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Summary 

The self-organizing feature maps developed by Kohonen appear to capture some 
of the advantages of the natural systems on which they are based. A summary 
of the operation of this form of artificial neural network is presented. It was 
concluded that the primary benefits of using self-organizing feature maps result 
from their adaptability and plasticity while most problems are largely caused by 
the lack of a rigorous mathematical foundation. 

Two different robotics applications are described. In the first, developed by 

Martinez and Schulten, a hierarchical structure composed of many self- 
organizing feature maps is used to control a five degree of freedom robot arm. 
While it was noted that there may be some practical problems, the general idea 
of using a hierarchical structure appears sound and may be applicable to a wider 
range of problems. 

The second robotics application was developed by Saxon and Mukerjee. They 
used a single self-organizing feature map to learn the motion map of a two 
degree of freedom arm. The use of such a system should simplify path planning 
by combining multiple constraints into a 2-D structure. 
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1. Introduction 

The aim of this report is to  present a critical review of four papers. The first two 
papers [1,2] serve to  provide an introduction to Kohonen's self-organizing feature 
maps; while the latter two [3,4] describe robotic applications for this type of 
artificial neural network. 

Natural neural networks ( described briefly in Section 2 ) seem to handle some 
tasks very well and in many cases are superior to  existing artificial alternatives. 
This is particularly true in the field of robotics. For example there are few, if 
any, robot controllers which could manage the task of picking up this report and 
turning its pages. There would thus appear to be some justification in trying to 
mimic the actions of biological networks in an attempt to duplicate their 
abilities. 

The self-organizing feature maps developed by Kohonen ( see Section 3 ) are an 
attempt to  mimic the apparent actions of a small class of biological neural 
networks. The idea is to  create an artificial network which can learn, without 
supervision, an abstract representation of some sensory input. 

In the robotics application described by Martinez and Schulten ( see Section 4 ) a 
hierarchical structure consisting of a number of self-organizing feature maps is 
used to convert the signals from two video cameras into an abstract 
representation of the position and orientation of a cylindrical object. That 
representation is then used to control the motion of a robot as it moves to grasp 
the object. 

Saxon and Mukerjee ( see Section 5 ) describe a different application in which a 
single self-organizing feature map is used to create an abstract representation of 

both the joint and cartesian positions for a simple manipulator. This 
representation can then be used for collision-free trajectory planning. 



2. Biological Neurons 

A detailed description of biological neural networks is beyond the scope of this 
report. However, in order to  evaluate the validity of attempting to mimic 
natural networks it is necessary to have some knowledge of their structure. 

2.1 Natural Neurons 

Each natural neuron consists of a series of input channels termed dendrites. 
Input signals pass from the dendrites to the cell body where a "decision" is made 
as to whether or not to produce an output pulse. These pulses are sent from the 
neuron via an output channel (axon) which connects to the input of other 
neurons via input/output connections ( synapses ) [5]. 

The frequency with which output pulses are generated is a hnction of the input 
signals. If very strong excitatory inputs are applied then a high frequency pulse 
train will result. Alternatively if a strong inhibitory input is applied then the 
output frequency will be reduced. 

It is important to realize that while at any one time the neuron is essentially 
only making a binary decision ( whether or not to produce an output pulse ) the 

cumulative effect of many such decisions over time is to produce a pulse- 
modulated output signal whose frequency encodes the output strength. Each 
neuron therefore produces an analogue output [6] which may be considered a 
weighted sum of its input frequencies [7]. 

2.2 Natural Feature Maps 

It seems clear that, a t  least as far as mammals are concerned, the brain does 
contain some record of previous sensory input. Furthermore, since the number 
of possible inputs far exceeds the number of neurons in the brain it seems clear 
that some form of compression ( or abstraction ) is taking place. 

The mechanism by which the brain stores these compressed representations is 
not well understood however it is hypothesized [8] that they are recorded in "2-D 
metrically and topologically organized" sheets of neural cells. In other words the 
brain forms a mapping between some multi-dimensional input space and a 2-D 

set of neurons. 



There is some evidence to support this idea. For example a set of cells have been 
found in the auditory cortex of mammals which respond selectively to sounds of 
different frequencies such that the location of a responding neuron appears to be 
directly related to the frequency of the input sound [9]. Other topographic 
representations have been found in the visual, somatosensory and motor-cortex 
areas of the brain [lo]. 
Kohonen's net is an attempt to model, albeit in a very simplified form, the 
actions of this type of network. 



3. Kohonen's Self-organizing Feature Maps 

The basic idea behind Kohonen's network [11,12] is the formation of a 2-D array 
of interconnected neurons. When an input pattern is presented to  the network 
the response of each neuron is evaluated and the one which produced the 
maximum response, as well as those adjacent to it in the array, are modified so 
as to produce a stronger response to that input. 

After a number of presentations of each input pattern the system should ideally 
reach a state where an "ordered image" of the input is stored in the network. 

3.1 The Artificial Neuron 

In his earlier work Kohonen's artificial neurons were of the form: 

Where ni is the output from the i'th neuron, wi is the weight vector for the i'th 
neuron and x is the input applied to every neuron. 

Each neuron's output is thus a weighted sum of its inputs - this formulation 
being derived directly from models of natural neurons ( see Section 2.1 ). 

The neuron "learns" by modifying its weight vector so that it is more closely 
aligned with an input. If it is assumed that both the input and weight vectors 
are approximately normalized then the output of the neuron is an approximate 
measure of the cosine of the angle between its weight vector and the input. Thus 
a strong response would indicate a close match between the two while a weak 

response would indicate some disparity between the weight and input 

vectors [13]. 

In later work this neural model was further simplified by computing the output 
of each neuron as: 

This formulation removes the necessity of providing any form of normalization 
and the output is now a direct measure of the euclidian distance between the 
weight and input vectors. 



The neuron "learns" t o  respond more strongly to an input by modifying its 
weight vector according to the formula: 

This in effect moves the weight vector closer to the input vector by an amount 
determined by the gain factor a(t). 

3.2 The Learning Algorithm 

The complete learning algorithm is: 

i) Apply an input pattern 

ii) Compute the response of each neuron as I I x(t)-wi(t) I I 
iii) End  the neuron with the best ( minimum ) response. Call that neuron c. 

iv) Update the weight vectors for the neuron c and for neurons within some 
neighborhood of c in the array according to the formula: 

wi(t+l) = wi(t) + a(t) [ ~ ( t )  - wi(t) ] 

By updating the weights of neurons in a neighborhood around the maximally 
responsive neuron the system ensures that similar inputs will illicit a response 
in nearby neurons while dissimilar inputs will produce a response from neurons 

further away in the network. The system thereby tends to adopt an ordered 
state. 

3.3 Example Applications 

Kohonen presents two examples which illustrate the use of self-organizing 
feature maps. 

The first is in the field of speech recognition. The speech input is sampled, a 
fourier transform is performed and the resulting frequency components 
( represented by 15 analogue signals ) are then fed as input to  a 2-D self- 

organizing network. 

The results after much training appear to  indicate that the system has learned 
t o  respond to the input in an ordered fashion. 

This is a particularly impressive example because the system has created an 
abstract representation of a 15-dimensional input using only two dimensions 



while apparently maintaining sufficient information to permit accurate speech 
recognition [14,15]. 

The second example uses two robot arms. In this case training was 
accomplished by selecting a point at  random in a rectangular region in the 
common workspace of both robots and then moving the end-effectors such that 
they were coincident with that point. The four joint angles ( two from each 
robot ) were then fed as input to the network. After many such trials the system 
learned an ordered mapping over the input space. 

Once this mapping has been learned the system can be used to perform inverse 
transforms since the weights at each position in the array have directly encoded 
the joint-space positions for both robots. 

3.4 Discussion 

3.4.1 Selecting Appropriate Parameters 

The selection of a suitable gain factor, a(t), appears t o  be a compromise between 
learning rate and learning accuracy. If a high gain factor is chosen then 
learning will proceed rapidly but the net will be constantly shifting with each 
new input pattern and so the entire input space may not be evenly categorized. 
Alternatively, if a low gain factor is chosen then learning will be very slow but 
should eventually reach a very accurate result. The gain factor is therefore 
typically chosen to be initially rather large ( to ensure rapid initial learning ) and 
is then reduced to increase the accuracy of the final result. 

By way of an example consider a 2-D array of neurons which is required to  learn 
two input signals. Both the inputs vary between 0 and 1 with a flat probability 
distribution ( see Figure 3.1 ). The response of the network is shown in 
Figure 3.2. Each point in the graph represents the point in the input space to 
which one neuron has become maximally responsive. The lines joining these 

points indicate nearest-neighbor connections between neurons in the square 
array. Initially all the weights were assigned small random values. 
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Figure 3.1 Example application in which each neuron receives two inputs. 

As the learning progressed the points to  which each neuron responds have 
moved from their initial position very close to the origin and have expanded 
outwards to form a more even distribution over the input space. If learning were 
permitted to continue the network would eventually form a near-perfect square 
grid over the input space. 

In this case the gain factor, a(t), was chosen to  be the constant 0.01 and it is 
clear that while the learning is proceeding very smoothly it it also very slow. 



a) Response after 10000 trials 

Yn 10-3 

c )  Response after 30000 trials 
Y x 

b) Response after 20000 trials 

Y x 

d) Response after,40000 trials 
'i x 

Figure 3.2 The response of a 2-D network as it learns a topological mapping over a 
2-D input space. In this case the gain factor, a(t), was 0.01 



The effect of choosing a larger constant value for a(t) is shown in Figure 3.3 
where a value of 0.1 was used. In this case learning is much more rapid, 
reaching a square grid after less than 20000 input presentations. However, the 
grid is not very evenly distributed over the input space. 

Figure 3.4 demonstrates the effect of having a time-varying learning rate. In 
this case an initial rate of 0.1 was used for the first 20000 input patterns and 
this was followed by a further 20000 presentations with the learning rate set a t  
0.01. It should be evident that this produces a better result than either of the 
two previous cases. 

As the above examples demonstrate there is a considerable difference between 
the effectiveness of the network when different gain factor expressions are 
utilized. In the example given here it was known a priori that the result should 
be a square grid and so it was relatively easy to determine, via experimentation, 
suitable values for a(t). However, if the dimensionality of the input were to  be 
much larger ( for example in the case of speech recognition ) then it would not be 
such a trivial matter to determine suitable gains. 

Kohonen has proven [16] that a one-dimensional network of neurons with a 
single input will form an ordered mapping provided that O<a(t)<l. However it is 
not clear that this proof would scale for cases where either the input or the 
network were of higher dimensionality. In particular i t  is unlikely that i t  would 
apply for the case where the input was of much higher dimension than the 
network. 

The decision as to what size of neighborhood is to be adjusted also appears to be 
determined in a somewhat ad hoc manor [17]. 



a) Response after 10000 trials 

Y 10-3 

b) Response after 20000 trials 
Y 10-3 

c) Response after 30000 trials 
Y 10-3 

d) Response after 40000 trials 
Y x 10-3 

Figure 3.3 The response of a 2-D network as it learns a topological mapping over a 
2-D input space. In this case the gain factor, a(t), was 0.1 



a) Response after 10000 trials b) Response after 20000 trials 

Y x 10-3 Y 10-8 

c) Response after 30000 trials 

900.00 

d) Response after 40000 trials 

Figure 3.4 The response of a 2-D network as it learns a topological mapping over a 
2-D input space. In this case the gain factor, a(t), was 0.1 for the first 
20000 input presentations and 0.01 thereafter. 



3.4.2 Advantages 

At first glance the advantages of using a self-organizing feature map over the 
use of simpler techniques ( such as look-up tables ) are not apparent and it is 
only when one considers the learning process that they become evident. 

The primary benefit is that the network learns autonomously without the 
requirement that the system be well defined. It is therefore possible to learn 

abstract representations of systems ( for example speech recognition ) where the 
relationship between the inputs is not known. 

A second advantage is that the system does not stop learning but instead 
continues to adapt to changing inputs. This plasticity allows it to  adapt as the 
environment changes ( see Section 5.3.3 for examples ). 

A particular advantage over other artificial neural networks is that the system 
appears well suited to parallel computation. Indeed the only global knowledge 
required by each neuron is the current input to  the network and the position 
within the array of the neuron which produced the maximum output. With 
these two pieces of information each neuron can respond and adapt to changing 

inputs without the need for any other inter-neural communication. Given the 
suitability of this form of network to parallel processing it is surprising that 
Kohonen makes so little mention of this. 

3.4.3 Disadvantages 

One of the major problems is that for systems which are well defined it will often 

be much faster to  calculate an exact answer rather than using a self-organizing 
map to obtain an approximate solution. This is particularly true when a 
sequential processor is employed. 

Perhaps a more serious problem relates to  the fact, mentioned earlier, that the 
behavior of such networks is not well defined mathematically. This means that 
the selection of network parameters ( such as gain factors and neighborhood 
sizes ) must be performed in a somewhat ad hoc manor. Of particular concern is 
apparent lack of any guarantee that a network, allowed to  adapt in the real 
world, will always maintain a consistent ordered mapping. 



3.4.4 The Use of a Simplified Algorithm 

Kohonen appears to give the impression [18-201 that the learning algorithm 
which he implements ( see Section 3.2 ) is a simplified version of a more 
biologically-correct model. However, if this were the case then one might expect 
that the self-organizing behavior which the simplified version exhibits would 
also be present in the more complex system. Recent work by Acker and 
Kurtz [21] has shown that this is not the case. It would appear that the self- 
organizing behavior of Kohonen's simplified algorithm is only a property of that 
particular implementation. While this doesn't necessarily mean that the 
simplified form is incorrect it does suggest that attempts to justify such a 
formulation on a biological basis should be treated with some skepticism. 



4. Hierarchical Neural Net for Learning Control of a Robot's 
Arm and Gripper 

The network developed by Martinez and Schulten [22] uses a hierarchical 
structure to learn a mapping between the spatial position of a cylindrical object 
and the joint-space position which a five degree of freedom robot must adopt in 
order to grasp that object. 

4.1 System Operation 

The inputs to the highest level of the system are four numbers representing the 

(x,y) position of an object in the visual field of two video cameras. This input is 
passed to  a 3-D array of neurons which learns, using Kohonen's method, a 
topological mapping between the 4-D input and the 3-D array. The result is that 
each neuron comes to represent a particular spatial position for the object. 

Associated with each of these neurons in the 3-D net is an additional 2-D array 
of neurons. These arrays receive as input the orientation of the cylinder as seen 
by the two video cameras and they learn a mapping between these inputs and 
the 2-D array. 

The classification of the input picture into both a position and orientation is 

therefore a two-step process. Firstly the 3-D net is used to  recognize the position 
of the cylinder and then the 2-D net associated with that position is used to 
determine the orientation of the cylinder ( see Figure 4.1 ). It should be noted 
that the output from this process is simply the position within each network of 
the maximally responsive neuron - the output is not in the form of a cartesian 
position/orientation. 

Each neuron in the 3-D net has associated with it the particular posture which 
the arm must attain in order to grasp a cylinder at the spatial position encoded 
by that neuron. Stored along with this posture is a jacobian matrix 
representation of the relationship between changes in the positional information 
from the cameras and changes in the arm posture. 



Figure 4.1 The hierarchical system employed by Martinez and Schulten. 



Each neuron in each of the 2-D nets has associated with it the particular wrist 
configuration which is required in order to grasp the cylinder when it is 
orientated at  the angle encoded by that neuron. Each neuron also stores a 
jacobian representing the relation between changes in the orientational 
information from the cameras and changes in the wrist orientation. 

The system is able to place an arm in approximately the correct position by using 
the stored joint positions. It can then compare the current end-effector position 
( as recorded by the two video cameras ) with the desired end-effector position 
and make use of the jacobian matrices associated with the current arm position 
to reduce this error. 

4.2 Discussion 

4.2.1 Comparison with Kohonen's Work 

The use of a 3-D network represents a departure from the 2-D style which 
Kohonen employed. However, Kohonen's decision to only utilize one and two- 
dimensional structures appears to  have been motivated by the assumption that 
natural networks only employ these forms and this need not necessarily be the 
case [23]. 

4.2.2 Practical Problems 

The error correction between the current and desired end-effector positions is 
performed in terms of differences between the camera views of the cylinder to  be 
grasped and the camera views of an imaginary cylinder in the jaws of the 
gripper. The method by which the system can determine the appropriate 
positional data for this imaginary cylinder based only upon two views of the end- 
effector is not apparent. 

Furthermore the authors appear not to  have considered the possibility that the 
cylinder to be grasped may block at least one camera's view of the end-effector. 

Another possible problem is that no allowance is made for the space occupied by 
the cylinder during positioning. It is almost certain that the arm would attempt 
to move through the cylinder while attempting to grasp it. 



One way to overcome these difficulties may be to incorporate an additional 
network which could relate a joint-space position to an image of the arm. Once 
this network had been trained the system could use it to "imagine" where the 
arm would be after each motion. This would allow the joint parameters to be 
corrected without the necessity of actually moving the arm. 

A more serious problem is that the current system only associates a single joint- 
space position with each location for the cylinder. This ignores the possibility 
that redundant configurations may exist. A similar system has been 
implemented using a redundant arm [24], however that implementation was still 
restricted to associating a single joint-space position with each cartesian point - 
thereby negating many of the advantages of using a redundant manipulator. 

4.2.3 Wider applications 

In the application described by Martinez et a1 the use of a hierarchical network 
was influenced by the structure of the robot arm and the lower layer consisted of 
multiple 2-D arrays. However it is possible that an alternative hierarchical 
structure may also be feasible. 

If only a single network is used then the network size is a compromise between 
having a small network which requires little computation but gives a rather 
coarse result and a large network which requires much computation but 
produces a very accurate result. The necessity of making this compromise could 
be eliminated by employing a hierarchical structure in which a small network 
was used to select a small subsection of a much larger network. This would only 
require the evaluation of two small networks ( the smaller net and a subsection 

of the larger one ) yet it may give a similar accuracy to that achieved using the 
whole of the larger network. 

It would also appear to  provide an excellent way of evaluating a large network 
using a small array of processors. Rather than breaking the network up into 
array-sized pieces and evaluating each piece sequentially the system could 
instead use a small array-sized network to control access to an array-sized 
subsection of a larger network. Provided the subsections overlapped then the 
larger network should still be able to  form a consistent ordered mapping despite 
the fact that it is only being accessed in a piecewise fashion. 



5. Learning the Motion Map of a Robot Arm 

The network developed by Saxon and Mukerjee [25] learns the motion map of a 
two-degree-of-freedom robot arm using a self-organizing feature map. This map 
can then be used for path-planning with obstacle avoidance. 

5.1 System Operation 

The system uses a 2-D self-organizing feature map of the type proposed by 
Kohonen ( see Section 3 ). This map receives four inputs - two representing the 
cartesian-space position of the end-effector and two representing the joint-space 
position of the end-effector. 

The system is trained by moving the arm to a random point in joint space, 
recording the cartesian position of the end-effector and then feeding both the 
cartesian and joint information to  the network. After many thousands of such 
trials the system should learn a topological mapping of the input space. In 
essence each neuron comes to represent both a point in cartesian space and a 
point in joint space. 

Self-Organising Array - - - - - - - - -  

L - - - - - - - - - -  

Figure 5.1 An overview of Saxon and Mukerjee's system. 



5.2 Application to Path Planning 

Once the motion map has been learned it provides the basis for a rather elegant 
means of planning trajectories around obstacles as described by Saxon and 
Mukerjee. 

The basic idea is that each neuron in the 2-D net corresponds to both a joint- 
space and a cartesian space position. Performing trajectory planning using this 
net allows the incorporation of information from both joint and cartesian spaces 
while still only requiring that a 2-D array of possible paths be searched. 

Obstacles can be incorporated by disabling the joint-space inputs to the network, 

applying the cartesian space position of the object(s) to the net and then 
disabling those neurons which produced maximal responses. 

A possible trajectory which avoids these obstacles can then be determined by 
choosing a path through the 2-D neural array which starts at the neuron which 
most closely represents the current joint-space position of the arm, avoids any 
neurons which have been disabled and ends at the point which most closely 
represents the desired end-effector position ( in either joint or cartesian space ). 

One way to accomplish this is to  associate a score with each neuron in the 
network. If the maximum score were given to the destination neuron and if 
progressively lower scores were given to neurons further away in the array then 
a suitable path could be determined by selecting a path through those neurons 
with the highest scores. This is shown more clearly in Figure 5.2. 

Saxon and Mukerjee suggest an alternative technique in which a path between 
the start and destination neurons could evolve through a process of "spreading 
activation". However, it is not clear how this could be achieved. 



Figure 5.2 An example of how a trajectory planning scheme might operate by 
associating a score with each neuron. In this case the destination 
neuron was assigned a score of 1.0 and the activation levels of other 
neurons decrease linearly with distance through the array. Note that 
the system has correctly chosen a clockwise path around the obstacle 
( an anti-clockwise path would be longer 1. Note also that a square grid 
may not necessarily produce the best results and other connectivity 
options ( for example arranging the neurons in a hexagonal structure 1 
may produce smoother trqjectories. 



5.3 Discussion 

5.3.1 Comparison with Kohonen's Work 

This application appears very similar to the example presented by Kohonen ( see 
Section 3.3 ). Indeed if one of the manipulators in that system were replaced by 
one which used prismatic joints which moved parallel to the cartesian axes then 
the systems would be identical. 

5.3.2 Examination of Results 

In order to examine some of the claims made in the paper the author attempted 
to  duplicate their experiments. A two link manipulator ( each link being one 
unit long ) was simulated at  randomly chosen positions in joint space. The 

cartesian position of the end effector, as well as the joint space configuration of 
the arm, were applied as input to a 2-D network. Initially the weights for each 
neuron in the network were set to small random values, the gain factor was set 
to 0.5 and the neighborhood size was a 7x7 square centered upon the maximally 
responsive neuron. As learning progressed the gain factor was reduced 
exponentially and the neighborhood size was decreased linearly. The results of 
this experiment are shown in F'igure 5.3. 

Examination of the final result shows that the system has correctly learned a 
mapping over both the joint and cartesian spaces. In particular the system 
appears t o  have coped well with the small area of the workspace where there 

exists some redundancy in the arm configuration. 

It is interesting to  note that these results appear much better than those 
obtained by Saxon and Mukerjee. 

This is possibly due to different learning rates being utilized however it is 
difficult to  test this hypothesis since they do not describe their learning 
algorithm is sufficient detail. 

In their results they noted that "the entire configuration Ijoint] space can not 
actually be learned with a sheet of neurons" and claimed that this was caused by 
the fact that "the configuration space actually forms a torus". However, 
examination of Figure 5.3 shows that the system does appear to have learned the 



entire joint space. Furthermore, since the joints are limited in their range of 
motion a planar representation would appear to  be quite adequate. 

They also suggest that the training strength of the edge neurons should be 
doubled "so that the edges of the network are pulled to the boundaries of the 

position map". This is not correct. In fact doubling the training strength of any 
subset of the network would have the undesirable effect of allowing an ordered 
network to  become unordered. 

An examination of the results of the path planning algorithm described by Saxon 
and Mukerjee is difficult because it is unclear from their paper whether the 
example they present is taken from an actual system or merely the result they 
might expect from a real system. 

It could be predicted however that, while the described system will correctly 
locate a possible collision-free trajectory, it will not necessarily find a path which 
is optimal either in terms of travelling time or joint-space motion. 

5.3.3 Alternative Implementations 

In their system ( and also in all of Kohonen's examples as well as in Martinez 
and Schulten's system ) the initial neuron weights were given random values. 
However, if the user has some knowledge about the system then one could 
presumably make use of this in order to  obtain a better result. 

For example, if one knew the joint angle limits then the first two weight values 
could be chosen such that the network was evenly distributed across all possible 
joint values. These weights could then be frozen (held constant) while the 
system learned values for the remaining two weights based on the cartesian 
space positions. Once the learning approached a stable state the first two 
weights could be un-frozen to allow the system to adapt t o  future changes in both 
the cartesian and joint spaces. 

An example of this type of learning is shown in Figure 5.4 where for the first 
30,000 trials the system only modified the weights connected to cartesian space 
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Figure 5.3 (continued on next page). 
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c) Response after 40000 trials 

d) Response after 60000 trials 
Y 

0.00 1 .00 2.00 3 . 0  4.(X) 5.00 

Figure 5.3 The positions in both joint and cartesian space to which each neuron 
learned to become maximally responsive. The origin of the cartesian 
space is at  (3,O). The gain factor was reduced exponentially from 0.500 
to 0.001 during learning while the neighborhood size was reduced 
linearly from 7x7 to 3x3. 
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Figure 5.4 (continued on next page). 



a) Response after 40000 trials 
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Figure 5.4 The positions in both joint and cartesian space to which each neuron 
learned to become maximally responsive. The origin of the cartesian 
space is at  (3 ,O) .  The weights connected to cartesian inputs were frozen 
for the first 30,000 training cycles. The gain factor and neighborhood 
sizes were consistent with those used to produce Figure 5.3. 



inputs. During the subsequent 30,000 trials the system was allowed to modify 
all four weights to achieve the result shown. This result isn't any more accurate 
that than obtained when all the weights had to be learned from scratch however 
it was achieved much more quickly since initially only two of the weights needed 
to be learned. 

It might be tempting to  leave the first two weights frozen however if this were 
allowed to happen then one of the significant advantages of this network - its 
ability to adapt - would be lost. 

This ability to modify all input weights gives the system a certain plasticity and 
this allows it t o  conform to changes in the environment. For example if the robot 
were prevented from moving in the region where y<O then it can adapt as shown 
in Figure 5.5. 

The system can also adapt to  account for cases where the joint-space positions 
are not evenly distributed. For example, consider the case where on every tenth 
trial the joint space point, rather than being chosen to lie randomly anywhere 
within the allowable space, was instead chosen to lie on the line in the 
interval 0 < 81 < W3. The results of this are shown in Figure 5.6. 

Examination of the results shows that the system has distorted the array to 
increase the number of neurons which correspond to  points near that line. This 
would have the practical effect of increasing the relative accuracy of the systems 
"knowledge" near that area. In effect the system is able to increase its accuracy 

near commonly travelled trajectories at the expense of a decreased accuracy in 
other areas. 
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Figure 5.5 The positions in both joint and cartesian space to which each neuron 
learned to become maximally responsive. The system was initially 
trained as described in Figure 5.3 then the gain factor was fixed at 
0.005, the neighborhood size was set at 3x3 and cartesian motion was 
constrained to the region y>O. 
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Figure 5.6 The positions in both joint and cartesian space to which each neuron 
learned to become maximally responsive. The system was initially 
trained as described in Figure 58 then the gain factor was fixed a t  
0.002, the neighborhood size was set at  3x3 and joint positions were 
constrained to lie along the line el= 82. 



6. Conclusions 

The adaptability inherent in Kohonen's self-organizing feature maps provides 
the ability to learn abstract representations of systems in which the 
relationships between the inputs are not known. Also the plasticity inherent in 
this type of network allows it to adapt to changes in the environment. 

However these advantages come at  a cost. Self-organizing feature maps will 
generally require more computing power than conventional methods and the 

lack of a strong mathematical foundation means that there is no guarantee that 
real world systems will always maintain a consistent ordered mapping. The 
absence of a rigorous mathematical treatment also means that parameters must 
be selected in a somewhat ad hoc manor and this may prove difficult in cases 
where the desired result is not well defined. 

Kohonen presented two examples which show the ability of self-organizing 
feature maps. In the first a single feature map was used to recognize phonemes 
in connected speech. The ability of this system to compress a fifteen-dimensional 
input into a two-dimensional representation is particularly impressive. The 
second example used a network to learn the relationship between the joint-space 
parameters for two connected robot arms. 

Martinez and Schulten have described a system which makes use of a 
hierarchical structure composed of many self-organizing feature maps. While it 
was noted that there may be some practical problems, the general idea of using a 
hierarchical structure appears sound and may be applicable to  a wider range of 
problems. 

The robotics application using a single self-organizing feature map which Saxon 
and Mukerjee describe appears similar to the robotics application described by 
Kohonen. The results presented in their paper appear inferior to those which 
the author obtained while attempting to duplicate their work however the lack of 
specific information about their learning algorithm makes it difficult to  trace the 
source of these discrepancies. The use of the system they describe should 
simplify path planning by combining multiple constraints into a 2-D structure. 
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