
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

May 1991

Self Organizing Feature Maps and Their Applications to Robotics Self Organizing Feature Maps and Their Applications to Robotics

Craig Sayers
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Craig Sayers, "Self Organizing Feature Maps and Their Applications to Robotics", . May 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-46.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/405
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/405
mailto:repository@pobox.upenn.edu

Self Organizing Feature Maps and Their Applications to Robotics Self Organizing Feature Maps and Their Applications to Robotics

Abstract Abstract
The self-organizing feature maps developed by Kohonen appear to capture some of the advantages of the
natural systems on which they are based. A summary of the operation of this form of artificial neural
network is presented. It was concluded that the primary benefits of using self-organizing feature maps
result from their adaptability and plasticity while most problems are largely caused by the lack of a
rigorous mathematical foundation.

Two different robotics applications are described. In the first, developed by Martinez and Schulten, a
hierarchical structure composed of many self-organizing feature maps is used to control a five degree of
freedom robot arm. While it was noted that there may be some practical problems, the general idea of
using a hierarchical structure appears sound and may be applicable to a wider range of problems.

The second robotics application was developed by Saxon and Mukherjee. They used a single self-
organizing feature map to learn the motion map of a two degree of freedom arm. The use of such a
system should simplify path planning by combining multiple constraints into a 2-D structure.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-46.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/405

https://repository.upenn.edu/cis_reports/405

Self Organizanig Feature Maps
and Their Application To Robotics

MS-CIS-91-46
GRASP LAB 268

Craig Sayers

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

May 1991

Self Organizing Feature Maps and their Application to
Robotics

Craig Sayers

April, 1991

Submitted in partial fulfillment of the requirements for the Written
Preliminary Exam Part 11.

O 1991, The University of Pennsylvania, Philadelphia PA 19104, U.S.A.

This work was supported in part by the National Science Foundation under Grant Number

BCS-89-01352. Any opinions, findings, conclusions or recommendations expressed in this report

are those of the author and do not necessarily reflect the views of the National Science

Foundation.

Summary

The self-organizing feature maps developed by Kohonen appear to capture some
of the advantages of the natural systems on which they are based. A summary
of the operation of this form of artificial neural network is presented. It was
concluded that the primary benefits of using self-organizing feature maps result
from their adaptability and plasticity while most problems are largely caused by
the lack of a rigorous mathematical foundation.

Two different robotics applications are described. In the first, developed by

Martinez and Schulten, a hierarchical structure composed of many self-
organizing feature maps is used to control a five degree of freedom robot arm.
While it was noted that there may be some practical problems, the general idea
of using a hierarchical structure appears sound and may be applicable to a wider
range of problems.

The second robotics application was developed by Saxon and Mukerjee. They
used a single self-organizing feature map to learn the motion map of a two
degree of freedom arm. The use of such a system should simplify path planning
by combining multiple constraints into a 2-D structure.

Contents

.. 1 . Introduction 1

2 . Biological Neurons .. 3
2.1 Natural Neurons ... 3

.. 2.2 Natural Feature Maps -3

3 . Kohonen's Self-Organizing Feature Maps .. 5
3.1 The Artificial Neuron .. 5

... 3.2 The Learning Algorithm 6

3.3 Example Applications ... 6
.. 3.4 Discussion 7

................................... 3.4.1 Selecting Appropriate Parameters 7
3.4.2 Advantages ... 13

... 3.4.3 Disadvantages 1 3
3.4.4 The Use of a Simplified Algorithm 14

4 . Hierarchical Neural Net for Learning Control of a Robot's Arm
and Gripper .. 15

.. 4.1 System Operation 15
4.2 Discussion ... 17

................................... 4.2.1 Comparison with Kohonen's Work 17
.. 4.2.2 Practical Problems 17
.. 4.2.3 Wider applications 18

5 . Learning the Motion Map of a Robot Arm .. 19
5.1 System Operation .. 19
5.3 Discussion .. 22

................................... 5.3.1 Comparison with Kohonen's Work 22
.. 5.3.2 Examination of Results 22

... 5 .3.3 Alternative Implementations 23

6 . Conclusions ... 31

7 . References .. 33

1. Introduction

The aim of this report is to present a critical review of four papers. The first two
papers [1,2] serve to provide an introduction to Kohonen's self-organizing feature
maps; while the latter two [3,4] describe robotic applications for this type of
artificial neural network.

Natural neural networks (described briefly in Section 2) seem to handle some
tasks very well and in many cases are superior to existing artificial alternatives.
This is particularly true in the field of robotics. For example there are few, if
any, robot controllers which could manage the task of picking up this report and
turning its pages. There would thus appear to be some justification in trying to
mimic the actions of biological networks in an attempt to duplicate their
abilities.

The self-organizing feature maps developed by Kohonen (see Section 3) are an
attempt to mimic the apparent actions of a small class of biological neural
networks. The idea is to create an artificial network which can learn, without
supervision, an abstract representation of some sensory input.

In the robotics application described by Martinez and Schulten (see Section 4) a
hierarchical structure consisting of a number of self-organizing feature maps is
used to convert the signals from two video cameras into an abstract
representation of the position and orientation of a cylindrical object. That
representation is then used to control the motion of a robot as it moves to grasp
the object.

Saxon and Mukerjee (see Section 5) describe a different application in which a
single self-organizing feature map is used to create an abstract representation of

both the joint and cartesian positions for a simple manipulator. This
representation can then be used for collision-free trajectory planning.

2. Biological Neurons

A detailed description of biological neural networks is beyond the scope of this
report. However, in order to evaluate the validity of attempting to mimic
natural networks it is necessary to have some knowledge of their structure.

2.1 Natural Neurons

Each natural neuron consists of a series of input channels termed dendrites.
Input signals pass from the dendrites to the cell body where a "decision" is made
as to whether or not to produce an output pulse. These pulses are sent from the
neuron via an output channel (axon) which connects to the input of other
neurons via input/output connections (synapses) [5].

The frequency with which output pulses are generated is a hnction of the input
signals. If very strong excitatory inputs are applied then a high frequency pulse
train will result. Alternatively if a strong inhibitory input is applied then the
output frequency will be reduced.

It is important to realize that while at any one time the neuron is essentially
only making a binary decision (whether or not to produce an output pulse) the

cumulative effect of many such decisions over time is to produce a pulse-
modulated output signal whose frequency encodes the output strength. Each
neuron therefore produces an analogue output [6] which may be considered a
weighted sum of its input frequencies [7].

2.2 Natural Feature Maps

It seems clear that, a t least as far as mammals are concerned, the brain does
contain some record of previous sensory input. Furthermore, since the number
of possible inputs far exceeds the number of neurons in the brain it seems clear
that some form of compression (or abstraction) is taking place.

The mechanism by which the brain stores these compressed representations is
not well understood however it is hypothesized [8] that they are recorded in "2-D
metrically and topologically organized" sheets of neural cells. In other words the
brain forms a mapping between some multi-dimensional input space and a 2-D

set of neurons.

There is some evidence to support this idea. For example a set of cells have been
found in the auditory cortex of mammals which respond selectively to sounds of
different frequencies such that the location of a responding neuron appears to be
directly related to the frequency of the input sound [9]. Other topographic
representations have been found in the visual, somatosensory and motor-cortex
areas of the brain [lo].
Kohonen's net is an attempt to model, albeit in a very simplified form, the
actions of this type of network.

3. Kohonen's Self-organizing Feature Maps

The basic idea behind Kohonen's network [11,12] is the formation of a 2-D array
of interconnected neurons. When an input pattern is presented to the network
the response of each neuron is evaluated and the one which produced the
maximum response, as well as those adjacent to it in the array, are modified so
as to produce a stronger response to that input.

After a number of presentations of each input pattern the system should ideally
reach a state where an "ordered image" of the input is stored in the network.

3.1 The Artificial Neuron

In his earlier work Kohonen's artificial neurons were of the form:

Where ni is the output from the i'th neuron, wi is the weight vector for the i'th
neuron and x is the input applied to every neuron.

Each neuron's output is thus a weighted sum of its inputs - this formulation
being derived directly from models of natural neurons (see Section 2.1).

The neuron "learns" by modifying its weight vector so that it is more closely
aligned with an input. If it is assumed that both the input and weight vectors
are approximately normalized then the output of the neuron is an approximate
measure of the cosine of the angle between its weight vector and the input. Thus
a strong response would indicate a close match between the two while a weak

response would indicate some disparity between the weight and input

vectors [13].

In later work this neural model was further simplified by computing the output
of each neuron as:

This formulation removes the necessity of providing any form of normalization
and the output is now a direct measure of the euclidian distance between the
weight and input vectors.

The neuron "learns" t o respond more strongly to an input by modifying its
weight vector according to the formula:

This in effect moves the weight vector closer to the input vector by an amount
determined by the gain factor a(t).

3.2 The Learning Algorithm

The complete learning algorithm is:

i) Apply an input pattern

ii) Compute the response of each neuron as I I x(t)-wi(t) I I
iii) End the neuron with the best (minimum) response. Call that neuron c.

iv) Update the weight vectors for the neuron c and for neurons within some
neighborhood of c in the array according to the formula:

wi(t+l) = wi(t) + a(t) [~ (t) - wi(t)]

By updating the weights of neurons in a neighborhood around the maximally
responsive neuron the system ensures that similar inputs will illicit a response
in nearby neurons while dissimilar inputs will produce a response from neurons

further away in the network. The system thereby tends to adopt an ordered
state.

3.3 Example Applications

Kohonen presents two examples which illustrate the use of self-organizing
feature maps.

The first is in the field of speech recognition. The speech input is sampled, a
fourier transform is performed and the resulting frequency components
(represented by 15 analogue signals) are then fed as input to a 2-D self-

organizing network.

The results after much training appear to indicate that the system has learned
t o respond to the input in an ordered fashion.

This is a particularly impressive example because the system has created an
abstract representation of a 15-dimensional input using only two dimensions

while apparently maintaining sufficient information to permit accurate speech
recognition [14,15].

The second example uses two robot arms. In this case training was
accomplished by selecting a point at random in a rectangular region in the
common workspace of both robots and then moving the end-effectors such that
they were coincident with that point. The four joint angles (two from each
robot) were then fed as input to the network. After many such trials the system
learned an ordered mapping over the input space.

Once this mapping has been learned the system can be used to perform inverse
transforms since the weights at each position in the array have directly encoded
the joint-space positions for both robots.

3.4 Discussion

3.4.1 Selecting Appropriate Parameters

The selection of a suitable gain factor, a(t), appears t o be a compromise between
learning rate and learning accuracy. If a high gain factor is chosen then
learning will proceed rapidly but the net will be constantly shifting with each
new input pattern and so the entire input space may not be evenly categorized.
Alternatively, if a low gain factor is chosen then learning will be very slow but
should eventually reach a very accurate result. The gain factor is therefore
typically chosen to be initially rather large (to ensure rapid initial learning) and
is then reduced to increase the accuracy of the final result.

By way of an example consider a 2-D array of neurons which is required to learn
two input signals. Both the inputs vary between 0 and 1 with a flat probability
distribution (see Figure 3.1). The response of the network is shown in
Figure 3.2. Each point in the graph represents the point in the input space to
which one neuron has become maximally responsive. The lines joining these

points indicate nearest-neighbor connections between neurons in the square
array. Initially all the weights were assigned small random values.

I 1
I

I Self-Organising Array
I I - - - - - - - - - -
I 1

I I

I Y
I
I I 3 output

1 0
I 0 X 1 I

I

Figure 3.1 Example application in which each neuron receives two inputs.

As the learning progressed the points to which each neuron responds have
moved from their initial position very close to the origin and have expanded
outwards to form a more even distribution over the input space. If learning were
permitted to continue the network would eventually form a near-perfect square
grid over the input space.

In this case the gain factor, a(t), was chosen to be the constant 0.01 and it is
clear that while the learning is proceeding very smoothly it it also very slow.

a) Response after 10000 trials

Yn 10-3

c) Response after 30000 trials
Y x

b) Response after 20000 trials

Y x

d) Response after,40000 trials
'i x

Figure 3.2 The response of a 2-D network as it learns a topological mapping over a
2-D input space. In this case the gain factor, a(t), was 0.01

The effect of choosing a larger constant value for a(t) is shown in Figure 3.3
where a value of 0.1 was used. In this case learning is much more rapid,
reaching a square grid after less than 20000 input presentations. However, the
grid is not very evenly distributed over the input space.

Figure 3.4 demonstrates the effect of having a time-varying learning rate. In
this case an initial rate of 0.1 was used for the first 20000 input patterns and
this was followed by a further 20000 presentations with the learning rate set a t
0.01. It should be evident that this produces a better result than either of the
two previous cases.

As the above examples demonstrate there is a considerable difference between
the effectiveness of the network when different gain factor expressions are
utilized. In the example given here it was known a priori that the result should
be a square grid and so it was relatively easy to determine, via experimentation,
suitable values for a(t). However, if the dimensionality of the input were to be
much larger (for example in the case of speech recognition) then it would not be
such a trivial matter to determine suitable gains.

Kohonen has proven [16] that a one-dimensional network of neurons with a
single input will form an ordered mapping provided that O<a(t)<l. However it is
not clear that this proof would scale for cases where either the input or the
network were of higher dimensionality. In particular i t is unlikely that i t would
apply for the case where the input was of much higher dimension than the
network.

The decision as to what size of neighborhood is to be adjusted also appears to be
determined in a somewhat ad hoc manor [17].

a) Response after 10000 trials

Y 10-3

b) Response after 20000 trials
Y 10-3

c) Response after 30000 trials
Y 10-3

d) Response after 40000 trials
Y x 10-3

Figure 3.3 The response of a 2-D network as it learns a topological mapping over a
2-D input space. In this case the gain factor, a(t), was 0.1

a) Response after 10000 trials b) Response after 20000 trials

Y x 10-3 Y 10-8

c) Response after 30000 trials

900.00

d) Response after 40000 trials

Figure 3.4 The response of a 2-D network as it learns a topological mapping over a
2-D input space. In this case the gain factor, a(t), was 0.1 for the first
20000 input presentations and 0.01 thereafter.

3.4.2 Advantages

At first glance the advantages of using a self-organizing feature map over the
use of simpler techniques (such as look-up tables) are not apparent and it is
only when one considers the learning process that they become evident.

The primary benefit is that the network learns autonomously without the
requirement that the system be well defined. It is therefore possible to learn

abstract representations of systems (for example speech recognition) where the
relationship between the inputs is not known.

A second advantage is that the system does not stop learning but instead
continues to adapt to changing inputs. This plasticity allows it to adapt as the
environment changes (see Section 5.3.3 for examples).

A particular advantage over other artificial neural networks is that the system
appears well suited to parallel computation. Indeed the only global knowledge
required by each neuron is the current input to the network and the position
within the array of the neuron which produced the maximum output. With
these two pieces of information each neuron can respond and adapt to changing

inputs without the need for any other inter-neural communication. Given the
suitability of this form of network to parallel processing it is surprising that
Kohonen makes so little mention of this.

3.4.3 Disadvantages

One of the major problems is that for systems which are well defined it will often

be much faster to calculate an exact answer rather than using a self-organizing
map to obtain an approximate solution. This is particularly true when a
sequential processor is employed.

Perhaps a more serious problem relates to the fact, mentioned earlier, that the
behavior of such networks is not well defined mathematically. This means that
the selection of network parameters (such as gain factors and neighborhood
sizes) must be performed in a somewhat ad hoc manor. Of particular concern is
apparent lack of any guarantee that a network, allowed to adapt in the real
world, will always maintain a consistent ordered mapping.

3.4.4 The Use of a Simplified Algorithm

Kohonen appears to give the impression [18-201 that the learning algorithm
which he implements (see Section 3.2) is a simplified version of a more
biologically-correct model. However, if this were the case then one might expect
that the self-organizing behavior which the simplified version exhibits would
also be present in the more complex system. Recent work by Acker and
Kurtz [21] has shown that this is not the case. It would appear that the self-
organizing behavior of Kohonen's simplified algorithm is only a property of that
particular implementation. While this doesn't necessarily mean that the
simplified form is incorrect it does suggest that attempts to justify such a
formulation on a biological basis should be treated with some skepticism.

4. Hierarchical Neural Net for Learning Control of a Robot's
Arm and Gripper

The network developed by Martinez and Schulten [22] uses a hierarchical
structure to learn a mapping between the spatial position of a cylindrical object
and the joint-space position which a five degree of freedom robot must adopt in
order to grasp that object.

4.1 System Operation

The inputs to the highest level of the system are four numbers representing the

(x,y) position of an object in the visual field of two video cameras. This input is
passed to a 3-D array of neurons which learns, using Kohonen's method, a
topological mapping between the 4-D input and the 3-D array. The result is that
each neuron comes to represent a particular spatial position for the object.

Associated with each of these neurons in the 3-D net is an additional 2-D array
of neurons. These arrays receive as input the orientation of the cylinder as seen
by the two video cameras and they learn a mapping between these inputs and
the 2-D array.

The classification of the input picture into both a position and orientation is

therefore a two-step process. Firstly the 3-D net is used to recognize the position
of the cylinder and then the 2-D net associated with that position is used to
determine the orientation of the cylinder (see Figure 4.1). It should be noted
that the output from this process is simply the position within each network of
the maximally responsive neuron - the output is not in the form of a cartesian
position/orientation.

Each neuron in the 3-D net has associated with it the particular posture which
the arm must attain in order to grasp a cylinder at the spatial position encoded
by that neuron. Stored along with this posture is a jacobian matrix
representation of the relationship between changes in the positional information
from the cameras and changes in the arm posture.

Figure 4.1 The hierarchical system employed by Martinez and Schulten.

Each neuron in each of the 2-D nets has associated with it the particular wrist
configuration which is required in order to grasp the cylinder when it is
orientated at the angle encoded by that neuron. Each neuron also stores a
jacobian representing the relation between changes in the orientational
information from the cameras and changes in the wrist orientation.

The system is able to place an arm in approximately the correct position by using
the stored joint positions. It can then compare the current end-effector position
(as recorded by the two video cameras) with the desired end-effector position
and make use of the jacobian matrices associated with the current arm position
to reduce this error.

4.2 Discussion

4.2.1 Comparison with Kohonen's Work

The use of a 3-D network represents a departure from the 2-D style which
Kohonen employed. However, Kohonen's decision to only utilize one and two-
dimensional structures appears to have been motivated by the assumption that
natural networks only employ these forms and this need not necessarily be the
case [23].

4.2.2 Practical Problems

The error correction between the current and desired end-effector positions is
performed in terms of differences between the camera views of the cylinder to be
grasped and the camera views of an imaginary cylinder in the jaws of the
gripper. The method by which the system can determine the appropriate
positional data for this imaginary cylinder based only upon two views of the end-
effector is not apparent.

Furthermore the authors appear not to have considered the possibility that the
cylinder to be grasped may block at least one camera's view of the end-effector.

Another possible problem is that no allowance is made for the space occupied by
the cylinder during positioning. It is almost certain that the arm would attempt
to move through the cylinder while attempting to grasp it.

One way to overcome these difficulties may be to incorporate an additional
network which could relate a joint-space position to an image of the arm. Once
this network had been trained the system could use it to "imagine" where the
arm would be after each motion. This would allow the joint parameters to be
corrected without the necessity of actually moving the arm.

A more serious problem is that the current system only associates a single joint-
space position with each location for the cylinder. This ignores the possibility
that redundant configurations may exist. A similar system has been
implemented using a redundant arm [24], however that implementation was still
restricted to associating a single joint-space position with each cartesian point -
thereby negating many of the advantages of using a redundant manipulator.

4.2.3 Wider applications

In the application described by Martinez et a1 the use of a hierarchical network
was influenced by the structure of the robot arm and the lower layer consisted of
multiple 2-D arrays. However it is possible that an alternative hierarchical
structure may also be feasible.

If only a single network is used then the network size is a compromise between
having a small network which requires little computation but gives a rather
coarse result and a large network which requires much computation but
produces a very accurate result. The necessity of making this compromise could
be eliminated by employing a hierarchical structure in which a small network
was used to select a small subsection of a much larger network. This would only
require the evaluation of two small networks (the smaller net and a subsection

of the larger one) yet it may give a similar accuracy to that achieved using the
whole of the larger network.

It would also appear to provide an excellent way of evaluating a large network
using a small array of processors. Rather than breaking the network up into
array-sized pieces and evaluating each piece sequentially the system could
instead use a small array-sized network to control access to an array-sized
subsection of a larger network. Provided the subsections overlapped then the
larger network should still be able to form a consistent ordered mapping despite
the fact that it is only being accessed in a piecewise fashion.

5. Learning the Motion Map of a Robot Arm

The network developed by Saxon and Mukerjee [25] learns the motion map of a
two-degree-of-freedom robot arm using a self-organizing feature map. This map
can then be used for path-planning with obstacle avoidance.

5.1 System Operation

The system uses a 2-D self-organizing feature map of the type proposed by
Kohonen (see Section 3). This map receives four inputs - two representing the
cartesian-space position of the end-effector and two representing the joint-space
position of the end-effector.

The system is trained by moving the arm to a random point in joint space,
recording the cartesian position of the end-effector and then feeding both the
cartesian and joint information to the network. After many thousands of such
trials the system should learn a topological mapping of the input space. In
essence each neuron comes to represent both a point in cartesian space and a
point in joint space.

Self-Organising Array - - - - - - - - -

L - - - - - - - - - -

Figure 5.1 An overview of Saxon and Mukerjee's system.

5.2 Application to Path Planning

Once the motion map has been learned it provides the basis for a rather elegant
means of planning trajectories around obstacles as described by Saxon and
Mukerjee.

The basic idea is that each neuron in the 2-D net corresponds to both a joint-
space and a cartesian space position. Performing trajectory planning using this
net allows the incorporation of information from both joint and cartesian spaces
while still only requiring that a 2-D array of possible paths be searched.

Obstacles can be incorporated by disabling the joint-space inputs to the network,

applying the cartesian space position of the object(s) to the net and then
disabling those neurons which produced maximal responses.

A possible trajectory which avoids these obstacles can then be determined by
choosing a path through the 2-D neural array which starts at the neuron which
most closely represents the current joint-space position of the arm, avoids any
neurons which have been disabled and ends at the point which most closely
represents the desired end-effector position (in either joint or cartesian space).

One way to accomplish this is to associate a score with each neuron in the
network. If the maximum score were given to the destination neuron and if
progressively lower scores were given to neurons further away in the array then
a suitable path could be determined by selecting a path through those neurons
with the highest scores. This is shown more clearly in Figure 5.2.

Saxon and Mukerjee suggest an alternative technique in which a path between
the start and destination neurons could evolve through a process of "spreading
activation". However, it is not clear how this could be achieved.

Figure 5.2 An example of how a trajectory planning scheme might operate by
associating a score with each neuron. In this case the destination
neuron was assigned a score of 1.0 and the activation levels of other
neurons decrease linearly with distance through the array. Note that
the system has correctly chosen a clockwise path around the obstacle
(an anti-clockwise path would be longer 1. Note also that a square grid
may not necessarily produce the best results and other connectivity
options (for example arranging the neurons in a hexagonal structure 1
may produce smoother trqjectories.

5.3 Discussion

5.3.1 Comparison with Kohonen's Work

This application appears very similar to the example presented by Kohonen (see
Section 3.3). Indeed if one of the manipulators in that system were replaced by
one which used prismatic joints which moved parallel to the cartesian axes then
the systems would be identical.

5.3.2 Examination of Results

In order to examine some of the claims made in the paper the author attempted
to duplicate their experiments. A two link manipulator (each link being one
unit long) was simulated at randomly chosen positions in joint space. The

cartesian position of the end effector, as well as the joint space configuration of
the arm, were applied as input to a 2-D network. Initially the weights for each
neuron in the network were set to small random values, the gain factor was set
to 0.5 and the neighborhood size was a 7x7 square centered upon the maximally
responsive neuron. As learning progressed the gain factor was reduced
exponentially and the neighborhood size was decreased linearly. The results of
this experiment are shown in F'igure 5.3.

Examination of the final result shows that the system has correctly learned a
mapping over both the joint and cartesian spaces. In particular the system
appears t o have coped well with the small area of the workspace where there

exists some redundancy in the arm configuration.

It is interesting to note that these results appear much better than those
obtained by Saxon and Mukerjee.

This is possibly due to different learning rates being utilized however it is
difficult to test this hypothesis since they do not describe their learning
algorithm is sufficient detail.

In their results they noted that "the entire configuration Ijoint] space can not
actually be learned with a sheet of neurons" and claimed that this was caused by
the fact that "the configuration space actually forms a torus". However,
examination of Figure 5.3 shows that the system does appear to have learned the

entire joint space. Furthermore, since the joints are limited in their range of
motion a planar representation would appear to be quite adequate.

They also suggest that the training strength of the edge neurons should be
doubled "so that the edges of the network are pulled to the boundaries of the

position map". This is not correct. In fact doubling the training strength of any
subset of the network would have the undesirable effect of allowing an ordered
network to become unordered.

An examination of the results of the path planning algorithm described by Saxon
and Mukerjee is difficult because it is unclear from their paper whether the
example they present is taken from an actual system or merely the result they
might expect from a real system.

It could be predicted however that, while the described system will correctly
locate a possible collision-free trajectory, it will not necessarily find a path which
is optimal either in terms of travelling time or joint-space motion.

5.3.3 Alternative Implementations

In their system (and also in all of Kohonen's examples as well as in Martinez
and Schulten's system) the initial neuron weights were given random values.
However, if the user has some knowledge about the system then one could
presumably make use of this in order to obtain a better result.

For example, if one knew the joint angle limits then the first two weight values
could be chosen such that the network was evenly distributed across all possible
joint values. These weights could then be frozen (held constant) while the
system learned values for the remaining two weights based on the cartesian
space positions. Once the learning approached a stable state the first two
weights could be un-frozen to allow the system to adapt t o future changes in both
the cartesian and joint spaces.

An example of this type of learning is shown in Figure 5.4 where for the first
30,000 trials the system only modified the weights connected to cartesian space

a) Response after 200 trials

b) Response after 20000 trials

Join1 Spacc

Carl. Spacc

Figure 5.3 (continued on next page).

- 24 -

c) Response after 40000 trials

d) Response after 60000 trials
Y

0.00 1 .00 2.00 3 . 0 4.(X) 5.00

Figure 5.3 The positions in both joint and cartesian space to which each neuron
learned to become maximally responsive. The origin of the cartesian
space is at (3,O). The gain factor was reduced exponentially from 0.500
to 0.001 during learning while the neighborhood size was reduced
linearly from 7x7 to 3x3.

Response after 200 trials
Y

c) Response after 20000 trials
Y

Joinl Spacc-.....-.......
Carl. Sl~ncc

Joinl Spacc
----.-...-.-.-.---...
Carl. Spacc

Figure 5.4 (continued on next page).

a) Response after 40000 trials
Y , - ---- , - -- I 1 Jo~nl Spncc

c) Response after 60000 trials
Y

7 --I - -- 1- 1 Joint Spncc

Figure 5.4 The positions in both joint and cartesian space to which each neuron
learned to become maximally responsive. The origin of the cartesian
space is at (3 ,O) . The weights connected to cartesian inputs were frozen
for the first 30,000 training cycles. The gain factor and neighborhood
sizes were consistent with those used to produce Figure 5.3.

inputs. During the subsequent 30,000 trials the system was allowed to modify
all four weights to achieve the result shown. This result isn't any more accurate
that than obtained when all the weights had to be learned from scratch however
it was achieved much more quickly since initially only two of the weights needed
to be learned.

It might be tempting to leave the first two weights frozen however if this were
allowed to happen then one of the significant advantages of this network - its
ability to adapt - would be lost.

This ability to modify all input weights gives the system a certain plasticity and
this allows it t o conform to changes in the environment. For example if the robot
were prevented from moving in the region where y<O then it can adapt as shown
in Figure 5.5.

The system can also adapt to account for cases where the joint-space positions
are not evenly distributed. For example, consider the case where on every tenth
trial the joint space point, rather than being chosen to lie randomly anywhere
within the allowable space, was instead chosen to lie on the line in the
interval 0 < 81 < W3. The results of this are shown in Figure 5.6.

Examination of the results shows that the system has distorted the array to
increase the number of neurons which correspond to points near that line. This
would have the practical effect of increasing the relative accuracy of the systems
"knowledge" near that area. In effect the system is able to increase its accuracy

near commonly travelled trajectories at the expense of a decreased accuracy in
other areas.

a) Initial Response
Y

b) Response after 400000 trials with restricted motion
Y

Join1 Space
-...-..-.-.-.---.....
Cart. Spacc

T . T - . --,. r r I Joint Spacc

0.00 1.00 2.00 3.00 4.00 5.ou

Figure 5.5 The positions in both joint and cartesian space to which each neuron
learned to become maximally responsive. The system was initially
trained as described in Figure 5.3 then the gain factor was fixed at
0.005, the neighborhood size was set at 3x3 and cartesian motion was
constrained to the region y>O.

a) Initial Response

Y

Joint Spacc
-.....--..-.-.--.....
Cart. Spacc

b) Response after 20000 trials with motion along a straight line in joint space
Y

Joiril Spacc

Carl. Spacc

Figure 5.6 The positions in both joint and cartesian space to which each neuron
learned to become maximally responsive. The system was initially
trained as described in Figure 58 then the gain factor was fixed a t
0.002, the neighborhood size was set at 3x3 and joint positions were
constrained to lie along the line el= 82.

6. Conclusions

The adaptability inherent in Kohonen's self-organizing feature maps provides
the ability to learn abstract representations of systems in which the
relationships between the inputs are not known. Also the plasticity inherent in
this type of network allows it to adapt to changes in the environment.

However these advantages come at a cost. Self-organizing feature maps will
generally require more computing power than conventional methods and the

lack of a strong mathematical foundation means that there is no guarantee that
real world systems will always maintain a consistent ordered mapping. The
absence of a rigorous mathematical treatment also means that parameters must
be selected in a somewhat ad hoc manor and this may prove difficult in cases
where the desired result is not well defined.

Kohonen presented two examples which show the ability of self-organizing
feature maps. In the first a single feature map was used to recognize phonemes
in connected speech. The ability of this system to compress a fifteen-dimensional
input into a two-dimensional representation is particularly impressive. The
second example used a network to learn the relationship between the joint-space
parameters for two connected robot arms.

Martinez and Schulten have described a system which makes use of a
hierarchical structure composed of many self-organizing feature maps. While it
was noted that there may be some practical problems, the general idea of using a
hierarchical structure appears sound and may be applicable to a wider range of
problems.

The robotics application using a single self-organizing feature map which Saxon
and Mukerjee describe appears similar to the robotics application described by
Kohonen. The results presented in their paper appear inferior to those which
the author obtained while attempting to duplicate their work however the lack of
specific information about their learning algorithm makes it difficult to trace the
source of these discrepancies. The use of the system they describe should
simplify path planning by combining multiple constraints into a 2-D structure.

7. References

Kohonen, T., "Representation of Sensory Information in Self-organizing
Feature Maps, and the Relation of these Maps to Distributed Memory
Networks, Computer Simulation in Brain Science, R.M.J. Cotterill
(editor), Cambridge University Press, Great Britain, 1988, pp12-25.

Kohonen, T., "Self-organizing Feature Maps and Abstractions", Artificial
Intelligence and Control Systems of Robots, I. Plander (editor), Elsevier
Science Publishers, The Netherlands, 1984, pp 39-45.

Martinez, T.M. and Schulten, K.L., "Hierarchical Neural Net for Learning
Control of a Robot's Arm and Gripper", IEEE INNS Joint Conf. Neural
Networks, Vol. 11, 1990, pp 745-752.

Saxon, J.B. and Mukerjee, A., "Learning the Motion Map of a Robot Arm
with Neural Networks", IEEE INNS Joint Conf. Neural Networks, Vol 11,
1990, pp 777-782.

Hofstadter, D.R., Godel, Escher, Bach: An Eternal Golden Braid, Penguin
Books, Great Britain, 1979, pp 337-365.

Kohonen, T., "Representation of Sensory Information in Self-organizing
Feature Maps, and the Relation of these Maps to Distributed Memory
Networks, Computer Simulation in Brain Science, R.M.J. Cotterill
(editor), Cambridge University Press, Great Britain, 1988, p14.

Kohonen, T., Self-organization and Associative Memory (Second Edition),
Springer-Verlag, Germany, 1987, p221-222.

Kohonen, T., "Self-organizing Feature Maps and Abstractions", Artificial
Intelligence and Control Systems of Robots, I. Plander (editor), Elsevier
Science Publishers, The Netherlands, 1984, p 41.

Kohonen, T., "Self-organizing Feature Maps and Abstractions", Artificial
Intelligence and Control Systems of Robots, I. Plander (editor), Elsevier
Science Publishers, The Netherlands, 1984, p 42.

Obermayer, K., Ritter, H. and Schulten, K., "Large-Scale Simulation of
Self-organizing Neural Networks: Formation of a Somatotopic Map",
Parallel Processing in Neural Systems and Computers, R. Eckmiller
(Editor), Elsevier Science Publishers, The Netherlands, 1990, pp71-74.

Kohonen, T., "Representation of Sensory Information in Self-organizing
Feature Maps, and the Relation of these Maps to Distributed Memory
Networks, Computer Simulation in Brain Science, R.M.J. Cotterill
(editor), Cambridge University Press, Great Britain, 1988, pp12-25.

Kohonen, T., "Self-organizing Feature Maps and Abstractions", Artificial
Intelligence and Control Systems of Robots, I. Plander (editor), Elsevier
Science Publishers, The Netherlands, 1984, pp 39-45.

Kohonen, T., Self-organization and Associative Memory (Second Edition),
Springer-Verlag, Germany, 1987, p60.

Kohonen, T. "Speech Recognition based on Topology Conserving Feature
Maps", Neural Computer Architectures: The Design of Brain-Like
Machines, I. Aleksander (editor), MIT Press, USA, 1989, pp 26-40.

Kohonen, T., "The Neural Phonetic Typewriter", IEEE Computer
Magazine, March, 1988, pp 11-22.

Kohonen, T., Self-organization and Associative Memory (Second Edition),
Springer-Verlag, Germany, 1987, pp143-157.

Kohonen, T. "Speech Recognition based on Topology Conserving Feature
Maps", Neural Computer Architectures: The Design of Brain-Like
Machines, I. Aleksander (editor), MIT Press, USA, 1989, pp31-32.

Kohonen, T., "Representation of Sensory Information in Self-organizing
Feature Maps, and the Relation of these Maps to Distributed Memory
Networks, Computer Simulation in Brain Science, R.M.J. Cotterill
(editor), Cambridge University Press, Great Britain, 1988, pp13-21.

Kohonen, T., "The Neural Phonetic Typewriter", IEEE Computer
Magazine, March, 1988, pp 15-17.

20 Kohonen, T., Self-organization and Associative Memory (Second Edition),
Springer-Verlag, Germany, 1987, pp 122- 127.

21 Acker, R and Kurtz, A, "On the Biologically Motivated Derivation of
Kohonen's Self-organizing Feature Maps", Parallel Processing in Neural
Systems and Computers, R. Eckmiller (Editor), Elsevier Science
Publishers, The Netherlands, 1990, pp229-232.

22 Martinez, T.M. and Schulten, K.L., "Hierarchical Neural Net for Learning
Control of a Robot's Arm and Gripper", IEEE INNS Joint Conf. Neural
Networks, Vol. 11, 1990, pp 745-752.

23 Martinez, T.M., Helge, J.R. and Schulten, K.J., "Three-Dimensional
Neural Net for Learning Visuomotor Control of a Robot Arm", IEEE
Trans. Neural Networks, Vol.1, No.1, March 1990, p 133.

24 Martinez, T., Ritter, H. and Schulten, K., "Learning of Visuomotor-
Coordination of a Robot Arm with Redundant Degrees of Freedom",
Parallel Processing in Neural Systems and Computers, R. Eckmiller
(Editor), Elsevier Science Publishers, The Netherlands, 1990, pp 431-434.

25 Saxon, J.B. and Mukerjee, A., "Learning the Motion Map of a Robot Arm
with Neural Networks", IEEE INNS Joint Conf. Neural Networks, Vol 11,
1990, pp 777-782.

	Self Organizing Feature Maps and Their Applications to Robotics
	Recommended Citation

	Self Organizing Feature Maps and Their Applications to Robotics
	Abstract
	Comments

	tmp.1186600751.pdf.QMJKb

