
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1968

On-Line Computing With a Hierarchy of Processors On-Line Computing With a Hierarchy of Processors

Richard P. Morton
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Richard P. Morton, "On-Line Computing With a Hierarchy of Processors", . December 1968.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-69-13.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/804
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F804&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/804
mailto:repository@pobox.upenn.edu

On-Line Computing With a Hierarchy of Processors On-Line Computing With a Hierarchy of Processors

Abstract Abstract
Time shared computer systems have been based upon the two techniques of multiprogramming and
swapping. Multiprogramming is based on restricting each program to a portion of the total computer
memory. Swapping requires considerable overhead time for loading and unloading programs. To alleviate
the size restriction due to multiprogramming, segmentation is employed, resulting in fact in vastly
increased swapping.

A new system architecture is proposed for time shared computing that alleviates the high overhead or
program size restriction. It utilizes a hierarchy of processors, where each processor is assigned tasks on
the basis of four factors: interactive requirements, frequency of use, execution time, and program length.

In order to study the hierarchical approach to system architecture, the Moore School Problem Solving
Facility (MSPSF) was built and used. The study of the manner of operation and the reactions of the users
clarified and defined the Hierarchy of Processors system architecture.

The Moore School Problem Solving Facility was implemented on second generation equipment, the IBM
7040, and therefore it is not possible to adequately compare the efficiency with third generation
computers operating in a swapping mode. The conclusions of this dissertation center around the
methodology of designing such a system, including the specification of facilities for each level of the
hierarchy.

Six major conclusions are given:

(1) Three processors in the hierarchy have been necessary, but it is conceivable that more may be
employed in other future situations.

(2) Each of the processors in the hierarchy should be general purpose.

(3) Program compatibility between the processors is necessary.

(4) The assigning of tasks to the processors within the system should be optionally user directed or
automatic. Similarly, if a task exceeds the resources of the processor to which it has been assigned,
redirection should be possible either automatically or by the user.

(5) A macro language is necessary between every pair of processors for effective communication. Such a
language processor, IXSYS, has been constructed and its use is described in detail in the dissertation,
demonstrating the need and utility.

(6) In addition to the three hierarchical processors, a separate processor may be advantageously used for
storage, retrieval and management of information in files. Such a processor should be directly accessible
from each of the other processors.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-69-13.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/804

https://repository.upenn.edu/cis_reports/804

Universi ty of Rnnsylvania
THE EIOORF: SCHOOL OF EIECTRICAL ENGINEERING

Philadelphia, Pennsylvania 19104

TECHNICAL m m

ON-LINE COMPUTING WITH
A HIERARCHY OF PROCESSORS

Richard P. Morton

December 1968

Submitted t o t he
Office of Naval Research

Information Systems Branch
Washington, D. C. 20360

and

Rome A i r Development Center
Gr i f f i s s A i r Force Base, New York

under
Contract NOnr 551(40)

Research Project No. 003-08-01

Reproduction i n whole o r i n pa r t is
permitted f o r any purpose of the

United S ta tes Government

Moore School Report No. 69-13

ON-LINE CCbrlPUTING WIDI A
HIERARCHY OF PROCESSORS

Richard Phillip Morton

A DISSERTATION

in

Electrical Engineering

Presented to the Faculty of the Graduate School of Arts and Sciences
of the University of Pennsylvania in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy.

Supervisor of iss sedation

Graduate Graup Chairman

ABSTRACT

Time shared computer systems have been based upon the two tech-

niques of multiprogramming and swapping. Multiprogramming is based on

restricting each program to a portion of the total computer memory.

Swapping requires considerable overhead time for loading and unloading

programs. To alleviate the size restriction due to multiprogramming,

segmentation is employed, resulting in fact in vastly increased swapping.

A new system architecture is proposed for time shared computing

that alleviates the high overhead or program size restriction. It

utilizes a hierarchy of processors, where each processor is assigned

tasks on the basis of four factors: interactive requirements, frequency

of use, execution time, and program length.

In order to study the hierarchical approach to system architecture,

the Moore School Problem Solving Facility (WSF) was built and used.

The study of the manner of operation and the reactions of the users

clarified and defined the Hierarchy of P?-ocessors sj.stm aryhitecture.

The Moore School Problem Solving Facility was implemented on

second generation equipment, the IBM 7040, and therefore it is not possi-

ble to adequately canpare the efficiency with thi.rd generation computers

operating in a swapping mode. The conclusions of this dissertation center

around the methodology of designing such a system, including the specifi-

cation of facilities for each level of the hierarchy.

S i x major conclusions are given:

(1) Three processors in the hierarchy have been necessary, but

it is conceivable that more may be employed in other future situations.

(2) Each of the processors in the hierarchy should be general

purpose.

(3) Program campatibility between the processors is necessary.

(4) The assigning of tasks to the processors within the system

should be optionally user directed or autamatic. Similarly, if a task

exceeds the resources of the processor to which it has been assigned,

redirection should be possible either autamatically or by the user.

(5) A macro language is necessary between every pair of processors

for effective caumnanication. Such a language processor, IXSYS, has been

constructed and its use is described in detail in the dissertation,

demonstrating the need and utility.

(6) In addition to the three hierarchical processors, a separate

processor .my be advantageously used for storage, retrieval and manage-

ment of information in files. Such a processor should be directly

accessible from each of the other processors.

ACKNOWLEDGEME2ES

I wish to express my deepest gratitude to my supervisor,

Dr. Noah S. Prywes for his guidance throughout the course of this

work. His assistance during the composition of this document has

been particularly invaluable.

Technical assistance was received from several members of

the Moore School Staff, notably Michael S. Wolfberg. Others include

D. K. Hsiao, D. M. Kristol, M. Gelblat, P. Flint, P. R. Weinberg,

and C. A. Kapps. Members of the University Computer Center staff that

assisted me in the generation of some of the programs include W. S.

Mosteller, R. B. Keller, R. Iovacchini, P. Wolfgang, and W. Jansen.

Administrative assistance came from Drs. J. F. Lubin and

G. L. Schrenk of the Computer Center. The entire Computer Center Staff

has .my thanks for their help.

For typing and all the other secretarial functions which cause

things to get done, my sincerest thanks go to Miss Connie Murray.

My appreciation to Information Systems Branch of the Office of

Naval Research and the Rome Air Development Center is sincerely

acknowledged for their support of this research under Contract Nonr

551(40)

Finally, I would like to thank my cheering squad for all that

they have contributed in the way of support and encouragement. Included

are my wife, parents, brother, sister, parents-in-law, aunts, uncles,

and friends.

Freedman, H. -- 14

Hierarchical system architecture -- 4ff,17,71ff

Hsiao, David K. -- 14

IBSYS -- 9,10,17,18,33,47,54,56,57

IXWT -- 79,125ff

IXSYS -- 17,18,25,31,42ff,68,73,74,79ff
Macros -- 47ff, 67,73,74
Moore School Problem Solving Facility - - 7,9,11,12f, 17f f ,64ff

MKGTILANG - - 14,17,18,25,26ff
Multiprogramming -- 3

Nielson, Norman R. -- 3,4
Paging -- 3

Priority -- 2,3

QUICKTRAN -- 4

Remote access camputing -- Iff
Schwartz, Jules I. - - 2

Swapping -- 2,3,4

Time sharing -- 2,3
Virtual memory - - 3
Weissman, Clark -- 2

Wexelblat, R. -- 14

Wide applicability -- 4,11

TABLE OF CONTENTS
Page

Chapter 1 Introduction

1.1 Problem Background

1.1.1 Remote Access Camputing 1

1.1.2 Problems with Ekisting Systems 2

1.1.3 Objectives of the Research Reported Here 4

1.2 The Methodology Taken t o Secure the Objectives 5

1 .3 Development of the System Concept Through Design,
Implementation and Experimentation 7

1.4 The Evolution of MSPSF 12

1.5 Outline of Report 15

Chapter 2 Description of the Moore School Problem Solving Fac i l i t y 17

2.1 The lnput/Output Processor 19

2.1.1 The Terminal and Communication Controller 19

2.1.2 lnput/Output F i l e s 20

2.1.3 The lnput/Output Processor Language 21

2.2 The Job Scheduling Processor 24

2.3 The Special Computing Processor 25

2.3.1 The MLSZTILANG Language 26

2.3.2 The MLTLTILANG Interpreter 27

2.3.3 The Storage and Retrieval System 27

2.3.4 The MSYS Worker Prograin 31

2.3.5 Same Additional Worker Programs

2.4 The General Computing Processor

iii

TABLE OF CONTENTS (continued)

2.5 Examples of Use

2.5.1 Initializing the Terminal

2.5.2 Preparing Input

2.5.3 Debugging and Running

Chapter 3 The MSYS Language

3.1 Introduction

3.2 Syntax of the Language

3.3 MSYS Cammands

3.3.1 Retrieval cammands

3.3.1.1 Retrieval

3.3.1.2 Binary Retrieval

3.4 MSYS Macros

3.4.1 Macro Definitions

3.4.2 Macro Calls

3.4.3 IXSYS Parameters

3.4.3.1 Formal Parameters

3.4.3.2 Actual Parameters

3.4.3.3 Null Parameters

3.4.4 Macro Cmands

3.4.4.1 Define

3.4.4.2 Macro

3.4.4.3 The Condensed Forms

3.5 Input Control Cammands

3.5.1 Input

3.5.2 If True

3.5.3 If False

Page

34

TABLE OF CONTENTS (continued)

3.6 Bamples and Evaluation

3.6.1 Example 1

3.6.2 Example 2

3.6.3 Conclusions Regarding the IXSYS Language

Chapter 4 User Evaluation

4.1 The Community of Users

4.2 General Characteristics of the Use of MSPSF

4.3 Evaluation of the Component Processors

4.3.1 Evaluation of the lnput/~tput Processor

4.3.2 Evaluation of the Special Computing
Processor

4.3.3 Evaluation of the General Computing
Processor

4.4 Evaluation of the Overall System

Chapter 5 Conclusions

5.1 The Hierarchical Approach to System Architecture

5.2 Suggestions for Future Research

5.3 Implications for Future Applications

Appendix 1 The IXSYS Program

Al.l Basic MSYS

Al.l.l Initialization

A 2 Reading and Writing

A1.1.3 Terminating

A1.2 Condensed Forms

Page

54

54

5 8

62

64

64

66

67

67

TABLE OF CONTENTS (continued)
Page

A1.3 Macro Definitions 82

A1.3.1 Macro Definition Item Initialization 82

A1.3.2 Prototype Card Reading and Item Formation 86

~1.4 Command Card Processing 86

A . 1 Input Control Command Routines 88

~1.4.1.1 If True and If False 88

~1.4.1.2 Input 90

~1.4.2 Retrieval and Macro Cammand Routines 90

~1.4.2.1 Cammand Assembly Routine

~1.4.2.2 The Source Retrieval Routine

~1.4.2.3 The Binary Retrieval Routine

~1.4.2.4 The Macro Retrieval Routine

~1.4.2.5 Error Routines for Retrieval
Command Routines

A1.5 The Generalized Input Control Routines

Al.5.2 The Pushdown Control Routines

A1.5.3 Select Routines

A1.5.4 End of File Routines

6 The Macro Parameter Substitution Routine 107

~1.6.1 Locating a Possible Formal Parameter 107

~1.6.2 Identifying a Fmmal Parameter 109

A1.6.3 Finding the Corresponding Actual
Parameter 109

A1.6.4 Making the Substitution 112

Al'. 6.5 Miscellaneous SCAN Subroutines 112

TABLE OF CONTENTS (continued)

Appendix 2 MCllJT

A2.1 Parameter Processing

A2.2 Unit Control

A2.3 Output Swapping

Appendix 3 Miscellaneous Worker Programs

A3.1 STORE

A3.2 FESTORE

A3.3 PUNCH

v i i

Page

125

125

125

128

131

131

1 3

132

LIST OF TABLES

Page

TABLE
1 Example of Typical Task Requirements i n MSPSF

Subsystems of IBSYS

Swmnary of t he 1nput /h tpu t Processor Language

Same Useful Worker Programs

Backus Normal Form Specification of MSYS Camnds

The PDPMAP and P.SYM Macro Definit ions

Examples of Using the PDPMAP Macro

Example 2

Example 3

Users of MSPSF and the F a c i l i t i e s They Use

v i i i

LIST OF IWSTRATIONS

Figure 1. System Function Partitioning

2. Hardware Configuration

3. Major System Functions and Component Processors

4. Display with Input for Retrieval Request

5. Display with First Ten Lines of Output from the
Retrieval Request

6. Initializing the Terminal

7. Preparing the Input

8. The Campiler Output

9. Editing the Error and Adding the Test Data

10. The Test Results

11. Obtaining the Production Data

12. Saving the Program and Data

13. A Hierarchical Camputing System

Al.l Basic MSYS Initialization

A1.2 Basic Read Routine

A1.3 Terminating Procedures for lXSYS

A1.4 Condensed Form Determination

A1.5 Macro Definition Item Initialization

~1.6 Macro Definition Reading and Terminating

A1.7 The IF TRUE/IF FALSE Routine

A1.8 The Input Command Routine

Al.9 Command Assembly Routine

A1.10 Source Retrieval Routine

Al.11 Binary Retrieval Routine

Page

8

LIST OF ILLUSTRATIONS (continued)

Figure A1.12 Macro Retrieval Routine
Page
97

Error Routines for Retrieval Cammand Routines 98

The MGE2 Routine 101

The Pushdown Control Routines 102

Pushdown Error Routines 104

Select Routines for Macros and Input Files 104

End of File Rmtines 105

Flow Diagram of Macro Parameter Substitution Routine 106

Finding a Formal Parameter Candidate 108

Identifying a Formal Parameter 110

Finding the Corresponding Actual Parameter 111

Source of Actual Parameters in a Condensed Form
Macro Cammand 113

Parameter Substitution Phase 114

Parameter Termination Routines 115

SCNGE;T Routine 116

Null Parameter Routine 118

GETCHR and PUTCKR 119

Miscellaneous SCAN Subroutines
-.

Character Feeding Routine Used with MASS

Miscellaneous MSYS Subroutines 12 3

MOUT Parameter Processing 126

Unit Control in IXWT 127

MCUT Swapping Phase

Terminating fram IXCKrm

1. INTRODUCTION

1.1 Problem Background

1.1.1 Remote Access Camputing

Computing systems which allow remote access have experienced

phenomenal growth within the past five years. The variety of special

and general purpose systems allowing remote access has grown to the

point where recently novel applications are now widespread. Major

cmputing facilities either hate already installed equipment for remote

access or such equipment is planned or on order. New families of camputers

have been designed and are being marketed for remote access camputing.

New industries of camputer cammunications and terminals for remote access

have grown up during this period.

The purposes of this relatively new style of camputer system have

been twofold. First, remote terminals have made the camputer more readily

available to the user of conventional camputing systems. Remote access has

meant the use of a conveniently located terminal, such as in his office

where a user prepares his program, runs it immediately, corrects errors,

and reruns it until he has obtained the functions that he requires.

Total elapsed time has been shortened from days or weeks to .minutes or

hours. The user is able to get answers in a fraction of the time it pre-

viously required. (1)

\I' There have been several camparisons made between online and offline
computing. See, for example, H. Sackman, W. J. Erikson, and E. E.
Gran, Exploratory Experimental Studies Camparing Online and Offline
Programing Performance, Cam. ACM, 11:1, 1968; or M. Schatzoff,
R. Tsao, and R. Wiig, An Experimental Camparison of Time Sharing
and Batch Processing, Corn. ACM, 10:5, 1967.

Second, remote computing has opened totally new areas of camputer

usage. Applications considered too uneconomical to require a camputer

installation can now be carried out by sharing a portion of the cost

of a remote computer. New applications have been .made possible which

require immediate accessibility to the computer. Exanrples of such new

areas include automated libraries, ticket reservation systems, camputer

assisted instruction, computer graphics, and others that involve .man-

machine interaction in an esseritial way.

1.1.2 Problems with Existing Systems

To date, general purpose remote access systems have been based

primarily on the concept of time sharing. There has been widespread

discussion in the professional and technical publications concerning the

meaning, uses, and problems of time sharing. (2) Time sharing systems

require each user's program to be loaded and processed for a small seg-

ment of time, then dumped out, and another user's program loaded, again

to be dumped after a short segment. Much of the literature on time

sharing has been devoted to determining the proper "tuning" of the process

(segment length and loading priorities), in attempts to reduce the over-

head of the load and dump swapping process.

Perhaps the best documented example of tuning a time sharing

system is given by Schwartz and Wei~sman.'~) They were able to determine

that 5% of the programs run on their system required 0.6 seconds or less,

and that 85% were completed in 1.8 seconds or less. Consequently, they

(*) For an extensive discussion of time sharing plus a more detailed
analysis of time shared systems, see Thamas N. Pike, Jr., Time-
shared Computer Systems, in ~dvances in Computers, ~ol. 8, New York:
Academic Press, Inc., 1967.

(3) Jules I. Schwartz and Clark Weissman, The SDC ti~!~e-sharing system - -

revisited, Proc . ACM National conference, Washington: Thompson Book
CO., 1967.

established a primary time segment length of 0.6 seconds, and a p r io r i ty

system t h a t called for any program which had used l e s s than three seg-

ments t o remain i n the highest p r io r i ty level. They then established

two other leve ls of p r io r i ty f o r intermediate and long jobs.

The e f fo r t s t o reduce the cost of swapping i n time sharing systems

have centered around two areas, 1) reducing the swapping time by improv-

ing the swapping mechanism, (4) and 2) reducing the e f fec t s of swapping

through mul t ip r~gr&ng . (~) The f i r s t of these i s frequently prohibi-

t i ve ly expensive, although it i s hoped tha t future technology w i l l reduce

such costs. Multiprogramming has similar high .memory cost implications.

I n part icular , by segmenting the main memory t o allow several programs t o

be resident a t the same time, each program i s then re s t r i c t ed t o a small

portion of the available storage.

To combat these problems, the concepts of paging and v i r t u a l memo-

ry have been introduced. (6) It has been shown, however, primarily by

N i e l s ~ n ' ~) , t h a t paging leads t o an inordinately high percentage of time

being spent on system overhead. Nielson showed tha t , a f t e r an extensive

se r i e s of t e s t s involving a variety of hardware configurations, tuning the

system, and improvements i n the paging algorithm, the best r e su l t s tha t

could be expected fo r the IBM 360/67 was 67$ u t i l i za t ion f o r execution

(4) See, for example, Kurt Fuchel and Sidney Heller, Consideration i n
the Design of a Multiple Computer System with Extended Core Storage,
Preprint of A M Symposium on Operating System Principles, New York:
Assoc . f o r Computing Machinery, 1967.

(5) J. B. Dennis, Segmentation and the design of mult iprogrmed camputer
systems, J. ACM, 12: 4, 1965.

(6) V. A . Vyssotsky, F. J. Corbato, and R. M. Graham, Structure of the
Multics Supervisor, Proc. AFIPS F a l l Jo in t Computer Conf., New York:
Spartan ~ o o k s , 1965.

(7) No-n R. Nielson, The simulation of time sharing systems, C a m . ACM,
10:7, 1965.

and 3% f o r overhead and i d l e time. Without the detailed study and care-

ful optimization which l ed t o t h i s 67$ execution, Nielson found t h a t a

great many other, seemingly reasonable, configurations yielded a s l i t t l e

a s 5$ execution time and 95% overhead and i d l e time.

Another approach t o the solution of the swapping'problem has been

t o l imi t the scope of the system by re s t r i c t ing the resources available

t o the user t o those which can reside permanently i n main memory. The

advantage of t h i s is t h a t only the actual users ' programs, which are

presumably small, need t o be swapped, while the campilers, loaders, etc.

simply reside i n core. The basic d i f f i cu l ty with t h i s approach i s tha t

there a re usually only one or two programming languages available.

Similarly the s ize of the program is re s t r i c t ed t o the small portion of

core not taken up by the operating system and campilers. An example of

(8) t h i s kind of system i s the QUICXTRAN system of IBM.

1.1.3 Objectives of the Research Reported Here

To solve these problems, 6 hierarchical system architecture i s

considered with par t icu lar emphasis on the contributions of t h i s approach

towards reducing system overhead. However t h i s approach must be con-

sidered within the context of providing v e r s a t i l i t y of types of usage.

The dual emphasis i s t o a t t a i n an effect ive system with wide

appl icabi l i ty . The system must have a large number of available pro-

gramming languages, a s well as easy expansion t o include new subsystems

a s desired. The system must a lso be f r e e from res t r ic t ions on the

nature of programs which can be executed within the system. The user

would have access t o a l l the capabi l i t ies of the computing complex.

IBM 7040/7044 Remote Computing System, IBM System Reference Library
NO. 7040-25, Form ~28-6800.

1.2 The Methodology Taken to Secure the Objective

The effectiveness of a processor can be improved if it is designed

for a special class of problems. The system approach taken here consists

of utilizing a number of processors in a computer network or in a camputer

camplex, where each of the processors is designed to handle a special

class of problems. The problems that are submitted to the total system

are classified and accordingly dynamically routed to the processor de-

signed to handle the respective class of problems most effectively. The

system design consists of establishing a classification for user problems

and definition of respective processors. In fact, a hierarchy of problems

as well as processors based on "canrplexity" is suggested. When a problem

is recognized by one of the processors in the hierarchy to be more "cam-

plex", it is then passed to the next higher processor in the hierarchy

designed to serve the next level of "cmplex" problems. Thus, two

hierarchies, that of problems and that of processors, are suggested.

Four parameters are suggested that jointly establish the class of

"complexity" of a problem. These are 1) the allowed delay of interactive

response, 2) the frequency of a problem type being submitted to the system,

3) the requirement for main m o r y storage, and 4) the requirement for

execution time. Table 1 illustrates these parameters for various tasks.

This classification is based on the observation that the most

frequent tasks and those requiring the most interactive response generally

require little high speed memory storage and short execution times.

Conversely, the problems requiring large high speed storage capacity

and lengthy execution times are relatively infrequent and the inter-

active response is not as essential.

Task

1nput/0utput
each character

Input for a
l ine

Input Editing

Output FXamina-
tion

Storage and
Retrieval

Sta t is t ics of
Retrieved Data

Program
Assembly

Program
Compilation
(FORTBAN)

Program
Execution
(testing and
debugging)

Table 1 Example of Typical Task Requirements i n MSPSF

Interactive Frequency High Speed Execution Processor
Requirements of use Storage Time Level
(max. wait Required (sec.)
i n sec.) (words)

3/sec

1/10 sec

1 3/sec

15 1/5min

2 min l/l0min

3 min l/l0min

3 min 1 / 1 ~ n

100 (PDP-8) 100 psec.

1000 (PDP-8)
200 (7040) 3

800 (7040) 5

1000 (PDP-8)
200 (7040) .2

2K (7040) .5 min

2 4 ~ (7040) 1 min

3m (7040) 2 min

An example of a three l eve l hierarchy corresponding t o Table 1

is indicated i n Fig. 1. The f i r s t processor i n the hierarchy handles

those programs which have minimal memory requirements and length of

execution with .maximum frequency and response requirements. These a r e

the routines d i r ec t ly re la ted t o terminal control and input/output.

The middle l eve l processor i n the hierarchy handles those programs

with more extensive, but s t i l l limited, slemory and time requirements.

Notable among these i s the information storage and r e t r i eva l system,

plus a l ib ra ry of executable programs maintained i n the storage and

r e t r i eva l system.

The highest l eve l i n the hierarchy i s intended f o r programs re-

quiring grec.ter resources of the computing system. These programs include

compilers, assemblers, and other systems programs which require extensive

high speed memory storage c a p c i t y , a s well as user programs which cannot

be f i t t e d in to the more r e s t r i c t ed middle level .

The processors i n the hierarchy may be real ized each a s a separate

camputer uni t o r a s programming subsystems within one equipment uni t .

Canbinations of software-hardware may represent each processor.

1.3 Development of the System Architecture Concept Through Design,

Implementation and Experimentation

The hierarchy of processors system concept described previously

can be real ized i n numerous ways. The exploration of t h i s concept i s

carr ied out independently of the specif ic software-hardware cambinations

t h a t may be selected. The approach tha t has been developed may l a t e r be

t rans la ted in to a desired configuration based on the loca l requirements

and equipment. Therefore, the exploration of the system concept has

been carr ied out through modification of the Moore School Problem Solving

Facility (MSPSF) to operate in the conceived manner. The advantages

of this approach were the existing hardware and software subsystems

which were used as building blocks to obtain the hierarchical processor

system.

It needs to be emphasized here that the shortcomings found in

MSPSF contributed as well to generating the final system concept dis-

cussed in the Conclusion section. MSPSF does not include the system

architecture presented in the Conclusions. Rather, MSPSF employs some

of the basic design tenets, thus serving as a vehicle for the investi-

gation which was conducted.

The primary objective, to provide as broad an applicability as

possible, has been achieved in the MSPSF by modifying the operating sys-

tem IBSYS of the IBM-7040. The consequence is that all of the facilities

of IBSYS are available to the remote user. This includes a wide variety

of programming languages, a subroutine library, and a number of special

purpose subsystems (see Table 2).

This report, therefore, includes the description of the Moore

School Problem Solving Facility that has been implemented and an evalua-

tion of the utilization of the system by a community of students and

fa culty .
Implementation of MSPSF has been greatly simplified by the

hierarchical nature of the system. The interfaces between the processors

are controlled by languages. Interpretation of calls on macros is pro-

vided in some of these languages. The specification of these macros

provides for the convenient definition of new subsystems.

Table 2 Subsystems of IBSYS

Programming languages

F0RTRA.N

COBOL

MAP

MAD*

WATFOP

L I S P

IPL- v*

SNOBOL*

~ 6 *

ALGOL*

Subroutine l i b r a r y of over 500 subroutines

Loader

Post mortem dump system including snapshots

Sort system

UPDATE

U t i l i t y package

System edi tor -.

Automated accounting system*

Job control ler f o r autamatic sequencing of canpilation, assembly,

load, execution, and dump

* These items are loca l t o the University of Pennsylvania

Many of the software ccxuponents used in the Moore School Problem

Solving Facility have been adapted from two previously existing systems.

First, the remote terminal input/output system and the infortuation

storage and retrieval system (see Fig. 1) constituted an earlier version

of MSPSF. These subsystems were useful in providing the present design

with a basic remote access capability and a file maintenance system

upon which to build, and relieved the necessity for duplicating existing

sub systems.

The present MSPSF implementation consists mostly in tying existing

components together, supplying the necessary links between them, and

making .modifications to each to account for the new environment in which

they are to operate.

Five outstanding questions concerning the hierarchical approach to

system architecture were to be clarified 'through the implementation and

use of the system.

(1) What is the nature of each processor, including specific

reference to such questions as to how many processors there should be,

whether they should be special purpose or general purpose, and how tasks

should be divided between the processors?

(2) What should be the nature of interfacing languages between

the processors, and how do users use such languages?

(3) Are there any obstacles to wide applicability?

(4) What system software resources need to be supplied, and how

should they be distributed among the various processors?

(5) What is the relationship between the file management facility

and the rest of the system?

A block diagram of the hardware components is given in Fig. 2.

The primary component is the IBM-7040 computer, together with a card

reader/punch, a line printer, twelve tape drives, and a large 1301-11

disk file. Adjacent to the IBM-7040 and attached to it is a D.E.C. PDP-8

computer. The PDP-8 has two remote terminal interface units, one with

four Teletype ports and one high speed (2400 baud) Dataphone port. At

the end of the high speed line are two devices, a D .E. C. - 338 display

terminal and a Sanders 720 control unit with two alphanumeric keyboard

displays.

1.4 The Evolution of MSPSF

Early experiments in man-machine-memory organization(lO) resulted

in the mechanization of an information retrieval system at the Naval

Aviation Supply Office in Philadelphia. (I1) This system was one of the

pioneering efforts in remote accessed data bases. The early equipment

in 1961 consisted of an IBM 1401 computer with a 1407 console, 1405 disk,

a line printer and magnetic tape units. In addition, an Information

Products Corporation 1501 display station was incorporated into the

system for remote inquiry. This system was transferred in 1962 to an

IBM 1440, with 2 IBM 1301 disc units and 12 typewriter terminals.

These early results showed the feasibility of using such a system

as a basis for a Problem Solving Facility for general use by scientists

and engineers. Such a system was gradually developed at the Moore

(lo) The Multi-List System, Technical Report No. 1, Vols. I and 11,
University of Pennsylvania, Moore School of Electrical Engineering,
M. S. Report 62-10, 1961.

(11) Barry Zimerman, David Lefkovitz, and Noah S. Prywes, The Naval
 viat ti on up ply. Off ice Inventory- Retrieval system - A Case Study
in File Automation, Management Science, 10: 3, 1964.

Disk
File

1

IBM 7904
Data Channel

mc 338
Programmed Buffer
 isp play-8~ Memory

Sanders
720 Display

System

I

DEC ~ ~ 0 8
Full Duplex PDP-8

4~ Memory

A

0
DEC 637

Dataphone
Interface

ASR 33 or
ASR 35

Remote ASR 33 TIY
T f ' s

Figure 2 Equipment Configuration

-
IBM 7904 IBM 7040 - Data Channel . 32K Memory

B
-

t J

DEC DM03
Interface

and
Data Channel

School, University of Pennsylvania. Wexelblat (12) provided the implemen-

tation of a language processor, MULTILANG, and executive programs. The

storage and retrieval system was implemented by Freedman. (13) A satellite

(14) PDP-8 processor was interfaced for servicing remote terminal facilities.

These are the three components that were mentioned in the previous section

used in the construction of the presently described system. The informa-

tion storage and retrieval system has been strengthened by the addition of

a privacy and security protection mechanism by Hsiao. (15) This system

allows each user to store records in files, with the added facility of

being able to selectively allow access to the files by others. The

input/output system has been expanded to accammodate communication for

camputer graphics experiments which use the DEC-338 processor as a highly

sophisticated graphical terminal for the MSPSF. (16)

The users of MSPSF are constantly adding to its capabilities, and

new and interesting experiments are using MSPSF in fresh ways. Notable

among these are experiments with list-oriented programing languages, (17)

(12) R. Wexelblat, The Development and Mechanization of a Problem Solving
Facility, University of Pennsylvania, Moore School of Electrical
Engineering, Ph .D. Dissertation, 1965.

(13) H. Freedman, A Storage and Retrieval System for Real-Time Problem
Solving, University of Pennsylvania, Moore School of Electrical
mgineering, M. S. Report 66-05, 1965.

(I4) R. F'. Morton and M. S. Wolfberg, The 1nput/0utput and Control System
of the Moore School Problem Solving Facility, University of Pennsyl-
vania, M. S. Report 67-30, 1967.

(I5) David K. Hsiao, A File System for a Problem Solving Facility, Uni-
versity of Pennsylvania, Moore School of Electrical Engineering,
Ph.D. Dissertation, 1968.

(16) Work in progress by Michael S. Wolfberg.

(17) Charles A. Kapps, SPRINT: A direct approach to list processing
languages, Proc. MIPS Spring Joint Computer Conf. New York:
Spartan ~ooks, ~ n c . , 1967.

another expandable concept in operating systems, (18) a game playing

system involving two players at different terminals who interact

through the common data base, (I9) and an online hospital research

retrieval package. (20)

MSPSF was in operation for four hours per day from March through

June, 1968, and continues on a more restricted basis at this writing.

During this time as many as four remote users have shared the system

with background batch work.

1.5 Outline of Report

This report is divided into five chapters (the first being this

introduction) and three appendices. Chapter 2 describes MSPSF organiza-

tion and use. An idealized model of a hierarchical processor system is

presented first. The restrictions which have led to the present MSPSF

model are then pointed out. The resulting system components are sub-

sequently described, with particular attention paid to how these com-

ponents are interfaced.

Chapter 3 presents a detailed description of an interfacing MSYS

language for defining new subsystems. The syntax of the language is

defined using a Backus Normal Form specification. Each command in the

language is discussed in detail, and a camplete discussion of macros

T. J. Ostrand, An Expanding Computer Operating System, University
of Pennsylvania, Moore School of Electrical Engineering, M. S.
Report 67-16, 1967.

(Ig) Philip Bursky, et al., A Man/~achine Competitive Game - A Naval
Duel, University of Pennsylvania, Moore School of Electrical Engi-
neering, M. S. Report 68-34, 1968.

(20) Marvin Gelblat, Internal conrmunication, University of Pennsylvania,
Moore School of Electrical Engineering.

and related parameters is also given. Lastly, same examples are

presented and discussed.

Chapter 4 presents an evaluation of MSPSF fram the viewpoint of

the several users. Many useful and constructive comments are included

and related to the needs of the different types of users, depending on

levels of sophistication and requirements for system resources.

The Conclusion, Chapter 5, summarizes the characteristics of the

Hierarchical Processors system architecture based on the experience

with MSPSF.

2. DESCRIPTION OF THE MOORE SCHOOL PROBLEM SOLVING FACILITY

A hierarchical structure such as illustrated in Fig. 1 has been

adopted for MSPSF as shown in Fig. 3. An additional level in the

hierarchy, scheduling, has been added to the structure to meet the

accounting requirements of the University Coquter Center.

The respective processors are described below both functionally

and operationally. The use of the system is traced through the different

control languages illustrating the roles of the various processors and

how information is passed between them. The three levels in the hierarchy

have control languages designed for the particular problems encountered

at that level and for interfacing with the next higher level in the

hierarchy. These are:

1) The input/output processor language provides aids to the

user for the preparation of his input and the examination

of his output. This language also serves as the control

language for the interface with the job scheduling processor.

2) The language of the special co.mputing processor MLTLTILANG is

designed to make easy cammunication with the storage and

retrieval facilities available on that level.

3) The control language of the general computing processor is

the language of the operating system (IBSYS) , designed to
facilitate the use of the subprocessors and input/output

devices.

4) An additional language MSYS provides an interface between

the storage and retrieval facilities and the general computing

processor. The MSYS language will be described in detail

in Chapter 3.

Figure 3 Major System Functions and Camponent Processors

I I I I
I

FORTW

I I I

I , L I , I
I ' I .

>

I
I I I

'

I I I i
I I Storage and I
I I I Retrieval

I System
I

I
I I

I

I I User ~nput/Gutput
I

I I
Scheduling I Special Computing I General Computing

and
Terminall I I i

I -
I

~ n p u t /
Output
File

System

Terminal and
Communication

I Controller

-
- Job

Scheduler
I COBOL

I I
-,ML~;TII,ANG - MSYS +, IBSYS I

I I

. I _ I I

2.1 The ~nput/Output Processor

The input/output processor i s divided in to two pa r t s a s shown

i n Fig. 3 . The terminal and communication control ler i s device oriented.

The input/output f i l e system provides the users with ed i t ing f a c i l i t i e s

of temporary storage f o r input and output.

2.1.1 The terminal and communication control ler

The terminal and communication control ler receives input from the

terminals and transmits it t o I/O F i l e System. It a l so sends output Tram

output f i l e s t o the terminals. To a id i n t h i s process t he cont ro l le r

recognizes and in t e rp re t s special characters such a s tab and carriage

re turn on input and carr iage control characters on output. It provides

f o r the specif icat ion of t ab set t ings . For terminals, such a s Teletypes,

which contain no buffering f a c i l i t i e s , the control ler provides a one

l i n e buffer, a s well a s such loca l edi t ing functions such a s backspace

(represented by e-) and l i n e erase (C ' I S I L C) .
I n addit ion t o these services, the communication control ler a l so

performs services of which the user i s unaware. Foremost among these i s

code conversion. A s shown i n Fig. 2, there a r e four types of terminals

i n MSPSF; an on-line Teletype, three remote Teletypes, two alphanumeric

display s ta t ions , and the DEC-338 display. Each type of terminal uses

same specif ic character code which it transmits t o the c m u n i c a t i o n con-

t r o l l e r . This code must then be t rans la ted i n t o the code of the r e s t of

t h e system. Similarly, output characters must be i n the code of the

device t o which they a re sent. There are a l so transmission controls,

such a s synchronization and error checking, which must be provided by

the communication control ler .

The communication controller must handle several remote terminals

simultaneously. Consequently, this component must be implemented in an

essentially time-shared way, eliminating possibilities for missing

characters from a terminal. In MSPSF this implementation takes the form

of a program called PSF, which occupies almost half of the 8192 word

memory of the PDP-8.

2.1.2 Input-Output files

Each remote terminal is provided with one input file where user

prepared input is placed temporarily and one output file where the output

of processing by the computing processors is placed. Cammands to the

input-output file system allow the user to add to the input file and edit

it, examine or clear any file, and ask for length of the files.

An important capability of the input-output file processor is

the handling of a variety of termi:lal types and applications. The view-

ing of output by users is non-destructive and the information remains

in the files. For instance, an infornation retrieval user can scan quick-

ly through an output to examine items relevant to his interest and later

view again those items considered only of secondary relevance. Another

exarrrple is where a user writing a program examines first error messages,

looks at the results of the program, and then, if necessary, goes back

to the program listing to find errors.

This non-destructive output is of special importance to a pro-

grammable terminal such as the DEC-338. Frequently such devices have

limited storage capacity and a multiplicity of users. As each user comes

to the terminal he may call for his programs to be retrieved and left

on his output file. He ,may then use them as frequently as needed without

retrieving them again. A system to allow loading DEC-338 programs from

t he output f i l e i s currently under development f o r MSPSF.

The input/output f i l e system i s implemented as an in tegra l par t

of the nucleus of the IBM-7040 operating system. It occupies about

1500 words of core storage on a permanent basis. Same of t h i s storage

i s memory protected and those areas t h a t a re not protected a re re-

loaded wherever necessary.

2.1.3 The input/output processor language

The user of W S F is provided with a s e t of cosrmands which are

recognized by the input/output f i l e system. These cammands allow the

user t o prepare input, examine output, and control the execution of h i s

jobs. The cammands a r e summarized i n Table 3. (21)

The terminal control language r e f l e c t s the specif ic terminals used

i n MSPSF. The differences between single l i n e Teletype terminals and

multiple l i n e display terminals require d i f fe rent f a c i l i t i e s f o r input

preparation and output examination. ~ & e of the commands a r e specif ical ly

designed fo r one c lass of terminals. For example, the SEE command w i l l

fe tch up t o 10 l i n e s a t a time f o r displays but only one l i n e f o r Tele-

types. Thus, i t s use i s l imited almost exclusively t o displays. Con-

versely, the PRIm command p r in t s a t the f u l l speed of the Teletype. Users

of displays which have associated typing devices, e.g., the DEC-338, can

skim through input or output f a s t e r with the display than with the

pr inter . Consequently, these users l i m i t the use of the PRINT command

t o those portions f o r which a permanent copy i s desired.

(21) A more complete description of these commands can be found i n
Morton and Wolfberg, op. c i t .

Table 3 Sunrmary of the 1nput/0utput Processor Language

a. Data input commands

Command

APPEND

INSERT n

Meaning

Add input t o the end of the input f i l e .

Inse r t input i n the middle of the input f i l e ahead of

l i n e n

DELETE n m Delete l i n e s n through m from the input f i l e .

EDIT n m Replace l i n e s n through m of the input f i l e with new

data.

b. Data examination cammands

SEE f n

ROLL

PRINT f

Meaning

Display (or pr in t) l i n e n fram f i l e f . For display

terminals l i n e s n through l i n e n + 9 a r e displayed.

F i l e may be e i ther input or output.

Like SEE, but continue t o next l i n e o r group of l ines .

Parameters f and n may be supplied t o skip n l i n e

on f i l e f .
P r i n t f i l e f . Parameters .may a lso be supplied which

specified e i the r s t a r t ing l i n e or both s t a r t ing

and ending l i n e s t o be printed.

c. Control commands

Command Meaning

SIGNIN This must be the f i r s t comand given.

CLEAR f Clear f i l e f .
START Place t h i s console on the queue f o r jobs t o be scheduled

and run.

Table 3 Summary of the 1nput/0utput Processor Language (cont .)

c . Control cotumands (continued)

STOP Terminate the job f o r t h i s console i f it i s running

immediately. If a job f o r t h i s console i s on the

waiting queue, take it off the queue.

Clear input and output, stop a job i f one was started,

and the next command fram t h i s console must be

SIGNIN.

d. Teletype oriented cammands

Command Meaning

FUU This i s a m l duplex Teletype. This means a l l input

must be "echoed" back t o the Teletype t o be printed.

HALF This i s a half duplex Teletme. Do not echo input

characters.

e . Display oriented commands

Cnmmrrnd Meaning

LUWER n m Lower l i n e n by m l ines . Line n r e fe r s t o l i n e s 1 - 10

on the screen.

INTERCHANGE n m Interchange l i n e s n and m on the screen.

TABKXYx Character x i s t o be t rea ted a s a tab character.

TABn Set a tab stop a t character posit ion n.

NOTAB n Clear the tab stop a t character posit ion n. I f n i s

omitted a l l t ab stops a r e cleared.

COPY

FROM

CEAB

Copy the data l i n e s on the screen onto the teleprinted

associated with t h i s display.

Same a s COPY but issue a form feed first.

Terminate a previous PRINT request.

Many commands, although not designed for a specific terminal

type, have different formats for different terminals. Single line

devices such as Teletypes require modal operation for input. Thus,

a user types APPEND, INSERT, or EDIT and what follows is considered

data until another command is typed. From displays, however, the

command is transmitted at the same time that the data is. If more data

is to be transmitted than can be placed on the screen at one time, an

additional occurrence of the command must accompany each data transmission.

The command syntax is likewise different for displays and Tele-

types. For displays, the screen format is as follows: the first ten

lines are the user's data, the eleventh line is for .messages from the

input/output system to the user, and the twelfth line is for commands.

Fram Teletypes, a command line is terminated by an ALT MODE or ESC

character, while data'lines are terminated by a carriage return.

Same examples of the use of the input/output processor language

are given below in Sect. 2.5,and particularly in Fig. 7 of Sect. 2.5.2.

2.2 Job Scheduling Processor

When a remote terminal user has completed preparing input (stored

in the input file) he , m y direct the system (through the START command,

see Table 2) to perfom the requested processing. The input is then

communicated by the 1nput/0utput processor to the Job Scheduling Processor.

The terminal number for that user is placed in the queue of waiting

terminals. At the present only one job may be executed at a time by

the computing processors. U'henever one job ends, the next job on the

queue is run. If all remote terminal jobs have been processed, then

background batch jobs will be run.

A user may change h i s mind a f te r placing a job i n the queue and

direct the job scheduler t o remove it (STOP). Similarly once a job has

started t o be run by the computing processors, the user may stop it (STOP),

for instance, when he,f inds from the output that it i s running incorrectly.

The job scheduler i s implemented as an addition t o the supervisor

IBSYS of the operating system of the IBM 7040. The supervisor ca l ls

the job scheduler whenever the s t a r t of a new job is detected. If a

remote job is waiting i n the queue, the job scheduler generates the
I

necessary control card images t o cause the special c-ting processor

t o be loaded by the supervisor. When no more remote jobs are l e f t i n

the queue, the supervisor runs the next job fram the background batch.

If no background jobs are waiting then a remote job w i l l be run as

soon a s the S W D canrmsnd i s received.

The job scheduler requires about 250 locations but since the

supervisor i s not resident, t h i s does not detract from the available

space fo r the user. When no remote jobs are t o be scheduled, the job

scheduler requires about 500 ps overhead t o the supervisor's task. This

i s considered negligible since the normal supervisor operation requires

ei ther one or ten seconds, depending on wh.:ther output i s on tape or

l i n e printer. When a remote job i s scheduled, the supervisor's opera-

t ion is sl ightly fas ter since the control cards are generated i n memory

instead of read from tape.

2.3 The Special Camputing Processor

There are three .major camponents which make up the special cam-

puting processor of MSPSF: the MULTILANG interpreter, the storage and

retr ieval system and MSYS. In addition, there i s a growing number of

routines, called worker programs, which are prepared by the user of MSPSF.

IXSYS is one of these worker programs. The language used to communicate

with these components is called MULTILIWG. A brief description of this

lan@;uage (22) and the roles of the several cdnponents of the special

canrputing processor follows.

Allocation of the 32K memory of the IBM 7040 for the special cam-

puting processor is apprcxximately as fo~ows: 6700 for operating system

nucleus including input/output routines; the MULTILANG interpreter

occupies 8200; the storage and retrieval system 5100 ; leaving 12K

for worker programs, input/output buffers, and available space for

retrieved data.

2.3.1 The U T I L A N G Language

The basic element of *MULTILANG is the key or descriptor. Keys may

be combined using the logical connectives and the arithmetic connective

"TOt' to form descriptions. A statement is a sequence of descriptions

separated by slashes (/). Statements may be grouped into a procedure,

in which case the statements may be labeled. Procedures may also contain

additional simplifying aids, such as "local m e s " which stand for

frequently used cqlex descriptions.. Statement labels m y be used in

place of descriptions in a statement to specify variable exits. Other

types of operands may be element n&bers (described below) and data in

the form of numbers or character strings.

METILANG procedures are executed interpretively, one statement

at a time. As each statement is read fram the input file, the first

description is taken to be that of a worker program to be executed. The

722) A more thorough description of MILTILANO is given in Wexelblat,
op. cit.

additional descriptions are treated as parameters fo r the worker pro-

gram. For example, consider the following MJLTILANG statement:

Here RFPRIEVE i s the description of a worker program which cal ls on

the storage and retr ieval system t o retrieve data matching the descrip-

tion given in the parameter and then prints them out. In t h i s case such

data items would have t o contain the three keys RPM, ECM, and 121866.

The basic unit of data retrieved by t h i s statement i s a record.

A s u b c ~ o n e n t of a record i s an element. A description may refer t o a

specific element of the retrieved records. A se t of records may be

organized into a f i l e . A detailed description of the f i l e system i s given -
i n Hsiao. (23)

2.3.2 The MULTILANG Interpreter

The MULTrWUJG interpreter i s loaded automatically by the job

scheduling processor when a job is scheduled for a remote user. The inter-

preter thus reads the user's input f i l e and interprets MULTILANG state-

ments a s described in the previous section. After each statement has

been executed control returns t o the interpreter t o execute the next

statement i n a procedure or t o read the next statement k'am the input.

In t h i s way, the MULTWG interpreter serves as the supervisor for the

special camputing processor.

2.3.3 The storage and retr ieval system

The storage and retr ieval system i s part of the special computing

processor. It .manages the data (24) f i l e and performs the information

(23) ~ p . c i t .

(24) Unless explicitly stated, references t o data i n the data f i l e may
include programs.

storage and retrieval functions.

The tasks related to data storage involve storage allocation on

the 1301 disk and updating the key directories. This latter task also

includes adding pointers tb the record to be stored linking its several

keys with other records containing the same keys. Thus a list structure

of the records is maintained.

The tasks related to data retrieval are as follows. First, a

MLJLTILANG description is converted into a search strategy. This strategy

uses the first key mentioned as the key whose list is to be searched. This

key is called the primary key. In the case of a disjunction of keys,

after the first primary key list is exhausted another primary key is taken.

Next, all records onjthe primary key list are retrieved from the

disk and checked to make sure that they contain all other conditions

called for in the description.

For exaqple, consider the statement used earlier in which the

description of the data to be retrieved was

~~wam121866

In this case RPM is the primary key. All items containing the key RPM

will be examined, and any which also contain the keys ECM and 121866

will be passed on to the requesting worker program as satisfying the

given description.

An example of the input and output involving the use of MLTLTILANG

language and the storage and retrieval system is given in Figs. 4 and 5 .
These figures are photographs of the DEC-338 as it is used as a terminal

to MSPSF.

Figure 4 Display With Input for Retrieval Request

Figure 5 Display with F i r s t Ten Lines of Output
from Retric;-:!l Request

2.3.4 The MSYS worker program

The MSYS worker program provides the interface between the

special and general computing processors. In this capacity MSYS has

three major functions: preprocessing the input for the general comput-

ing processor, postprocessing the output from the general processor,

and interpreting the Z S Y S language.

Input preprocessing is required for three reasons. First, some

additional control statements (besides those supplied by the user) must

be generated to allow output postprocessing. Second, the input statements,

on the input file are not in the proper formit to be handled by the

general ccmputing processor. Third, the input must be scanned for

interpretation of the statements in the MSYS language.

Output postprocessing is necessary for two reasons. Binary out-

put which is normally punched is instead stored in the data files for

use at a later time. Alphanumeric output, which is normally printed,

is diverted to the user's output file. As with the input, there is a

format difference requiring an additional conversion step.

The MSYS language is described in detail in Chapter 3. Briefly,

it allows the inclusion of input to the general camputing processor of

source or binary information previously stored in the data file. This

means that not all input need actually be on the user's input file. For

binary decks this is essential since there is no way to get them on an

input file. In addition the MSYS language includes a mcro facility

for defining and using frequently required input procedures.

2.3.5 Same additianal worker programs

A list of commonly used worker programs is given in Table I+.

This list is not intended to be exhaustive, but merely to point out the

Name

ADAKY

D m

cmm

RJDRIEVE

DELE323

MODEL

STORE

ADDMP

SI GNIN

Table 4 Sane Useful Worker Programs

Action

Add a key t o a l l items matching the given description.

Delete a key from items matching the given description.

Count the items matching the given description.

Output a l l items matching the given description.

Delete a l l items matching the given description.

Modify (i n same specified w a y) a specified element of a l l

items matching the given description.

Make an i t e m out of the remainder of the input f i l e and

store it under the given keys.

Retrieve an itemmatching the given description which was

previously saved by STORE and restore it t o the input

f i l e .
Punch an item previously saved by STORE. Sequence punching

may be indicated.

A binary deck on the specified device i s t o be .made in to an

i t e m and saved as a worker program.

Provide name and project number.'

kinds of data manipulation required by all users, regardless of the

nature of their particular data. F O ~ example, the pair of programs

STORE and RESTORE are used to save a user's input file and retrieve it

so that he may continue his work at a later time without having to rekey

it.

2.4 The General Computing Processor

The general canputing processor is constituted around a modified

IBSYS operating system for the IBM 7040 cquter. This operating system

can be divided into two classes of programs, the supervisor and the

subsystems. The supervisor of IBSYS performs such functions as account-

ing, peripheral unit assignments, and input/output device dependent ser-

vices.

The subsystems of IBSYS include a wide variety of programming

languages -- FORTRAN, COBOL, ALGOL, LISP, MAD, IPL-V, SNOBOL, WATFOR,

and ~6 -- a macro assembler and a loader. Several programming and de-

bugging aids are also included, such as, a subroutine library of frequently

used programs and a post nortem dump program. Additional subsystems are

an Update program for maintaining program decks on magnetic tape, a

utility package for duplicating and dumping tapes, and a generalized sort

monitor. The special computing processor also appears to the operating

system as a subsystem, although remote users need not be concerned with

this.

Most of these subsystems either occupy or make use of the entire

32K core memory of the IBM 7040. Same, however, were written for a 1 6 ~

machine as well, and consequently, require slany.more overlays than might

otherwise be required.

2.5 Examples of Use

A scenario consisting of a solution t o a problem i s p ~ s e n t e d

below. It demonstrates the various aspects of the use of MSPSF. The

scenario consists of first, the terminal being in i t i a l i zed . Then the

input i s prepared, i n t h i s case, consisting of a simple FORTRAN program.

After a compilation, same er rors a r e corrected. The data i s then added

by retr ieving it from the storage and r e t r i eva l f i l e . The subsequent

run provides the r e su l t s needed. Lastly the program i s saved t o be used

again a t a l a t e r time.

The example presented here was run fram a teletype terminal i n

order t o record a l l act ivi ty . In the f'uture, the input ty-ged by the

user has been underlined t o distinguish it fram the camputer output.

2.5.1 I n i t i a l i z i n g the use of a terminal

I n i t i a l i z a t i o n of a terminal of MSPSF i s accamplished i n two

steps (see Fig. 6). F i r s t , the input/output processor must be i n i t i a l i z e d

fo r each user. This i s accapl i shed by typing the two cmmnnnds S I G N I N

and FULL. Pr ior t o the SIGNIN cammand, the response i s CONSOLE AVAILABLE.

N l duplex operation requires the terminal control ler t o echo each

character a s it i s typed, thus providing immediate acknowledgement of

transmission l i n e errors .

The next s tep i s t o i n i t i a l i z e the job scheduling system by exe-

cuting the worker program SIGNIN with two parameters, the user 's name and

h i s Camputer Center project number. The SIGNIN program i s allowed t o

run without charge t o the user, but subsequent jobs a re charged t o the

use r ' s project number.

Figure 6 In i t i a l i z ing the Terminal

2.5.2 Preparing Input

Figure 7 i l l u s t r a t e s input preparation. F i r s t , the input and

output f i l e s a re cleared and the APPEND mode i s entered. The response

fram the APPEND camand t o the I/O processor informs the user of the

number of exis t ing l i n e s on the input f i l e so he w i l l know where the new

input s t a r t s . I n t h i s case there was no previous input since the f i l e

was j u s t cleared.

Next, the input i s typed, making use of tab se t t ings (i n i t i a l l y

s e t a t every eight character posit ions). After campleting the input,

it is printed f o r examination with a l l the column se t t ings shown. Here

it can be seen tha t the use of tabs has resulted i n the correct spacings.

2.5.3 Debugging and running

Once the program input has been completed, the START command i s

given followed by the PRINT cammand followed by the output printed.

Figure 8 shows the compiler output and the indicated error . I n Fig. 9

the error i s corrected and same sample data i s appended t o t e s t the

algorithm. The job i s then rerun and the r e su l t s a re shown i n Fig. 10.

The numbers a re ver i f ied by a hand calculation. Format statement 200

has same errors. After correcting the format, the program i s ready f o r

a production run.

Indicates terminal character f o r commr~d 11-nc
Clear the input f i l e 1nput/0utpuL proccc u Lor

C O@ - Clear the output f i l e langwge
A ? NO INPUT L I N E S Enter APPEND

Call IXSYS worker program. This i s a MLKTILANG Statement.

IBSYS control cards
9 13FTC

N=4 Indicates a TAB was typed.
ASCJzg*
As'JiI=q
2f3 3EAS < S r l!7!3) A

199 FORM4T CP8.4)
j F < 4 * L E * f l *) G O T O l a

* *The '.'

.9SI!M=A+ASVM
AsQ,= A* AS-Indicates l i n e erase
ASd=A*A+ASQ
N=N --Indicates character erase
GOT0 253 Fortran

19 AN=N Input
AMEAN=ASU{Y/AN
S D = S ~ R T < A S ~ / A N - < A ~ ~ E A I U * * ~))
WRITE C 6 r 2 @ 8) NrANEANrSD
2@9 FORNAT 1 - C 1x1 I 3 r ' VALL lES ' r / lX * 'MEAN = * r F 8 * 4 r / l X *

1 'STANDARD DEVIATION = ' rF8.4)
STOP
END

%EI\ITRY .An IBSYS control card
P r i n t the input f i l e

I XSYS 0

SIBJ09 >Note SISFTC 'IXB expanded

N=@
ASQ=Q)*
ASUM=Be

2@ REAS (5 r l B t 3) A
1063 FOi3NAT (F8.4)

: I F CA*LE*B*)GOTO 1 6
ASUV=A+ASUN

. ASQ=A*A+ASO
N=N+1
GOT0 2@

10 AN=N
ANEAN=ASUWAN
SD=SQRT(ASQ/AN-(AMEAN**2))
WRITE (6r2UfA) NsANEAN*SD

28@ FORMAT (1x1 13s ' VALUES 'D / IKD 'iqEAN E ' r F 8 * 4 r / l X s
1 'STANDARD DEVIATION 3 ' r F 8 . 4)

STOP
END

f ENTRY
@ Indicates end of input f i l e

Figure 7 Preparing the Input

.,*) 14 1 6 1 3 , -YrJh'T I N ~ ~ I N ' ~ ' I < ~ ! ! v bjbr<
C r: 1.. I 5, -I- i 9 ~ j / 19/6;5 PA ClE 3 Page Heading

1 SI-V S..)Uj?CE S'i4'1'cba,p,& j'

.!I 99) AEAS (S p l S h i 4) A

1;:Rt+3ii-StiJk;tiI TY 4, I S ; \ J - I ~ B + I ~ ~ 1,\1C;);iriZCT At:(;il:viEN'T LISI ' .

FORTRAN error message

Page
4 /I Heading

Figure 8 The Compiler Output

P I 6' Pr in t input s t a r t ing a t l i n e 6
l\>,L!?i= :4 .

21.1 I 5 , I A This l i n e i s i n error
1 3 (0 0 ;< 'vi !\ :-! Indicates printing terminated a t user request

f 1:) I 'I* 7 :3
?v; t3EALj (5 , 1;48) A Correct the error

i; 3 :$ - Clear the output f i l e
: 2 2 I Eu? ell‘ L I N E S Enter APPEND mode s tar t ing with l i n e 23 -

This l i n e w i l l terminate the program

Figure 9 Editing the Error and Adding the Test Data

J ; I : I S 1 N l I 4 . Systemloader
message

7 \/AI4Ur7S
Program output

;4i:Al\: = 7.7143

Figure 10 The Test Results

The production data i s obtained fram the data f i l e s and the

RESTORB operation places it i n t he input (~ i g . 11). This data i s then

augmented by same changes, and again the job i s run and the r e s u l t s ob-

tained.

Finally, the program and data are saved i n the r e t r i e v a l f i l e

for possible use a t a l a t e r data. (~ i ~ . 12)

TAB here
30 INPUT LINES Enter APPEND mode a t line 31

HESTOKE/RPM&DATA1 Call f o r data t o be brought t o input f i l e
C 00 - ' Clear output f i l e
STAST 318 Run job s t a r t i n g a t l i n e 31

- P 00 Pr in t output
RESTORE COMPLETED
0 /

P I310 Pr in t input from l i n e 31
TAB expanded

 his data res tored from data f i l e

16.3
16.4
i 7 . I
19.2
17.5
18i8
1 6 ~ 9
17.7
190'3
8 .

D 23 310 Delete the t e s t data and the RESTORE request
A0 42 INPUT Lf NES Enter APPEND mode a t l i n e 43 -
17.7
19.6 - Add new data plus terminator
180.0
- a * @
C 0 s .
STARTO Run it
P 0 78 820 Pr in t output l i n e s 78 through 82
23 VALUES

MEAN = 17.9130
STANDARD ' DEVIATION = 1. 4830
0

Figure 11 Obtaining the Production Data

C DQ - Clear the output f i l e
INS 10 I In se r t ahead of l i n e 1

S?ORE/RPM/MEAN/STDV This l i n e ge t s inser ted
P I 230 Pr in t input s t a r t i n g a t l i n e 23
SENTRY
17.6
21Q Terminate pr in t ing
I N S 246 Inse r t ahead of l i n e 24
SSTORE End the f irst STORF1 request These lines inserted

STORE/RPM/ DATA2 S t a r t next STORE request
A9 48 INPUT LINES E n t e r ~ p ~ k X ~ mode -

End second STOFE request $STORE
STARTO Run it
P 0 0 - P r i n t output

STORE/RBM/MEAN/STDV
STORE COMPLETED

STORE/ RPM/DATA2
STORE COMPLETED
t9

Figure 12 Saving the Program and Data

3. THE lXSYS LANGUAGE

3.1 Introduction

A s s ta ted i n Chapter 1, important par t s of MSPSF a re languages

designed t o allow easy and convenient use of the various processors and

subsystems of MSPSF.

One of these languages i s interpreted by the MSYS program t o

provide the interface between the special and general camputing processors.

This language has two functions.

(1) It provides a l i n k between the functions special computing

processor (including the storage and r e t r i eva l system) and

the general camputing processor.

(2) It provides the control statements necessary f o r the use of

the subsystems of the general camputing processor.

Five requirements f o r the MSYS language are given below:

(1) Programs and data records stored i n the data f i l e s may be

specified t o be included i n the input t o the general camput-

ing processor.

(2) New subsystems may be defined and added fo r use i n the general

computing processor. This requires tha t the subsystem

defini t ion include system control card images as well as

f a c i l i t i e s fo r making parametric s t r ing substi tution in to

such card images a t appropriate points. Subsystem defini t ions

should .make use of the cal l ing f a c i l i t i e s fram (1) above with

the appropriate parameters. New subsystems defined through

t h i s method may refer t o and use existing subsystems.

- 42 -

(3) Calls on subsystems may be a s concise a s the user des i res

f o r both t h e regular subsystems of the operating system and

fo r user defined subsystems.

(4) Subsystem c a l l s .my occur a t any point i n t he input. This

means t h a t statements not relevant t o t he subsystem may pre-

cede o r follow subsystem ca l l s . This a l so implies t h a t it

should be possible t o define new subsystems i n terms of o ld

ones.

(5) The language should not con f l i c t with any ex is t ing languages

i n t h e system (fo r instance by containing s t r i ngs t h a t a r e

cammonly used by other programs).

Throughout t he discussion t he term "card" i s used t o mean a card

image whether t he source of t h a t card image i s a card fram the card read-

e r , a card image fram.magnetic tape o r disk, a l i n e fram a remote terminal,

o r a card image generated i n t e rna l ly by same program.

3.2 Syntax of t he Language

There a r e two p a r t s of t h e MSYS language which need syntact ic

specification, cammands and subs t i tu tab le parameter instances. The speci-

f i c a t i on of commands i s context f r ee and i s given i n Backus Normal Form

i n Table 5; the syntax of parameters i s not context f r e e and i s described

i n Sect. 3.4.3.

The choice of syntax f o r the IXSYS language has been grea t ly in-

fluenced by the f i f t h requirement above. Two symbols a r e used f o r designa-

t i n g command par t s . The l e f t bracket symbol was selected since it occurs

on remote terminal keyboards but not on keypunches. Consequently, t he

previously ex is t ing software did not use it. It i s unlikely t h a t a u se r ' s

program would use it. I ts absence fram t h e keypunch does not, however,

Table 5 Backus Normal Form Specification
of MSYS Comnds

< command > : := < regular command > I < condensed command >

< regular command > ::= < MSYS p a r t > < s t r i n g > < new card >

< command statement >

< command statement > ::= < R corn > I < B corn > 1 < M comm > I
< D c ~ m m > I < I c o r n > I < T c o r n > I
< F comm >

< R corn > : := [R/ < description >

< B comm > : : = [B/ < description >

< M comm > : := [M/ < description > I
[M/ < description > / < M paramlist >

< D corn > : := [D/ < D paramlist >

< I comm > : := [I/ I [I/ < ch s t r i n g >

< T corn > ::= [T/ I [T/ < TF s t r i ng >

< F corn > : := [F/ I [F/ < TF s t r i n g >

< M paramlist > : := < M param > I < M paramlist > / < M param >

< M param > : : = * < ch* s t r i n g > *
< D paramlist > : := < ch*I/, s t r i ng > (< D paramlist > / < ch*/ s t r i ng >

< TF s t r i n g > : := < ch= s t r i ng > I = I = < ch= s t r i n g > I
< ch= s t r i n g > = I < ch= s t r i n g > = < ch= s t r i n g >

< condensed command > : := < MSYS pa r t > / < description > I
< IXSYS pa r t >/< description >/< M paramlist >

< MSYS pa r t > / MACRO / < D paramlist >

< MSYS p a r t > : := < seven spaces > IXSYS

< s t r i n g > : : = < ch s t r i n g > I < new card > I < s t r i n g > < ch s t r i n g > I
c s t r i n g > < new card >

Table 5 Backus Normal Form Specification
of MSYS Cmmands (continued)

< ch s t r i n g > ::= c any s t r i n g of alphanumeric characters >

< ch* s t r i n g > ::= < any s t r i n g of alphanumeric characters not contain-

ing * >

< ch* I / , s t r i n g > : : = < any s t r i n g of alphanumeric characters not con-

ta in ing *, ', o r / o r comma >

< ch= s t r i ng > ::= < any s t r i n g of alphanumeric characters not contain-

ing = >

< description > ::= < any MULTILANG description not containing formats,

element numbers, o r l a b e l s >

exclude the use of the MSYS language by card users since the left

bracket code .my be obtained by t he multi-punch facility. The selection

of the slash in a command is, again, an bttgl~~t to reduce the probability

of conflicting with a user's program specification.

3.3 MSY S Commands

The MSYS commands are divided into three classes; retrieval

commands, .macro definition and call camands, and input control commands

for use within macros.

3.3.1 Retrieval commands

The retrieval cammands allow users to incorporate stored source

and binary decks into the input stream. There are 'two retrieval commands,

one for source cards and one for binary cards. The need for two commands

arises from the fact that the storage and retrieval system recognizes this

difference and requires a query to specify if binary is to be retrieved.

3.3.1.1 Retrieval

Source statements which have been stored in the data file .may be

included in an input stream for the general ccxputing processor by use

of the Retrieval command. The syntax of this cammand corresponds to

< Rcamm > in Table 5. The records retrieved are in the f o m t generated

by the worker program STORE (see ~$pendix 3). These records may contain

any source card images, including programs, data, and control cards, mixed

in any desired way.

The Retrieval cammand may also be used to guarantee against

ambiguity between a user's data and MSYS cammands, since the data re-

trieved is not processed any further by MSYS. Thus, if a user must in-

clude data which conforms to some MSYS command, he may first save it

using STORE, and then include it in his input using Retrieve.

3.3.1.2 Binary Retrieval

Binary decks which have been punched by the MAP assembly program

(possibly called by FORTRAN, COBOL, ALGOL, o r ~ 6) may be stored i n the

data f i l e using the worker program ADW (see Sect. 2.3.5). These decks

may l a t e r be included i n an input stream t o the general computing f a c i l i -

t i e s by using the Binary Retrieval. command. Since it i s not possible t o

put a binary deck on an input f i l e , the only way t o include them i n the

input stream is through t h i s command.

The syntax f o r the Binary Retrieval command corresponds t o < Bcom >

i n Table 5.

3.4 MSYS Macros

Requirements (2), (3) , and (4) of Section 3.1 - the a b i l i t y t o

define subsystems, t o provide an easy procedure f o r ca l l ing subsystems,

and t o make subsystem c a l l s applicable a t any point i n an input stream -
are sa t i s f i ed by a macro capabi l i ty within MSYS. These capabi l i t ies

a re presented below and are i l l u s t r a t e d through a discussion of some

examples (sect. 3.6).

The MSYS macro f a c i l i t i e s have two standard capabi l i t ies . F i rs t ,

repeated use of the same procedure, with substi tution of parameters f o r

specif ic application i s allowed. Thus, a given sequence of statements

t o be used many times i n same language may be defined as a macro once,

given a name, and subsequently referred t o only by name.

Second, macros i n MSYS provide a convenience f o r those users

who are not famil iar with IBSYS control statements and who may wish t o

perform some complex task requiring such knowledge. h he use of macros

i n t h i s context i s becoming more widely used, par t icu lar ly i n time

sharing environments where communication w i t h the supervisor i s tedious

without standard macro ins t ruc t ion f o r doing so.) T h i s w i l l be made

clearer by an example below of a macro which allows a programmer t o use

the PDPW language on the 7040 t o assemble a program f o r the PDP-8 cam-

puter. As w i l l be seen, t h i s i s a complex task made t r i v i a l by MSYS

macros.

3.4.1 Macro Definit ions

A macro def ini t ion has three pr incipal par t s : a heading card,

prototype cards, and the terminating card.

The macro def ini t ion header card i s t h e Define command specif ied

below. It contains the macro name and the l is t of formal parameters.

The macro prototype cards includes any symbolic cards including

IBSYS control cards, source statements i n a programming language, da ta

cards, or any MSYS commands. These prototype cards may include

specif icat ions f o r formal parameter instances; presumably, each formal

parameter occurs on a t l e a s t one prototype card.

The macro terminating card contains [END] a s t h e f i r s t f i v e

characters and a blank i n column six.

3.4.2 Macro Calls

A macro c a l l i s made through use of the Macro comand given below.

It contains a MISLTILANG description of the macro and a l i s t of the actual

parameters t o be used. This i s explained fur ther i n the discussion of

the Macro comnand i n Sect. 3.4.4.2.

3.4.3 MSYS Parameters

3.4.3.1 Formal Parameters

Formal parameters appear on the macro def in i t ion heading card i n

the f o m t of EllTLTILANG k e ~ ~ s , spearated by a s lash (/). Although they

m y be of a r b i t r a r ; ~ lengtl:, only the f i r s t f i ve characters a r e retained

by the IXSYS program. They specify the s t r ings t o be considered as

formal parameters, and the order i n which the actual parameters appear

i n the macro ca l l .

Formal parameters a l so appear onrmacro prototype cards enclosed

i n square brackets ([1). Here the en t i r e formal parameter i s retained.

One purpose of the brackets, then, i s t o specify the extent of the for-

,ma1 parameter since t h i s .my be more than f ive characters.

If the corresponding actual parameter i s amitted i n a macro ca l l ,

the formal parameter i t s e l f becomes the actual parameter. In t h i s case

the camplete parameter as it appears on the prototype card i s used. This

convention provides default conditions which simplify .macro c a l l s i n the

most common case. .
Another purpose of the square brackets i s t o specify spacing. I f

the r ight bracket (1) following a formal parameter i s preceded by a space

then t h a t parameter w i l l always end i n the column of the r ight bracket.

If the corresponding actual parameter i s shoxter, the remaining columns

w i l l be spaces; i f it i s longer, it w i l l be truncated.

Not every s t r ing enclosed i n brackets need be a formal parameter.

Brackets which do not delimit formal parameters are t rea ted a s t e x t

characters,; those which do are dropped. I n order fo r a s t r ing enclosed i n

brackets t o be a formal parameter, it must xnatch one of those l i s t e d on

the macro defini t ion heading card, i.e., i f the s t r ing contains no more

than f ive characters it must conform exactly t o one of the l i s t e d param-

eters ; if it i s longer than f ive characters, the f i r s t f ive must conform

t o a l i s t e d parameter.

3.4.3.2 Actual Parameters

Actual parameters occur only in macros calls. Each actualparam-

eter is a string of characters in the form of a MULTILANG literal (en-

closed in a pair of asterisks). Such a string .my contain any character

except asterisk.

3.4.3.3 Null Parameters

As noted earlier, when an actual parameter is amitted from a macro

call the formal parameter is taken as the actual parameter. A special

symbol is provided to explicitly allow a null parameter. This symbol

is [N/CC where cc is a pair of identifying characters which may optionally

be included to distinguish between different null parameters.

This special symbo1.m~ be used either as an actual parameter or a

formal parameter. In the first case each instance of that parameter will

be made null. Here cc need not be given. In the case where the null sym-

bol is used as a formal parameter, the parameter is made null only if no

actual parameter is supplied and the default condition applies. Here cc

is necessary if there is nore than one such formal parameter and they need

to be distinguished.

In any situation when a parameter is .mde null, the bracket conven-

tion Tor spacing still holds. Thus, if a parameter is null then if, in

the formal parameter instance, the right bracket is preceded by a space,

then the entire field of the parameter is filled with spaces. If the

right bracket is not preceded by a space, then the parameter is amitted

entirely (actually squeezed out). For example, suppose the following

card is being processed and CDE is a formal parameter:

AB[CDE]FGH

Now suppose a null actual parameter is supplied for CDE. Then the result

w i l l be

ABFGH

However, consider the second example:

A B C C N / ~ ICDE

Now if no ac tua l parameter i s supplied the r e s u l t w i l l be

AB CDE

3.4.4 The Macro Commands

Each of the two cammands described below has two syntax specifica-

t ions , one corresponding t o < regular command > and one corresponding t o

< condensed c a m n d > i n Table 4. The regular forms a r e discussed i n

Sects. 3.4.4.1 and 3.4.4.2. The condensed forms a r e described i n Sect.

3.4.4.3.

3.4.4.1 Define

The Define cammand s ignals t he start of an MSYS macro def ini t ion.

It a l so serves a s the macro def in i t ion heading card. The syntax f o r t he

Define command corresponds t o < Dcomm > or < Dcond c a m > a s given i n

Table 4. The f irst member of < D param l i s t > i s the name of the .macro

and the remaining.members a r e i t s formal parameters. Thus the format of

< D camm > i s

[~/name/fpl/fp2/. . . /fpn

where name i s the macro name and i s used as a key under which the macro

is stored i n the data f i l e ; and fpl,fp2,...,fpn a re the formal parameters

of the .macro.

3.4.4.2 Macro

The Macro c a m n d i s used t o specify a c a l l f o r a macro expansion

t o be included i n an input stream a t the point of the cammind. The syn-

t a x f o r the .macro comand corresponds t o < Mcam > o r < M cond comm >

a s given i n Sect. 3.2. Here < description > i s used t o re t r ieve the .macro

and < M param l i s t > i s the l i s t of actual parameters. (1n addition t o

having the name as a key, each .macro a lso has the key M.MA.) The general

format of < Mcomm > i s

[~/desc/*a~l*/*ap2x/. . . /*apn*

where desc i s a MLTLTILANG description of the macro being called; and

apl,ap2, ..., apn are the actual parameters of the ca l l .

3.4.4.3 The Condensed Forms

A s s ta ted e a r l i e r each of the above two commands m y be incor-

porated d i rec t ly in to the c a l l on IXSYS. The equivalent formats t o the

ones given i n the preceding sections are:

f o r a def in i t ion

IXSY ~/MAC.~0/na~ne/p~l/fp2/. . . / f pn

and f o r a c a l l

M S Y S / ~ ~ sc/*apl*/*apB+/. . . /*erpn*

The l a t t e r of these supplies the method f o r achieving the objec-

t i v e of easy use of subsystems. The user need simply supply the name of

the subsystem (the name of the macro) and any required parameters.

3.5 Input Control Commands

Three commands a re provided t o allow greater choice i n the source

and the selection of the input prepared by MSYS f o r the general com-

puting components.

3.5.1 Input

Jus t as the r e t r i eva l camminds allow f o r inser t ing stored data

i n the middle of prepared input, the input camand allows f o r the inclu-

sion of prepared input i n the middle of an IXSYS macro. The syntax of

t h i s cammand corresponds t o < I com > i n Table 5. The format of the Input

cormand i s

[1/cccccc

where cccccc may be one of t he following three:

blank - read a l l t h e input on the u se r ' s input f i l e o r u n t i l a $JOB card

i s read;

a six d i g i t o c t a l number - read t h a t .many l i n e s fram the input f i l e o r

u n t i l a $JOB card i s read;

otherwise - read u n t i l a card i s encountered s t a r t i n g with cccccc.

3.5.2 If True

Selection fram a f ixed s e t of a l te rna t ive choices may be performed

using the I f True command. The syntax of the If True corresponds t o

< Tcomm > i n Table 5 . The format f o r t h i s camand is:

[~ / s t r i n g l = s t r i n ~ 2

which means if s t r i n g l i s iden t ica l (i n a t l e a s t t he f i r s t s i x characters)

t o s t r ing2 then incr?.ude the card which follows t h e If True cammand card.

Otherwise, skip one card.

The inclusion of a group of cards may be achieved by having the

included card contain a Retrieval o r Macro c a m n d .

3.5.3 If False

If False i s similar t o If True except t h a t inclusion occurs if

s t r i n g l i s not i den t i ca l t o str ing2. It i s given by < Fcam > i n Table

5

The primary purpose f o r having both I f True and I f False i s t o

allow f o r conditions on two o r more parameters. For example,

[F/P~=x

[T/~~=Y

- 54 -

w i l l include the next card if and only i f pl=X - or p2=Y. Similarly,

any other logica l connective m y be achieved with various combinations

of I f True and I f False.

3.6 Examples and Analysis

Two exaaples a r e provided and described i n d e t a i l i n order t o

i l l u s t r a t e the power t h a t the (re la t ive ly simple) macro f a c i l i t y of

MSYS offers t o the user. I n Sect. 3.6.3 a diecussion and same addi-

t i ona l examples a r e given t o show how the objectives of Sect. 3.1 have

been met.

3.6.1 Example I.

Example 1 shows how a subsystem not or iginal ly included i n the

general camputing f a c i l i t i e s .may be defined using exis t ing subsystems.

The two macros defined i n Example 1 are used by PDP-8 programmers

t o assemble programs f o r the PDP-8 on the 7040 using the PDPMAP subsystem.

These macros a re useful. i n removing the need t o key on a remote terrainal

the lengthy ent r iee necessary t o assemble a PIIF-8 program. Without t h i s

capabi l i ty it wuuld have been v i r tua l ly prohibitive f o r P D P W programers

t o use the remote terminals of MSPSF.

In addition, the use of macros in a PDPMAP job does not require

extensive knowledge of IBSYS control card, which otherwise would be

needed. The P D P W programmer is thus a l so not dis t racted from h i s

main task, namely, t ha t of writ ing a PDP-8 program. This i s par t icu lar ly

t rue for a beginning programmer who would have been forced t o learn both

the IBSYS and P D P W systems.

A s an i l l u s t r a t i o n Example 1 (see Table 6) uses a l l the MSYS

camands i n a t l e a s t one form. A step-by-step explication of these macros

follows. Note t h a t it i s assumed tha t cer tain records have been pre-

Table 6 The PDPMAP and P. SYM Macro Definit ions

IXSY S/MACRO/PDPW/NAME/~DEF/TEST/*OO [N / l +

$ 1 ~ 0 ~ DECK

[F/CEN/~I=DD
[TIC [N / ~] = s Y ~ A B

$ ~ B W [NAME IDD

CF/ C C N / ~ I=DD
[T/[[N/~]=SYMTAB

CF/

$ I B ~ [NAME 1
[R/[~DEF]

[I/
$IBSY s
$SWITCH s . S P P ~ , s . su14
$CLOSE s . SJ14,MAR.K) REEIIND

$IBJOB PDPMAP NOMAP

$IEDIT u14
$IBLDR [NAME I
$IM)IT IN

$IBREL

[B/PDPMAP

$ENTRY [TEST]

[T/ [[N / ~] = s ~ A B

[M/P . SYM

$SWITCH S . S P P ~ , S . S U ~ ~

[END]

MSYS/MACRO/P . SYM

$IBSYS

$OPEN s . SU~~,REWIND

$ I ~ O B SYMTAB NOMAP, NOSOITRCE

$FILE ' S .FBIN ' , ~ 1 4 , ~ 1 4 , BLoCK=~~O,MIXED,LRL=~~, TYPE^
[B/SYMTAB 'AND ' DECK

$ENTRY

[Em l

* Note: These numbers a r e included only f o r explanatory purposes
and are not ac tua l ly p a r t of t he statements.

viously stored i n the data f i l e .

Statement (19) Explanat ion

MSYS i s being called t o define a macro called

PDPW tha t has four parameters. The f i r s t i s the

name of the PDPMAP program being written; the

second specif ies whether the program i s f o r the

PDP-8 or the DEC-338 with the PDP-8 the default

option; the th i rd parameter specif ies whether the

program i s t o be jus t assembled, punched on paper

tape, or loaded in to the PDP-8 f o r execution, with

assembly only the assumed option; the fourth

parameter specified whether a debug dictionary

should be obtained, whether a PDP-8 symbol tab le

should be punched, or neither, with neither the

default option.

An IBSYS control card.

If the fourth parameter i s DD or SYKCAB then the

$ 1 ~ card should contain the program name and

the DD option. Note tha t the name parameter i s

a fixed length f i e ld . This i s because the DD

option must be i n column 16.

I f the fourth parameter i s not DD or S m then

the $ 1 ~ card should contain jus t the program

name.

(19) The statement numbers correspond t o the l i n e numbers i n Table 1.

Statement (continued) Explanation

10 Following the $ 1 ~ card goes a s e t of MAP .macros

which define the PDP-8 t o the MAP Assembler. This

s e t of def ini t ions must be previously stored.

Read the PDPW program t h a t the user has typed.

IBSYS control cards, with the program name sub-

s t i t u t e d i n card 17.

Retrieve a binary deck of a program called PDPMAS.

!Chis i s the postprocessor which converts from

7040 code t o PDP-8 code. There w i l l be no con-

fusion between the .macro called PDPMAP and the

binary deck called PDPMAP because MULTILANG keeps

them separated.

A control card with the t h i r d parameter substituted.

If the SYM!TAB option was given as the fourth param-

e t e r then the MSYS macro P.SYM is t o be included

a t t h i s point.

A control card.

The m c r o defini t ion terminating card.

Call MSYS t o define the macro P.SYM, which has

no parameters.

Control cards.

Retrieve the binary deck called SYMUB and DECK.

It i s the presence of card 31 which requires P.SYM

t o be a macro rather than jus t a re t r ieva l . A

r e t r i e v a l would not allow f o r t h i s additional

r e t r i eva l i n the middle.

Statement (continued) Explanation

32 A control card.

33 The terminating card f o r P.SYM.

Table 7 shows three examples of the use of the PDPMAP macro.

The first example i s the simplest case where the only parameter supplied

i s the deck name. Example (b) shows the same job as (a) but this time

the binary tape i s t o be punched. Note t h a t the second parameter has

been amitted but t h a t the th i rd parameter i s supplied. Thus the default

option ~ D E F w i l l be used as the second parameter. In Example (c) a l l

parameters have been supplied, cal l ing fo r a DEC- 338 program t o be punched

with a symbol table.

3.6.2 Example 2

A ,medical research group collected a large amount of data on

pat ients in a c l in ic fo r several separate studies. These studies varied

widely i n the number of pat ients involved and the amount of data collected

per patient. The data was coded and placed on punched cards, each pat ient

record varying from a s l i t t l e as three cards f o r the smallest study t o

a s many as 22 cards i n the largest .

Originally only sorting and counting operations were performed on

the data, but a f ter several years i n depth studies were begun. Unfortun-

ately, the data fo r the different studies were i n different formats and

of different lengths. Consequently, separate programs had t o be written

f o r each study; inter-study analysis was extremely d i f f i cu l t ; and, t o

make .matters worse, the programs were t o be used by medical technicians

rather than computer programmers.

MSYS / PDPW TESTA*

TAD X

DCA Y

m z

END

(a) A simple PDPMAP job with no options

MSY s / PDPMAP/*TESTB*//*~P~CH*

T A D X

DCA Y

m z

END

(b) A PDPMAP job f o r the PDP-8 t o be punched

MSY S / PDPMAP /*TESTC*/* ~~~DW"-/*PUNCH*/"SY WB*

EDS VEC

OCT 4100, 4100

END

(c) A P D P W job f o r t h e DEC-338 i n which both a binary tape and a

symbol t a b l e a r e t o be punched

Table 7 Examples of Using the PDPW Macro

MSPSF and the macro defined i n Ekample 2 i s extremely useful in

t h i s application fo r two reasons. F i r s t , fram the programmer's point

of view, much duplication of e f fo r t may be saved since a l l cammon ele-

.merits need only occur once by s tor ing them i n the data f i l e . Second,

the user ' s job i s reduced t o dial ing a telephone, signing-in, running a

job consisting of one statement and pr int ing the resu l t s . The one s tate-

ment executed contains the name of the macro, the name of the study t o

be analyzed, and the name of the program used f o r the analysis.

A s an i l l u s t r a t i o n Example 2 serves two purposes. F i r s t , it

shows how such a macro can sa t i s fy the needs of the user i n solving

t h e problems mentioned above. Second, a s i n Example 1, Example 2 shows

how a problem may be s tated i n a s i q l i f i e d manner rather than the

detailed.manner required by the operating system.

The macro def in i t ion i s ~ i v e n i n Table 8. Line 1 i s the .macro

defini t ion heading card. The name of the macro i s CLINIC. Although

three parameters are l i s t e d , only two a re expected t o be supplied. The

t h i r d i s provided t o allow l i n e 3 t o be read a s p a r t of -the definit ion.

If l i n e 3 contained jus t $JOB without brackets, it would terminate the

reading of the definit ion.

Line 2 v e r i f i e s t h a t a necessary parameter has not been amitted.

I f it has been amitted, l i n e 3 w i l l be included and terminate the job

immediately with an error message. If the required parameter has been

included l i n e 3 w i l l be ignored.

Many cards which are comon t o all applications of t h i s macro are

retr ieved i n l i n e 4. Same of these a re system corltrol cards and same

are program statements.

Line 5 calls for the inclusion of those statements peculiar to

each application such as DIMENSION and FORMAT statements.

Lines 6 through 10 are more program statements. Line 8 has two

parameter substitutions. One of these is the subroutine which performs

the required camputation. The binary deck for this subroutine is

retrieved from the data file and included in the input by line 11.

Line 12 is an IBSYS control card. Line 13 calls for the retrieval

of the data on which the computation is to be made.

6. DO 2 I=l, NPATS

9 STOP

10. END

* Note: These numbers are included only for explanatory purposes and

are not actually part of the statements.

Table 8 Example 2

3.6.3 Conclusions regarding the DSYS Language

The two examples given i l l u s t r a t e the usefulness of the macro

f a c i l i t y and the other functions provided. These and other examples

w i l l be used t o i l l u s t r a t e t h a t t he f ive specif ic objectives, outlined a t

t he beginning of the section have been met.

1. The f a c i l i t y t o save and c a l l fo r programs and data has been

supplied by the r e t r i eva l commands. This f a c i l i t y could, however, be

extended t o allow access t o data stored i n formats other than those

currently allowed. A user could provide parameters t o a r e t r i eva l

request with a description of the data t o be obtained.

2. The two examples above have shown how subsystems .my be de-

fined. Subsystem defini t ions .may include a l l card images; subsystem

defini t ions .my make use of any of the r e t r i eva l cammands; parameter

subst i tut ion has been provided. Example 3 (Table 9) i l l u s t r a t e s a macro

fo r providing access t o one of the exis t ing subsystems of the general

cawuting system FORTRAN. A s seen i n l i n e 1, the macro name i s FORTRAN,

and it has twoparameters. Line 2 shows t h a t the second parameter i s op-

t i ons f o r the $ 1 ~ 0 ~ control card, which . m y be amitted. The f i r s t

parameter i s the program name, a s seen i n l i n e 3.

1. ~ ~ ~ Y S / M A C R O / F O R T R A N / ~ / W O [N/I*

2. $IBJOB C C N / ~]

3. $IBFTC[NAME]

4. [END]

Table 9 Example 3

3. Subsystem calls are very concise; all that is required is

the name of the sub~y~~em. This point has been particularly strength-

ened by the inclusion of the condensed forms and default parameters in

the MSYS language. Thus a for FOR'l'RAN, assuming Example 3 .my be

as short as:

M SY S/FORTRAN

or as long as

M SY S/FORTRAN/* JOB~*/*DECK, NOW

4. Subsystem calls may occur at any point in the input, except

from cards accessed via the Retrieval cammand. This exception is pro-

vided on purpose (see (5) below). Subsystem calls may occur within other

subsystems, and, in fact, by using the conditional cammands or the define

cammand it is possible to write recursive macros.

5. Much has already been said about efforts to make IXSYS as

unobtrusive as possible. To summarize, the condensed forms allow some

strings to be included as parameters to the MSYS call, thereby elimina-

ting them from consideration as data; format parameters must .match same

member of a list which must be given in advance; the use of such charac-

ters as [,I, and / serve to protect against ambiguity in most cases;

statement6 m y be stored and later included via the Retrieval command to

insure that they are not questioned further.

4. USER EVALUATION

4.1 The C-ty of Users

The users of the Moore School Problem Solving Faci l i ty came,

naturally enough, mostly from the Moore School of Electr ical Engineering

a t the University. They represent primarily research projects.

The nature of the work of the users ranges from simply using the

editing f a c i l i t i e s f o r preparing input, t o constructing a complex graph

theory system involving concurrent operation of the IBM-7040 and the

DEC-338. Within tiiis range there are storage and re t r ieval projects

using only the special computing processor and programming jobs which

use the general computing processor extensively. One information

re t r i eva l project i s concerned with patient information from the cardio-

vascular research group and Pathology Depar-bnt a t the University of

Pennsylvania Hospital. Another project i s concerned with interactive

competitive games. Among projects using the general canputing processor

i s one concerned with l i s t structured memories and the theory of data

structures. Another project i s concerned with extendable operating

systems. Table10 suma~arizes these projects, indicating which f a c i l i t i e s

they use frequently and which they use occasionally.

While these projects are not numerous enough t o .allow significant

s t a t i s t i c a l studies, they represent a broad range of computing requirements

t h a t demonstrate the need for 'bide applicability". Similarly, although

the number of users has been limited, they represent a wide range of

levels of camputer competence. Therefore t h i s group of users i s particu-

l a r l y suitable a s a basis for evaluation of the services and functions

of MSPSF.

- 64 -

Project
Reason for
using MSPSF

Faci l i t ies used (1 - frequently, 2 - occasionslly)

Storage & Computing MSYS IBSYS Own
Editing Retrieval on special macros Sub- Sub-

level systems systems

Hospital
data input

Hospital
data retrieval

Interactive
game playing

Graph theory
system

Lis t structured
memories

Btendible
operating
systems

Store data t o
be retrieved 1 1
la t e r

Examine
previously 2 1
stored data

Storage and'
re t r ieval of 2 1
data fo r each
player

Write programs
for DEC-3% and 1 1
IBM-7040

Write programs
for IBM-7040 1 2

Write programs
for IBM-7040 1 2

Table10 Users of MSPSF and the Faci l i t ies They Use

The evaluation tha t follows i s divided in to two parts. First ,

specific camments are presented regarding the camponent processors of

MSPSF. Second, same more general comments relating t o the t o t a l system

are given. Some of the ccamnents concern the hplementation of MPSF,

and while these are of l i t t l e interest t o the system architect they are

included both for completeness and as a reminder that they are considered

important by the users.

4.2 General Characteristics of the Use of MSPSF

For a period of about four months prior t o t h i s writing, the

University of Pennsylvania Canrputer Center has been operating i t s IBM-

7040 computer under the MSPSF system for four hours each day, two hours

i n the morning and two hours i n the evening. During these four hours

the computer was largely occupied with background work (jobs submitted

on cards). The t o t a l time during which MSPSF has been active with re-

mote users has been small. The number of remote terminals in use a t

any time did not usually exceed one, and never exceeded four.

There are two classes of programs which had t o be excluded from

running under MSPSF fo r technical reasons. First , same programs were

too large, since the nucleus of MSPS i s larger than tha t of the regular

version of IBSYS. Second, same programs made reference t o absolute core

locations which were different under the two versions of IBSYS.

Additionally, i n order t o provide adequate response for remote

users, jobs with maximum run times greater than 10 minutes were supposed

t o have been excluded by the camputer operator. Occasionally, the

operator would s t a r t a 20 or 30 minute job causing the remote users t o

experience intolerable delays.

4.3 Evaluation of the Component Processors

4.3.1 Evaluation of the 1lrput/0utput Processor

There i s general agreement among MSPSF users tha t the terminal

control language i s inadequate in i t s present form. It is too awkward

for the average user and incomplete fo r the more advanced user.

The average user would prefer a smaller command vocabulary, where

each command would accamplish more f o r him. This, however, would r e s t r i c t

those users who do make use of all the commands. The solution seems t o

be t o provide a macro language similar t o t h a t of MSYS. A user could

then simply type, for example, h i s name, and the ent ire system could

then appear t o him as a special purpose c q u t e r designed t o process h i s

part icular language.

The more advanced users have requested some new camands for the

input/output processor. Most of these are editing cnmm~nds for the

input/output f i l e s . They range from simple ones, such as, moving output

t o the input f i l e , t o such complex operations a s f u l l t e x t search and

replacement operations. Here two macro operations could prove very use-

ful.

4.3.2 Evaluation of the Special Computing Processor

The major complaint with the special computing processor i s t h a t

it i s too d i f f i c u l t t o write worker programs. Under the present imple-

mentation of MSPSF worker programs must be written i n assembly language

and nust be ent irely self-contained except fo r ca l l s on the storage and

re t r ieval system. What i s needed i s a new linking loader capable of

piecing together one large program from a l ibrary of small subroutines.

The subroutines would be kept i n the storage and re t r ieval f i l e . Addi-

t ionally, the c a l l s on the storage and re t r ieval system routines need t o

be standardized t o conform t o those produced by the language processors.

This would allow programs Written in FORTRAN, for example, t o ca l l fo r

data t o be retrieved direct ly from the data f i l e . Both of these changes

would require additional .modification t o the -amic storage allocation

routines of MJLTILANG.

One result of t h i s diff iculty i s that there are not an adequate

number of worker programs available. I n addition t o lXSYS only three

other routines have been added t o the MULTILANG worker program library

t o specifically support the remote terminal users. These programs per-

form the functions of saving and restoring input f i l e s fo r l a t e r use and

punching saved f i l e s .

Several other such programs have been suggested by the users. An

existing program which stores binary decks should be able t o recover

arbitrary punched output fram the punch f i l e of an MSYS run. This same

program or another should be able t o actually punch the recovered decks

i f desired. Similarly, f ac i l i t i e s should be provided to save printed

output and t o allow it t o be printed on the high-speed l ine printer.

Along these same lines, the program that saves input f i l e s should be

expanded t o include arbitrary sources such as magnetic tape.
-

There are, of course, an indefinite number of such programs which

could be added t o the MLTLTILANG program library. The point here i s that

a specific effort has t o be made t o provide special f ac i l i t i e s for remote

terminal users. Moreover, such an effort should be a continuing one.

A s i n the case with vir tually every other camputer function, regardless

of how elaborate a system gets, someone w i l l think of same modification

which w i l l provide an additional capability.

4.3.3 EValuation of the General Camputing Processor

The use of an already existing operating system empowered MSPSF

t o handle the work t h a t users had previously generated. Most users

found t h a t no modifications were required t o run past programs. The

exceptions involved programs t h a t ei ther were too large or involved

absolute machine addresses.

On the other hand, d i f f i cu l t i e s arose from the incompatibility

between the input/output formats used with the compilers, assemblers,

etc., and the formats of the new remote terminals. Specifically, IBSYS

input i s expected t o be 80 column card inages and output i s formatted

for a 132 character l i n e printer . Since remote input is 64 characters

per l ine, spaces are added t o the end t o make 80. I n most cases t h i s

i s sufficient. The output format i s more d i f f i cu l t t o handle since,

again, l ines are limited t o 64 characters. MSPSF solves t h i s problem

by simply breaking the 132 character l i n e in to two 64 character l ines

and ignoring the l a s t four characters. A better solution, however, would

be t o use editing programs which allow the user t o specify t h a t portion

of each l i n e of current interest . This approach may apply generally a s

the best way t o bridge the gap between pretested, in-use software and

new hardware, part icular ly f o r remote accessed systems.with a variety

of terminal types and frequent hardware additions.

4.4 Evaluation of the Overall System

Three points of significant in teres t have been made by the users

of WPSF.

1) Reliabi l i ty i n both the t o t a l system and the camponent

processors i s c r i t i c a l . Those users who attempted t o use MSPSF during

the development and early production stages became so disheartened a t

system fa i lu res t h a t they were very hesi tant t o t r y again even when

the problems were cleared up. This observation holds f o r both hardware

and software; the user is clearly not concerned with why the system

f a i l s .

This does not mean t h a t all components must be error f r ee before

the system can be used. Instead, every possibi l i ty f o r error detection

and correction must be included. When the hardware f a i l s , suff icient ly

expl ic i t error messages should point out the d i f f icul ty t o allow prampt

diagnosis and correction.

2) Each level i n the hierarchy has i t s own control language.

The c q l e x i t y of tha t language re f l ec t s the complexity of the operation

of t h a t level. Consequently, those users who use only the simpler levels

of the hierarchy need only learn the simpler control languages.

The users of MSPSF who have benefited the most fram t h i s structure

are those who are primarily interested i n the special computing processor.

These users have been able t o use t h e i r programs without having t o learn

the complex operating system language of IBSYS.

3) The computer used a t the camputation levels should be a m c h

fas te r one. On t h i s point there i s an essent ial difference between re-

mote and batch operation. Most remote users of MSPSF found a delay of

ten t o twenty minutes f o r a run unbearable. A s has been found elsewhere (26)

remote users tend t o be l e s s careful i n program preparation, and con-

sequently, get l e s s accomplished per run. He thus expects error messages

of a t r i v i a l nature t o came back t o him with a minimum of delay. The

8 psec. cycle time of the IBM-7040 does not permit an adequate amount

of camputation within the remote users tolerance limits.

(26) See Footnote 1.

CONCLUSIONS

5.1 The Hierarchical Approach to System Architecture

A new system architecture is proposed for time shared computing

that alleviates the high overhead due to swapping and program size

restrictions due to mil.tiprogramming. It utilizes a hierarchy of pro-

cessors, where each processor is assigned tasks on the basis of four

factors: interactive requirements, frequency of use, execution time,

and program length.

In order to study the hierarchical approach to system architec-

ture, MSPSF was built and used. The study of the manner of operation

of W S F and the reactions of the user has resulted in a number of con-

clusions which have defined and clarified the hierarchy of processors

approach to system architecture.

1. The choice of three processors for the hierarchy of MSPSF

is based on the minimum number that is considered sufficient. Separating

tasks based on execution time is an essential feature of the hierarchical

approach. This separation implies a minirmun of two processors in addi-

tion to the input/output processor. More than three levels in the

hierarchy are possible on the same basis.

It has been found advantageous that the input/output processor,

the lowest in the hierarchy, be implemented using a separate camputer.

This is based on the consideration that the present state of the art of

remote terminal devices is highly dynamic. Modifications to the system

for handling new types of camunications and terminals are to be expected.

Such modifications are much easier to perfect and incorporate on a sepa-

rate camputer than within the environment of equipment also serving the

other processors.

2. The processors in the hierarchy should be program compatible,

and each should be general purpose. General purpose means that each

processor is capable of running user programs. If the processors are

program compatible, any program may be run at any level. This also

allows the debugging of programs on a lower level processor, and then

shifting to a higher level processor for production running.

Compatibility is also necessary for system maintenance. As the

system grows it should be expected that functions provided by one level

will be moved to another. Also, it may be necessary to debug system

components at one level which are to be used at another.

3. The selection of the processor in which a user's program is

to run should be either user directed or automatic. Both mechanisms

should be provided. If a user wishes, he should be able to select a

processor using the terminal interface language and one or more of the

processor interface languages described in (4) beluw. When the user

does not select the processor, the system must make estimates of the

various factors which determine the proper processor for a task.

The four parameters which were used subjectively in assigning

tasks to processors in MSPSF were amount of interaction required, fre-

quency of use, program length, and execution time. In an automatic

selection procedure (not incorporated in MSPSF), some formula, such as

a weighted sum, comprised of these four factors would be computed, and

the value of the formula would determine the processor chosen. For

example, if

then if

C < %, use processor 1

% s C < s, use processor 2
% s C, use processor 3.

~t is to be expected that conflicts should arise between a pro-

gram's requirements and the resources of the processor to which it has

been assigned. Again, the resolution of these conflicts should be either

autamatic or by user direction, and, again, program cqatibility is

required so that reassignment is possible.

4. A macro language similar to the MSYS language is necessary

for camnunication between every pair of processors, serving also for

communication between the user and each of the processors.

The usual view of a macro facility is one of a mechanism for pro-

viding same user-defined subroutines to an assembly program. These

subroutines may then be called f r m time to tine during the course of

assembling a particular program. The utility of such macros canes from

their being called a number of times during the assembly process, thus

saving the user from enumerating the lines generated by the macro.

The same approach applies to input stream macros. Instead of

being used repeatedly in a single program, however, an input stream

macro will be used to assemble a number of programs. Input stream macros

have the ability to simplify comnmication between the user and the total

system.

The MSYS language differs fram existing input stream macro

languages in two ways. First, MSYS macros may include statements in

various levels of language, such as system, compiler and assembly lan-

guages, as well as data. Thus, the user does not need to rely on the

log ic of the system programmer t o organize h i s work. This approach a lso

allows parameter subst i tut ions i n statement of languages a t a l l levels .

Second, IXSYS includes conditional statements which provide power

and f l e x i b i l i t y not found i n other input stream macro languages. Such

features a r e found i n programming language macro processors, and there

i s no reason why input stream macro processors should not be jus t a s

powerful.

5. I n MSPSF the inf'ormation storage and r e t r i eva l system i s par t

of the special camputing processor. I n order t o be t t e r handle the needs

of the t o t a l system, however, it i s suggested t h a t the storage and re-

t r i e v a l system be a separate special purpose processor, probably imple-

mented on i t s own computer with l inks t o each of the other three pro-

cessors. There a re three reasons f o r reaching t h i s conclusion.

F i r s t , each of the processors i n the hierarchy may require d i r ec t

access t o the storage and r e t r i eva l system.

Second, i f the storage and r e t r i eva l system i s accessible t o each

of the other processors direct ly , and i f the several processors a re

implemented on the same or campatible hardware, then commonly used data

and programs may be stored only once. For example, a campiler used on

two leve ls of the hierarchy, depending on the length of the program t o

be campiled, could be maintained i n the storage and r e t r i eva l f a c i l i t y

and accessed by a l l processors using it.

The th i rd reason fo r separating the storage and re t r i eva l system

from the other processors and, par t icular ly, f o r iqleme2ting it on a

separate computer i s modularity. The same reasons apply here a s fo r

input/output devices i n (1) above. New devices f o r storage and re-

t r i e v a l and new techniques f o r organizing data abound.

6. The block diagram of a computing system which satisfies the

above five conclusions is shown in Fig. 13. Each of the three processors

is shown. Fram any processor at level i to any other processor at level

i + 1 there is a language Li + Each of the processors may communicate

directly with the storage and retrieval system.

The multiplexing factor at each level is represented by n, m, and

1 on Fig. 13. That is, n users .may use a level 1 processor simultaneously;

mmay use a level 2 processor simultaneously; 1may use a level 3 proces-

sor simultaneously. Fram these numbers it is possible to campute expected

reaction times from each processor, provided adequate estimates are avail-

able for the distribution of execution times for each processor and the

probability that a user of level i will move to level i + 1. These

estimates depend xpon the work load and job mix for each installation.

For MSPSF, m and 1 were each 1. Since the average execution time at

level 3 was long and the probability of use of level 3 was high, reaction

times were frequently very long,

From Fig. 13 it can be seen how expansion to more than three pro-

cessors could be accomplished. The highest numbered processor could be

split into two, the first being "Processor for somewhat longer and larger

tasks" and the second "Processor for other tasks.''

5.2 Suggestions for Future Research

1. The selection of processing units must be investigated in

light of advances in computer design. Concepts which need further in-

vestigation within a hierarchical system architecture include &ti-

programing, multiprocessing, virtual memories, etc. A system built

with these advanced techniques will require additional work to determine

the proper distribution of software resources among the various processors.

2. Additional studies, probably involving the simulation of a

system, are needed to determine processor sizes in order to meet reaction

time requirements.

3. An algorithm is necessary for handling autamatic assignment

of tasks to processors. Additional investigation is needed to determine

(a) the selection of important factors, (b) the proper relationships

between these factors, and (c) way of automatic estimation of the values

of the factors for a task.

5.3 Implications for Future Applications

The system architecture described in this dissertation may be

advantageous in same areas of future computer system research. The

advantages of modularity for remote terminals and mass storage systems

have already been pointed out. Software development may also profit from

this .modularity. Consider, for example, the development of a conversation-

al program such as a teaching program or a conversational campiler. It

is highly likely that such programs will be quite large and time consuming

to debug. Consequently, such debugging would normally take place in the

highest level of the hierarchy. Once developed, however, the critical

factors in using such programs are high frequency of use and high inter-

action requirements. At this point, highly interactive programs may be

moved to the lowest level processor for improved service to the users.

The development of other operating system resources may proceed

along similar lines. Debugging runs may be carried out wherever they

best fit into the job stream and wherever the best debugging facilities

are available for the particular type of program. In fact, the highest

level processor may be used for developing new operating systems without

interfering with other users. This, in turn, has implications for

future computer hardware development, such as in the area of privileged

instructions.

The main characteristic of operating system experiments which

makes them difficult to accommodate in present on-line camputing systems

is that they require complete control of the computer for the duration

of the experiment. During this time the computer is thus unavailable

to other users. The hierarchical approach allows one of the processors

to be temporarily withdrawn from general use, but does not require the

entire system to be closed to all other users.

Other application areas have also presented difficulties for

present systems for the same reason of requiring complete system domina-

tion. Examples of this include some instances of on-line data collection

and real-time process control where the data rates are sufficiently

high. Here, again, one processor may be temporarily diverted to a

special project while service to other users continues.

APPENDIX 1 THE IXSYS PROGRAM

The MSYS program is actually two program decks: MSYS handles

input preparation, and MWT recovers output. For the rest of this

discussion MSYS will be used to refer only to the one deck. M W T is

covered in Appendix 2.

Al.1 Basic MSYS

Basic MSYS refers to those portions of MSYS which get used when

an input file which contains no MSYS commands is processed.

Al.l.l Initialization

The primary responsibility of the initialization section of MSYS

is to set up the input, output, and punch utilities which are used during

an IXSYS job. Each must be rewound, an End-of-File mark is written on

the punch utility, and some initial IBSYS control cards are written on

the input utility (see Fig. ~1.1) . Then, an end-of -f ile exit in the
MJLTILANG input routine is set in case a terminating $JOB card is not

supplied. Lastly, if no condensed form macro call is pending control

passes to the read routine. In the figure, exit a is taken if a condensed

form for either a macro definition or call is given (sect. 3.4.4.3). Exit

p is taken if a macro is to be expanded before reading input.

A1.1.2 Reading and Writing

A card is read from the input file t o see if it is a $JOB card

(Fig. ~1.2). If there is no more input, MGET will exit to IXEOF. If

a $JOB card is read, it is treated like an end-of-file and otherwise ig-

nored.

If the card is not a $JOB card it is checked to see if it is an

MSYS command card. If not it is simply written out, and the next card

is read. If an MSYS c o m n d is read, the appropriate switches are

Is there a f irst
parameter? A1.4

Rewind with 12, 13, 1 4 1
EOF --, S.SU14 'I

Call PUT f o r
switch of output

9

Call PUT fo r
Close S.SU14,
Switch punch

Set EOF e x i t
i n MULIN

I
,

Figure A l . l Basic MSYS I n i t i a l i z a t i o n

Call IXGm r"-1

Call OUTFWT e.

1

Is it: D - - - - - - I

Is it $JOB
*

Yes

I
4

i n i t i a l i z e d and control passes t o the appropriate command routine.

A 1 . l . 3 Terminating

After a l l the input has been processed, a check i s made t o deter-

mine i f any IBSYS input was generated. If not, a message t o t h a t effect

i s pr inted and MSYS returns t o the MULTILATJG monitor. Assuming t h e t

there i s work fo r IBSYS, then several addi t ional control cards a r e wri t ten

out, including those necessary t o reload MULTIMNG, with some se l ec t iv i ty

based on whether the job i s f o r a remote user or 3 regular batch user.

J u s t p r i o r t o passing control back t o IBSYS, a card f o r switching the

input t o u t i l i t y 12 i s stored where IBSYS w i l l f i nd it. The e x i t fram

MSYS is made i n such a way t h a t remote terminal output buffers w i l l be

closed.

A1.2 Condensed Forms

If the c a l l t o MSYS has any parameters, then it must be a con-

densed form of e i t h e r a macro def in i t ion or a macro c a l l (~ i ~ . ~1.4).

If it i s a macro def in i t ion it i s handled immediately by MSYS. I f it

i s a macro ca l l , it i s simply noted t o be handled a f t e r the i n i t i a l i z a t i o n

i s campleted.

A 1 . 3 Macro Definit ions

141.3.1 Macro Definition Item I n i t i a l i z a t i o n

A macro def ini t ion i s a MLTLTIISLNG item and, as such, must conform

t o the prescribed format fo r items. The f i r s t half of t he procedures

which perform t h i s task a r e i l l u s t r a t e d i n Fig. A1.5. The given flowchart

ac tua l ly represents two d i s t i n c t sections of the program, one f o r condensed

forms and one not. The coding of these two sections i s completely para l le l ,

but the data comes fram different places. I n the case of the condensed

form it is obtained by ca l l ing fo r MJLTILRNG parameters. Otherwise, it

i n i t i a l i z e d and control passes t o the appropriate command routine.

A 1 . 1 . 3 Terminating

After a l l the input has been processed, a check i s made t o deter-

mine i f any IBSYS input was generated. I f not, a message t o t h a t e f fec t

i s pr inted and MSYS returns t o the MLTLTILANG monitor. Assuming tha t

there i s work fo r IBSYS, then several addit ional control cards a r e wri t ten

out, including those necessary t o reload MULTIISLNG, with some se l ec t iv i ty

based on whether the job i s f o r a remote user or s regular batch user.

Just p r io r t o passing control back t o IBSYS, a card f o r switching the

input t o u t i l i t y 12 i s stored where IBSYS w i l l f i nd it. The e x i t fram

MSYS i s made i n such a way t h a t remote terminal output buffers w i l l be

closed.

A1.2 Condensed Forms

If the c a l l t o MSYS has any parameters, then it . m s t be a con-

densed f o m of e i t he r a macro def in i t ion or a macro c a l l (~ i g . ~1.4) .
If it i s a macro def in i t ion it i s handled immediately by MSYS. If it

i s a ,macro ca l l , it i s simply noted t o be handled a f t e r the i n i t i a l i z a t i o n

i s campleted.

A1.3 Macro Definit ions

A1.3.1 Macro Definit ion Item I n i t i a l i z a t i o n

A macro def in i t ion i s a MLJLTILANG item and, as such, .must conform

t o the prescribed format f o r items. The f i r s t half of t he procedures

which perform t h i s task a r e i l l u s t r a t e d i n Fig. A1.5. The given flowchart

ac tua l ly represents two d i s t i n c t sections of the program, one f o r condensed

forms and one not. The coding of these two sections i s completely para l le l ,

but the data comes from d i f fe ren t places. I n the case of the condensed

form it i s obtained by ca l l ing fo r MULTILANG parameters. Otherwise, it

Close output buffer c
I c a l l PUT for two I
I $IBSYS cards I

I I

.
Construct $JOB card
and IXOUT card,

Call PUT for $JOB card

I

Call PUT for:
$IIUOB
$RELOAD
ADDMP
IXOUT
$IBSY s

I

C

Move input switch
card to S.SAVE and
set S.SCDI minus

I Close and rewind 1

-

Figure A l . 3 Terminating Procedures for IXSYS

Is first parameter
 MACRO^' + - MZStJ

Figure ~ 1 . 4 Condensed Form Determination

DEFINE 5'
Make it a key I

\L

0 d Count i4
4 '. 1 L I

Is there another Yes
-

Put it i n + Count+l+ Count
ac tua l parameter the item

i ,
1

1 A
b

P r i n t e r ror
message

Does the m c r o
have a name

Mark the l a s t
parameter

I

No

I Compute s ta . r t of data
ac tua l and r e l a t i v e I

Figure A1.5 Macro Definition Item I n i t i a l i z a t i o n

i s obtained from where the MSYS command assembly routine puts it.

Clearly, a macro.must have a name by which it i s t o be called.

The macro name i s used as a key by which it is t o be stored and l a t e r

retrieved. Each actual parameter i s added t o the item and the l a s t one

i s tagged. The location where the prototype cards go i s then camputed

from the number of actual parameters stored.

A1.3.2 Prototype Card Reading and Item Formation

Once the actual parameters have been added t o the i t e m , the proto-

type cards may be added. Each card i s read and checked fo r -che macro

terminating card. Prototype cards are stored i n the macro item and

printed for the user 's record. When the terminating card i s encountered,

the t o t a l length of the i t em, as well a s the lengths of the various cam-

ponents, i s known. Fram t h i s data, the i t e m header word, l ink word, and

table of contents a re camputed and added t o t h e item, thus, completing

the i t e m formation. It can then be stored by calling the MULTILANG i t e m

storage routine, and the user can be notif ied t h a t the defini t ion has

been completed.

Termination fram the defini t ion routine depends on the form of the

ca l l . I n the case where the condensed form was used, control return t o

the W T W G monitor. Otherwise, the space used f o r the item formation

must be reclaimed since it is a lso used by the MSYS command assembly

routine. After t h i s i s done, control returns t o the main read loop of

MSYS.

~1.4 Canmsand Card Processing

The cammand card processing routines are divided in to two groups,

the input control command routines, and the re t r ieval and macro routines.

The reason f o r t h i s division i s t h a t the input control commands do not

I Fix item header,
l ink , and ' t ab le I

6

of contents c

Call MGEJ!

Call ITEMIN w

V

Print message =3

Reclaim Space

Is it [END] No

Figure ~1.6 Macro Definitions
Reading and Terminating

Move card
t o item Pr in t card

Yes
*

Catnpute length of
data and address of
tab le of contents

I
a

use the MSYS cammand assembly routine and the others do. The input

control command processing routines are all ra ther short, simple, and

independent (except t h a t I f True and I f False a re combined). The others

a re generally longer, .more complex, and highly interconnected.

~ 1 . 4 . 1 Input Control Cammand Routines

A1.4.1.1 I f True and I f False

The two cammands I f Tme and I f False share a cwmon processing

routine. The general idea of t h i s routine i s a s follows (see Fig. ~ 1 . 7) .

F i r s t , s e t an indicator switch according t o whether I f True or I f False

i s requested. Second, f ind the two components t o be caurpared. Then,

s e t another indicator depending on whether the two ccmponents a re equal.

Lastly, campare the two indicator switches f o r equivalence. I f they are

the . same, skip a card; otherwise, do not skip.

More specif i c e l y , the GETCHR subroutine (sect. ~1.6.5) i s called

t o ge t a l l the characters before the equal sign, but only up t o six

characters a re retained f o r camparison. I f no equal sign i s encountered

before the end of the card, the second component i s assumed blank. Thus

if the en t i r e variable f i e l d of the card i s blank, an equal condition w i l l

r esu l t .

When an equal sign i s found, the next six characters a re obtained

f o r the second canrponent. I f there are l e s s than six characters available

an unequal condition i s assumed, since the f i r s t camponent must have had

more than six characters.

After both camponents have been obtained, they a re campared for

equality. If they are equal the second indicator i s s e t and compared

against the f i r s t . The nature of the comparisons and indicator se t t ings

i s such t h a t one card w i l l be skipped if e i ther I f True was cal led and

*
A

Call GFTCHR

Yes
.L

Is it = No) Already six .characters. ; Save it -

i

None
Call GFTCHR

left

-
No

Already six - Save lt -
, Yes

Is first half = second half

Call MGEI'

'-7'

Figure A1.7 The IF TRUE/IF FALSE Routine

t he cmponents were unequal or I f False was called and the camponents

were equal.

I n e i the r case the I f ~ r u e / ~ f False routine returns t o the main

read loop of MSYS (sect. A1.1.2) .
~1.4.1.2 Input

The function of the Input command i s qui te simple - build an input

control block (ICB) and put it on the pushdown l ist . There a r e two f i e l d s

of the ICB which must be computed f i r s t . These a r e the record count and

tem.inating mask. Both of these can be determined by considering the

Input camand parameter (see Fig. ~ 1 . 8) .
There a re three poss ib i l i t i e s f o r the parameter which can be direct-

l y t ranslated i n t o values f q r the record count and terminating mask. If

the parameter i s blank, the count i s 32767 and the mask i s JOB^$. If

the parameter i s an oc ta l number t h a t number i s used as the count and the

mask i s $JOB$$. I f t he parameter i s anything else, t h e count i s 32767 and

the mask i s the parameter.

Al.4.2 Retrieval and Macro Cammand Routines

The routines t o be discussed i n t h i s section are distinguished

by the f a c t t h a t they a l l use the canrmand assembly routine. I n addition,

they .a lso follow a main path, which i s the source r e t r i eva l routine,

branching away a t the appropriate points.

Al.4.2.1 Command Assembly Routine

The command assembly routine (~ i g . Al.9) i s an open subroutine

whose responsibi l i ty it i s t o cause MSYS commands containing complex

parameters t o be assembled in to a more compact form. The actual assembly

i s performed by the regular MULTILELNG assembler, MASS, called a s a sub-

routine t o the command assembly routine.

Get parameter
save a s possible mask

Use a s count L e I

Use $JOB 4f
f o r Mask >. Is it a l l blanks

L

Is it an oc t a l number ,

.(No

Set count -1 2 + temp

Set Mask indicator

*-
temp +length

I

2

Convert t o binary

Call IXPUSH I

I I

Figure ~1.8 The Input Command Routine

w- + - P.

Get R Rip Mask Get D Rip Mask G e t M Rip Mask Get B Hip Mask
- + DmlSW ' + MACSW - - BINSW - - NIACSK

< &

I Set Rip Xask I
-

Pirst . .

- 4 First

I

Get and load MASS I ' 1

Set up character
feeding routine (CEARFD)

for Mass and link

I Call MASS I

Was there an Yes
error in the
description

Figure A1 .9 Command Assembly Iioutine

The command assembly routine f irst checks whether MASS has already

been loaded once. If it has it u s e s ' i t without reloading. Otherwise,

t he storage and r e t r i eva l system is called t o re t r ieve MASS, and the

MLJLTILANGloader, MLDR, i s used t o relocate MASS. Once MASS is in, it

must be linked t o routine CHARFD (sect . Al.7) which provides the character

s t r ing which MASS i s t o assemble. Then, MASS assembles the MSYS cammand

and a check i s made f o r e r rors detected by MASS i n the description formats.

Al.4.2.2 The Source Retrieval Routine

The source r e t r i eva l routine, i n addition t o executing r e t r i eva l

cammands, which i s i t s primary purpose, a l so perfoms several useful

f'unctions f o r t h e other command routines described below. F i r s t , it

re t r ieves items by descriptqons supplied from the cammand assembly rou-

t i n e (Sect. A1.4.2.1), and ve r i f i e s t h a t there i n f a c t was a t l e a s t one

item found with t h a t description. It a lso ve r i f i e s t h a t the item has data

i n the proper place and computes the address and length of t h a t data.

Lastly, it outputs the data, one l i n e a t a time and returns t o the top

of the routine t o look f o r more items matching the given description.

~1 .4 .2 .3 The Binary Retrieval Routine

The binary r e t r i eva l routine follows the source r e t r i eva l routine
:,-2

a s far a s t h e verifying t h a t an item has been retr ieved (see Fig. ~ 1 . 1 0) .

It must then verify t h a t the data retrieved i s indeed a binary deck.

After t h i s it need only wri te the deck out, but t h i s process i s campli-

cated by the f a c t t h a t a binary deck includes both binary and BCD cards.

The BCD cards a r e distinguished by the f a c t t h a t they a l l s t a r t with a

dol la r sign. Note a l so t h a t binary decks a re not stored with the usual

v i s ib l e sequence punches. Consequently, blank sequence columns must be

provided t o insure proper card length.

RIPCAL (7
Retrieve an item 8

J, '
No

Was an item found
, ~ 1 . 1 3

Yes
i

- + RSW

I Does item have
Element 301 HIFCAL

Compute data start
and length

I Call CUTPUT for
each line of the item I

RIPCAL c">
Figure A1.10 Source Retrieval Routine

BINCUl

Find the data
in the item

+--I Is first word $IBLDR
MOLDR

Yes
I
Compute length of data

I

Get next card u
Is it a $ card

Set file control
to binary

Call S.PUTL Q
I Are we done with this item

REPEAL A1.10 6

BINDOL 0
Plush the buffer Q
Pad line with blanks

Call S.PUTL 9
Are we done with

.this item

Figure A1.11 Binary Retrieval Routine

A1.4.2.4 The Macro Retrieval Routine

Unlike the source and binary r e t r i eva l routines, t he macro re-

t r i e v a l routine does not actual ly output any card images. Rather,

a f t e r the macro has been retrieved, an input control block (ICB) i s

constructed which w i l l cause the macro t o be read whenever MGFT i s

called.

A l l the a c t i v i t y of the macro r e t r i eva l routine i s directed toward

const,ructing the ICB which w i l l be used t o read the macro. There are two

essent ia l types of data which must go in to the ICB, information concerning

the address and length of the macro and information defining any actual

parameters.

After the macro command has been assembled by the canrmand assem-

bly routine (sect . ~1.4.2.1), t he assembled f om, which contains the

actual parameters plus a loca l tab le of contents (LTC), i s put in to an

ICB prototype buffer. This buffer, which contains space f o r the addition-

a l required data, i s then put on the ICB pushdown l is t . After the macro

has been retrieved the necessary addresses and record count a re added t o

the ICB on %he pushdown l is t .

~1.4.2.5 Error Routines f o r Retrieval Cammand Routines

There a re three e r rors which can r e s u l t f r m an.improper descrip-

t i o n i n a r e t r i eva l command (see Fig. ~ 1 . 1 3) . F i r s t , samething may be

wrong with the punctuation, choice of characters, etc., which w i l l r e su l t

i n MASS not being able t o assemble the description (DESERR). Second,

there m a y be no items which f i t the given description (NOITEM) . Third,

a binary item may not be a relocatable binary dec (NOLDR). For each

of these errors an appropriate nessage i s printed f o r the user, and the

error i s otherwise ignored.

Find Macro name
and ac tua l parameters

r e l a t i v e t o top of LTC

Put assembled
desc r ip t ion i n Macro

Pushdown buffer 1
DEFINE m5

I Save current Rip Call

1
Ib

Call IXPUSH

I

1 Find desc r ip t ion i n Pushdown I

RIPCAL
A1.10

Find current ICB
Pushdown

I Put t h e address of I
t h e data i n t-he ICB c

I Campute t he record count arid
put it i'n the ICB I

I Put item &dress i n - I i B I

Figure A1.12 Macro Re t r i eva l Routine

P r i n t cu r ren t card I
P r i n t message "Descript ion

y i e l d s no items. Request

P r i n t cu r ren t card c
P r i n t "Error i n desc r ip t ion .

Request ignored. I '

P r i n t "Item not
binary"

Figure A1.13 Error Routines f o r Re t r i eva l Cornand Routines

A1.5 The Generalized Input Control Routines

Because of the poss ib i l i ty of ' nesting MSYS macros and inter lac-

ing them with Input commands, it is necessary t h a t same central input

routine be responsible f o r handling the sequencing of the several sources

of input. This sequencing control i s made possible with the use of a

group of devices.

Central t o t h i s group i s the Input Control Block (ICB) pushdown

l ist . Each time a new source of input i s called for , an ICB i s con-

structed and placed on the pushdown. Within the ICB i s a l l t he informa-

t i o n required t o allow reading of the new input source, including loca-

t i o n of data, number of card images t o be read, and a control mask t o

allow a variable number of card images. Taus input can be read according

t o t h i s ICB u n t i l all of it has been read. Then the pushdown i s popped

and reading continues fram the previous source. The pushdown i s in i t i a l i zed

t o s t a r t reading the user 's input f i l e .

Input fram an input f i l e and input f r m a macro must be read fram

different sources. Also, macro input requires preprocessing f o r parameter

subst i tut ion before control returns from the main input routine. I n order

t o account for these differences, each ICB contains a pointer t o a se lec t

routine which i s responsible f o r knowing how t o handle the part icular in-

put source.

Similarly, when an input source has been exhausted, an end of f i l e

routine ,must be called which knows how t o handle the situation. Each ICB,

thus, contains a pointer t o the appropriate end of f i l e routine.

~ 1 . 5 . 1 IXGFT

The main section of the generalized input control routine i s

cal led MGET. MGET must f i r s t locate the ICB a t the top of the push-

down and get the current record count fram it (See Fig. ~ 1 . 1 4) . If the

record count has gone t o zero the end of f i l e e x i t i s taken. Otherwise,

t h e count i s reduced by one. Next the address of the se lec t routine i s

found i n the ICB and control i s t ransferred t o it. When the se lec t

routine returns t o IXGml, a check i s made t o determine i f the select rou-

t i n e detected an end of f i l e . I f so, the end of f i l e e x i t i s taken. I f

not, the ICB i s checked t o determine i f a mask check i s called for . I f

so the f irst six characters of the card read are campared with the mask

found i n the ICB. I f a match i s found, t h i s condition i s t reated l i k e

an end of f i l e . If e i ther no mask check i s called f o r or amatch does

not resul t , then the card image i s moved t o a c m n buffer where a l l

other routines w i l l operate upon it. I f the se lec t routine indicated

tha t the card i s t o be checked f o r parameter substi tution, t h i s i s done

next. MGET f ina l ly e x i t s by returning t o the cal l ing program.

A 1 . 5 . 2 The Pushdown Control Routines

There a re two subroutines, TXPUSI-I and IXPOP, which are responsible

f o r .maintaining the ICB pushdown l i s t . (see Fig. ~ 1 . 1 5) There a re three

locations which these routines must maintain. The current pushdown poin-

t e r i s used by many routines t o f ind the current ICB. The current ICB

length i s used by MPUSH t o determine where a new I C B goes i n the pushdown.

The previous pushdown pointer i s stored i n the new ICB t o allow MPOP t o

restore it when deleting an ICB from the pushdown. When adding an ICB t o

the pushdown i t s length must be supplied t o MPUSH by the ca l le r . When

popping MPOP camputes the new current length fram the difference between

Save reg is te rs

Find current ICB Q
I IS a mask called for P

Get first word
from card read n-

I s record count zero Does it match mask

VC-1 -vc Move card t o CRDBUF

I
d i

I
J

J/
Get address of s e l e c t

routine from ICE
and put it i n e

?

Restore AC i f seJ.eet. return

+ 4 Scansw
v

Restore reg is te rs

Did se lec t routine Yes
return with EOF

Save AC
Save address and

word count

6 i r e A . The MGET Routine

IXPUSH 0
Save r eg i s t e r s i4

I Move current pointer
t o current pointer & current I
I length I

I Current pointer & current
l e n g t h 4 c u r r e n t pointer

Save r eg i s t e r s r - l
Find current ICB +

Get backpointer t o new ICB c
I Subtract t o ge t new current

length I
I s current pointer too la rge

Get new current length

Move it t o pushdown e

Use backpointer a s new
current pointer

J L

Is new current length zero

L ~1.16
Get from address from .

Restore r eg i s t e r s c=l

from parameter word 0 J I b

parameter word

Restore . reg is te rs I
Save new current length

*

Figure A1.15 The Pushdown Control Routines

I
1

I

the old and new pushdown pointers.

A1.5.3 Selact Routines

The se l ec t routines a re cal led by MGEP and are responsible for

reading cards, or otherwise locating them, and informing MGET of cards

address and word count. They may a lso indicate t h a t instead of a card

being read, t ha t an end of f i l e was read. The se lec t routine i s a lso

responsible f o r indicating t h a t a card i s t o be scanned f o r macro para-

meter substi tutions.

Two se lec t routines, MACSEL f o r macros and MtJLSEL f o r input f i l e s ,

a r e show. i n Fig. A1.17. MACSEL f inds cards i n a macro item, updating

the current record address each time it gets a card. MULSEL gets cards

by ca l l ing the MULTUNG input routine, MJLIN. Note t h a t i f MULIN returns

an end of f i l e indicator t o WSEL, MULSF w i l l pass t h i s on t o lXGECT

and w i l l always indicate an end of f i l e thereaf ter . This i s necessary

because cal l ing MLTLIN a f t e r it has returned an end of f i l e w i l l r e su l t

i n the job being terminated imnediately.

~1.5.4 End of F i l e Routines

When a se lec t routine returns t o MGET with an end of f i l e indica-

t ion, or when an ICB record count i s zero, or when a card i s read which

,matches an ICB end of f i l e mask, IXGEZ takes the end of f i l e ex i t . F i r s t ,

control t ransfers t o MEOF (see ,Fig. Al.19) . ICEOF must then f ind the

pointer t o the appropriate end of f i l e routine i n the current ICB.

I f the pushdown has only one ICB on it (the or iginal fo r reading

input) when an end of f i l e i s encountered, then MSYS is a l l f inished

reading input so the end of f i l e routine fo r t h i s I C B i s MEOF (~ i ~ .

~ 1 . 3)

4'
P r i n t overflow message P r i n t underl'low message

I

Figure A: .16 Pushdom Error Routines

Find current ICB i
4

EOFSW

I

address, ,COUI~ --+AC ,-, ,*, w 4f

- -+ Scansw z=l
CRA + 14 +CRA

Call MULIIJ Q

MULEOF +X . EOF

Return t o MGFT 1->A

I I

- - - I Return TO MGET]

I Return t o I X G E 2
with EOF indicator I

- - - -

Figure A1.17 Select Houtirles f o r Macros and Input F i l e s

I CEOF 7
Find cur ren t I C B m

Find EOF return in ICB c
Put it i n €3 i4

Call MPOP a

Find cur ren t ICB w
Restore previous r epea l v

I &
C a l l IXPOP

i
I I

Figure ~ 1 . 1 8 End of F i l e Routines

End of

left bracket

En2 of
Save up to five line
characters

End of
Find the right 1 ine

bracket >

Find the parameter
prototype

Find the corresponding
Actual Parameter

& . End. of

Make the substitution
line 9

I
I ,fi End of

I Impose the proper
termination on the substitution

\L
Terminate the line

I
\L

Move him back to
card buffer

Return cl

Figure Al.19 Flow Diagram of Macro Parameter
Substi~ution Routine

Otherwise, if either an input ICB or a macro ICB has been placed

on the pushdown, control will pass to either INEOF or M A O F ' (~ig. ~1.18).

6 The Macro Parameter Substitution Routine

The macro parameter substitution routine is the largest single

section of IXSYS. A general flow diagram for this routine, called SCAN,

is given in Fig. Al.19. The basic process of substituting a parameter

may be broken down into the following four steps:

1) Locate a possible candidate. This means find a left bracket

and a closing right bracket and save up to five of the initial

characters of the enclosed string.

2) Verify and identify the parameter by finding the identical

string on the formal parameter list for the macro and noting

which one it is.

3) Find the corresponding actual parameter. The actual parameters

are saved in the ICB pushdown list. This process slso calls

for identif'ying null actual parameters and calling for inclusion

of the formal parameter.

4) Make the substitution. This includes accounting for fixed

length fields.

The cqlete process consists of looping on the four basic steps

until sane point in the sequence encounters the end of a line, either the

given line or the formed line.

A1.6.1 Locating a Possible Fomml Parameter

The line in which pumeter substitutions are to be nade is scanned

frcm left to right with each character being moved to z merge buffer, until

s left krscket is encomtered (see Fig. ~1.20). A formal ~arameter must

be encloses in brackets, so if a left bracket is fmd its position on

Call GETCHR

A1.29
I

No
Is the f i r s t char [> Call PUTCHR

1
4f

Save pointer t o current
character i n case we

need t o back up

I

I n i t i a l i z e TFPARM L--'
df

Call SCAN15
Store char 1 i n TFPARM

*
Call SCAN15

Store char 2 i n TFPARM

Does TFPAFM match
en t r i e s i n l e f t bracket

t ab l e ~ 1 . 2 9
I i

No
4

Call SCAN15 three
more times and s tore cha.rs.

3, 4, and 5 i n TFPARM
<

+ RLI<SW

F i m r e A1.20 Finding a Formal Parameter Candidate

- log -

t he l i n e i s noted and a right; bracket i s sought. As additional characters

a re fetched they a re saved u n t i l f i ve have been accumulated. The f i r s t

two characters a re checked against a l i s t of MSYS camand forms, and

the scan f o r tha t parameter terminates i f a.match i s found.

When the ri&t bracket i s located note i s ,made a s t o whether it

was preceded by a blank t o ident i fy a fixed length f i e ld .

The characters accumulated between the brackets (up t o f ive) a re

then saved a s the formal parameter candidate.

~1.6.2 Identifying a Formal Parameter

A s t r ing of characters enclosed i n brackets on a macro prototype

card i s not necessarily a formal parameter. It must a l so match same

s t r ing on the formal parameter l i s t included i n the macro defini t ion.

This l i s t i s contained i n the macro i t e m , the address of which i s saved

on the ICB pushdown (see Fig. ~ 1 . 2 1) . Once the l i s t of formal parameters

i s located the parameter candidate i s campared against each member of the

l i s t u n t i l a .match i s found. The posit ion of the matching member on the

l i s t i s noted since t h i s posit ion w i l l ident i fy the corresponding actual

parameter.

A1.6.3 Finding the Corresponding Actual. Parameter

There a r e two ways t o locate actual parameters i n a macro ca l l ,

depending on the form of the ca l l . For a regular ca l l , the parameters have

been saved i n the ICB on the pushdown (see Fig. ~ 1 . 2 2) . I n t h i s case

the parameters are pointed t o by a loca l tab le of contents (LTC) which i s

scanned from top t o bottom t o make sure tha t there are enough actual

parameters. Once the proper LTC entry i s obtained it must be examined

fo r the proper type. The only allowed types a re pref ix f ive (a block of

constants) and pref ix six (a single constant), except t h a t prefix zero i s

Remove t r a i l i n g blanks
from TFPAFN and pad with

zeros

G e t address of macro item I- from pushdown

JI
Find where it i s

Get next entry i n 201

I

Is there an element 201
d

No

Figure A1.21 Identifying a Formal Parameter .

I

L * I
Is it same as TFPARM -> I s t h i s the l a s t entry

I

JI
1

Find where the actual
parameters a r e on the

pushdown

G e t next AP entry

No

Is it the one we want 'la Is it the last one
+ d

Al. 27

Get LTC pref ix

I

Yes
Is t h i s an exp l i c i t nu i l

I

P r i n t message LJ

Figure A1.22 Finding ~5he Corresponding Actual parameter

acceptable provided the parameter i s expl ic i t ly n u l . A l l other

prefixes a r e considered er rors and a re t reated a s null.

For a condensed form macro ca l l , the parameter l i s t i s maintained

by the MLJLTILANG r e t r i eva l i n i t i a t i o n program (RIP) . The parameter num-

ber desired i s used d i rec t ly i n the c a l l t o RIP (see Fig. A1.23), and

RIP return with a l l necessary indicators and pointers t o be used direct ly .

A1 .6.4 Making the Substitution

Once the actual parameter has been obtained, it must be moved t o

the merge buffer. A subroutine SCNGET i s cal led (see Fig. ~ 1 . 2 4) t o

get one character from the actual parameter and put it i n the merge buffer.

A s each character i s moved i n t h i s way a character of the formal parameter

i s checked u n t i l a r igh t bracket i s found. An indicator keeps t rack of

which runs out first, the formal parameter or thc actual parameter.

After the r ight bracket of the formal parameter i s reached the

question of whether or not it was preceded by a blank a r i se s (~ i g . ~1.25).

If not, then if more actual parameter characters need t o be moved t o the

merge buffer, they are. I f the r igh t bracket i s preceded by a blank,

then the f i e l d must be r igh t Jus t i f i ed t o the column of the r igh t bracket.

This may mean e i ther moving the merge buffer pointer back t o the column of

the r igh t bracket, o r get t ing more actual parameter characters o r blanks

t o f i l l the f i e l d .

A1.6.5 Miscellaneous SCAN Subroutines

S C N W

The SCNGFT subroutine (~ i g . ~ 1 . 2 6) i s responsible f o r moving actual

parameter characters t o the merge buffer. It must be primed with the

address and word count of the actual parameter. It keeps t rack of where

it i s and each time it i s called it gets one nore character and puts it

SCAN 30 9
I Set parameter n:..~mber

in RIP call I
4l

Call RIP

I
I

1 Yes

Is it good A1.22

Yes

Set address of AP -
Figure A1.23 Sources of Actual Parameters In A

Condensed Form Macro Command

I
Set address of AP Set addrerr; of AP

A

t -
Convert word count

v >
to char. count Set character count

Set char. count

*

i Yes '

Is the parameter null ') Put it in TFPARM

I NO ~1.27

Go back to char. after { L
Initialize SCNGET

-
None left r

Call SCXGET A S - + I : C A N ~ ~ A > Call GETCIIR
b t

None
left Ido

Call SCNGET Is it]
I

Call GETClii3 -r"l
Figure A1.24 Parameter Sub~titution Phase

Find what column
the] i s i n

Find what column +i
I has been f i l l e d 1

Has 1 column

A1.20

-
SCAN13

A1.20
None

Call ScNGET -left
J

- . 1

Figure A 1 . 2 5 Parameter Tenlination Routines

Yes
I s f i l l e d l e s s than] A 3

No .

Set] column i n t o
f i l l e d column

.. . ' SCAN13
C a l l PUTCHR

with a space

1

+
None , I f

Cal l SCNGET - -W SCAN13

I Is remaining partial word empty

d!-

Get a new word Get partial word

-

Is remaining char.
count s 5

Shift out the char. c
1 Save new partial word I

Call PUTCHR i"l

L

Is it all leading
bla.nks or trailing

zeros

Yes

No

.
Get remaining
partial word

.L

No J
Q Yes

1

Increment AP word pointer
Set partial word count to 6

Have we finished this AP word

Increment char. count

I

-

Any there any more Take "None Left"
Return

I

Take "None Left"
Return

I Return normal I
T

Figure ~ 1 . 2 6 SCNGIST Routine

i n the merge buffer. When the character count ge ts t o f ive or less ,

SCNGET checks t o see if all remaining characters a re blank. I f so a

special re turn t o the cal l ing program i s taken indicating t h a t a l l actual

parameter characters have been moved.

OMIT -
This subroutine i s called when an actual parameter has been amitted,

signalling t h a t the formal parameter should be used (see Fig. ~ 1 . 2 7) . It

i s d s o called when the actual parameter i s an exp l i c i t nul l . I n t h i s

case, the exp l i c i t nu l l overlays the formal parameter before the c a l l t o

OMIT.

GFTCHR

GETCHR i s a simple character feeding routine (~ i g . ~ 1 . 2 8) . It

must be i n i t i a l i z e d with the buffer address fram which characters a re t o

be obtained and the character number of the f i r s t character of the first

word. Subsequently, every time it i s called it fetches one more character

f r m the buffer. Two e x i t s a re provided, a normal one when a character

has been fetched, and a "none l e f t " e x i t when the end of the buffer i s

reached. GETCHR assumes t h a t the buffer used i s the standard card buffer,

but the s t a r t ing address may be anywhere within t h i s buffer.

PtJTCHR

This subroutine i s called t o put one character i n the merge buffer

(~ i g . A1.28) . When the .merge buffer i s f i l l e d , PUTCHR autamatically e x i t s

t o LINFlTL (~ i g . A1 .29) .
sCA~14

 SCAN^^ (~ i g . ~ 1 . 2 9) i s a terminal subroutine of SCAN which i s

cal led if it i s determined t h a t the current l i n e being scanned could not

possibly have any more formal parameter, f o r example, because there are

Get 3 chars of FP I
C - Yes 3 +
IS it [N/ BLKSW - SCAN13

_j

No

Back up to [

I A1.20

- + SCAN13
4

Call GmCHR

I

Figure A1.27 Null Parameter Routine

Save Registers w

Put the character
where it belongs

C JI -

Restore r eg i s t e r s c

Have we reached .
Yes >

the end of CRDBUF

Figure A1.28 GECCHR and PUTCHR

Take "None Left"
re turn .

Get the next char.

Save r..;.gisters
r - -
Increment char count . "

Yes Have we reached
4

' the end o f MRGBUB

Restore r eg i s t e r s I

Back up t o the [7
I Call PUTMR f o r the [I

I

>

Call GFTCHR Get a space

V

Call. RJTCHR Call PUTCHR

I Move blRG3UF
back t o CFDBUF I
Bit from SCAN u

& None .
l e f t

Call GFTCHR

I
Yes

L Is it]

Is it space

IGNORE a
C a l l PUTCHR f o r [e
Back up GFTCHR
t o next character

a f t e r [

&r'
Figure Al.29 Miscellaneous SCAN Subroutines

no more r igh t brackets. LINF'LJL i s a l so an entry point of t h i s routine

which i s called when the merge buffer i s rull.

SCAN15

This subroutine fetches one character fram the l i n e being scanned

and checks f o r a r i g h t bracket. It a lso keeps t rack of whether or not

the r igh t bracket is preceded by a blank (see Fig. ~ 1 . 2 9) .

IGNORE

When a formal parameter candidate does not match a member of the

formal parameter l ist , it i s ignored, and scanning continues a t the next

character af t e . the l e f t bracket (see Fig. ~ 1 . 2 9) .
Al.7 Miscellaneous IXSYS Subroutines

CHARFD i s the subroutine which supplies characters t o the MULTILANG

assembler MASS when it assembles MSYS cammands (see Fig. A1.30). The

first time it i s cal led CHARF'D i s expected t o feed six blanks t o MASS.

Thereafter, it feeds the number of characters requested by MSS. If the

end of a l i n e i s encountered and MASS i s s t i l l asking f o r more chaxacters,

the subroutine MORE (~ i g . Al.31) i s cal led t o read another l i n e and return

t o CKILRFD.

m -
FUT i s a subroutine used t o output dol la r sign cards onto the input

scratch MSYS i s W i n g up f o r IBSYS (~ i g . ~1 .31) . PUT expects the f i l e

UTL;FBl t o be opened a s an output f i l e when it i s called.

m

This subroutine i s called t o write card images on UTLFBl (see Fig.

~1.31). If the card i s a dol lar sign card, the buffers a re flushed and

PUT i s called.

4

-1-&1 Count > 79

Save Registers

\0

, l ~ ' ,
U ADW V n m -

Feed six blanks

P

I I count > 61 W

I - I

.+
r

CHRSW

c.

V >

Count + 1 -m count
but use old count

I

Find word with t h i s character.
Left j u s t i fy character i n hQ.

Shif t character in to AC.

Are more characters
requested

+
' >

Return c2
- + CHRSW

Restore Registers +
Re turn i"l -

Figure A1.30 Character Feeding Routine Used With MASS

Save Registers i4
Call IXGET I
0 -+ Count Q

Restore Registers 7

Set BCD indicator rn
Call S . FUTL 0
Call S. CLSE G
Call S.OPEN Q

Output

I Yes f

Is first char $ Call S.CLSE .

Set BCD indicator Call S. OPEiV

-

Call S.PUTL Call Put
4 I

Re turn Re turn

Figure A1.31 Miscellaneous IXSYS Subroutines

FINI -
If, f o r same reason, MSYS does not choose t o t ransfer control t o

IBSYS, but instead returns t o MULTILANG, it does so v ia FINI (~ig. A1.31) .
There a re three reasons why t h i s might happen: 1) a catastrophic error,

2) no data has been transferred t o the IBSYS input tape (fo r example,

i f a description f a i l ed t o re t r ieve anything), and 3) i f a macro i s de-

fined using the condensed form fo r the definit ion.

The output recovery phase of the MSYS procedure is performed by

a program called M m . There are three steps t o the MWT function.

F i rs t , parameters t o MOUT tha t have been s e t up by MSYS must be pro-

cessed. These parameters identify the terminal t o which the output be-

longs and the l i n e MTLTIUNG i s t o s t a r t reading a f t e r IXWT finishes

(the l i n e a f t e r the l a s t one read by MSYS). Then, the IBSYS system

input uni t must be switched back and the f i l e MOUT i s t o read must be

opened. Lastly, the output data must be read fram the intermediate unit ,

reformatted, and written on the appropriate terminal output f i l e .

A2.1 Parameter Processing

MSYS supplies two parameters t o IXOLPT. The first (see Fig. ~ 2 . 1)

i s the terminal number of the user requesting the IXSYS Job. If t h i s

number i s larger than any terminal number it ident i f ies the system input

uni t (a regular batch user). I n t h i s case a switch i s s e t indicating

t h a t no output must be recovered and the second parameter i s ignored.

Otherwise, the second parameter i s the input l i n e number where processing

i s t o continue when MCUT returns t o MULTILCLNG.

A2.2 Unit Control

There are three types of uni t s which must be in i t i a l i zed by the

uni t control phase of MCUF (Fig. ~ 2 . 2) . The MLTLiTIMG uni ts X. I N and

X.OUT must be s e t t o the input and output f i l e s of the user 's terminal,

and the input f i l e must be 'positioned t o the proper l ine . The IBSYS

uni ts S.SIN1 and S.SU12 must be switched back t o the i r or iginal positions.

The MOUT input f i l e UTLFB2 must be closed, marked with an end of f i l e

mark, rewound, and opened so tha t the user 's output may be read from it.

Get first parameter

+A
b

Is it there and good

Put it in S.PCON I-._]

Get second parameter

'- Yes

Is it there and good
Yes

S.PCON 2 NOCON

Fut it in proper S.PLIN P

Figure A2.1 MCUT Parameter Processing

I
i

I

> c+X.REM

b

Set X.IN and X.OUT
from S.PLIN

Position input to S.PLIN

Swap reservation I codes of S .SIN1 and I

1 t:e 1 m B . - 1
Rewind

Figure A 2 . 2 Uni t Control i n ~ W T

A 2 . 3 Output Swapping

The flow diagram f o r the output swapping phase of MOUT i s given

i n Fig. A 2 . 3 . One logica l record (output l ine) i s read a t a time and

a check i s performed t o determine i f it i s the l a s t l i n e t o be swapped.

The carriage control character must be moved from the f i r s t posit ion of

the l i n e t o the ca l l ing sequence of the output routine, being converted

i n the process t o the corresponding control character f o r output f i l e s

of the MSPSF. Next,tthe output l i n e must be s p l i t in to two l i n e s between

characters 64 and 65. This requires the second half of the l i n e t o be

sh i f t ed . r igh t two characters. Lastly, the two half l i n e s a re wri t ten on

the user ' s output f i l e using the MULTILANG output routine MULOUT.

I Get one l o g i c a l record (

.- - 1

No 4 Yes
, r

Get control character - -+ EI'DSW
and replace with space

*
I

Yes NO

character from IBSYS
format t o remote format

Does it s t a r t with $SWITCK ------j

I Insert con t ro l character
i n t o proper p lace I

S h i f t second h a l f of
l i n e r i g h t two characters

IS it S . S O U ~ , S . S U ~ ~

+ .
Write f i r s t h a l f

I

1

I Write second ha l f 1

--

F i w r e R2.3 IXOUT Swapping Phase

Print message

cKl+T!
1 Resurn to MILTILAPIG 1

Figure ~ 2 . 4 Terminating from MOUT

APPFADIX 3 MISCEUIANEOUS WORKER PROGRAMS

The worker programs described i n this Appendix were written

primarily fo r remote users of MSPSF, although they also have u t i l i t y

for batch users. Conversely, there are several worker programs used

frequently by remote users which have not been described here because

they are intended f o r f a r more general use.

A 3 . 1 STOF33

Purpose: To save source input i n the data f i l e .

Use: The format f o r a c a l l on STORE i s a s follows:

~ ~ 0 ~ ~ / k e y l / k e y 2 / . . . /keyn

where keyl, key2, ..., keyn are the keys under which the input i s t o be

saved. The key ST.RE i s also added.

The input t o be saved follows the c a l l on STORE, and ends with the

following card:

$STORE

Operation: F i rs t , all data items matching the description

ST.RE%keyl&key2&...&keyn are deleted fram the data f i l e . Next the input

i s read and b u i l t in to an i t e m f o r storing. Lastly, the item i s stored

using the MULTILANG routine ITEMIN.
.

A3.2 RESTORE

Purpose: To restore t o an input f i l e data which has been previously

saved by STORF,.

Use: The format f o r a call on RESTORE i s as follows:

 RESTORE/^^ s c [/x 1

where desc is' a description by which the input t o be restored may be

retrieved, and X i s any key. The second parameter i s optional and

signif ies t h a t an attempt i s t o be .made t o retr ieve as xua,q' i t a s which

match the description as possible. I f no second parameter i s provided,

only the f i r s t item which matches the description (and also contains

ST.RE a s a key) w i l l be restored t o the input f i l e .

Operation: F i rs t , the output f i l e pointer i n the WTILAMG program

MrJLaJT i s rese t t o be the same a s tha t f o r the input f i l e . Then the f i r s t

i tem,mtching the description i s retrieved and checked fo r the additional

key ST.RE. I f no items are found a message t o t h a t e f fec t i s printed and

the exi t routine i s taken. When a r e t r i eva l i s successful, the data i s

written out using WWT. This resul t s on the data f o r a remote user

being placed on h i s input f i l e , or fo r a background user, the data i s

simply printed.

After the i t e m has been written the new length of the input f i l e

i s camputed and the append pointed i s updated. Then tne existence of a

second parameter i s checked. I f there i s one, as many items a s can be

retrieved by the given description and which contain the key ST.RE are

also written on the input f i l e . I f there i s no second parameter or if

there are no .more items then the ex i t routine is taken. The ex i t rou-

t ine flushes the MULOUT buffer, restores the output f i l e pointer and

p r in t s a terminating message on the output f i l e fo r the user.

A 3 . 3 PUNCH

Purpose: To punch data which has been previously by STORE.

Use: The format f o r a c a l l on PUNCH i s a s follows:

pU~CH/desc [/sequence number

where desc i s a description by which the items t o be punchedmay be

retrieved, and sequence number as the s tar t ing sequence numoer f o r punch-

ing. This parameter i s optional, and if omitted, all 80 columns of the

original data are punched. I f the second parameter i s included tne

following two options:

(a) sequence number is less than or equal to six characters;

ignore it and sequence from flJd$$0000.

(b) sequence number is more than six characters; use first eight

characters (left justify space fill) as the initial sequence

number.

If sequencing is performed, it is by tens. If sequencing is performed and

more than one item is retrieved, the sequencing of each successive item

continues where the previous one ended.

Operation: The first item matching the given description is retrieved

a ~ d checked for the additional key ST.m. If none are found a message

to that effect is printed. If an item is found which is to be punched,

a separator card, which identifies the deck for dispatching purposes, is

punched first. Then the second parameter is checked and the appropriate

sequencing or lack of it is noted and initialized. Next, each card is

obtained fram the item, sequenced appropriately, and punched. After all

decksmatching the given description have been punched, a message to the

user is printed informing him of the number of decks punched.

BIBLIOGRAPHY

Amdahl, Gene M.: Validity of the single processor approach to achieving

large scale computing capabilities. Proc. AFIPS Spring Joint Com-

puter Conf . New York: Spartan Books, Inc., 1967.

Auroux, A , , and Bellino, J.: A 14-01/7044 Time-Shared System in Batch

Processing Mode and in Conversational Mode, Tr. by Michael S,

Wolfberg. Unpublished.

Bursky, Philip, Churchill, William and Prywes, Noah S.: Description of

a Man/~achine Competitive Game. University of Pennsylvania, Moore

School of Electrical Engineering, M. S. Report 67-21, 1967.

Dartmouth Time Sharing System. Dartmouth College Camputation Center,

Hanover , New Hampshire, 1964.
Denning, Peter J.: Effects of scheduling on file memory operations.

Proc. AFIPS Spring Joint Computer Conf'. New York: Spartan Books,

Inc. 1967.

Dennis, J. B.: Segmentation and the design of dtiprogranmred computer

systems, J. ACM, 12: 4, 1965.

Engvold, K. J., and Hughes, J. L. : Teaching "Hands-Ontt Programing at a

Display Terminal: The AEAC-I1 System. International Business

Machines Corp . , Internal Document, Poughkeepsie, 1966.
Engvold, K. J., and Hughes, J. L.: A General Purpose Display Processinq

and Tutorial System. International Business Machines Corp.,

TROO .1694, Poughkeepsie, 1968.

Estrin, G., and Kleinrock, L.: Measures, models, and measurements for

time-shared computer utilities. Proc. ACM National Conf. Washington:

Thompson Book Co., 1967.

Freedman, H.: A Storage and Retrieval System for Real-Time Problem

Solving. University of ~ennsylvania, Moore School of Electrical

Engineering, M. S. Report 66-05, 1965.

Fuchel, Kurt, and Heler, Sidney: Considerations in the design of a

multiple camputer system with extended core storage. C m . ACM,

ll:5, 1968.

Fuller, R.H.: Associative parallel processing. Proc. AFIPS Spring Joint

Ccunputer Conf . New York: Spartan Books, Inc . 1967.
Harrison, M.C., and Schwartz, J.T.: SHARER, A time sharing system for

the CDC 6600. Camm. ACM, 10:10, 1967.

Hollander, Gerhard L.: Architecture for large cauputer systems. Proc. -
AFIPS Spring Joint Co~qmter Conf. New York: Spartan Books, Inc.,

Hsiao, David K.: A File System for a Problem Solving Facility. Univer-

sity of Pennsylvania, Ph.D. Dissertation, 1968.

IBM 7040/7044 Remote Camputing System. IBM System Reference Library No.

7040-25, Form ~28-6800.

Kapps, Charles A.: SPRINT: A Direct Approach to List Processing

Languages. Proc. AFIPS Spring Joint Computer Conf. New York:

Spartan ~ooks, ~ n c . , 1967.
Kleinrock, Leonard: Time-shared Systems: A Theoretical Treatment.

J. ACM, 14:2, 1967.

Morton, Richard P., and Wolfberg, Michael S. : The 1nput/0utput and

Control System of the Moore School Problem Solving Facility. Univer-

sity of Pennsylvania, Moore School of Electrical Engineering, Report

The W t i - L i s t System, Technical Report No. 1, Vols. I and 11, University

of Pennsylvania, Moore School of E lec t r i ca l Engineering, M. S. Report

Nielson, Norrman R.: The Simulation of Time Sharing Systems. Cam. Am,

l0:7, 1967.

Oestreicher, M.D., Bailey, M.J., and Strauss, J.I.: GEORGE 3-A General

mupose Time Sharing and Operating System. Comm. ACM, 10:11, 1967.

Ostrand, T.J.: An Expanding Camputer Operating System. University of

Pennsylvania, Moore School of E lec t r i ca l Engineering, M. S. Report

Pike, Thomas N., Jr.: Time-Shared Computer Systems. Advances i n Cam-

puters, Vol. 8. New York: Academic Press, Inc., 1967.

Prywes, N. S. and Gray, H. J.: Outline f o r a Multi-List Organized System,

Proc. 14th ACM Meeting, 1959.

Reiter, Allen: A Resource-allocation Scheme f o r Multi-user On-Line

Operation of a 511 Computer. Proc. AFIPS Spring Jo in t Camputer

Conference. New York: Spartan Books, June, 1967.

Saclaaan, H., Erikson, W.J., and Grant, E.E.: Exploratory Ekperimental

Studies Comparing Online and Offline Programming Performance.

C m . ACM, 11: 1, 1968.

Schatzoff, M., Tsao, R., and Wiig, R.: An Experimental. Camparison of

Time Sharing and Batch Processing. Comm. ACM, 10: 5, 1967.

Schwartz, Ju l e s I., and Weissman, Clark: The SDC Time-Sharing System

Revisited. Proc. ACM National Conference. New York: Thampson

Slotnick, Daniel L.: Unconventional Systems. Proc. AFIPS Spring Jo in t

Camputer Conf . New York: Spartan Books, Inc . , 1967.

Strachey, C.: A General Purpose Macrogenerator, Computer J., 8:3 , 1965.

Varian, L.C., and Coffman, E.G.: An Empirical Study of the Behavior of

Programs in a Paging Environment. Preprint for ACM Symposium on

Operating systems, 1967.

Vyssotsky, V.A., Corbato, F.J., and Graham, R.M.: Structure of he

Multics Supervisor. Roc. AFIPS Fall Joint Camputer Conf. .- New

York: Spartan Books, 1965.

Weinberg, Paul R., and Wolfberg, Michael S.: The PDP-5 As a Satellite

Processor. Proc. Spring DEWS Meetin&. Maynard, Mass.: Digital

Equipment Corp. Users Society, 1966.

West, George P.: The Best Approach to a Large Camputing Capability.

Proc. AFIPS Spring Joint Computer Cod. New York: Spartan Books,

Inc., 1967.

Wexelblat, R.: The Development and Mechanization of a Problem Solving

Facility. University of Pennsylvania, Moore School of Electrical

Engineering, Dissertation, 1965.

Zimmerman, B., Lefkovitz, D., and Prywes, N.S.: The Naval Aviation

Supply Office Inventory Retrieval System--A Case Study in File

Automation. Management Science, 10 : 3, 1964.

	On-Line Computing With a Hierarchy of Processors
	Recommended Citation

	On-Line Computing With a Hierarchy of Processors
	Abstract
	Comments

	tmp.1199720684.pdf.ZQ851

