3.1 The MULTILANG Language 26
2.3.2 The MJLTILANG Interpreter 27
2.3.3 The Storage and Retrieval System 27
2.3.4 The IXSYS Worker Program 31
2.3.5 Some Additional Worker Programs 31

2.4 The General Computing Processor 33

iii

TABLE OF CONTENTS (continued)

Page

2.5 Examples of Use 3k
2.5.1 Initializing thc Terminal 3k
2.5.2 Preparing Input 35
2.5.3 Debugging and Running A 35
Chapter 3 The IXSYS Language Tl
3.1 Introduction 42
3.2 Syntax of the Language 43
3.3 IXSYS Commands L6
3.3.1 Retrieval commands L6
3.3.1.1 Retrieval L6

3.3.1.2 Binary Retrieval L7

3.4 IXSYS Macros L
3.4.1 Macro Definitions L8
3.4.2 Macro Calls 48
3.4.3 IXSYS Parameters L8
3.4.3.1 Formal Parameters L8

3.4.3.2 Actual Parameters 50

3.%4.3.3 Null Parameters 50

3.4.4 Macro Commands 51
3.4.4.1 Define 51

3.4.4.2 Macro 51

3.4.4.3 The Condensed Forms 52

3.5 Input Control Commands 52
3.5.1 Input 52
3.5.2 If True 53

3.5.3 If False 53

iv

TABLE OF CONTENTS (continued)

Page
3.6 Examples and Evaluation 5
3.6.1 Example 1 54
3.6.2 Example 2 58
3.6.3 Conclusions Regarding the IXSYS Language 62
Chapter 4 User Evaluation N
4.1 The Community of Users 6L
4.2 General Characteristics of the Use of MSPSF 66
4.3 Evaluation of the Component Processors 67
4.3.1 Evaluation of the Input/Output Processor 67
4.3.2 Evaluation of the Special Computing
Processor 67
4.3.3 Evaluation of the General Computing
Processor 69
4.4 Evaluation of the Overall System 69
Chapter 5 Conclusions T1

5.1 The Hierarchical Approach to System Architecture T1

5.2 Suggestions for Future Research T5

5.3 Implications for Future Applications T7

Appendix 1 The IXSYS Program T9
Al.1 Basic IXSYS 9

Al.1.1 Initialization 79

Al1.1.2 Reading and Writing 79

Al.1.3 Terminating 82

Al.2 Condensed Forms 82

TABLE OF CONTENTS (continued)

Page
Al.3 Macro Definitions 82
Al.3.1 Macro Definition Item Initialization 82

Al1.3.2 Prototype Card Reading and Item Formation 86

Al.4 Command Card Processing : 86
Al.4.1 Input Control Command Routines 88
Al.4.1.1 If True and If False 88
Al.4.1.2 Input 90
Al.4.2 Retrieval and Macro Command Routines 90
Al.4.2.1 Command Assembly Routine 90
Al1.4.2.2 The Source Retrieval Routine 93
Al.4.2.3 The Binary Retrieval Routine 93
Al.4.2.4 The Macro Retrieval Routine 96

Al.4.2.5 Error Routines for Retrieval
Command Routines 96
Al.5 The Generalized Input Control Routines 99
Al.5.1 IXGET 100
Al.5.2 The Pushdown Control Routines 100
Al.5.3 BSelect Routines 103
Al.5.4 End of File Routines 103
Al1.6 The Macro Paramefer Substitution Routine 107
Al.6.1 Locating a Possible Formal Parameter 107
A1.6.2 Identifying a Formal Parameter 109

A1.6.3 Finding the Corresponding Actual

Parameter 109
Al.6.4 Making the Substitution 112
Al;6.5 Miscellaneous SCAN Subroutines 112

vi

TABLE OF CONTENTS (continued)

Page

Appendix 2 IXAT 125
A2.1 Parameter Processing 125

A2.2 Unit Control 125

A2.3 Output Swapping 128

Appendix 3 Miscellaneous Worker Programs 131
A3.1 ©STORE 131

A3.2 RESTORE 131

A3.3 PUNCH 132

vii

TABLE

F ow

O O N O W

10

LIST OF TABLES

Example of Typical Task Requirements in MSPSF
Subsystems of IBSYS

Summary of the Input/Output Processor Language
Some Useful Worker Programs

Backus Normal Form Specification of IXSYS Commands
The PDPMAP and P.SYM Macro Definitions

Examples of Using the PDPMAP Macro

Example 2

Example 3

Users of MSPSF and the Facilities They Use

viii

Page

10
22
32
Lk
20

59
61

62
65

12.

13.

Al.1
Al.2
Al.3
Al.L
Al.5
Al1.6
A1.7
A1.8

Al.9

LIST OF ILLUSTRATIONS

System Function Partitioning

Hardware Configuration

Major System Functions and Component Processors
Display with Input for Retrieval Request |

Display with First Ten Lines of Output fram the
Retrieval Request

Initializing the Terminal

Preparing the Input

The Compiler Output

Editing the Error and Adding the Test Data
The Test Results

Obtaining the Production Data

Saving the Program and Data

A Hierarchical Computing System

Basic IXSYS Initialization

Basic Read Routine

Terminating Procedures for IXSYS
Condensed Form Determination

Macro Definition Item Initialization
Macro Definition Reading and Terminating
The IF TRUE/IF FALSE Routine

The Input Command Routine

Command Assembly Routine

Al1.10 Source Retrieval Routine

Al.11 Binary Retrieval Routine

ix

Page

13
18
29

30
35
36
37

38
Lo
41
76

80
81
83
84
85
87
89
91
92
ok
95

LIST OF ILLUSTRATIONS (continued)

Figure Al.12 Macro Retrieval Routine P;Tge
Al1.13 Error Routines for Retrieval Command Routines 98
Al.1h The IXGET Routine 101
Al.15 The Pushdown Control Routines 102
A1.16 Pushdown Error Routines 10k
A1.17 Select Routines for Macros and Input Files 104
A1.18 End of File Routines 105

Al.19 Flow Diagram of Macro Parameter Substitution Routine 106

Al.20 Finding & Formal Parameter Candidate 108
Al.21 Identifying a Formal Parameter 110
Al.22 Finding the Corresponding Actual Parameter 111
Al.23 Source of Actual Parameters in s Condensed Form

Macro Command 113
Al.24k Parameter Substitution Phase 11h
Al1.25 Parsmeter Termination Routines 115
Al1.26 SCNGET Routine 116
Al.27 Null Pasrameter Routine 118
A1.28 GETCHR and PUTCHR 119
Al.29 Miscellaneous SCAN Subroutines 120
Al.30 Character Feeding Rol;:tine Used with MASS 122
Al.31 Miscellaneous IXSYS Subroutines 123
A2.1 TIXOUT Parameter Processing 126
A2.2 Unit Control in IXQUT 127
A2.3 IXOUT Swapping Phase 129

A2.4 Terminating fram IXOUT 130

1. INTRODUCTION

1.1 Problem Background

1.1.1 Remote Access Computing

Computing systems which allow remote access have experienced
phenomenal growth within the past five years. The varieiy of special
and general purpose systems allowing remote access has grown to the
point where recently novel applications are now widespread. Major
camputing facilities either have already installed equipment for remote
access or such equipment is planned or on order. New families of computers
have been designed and are being marketed for remote access computing.

New industries of computer communications and terminals for remote access
have grown up during this period.

The purposes of this relatively new style of computer system have
been twofold. First, remote terminals have made the camputer more readily
available to the user of conventional computing systems. Remote access has
meant the use of a conveniently located terminal, such as in his office
where a user prepares his program, runs it immediately, corrects errors,
and reruns it until he has obtained the functions that he requires.

Total elapsed time has been shortened from days or weeks to minutes or
hours. The user is able to get answers in a fraction of the time it pre-

(1)

viously required.

(1)

There have been several camparisons made between online and offline
camputing. See, for example, H. Sackman, W. J. Erikson, and E. E.
Gran, Exploratory Experimental Studies Comparing Online and Offline
Programming Performance, Comm. ACM, 11:1, 1968; or M. Schatzoff,

R. Tsao, and R. Wiig, An Experimental Comparison of Time Sharing
and Batch Processing, Comm. ACM, 10:5, 1967.

-1 -

Second, remote computing has opened totally new areas of computer
usage. Applications considered too uneconamical to require a cgmputer
installation can now be carried out by sharing a portion of the cost
of a remote camputer. New applications have been made possible which
require immediate accessibility to the computer. Examples of such new
areas include automated libraries, ticket reservation systems, computer
assisted instruction, computer graphics, and others that involve man-
machine interaction in an essential way.

1.1.2 Problems with Existing Systems

To date, general purpose remote access systems have been based
primarily on the concept of time sharing. There has been widespread
discussion in the professional and technical publications concerning the

(2)

meaning, uses, and problems of time sharing. Time sharing systems
require each user's program to be loaded and proceésed for a small seg-
ment of time, then dumped out, and another user's program loaded, again
to be dumped after a short segument. Much of the literature on time
sharing has been devoted to determining the proper "tuning" of the process
(segment length and loading priorities), in attempts to reduce the over-
head of the load and dump swapping process.

Perhaps the best documented example of tuning a time sharing

(3)

system is given by Schwartz and Weissman. They were able to determine
that 50% of the programs run on their system required 0.6 seconds or less,
and that 85% were completed in 1.8 seconds or less. Consequently, they

(2)

For an extensive discussion of time sharing plus a more detailed
analysis of time shared systems, see Thomas N. Pike, Jr., Time-
Shared Computer Systems, in Advances in Computers, Vol. 8, New York:
Academic Press, Inc., 1967.

(3)

Jules I. Schwartz and Clark Weissman, The SDC time-sharing system
revisited, Proc. ACM National Conference, Washington: Thompson Book

Co., 1967.

- 3 -

established a primary time segment length of 0.6 seconds, and a priority
system that called for any program which had used less than three seg-
ments to remain in the highest priority level. They then established
two other levels of priority for intermediate and long jobs.

The efforts to reduce the cost of swapping in time sharing systems
have centered around two areas, 1) reducing the swapping time by improv-

(%)

ing the swapping mechanism, and 2) reducing the effects of swapping
through multiprogramming.(s). The first of these is frequently prohibi-
tively expensive, although it is hoped that future technology will reduce
such costs. Multiprogramming has similar high memory cost implications.
In particular, by segmenting the main memory to allow several programs to
be resident at the same time, each program is then restricted to a small
portion of the available storage.

To combat these problems, the concepts of paging and virtual memo-
ry have been introduced.(6) It has been shown, however, primarily by
Nielson(T), that paging leads to an inordinately high percentage of time
being spent on system overhead. Nielson showed that, after an extensive
series of tests involving a variety of hardware configurations, tuning the

system, and improveménts in the paging algorithm, the best results that

could be expected for the IBM 360/67 was 67% utilization for execution

(4) See, for example, Kurt Fuchel and Sidney Heller, Consideration in
the Design of a Multiple Computer System with Extended Core Storage,
Preprint of ACM Symposium on Operating System Principles, New York:
Assoc. for Camputing Machinery, 1967.

(5) J. B. Dennis, Segmentation and the design of multiprogrammed camputer
systems, J. ACM, 12:4, 1965.

6

(6) V. A. Vyssotsky, F. J. Corbato, and R. M. Graham, Structure of the
Multics Supervisor, Proc. AFIPS Fall Joint Computer Conf., New York:
Spartan Books, 1965.

(1)

Norman R. Nielson, The simulation of time sharing systems, Comm. ACM,
10:7, 1965.

-k -

and 33% for overhead and idle time. Without the detailed study and care-
ful optimization which led to this 67% execution, Nielson found that a
great many other, seemingly reasonable, configurations yielded as little
as 5% execution time and 95% overhead and idle time.

Another approach to the solution of the swapping problem has been
to 1limit the scope of the system by restricting the resources available
to the user to those which can reside permanently in main memory. The
advantage of this is that only the actual users' programs, which are
presumably small, need to be swapped, while the campilers, loaders, etc.
simply reside in core. The basic difficulty with this approach is that
there are usually only one or two programming languages available.
Similarly the size of the program is restricted to the small portion of
core not taken up by the operating system and campilers. An example of
this kind of system is the QUICKTRAN system of IBM.(B)

1.1.3 Objectives of the Research Reported Here

To solve these problems, & hierarchical system architecture is
considered with particular emphasis on the contributions of this approach
towards reducing system overhead. However this approach must be con-
sidered within the context of providing versatility of types of usage.

The dual emphasis is to attain an effective system with wide
applicability. The system must have a large number of available pro-
gramming languages, as well as easy expansion to include new subsystems
as desired. The system must also be free from restrictions on the
nature of programs which can be executed within the system. The user

would have access to all the capabilities of the computing complex.

(8) IBM T040/7044 Remote Computing System, IBM System Reference Library
No. 70L0-25, Form C28-6300.

-5 -

1.2 The Methodology Taken to Secure the Objective

The effectiveness of a processor can be improved if it is designed
for a special class of problems. The system approach taken here consists
of utilizing a number of processors in a computer network or in a computer
complex, where each of the processors is designed to handle a special
class of problems. The problems that are submitted to the total system
are classified and accordingly dynamically routed to the processor de-
signed to handle the respective class of problems most effectively. The
system design consists of establishing a classification for user problems
and definition of respective processors. In fact, a hierarchy of problems
as well as processors based on "complexity" is suggested. When a problem
is recognized by one of the processors in the hierarchy to be more "com-
plex", it is then passed to the next higher processor in the hierarchy
designed to serve the next level of "complex" problems. Thus, two
hierarchies, that of problems and that of processors, are suggested.

Four parameters are suggested that jointly establish the class of
"complexity" of a problem. These are 1) the allowed delay of interactive
response, 2) the frequency of a problem type being submitted to the system,
3) the requirement for main memory storage, and 4) the requirement for
execution time. Table 1 illustrates these parameters for various tagks.

This classification is based on the observation that the most
frequent tasks and those requiring the most interactive response generally
require little high speed memory storage and short execution times.
Conversely, the problems requiring large high speed storage capacity
and lengthy execution times are relatively infrequent and the inter-

active response is not as essential.

Task

Input/Output
each character

Input for a
line

Input Editing

Output Examina-
tion

Storage and
Retrieval

Statisties of
Retrieved Data

Program
Assembly

Program
Compilation
(FORTRAN)

Program

Execution
(testing and
debugging)

Table 1 Example of Typleal Task Requirements in MSPSF

Interactive

Requirements
(max. wait
in sec.)

0.1

15

2 min

Frequency
of use
10/sec

3/sec

1/10 sec
3/sec

1/5min

1/10min

1/10min

1/10min

1/10min

High Speed
Storage
Required
(words)

100(PDP-8)

1000(PDP-8)
200 (70L4O)

800 (7040)
1000(PDP-8)
200 (7040)
12K (77040)

2K (7040)

2hK (7040)

32K (7040)

8Kk (70k40)

Execution
Time
(sec.)

100 psec.

Processor
Level

An example of a three level hierarchy corresponding to Table 1
is indicated in Fig. 1. The first processor in the hierarchy handles
those programs which have minimal memory requirements and length of
execution with meximum frequency and response requirements. These are
the routines directly related to terminal control and iﬁput/output.

The middle level processor in the hierarchy handles those programs
with more extensive, but still limited, memory and time requirements.
Notable among these is the information storage and retrieval system,
plus a library of executable programs maintained in the storage and
retrieval system.

The highest level in the hierarchy is intended for programs re-
quiring grecter resources of the computing system. These programs include
campilers, assemblers, and other systems programs which require extensive
high speed memory storage capacity, as well as user programs which cannot
be fitted into the more restricted middle level.

The processors in the hierarchy may be realized each as a separate
camputer unit or as programming subsystems within one equipment unit.
Cambinations of software-hardware may represent each processor.

1.3 Development of the System Architecture Concept Through Design,

Implementation and Experimentation

The hierarchy of processors system concept described previously
can be realized in numerous ways. The exploration of this concept is
carried out independently of the specific software-hardware cambinations
that may be selected. The approach that has been developed may later be
translated into a desired configuration based on the local requirements
and equipment. Therefore, the exploration of the system concept has

been carried out through modification of the Moore School Problem Solving

AT

User/
terminal

Terminal
Control
and
Input/Output

File
Maintenance
and
Special
Computing

General
Computing

Figure 1 System Function Partitioning

-9 -

Facility (MSPSF) to operate in the conceived manner. The advantages

of this approach were the existing hardware and software subsystems
which were used as building blocks to obtain the hierarchical processor
system.

It needs to be emphasized here that the shortcomings found in
MSPSF contributed as well to generating the final system concept dis-
cussed in the Conclusion section. MSPSF does not include the system
architecture presented in the Conclusions. Rather, MSPSF employs some
of the basic design tenets, thus serving as a vehicle for the investi-
gation which was conducted.

The primary objective, to provide as broad an applicability as
possible, has been achieved in the MSPSF by modifying the operating sys-
tem IBSYS of the IBM-TO4LO. The consequence is that all of the facilities
of IBSYS are available to the remote user. This includes a wide variety
of programming languages, a subroutine library, and a number of special
purpose subsystems (see Table 2).

This report, therefore, includes the description of the Moore
School Problem Solving Facility that has been implemented and an evalua-
tion of the utilization of the system by a community of students and
faculty.)

Implementation of MSPSF has been greatly simplified by the
hierarchical nature of the system. The interfaces between the processors
are controlled by languages. Interpretation of calls on macros is pro-
vided in some of these languages. The specification of these macros

provides for the convenient definition of new subsystems.

- 10 -

Table 2 Subsystems of IBSYS

Programming languages

FORTRAN

COBOL

MAP

MAD*

WATFOR*

LISp*

IPL-V*

SNOBOL*

L6*

ALGOL*
Subroutine library of over 500 subroutines
Loader
Post mortem dump system including snapshots
Sort system
UPDATE
Utility package
System editor -
Automated accounting system*
Job controller for automatic sequencing of compilation, assembly,

load, execution, and dump

% These items are local to the University of Pennsylvania

-1 -

Many of the software componénts used in the Moore School Problem
Solving Facility have been adapted from two previously existing systems.
First, the remote terminal input/output system and the information
storage and retrieval system (see Fig. 1) constituted an earlier version
of MSPSF. These subsystems were useful in providing the present design
with a basic remote access capability and a file maintenance system
upon which to build, and relieved the necessity for duplicating existing
subsystems.

The present MSPSF implementation consists mostly in tying existing
components together, supplying the necessary links between them, and
meking modifications to each to account for the new environment in which
they are to operate.

Five outstanding qQuestions concerning the hierarchical approach to
system architecture were to be clarified through the implementation and
use of the system.

(1) Wwhat is the nature of each processor, including specific
reference to such questions as to how many processors there should be,
whether they should be special purpose or general purpose, and how tasks
should be divided between the processors?

(2) Wnat should be the nature of interfacing languages between
the processors, and how do users use such languages?

(3) Are there any obstacles to wide applicability?

(4) What system software resources need to be supplied, and how
should they be distributed among the various processors?

(5) What is the relationship between the file management facility

and the rest of the system?.

- 12 -

A block diagram of the hardware components 1s given in Fig. 2.
The primary component is the IBM-70L4O computer, together with a card
reader/punch, a line printer, twelve tape drives, and a large 1301-II
disk file. Adjacent to the IBM-TOLO and attached to it is a D.E.C. PDP-8
camputer. The PDP-8 has two remote terminal interface units, one with
four Teletype ports and one high speed (2400 baud) Dataphone port. At
the end of the high speed line are two devices, a D.E.C.-338 display
terminal and a Sanders 720 control unit with two alphanumeric keyboard
displays.

1.4 The Evolution of MSPSF

10)

Early experiments in man-machine-memory organization(resulted
in the mechanization of an information retrieval system at the Naval
Aviation Supply Office in Philadelphia.(ll) This system was one of the
pioneering efforts in remote accessed data bases. The early equipment
in 1961 consisted of an IBM 1401 computer with a 1407 console, 1405 disk,
a line printer and magnetic tape units. In addition, an Informafion
Products Corporation 1501 display station was incorporated into the
system for remote inquiry. This system was transferred in 1962 to an
IBM 1440, with 2 IBM 1301 disc units and 12 typewriter terminals.

These early results showed the feasibility of using such a system

as a basis for a Problem Solving Facility for general use by scientists

and engineers. Such a system was gradually developed at the Moore

(20) The Multi-List System, Technical Report No. 1, Vols. I and II,
University of Pennsylvania, Moore School of Electrical Engineering,
M. S. Report 62-10, 1961.

(11) Barry Zimmerman, David Lefkovitz, and Noah S. Prywes, The Naval

Aviation Supply Office Inventory Retrieval System - A Case Study

in File Automation, Management Science, 10:3, 1964,

DEC 338
Programmed Buffer

Display-8K Memory TEM 1301-2
- (M (
Sanders File
E 720 Display
‘ System
DEC 637 IBM 790k
Cj Dataphone Data Channel
Interface c
E‘j\;\ DEC LTO8 DEC DMO3
Full Duplex PDP-8 Interface IBM 790k IBM 7040
Data Channel 32}(Memory
E:JLS’— Teletype LK Memory and B
J Interfaces Data Channel
—=] C
ASR 33 or "
ASR 35 s
Magnetic
Remote ASR TTY
Sy s 33 tapes /TBM 1L02 IBM 1403
Card Line
Reader/Punch| | Printer

Figure 2 Equipment Configuration

'Et'

- 14 -

School, University of Pennsylvania. Wexelblat(le) provided the implemen-
tation of a language processor, MULTILANG, and executive programs. The
storage and retrieval system was implemented by Freedman.(l3) A satellite
PDP-8 processor was interfaced for servicing remote terminal facilitiesglu)
These are the three components that were mentioned in the previous section
used in the construction of the presently described system. The informa-
tion storage and retrieval system has been strengthened by the addition of
a privacy and security protection mechanism by Hsiao.(lS) This system
allows each user to store records in files, with the added facility of
being able to selectively allow access to the files by others. The
input/output éystem has been expanded to accommodate communication for
computer graphics experiments which use the DEC-338 processor as a highly
sophisticated graphical terminal for the MSPSF.(16)
The users of MSPSF are constantly adding to its capabilities, and
new and interesting experiments are using MSPSF in fresh ways. Notable

(17)

among these are experiments with list-oriented programming languages,

(12) R. Wexelblat, The Development and Mechanization of a Problem Solving
Facility, University of Pennsylvania, Moore School of Electrical
Engineering, Ph.D. Dissertation, 1965.

(13) H. Freedman, A Storage and Retrieval System for Real-Time Problem
Solving, University of Pennsylvania, Moore School of Electrical
Engineering, M. S. Report 66-05, 1965.

(1%) R. P. Morton and M. S. Wolfberg, The Input/Output and Control System
of the Moore School Problem Solving Facility, University of Pennsyl-
vania, M. S. Report 67-30, 1967.

(15) David K. Hsiao, A File System for a Problem Solving Facility, Uni-
versity of Pennsylvania, Moore School of Electrical Engineering,
Ph.D. Dissertation, 1968.

(16) . .

Work in progress by Michael S. Wolfberg.

(xm)

Charles A. Kapps, SPRINT: A direct approach to list processing
languages, Proc. AFIPS Spring Joint Computer Conf. New York:
Spartan Books, Inc., 1967.

- 15 -

(18)

another expandable concept in operating systems, a game playing

system involving two players at different terminals who interact

(19)

through the common date base,

(20)

and an online hospital research
retrieval package.

MSPSF was in operation for four hours per day frdm March through
June, 1968, and continues on a more restricted basis at this writing.
During this time as many as four remote users have shared the system
with background batch work.

1.5 Outline of Report

This report is divided into five chapters (the first being this
introduction) and three appendices. Chapter 2 describes MSPSF organiza-
tion and use. An idealized model of a hierarchical processor system is
presented first. The restrictions which have led to the present MSPSF
model are then pointed out. The resulting system components are sub-
sequently described, with particular attention paid to how these com-
ponents are interfaced.

Chapter 3 presents a detailed description of an interfacing IXSYS
language for defining new subsystems. The syntax of the language is
defined using a Backus Normal Form specification. fach command in the

language is discussed in detail, and a complete discussion of macros

(18) T. J. Ostrand, An Expanding Computer Operating System, University

of Pennsylvania, Moore School of Electrical Engineering, M. S.
Report 67-16, 1967.

(29) Philip Bursky, et al., A MBn/Machine Competitive Game - A Naval

Duel, University of Pennsylvania, Moore School of Electrical Engi=-
neering, M. S. Report 68-34, 1968.
2
(20) Marvin Gelblat, Internal communication, University of Pennsylvania,
Moore School of Electrical Engineering.

- 16 -

and related parameters is also given. Lastly, some examples are
presented and discussed.

Chapter L presents an evaluatioﬁ of MSPSF from the viewpoint of
the several users. Many useful and constructive comments are included
and related to the needs of the different types of users, depending on
levels of sophistication and requirements for system resources.

The Conclusion, Chapter 5, summarizes the characteristics of the
Hierarchical Processors system architecture based on the experience

with MSPSF.

2. DESCRIPTION OF THE MOORE SCHOOL PROBLEM SOLVING FACILITY

A hierarchical structure such as illustrated in Fig. 1 has been
adopted for MSPSF as shown in Fig. 3. An additional level in the
hierarchy, scheduling, has been added to the structure to meet the
accounting requirements of the University Computer Centér.

The respective processors are described below both functionally
and operationally. The use of the system is traced through the different
control languages illustrating the roles of the various processors and
how information is passed between them., The three levels in the hierarchy
have control languages designed for the particular problems encountered
at that level and for interfacing with the next higher level in the
hierarchy. These are:

1) The input/output processor language provides aids to the

user for the preparation of his input and the examination
of his output. This language also serves as the control
language for the interface with the job scheduling processor.

2) The language of the special computing processor MULTILANG is

designed to make easy communication with the storage and
retrieval facilities available on that level.

3) The control language of\the general computing processor is

the language of the operating system (IBSYS), designed to
facilitate the use of the subprocessors and input/output
devices.

4) An additional language IXSYS provides an interface between

the storage and retrieval facilities and the general computing
processor. The IXSYS language will be described in detail

in Chapter 3.

17 -

] 1 1 | 1]] |]] 1 | 1
| | ' FORTRAN
| | |
| | | |
' t I | | COBOL
. I
| Terminal agd oﬁi;u{ | Job | X ////// '
#_1 ifj}———- Commmunicéation File Schedulor [MULTILANG IXSYS 1 IBSYS X
| Controller System | ' I :
: I | \ / | \
| | |
| | |
| l Storage and
	l Retrieval	
		System
User : Input/Output [Scheduling | Special Computing | General Computing
and i i
Terminal | | l

Figure 3 Major System Functions and Component Processors

‘-.9'[—

- 19 -

2.1 The Input/Output Processor

The input/output processor is divided into two parts as shown
in Fig. 3. The terminal and communication controller is device oriented.
The input/output file system provides the users with editing facilities
of temporary storage for input and output.

2.1.1 The terminal and communication controller

The terminal and communication controller receives input from the
terminals and transmits it to I/0 File System. It also sends output from
output files to the terminals. To aid in this process the controller
recognizes and interprets special characters such as tab and carriage
return on input and carriage control characters on output. It provides
for the specification of tab settings. For terminals, such as Teletypes,
which contain no buffering facilities, the controller provides a one
line buffer, as well as such local editing functions such as backspace
(represented by «—) and line erase (CTRL C).

In eddition to these services, the communication controller also
performs services of which the user is unaware. Foremost among these is
code conversion. As shown in Fig. 2, there are four types of terminals
in MSPSF: an on-line Teletype, three remote Teletypes, two alphanumeric
display stations, and the DEC-338 display. Each type of terminal uses
some specific character code which it transmits to the communication con-
troller. This code must then be translated into the code of the rest of
the system. Similarly, output characters must be in the code of the
device to which they are sent. There are also transmission controls,
such as synchronization and error checking, which must be provided by

the communication controller.

- 20 -

The communication controller must handle several remote terminals
simultaneously. Consequently, this component must be implemented in an
essentially time-shared way, eliminating possibilities for missing
characters from a terminal. In MSPSF this implementation takes the form
of a program called PSF, which occupies almost half of the 8192 word
memory of the PDP-8.

2.1.2 Input-Output files

Eaéh remote terminal is provided with one input file where user
prepared input is placed temporarily and one output file where the oubput
of processing by the computing processors is placed. Commands to the
input-output file system allow the user to add to the input file and edit
it, examine or clear any file, and ask for length of the files.

An important capability of the imput-output file processor is
the handling of a variety of terminal types and applications. The view-
ing of output by users is non-~destructive and the information remains
in the files. For instance, an information retrieval user can scan quick-
1y through an output to examine items relevant to his interest and later
view again those items considered only of secondary relevance. Another
example is where a user writing a program examines first error messages,
looks at the results of the progrém, and then, if necessary, goes back
to the program listing to find errors.

This non-destructive output is of special importance to a pro-
grammable terminal such as the DEC-338. Frequently such devices have
limited storage capacity and a multiplicity of users. As each user comes
to the terminal he may call for his programs to be retrieved and left
on his output file. He may then use them as frequently as needed without

retrieving them again. A system to allow loading DEC-338 progrems from

- 21 -

the output file is currently under development for MSPSF.

The input/output file system is implemented as an integral part
of the nucleus of the IBM-T040 operating system. It occupies about
1500 words of core storage on a permanent basis. Some of this storage
is memory protected and those areas that are not protected are re-
loaded wherever necessary.

2.1.3 The input/output processor language

The user of MSPSF is provided with a set of commands which are
recognized by the input/output file system. These commands allow the
user to prepare input, examine output, and control the execution of his
Jjobs. The commands are summarized in Table 3.(21)

The terminal control language reflects the specific terminals used
in MSPSF. The differences between single line Teletype terminals and
multiple line display terminals require different facilities for input
preparation and output examination. Some of the commands are specifically
designed for one class of terminals. For example, the SEE command will
fetch up to 10 lines at a time for displays but only one line for Tele-
types. Thus, its use is limited almost exclusively to displays. Con-
versely, the PRINT command prints at the full speed of the Teletype. Users
of displays which have associated typing devices, e.g., the DEC-338, can
skim through input or output faster with the display than with the
printer. Consequently, these users limit the use of the PRINT command

to those portions for which a permanent copy is desired.

(22) A more complete description of these commands can be found in

Morton and Wolfberg, op. cit.

- 20 .

Table 3 Summary of the Input/Output Processor Language

a. Data input commands

Command
APPEND

INSERT n

DELETE n nm

EDIT n m

Meaning
Add input to the end of the input file.

Insert input in the middle of the input file ahead of
line n

Delete lines n through m from the input file.

Replace lines n through m of the input file with new

data.

b. Data examination commsnds

Command

SEE f n

ROLL .

PRINT £

Meaning

Display (or print) line n fram file f. For display
terminals lines n through line n + 9 are displayed.
File may be either input or output.

Like SEE, but continue to next line or group of lines.
Parameters f and n may be supplied to skip n line
on file f.

Print file f. DParameters may also be supplied which
specified either starting line or both starting

and ending lines to be printed.

¢c. Control commands

Command
SIGNIN
CLEAR T

START

Meaning
This must be the first command given.
Clear file f.
Place this console on the queue for jobs to be scheduled

and run.

L e3-

Table 3 Summary of the Input/Output Processor Language (cont.)

c. Control commands (continued)

STop Term;nate the job for this console if it is running
immediately. If a job for this console is on the
waiting queue, take it off the queue.

SIGNCQUT Clear input and output, stop a job if one was started,
and the next command fram this console must be
SIGNIN.

d. Teletype oriented commands

Command Meaning

FULL This is a full duplex Teletype. This means all input
must be "echoed" back to the Teletype to be printed.

HALF This is a half duplex Teletype. Do not echo input
characters.

e. Display oriented commands

Command. Meaning

LOWER nm Lower line n by m lines. Line n refers to lines 1 - 10
on the screen.

INTERCHANGE n m Interchange lines n and m on the screen.

TABKEY x Character x is to be treated as a tab character.
TAB n Set a tab stop at character position n.
NOTAB n Clear the tab stop at character position n. If n is

omitted all tab stops are cleared.

COopY Copy the data lines on the screen onto the teleprinted
associatcd with this display.

FROM Same as COPY but issue a form feed first.

CEASE Terminate a previous PRINT request.

- 24 -

Many commands, although not designed for a specific terminal
type, have different formats for different terminals. Single line
devices such as Teletypes require modal operation for input. Thus,

a user types APPEND, INSERT, or EDI? and what follows is considered

data until another command is typed. From displays, hoﬁever, the

comnand is transmitted at the same time that the data is. If more data

is to be transmitted than can be placed on the screen at one time, an
additional occurrence of the command must accompany each data transmission.

The command syntax is likewise different for displays and Tele-
types. For displays, the screen format is as follows: the first ten
lines are the user's data, the eleventh line is for messages from the
input/outpuf system to the user, and the twelfth line is for commands.
From Teletypes, a command line is terminated by an ALT MODE or ESC
character, while data lines are terminated by a carriage return.

Some examples of the use of the input/output processor language
are given below in Sect. 2.5, and particularly in Fig. 7 of Sect. 2.5.2.

2.2 Job Scheduling Processor

When a remote terminal user has completed preparing input (stored
in the input file) he may direct the system (through the START command,
see Table 2) to perform the requeé%ed processing. The input is then
commnicated by the Input/Output processor to the Job Scheduling Processor.
The terminal number for that user is placed in the queue of waiting
terminals. At the present only one job may be executed at a time by
the computing processors. Whenever one job ends, the next job on the
queue 1s run. If a;l remote terminal jobs have been processed, then

background batch jobs will be run.

-25 .

A user may change his mind éfter placing & job in the queue and
direct the job scheduler to remove it (STOP). Similarly once a job has
started to be run by the camputing processors, the user may stop it (STOP),
f&r instance, when he finds from the output that it is running incorrectly.

The job scheduler is implemeﬁted as an addition to the supervisor
IBSYS of the operating system of the IBM 70LO. The supervisor calls
the job scheduler whenever the start of a new job is detected. If a
remote job is waiting in the queue, the job scheduler generates the
necessary control card images to cause the special computing processor
to be loaded by the supervisor. When no more remote jobs are left in
the'queue, the supervisor runs the next job from the background batch.
If no background Jjobs are waiting then a remote job will be run as
goon as the START command is received.

The Job scheduler requires about 250 locations bﬁt since the
supervisor is not resident, this does not detract from the available
space for the user. When no remote jobs are to be scheduled, the job
scheduler requires about 500 us overhead to the supervisor's task. This
is considered negligible since the normal supervisor operation requires
either one or ten seconds, depending on wh:ther output is on tape or
line printer. When a remote job is scheduled, the supervisor's opera-
tion is slightly faster since the control cards are generated in memory
instead of read from tape.

2.3 The Special Computing Processor

There are three major components which make up the special cam-
puting processor of MSPSF: the MULTILANG interpreter, the storage and
retrieval system and IXSYS. In addition, there is a growing number of

routines, called worker programs, which are prepared by the user of MSPSF.

- 26 -

IXSYS is one of these worker programs. The language used to communicate
with these components is called MULTILANG. A brief descfiption of this

(22) and the roles of the several cdﬁponents of the special

language
camputing processor follows.

Allocation of the 32K memory of the IBM TOLO for the special com-
puting processor is approximately as follows: 6700 for operating system
nucleus including input/output routines; the MULTILANG interpreter
occupies 8200; the storage and retrieval system 5100 ; leaving 12K
for worker programs, input/output buffers, and available space for
retrieved data.

2.3;1 The MILTILANG Language
The basic element of ‘MULTILANG is the key or descriptor. Keys may

be combined using the logical connectives and the arithmetic connective

"TQ" to form descriptions. A statement is a sequence of descriptions

separated by slashes (/). Statements may be grouped into a procedure,
in which case the statements may be lsbeled. Procedures may also contain
additional simplifying aids, such as "local names" which stand for
frequently used complex descriptions. Statement labels may be used in
place of descriptions in a statement to specify verisble exits. Other
types of operands may be element numbers (described below) and data in
the form of numbers or character strings.

MULTILANG procedures are executed interpretively, one statement
at a time. As each statement is read from the input file, the first

description is taken to be that of a worker program to be executed. The

22
(22) A more thorough description of MULTILANG is given in Wexelblat,

op. cit.

- 27 -

additional descriptions are treated as parameters for the worker pro-
gram. TFor example, consider the following MULTITLANG statement:
RETRIEVE/RPMXECM&121866
Here RETRIEVE is the description of a worker program which calls on
the storage and retrieval system to retrieve data matching the descrip-
tion given in the parameter and then prints them out. In this case such
data items would have to contain the three keys RPM, ECM, and 121866.
The basic unit of data retrieved by this statement is a EEEQEQ‘
A subcomponent of a record is an element. A description may refer to a
specific element of the retrieved records. A set of records may be
orgenized into a file. A detailed description of the file system is given
in Hsiao.(23) :
2.3.2 The MULTILANG Interpreter
The MULTILANG interpreter is loaded automatically by the job
scheduling processor when a Job is scheduled for a remote user. The inter-
preter thus reads the user's input file and interprets MULTILANG state-
ments as described in the previous section. After each statement has
been executed control returns to the interpreter to execute the next
statement in a procedure or to read the next statement from the input.
In this way, the MILTILANG interpreter serves as the supervisor for the
special computing processor. '
2.3.3 The storage and retrieval system
The storage and retrieval system is part of the special computing

processor. It manages the data(ah) file and performs the information

3 .
(24)

cit.

Unless explicitly stated, references to data in the data file may
include programs.

- 28 -

storage and retrieval functions.

The tasks related to data storage involve storage allocation on
the 1301 disk and updating the key directories. This latter task also
includes adding pointers to the record to be stored linking its several
keys with other records containing the same keys. Thus & list structure
of the records is maintained.

The tasks related to data retrieval are as follows. First, a
MILTILANG description is converted into a search strategy. This strategy
uses the first key mentioned as the key whose list is to be searched. This
key_is called the primary key. In the case of a disjunction of keys,
after the first primary key list is exhausted another primary key is taken.

Next, all records on’ the primary key list are retrieved from the
disk and checked to make sure that they contain all other conditions
called for in the description.

For eiample, consider the statement used earlier in which thé
description of the data to be retrieved was

RPMRECME:121866
In this case RPM is the primary key. All items containing the key RPM
will be examined, and any which also contain the keys ECM and 121866
will be passed on to the requesting worker program as satisfying the
~glven description.

An example of the input and output involving the use of MULTILANG
language and the storage and retrieval system is given in Figs. 4 andS5.
These figures are photographs of the DEC-338 as it is used as a terminal

4

to MSPSF.

- 29 -

v+ - RETRIEVE/PRYWESABRAY

Figure 4 Display With Input for Retrieval Request

- 30 -

Figure 5 Display with First Ten Lines of Output
from Retricial Request

- 31 -

2.3.4 The IXSYS worker program

The IXSYS worker-program provides the interface between the
special and general computing processors. In this capacity IXSYS has
three major.functions: preprocessing the input for the general comput-
ing processor, postprocessing the output from the general processor,
and interpreting the IXSYS language.

Input preprocessing is required for three reasons. First, some
additional control statements (besides those supplied by the user) must
be generated to allow output postprocessing. Second, the input statements,
on the input file are not in the proper format to be handled by the
general camputing processor. Third, the input must be scanned for
interpretation of the statements in the IXSYS lanéuage.

Output postprocessing is necessary for two reasons. Binary out-
put which is normally punched is instead stored in the data files for
use at a later time. Alphanumeric output, which is normally printed,
is diverted to the user's output file. As with the input, there is a
format difference requiring an additional conversion step.

The IXSYS language is described in detail in Chapter 3. Briefly,
it allows the inclusion of input to the general camputing processor of
source or binary informstion previously stored in the data file. This
means that not all input need actually be on the user's input file. For
binary decks this is essential since there is no way to get them on an
input file. 1In addition the IXSYS language includes a macro facility
for defining and using frequently required input procedures.

2.3.5 Some additianal worker programs
A list of ccﬁmonly used worker programs is given in Table L.

This list is not intended to be exhaustive, but merely to point out the

Name

DELKY

COUNT

RETRIEVE

DELETE

MODEL

STORE

RESTORE

PUNCH

ADDMP

SIGNIN

- 32 -

Table 4 Same Useful Worker Programs

Add e key to all items matching the given description.

Delete a key from items matching the given description.

Count the items matching the given description.

Output all items matching the given description.

Delete all items matching the given description.

Modify (in scme specified way) a specified element of all
items matching the given description.

Meke an item out of the remainder of the input file and
store it under the given keys.

Retrieve an item matching the given description which was
previously saved by STORE and restore it to the input
file.

Punch an item previously saved by STORE. Sequence punching
may be indicated.

A binary deck on the specified device is to be made into an
item and saved as & worker program.

Provide name and project number.'

- 33 -

kinds of data manipulation required by all users, regardless of the
nature of their particular data. For example, the pair of programs
STORE and RESTORE are used to save a user's input file and retrieve it
so that he may continue his work at a later time without having to rekey
it.

2.4 The General Camputing Processor

The general camputing processor is constituted around a modified
IBSYS operating system for the IBM TO4LO computer. This operating system
can be divided into two classes of programs, the supervisor and the
subsystems. The supervisor of IBSYS performs such functions as account-
ing, peripheral unit assigmments, and input/output device dependent ser-
vices.

The subsystems of IBSYS include a wide variety of programming
languages ~-~ FORTRAN, COBOL, ALGOL, LISP, MAD, IPL-V, SNOBOL, WATFOR,
and 16 -~ a macro assembler and a loader. Several programming and de-
bugging aids are also included, such as, a subroutine library of frequently
used programs and a post mortem dump program. Additional subsystems are
an Update program for maintaining program decks on magnetic tape, a
utility package for duplicating and dumping tapes, and a generalized sort
monitor. The special computing processor also appears to the operating
system as & subsystem, although remote users need not be concerned with
this.

Most of these subsystems either occupy or make use of the entire
32K core memory of the IBM TO4O. Some, however, were written for a 16K
machine as well, and consequently, require many more overlays than might

otherwise be required.

- 34 -

2.5 Examples of Use

A scenario consisting of a soiution to a problem is presented
below. It demonstrates the various aspects of the use of MSPSF. The
scenario consists of first, the terminal being initialized. Then the
input is prepared, in this case, consisting of a simple.FORTRAN program.
After a compilation, some errors are corrected. The data is then added
by retrieving it fraom the storage and retrieval file. The subsequent
run provides the results needed. Lastly the program is saved to be used
again at a later time.

The example presented here was run from a teletype terminal in
order to record all activity. In the future, the input typed by the
user has been underlined to distinguish it from the camputer output.
2.5.1 Initializing the use of a terminal

Initialization of a terminal of MSPSF is accomplished in two
steps (see Fig. 6). First, the input/output processor must be initialized
for each user. This is accomplished by typing the two commands SIGNIN
and FULL. Prior to the SIGNIN command, the response is CONSOLE AVAILABLE.
Full duplex operation requires the terminal controller to echo each
character as it is typed, thus providing immediate acknowledgement of
transmission line errors.

The next step is to initislize the job scheduling system by exe-
cuting the worker program SIGNIN with two parameters, the user's name and
his Camputer Center project number. The SIGNIN progrem is allowed to
run without charge to the user, but subsequent jobs are charged to the

user's project number.

-35 -

2 CINSILE AJATLAKLE
STGNIND

PuLLe

AN INPUT LINES

T OIENINZRNIRTINK/ €A1 61 3%
STARTS

STONINZEMIRTINK/ «AA151 3%
Figure 6 Initializing the Terminal

2.5.2 Preparing Input

Figure 7 illustrates input preparation. First, the input and
output files are cleared and the APPEND mode is entered. The response
from the APPEND command to the I/O processor informs the user of the
number of existing lines on the input file so he will know where the new
input starts. In this case there was no previous input since the file
was just cleared.

Next, the input is typed, meking use of tab settings (initially
set at every eight character positions). After completing the input,
it is printed for examination with all the column settings shown. Here
it can be seen ﬁhat the use of tabs has resulted in the correct spacings.
2.5.3 Debugging and running

Once the program input has been completed, the START command is
given followed by the PRINT cammand followed by the output printed.
Figure 8 shows the compiler output and the indicated error. In Fig. 9
the error is corrected and some sample data is appended to test the
algorithm. The job is then rerun and the results are shown in Fig. 10.
The numbers are verified by a hand calculation. Format statement 200
has some errors. After correcting the format, the progrem is ready for

a production run.

- 36 -

KE)/,‘—f-'Ind.ica't:es terminal character for command linc

Clear the input file i A

C_08 Clear the output file Input{g‘w:tepm“e““"r

A® NO INPUT LINES Enter APPEND Mode neusg

Call IXSYS worker program. This is a MULTILANG Statement.

}IBSYS control cards
Indicates a TAB was typed.

O

$18J0R
SISFTC
N=19
ASA=De
ASUM=Q .

28 REAS (S5,197%) A

107 FORMAT (F8e«4)
IF CALE«A«)GOTO 19
ASUM=A+ASUM
ASQ=A*ASQ® —~Indicates line erase
ASQ=A*A+ASQ

N=N@&F] —~Indicates character erase The
GOTO 27 Fortran
1% _AN=N Input

AMEAN=ASUM/AN
SD=SHRTC(ASI/AN=-(AMEAN*%*2))
WRITE (6:200) N»AMEAN,SD
229 FORMAT 1+C1X,13,°' VALUES'»/1Xs "MEAN = °*,F8.45/1X>»
] °*STANDARD DEVIATION = °*,F8.4)

SENTRY An IBSYS control card
P I® Print the input file

$1BJO3
$IBFTC

Note TAB expanded

ASUM=9.
27 REAS (5,109) A
189 FORMAT (F8e.4)
:IF CA«LE«A+)GOTO 19
ASUM=A+ASUM :
ASQ=A*A+ASA
N=N+]
GOTO 29
10 AN=N :
AMEAN=ASUM/AN
SD=SQRTC(ASQ/AN~-(AMEAN**2))
WRITE (6,20%) N»AMEAN,SD
200 FORMAT (1X5135' VALUES's/1XKs *MEAN = *5F8e¢45/1X>»
1 *STANDARD DEVIATION = ‘*,F8.4)
STOP
END : -
SENTRY ‘ .
) Indicates end of input file

Figure 7 Preparing the Input

_37..

291613 MURTIN FORTRON S IUR
Cr LIsT . LY WY PAGE 3 Page Heading
I[SN SAURCE STATEVENT

W SIBFTC

1 - N=

2 AS9=9.

3 ASUMI= .

4 27 REAS (S,»1414) A

ERRIx=SEVERITY 4, ISN-4%404 I[NCORRECT ARGUMENT LIST.
FORTRAN error message

5 1494 FIRMAT (F544)

6 [F (AdLEAe)GITY ¥

11 ASUY=A+ASUN

12 AS)=8+kA+ASH

13 N= N+ 1
14 GITI 21

15 1% AN=N

16 AMEANTASUIZAN

17 SD:SQ&T(ASN/AN-(AM&AN**?))
29 WKITE (455204) N, AMEAN, S

21 269 FORAAT C(1X, 13" YALUES'» /71K, "MEAN = ',
B3eds /12X
1 'STANDARD DEVIATION = *H,fid.4)

22 STar
23 EiND
N41513 MIORTIN Page

PaGe 4 Heading

Figure 8 The Compiler Output

P I 6% Print input starting at line 6
ASUN=Y .

2y RS (5,144) A This line is in error

196 FIRMAT 3 Indicates printing terminated at user request
eDIT 73

ST READ (S, 104) A Correct the error
C)73 Clear the output file
A 22 INPUT LINES Enter APPEND mode starting with line 23
Heb
5.3
Ted4
1961
73
Je?
[.
= e) This line will terminate the program

Figure 9 Editing the Error and Adding the Test Data

OBJECT PrILGRAY IS HBEING ENTERED INiO STURAGE. System loader

message

7 VALUES
Program output
MEAN = 7.7143

STANDA<D L=VIATIIN = 15751

Figure 10 The Test Results

_39-

The production data is obtained from the data files and the
RESTORE operation places it in the input (Fig. 11). This data is then
augmented by some changes, and again the job is run and the results ob-
tained.

Finally, the program and data are saved in the retrieval file

for possible use at a later data. (Fig. 12)

- Lo -

TAB here
@ 39 INPUT LINES Enter APPEND mode at line 31
ORESTORE/RPYM&DATA] Call for data to be brought to input file
C o¢ ' Clear output file

START 310 Run job starting at llne 31

¢ Print output
"RESTORE COMPLETED
Q ,

P 1 31@ Print input from line 31
RESTORE/RPM&DATAL1 TAB expanded

176 :

21.4

18:3

151

23.0 This data restored from data file

193
o
D 23 3te Delete the test data and the RESTORE request

_A0 42 INPUT LINES Enter APPEND mode at line 143.
“17.7

196 Add new data plus terminator
180

-0

C 00

STARTO Run it

P O 78 826 Print output lines 78 through 82
23 VALUES

MEAN = 17.9130

STANDARD DEVIATION = lee4830

o .

Figure 11 Obtaining the Production Data

- 43 -

c _Co Clear the output file

INS 10 : ' Insert ahead of line 1
STORE/RPM/MEAN/STDV This line gets inserted

P I 239 Print input starting at line 23
SENTRY

17.6

210 Terminate printing

INS 249 Insert ahead of line 24
SSTORE End the first STORE request

STORE/RPM/DATA2 Start next STORE request } These lines inserted

AD 48 INPUT LINES Enter APPEND mode

$STCORE End second STORE request

START@ Run it .

P_Q0 Print output
STORE/RPM/MEAN/STDV

STORE COMPLETED
STORE/RPM/DATA2

STORE COMPLETED

)

Figure 12 Saving the Program and Data

3. THE IXSYS LANGUAGE

3.1 Introduction

As stated in Chapter 1, important parts of MSPSF are languages

designed to

allow easy and convenient use of the various processors and

subsystems of MSPSF.

One of these languages is interpreted by the IXSYS program to

provide the

interface between the special and general computing processors.

This language has two functions.

(1)

(2)

Five

(1)

(2)

It provides a link between the functions special computing
processor (including the storage and retrieval system) and
the general computing processor.

It provides the control statements necessary for the use of
the subsystems of the general computing processor.
requirements for the IXSYS language are given below:

Programs and data records stored in the data‘files may be
specified to be included in the input to the general comput-
ing processor.

New subsystems may be defined and added for use in fhe general
computing processor. This requires that the subsystem
definition include sys£em control card images as well as
facilities for making parametric string substitution ihto

such card images at appropriate points. Subsystem definitions
should make use of the calling facilities fram (1) above with
the appropriate parameters. New subsystems defined through

this method may refer to and use existing subsystems.

- Lo -

- 43 -

(3) Calls on subsystems may be as concise as the user desires
for both the regular subsystems of the operating system and
for user defined subsystems.

() Subsystem calls may occur at any point in the input. This
means that statements not relevant to the subsystem may pre-
cede or follow subsystem calls. This also implies that it
should be possible to define new subsystems in terms of old
ones.

(5) The language should not conflict with any existing languages
in the system (for instance by containing strings that are
cammonly used by other programs).

Throughout the discussion the term "card" i1s used to mean a card
image whether the source of that card image is a card from the card read-
er, a card image frqm magnetic tape or disk, a line fram & remote terminal,
or a card image generated internally by some program.

3.2 Syntax of the Language

There are two parts of the IXSYS language which need syntactic
specification, commands and substitutable parameter instances. The speci-
fication of commands is context free and is given in Backus Normal Form
in Table 5; the syntex of parameters is not context free and is described
in Sect. 3.4.3.

The choice of syntax for the IXSYS language has been greatly in-
fluenced by the fifth requirement above. Two symbols are used for designa-
ting command parts. The left bracket symbol was selected since it occurs
on remote terminal keyboards but not on keypunches. Consequently, the
previously existing software did not use it. It is unlikely that a user's

program would use it. Its absence from the keypunch does not, however,

- bl -

Table 5 Backus Normal Form Specification
of IXSYS Commands

command > ::= < regular command > | < condensed command >
regular command > ::= < IXSYS part > < string > < new card >
< commaend statement >

command statement > ::= < R comn > | < B comm > | <M comm > |

<Dcomm> | <Icom>]|<T comm > |
< F comm >

R comm > ::= [R/ < description >

B comm > ::= [B/ < description >

1

M comm > ;:

1

[M/ < description > |
[M/ < description > / < M paramlist >

D comm > ::= [D/ < D paramlist >

I comm > ::

[1/ | [1I/ < ch string >

T comm > ::= [T/ | [T/ < TF string >

F comm > ::= [F/ | [F/ < TF string >

M paramlist > ::= < M param ~> | < M paramlist > / < M param >

* < ch¥ string > *

i}

M param > ::

D paramlist > ::= < ch*'/, string > | < D paramlist > / < ch*/ string >

TF string > ::= < ch= string > | = l = < ch= string > l
< ch= string > =] < ch= string > = < ch= string >
condensed cammand > ::= < IXSYS part > / < description > |

< IXSYS part >/< description >/< M paramlist >
< IXSYS part > / MACRO / < D paramlist >
IXSYS part > ::= < seven spaces > IXSYS
string > ::= < ch string > l < new card > | < string > < ch string >

< string > < new card >

- 45 -

Table 5 Backus Normal Form Spécification
of IXSYS Commands (continued)

< ch string > ::= < any string of alphanumeric characters >

< ch¥* string > ::= < any string of alphanumeric characters not contain-
ing * >

< ch*'/, string # ::= < any string of alphanumeric characters not con-

taining *, ', or / or comma >

< ch= string > ::= < any string of alphanumeric characters not contain-
ing = >
< description > ::= < any MILTILANG description not containing formats,

element numbers, or labels >

- b6 -

exclude the use of the IXSYS language by card users since the left
bracket code may be obtalned by the ﬁulti-punch facility. The selection
of the slash in a command is, again, an attempt to reduce the probability
of conflicting with & user's program specification.

3.3 TIXSYS Commands

The IXSYS commands are divided into three classes; retrieval
cammands, macro definition and call commands, and input control commands
for use within macros.

3.3.1 Retrieval commands

The retrieval commands allow users to incorporate stored source
and binary decks into the input stresm. There are two retrieval commands,
one for source cards and one for binary cards. The need for two commands
arises from the fact that the storage and retrieval system recognizes this
difference and requires a query to specify if binary is to be retrieved.
3.3.1.1 Retrieval

Source statements which have been stored in the data file may be
included in an input stream for the general computing processor by use
of the Retrieval command. The syntax of this command corresponds to
< Rcomm > in Table 5. The records retrieved are in the format generated
by the worker program STORE (see Appendix 3). These records may contain
any source card images, including programs, data, and control cards, mixed
in any desired way.

The Retrieval command may also be used to guarantee against
ambiguity between a user's data and IXSYS commands, since the data re-
trieved is not procgssed any further by IXSYS. Thus, if a user must in-
clude data which conforms to some IXSYS command, he may first save it

using STORE, and then include it in his input using Retrieve.

- 47 -

3.3.1.2 Binary Retrieval

Binary decks which have been bunched by the MAP assembly program
(possibly called by FORTRAN, COBOL, ALGOL, or L6) may be stored in the
data file using the worker program ADIMP (see Sect. 2.3.5). These decks
may later be included in an input stream to the general computing facili-
ties by using the Binary Retrieval command. Since it is not possible to
put a binary deck on an input file, the only way to include them in the
input stream is through this command.

The syntax for the Binary Retrieval command corresponds to < Bcomm >
in Table 5.

3.4 IXSYS Macros

Requirements (2), (3), and (4) of Section 3.1 - the ability to
define subsystems, to provide an easy procedure for calling subsystems,
and to make subsystem calls applicable at any point in an input stream -
are satisfied by a macro capability within IXSYS. These capabilities
are presented below and are illustrated through a discussion of some
examples (Sect. 3.6).

The IXSYS macro facilities have two standard capabilities. First,
repeated use of the same procedure, with substitution of parameters for
specific application is allowed. Thus, a given sequence of statements
to be used many times in some language may be defined as a macro once,
given a name, and subsequently referred to only by name.

Second, macros in IXSYS provide a convenience for those users
who are not familiar with IBSYS control statements and who may wish to
perform some complex task requiring such knowledge. (The use of macros
in this context is becaming more widely used, particularly in time

sharing environments where communication with the supervisor is tedious

- 148 -

without standard macro instruction for doing so.) This will be made
clearer by an example below of a macro which allows a programmer to use
the PDPMAP language on the TO4O to assemble a program for the PDP-8 com-
puter. As will be seen, this is a complex task made trivial by IXSYS
macros.
3.4.1 Macro Definitions

A macro definition has three principal parts: a heading card,
prototype cards, and the terminating card.

The macro definition header card is the Define command specified
below. It contains the macro name and the list of formal parameters.

The macro prototype cards includes any symbolic cérds including
IBSYS control cards, source statements in a programming language, data
cards, or any IXSYS cammands. These prototype cards may include
specifications for formal parameter instances; presumably, each formal
parameter occurs on at least one prototype card.

The macro terminating card contains [END] as the first five
characters and a blank in column six.
3.4.2 Macro Calls

A macro call is made through use of the Macro command given below.
It contains a MULTILANG description of the macro and a list of the actual
parameters to be used. This is explained further in the discussion of
the Macro command in Sect. 3.L4.4.2.
3.4.3 IXSYS Parameters
3.4.3.1 Formal Parameters

Formal parameters appear on the macro definition heading card in
the format of MULTILANG keys, spearated by a slash (/). Although they

may be of arbitrary length, only the first five characters are retained

- 49 -

by the IXSYS program. They specify the strings to be considered as
formal parameters, and the order in ﬁhich the actual parameters appear
in the macro call.

Formal parameters also appear on macro prototype cards enclosed
in square brackets ([]). Here the entire formal parameter is retained.
One purpose of the brackets, then, is to specify the extent of the for-
mal parameter since this may be more than five characters.

If the corresponding actual parameter is omitted in a macro call,
the formal parameter itself becomes the actual parameter. In this case
the camplete parameter as it appears on the prototype card is used. This
convention provides default conditions which simplify macro calls in the
most common case. .

Another purpose of the square brackets is to specify spacing. If
the right bracket (]) following a formal parameter is preceded by a space
then that parsmeter will always end in the column of the right bracket.
If the corresponding actual parameter is shorter, the remaining columns
will be spaces; if it is longer, it will be truncated.

Not every string enclosed in brackets need be a formal parameter.
Brackets which do not delimit formal parameters are treated as text
characters; those which do are dropped. In order for a string enclosed in
brackets to be a formal parameter, it must match one of those listed on
the macro definition heading card, i.e., if the string contains no more
than five characters it must conform exactly to one of the listed param-
eters; if it is longer than five characters, the first five must conform

to a listed parameter.

- 50 -

3.4.3.2 Actual Parameters

Actual parameters occur only in macros calls. Each actual param-
eter is a string of characters in the form of a MULTILANG literal (en-
closed in'a pair of asterisks). Such a string may contain any character
except asterisk.
3.4.3.3 Null Parasmeters

As noted earlier, when an actual parameter is omitted from a macro
call the formal parameter is taken as the actual parameter. A special
symbol is provided to explicitly allow a null parameter. This symbol
is [N/cc where cc is a palr of identifying characters which may optionally
be included to distinguish between different null parameters.

This special symbol may be used either as an actual parameter or a
formal parameter. In the first case each instance of that parameter will
be made null. Here cc need not be given. In the case where the null sym-~
bol is used as a formal parameter, the parameter is made null only if no
actual parameter is supplied and the default condition applies. Here cc
is necessary if there is more than one such formal parameter and they need
to be distinguished.

In any situation when a parameter is made null, the bracket conven-
tion for spacing still holds. Thué, if a parameter is null then if, in
the formal parameter instance, the right bracket is preceded by a space,
then the entire field of the parameter is filled with spaces. If the
right bracket is not preceded by a space, then the parameter is amitted
entirely (actually squeezed out). For example, suppose the following
card is being processed and CDE is a formal parameter:

AB[CDEFCH

Now suppose a null actual parameter is supplied for CDE. Then the result

- 51 -

will be
ABFGH
However, consider the second example:
AB[[N/1]cDE
Now if no actual parameter is supplied the result will be
AB CDE
3.4.4 The Macro Commands
Each of the two commands described below has two syntax specifica-
tions, one corresponding to < regular command > and one corresponding to
< condensed command > in Table 4. The regular forms are discussed in
Sects. 3.4.4.1 and 3.4.4.2. The condensed forms are described in Sect.
3.4.h.3.
3.4.4.1 Define
The Define command signals the start of an IXSYS macro definition.
It also serves as the macro definition heading card. The syntax for the
Define command corresponds to < Dcomm > or < Dcond camm > as given in
Table 4. The first member of < D param list > is the name of the macro
and the remaining members are its formal parameters. Thus the format of
<D comm > is
[D/neme/fpl/fp2/.../fpn
where name 1s the macro name and is used as a key under which the macro
is stored in the data file; and fpl,fp2,...,fpn are the formal parameters
of the macro.
3.4.4.2 Macro
The Macro command is used to specify a call for a macro expansion
to be included in an input stream at the point of the cammand. The syn-

tax for the macro command corresponds to < Mcomm > or < M cond comm >

- 52 -

as given in Sect. 3.2, Here < description > is used to retrieve the macro
and < M param list > is the list of actual parameters. (In addition to
having the name as a key, each macro also has the key IX.MA.) The general
format of < Mcamm > is
[M/desc/*apl*/*ap2¥/. .. [*apn*
where desc is a MULTILAﬁG description of the macro being called; and
apl,ap2,...,apn are the actual parameters of the call.
3.4.4.3 The Condensed Forms |
As stated earlier each of the above two cammands may be incor-
porated directly into the call on IXSYS. The equivalent formats to the
ones given in the preceding sections are:
for a definition
IXSYS/MACRO/name/fpl/fp2/.../fpn
and for a call
IXSYS/desc/*apl* [*ap2¥ /... [*apn*
The latter of these supplies the method for achieving the objecw-
tive of easy use of subsystems. The user need simply supply the name of
the subsystem (the name of the macro) and any required parameters.

3.5 Input Control Commands

Three commands are provided‘to allow greater choice in the source
and the selection of the input prepared by IXSYS for the general com-
puting components.

3.5.1 Input

Just as the retrieval commands allow for inserting stored data
in the middle of prepared input, the input command allows for the inclu-
sion of prepared input in the middle of an IXSYS macro. The syntax of

this command corresponds to < Icomm > in Table 5. The format of the Input

...53_

command is
[1/cceccee
where cccccc may be one of the following three:
blank - read all the input on the user's input file or until a $JOB card
is read;
a six digit octal number - read that many lines from the input file or
until a $JOB card is read;
otherwise - read until a card is encountered starting with ccccecc.
3.5.2 If True
Selection from a fixed set of alternative choices may be performed
using the If True command. The syntax of the If True corresponds to
< Tcomm > in Table 5. The format for this command is:
[T/stringl=string?
which means if stringl is identical (in at least the first six characters)
to string?2 then include the card which follows the If True command card.
Otherwise, skip one card.
The inclusion of a group of cards may be achieved by having the
included card contain a Retrieval or Macro command.
3.5.3 If False
If False is similar to If True except that inclusion occurs if
stringl is not identical to string2. It is given by < Fcamm > in Table
5.
The primary purpose for having both If True and If False is to
allow for conditions on two or more parameters. For example,
[F/p1=x

[T/pe=Y

- 54 -

will include the next card if and only if pl=X or p2=Y. Similarly,
any other logical connective may be achieved with various combinations
of If True and If False.

3.6 Examples and Analysis

Two examples are provided and described in detail in order to
illustrate the power that the (relatively simple) macro facility of
IXSYS offers to the user. In Sect. 3.6.3 & discussion and some addi-
tional examples are given to show‘how the objectives of Sect. 3.1 have
been met.

3.6.1 Example 1

Example 1 shows how a subsystem not originally included in the
general computing facilities may be defined using existing subsystems.

The two macros defined in Example 1 are used by PDP-8 programmers
to assemble programs for the PDP-8 on the TO4O using the PDPMAP subsystem.
These macros are useful in removing the need to key on a remote terminal
the lengthy entries necessary to assemble & PIP-8 program. Without this
capability it would have been virtually prohibitive for PDPMAP programmers
to use the remote terminals of MSPSF.

In addition, the use of macros in a PIPMAP job does not require
extensive knowledge of IBSYS control card, which otherwise would be
needed. The PDPMAP programmer is thus also not distracted fram his
main task, namely, that of writing a PDP-8 program. This is particularly
true for a beginning programmer who would have been forced to learn both
the IBSYS and PDPMAP systems.

As an illustration Example 1 (see Table 6) uses all the IXSYS
camands in at least one form. A step-~by-step explication of these macros

follows. Note that it is assumed that certain records have been pre-

O O3 O\ & w D ok

N PN MMNDNO R NN E H B R R
W @1 OV FWMPMP OW ®=A v Fw o O

w8

- 55 -

Table 6 The PDPMAP and P.SYM Macro Definitions

IXSYS/MACRO/PDPMAP/NAME/8DEF /TEST /%00 N/1*
$IBJOB DECK
[F/[{n/1]-DD
[T/L[N/1]=SYMTAB
$1BMAP [NAME 1DD
[F/[[n/1]=DD
{7/[[n/1)=SYMTAB

[¥/
$IBMAP [NAME]
[R/[8DEF]
[1/
$IBSYS
$SWITCH S.SPP1,S.5U1k
$CLOSE S.SU1L ,MARK ,REWIND
$IBJOB PDPMAP NOMAP
$IEDIT Ulk
$IBLDR [NAME]
$IEDIT IN
$IBREL
[B/PDPMAP
$ENTRY [TEST]
[T/[[N/1]=SYMTAB
[M/P.SYM
$SWITCH S.SPP1,S.5U1h
(END]

IXSYS/MACRO/P.SYM
$IBSYS
$OPEN S.SU1k4,REWIND
$IBJOB SYMTAB NOMAP,NOSOURCE
$FILE 'S.FBIN',U1lh4,Ulk, BLOCK=150,MIXFD,LRL=1k4, TYPE3
[B/SYMIAB'AND'DECK
$ENTRY '
(EnD]

* Note: These numbers are included only for explanatory purposes
and are not actually part of the statements.

- 56 -

viously stored in the data file.

Statemen

1

6-9

L(29)

Egplanation

IXSYS is being called to define a macro called
PDPMAP that has four parameters. The first is the
name of the PDPMAP program being written; the
second specifies whether the program is for the
PDP-8 or the DEC-338 with the PDP-8 the default
option; the third parameter specifies whether the
program is to be just assembled, punched on paper
tape, or loaded into the PDP-8 for execution, with
assembly only the assumed option; the fourth
parameter specified whether a debug dictionary
should be obtained, whether a PDP-8 symbol table
should be punched, or neither, with neither the
default option.

An IBSYS control card.

If the fourth parameter is DD or SYMPAB then the
$IBMAP card should contain the program name and
the DD option. Note that the name parameter is

a fixed length fileld. This is because the DD
option must be in column 16.

If the fourth parameter is not DD or SYMTAB then
the $IBMAP card should contain just the program

name.

(19) The statement numbers correspond to the line numbers in Table 1.

Statement (continued)

10

11

12-19

20

21

22.23

2k

25
26

27-30
31

-57..

Egglanation

Following the $IBMAP card goes a set of MAP macros
vhich define the PDP-8 to the MAP Assembler. This
set of definitions must be previously stored.

Read the PDPMAP program that the user has typed.
IBSYS control cards, with the program name sub-
stituted in card 17.

Retrieve a binary deck of a program called PDPMAP.
This is the postprocessor which converts fram

7040 code to PDP-8 code. There will be no con-
fusion between the macro called PDPMAP and the
binary deck called PDPMAP because MULTILANG keeps
them separated.

A control card with the third parameter substituted.
If the SYMTAB option was given as the fourth param-
eter then the IXSYS macro P.SYM is to be included
at this point.

A control card.

The macro definition terminating card.

Call IXSYS to define the macro P.SYM, which has

no parameters.

Control cards.

Retrieve the binary deck called SYMIAB and DECK.
It is the presence of card 31 which requires P.SYM
to be a macro rather than just a retrieval. A
retrieval would not allow for this additional

retrieval in the middle.

- 58 -

Statement (continued) Explanation
32 A control card.
33 The terminating card for P.SYM.

Table 7 shows three examples of the use of the PDPMAP macro.

The first example is the simplest case where the only parameter supplied
is the deck name. Example (b) shows the same job as (a) but this time

the binary tape is to be punched. Note that the second parameter has
been omitted but that the third parameter is supplied. Thus the default
option 8DEF will be used as the second paremeter. In Example (c) all
parameters have been supplied, calling for a DEC~338 program to be punched
with a symbol table.

3.6.2 Example 2

A medical research group collected a large esmount of data on
patients in a clinic for several separate studies. These studies varied
widely in the number of patients involved and the amount of data collected
per patient. The data was coded and placed on punched cards, each patient
record varying from as little as three cards for the smallest study to
as many as 22 cards in the largest.

Originally only sorting and counting operations were performed on
the data, but after several years in depth studies were begun. Unfortun-
ately, the data for the different studies were in different formats and
of different lengths. Consequently, separate programs had to be written
for each study; inter-study analysis was extremely difficult; and, to
make matters worse, the programs were to be used by medical technicians

rather than computer programmers.

59

IXSYS / PDPMAP /*TESTA*

TAD X

DCA Y

JMP Z

END

(a) A simple PDPMAP job with no options

IXSYS / PDPMAP/*TESTB*//*PUNCH*

TAD X

DCA Y

JMP Z

END

(b) A PDPMAP job for the PDP-8 to be punched
IXSYS / PDPMAP /¥TESTC*/*338DEF*/*PUNCH*/*SYMTAB*
EDS VEC

OCT 4100, 4100

END

(¢) A PDPMAP job for the DEC-338 in which both a binary tape and a

symbol table are to be punched

Table 7 Examples of Using the PDPMAP Macro

- 60 -

MSPSF and the macro defined in Exemple 2 is extremely useful in
this application for two reasons. First, froam the programmer's point
of view, much duplication of effort may be saved since all common ele-
ments need only occur once by storing them in the data file. Second,
the user's job is reduced to dialing a telephone, signing-in, running a
job consisting of one statement and printing the results. The one state-
ment executed contains the name of the macro, the name of the study to
be analyzed, and the name of the program used for the analysis.

As an illustration Example 2 serves two purposes. First, it
shows how such a macro can satisfy the needs of the user in solving
the problems mentioned above. Second, as in Example 1, Example 2 shows
how & problem may be stated in a simplified manner rather than the
detailed manner required by the operating system.

The macro definition is given in Table 8. ILine 1 is the macro
definition heading card. The name of the macro is CLINIC. Although
three parameters are listed, only two are expected to be supplied. The
third is provided to allow line 3 to be read as part of the definition.
If line 3 contained just $JOB without brackets, it would terminate the
reading of the definition.

Line 2 verifies that a necessary parameter has not been omitted.
If it has been omitted, line 3 will be included and terminate the job
immediately with an error message. If the required parameter has been
included line 3 will be ignored.

Many cards which are common to all applications of this macro are
retrieved in line 4. Some of these are system control cards and some

are program statements.

- 61 -

Line 5 calls for the inclusion of those statements peculiar to
each application such as DIMENSION and FORMAT statements.

Lines 6 through 10 are more program statements. Line 8 has two
parameter substitutions. One of these is the subroutine which performs
the required camputation. The binary deck for this subfoutine is
retrieved from the data file and included in the input by line 11.

Line 12 is an IBSYS control card. Line 13 calls for the retrieval

of the data on which the computation is to be made.

1. TXSYS/MACRO/CLINIC/STUDY/TEST/J0B

2. [T/sTuDY=[STUDY]

3. $[JoB]

4. [R/CLINL

5. [R/[sTUDY J&DIMFOR

6. DO 2 I=1, NPATS

7. 2 READ (5,1)(DATA(I,J,K),K=1,NUMBER,K=1,NCARDS)

8. CALL{TEST](NPATS, NUMBER, NCARDS, 6H[STUDY],ARRAY1, . . . ,ARRAYN)
9. STOP

10. END

11. [B/[TEsT]

12. $ENTRY

13. [R/[STUDY J&DATA

14, [ENnD]

* Note: These numbers are included only for explanatory purposes and

are not actually part of the statements.

Table 8 Example 2

- 62 -

3.6.3 Conclusions regarding the IXSYS Language

The two examples given illustrate the usefulness of the macro
facility and the other functions provided. These and other examples
will be used to illustrate that the five specific objectives, outlined at
the beginning of the section have been met.

1. The facility to save and call for programs and data has been
supplied by the retrieval cammands. This facility could, however, be
extended to allow access to data stored in formats other than those
currently allowed. A user could provide parameters to a retrieval
request with a description of the data to be obtained.

2, The two examples above have shown how subsystems may be de~
fined. Subsystem definitions may include all card images; subsystem
definitions may make use of any of the retrieval coammands; parameter
substitution has been provided. Example 3 (Table 9) illustrates a macro
for providing access to one of the existing subsystems of the general
camputing system FORTRAN. As seen in line 1, the macro name is FORTRAN,
and it has two parameters. Line 2 shows that the second parameter is op-
tions for the $IBJOB control card, which may be omitted. The first
parameter is the program name, as seen in line 3.

1. IXSYS/MACRO/FORTRAN/NAME/*0O[N/1%
2. $1BgoB [[n/1]

3. $IBFIC[NAME

4. [END]

Table 9 Example 3

- 63 -

3. Subsystem calls are very concise; all that is required is
the name of the subsystem. This point has been particularly strength-
ened by the inclusion of the condensed forms and default parameters in
the IXSYS language. Thus a call for FORTRAN, assuming Example 3 may be
as short as:

IXSYS/FORTRAN
or as long as
IXSYS/FORTRAN/*JOB1*/*DECK , NOGO*

4. Subsystem calls may occur at any point in the input, except
from cards accessed via the Retrieval command. This exception is pro-
vided on purpose (see (5) below). Subsystem calls may occur within other
subsystems, and, in fact, by using the conditional commands or the define
cammand it is possible to write recursive macros.

5. Much has already been said about efforts to make IXSYS as
unobtrusive as possible. To summarize, the condensed forms allow some
strings to be included as parameters to the IXSYS call, thereby elimina-
ting them from consideration as data; format parameters must match some
nmember of a list which must be given in advance; the use of such charac-
ters as [,], and / serve to protect against ambiguity in most cases;
statements may be stored and later included via the Retrieval command to

insure that they are not questioned further.

L. USER EVALUATION

4.1 The Camunity of Users

The users of the Moore School Problem Solving Facility come,
naturally enough, mostly from the Moore School of Electrical Engineering
at the University. They represent primarily research projects.

The nature of the work of the users ranges from simply using the
editing facilities for preparing input, to constructing a complex graph
theory system involving concurrent operation of the IBM-TOLO and the
DEC-338. Within tiis range there are storage and retrieval projects
using only the special computing processoi and programming Jjobs which
use the general computing processor extensively. One information
retrieval project is concerned with patient information from the cardio-
vascular research group and Pathology Department at the University of
Pennsylvania Hospital. Another project is concerned with interactive
competitive games. Among projects using the general camputing processor
is one concerned with list structured memories and the theory of data
sfiuctures. Another project is concerned with extendable operating
systems. Table 10 sunmarizes these projects, indicating which facilities
they use frequently and which they use occasionally.

While these projects are not numerous enough to allow significant
statistical studies, they represent & broad range of camputing requirements
that demonstrate the need for 'wide applicability". Similarly, although
the number of users has been limited, they represent a wide range of
levels of computer competence. Therefore this group of users is particu-
larly suitable as a basis for evaluation of the services and functions

of MSPSF.

- 6 -

Facilities used (1 - frequently, 2 ~ occasionally)

Reason for Storage & Computing IXSYS IBSYS Own
Project using MSPSF Editing Retrieval on special macros Sub- Sub-
level systems systems
Hospital Store data to
data input be retrieved 1 1
later
Hospital Examine
data retrieval previously 2 1 1
stored data
Interactive Storage and’
game playing retrieval of 2 1 1
data for each
player
Graph theory Write programs
system for DEC~338 and 1 1 1 1 1
IBM~T0LO
List structured Write programs
memories for IBM-T0LO 1 2 1 1
Extendible Write programs
operating for IBM-T040 1 2 1 1
systems

Table 10 Users of MSPSF and the Facilities They Use

-59-

- 66 -

The evaluation that follows is divided into two parts. First,
specific comments are presented regarding the camponent processors of
MSPSF. Second, some more general comments relating to the total system
are given. Some of the comments concern the implementation of MSPSF,
and while these are of little interest to the system architect they are
included both for completeness and as a reminder that they are considered
important by the users.

h.,2 General Characteristics of the Use of MSPSF

For a period of about four months prior to this writing, the
University of Pennsylvania Computer Center has been operating its IBM-
TOLO camputer under the MSPSF system for four hours each day, two hours
in the morning and two hours in the evening. During these four hours
the camputer was largely occupied with background work (jobs submitted
on cards). The total time during which MSPSF has been active with re-
mote users has been small. The number of remote terminals in use at
any time did not usually exceed one, and never exceeded four.

There are two classes of programs which had to be excluded from
running under MSPSF for technical reasons. First, some programs were
too large, since the nucleus of MSPSF is larger than that of the regular
version of IBSYS. Second, some programs made reference to absolute core
locations which were different under the two versions of IBSYS.

Additionally, in order to provide adequate response for remote
users, jobs with maximum run times greater than 10 minutes were supposed
to have been excluded by the computer operator. Occasionally, the
operator would start a 20 or 30 minute job causing the remote users to

experience intolerable delays.

- 67 =

4.3 Evaluation of the Camponent Processors

4,.3.1 Eva;uation of the Input/Output Processor

There is general agreement among MSPSF users that the terminal
control language is inadequate in its present form. It is too awkward
for the average user and incomplete for the more advanced user.

The average user would prefer a smaller command vocabulary, where
each command would accomplish more for him. This, however, would restrict
those users who do make use of all the commands. The solution seems to
be to provide a macro language similar to that of IXSYS. A user could
then simply type, for example, his name, and the entire system could
then appear to him as a special purpose computer designed to process his
particular language.

The more advanced users have requested same new commands for the
input/output processor. Most of these are editing commands for the
input/output files. They range from simple ones, such as, moving output
to the input file, to such complex operations as full text search and
replacement operations. Here two macro operations could prove very use-
ful.

4.3.2 Evaluation of the Special Camputing Processor

The major camplaint with the special computing processor is that
it is too aifficult to write worker programs. Under the present imple-
mentation of MSPSF worker progréms must be written in assembly language
and must be entirely self-contained except for calls on the storage and
retrieval system. What is needed is a new linking loader capable of
plecing together one large program fram a library of small subroutines.
The subroutines would be kept in the storage and retrieval file. Addi-

tionally, the calls on the storage and retrieval system routines need to

- 68 -

be standardized to conform to those produced by the language processors.
This would allow programs written in FORTRAN, for example, to call for
data to be retrieved directly from the data file. Both of these changes
would require additional modification to the dynamic storage allocation
routines of MULTILANG. |

One result of this difficulty is that there are not an adequate
number of worker programs available. In addition to IXSYS only three
other routines have been added to the MULTILANG worker program library
to specifically support the remote terminal users. These programs per-
form the functions of saving and restoring input files for later use and
punching saved files.

Several other such programs have been suggested by the users. An
existing program which stores binary decks should be able to recover
arbitrary punched output from the punch file of an IXSYS run. This same
program or another should be sble to actually punch the recovered decks
if desired. Similarly, facilities should be provided to save printed
output and to allow it to be printed on the high-speed line printer.
Along these same lines, the program that saves input files should be
" expanded to include arbitrary sources such as magnetic tape.

There are, of course, an in&efinite number of such programs which
could be added to the MIULTIIANG program library. The point here is that
a specific effort has to be made to provide special facilities for remote
terminal users. Moreover, such an effort should be a continuing one.

As in the case with virtuaily every other computer function, regardless
of how elaborate a system gets, someone will think of some modification

which will provide an additional capability.

- 69 -

4.3.3 Evaluation of the General Computing Processor

The use of an already existing operating system empowered MSPSF
to handle the work that users had previously generated. Most users
found that no modifications were required to run past programs. The
exceptions involved programs that either were too large or involved
absolute machine addresses.

On the other hand, difficulties arose from the incompatibility
between the input/output formats used with the compilers, assemblers,
etc., and the formats of the new remote terminals. Specifically, IBSYS
input is expected to be 80 column card images and output is formatted
for a 132 character line printer. Since remote input is 64 characters
per line, spaces are added to the end to make 80. In most cases this
is sufficient. The output format is more difficult to handle since,
again, lines are limited to 6l characters. MSPSF solves this problem
by simply breaking the 132 character line into two 64 character lines
and ignoring the last four characters. A better solution, however, would
be to use editing programs which allow the user to specify that portion
of each line of current interest. This approach may apply generally as
the best way to bridge the gap between pretested, in-use software and
new hardware, particularly for remote accessed systems with a variety
of terminal types and frequent hardware additions.

4.4 Evaluation of the Overall System

Three points of significant interest have been made by the users
of MSPSF. \

1) Reliability in both the total system and the component
proceséors is critical. Those users who attempted to use MSPSF during

the development and early production stages became so disheartened at

- 70 -

system fallures that they were very hesitant to try again even when
the problems were clearéd up. This observation holds for both hardware
and software; the user is clearly not concerned with why the system
fails.

This does not mean that all components must be error free before
the system can be used. Instead, every possibility for error debtection
and correction must be included. When the hardware fails, sufficiently
explicit error messages should point out the difficulty to allow prampt
diagnosis and correction.

2) Each level in the hierarchy has its own control language.

The complexity of that language reflects the complexity of the operation
of that level. Consequently, those users who use only the simpler levels
of the hierarchy need only learn the simpler control languages.

The users of MSPSF who have benefited the most fram this structure
are those who are primarily interested in the special computing processor.
These users have been able to use their programs without having to learn
the camplex operating system language of IBSYS.

3) The camputer used at the computation levels should be a much
faster one. On this point there is an essential difference between re-
mote and batch operation. Most remote users of MSPSF found a delay of
ten to twenty minutes for a run unbearable. As has been found elsewhere(26)
remote users tend to be less careful in program preparation, and con-
sequently, get less accamplished per run. He thus expects error messages
of a trivial nature to came back to him with a minimum of delay. The
8 usec. cycle time of the IBM-7040 does not permit an adequate amount

of computation within the remote users tolerance limits.

(20) See Footnote 1.

5. CONCLUSIONS

5.1 The Hierarchical Approach to System Architecture

A new system architecture is proposed for time shared computing
that alleviates the high overhead due to swapping and program size
restrictions due to multiprogramming. It utilizes a hierarchy of pro-
cessors, where each processor is assigned tasks on the basis of four
factors: interactive requirements, frequency of use, execution time,
and program length. |

In order to study the hierarchical approach to system architec-
ture, MSPSF was built and used. The study of the manner of operation
of MSPSF and the reactions of the user has resulted in a number of con-
clusions which have defined and clarified the hierarchy of processors
approach to system architecture.

1. The choice of three processors for the hierarchy of MSPSF
is based on the minimum number that is considered sufficient. Separating
tasks based on execution time is an essential feature of the hierarchical
approach. This separation implies a minimum of two processors in addi-
tion to the input/output processor. More than three levels in the
hierarchy are possible on the same basis.

It has been found advantageous that the input/output processor,
the lowest in the hierarchy, be implemented using a separate computer.
This is based on the consideration that the present state of the art of
remote terminal devices is highly dynamic. Modifications to the system
for handling new types of cammnications and terminals are to be expected.
Such modifications are much easier to perfect and incorporate on a sepa-
rate computer than within the environment of equipment also serving the

other processors.

-7 -

-T2 -

2. The processors in the hierarchy should be program compatible,
and each should be genéral purpose. General purpose means that each
processor is capable of running user programs. If the processors are
program compatible, any program may be run at any level. This also
allows the debugging of programs on a lower level processor, and then
shifting to a higher level processor for production running.

Compatibility is also necessary for system maintenance. As the
system grows it should be expected that functions provided by one level
will be moved to another. Also, it may be necessary to debug system
camponents at one level which are to be used at another.

3. The selection of the processor in which a user's program is
to run should be either user directed or automatic. Both mechanisms
should be provided. If a user wishes, he should be able to select a
processor using the terminal interface language and one or more of the
processor interface languasges described in (4) below. When the user
does not select the processor, the system must make estimates of the
various factors which determine the proper processor for a task.

The four parameters which were used subjectively in assigning
tasks to processors in MSPSF were amount of interaction required, fre-
quency of use, program length, and execution time. In an automatic
selection procedure (not incorporated in MSPSF), some formula, such as
a weighted sum, comprised of these four factors would be computéd, and
the value of the formula would determine the processor chosen. For
example, if

X =WF +W2F

2 33

- T3 -

then if
L < Zi, use processor 1
Zl <¥< 22, use processor 2
22 < I, use processor 3.

It is to be expected that conflicts should arise between a pro-
gram's requirements and the resources of the processor to which it has
been assigned. Again, the resolution of these conflicts should be either
autamatic or by user direction, and, again, program campatibility is
required so that reassignment is possible.

k. A macro language similar to the IXSYS language is necessary
for communication between every pair of processors, serving also for
coomunication between the user and each of the processors.

The usual view of a macro facility is one of a mechanism for pro-
viding same user-defined subroutines to an assembly program. These
subroutines may then be called from time to time during the course of
assembling a particular program. The utility of such macros cames from
their being called a number of times during the assembly process, thus
saving the user from enumerating the lines generated by the macro.

The same approach applies to input stream macros. Instead of
being used repeatedly in a single program, however, an input stream
macro will be used to assemble a number of programs. Input stream macros
have the ability to simplify communication between the user and the total
system.

The IXSYS language differs from existing input stream macro
languages in two ways. First, IXSYS macros may include statements in
various levels of language, such as system, campiler and assembly lan=-

guages, as well as data. Thus, the user does not need to rely on the

- T4 -

logic of the system programmer to organize his work. This approach also
allows parameter substitutions in statement of languages at all levels.

Second, IXSYS includes conditional statements which provide power
and flexibility not found in other input stream macro languages. Such
features are found in programming language macro processors, and there
is no reason why input stream macro processors should not be just as
powerful.

5. In MSPSF the information storage and retrieval system is part
of the special computing processor. In order to better handle the needs
of the total system, however, it is suggested that the storage and re-
trieval system be a separate special purpose processor, probably imple-
mented on its own camputer with links to each of the other three pro-
cessors. There are three reasons for reaching this conclusion.

First, each of the processors in the hierarchy may require direct
access to the storage and retrieval system.

Second, if the storage and retrieval system is accessible to each
of the other processors directly, and if the several processors are
implemented on the same or campatible hardware, then cammonly used data
and progrems may be stored only once. For example, a compiler used on
two levels of the hierarchy, depending on the length of the program to
be compiled, could be maintained in the storage and retrieval facility
and accessed by all processors using it.

The third reason for separating the storage and retrieval system
from the other processors and, particularly, for implementing it on a
separate computer is modularity. The same reasons apply here as for
input/output devices in (1) above. New devices for storage and re-

trieval and new techniques for organizing data abound.

- 75 -

6. The block diagram of a camputing system which satisfies the
above five conclusions is shown in Fig. 13. Each of the three processors
is shown. From any processor at level i to any other processor at level
i + 1 there is a lgnguage Li + 1 Each of the processors may communicate
directly with the storage and retrieval system.

The multiplexing factor at each level is represented by n, m, and
£ on Fig. 13. That is, n users may use a level 1 processor simultaneously;
m may use a level 2 processor simultaneously; £ may use a level 3 proces-
sor simultaneously. From these numbers it is possible to compute expected
reaction times fram each processor, provided adequate estimates are avail-
able for the distribution of execution times for each processor and the
probability that a user of level i will move to level i + 1. These
estimates depend upon the work load and job mix for each installation.

For MSPSF, m and ¢ were each 1. Since the average execution time at
level 3 was long and the probability of use of level 3 was high, reaction
times were frequently very long.

From Fig. 13 it can be seen how expansion to more than three pro-
cessors could be accomplished. The highest numbered processor could be
split into two, the first being "Processor for somewhat longer and larger

tasks" and the second "Processor for other tasks."

5.2 Buggestions for Future Reéearch

1. The selection of processing units must be investigated in
light of advances in camputer design. Concepts which need further in-
vestigation within a hierarchical system architecture include multi-
programming, multiprocessing, virtual memories, etc. A system built
with these advanced techniques will require additional work to determine

the proper distribution of software resources among the various processors.

Figure 13 A Hierarchical Computing System

..9L-

- 77 -

2. Additional studies, probably involving the simulation of a
system, are needed to determine processor sizes in order to meet reaction
time requirements.

3. An algorithm is necessary for handling automatic assignment
of tasks to processors. Additional investigation is needed to determine
(a) the selection of important factors, (b) the proper relationships
between these factors, and (c) way of automatic estimation of the values
of the factors for a task.

5.3 Implications for Future Applications

The system architecture described in this dissertation may be
advantageous in some areas of future computer system research. The
advantages of modularity for remote terminals and mass storage systems
have already been pointed out. Software development may also profit from
this modularity. Consider, for example, the development of a conversation-
al program such as a teaching program or a conversational compiler. It
is highly likely that such programs will be quite large and time consuming
to debug. Consequently, such debugging would normally take place in the
highest level of the hierarchy. Once developed, however, the critical
factors in using sﬁch programs are high frequency of use and high inter-
action requirements. At this point, highly interactive programs wmay be
moved to the lowest level processor for improved service to the users.

The development of other operating system resources may proceed
along similar lines. Debugging runs may be carried out wherever they
best fit into the job stream and wherever the best debugging facilities
are available for the particular type of program. In fact, the highest

level processor may be used for developing new operating systems without

- 78 - -

interfering with other users. This, in turn, has implications for
future computer hardware development, such as in the area of privileged
instructions.

The main characteristic of operating system experiments which
mekes them difficult to accommodate in present on-line computing systems
is that they require complete control of the computer for the duration
of the experiment. During this time the computer is thus unavailable
to other users. The hierarchical approach allows one of the processors
to be temporarily withdrawn from general use, but does not require the
entire system to be closed to all other users.

Other application areas have also presented difficulties for
present systems for the same reason of requiring complete system domina-
tion. Examples of this include some instances of on-line data collection
and real-time process control where the data rates are sufficiently
high. Here, again, one processor may be temporarily diverted to a

special project while service to other users continues.

APPENDIX 1 THE IXSYS PROGRAM

The IXSYS program is actually two program decks: IXSYS handles
input preparation, and IXQUT recovers output. For the rest of this
discussion IXSYS will be used to refer only to the one deck. IXOUIT is
covered in Appendix 2.

Al.1l Basic IXSYS

Basic IXSYS refers to those portions of IXSYS which get used when
an input file which contains no IXSYS commands is processed.
Al.1.1 Initialization

The primary responsibility of the initialization section of IXSYS
is to set up the input, output, and punch utilities which are used during
an IXSYS job. Each must be rewound, an End-of-File mark is written on
the punch utility, and some initial IBSYS control cards are written on
the input utility (see Fig. Al.l). Then, an end-of-file exit in the
MJLTILANG input routine is set in case a terminating $JOB card is not
supplied. Lastly, if no condensed form macro call is pending control
passes to the read routine. In the figure, exit « is taken if a condensed
form for either a macro definition or call is given (Sect. 3.4.L4.3). Exit
B is taken if a macro is to be expanded before reading input.

Al.1.2 Reading and Writing

A card is read from the input file to see if it is a $JOB card
(Fig. A1.2). If there is no more input, IXGET will exit to IXEOF. If
a $JOB card is read, it is treated like an end-of-file and otherwise ig-
nored.

If the card is not & $JOB card it is checked to see if it is an
TXSYS command card. If not 1t is simply written out, and the next card

is read. If an IXSYS command is read, the appropriate switches sare

-79-

- 80 -

IXSYS
Yes
Is there a first ‘ L
. parameter? Al.
No Jf

Rewind with 12, 13, 1k

©

EOF -+ S.SU1lk

o

+

Call PUT for
switch of output

)

Call PUT for
Close S.8U1k,
Switch punch

Set EOF exit
in MULIN

READ
Al.?2
Figure Al.1 Basic IXSYS Initialization

READ

/
Call IXCET
: Y
es
Is it $J0B | @ AL-3
No
- Y
es
Isit [/ 2l Is it: T Al.7
Nob F AL.T
Call OUTPUT I —>® A1.8
No
4 4
(READ) + —» MACSW
+ — BINSW
+ —p RSW
- — DESC
Is it: D AL.9
. A9
B Al.9
R Al.9
No

Figure Al.2 Dasic Read Routine

- 82 -

initialized and control passes to the appropriate command routine.
Al1.1.3 Terminating

After all the input has been processed, a check is made to deter-
mine if any IBSYS input was generated. If not, a message to that effect
is printed and IXSYS returns to the MULTILANG monitor. Assuming that
there is work for IBSYS, then several additional control cards are written
out, including those necessary to reload MULTILANG, with some selectivity
based on whether the job is for a remote user or a regular batch user.
Just prior to passing control back to IBSYS, a card for switching the
input to utility 12 is stored where IBSYS will find it. The exit from
IXSYS is made in such a way that remote terminal output buffers will be
closed.
Al.2 Condensed Forms

If the call to IXSYS has any parameters, then it must be a con-
densed form of either a macro definition or a macro call (Fig. Al.4).
If it is a macro definition it is handled immediately by TXSYS. If it
is a macro call, it is simply noted to be handled after the initialization
is completed.
Al.3 Macro Definitions
Al.3.1 Macro Definition Item Initialization

A macro definition is a MULTIIANG item and, as such, must conform
to the prescribed format for items. The first half of the procedures
which perform this task are illustrated in Fig. Al.5. The given flowchart
actually represents two distinct sections of the program, one for condensed
forms and one not. The coding of these two sections is completely parallel,
but the data comes ffom different places. In the case of the condensed

form it is obtained by calling for MULTILANG paramcters. Otherwise, it

- 82 -

initialized and control passes to the appropriate command routine,
Al1.1.3 Terminating

After all the input has been processed, & check is made to deter-
mine if any IBSYS input was generated. If not, a message to that effect
is printed and IXSYS returns to the MULTILANG monitor. Assuming that
there is work for IBSYS, then several additional control cards are written
out, including those necessary to reload MULTILANG, with some selectivity
based on whether the job is for a remote user or a regular batch user.
Just prior to passing control back to IBSYS, a card for switching the
input to utility 12 is stored where IBSYS will find it. The exit from
IXSYS is made in such a way that remote terminal output buffers will be
closed.
Al.2 Condensed Forms

If the call to IXSYS has any parameters, then it must be a con-
densed form of either a macro definition or a macro call (Fig. Al.k).
If it is a macro definition it is handled immediately by IXSYS. If it
is a macro call, 1t is simply noted to be handled after the initialization
is completed.
Al.3 Macro Definitions
A1.3.1 Macro Definition Item Initialization

A macro definition is a MJLTILANG item and, as such, must conform
to the prescribed format for items. The first half of the procedures
which perform this task are illustrated in Fig. Al.5. The given flowchart
actually represents two distinct sections of the program, one for condensed
forms and one not. The coding of these two sections is completely parallel,
but the data comes ffom different places. In the case of the condensed

form it is obtained by calling for MULTIIANG paramcters. Otherwise, it

IXECF

Print a
message

Close output buffer

|

Call PUT for two
$IBSYS cards

- 83 -

Al.31

|

Call FUT for:
$IBJOB
$RELOAD
ADDMP
XOUT
$IBSYS

Call PUT for
Switch output

&

Call PUT for
switch punch

X .REM

construct $JOB card
and IXOT carg,
Call PUT for $JOB card

Figure Al.3 Terminating Procedures

Call PUT for
switch input

f_—

Move input switch
card to S.SAVE and
set S.SCDI minus

4

Close and rewind
S.8Ul2

Exit Point
in MULTILANG

for IXSYS

-84 -

Is first parameter No ;l
+ =— IXZSW 1.
"MACRO” @ A l

Yes

D

Figure Al.4 Condensed Form Determination

DEFINE

- 85 -

Does the macro
have a name

L;{

Print error

message

)

Make it a key

!

O s=» Count

&

Is there another
actual parameter

Yes

No
4

Put it in

_—f)L the item

Merk the last
parameter

!

Compute start of data
actual and relative

Al.6

_..400unt+l —» Count

Figure Al.5 Macro Definition Item Initialization

- 86 -

is obtained from where the IXSYS command assembly routine puts it. -

Clearly, a macro must have a name by which it is to be called.

The macro name is used as a key by which it is to be stored and later
retrieved. Each actual parameter is added to the item and the last one
is tagged. The location where the prototype cards go is then computed
from the number of actual parameters stored.

Al.3.2 Prototype Card Reading and Item Formation

Once the actual parameters have been added to the item, the proto-
type cards may be added. Each card is read and checked for the macro
terminating card. Prototype cards are stored in the macro item and
printed for the user's record. When the terminating card is encountered,
the total length of the item, as well as the lengths of the various com-
ponents, is known. From this data, the item header word, link word, and
table of contents are computed and added to the item, thus, completing
the item formation. It can then be stored by calling the MJLTILANG item
storage routine, and the user can be notified that the definition has
been completed.

Termination from the definition routine depends on the form of the
call. In the case where the condensed form was used, control return to
the MULTILANG monitor. Otherwise, the space used for the item formation
must be reclaimed since it is also used by the IXSYS command assembly
routine. After this is done, control returns to the main read loop of
IXsys.

Al.4 Command Card Processing

The command card processing routines are divided into two groups,

the input control command routines, and the retrieval and macro routines.

The reason for this division is that the input control commands do not

- 87 -

6

£

Call IXGET

A
. No Move card
Is it [END] ‘ to 1tem ———%{ Print card

¢, Yes

Compute length of
data and address of
table of contents

Fix item header,
link, and table
of contents

)

Call ITEMIN

!

Print message

Al.31

Reclaim Space

' Figure Al1.6 Macro Definitions
A1.2 Reading and Terminating

- 88 -

use the IXSYS cammand assembly routine and the others do. The input
control command processing routines are all rather short, simple, and
independent (except that If True and If False are combined). The others
are generally longer, more camplex, and highly interconnected.

Al.4.1 Input Control Command Routines

A1.4.1.1 If True and If False

The two commands If True and If False share a common processing
routine. The general idea of this routine is as follows (see Fig. Al.7).
First, set an indicator switch according to whether If True or If False
is requested. Second, find the two camponents to be compared. Then,
set another indicator depending on whether the two components are equal.
Lastly, caompare the two indicator switches for equivalence. If they are
the same, skip a card; otherwise, do not skip.

More specifically, the GETCHR subroutine (Sect. Al.6.5) is called
to get all’the characters before the equal sign, but only up to six
characters are retained for comparison. If no equal sign is encountered
before the end of the card, the second caomponent is assumed blank. Thus
if the entire variable field of the card is blank, an equal condition will
result.

When an equal sign is found, the next six characters are obtained
for the second component. If there are less than six characters available
an unequal condition is assumed, since the first component must have had
more than six characters.

After both components have been obtained, they are campared for
equality. If they are equal the second indicator is set and compared
against the first. The nature of the comparisons and indicator settings

is such that one card will be skipped if either If True was called and

None
;eft

-89'.

- —» TFSW + —» TFSW
Call GETCHR
JL Yes
Is it = No Already six ‘characters _J&l;{ Save 1t
Yest
tore
Call GETCHR —-3—>@
No
Already six _>l Save 1t
1{Yes
+ —» IQSW

Is first half = second half

Yes

' 4

-_‘EQSW

No

£

TFSW = EQSW

l(Yes

Call IXGET

READ
Al.2

Al.2

Figure Al.7 The IF TRUE/IF FALSE Routine

-90-'-‘

the components were unequal or If False was called and the components
were equal. |

In either case the If True/If False routine returns to the main
read loop of IXSYS (Sect. Al.1.2).
Al.4.1.2 Input

The function of the Input command is quite simple - build an input
control block (ICB) and put it on the pushdown list. There are two fields
of the ICB which must be computed first. These are the record count and
terminating mask. Both of these can be determined by considering the
Input command parameter (See Fig. Al.8).

There are three possibllities for the parameter which can be direct-
ly translated into values for the record count and terminating mask. If
the parameter is blank, the count is 32767 and the mask is $JOBPp. If
the parameter is an octal number that number is used as the count and the
mask is $JOBPP. If the parameter is anything else, the count is 32767 and
the mask is the parameter.

Al.4.2 Retrieval and Macro Coammand Routines

The routines to be discussed in this section are distinguished
by the fact that they all use the command assembly routine. In addition,
they. also follow a main path, which is the source retrieval routine,
branching away at the appropriate points.

Al1.4.2.1 Command Assembly Routine

The command assembly routine (Fig. Al.9) is an open subroutine
whose responsibility it is to cause IXSYS cammands containing complex
parameters to be assembled into a more campact form. The actual assembly
is performed by the fegular MULTTLANG assembler, MASS, called as a sub-

routine to the command assembly routine.

-91 -

Get parameter
save as possible mask

Use $JOB -
for Mask ;QES it all blanks

¥No
Is it an octal number
3 wo v
Set Mask indicator Convert to binary
3 ~—» TEMP Use as count
b J
Set count -1 2 —» temp
\F 1
temp —»length
Call IXPUSH
READ
1.2

Figure A1.8 The Input Command Routine

@)

- 92 -

® @

BB

Get R Rip Mask

Get D Rip Mask Get M Rip MasK

- —* DEFSW - —® MACSW

Get B Rip Mask
- =% BINSW

- =% MNACS%

v

£

Set Rip Mask

Lo

Pirst

J£7+

- —» First

L

Get and load MASS

|

Set up chaeracter

feeding routine

for Mass and link

(CHARFD)

F

Call MASS

!

Was there an
error in the
description

Yes
DESERR) Al.13

JINO

MACSW

(rrPCAL)
A1.10

Figure Al1.9 Command Assembly Routine

..93_

The command assembly routine first checks whether MASS has already
been loaded once. If it has it uses it without reloading. Otherwise,
the storage and retrieval system is called to retrieve MASS, and the
MULTILANG loader, MLDR, is used to relocate MASS. Once MASS is in, it
must be linked to routine CHARFD (Sect. Al.7) which provides the character
string which MASS is to assemble. Then, MASS assembles the IXSYS command
and a check is made for errors detected by MASS in the description formats.
Al.4.2.2 The Source Retrieval Routine

The source retrieval routine, in addition to executing retrieval
cammands, which is its primary purpose, also performs several useful
functions for the other command routines described below. First, it
retrieves items by descriptions supplied from the command assembly rou-
tine (Sect. Al.4.2.1), and verifies that there in fact was at least one
item found with that description. It also verifies that the item has data
in the proper place and computes the address and length of that data.
Lastly, it outputs the data, one line at a time and returns to the top
of the routine to look for more items matching the given description.
Al.4.2.3 The Binary Retrieval Routine

The binary retrieval routine follows the source retrieval routine
as far as the verifying that an item has been retrieved (see Fig. Al.10). '
It must then verify that the data retrieved is indeed a binary deck.
After this it need only write the deck out, but this process is compli-
cated by the fact that a binary deck includes both binary and BCD cards.
The BCD cards are distinguished by the fact that they all start with a
dollar sign. Note also that binary decks are not stored with the usual
visible sequence punches. Consequently, blank sequence columns must be

provided to insure proper card length.

o

- 94 -

Retrieveran item

L.

Was an item found {HOITEM

Al.1l3
} e

- —p RSW

BINSW | BINOUL
' Al.11

Does item have No A
Element 301 RIPCAL

Compute data start

and length
e
+ Al.12
A 4

Call QUTPUT for
each line of the item

<RIPCAL ,

Figure A1.10 Source Retrieval Routine

_95-

‘ BINOUL , : BINDOL

Find the data Flush the buffer
in the itenm l

4

No Pad line with blanks
Is first word $IBLDR ﬁ@omm) in place of sequence punch

J ves Al.13 L

Compute length of data Call S.PUTL
No
Get next card (&——— Are we done with
-this item

Is it a $ card)@IN’DOD Yes
"
l No- A1.10

Set file control
to binary

Call S.PUTL

B

Are we done with
this item

(REPFAL ’Al.lO

Figure Al.11 Binary Retrieval Routine

No

- 96 -

Al.h.2.4 The Macro Retrieval Routine

Unlike the source and binary fetrieval routines, the macro re-
trieval routine does not actually output any card images. Rather,
after the macro has been retrieved, an input control block (ICB) is
constructed which will cause the macro to be read whenever IXGET is
called.

All the activity of the macro retrieval routine is directed toward
constructing the ICB which will be used to read the macro. There are two
essential types of data which must go into the ICB, information concerning
the address and length of the macro and information defining any actual
parameters.

After the macro command has been assembled by the command assem-
bly routine (Sect. Al.4.2.1), the assembled form, which contains the
actual parameters plus a local table of contents (LTC), is put into an
ICB prototype buffer. This buffer, which contains space for the addition-
al required data, is then put on the ICB pushdown list. After the macro
has been retrieved the necessary addresses and record count are added to
the ICB on the pushdown list.

Al.4.2.5 Error Routines for Retrieval Cammand Routines

There are three errors which can result from an .improper descrip-
tion in a retrieval command (See Fig. Al.13). First, something may be
wrong with the punctuation, choice of characters, etc., which will result
in MASS not being able to assemble the description (DESERR). Second,
there may be no items which fit the given description (NOITEM). Third,

a binary item may not be a relocatable binary dec (NOLDR). For each
of these errors an appropriate message is printed for the user, and the

error is otherwise ignored.

- 97 -

MACOU ‘ (MACOU1)

Find Macro name Find current ICB
and actual parameters Pushdown
Make LTC entries Put the address of
relative to top of LTC the data in the ICB
Put assembled] Compute the record count and
description in Macro put it in the ICB
Pushdown buffer

DEFSW b— DEFINE Put item address in ICB
+ Al.5
Save current Rip Call ‘ Al.2

A 4
Call IXPUSH

4

Find description in Pushdown

RIPCAL
Al1.10

Figure Al.12 Macro Retrieval Routine

- 98 -

< NOIWEM)
o e)

+

Print current card

Print message "Description
yields no items. Request
ignored."

READ) a1.2

DESERR

Print current card

Print "Error in description.
Request lgnored."

‘ READ ’
Al.2

(HOLDR)

Print "Item not
binary"

REPEAL
Al.10

Figure Al.13 Error Routines for Retrieval Command Routines

..99..

Al.5 The Generalized Input Control Routines

Because of the possibility of nesting IXSYS macros and interlace
ing them with Input commands, it is necessary that some central input
routine be responsible for handling the sequencing of the several sources
of input. This sequencing control is made possible with the use of a
group of devices.

Central to this group is the Input Control Block (ICB) pushdown
list. ZEach time a new source of input is called for, an ICB is con-
structed and placed on the pushdown. Within the ICB is &1l the informa-
tion required to allow reading of the new input source, including loca-
tion of data, number of card images to be read, and a control mask to
allow a variable number of card imasges. Thus input can be read according
to this ICB until all of it has been read. Then the pushdown is popped
and reading continues from the previous source. The pushdown is initialized
to start reading the user's input file.

Input from an input file and input from a macro must be read from
different sources. Also, macro input requires preprocessing for parameter
substitution before control returns from the main input routine. In order
to account for these differences, each ICB contains a pointer to a select
routine which is responsible for knowing how to handle the particular in-
put source.

Similarly, when an input source has been exhausted, an end of file
routine must be called which knows how to handle the situation. Each ICB,

thus, contains a pointer to the appropriate end of file routine.

- 100 -

Al.5.1 TXGET

The main section of the generalized input control routine is
called IXGET. IXGET must first locate the ICB at the top of the push-
down and get the current record count from it (See Fig. Al.14). If the
record count has gone to zero the end of file exit is taken. Otherwise,
the count is reduced by one. Next the address of the select routine is
found in the ICB and control is transferred to it. When the select
routine returns to IXGET, a check is made to determine if the select rou-
tine detected an end of file. If so, the end of file exit is taken. If
not, the ICB is checked to determine if a mask check is called for. If
so the first six characters of the card read are campared with the mask
found in the ICB. If a match is found, this condition is treated like
an end of file. If either no mask check is called for or a match does
not result, then the card image is moved to a common buffer where all
other routines will operate upon it. If the select routine indicated
that the card is to be checked for parameter substitution, this is done
next. IXGET finally exits by returning to the calling program.
Al.5.2 The Pushdown Control Routines

There are two subroutines, IXPUSH and IXPOP, which are responsible
for maintaining the ICB pushdown liét. (See Fig. Al.15) There are three
locations which these routines must maintain. The current pushdown poin-
ter is used by many routines to find the current ICB. The current ICB
length is used by IXPUSH to determine where a new ICB goes in the pushdown.
The previous pushdown pointer is stored in the new ICB to allow IXPOP to
restore 1t when deleting an ICB from the pushdown. When adding an ICB to
the pushdown its length must be supplied to IXPUSH by the caller. When

popping IXPOP camputes the new current length from the difference between

Save registers

Find current ICB

A

- 101 -

Is & mask called for

No

iYes

Get first word
from card read

|

Is record count zero

No

VC-1-+VC

"4

Get address of select
routine from ICB
and put it in e

4

+ -+ Scansw

Does 1t match mask

Nor

Move card to CRDBUF

.
SCANSW

Restore AC if select return

Did select routine
return with EOF

No

Save AC
Save address and
word count

4

Restore registers

< RETURN)

Figure Al.14% The IXGET Routine

- 102 -

Save registers

|

Move current pointer
to current pointer & current
length

J

Current pointer & current
length -» current pointer

\ 4

Is current pointer too large|

No

Y

Get new current length
from parameter word

Al.10

(IXropP)

Save registers

- 4
Find current ICB

!

Get backpointer to new ICB

!

Subtract to get new current
length

PDLOFL

Use backpolinter as new
current pointer

}

Yes
Gy

| Is new current length zero

Get from address from
parameter word

|

Move it to pushdown

l

Restore registers

RETURN

A1.16

be—

Save new current length

1‘—H

Restore .registers

Figure Al1.15 The Pushdown Control Routines

- 103 -

the old and new pushdown pointers.
Al.5.3 Select Routines

The select routines are calied by IXGﬁT and are responsible for
reading cards, or otherwise locating them, and informing IXGET of cards
address and word count. They may also indicate that instead of a card
being read, that an end of file was read. The select routine is also
responsible for indicating that a card is to be scanned for macro para-
meter substitutions.

Two select routines, MACSEL for macros and MULSEL for input files,
are shown in Fig. Al.l7. MACSEL finds cards in a macro item, updating
the current record address each time it gets & card. MULSEL gets cards
by calling the MULTILANG input routine, MULIN. ©Note that if MULIN returns
an end of file indicator to MULSEL, MULSF™ will pass this on to IXGET
and will always indicate an end of file thereafter. This 1s necessary
because calling MULIN after it has returned an end of file will result
in the job being terminated immediately.

Al.5.4 End of File Routines

When a select routine returns to IXGET with an end of file indica-
tion, or when an ICB record count is zero, or when a card is read which
matches an ICB end of file mask, IXGET takes the end of file exit. First,
control transfers to IXEOF (see Fig. A1.19). ICECF must then find the
pointer to the appropriate end of file routine in the current ICB.

If the pushdown has only one ICB on it (the original for reading
input) when an end of file is encountered, then IXSYS is all finished
reading input so the end of file routine for this ICB is IXECF (Fig.

A1.3).

- 10k -

‘ PDOIL)

PDUFL

\I

Print overflow message

Print underilow message

FINI
Al.31

v .
(FINI ,
Al.31

Figure A3 .16 Pushdown Error Routines

(MACSEL > <MULSEL >

Find current ICB EQFSW

7, Y >l - —» EQFSW

CRA + 14 —»CRA MULEQF =X .EQF

Return to IXGET
with EOF indicator

a.ddress, ,COUIlt —»AC - —» X.FOF
- —» Scansw Call MULIN
‘|(!
Return to IXGET EOF read
No

Return to IXGET

Figure Al1.17 Select Routines for Macros and Input Files

- 105 -

Find current ICB Find current ICB
Find EOF return in ICB Restore previous repeal
Put it in © Call IXPCP

‘ READ ’ Al.2

INEOF

O ©

Call IXPOP

Figure A1.18 End of File Routines

106 -

Find the next |k 7%, °f
left bracket e -
End of
Save up to five line
characters
> End of
Find the right . line N|
bracket L~
\
Find the parameter
prototype
Find the corresponding
Actual Parameter
l End of
Make the substitution | >—tiiS N
l End of
line

Impose the proper

termination on the substitution

Terminate the line

N

Move him back to
card buffer

Return

Figure Al.19 Flow Disgram of Macro Parsmeter

Substitution Routine

- 107 -

Otherwise, if either an input ICB or a macro ICB has been placed
on the pushdown, control will pass to either INEOF or MACEOF (Fig. A1.18).
Al.6 The Macro Parameter Substitution Routine

The macro parameter substitution routine is the largest single
section of IXSYS. A general flow diagram for this routine, called SCANW,
is given in Fig. Al.19. The basic process of substituting a parameter
may be broken down into the following four steps: |

1) Locate a possible candidate. This means find a left bracket
and a closing right bracket and save up to five of the initial
characters of the enclosed string.

2) Verify and identify the parameter by finding the identical
string on the formal parameter list for the macro and noting
which one it is.

3) Find the corresponding actual parameter. The actual parameters
are saved in the ICB pushdown list. This process also calls
for identifying null actual parameters and calling for inclusion
of the formal parameter.

4) Make the substitution. This includes accounting for fixed
length fields.

The complete process consists of looping on the four basic steps
until some point in the sequence encounters the end of a line, eitner the
given line or the formed line.

A1.6.1 Locating a Possible Formal Parameter

The line in which pareamcter substitutions are to be made is scanned
frozx left to right with each character being moved to a merge buffer, until
2 leit tracket is enéountered (see Fig. A1.20). A formal parameter must

be enclosed in brackets, so if a left bracket is found its position on

- 108 -

none

Call GETCHR

b

Is the first char [

No

1eft S 1 IvruL

Al.29

|

Save pointer

character in case we
need to back up

to current

v

Initialize TFPARM

v

Call SCAN15

Store char 1

in TFPARM

L

Call SCAN15

Store char 2

in TFPARM

l

Does TFPARM match
entries in left bracket
table

Call PUTCHR

No

Call SCAN15 three
more times and store chars.

Yes |
Al.29

3, 4, and 5 in TFPARM
—
Call GETCHR |=o SCAN1L
Al.2
'l 9 No
. No) Yes
Is it J —->[. —» BLKSW -—>{ Is it space ‘ql+—-oBLKSW
Yes
SCAN2

Figure A1.20 Finding a Formal Parameter Candidate

- 109 -

the line is noted and a right bracket is sought. As additional characters
are fetched they are saved until fivé have been accumulated. The first
two characters are checked against a list of IXSYS cammand forms, and
the scan for that parameter terminates if a match is found.

When the right bracket is located note is made as to whether it
was preceded by a blank to identify a fixed length field.

The characters accumulated between the brackets (up to five) are
then saved as the formal parameter candidate.
A1.6.2 Identifying a Formal Parameter

A string of characters enclosed in brackets on a macro prototype
card is not necessarily a formal parameter. It must also match same
string on the formal parameter list included in the macro definition.
This list is contained in the macro item, the address of which is saved
on the ICB pushdown (see Fig. Al.21). Once the list of formal parameters
is located the parameter candidate is campared against each member of the
list until a match is found. The position of the matching member on the
list is noted since this position will identify the corresponding actual
parameter.
Al1.6.3 Finding the Corresponding Actual Parameter

There are two ways to locate actual parameters in a macro call,
depending on the form of the call. For a regular call, the parameters have
been saved in the ICB on the pushdown (see Fig. Al1l.22). 1In this case
the parameters are pointed to by a local table of contents (LTC) which is
scanned from top to bottom to make sure that there are enough actual
parameters. Once the proper LTC entry is obtained it must be examined
for the proper type. The only allowed types are prefix five (a block of

constants) and prefix six (a single constant), except that prefix zero is

- 110 -

Remove trailing blanks
from TFPARM and pad with
Zeros

|

Get address of macro item
from pushdown

|

No
Is there an element 201 @ Al.29

Find where it is

F

Get next entry in 201

!

Is it same as TFPARM)lIs this the last entry
Yes
{ IGNORE '
Al.22 Al.29

Figure Al.21 Identifying a Formal Parameter -

T

Find where the actual
parameters are on the
pushdown

- 111 -

) +
MACCRA Al.23

;

Get next AP entry

!

No

Is it the one we want

o

lYes

Get LTC prefix

Yes
Is it the last one |

Al.27

ZERO

Al.24 Al.24

» . Yes
Is this an explicit null Al.27

H PPPRP

Print message

oMIT
Al.27

Figure Al.22 Finding The Corresponding Actual Parameter

- 112 -

acceptable provided the parameter is explicitly nuil. All other
prefixes are considered errors and afe treated as null.

For a condensed form macro call, the parameter list is maintained
by the MJLTILANG retrieval initiation program (RIP). The parameter num~
ber desired is used directly in the call to RIP (see Fié. A1.23), and
RIP return with all necessary indicabtors and pointers to be used directly.
A1.6.4 Making the Substitution

Once the actual parameter has been obtained, it must be moved to
the merge buffer. A subroutine SCNGET is called (see Fig. Al.24) to
get one character fram the actual parameter.and put it in the merge buffer.
As each character is moved in this way a character of the formal parameter
is checked until a right bracket is found. An indicator keeps track of
which runs out first, the formal parameter or thc actual parametef.

After the right bracket of the formal parameter is reached the
question of whether or not it was preceded by a blank arises (Fig. A1.25).
If not, then if more actual parameter.characters need to be moved to the
merge buffer, they are. If the right bracket is preceded by a blank,
then the field must be right justified to the column of the right bracket.
This may mean either moving the merge buffer pointer back to the column of
the right bracket, or getting more actual parameter characters or blanks
to £i11 the field.

Al.6.5 Miscellaneous SCAN Subroutines
SCNGET

The SCNGET subroutine (Fig. Al.26) is responsible for moving actual
parsmeter characters to the merge buffer. It must be primed with the
address and word count of the actual parameter. It keeps track of where

it is and each time it is called it gets one more character and puts it

- 113 -

SCAN30

Set parameter number
in RIP call

Call RIP

No
Is parameter there @ A1.27
J’Yes
No
Is it good > BPSW Al.22

Yes

Set address of AP

@)

Figure Al.23 Sources of Actual Parameters In A
Condensed Form Macro Command

- 114 -

Set address of AP

Converlt word count
to char. count

Y

Set char. count

@&

Set addrers of AP

y

Set character count

- el

li —

Al.27

Call GETCHR

|

Yes
Is the parameter null Put it in TFPARM
Vo
Go back to char. after [
Initialize SCNGET
+ SCAN13
None left
Call SCNGET 4 - 7" aCcAN13
] i None
Call SCNGET 11s 1

4
Call GETCiiRk

o

Is it]

Yes

SCAN10
Al.25

t]

Figure Al.24 Parameter Substitution Phase

,
‘ SCAN10O >

Yes

Al.25

<SCAN10)

BLKSW
+

- 115 -

SCAN12

Find what column
the] is in

\

Find what column
has been filled

Yes =
Is filled less than] >I SCAN13 |

No -

Set] column into
filled column

SCANO

Al.20

SCAN13

5

Call SCNGET

Call PUTCHR
with a space
+
None
Call SCNGET [refid - —» gCANL3
Has] column
No|been reached
Yes
SCANO
Al.20

SCANO
RT.20
None
1eft (scano
A1.20

Figure Al.25 Parameter Termination Routines

- 116 -

< SCNGET ’

,

Yes |
Is remaining char. Get remaining
count < 5 ‘ partial word

1

Is it all leading
| blanks or trailing

Zeros

No

Is remaining partial
word empty

l'Yes

Get a new word Get partial word
.jf T

Shift out the char.

)

Save new partial word

}

Call PUTCHR

}

Have we finished this AP word

j;!es

Increment AP word pointer
Set partial word count to 6

&

Increment char. count

No] JLYes

Take "None Left"
Return

. ¥ No Take "None Left"
Any there any more | Return

Yes

Return normal

Figure A1.26 SCNGET Routine

- 117 -

in the merge buffer. When the character count gets to five or less,
SCNGET checks to see if all remaining characters are blank. If so a
special return to the calling program is taken indicating that all actual
parameter characters have been moved.
oMIT

This subroutine is called when an actual parameter has been omitted,
signalling that the formal parameter should be used (see Fig. Al.27). It
is also called when the actual parameter is an explicit null. In this
case, the explicit null overlays the formal parameter before the call to
OMIT.
GETCHR

GETCHR is a simple character feeding routine (Fig. Al.28). It
must be initialized with the buffer address from which characters are to
~be obtained and the character number of the first character of the first
word. Subsequently, every time it is called it fetches one more character
fram the buffer. Two exits are provided, a normal one when a character
has been fetched, and a "none left" exit when the end of the buffer is
reached. GETCHR assumes that the buffer used is the standard card buffer,
but the starting address may be anywhere within this buffer.

PUTCHR

This subroutine is called to put one character in the merge buffer
(Fig. A1.28). When the merge buffer is filled, PUTCHR automatically exits
to LINFUL (Fig. Al.29).
scamk

SCAN1Y4 (Fig. Al.29) is a terminal subroutine of SCAN which is
called if it is detefmined that the current line being scanned could not

possibly have any more formal parameter, for example, because there are

- 118 -

D

Get 3 chars of FP

Yes | +
Is it [N/ | BLKSW > .—» SCAN13
No
w .
Back up to [SCANO SCAN10
Al.20 A1.20

- —=» SCAN13

Call GETCHR

JL_ Yes
Is it | SCAN10

Call PUTCHR

Figure Al.27 Null Parameter Routine

<GETCHR ’

A

Save Registers

Have we reached
the end of CRDBUF

Yes

- 119 -

No

Get the next char.

ncrement char count

Restore registers

RETURN
NORMAL

Figure Al1.28 GETCHR and PUTCHR

Take "None Left"
return

: Yes
LINFUL

Al.29

PUTCHR

Save rzgisters

}

Have we reached
the end of MRGBUB

y

Put the character
where it belongs

Restore registers

RETURN

- 120 -

Back up to the [

J

Call PUTCHR for the [

—

SCAN15

None

None
£1
Call GETCHR [—& >[Get a space
1]
line ull
Call PUTCHR > Call PUTCHR
Move MRGRBUR

back to CRDBUF

Exit from SCAN

left
Call GETCHR 1GNORE

)

Yes

Al.21
No .
~ =% BILKSW
Ye
Is it space + % BLKSW

No

Call PUTCHR for [

Back up GETCHR
to next character
after [

Al.20

Figure A1.29 Miscellaneous SCAN Subroutines

- 121 -

no more right brackets. LINFUL is also an entry point of this routine
which is called when the merge buffef is full.
SCAMLS

This subroutine fetches one character from the line being scanned
and checks for a right bracket. It also keeps track of whether or not
the right bracket is preceded by a blank (see Fig. Al.29).
IGNORE

When a formal parameter candidate does not match a member of the
formal parameter list, it is ignored, and scanning continues at the next
character afte - the left bracket (see Fig. Al.29).
Al.7 Miscellaneous IXSYS Subroutines
CHARFD

CHARFD is the subroutine which supplies characters to the MILTITANG
assembler MASS when it assembles IXSYS commands (see Fig. Al.30). The
first time it is called CHARFD is expected to feed six blanks to MASS.
Thereafter, it feeds the number of characters requested by MASS. If the
end of a line is encountered and MASS is still asking for more characters,
the subroutine MORE (Fig. Al.31) is called to read another line and return
to CHARFD.
T

PUT is a subroutine used to output dollar sign cards onto the input
scratch IXSYS is making up for IBSYS (Fig. Al.31). PUT expects the file
UTLFBl to be opened as an output file when it is called.
QUTRUT

This subroutine is called to write card images on UTLFBl (see Fig.

A1.31). If the card is a dollar sign card, the buffers are flushed and

PUT is called.

- 122 -

CHRSW

- —» CHRSW

Feed six blanks

Save Registers

Count + 1 —» count
but use old count

Count > 79 X .REM
Yes
NO
(o) g
Count > 63 Yes @ Al.31

Al.31 -
No

A

O

Find word with this character.
Left justify character in M.
Shift character into AC.

Yes

|

Are more characters
requested

No

¥

Restore Registers

Return

L

Return

Figure Al1.30 Character Feeding Routine Used With MASS

MORE

Save Registers

Call IXGET

O ~—» Count

W

Restore Registers

FINI

Return to
MULTILANG

-123-

Output

+ —» ZSW

G

Set BCD indicator

' 2

Call S.PUTL

3

Call S.CLSE

L

Call S.CPEN

Is first char $

NO

Set BCD indicator

|

Call S.PUTL

|

Return

!

Return

Yes
——;l—call S.CLSE

Call S.OPEN

W

Call Put

A

Return

Figure Al.31 Miscellaneous IXSYS Subroutines

- 12k -

FINT

If, for some reason, IXSYS does not choose to transfer control to
IBSYS, but instead returns to MULTILANG, it does so via FINI (Fig. Al.31).
There are three reasons why this might happen: 1) a catastrophic error,
2) no data has been transferred to the IBSYS input tapé (for example,

if a description failed to retrieve anything), and 3) if a macro is de-

fined using the condensed form for the definition.

APPENDIX 2 IXQUT

The output recovery phase of fhe IXSYS procedure is performed by
a program called IXQUT. There are three steps to the IXOUT function.
First, parameters to IXOUT that have been set up by IXSYS must be pro-
cessed. These parameters identify the terminal to which the output be-
longs and the line MJLTILANG is to start reading after IXOUT finishes
(the line after the last one read by IXSYS). Then, the IBSYS system
input unit must be switched back and the file IXOUT is to read must be
opened. Lastly, the output data must be read fram the intermediate unit,
reformatted, and written on the appropriate terminal output file.’

A2.1 Parameter Processing .

IXSYS supplies two parameters to IXQUT. The first (see Fig. A2.1)
is the terminal number of the user requesting the IXSYS job. If this
number is larger than any terminal number it identifies the system input
unit (a regular batch user). In this case a switch is set indicating
that no output must be recovered and the second parameter is ignored.
Otherwise, the second parameter is the input liﬁe number where processing
is to continue when IXOUT returns to MULTILANG.

A2.2 Unit Control

There are three types éf units which must be initialized by the
unit control phase of IXOUT (Fig. A2.2). The MULTILANG units X.IN and
X.UT must be set to the input and output files of the user's terminal,
and the input file must be positioned to the proper line. The IBSYS
units S.SIN1 and S.8012 must be switched back to their original positions.
The IXOUT input file UTLFB2 must be closed, marked with an end of file

mark, rewound, and opened so that the user's output may be read from it.

- 125 -

IXQUT

A 4

- 126 -

Get first parameter

Y.

Is it there and good

e
e A2.4

Yes
A

Put it in S.PCON

|

\ A

S.PCON = NOCON

Yes
‘ ;|-+-vX.REM

No

v

- —» X.REM

A 4
- —» ENDSW

Get second parameter

h 4

Is it there and good

‘LYes

No

Put it in proper S.PLIN

A2.2

Figure A2

.1 IXOUT Parameter Processing

ERROK
2.k

- 127 -

Set X.IN and X.0UT
from S.PLIN

b

Position input to S.PLIN

+— S.PCRD

W

Switch S.SIN1 with
S.8U12

/

Swap reservation
codes of S.SIN1 and
S.8012

Close
Mark UTLFB2

Rewind

Open
A2.3

Figure A2.2 Unit Control in IXOUT

- 128 -

A2.3 Oubput Swapping
The flow diagram for the output swapping phase of IXOUT is given

in Fig. A2.3. One logical record (output line) is read at a time and

a check is performed to determine if it is the last line to be swapped.
The carriage control character must be moved from the first position of
the line to the calling sequence of the output routine, being converted
in the process to the corresponding control character for output files

of the MSPSF. Next, the output line must be split into two lines between

characters 64 and 65. This requires the second half of the line to be

shifted. right two characters. Lastly, the two half lines are written on

the user's output file using the MULTILANG output routine MULOUT.

- 129 -

ENDSW

Get one logical record

— W

Does it start with $SWITCH

Yes
——%[Is it S.S0UL,S.SU13

No

-

Get control character
and replace with space

Convert control
character from IBSYS
format to remote format

Insert control character
into proper place

|

Shift second half of
line right two characters

A2
Write first half

Write second half

" Yes

- —» ENDSW

Figure A2,3 IXOJT Swapping Phase

- 130 -

‘ ERROR >

Print message

GD——

Return to MULTILANG

Figure A2.4 Terminating from IXOUT

APPENDIX 3 MISCELLANEQUS WORKER PROGRAMS

The worker programs described in this Appendix were written
primarily for remote users of MSPSF, although they also have utility
for batch users. Conversely, there are several worker programs used
frequently by remote users which have not been described‘here because
they are intended for far more general use.

A3.1 STORE
Purpose: To save source input in the data file.
Use: The format for a call on STORE is as follows:
STORE/keyl/key2/.../keyn
where keyl, key2, ..., keyn are the keys under which the input is to be
saved. The key ST.RE is also added.

The.input to be saved follows the call on STORE, and ends with the

following card:
$STORE
Operation: PFirst, all data items matching the description
ST.RE&keyl&key2k...&keyn are deleted from the data file. Next the input
is read and built into an item for storing. Lastly, the item is stored
using the MULTILANG routine ITEMIN.
A3.2 RESTORE \
Purpose: To restore to an input file data which has been previously
saved by STORE.
Use: The format for & call on RESTORE is as follows:
RESTORE/desc[/X]
where desc is a description by which the input to be restored may be
retrieved, and X is any key. The second parameter is optional and

signifies that an attempt is to be made to retrieve as many items which

- 131 -

- 132 -

match the description as possible. If no second parameter is yrovided,
only the first item which matches thé description (and also contains
ST.RE as a key) will be restored to the input file.

Operation: First, the output file pointer in the MULTILANG program
MULOUT is reset to be the same as that for the input file. Then the first
item matching the description is retrieved and checked for the additional
key ST.RE. If no items are found a message to that effect is printed and
the exit routine is taken. When a retrieval is successful, the data is
written out using MULOUT. This results on the data for a remote user
being placed on his input file, or for a background user, the data is
simply printed.

After the item has been written the new length of the input file

is computed and the append pointed is updated. Then tne existence of a
second parameter is checked. If there is one, as many items as can be
retrieved by the given description and which contain the key ST.RE are
also written on the input file. If there 1s no second parameter or if
there are no more items then the exit routine is taken. The exit rou-
tine flushes the MULQUT buffer, restores the output file pointer and
prints a terminating message on the output file for the user.
A3.3 PUNCH

Purpose: To punch data which has been previously by STORE.

Use: The format for a call on PUNCH is as follows:

PUNCH/desc[/sequence number]

where desc is a description by which the items to be punched may be
retrieved, and sequence number as the starting sequence numoer for punch-
ing. This parameter is optional, and if omitted, all 80 columns of the

original data are punched. If the second parameter is included tne

- 133 ~

following two options:

(a) sequence number is less than or equal to six characters;
ignore it and sequence fram BPPYO000.

(b) sequence number is more than six characters; use first eight
characters (left justify space f£ill) as the initial sequence
number.

If sequencing is performed, it is by tens. If sequencing is performed and
more than one item is retrieved, the sequencing of each successive item
continues where the previous one ended.

Operation: The first item matching the given description is retrieved
aud checked for the additional key ST.RE. If none are found a message
to that effect is printed. If an item is found which is to be punched,
a separator card, which identifies the deck for dispatching purposes, is
punched first. Then the second parameter is checked and the appropriate
sequencing or lack of it is noted and initialized. Next, each card is
obtained from the item, sequenced appropriately, and punched. After all
decks matching the given description have been punched, a message to the

user is printed informing him of the number of decks punched.

- 134 -

BIBLIOGRAPHY

Amdahl, Gene M.: Validity of the single processor approach to achieving

large scale computing capabilities. Proe. AFIPS Spring Joint Com-

puter Conf. New York: Spartan Books, Inc., 1967.

Auroux, A., and Bellino, J.: A 1401/70LL Time-Shared System in Batch
Processing Mode and in Conversational Mode, Tr. by Michael S.
Wolfberg. Unpublished.

Bursky, Philip, Churchill, William and Prywes, Noah S.: Description of

a Man/Machine Competitive Game. University of Pennsylvania, Moore

School of Electrical Engineering, M. S. Report 67-21, 1967.

Dartmouth Time Sharing System. Dartmouth College Computation Center,

Hanover, New Hampshire, 196k.
Denning, Peter J.: Effects of scheduling on file memory operations.

Proc. AFIPS Spring Joint Computer Conf. New York: Spartan Books,

Inc. 1967.
Dennis, J. B.: Segmentation and the design of multiprogrammed computer
systems, J. ACM, 12:4, 1965.

Engvold, K. J., and Hughes, J. L.: Teaching "Hands-On" Programming at a

Display Terminal: The ABAC-II System. International Business

Machines Corp., Internal Document, Poughkeepsie, 1966.

Engvold, K. J., and Hughes, J. L.: A General Purpose Display Processing

and Tutorial System. International Business Machines Corp.,

TROO.1694, Poughkeepsie, 1968.
Estrin, G., and Kleinrock, L.: Measures, models, and measurements for

time~shared computer utilities. Proc. ACM National Conf. Washington:

Thompson Book Co., 1967.

- 135 -

Freedman, H.: A Storage and Retrieval System for Real-Time Problem

Solving. University of Pennsylvania, Moore School of Electrical
Engineering, M. S. Report 66-05, 1965.

Fuchel, Kurt, and Heler, Sidney: Considerations in the design of a
miltiple computer system with extended core storage. Comm. ACM,
11:5, 1968.

Fuller, R.H.: Associative parallel processing. Proc. AFIPS Spring Joint

Computer Conf. New York: Spartan Books, Inc. 1967.

Harrison, M.C., and Schwartz, J.T.: SHARER, A time sharing system for
the CDC 6600. Comm. ACM, 10:10, 1967.
Hollander, Gerhard L.: Architecture for large camputer systems. Proc.

AFIPS Spring Joint Computer Conf. New York: Spartan Books, Inc.,

1967.

Hsiao, David K.: A File System for a Problem Solving Facility. Univer-

sity of Pennsylvania, Ph.D. Dissertation, 1968.

IBM 7040/704Y Remote Computing System. IBM System Reference Library No.

7040-25, Form C28-6800.
Kapps, Charles A.: SPRINT: A Direct Approach to List Processing

Languages. Proc. AFIPS Spring Joint Computer Conf. New York:

Spartan Books, Inc., 1967.

Kleinrock, Leonard: Time-shared Systems: A Theoretical Treatment.
J. ACM, 1k:2, 1967.

Morton, Richard P., and Wolfberg, Michael S.: The Input/Output and
Control System of the Moore School Problem Solving Facility. Univer=-
sity of Pennsylvania, Moore School of Electrical Engineering, Report

67-30, 1967.

- 136 -

The Multi-List System, Technical Report No. 1, Vols. I and II, University

of Pennsylvania, Moore School of Electrical Engineering, M. S. Report
62-10, 1961.

Nielson, Norman R.: The Simulation of Time Sharing Systems. Comm. ACM,
10:7, 1967.

Oestreicher, M.D., Bailey, M.J., and Strauss, J.I.: GEORGE 3-A General
Purpose Time Sharing and Operating System. Comm. ACM, 10:11, 1967.

Ostrand, T.J.: An Expanding Computer Operating System. University of

Pennsylvania, Moore School of Electrical Engineering, M. S. Report
67-16, 1967.

Pike, Thomas N., Jr.: Time-~Shared Computer Systems. Advances in Com~

puters, Vol. 8. New York: Academic Press, Inc., 1967.
Prywes, N. S. and Gray, H. Je.: Outline for a Multi-List Organized System,

Proc. 1llhth ACM Meeting, 1959.

Reiter, Allen: A Resource-allocation Scheme for Multi-user On-Line

Operation of a Small Computer. Proc. AFIPS Spring Joint Computer

Conference. New York: Spartan Books, June, 1967.

Sackman, H., Erikson, W.J., and Grant, E.E.: Exploratory Experimental
Studies Comparing Online and Offline Programming Performance.
Comm. ACM, 11:1, 1968.

Schatzoff, M., Tsao, R., and Wiig, R.: An Experimental Comparison of
Time Sharing and Batch Processing. Comm. ACM, 10:5, 1967.

Schwartz, Jules I., and Weilssman, Clark: The SDC Time~Sharing System

Revisited. Proc. ACM National Conference. New York: Thompson

Book Co., 1967.

Slotnick, Daniel L.: Unconventional Systems. Proc. AFIPS Spring Joint

Computer Conf. New York: Spartan Books, Inc., 1967.

- 137 -

Strachey, C.: A General Purpose Macrogenerator, Computer J., 8:3, 1965.

varian, L.C., and Coffman, E.G.: An.Empirical Study of the Behavior of
Programs in a Paging Enviromment. Preprint for ACM Symposium on
Operating Systems, 1967.

Vyssotsky, V.A., Corbato, F.J., and Graham, R.M.: Structure of the

Multics Supervisor. Proc. AFIPS Fall Joint Camputer Conf. New

York: Spartan Books, 1965.
Weinberg, Paul R., and Wolfberg, Michael S.: The PDP~5 As a Satellite

Processor. Proc. Spring DECUS Meeting. Maynard, Mass.: Digital

Equipment Corp. Users Society, 1966.
West, George P.: The Best Approach to a Large Camputing Capability.

Proc. AFIPS Spring Joint Computer Conf. New York: Spartan Books,

Inc., 1967.

Wexelblat, R.: The Development and Mechanization of a Problem Solving

Facility. University of Pennsylvania, Moore School of Electrical
Engineering, Dissertation, 1965.

Zimmerman, B., Lefkovitz, D., and Prywes, N.S.: The Naval Aviation
Supply Office Inventory Retrieval System-~A Case Study in File

Automation. Management Science, 10:3, 196L.

	On-Line Computing With a Hierarchy of Processors
	Recommended Citation

	On-Line Computing With a Hierarchy of Processors
	Abstract
	Comments

	tmp.1199720684.pdf.ZQ851

