
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 2003

Reasoning About the Updatability of XML Views Over Relational Reasoning About the Updatability of XML Views Over Relational

Databases Databases

Vanessa P. Braganholo
Universidade Federal do Rio Grande do Sul

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Carlos A. Heuser
Universidade Federal do Rio Grande do Sul

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser, "Reasoning About the Updatability of
XML Views Over Relational Databases", . January 2003.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-03-13.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/29
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/29
mailto:repository@pobox.upenn.edu

Reasoning About the Updatability of XML Views Over Relational Databases Reasoning About the Updatability of XML Views Over Relational Databases

Abstract Abstract
XML has become an important medium for data exchange, and is also used as an interface to – i.e. a
view of – a relational database. While previous work has considered XML views for the purpose of
querying relational databases (e.g. Silkroute), in this paper we consider the problem of updating a
relational database through an XML view. Using the nested relational algebra as the formalism for an XML
view of a relational database, we study the problem of when such views are updatable. Our results rely on
the observation that in many XML views of relational databases, the nest operator occurs last and the
unnest operator does not occur at all. Since in this case the nest operator is invertible, we can consider
this important class of XML views as if they were flat relational views.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-03-13.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/29

https://repository.upenn.edu/cis_reports/29

Reasoning about the updatability of XML views over relational
databases

Vanessa P. Braganholo(1), Susan B. Davidson(2), Carlos A. Heuser(1)

(1) Universidade Federal do Rio Grande do Sul - UFRGS (2) University of Pennsylvania

Instituto de Informática Department of Computer and Information Science

{vanessa, heuser}@inf.ufrgs.br {susan}@cis.upenn.edu

Abstract

XML has become an important medium for data exchange, and is also used as an interface to – i.e. a
view of – a relational database. While previous work has considered XML views for the purpose of querying
relational databases (e.g. Silkroute), in this paper we consider the problem of updating a relational database
through an XML view. Using the nested relational algebra as the formalism for an XML view of a relational
database, we study the problem of when such views are updatable. Our results rely on the observation that in
many XML views of relational databases, the nest operator occurs last and the unnest operator does not occur
at all. Since in this case the nest operator is invertible, we can consider this important class of XML views as
if they were flat relational views.

1 Introduction

XML is frequently used for publishing as well as exchanging relational data. Due to the highly unintuitive
representation of data in the relational model, it is also increasingly being used as a mechanism through which
to query and update legacy relational databases. For example, interfaces for gene expression data frequently
represent the data to be annotated as an XML view of a relational database (e.g. AGAVE and GAME [1]).

One reason for this use of XML is that it naturally captures many-one relationships between data through the
nesting of elements. In contrast, in the relational model nested data becomes fragmented over many relations,
with many-one relationships captured in key and foreign key constraints. Thus one of the advantages of XML
for conceptualizing information is its connection to nested relations.

As a simple example, consider the nested table of figure 2(a), which represents information about confer-
ences and their location by year. This same information when represented in the relational model would be split
over two tables (see figure 1). The nested table of figure 2(a) can also be understood as the XML instance in
figure 3.

While other work has considered the problem of querying relational databases through XML views (e.g.
Silkroute [13]), in this paper we focus on the problem of updating a relational database through an XML view.
More precisely, we wish to be able to translate an update on an XML view to a set of updates on the underlying
relations without introducing additional updates to the XML view.

To simplify the problem yet capitalize on the use of XML to capture nested relations, we consider XML
views as defined by the nested relational algebra [27, 17]. The nested relational algebra contains the classical
relational algebra operators (σ, π, ∪, ×, ./, −) as well as thenest(ν) andunnest(µ) operators. There are
several reasons for considering this algebra: First, there is a straightforward mapping between nested relations
and XML views in this language [2, 8]. Second, it represents the core of languages such as XQuery when
order and aggregate operators are ignored. Third, certain subclasses of expressions in this algebra have good
properties regarding updatability. In this paper we will define such a subclass, drawing on classical relational
view updatability results [10, 18]. Surprisingly, except for work on normal forms for nested relations [22, 24, 16]

1

Figure 1: Sample database

Figure 2: (a) View 1 (b) View 2

which focuses on removing ambiguity in nested relations, we could find no work related to updates through
nested relations.

Using the results of this paper, we will show that the view of figure 2(a) is updatable for all insertions,
deletions and modifications. That is, there is a unique, side effect free translation from any update on this view
to the underlying relations of figure 1. The view is produced by the following query:

V IEW 1

νYearLocation=(Year, Location)(π(IdConf, ConfName, Year, Location)

(Conferences./ ConfLocation)))

This query is an example of a class which we callwell-nested project-select-joinqueries. Views of this class
are always updatable.

By relaxing restrictions on nesting and the form of the relational algebra expression, we can obtain a more
general class of queries of formν . . . νR, where R is any relational algebra expression. We will call this class
nest-last relational queries. An example of this class of views is as follows, and the corresponding nested
relation is shown in figure 2(b).

V IEW 2

νDetails=(Year,Location,Title)(π(IdConf,Year,Location,Title)

(σ(ConfLocation.IdConf=Papers.IdConf AND ConfLocation.Year=Papers.Year)

(ConfLocation× Papers)))

Although views defined by queries in this class are not in general updatable, we can determine whether or
not a given update can be allowed using results from [10]. For example, in the above view we can always delete
tuples but the same is not true for insertions or modifications. That is, we would not be able to insert the tuple

2

Figure 3: View 1 in XML

<"NEW",2003,"LocName","Title"> on this view because we do not have the primary key of the Papers
relation.

However, for XML views defined by general nested relational algebra (NRA) queries little can be said about
updatability. Some general NRA queries can be rewritten to nest-last relational form using the rewrite techniques
of [27]. However, there are others that cannot be rewritten and these remain an open problem. We will therefore
focus in this paper on views produced by nest-last relational queries, and well-nested project-select-join queries.
We further assume that the underlying relational database is well designed and is in BCNF.

The rest of this paper is organized as follows. In section 2 we define what it means for a view to be updatable,
and summarize results from the relational case. Section 3 formalizes the notion of an update to an XML view,
and discusses results on updates to views defined by nest-last relational queries as well as the special case of
well-nested project-select-join queries. Section 4 concludes and presents future directions.

2 Updating relational views

A large amount of work has been done on updates through relational views [15, 14, 23], and several different
techniques have been proposed. We summarize them below:

1. View as an abstract data type: In this approach [25, 28], the DBA defines the view together with the
updates it supports. The effect of updates on the base relations is explicitly defined.

2. Automatic translations for view updates: In [18], Keller defines five criteria that the translations should
respect in order to be correct. Dayal and Bernstein [10] propose a translation mechanism that uses view
graphs to decide if a given update translation is correct. The view graphs are constructed based on the
syntax of the view definition and on the functional dependencies of base relations. A more recent work is
presented in [21], but it does not consider views involving selections.

3. View complement: Bancilhon and Spyratos [4] introduce the notion of view complement to solve the
update problem. In this approach, an update translation is considered correct if the complement of the
view remains unchanged. Finding a view complement may be NP-complete even for very simple view
definitions [7].

4. Views as conditional tables: A more recent technique consists in transforming a view update problem into
a Constraint Satisfaction problem [26]. In this approach, views are represented as conditional tables. Each
solution to the constraint satisfaction problem corresponds to a possible translation of the view update.

5. Object-based views: An extension of [20] to deal with object-based views is proposed in [5]. In this
work, Barsalou propose algorithms for propagating updates in a hierarchical structure of objects. An
implementation of object-based views is discussed in the Penguin Project [19].

3

Figure 4:U exactly performsu. View V is defined over databaseDB using the definition functionDEFV

In this paper, we follow the second approach and attempt to find an automatic translation for XML view
updates. In particular, given an update against an XML viewV , we wish to find a set of updates against the
base relations definingV that does not cause additional side effects in the view. For example, if we were to
modify the ConfName of the DEXA conference in the table of figure 2(a) to "NewConf", we would expect the
ConfName of PODS or VLDB to remain the same. That is, a translation of this modification to the following
SQL update would be incorrect:

UPDATE Conferences SET ConfName="NewConf"

However, in this case there is a side effect free translation of the view update as follows:

UPDATE Conferences SET ConfName="NewConf"
WHERE ConfId="DEXA"

DEFINITION 2.1 A translationU of an updateu over a viewV is exactwhen the diagram of figure 4 com-
mutes [18].

Having presented the meaning ofexacttranslations, we can now define the notion of view updatability.

DEFINITION 2.2 A view is updatable with respect to a type of update operation (namely insertion, deletion or
modification) if there is an exact translationt for every updateu of this type that can be applied over the view,
wheneveru is syntactically correct and does not violate the semantic consistency of the underlying database.

This definition establishes two important points. First, view updatability depends on both the structure of
the view and on the kind of update operation that is being applied on the view. As an example, a view can be
updatable regarding insertions, but not modifications or deletions. Second, update operations must not cause
side effects [18, 10].

We now investigate in more details the Dayal and Bernstein’s approach, which we use to prove the updata-
bility of a certain class of XML views in section 3.3.

2.1 The view dependency graph approach

Dayal and Bernstein [9, 10, 11] use view graphs to prove the updatability of a certain view. They defined two
graphs. The first one captures the structure of the view and the second one captures the functional dependencies
of the underlying relational database.

A view V (Z), with Z = {D1, . . . , Dn} is defined as (notation adapted from [14]):

CREATE VIEWV (D1, ..., Dn)
AS SELECT ti1 .Aij1 , ..., tin .Aijn

FROMR1 t1, ..., Rm tm

WHERE <qual>

where<qual> contains only clauses of the form "t.A = c" or "t.A = u.B" (t andu may be the same).
We say that the attributeAijk

generatesthe view attributeDk, for eachk in [1, n]. We call Rels(V) the set
{R1, . . . , Rm}, which is the set of relations over whichV is defined.

The structure of the view definition is captured by defining a labelled directed graphG(V), calledView
Trace Graph, constructed as follows:

4

Figure 5: FD-nodef corresponding to the FDf : B1, . . . , Bk →Ri
A

1. For every attributeA of each relation nameRi occurring in the FROM clause, there is a node in the graph
labelled "Ri.A";

2. For every view attributeDi there is a node labelledV.Di;

3. For each view attributeDk there are arcs (V.Dk, Rik
.Aijk

) and (Rik
.Aijk

, V.Dk), if Aijk
generatesDk;

4. For every clause (ti.A = tj .B) in <qual> there are arcs (Ri.A, Rj .B) and (Rj .B, Ri.A);

5. For every clause (ti.A = c) in <qual> introduce a node labelledc (called a constant node) and arcs (c,
Ri.A) and (Ri.A, c).

If G(V) has a path from node D to nodeRi.A, then we sayRi.A is traceablefrom V , andD is aV-trace
for Ri.A.

TheView Dependency Graph(F (V)) is obtained by enrichingG(V) with the information provided by the
functional dependencies in the database.

1. For every FDf : B1, . . . , Bk →Ri A, add the FD-nodef and the arcs of Figure 5. IfA andB are
singletons, then for convenience we denote the FDf : B →Ri A by a single arc (Ri.B, Ri.A).

2. If Ri.A is traceable from a constant nodec, then for every attributeB of every relationRi in the FROM
clause, draw arc (Rj .B, Ri.A).

Having defined view graphs, it is necessary to define paths on view graphs.
Let A, B, B1, B2, . . ., Bn be nodes andW , Y andZ be sets of nodes inF (V). A path in F (V) is defined

as follows:

• There is a path from every node to itself;

• If there is an arc (B, A), then there is a path fromB to A;

• Let f be an FD-node representingf : B1, . . . , Bk →Ri A. If there is a path fromY to everyBj ,
1 ≤ j ≤ k, then there is a path fromY to A (see Figure 6).

• If there is a path from a subset ofY to A, then there is a path fromY to A.

• If there is a path fromY to every node inZ, then there is a path fromY to Z.

• If there is a path fromY to Z, and a path fromZ to W , then there is a path fromY to W .

The notationY →V Z says that there is a path inF (V) from Y to Z.
In the following sections we analyze each type of update operation (delete, insert and modification) over a

view, and give the translation procedure to each one of them based on the view graph an paths.

2.1.1 Deletions

Let V be a view. Asimple deletiononV is a deletionu(Y) of the form:

DELETE
FROM Vv
WHEREv.D1 = c1 AND ... AND v.Dk = ck

5

Figure 6: A path fromY = {C1, . . . , Cn} to A through FD-nodef

whereY is the set of the view columnsDi specified in the condition on the WHERE clause.
The translation procedure for deletions is:

Step 1 Choose one relation nameRi occurring in the FROM clause ofV .

Step 2 The translation of the deletion will be

DELETE
FROMRi

WHERERi.Ki IN
(SELECT ti.Ki

FROMR1 t1, ..., Rm tm

WHERE <qual>
AND SOURCE(D1) = c1 AND ... AND SOURCE(Dk) = ck)

whereKi is the primary key ofRi, andSOURCE(Di) denotes the expressionRq.Aiq if Aiq generates
Dj .

Dayal proves that this procedure always exactly translatesu(Y) to the underlying relational database iff
Xi →V Y , whereRi(Xi) is the relation scheme chosen in Step 1.

2.1.2 Insertions

In Dayal’s approach, insertions can have a particular behavior when dealing with NULL values in view tuples.
Dayal’s translation mechanism works in a way that, if there is a tuplev in the view that has NULL values in
some of its attributes, and the insert operation is trying to insert a tuplev′ that is the same asv, but has some
non-null values in some of the attributes thatv has NULLs (that is,v′ is more defined thanv), then removev
and insertv′. This procedure is called "reduce".

Let u be an insertion of a tuplev on a viewV .

INSERT INTO V (D1, . . . , Dn)
VALUES (c1, . . . , cn)

This insertion is translated as follows.

Step 1 For each relationRi ∈ Rels(V) (recall that Rels(V) is the set of relations over which viewV is defined),
define a tupleti to be inserted inRi as.

INSERT INTO Ri (A1, . . . , Ak)
(FindValue(A1), ..., FindValue(Ak))

Where the procedureFindValue(A) is as follows:

6

function FindValue(A)
begin

if A has a V-trace v.D AND v[D] <> NULL
then return(v[D])
else if (Exists an FD L → A in Ri AND

Exists ti’ in Ri AND
ti’[L] = ti[L] AND
ti’[A] <> NULL)

then return ti’[A]
else if Exists Rj .B, such as there is a path from Rj .B to Ri.A in G(V)

then return(tj [B])
else return NULL;

end;

Assuming thatu specifies non-NULL values for the V-traces of the primary keys of eachRi ∈ Rels(V), and
that the insertion ofti does not violate any FD inRi, this procedure will produce exact translations foru if the
following conditions are satisfied:

1. the primary key of eachRi ∈ Rels(V) must be traceable from V; and

2. The definition ofV can be expressed as a sequence of definitions of viewsV1, . . . , Vk, where eachVi(Zi)
is defined over two base relationsR(X), S(Y), such that

(a) X →Vi Zi and
(b) Y →Vi Zi or R andS are equijoined onA, B respectively andR[A] ⊆ S[B] andB → Y in S and

EXISTS(S.B, S.Y)1.

2.1.3 Modifications

Let u be a replacement on a viewV . Let W be the set of view attributes specified for replacement inu. Let Y
be the set of attributes specified in the qualification ofu.

UPDATE V
SET Wi = ri

WHEREYi = vi

Let TLRels(u) be the set of relationsRi which has some attribute with a V-traceD ∈W .
The translation procedure is as follows:

Step 1 For each relationRi ∈ TLRels(u), do.

UPDATE Ri
SET SOURCE(Wi) = ri
WHERERi.Ki IN

(SELECT ti.Ki

FROMR1 t1, ..., Rm tm

WHERE <qual>
AND SOURCE(Yi) = vi)

whereKi is the primary key ofRi, andSOURCE(Di) denotes the expressionRq.Aiq if Aiq generatesDj .
Dayal [10] proves that this procedure will always exactly translate the replacementu iff

1. For allRi(Xi) ∈ TLRels(u), there is a pathXi →V Y ; and

1EXISTS(S.B, S.Y) is a constraint which states that for every tuples in S, if s[B] is non-NULL, then every component ofS[Y] is
non-NULL.

7

2. for all D ∈ W , if D is a V-trace of someRi.A that appears in a join clause in the view qualification, then
there is a pathXi →V Z, whereZ is the set of attributes in the viewV .

Also. u must not set to NULL a V-trace of any primary key attribute of any relation nameRi occurring in
the FROM clause ofV .

Having presented Dayal and Bernstein’s approach for exactly translating relational view updates to database
updates we now investigate the specific problem of updating relational databases through XML views. Our
solution uses the results of Dayal and Bernstein presented in this section.

3 Updating XML views

Our model of XML updates is very simple, and allows the insertion of a subtree at a given node, the deletion of
the subtree rooted at a given node, or the modification of a node.

DEFINITION 3.1 An update operationu over an XML viewV is a tuple <u,ref,∆>, whereu is the type of
operation (insert, delete, modify);ref is the address of a node in the XML tree; and∆ is the XML tree to be
inserted, or (in case of a modification) an atomic value. Deletions do not need to specify a∆, since all the
nodes underref will be deleted.

The referenceref can be obtained by an addressing scheme such as DOM. In our examples, we use the node
numbering shown in figure 3.

Since we are considering XML views of relational databases, not all XML updates will be valid since the
schema of the XML view is fixed by the view definition. Therefore, updates mustrespectthe schema and be
nesting compliant.

EXAMPLE 3.1 Suppose we wish to insert a new conference location for the DEXA conference in the XML
view of figure 3. In this case, we would have:

u = insertion,
ref=5,

∆ = {<YearLocation>
<Year>2002</Year>
<Location>Aix en Provence, France</Location>

</YearLocation>}.

Note that the insertion respects the schema of figure 2(a).
On the other hand, the following insertion does not respect the schema.

EXAMPLE 3.2 Suppose we wish to add the fact that Adam Clark was General Chair of DEXA in 2001.

u = insertion,
ref = 6,

∆ = {<GeneralChair>Adam Clark</GeneralChair>}.

As an example of a nesting violation, consider the following.

EXAMPLE 3.3 Suppose we insert information about DEXA 2003 at the root as follows:

u = insertion,
ref = 1,

8

∆ = {<Conference>
<ConfId>DEXA</ConfId>
<ConfName>Conference on Database and Expert Systems Applications</ConfName>
<YearLocations>

<YearLocation>
<Year>2003</Year>
<Location>Prague, Czech Republic</Location>

</YearLocation>
</YearLocations>

</Conference>}.

This violates nesting since the resulting view has two tuples that represent DEXA. If this update were
translated to a relational update and the view reconstructed, the resulting view would be different since it would
have only one tuple representing the DEXA conference.

Deletions and modification are somewhat simpler, and are allowed as long as they do not violate the se-
mantics (e.g. key, foreign key and non-null constraints) of the underlying database or the schema of the nested
relational view.

EXAMPLE 3.4 Delete the subtree that has information about the location of VLDB 2002.

u = deletion,
ref = 23,
∆ = {}.

EXAMPLE 3.5 Modify the name of the conference VLDB.

u = modification,
ref = 21,
∆ = {"New VLDB name"}.

In this example,ref points to a text node. Modifications are allowed only on leaves of the XML tree (text
nodes).

3.1 Nest-last XML views

We now consider a class of XML views for which exact updates can be automatically translated.

DEFINITION 3.2 A nest-last view is a view defined by a nested relational algebra expression (NRA) with the
form

νB1=(X1)...νBn=(Xn)(π(A1,A2,...,Ak)(σ(<qual>)(R1 ªR2 ª . . .ªRm)))

whereν stands for thenestoperator; ª is one of the binary operators of the classical relational algebra
(union, intersection, difference, cartesian product, or equi-join);A1, A2, . . . , Ak are attributes of relations
R1, R2, . . . , Rm; < qual> is set of qualifications over the attributes ofR1, R2, . . . , Rm; andXi ⊆ {A1, . . . , Ak},
i = 1, 2, . . . , n.

For shorthand, we represent a nest-last view asν . . . νR, whereR is any relational algebra expression.
We claim that this class of views can be treated by considering only the expressionR, and that the nesting

introducessetsof tuples to be inserted, deleted or modified in the underlying relational instance. Examples of
this translation will be given in section 3.2.

CLAIM 3.1 Let ν . . . νR be a nest-last view andu an update over this view. Lett(u) be the translation ofu
into an update overR. If R is updatable wrtt(u), thenν . . . νR is updatable wrt tou.

9

Proof: The proof is based on the fact that the nest (ν) operator is invertible [17, 27]. That is, after a nest
operation, it is always possible to obtain the original relation by applying an unnest (µ) operation. Since in this
type of view the nest operation is always the last operation to be applied, we can apply a reverse sequence of
unnest operators to obtain the (flat) relational expression.

As an example, by unnesting on YearLocation in view 1, we would obtain a flat relational expression:

π(IdConf, ConfName, Year, Location)(Conferences./ ConfLocation)

Claim 3.1 reduces the problem of investigating updatability of XML views to the problem of updates through
relational views. Consequently, it is possible to use all the work in relational views for XML views of this class.

3.2 Translating XML updates into relational view updates

For nest-last views, we can translate XML updates into updates to the corresponding relational (flat) view. This
section briefly introduces our technique based on examples.

Insertions. We unnest the subtree specified in∆ and create one relational tuple for each corresponding unnested
tuple to be inserted into the relational view. If there is any missing information, we fill it in with information
collected from the leaves under the elements along the path fromref to the root of the XML tree. In the case of
example 3.1, the insertion would be translated to an insertion in the relational component of view 1 (V1) as:

INSERT INTO VIEW V1 (IdConf,ConfName,Year,Location)
VALUES ("DEXA", "Conference on Database and Expert Systems Applications",

2002, "Aix en Provence,France")

As another example, suppose we insert a new conference with no information about YearLocations. This
would be translated as:

INSERT INTO VIEW V1 (IdConf,ConfName,Year,Location)
VALUES ("NEW", "New Conference", NULL, NULL)

Insertions may also be translated to asetof insertions in the relational view. As an example, consider the
insertion of the following subtree atref = 1.

∆ = {<Conference>
<IdConf>ER</IdConf>
<ConfName>Conference on Conceptual Modeling</ConfName>
<YearLocations>

<YearLocation>
<Year>2002</Year>
<Location>Tampere, Finland</Location>

</YearLocation>
<YearLocation>

<Year>2003</Year>
<Location>Chicago, Illinois</Location>

</YearLocation>
</YearLocations>

</Conference>}

This would be translated to

INSERT INTO VIEW V1 (IdConf,ConfName,Year,Location)
VALUES ("ER", "Conference on Conceptual Modeling",

2002, "Tampere, Finland")

INSERT INTO VIEW V1 (IdConf,ConfName,Year,Location)
VALUES ("ER", "Conference on Conceptual Modeling",

2003, "Chicago, Illinois")

10

Figure 7: View graph

Deletions.Deletions are translated in a similar way. To build the DELETE SQL statement, we use the subtree
of information rooted atref as well as information collected along the path fromref to the way to the document
root. Each value found in this path becomes a condition in the WHERE clause of the deletion.

In the case of example 3.4, we would translate it using the information of the node being deleted as well as
its parent (in this case, the VLDB conference). The translation would be:

DELETE FROM VIEW V1 WHERE Year=2002 AND
Location= "Hong Kong, China" AND IdConf= "VLDB" AND
ConfName= "Conference on Very Large Data Bases"

A deletion can also affect more than one tuple in the relational view. An example would be the attempt to
delete noderef = 9. This would be translated to:

DELETE FROM VIEW V1 WHERE IdConf= "PODS" AND
ConfName= "Symposium on Principles of Database Systems"

Modifications. Modifications are treated in the same way as deletions. That is, we use information about the
node and its ancestors to build the WHERE clause. In the case of example 3.5, the translation is:

UPDATE VIEW V1
WHERE IdConf= "VLDB" AND
ConfName= "Conference on Very Large Data Bases"
SET ConfName= "New VLDB name"

We have shown how to translate updates over an XML view to updates over the corresponding relational
view. The techniques of [18, 10] can then be used to translate these updates to the underlying relational database.

3.3 Nest-last Project-Select-Join Views

We now investigate a special subset of nest-last views that are well behaved with respect to updates.

DEFINITION 3.3 A nest-last project-select-join view(NPSJ) is a nest-last view with the following restrictions:
the relational expression is a project-select-join; the keys of the base relations are not projected out; and joins
are made only through foreign keys.

LEMMA 3.1 NPSJ views are always updatable for insertions.

Proof: Claim 3.1 shows how to reduce an XML view to a relational view. Based on this result, we are now able
to use the technique of Dayal and Bernstein [10] to prove that there is always an exact translation for insertions
and deletions for NPSJ views. Since the nest can be ignored, we start by defining a general PSJ view that is the
join of relationsR1, R2, . . . , Rm, where the the keys ofR1, R2, . . . , Rm are preserved in the view and joins are
done over foreign keys.

11

Let a project, select, join viewPSJ(Z) be defined as:

π(P1,P2,...,Pm,A1,A2,...,Ak)

(σ(<qual>)

(R1 ./ R2 .// Rm))

whereP1, P2, . . . , Pm are the primary keys ofR1, R2, . . . , Rm, respectively;Z = {P1, P2, . . ., Pm, A1, A2,
. . ., Ak} are attributes of the relationsR1, R2, . . . , Rm; and <qual> is set of qualifications over the attributes
of R1, R2, . . . , Rm.

We then draw a view graph for this view, as illustrated in figure 7. Nodes in this graph represent attributes.
The upper nodes represent attributes of the base relations, and the lower ones represent view attributes. Primary
keys are represented asPs and foreign keys asBs. As seen in section 2.1, the proofs for insertions are based on
finding paths in this directed graph.

Dayal and Bernstein [11] claim that insertions are always exactly translatable if we can express the view def-
inition as a sequence of views definitions, each one defined over only two relations. Let’s review the conditions
that must be satisfied in order to exist an exact translation for a given insertionu.

1. The primary key of eachRi ∈ {R1, R2, . . . , Rm} must be traceable fromPSJ ; and

2. The definition ofPSJ can be expressed as a sequence of definitions of viewsV1, . . . , Vk, where each
Vi(Zi) is defined over two base relationsR(X), S(Y), such that

(a) X →Vi Zi and
(b) Y →Vi Zi or R andS are equijoined onA, B respectively andR[A] ⊆ S[B] andB → Y in S and

EXISTS(S.B, S.Y).

CONDITION 1: Holds from the definition ofPSJ .
CONDITION 2: Also holds from the definition ofPSJ . SincePSJ is defined as projections and selections

over (R1 ./ R2 .// Rm), it is possible to definePSJ asVi, with 1 6 i 6 (m− 1), whereVi is

π(Pi,Pi+1,Ai1 ,Ai2 ,...,Aik
,A(i+1)1

,A(i+1)2
,...,A(i+1)l

)

(σ(<quali>)

(Ri ./ Ri+1))

wherePi, Pi+1 are the primary keys ofRi, Ri+1, respectively;Zi = {Pi, Pi+1,Ai1 , Ai2 , . . ., Aik
, A(i+1)1

,
A(i+1)2

, . . ., A(i+1)l
} is the set of all attributes of the relationsRi, Ri+1 that appears inZ (the set of attributes of

PSJ); {Pi, Ai1 , Ai2 , . . . , Aik
} ⊆ Ri(Xi), {Pi+1,A(i+1)1

, A(i+1)2
, . . ., A(i+1)l

} ⊆ Ri+1(Xi+1) ;and <quali>
is set of qualifications over the attributes ofRi, Ri+1 that appears in <qual>. In the same way asPSJ , Vi is
joined on the foreign keys ofRi andRi+1. So, one attribute ofRi+1 is the attribute that implements this foreign
key constraint. Let’s say this attribute isBi+1.

CONDITION 2A: This condition requires us to check the view dependency graph for viewVi, which is
shown on figure 8 (additionally, viewV1 is shown on the doted box of figure 7). By analyzing the view
dependency graph, it is easy to see that condition 2a is satisfied:X →Vi Zi holds for Vi when we make
R(X) = Ri+1(Xi+1). Thus,Xi+1 →Vi Zi. As an additional example, consider the two relations inside the
dotted box in figure 7. There is a path from the attributes ofR2 to all attributes in the view that originated from
R1 or R2.

CONDITION 2B: Condition 2b is an OR of two sub-conditions. The first sub-condition is not true. Since
we madeR(X) = Ri+1(Xi+1) in the proof of condition 2a, we now have to makeS(Y) = Ri(Xi), and
Xi →Vi Zi obviously does not hold (as we can see by analyzing the view graph of Figure 8. Consequently, the
only way for condition 2b to be truth is that the second sub-condition holds. We will prove that this is indeed
the case.

The second sub-condition is an AND of 3 clauses. Let’s analyze each one of them:

12

Figure 8: View Dependency graph ofVi

• R andS are equijoined onA, B respectively andR[A] ⊆ S[B]:
Ri+1 andRi are equijoined through attributesRi+1.Bi+1 andRi.Pi by definition ofVi. The condition
Ri+1[Bi+1] ⊆ Ri[Pi] trivially holds from the definition of foreign key (Ri+1.Bi+1 is a foreign key that
referencesRi.Pi).

• B → Y in S:
As we are usingS = Ri, we have to prove thatPi → Xi. This holds from the fact thatPi is the primary
key ofRi by definition.

• EXISTS(S.B, S.Y):
This is only required so thatPi → Xi is not true only for the trivial case where all the values inXi are
NULL. In fact, this is not the case.Pi → Xi holds by the definition of primary keys.

As all the three clauses are true, we can conclude that the second sub-condition of condition 2b is true,
which makes the hole condition true as well. Thus,PSJ satisfies all the conditions for the existence of exact
translations for insertions and deletion, as we wanted to show.

For modifications and deletions, even in the relational case there may fail to be an exact translation for
certain types of updates over a PSJ view. This type of update attempts to change (or delete) some but not all
occurrences of data that is repeated in the view, and thus causes side effects. As an example, consider the
unnested version of the view 1. This view has the values of IdConf and ConfName repeated in several tuples.
An attempt to modify a conference name could be stated as

UPDATE VIEW V1
SET ConfName= "New Name" WHERE IdConf= "VLDB"

This is exact, since it modifies all occurrences of VLDB tuples. However, consider this same example with
a slight modification.

UPDATE VIEW V1 SET ConfName= "New Name"
WHERE IdConf= "VLDB" AND Year=2002

As one can easily see, there is no way to translate this request without causing side effects, because a tuple
that does not satisfy the qualification of this modification request would also be affected (more specifically, the
tuple with IdConf="VLDB" and Year=2003). The same problem happens for deletions.

Fortunately, proper application of the nest operator can be used to avoid this type of ambiguity. For example,
for the view shown in figure 3 this kind of bad modification (or deletion) request cannot happen. Recall the
translation of the modification update example 3.5, which translates the modification to update all VLDB tuples.

However, if we had nested this view in a different way, the same update would fail to be exact. As an
example, consider the same view, now nested by {IdConf, ConfName} instead of {Year,Location}. The same
IdConf and ConfName appear several times in the view, as in the relational case. Thus, not all modifications
and deletions over this view would be exactly translatable.

The updatability of NPSJ views with respect to modifications and deletions depends on the way in which
we traverse the foreign key constraints when nesting. In view 1, we traverse the foreign key constraint from1

13

to n. That is, for each Conference tuple there are many ConfLocation tuples, so we nest ConfLocation tuples
(then’s) under their corresponding Conference tuple (the1’s). In the second example (where we nested over
{ IdConf, ConfName}), we nested the1’s under then’s, causing the1’s to appear several times in the resulting
view.

To define when a NPSJ view is well-nested, we reason about the foreign keys of the underlying relations. Re-
call that the syntax of a foreign key constraintC on tableR1 is given byCR1 FOREIGN KEY (FK1, . . . , FKn)
REFERENCESR2 (K1, . . . ,Kn). When the attribute names (K1, . . . ,Kn) are the same as (FK1, . . . , FKn),
they can be ommited, as in the example of figure 1.

DEFINITION 3.4 Let CR1 be a foreign key constraint, andV (R1) be the set of attributes ofR1 that appear
in the view. Anambiguity eliminating nestwith respect toCR1 is a nest of the formνX=(D), whereD =
{V (R1)} − ∪iFKi.

The idea behind this definition is that by omitting the foreign keys ofR1 and the keys ofR2 in the nest, we
collect their values together thus eliminating ambiguity. That is, each value appears just once in the view.

The view of example 1 has an ambiguity eliminating nest sinceR1=ConfLocation, R2= Conferences,
FK={ IdConf}, V (R1)={ IdConf, Year, Location} and we are nesting overνYearLocations=(Year,Location).

DEFINITION 3.5 A NPSJ view that involves more than two base relations iswell nestedif

1. It has one ambiguity eliminating nest for each foreign key constraint that was used to join the base
relations; and

2. The nests are executed in the opposite order of the joins.

An example of well-nested NPSJ is view 1. Another example is given by the following NRA expression:

νPapers=(IdPaper,Title)(νYearLocations=(Year,Location)

(π(IdConf, ConfName, Year, Location, IdPaper, Title)

(Conference./ (ConfLocation./ Papers))))

This expression differs from previous examples because it contains two nested relations in the same nesting
level. The resulting view has the following structure: (IdConf, ConfName,{ YearLocations}, { Papers}), were
YearLocationsandPapersare nested relations. This example shows that NPSJ views are capable of expressing
complex structures.

LEMMA 3.2 Well nested NPSJ views are always updatable with respect to modifications and deletions.

Proof: We divide the proof in two steps, one for deletions and one for modifications.

Modifications. In order to simplify the proof, we consider a view defined over two base relations, sayR1 ./ R2.
The graph of this view corresponds to the dotted box of figure 7. Using the technique of [10], there must be
a path from the attributes of the relation whose attributes are being modified to all view attributes that were
specified in the WHERE clause. In the case of well-nested NPSJ views, this is directly related to how we
specify the update against the relational view. In order forR1 andR2 to be well-nested,R2 must be nested
underR1. If we want to modify an attribute fromR1, the WHERE clause will have only attributes generated
from R1. Obviously, there is a path from the attributes inR1 to the view attributes generated fromR1. If we
want to modify attributes fromR2, the WHERE clause will have attributes generated both fromR1 andR2.
Since it is possible to use the arrowR1.P1-R2.B2 to reach all the view attributes, the condition is satisfied. The
proof can be easily generalized to views defined over more than two base relations.

Deletions. Deletions have a WHERE clause that specifies conditions that view tuples must satisfy in order to
be deleted. The condition for exact translation for deletions says that there must be a path in the view graph

14

from the relationRi chosen to translate this deletion to all attributes specified in the WHERE clause. We call
this set of attributesY . So,Xi →V Y must hold, whereXi is the set of attributes of the relationRi. Our proof
supposes that all attributes of the view were specified in the WHERE clause, since this is the "worst case". More
specifically, we makeY = Z. It is easy to see that one can always choose the last relation joined to translate the
deletion to the database because there is always a path from the attributes on this relation to all view attributes
(seeRm in figure 7) due to the edges introduced by join conditions.

4 Conclusions

We have investigated the problem of how to translate updates on XML views over relational databases to updates
on the underlying relations. In particular, we showed how updates to a nest-last view can be translated to updates
on the corresponding relational view. Techniques from the relational model can then be used to determine if the
nest-last XML view is updatable for a given update.

For the special class of NPSJ views, we showed that it is always possible to find exact translations for
insertions. When these views are well-nested it is also possible to find exact translations for deletions and
modifications. Thus, well-nested NPSJ views are updatable for all valid updates.

Well-nested NPSJ views are a very significant class of XML views. If we store an XML view of this class
in a relational database exploiting the keys and semantic constraints of the document, we would be able to
reconstruct the XML view using only joins over foreign keys [6]. That is, the relational instance represents a
natural storage scheme for the XML view when constraints are taken into account.

Since our focus was on XML views of legacy relational databases rather than XML views of XML docu-
ments, it was reasonable to make some simplifications. First, the schema of the view was fixed which meant
that limited forms of insertions and deletions were allowed. Second, it was sufficient to consider the nested
relational algebra as the basis of view expressions rather than something like the XQuery algebra.

The XQuery algebra [12] expresses all the operators of NRA, as well as aggregation, quantification, sorting
and iteration. It also has operators to deal with XML specific features - ordering, comments, processing instruc-
tions. It is clear that since aggregation loses information, views involving aggregation will not be updatable [20].
Furthermore, operators involving ordering are not relevant when the underlying representation is relational.

We claim that NRA is general enough to be able to represent the same type of structures as object-based
views [5]. In particular, object-based views include only relations that are related by integrity constraints, and
can therefore be expressed as nest-last views. The main difference between object-based views and our approach
based on NRA is related to side effects. Object views can be formed by creating relationships (pointers) between
simple objects and may therefore avoid repeating information. For example, a view can be defined as a set of
objects representing papers, where each paper is connected to an object that represents the conference in which
the paper was published. Information about conferences is not repeated, as it would be in the corresponding
NRA view. Thus, changing the name of a conference would affect a single object, which is referenced by several
papers, and would be side effect free. Note that by consideringID andIDREF in XML and using “normalized”
XML views [3] we can achieve the same result.

In future work we plan to explore general XML views.
Acknowledgments.We would like to thank Capes for supporting this research (BEX 1123/02-5).

References

[1] Xml for molecular biology as compiled by paul gordon. http://www.visualgenomics.ca/gordonp/xml.

[2] ABITEBOUL, S., AND BIDOIT, N. Non first normal form relations to represent hierarchically organized
data. InPODS(1984), pp. 191–200.

[3] ARENAS, M., AND L IBKIN , L. A normal form for XML documents. InProceedings of PODS 2002
(Madison, Wisconsin, Jun 2002).

15

[4] BANCILHON , F., AND SPYRATOS, N. Update semantics of relational views.ACM TODS 6, 4 (Dec 1981).

[5] BARSALOU, T., SIAMBELA , N., KELLER, A. M., AND WIEDERHOLD, G. Updating relational databases
through object-based views. InSIGMOD(Denver, CO, 1991), pp. 248–257.

[6] CHEN, Y., DAVIDSON, S. B.,AND ZHENG, Y. 3XNF: Redundancy eliminating XML storage in relations.
In VLDB (Berlin, Germany, 2003).

[7] COSMADAKIS, S. S.,AND PAPADIMITRIOU , C. H. Updates of relational views.Journal of the Associa-
tion for Computing Machinery 31, 4 (Oct 1984), 742–760.

[8] DA SILVA , A. S., FILHA , I. M. E., LAENDER, A. H. F., AND EMBLEY, D. W. Using nested tables for
representing and querying semistructured data. InProceedings of ER(Tampere, Finland, 2002).

[9] DAYAL , U., AND BERNSTEIN, P. A. On the updatability of relational views. InProceedings of VLDB
(West Berlin, Germany, Sep 1978), pp. 368–377.

[10] DAYAL , U., AND BERNSTEIN, P. A. On the correct translation of update operations on relational views.
ACM TODS 7, 3 (Sep 1982), 381–416.

[11] DAYAL , U., AND BERNSTEIN, P. A. On the updatability of network views - extending relational view
theory to the network model.Information Systems 7, 2 (1982), 29–46.

[12] FANKHAUSER, P., FERNÁNDEZ, M., MALHOTRA , A., RYS, M., SIMÉON, J., AND WADLER, P. The
xml query algebra. W3C Working Draft, Feb 2001. www.w3.org/TR/2001/WD-query-algebra-20010215.

[13] FERNÁNDEZ, M., TAN , W.-C.,AND SUCIU, D. Silkroute: Trading between relations and xml. InNineth
Internation World Wide Web Conference(2000).

[14] FURTADO, A. L., AND CASANOVA , M. A. Updating relational views. InQuery Processing in Database
Systems, W. Kim, D. S. Reiner, and D. S. Batory, Eds. Springer, Berlin, Heidelberg, 1985, pp. 127–142.

[15] FURTADO, A. L., SEVCIK , K. C., AND SANTOS, C. S. D. Permitting updates through views of data
bases.Information Systems 4, 4 (Oct 1979), 269–283.

[16] HULIN , G. On restructuring nested relations in partitioned normal form. In16th VLDB Conference
(Brisbane, Australia, 1990), pp. 626–636.

[17] JAESCHKE, G., AND SCHEK, H.-J. Remarks on the algebra of non first normal form relations. InPODS
(Los Angeles, CA, March 1982), pp. 124–138.

[18] KELLER, A. M. Algorithms for translating view updates to database updates for views involving selec-
tions, projections, and joins. InProceedings of PODS(Portland, Oregon, Mar. 1985), ACM, pp. 154–163.

[19] KELLER, A. M., AND WIEDERHOLD, G. Penguin: Objects for programs, relations for persistence. In
Succeeding with Object Databases, A. B. Chaudhri and R. Zicari, Eds. John Wiley & Sons, 2001.

[20] KELLER, M. The role of semantics in translating view updates.IEEE Computer 19, 1 (1986), 63–73.

[21] LANGERAK, R. View updates in relational databases with an independent scheme.ACM TODS 15, 1
(1990), 40–66.

[22] MAKINOUCHI , A. A consideration on normal form of not-necessarily-normalized relation in the relational
data model. InProceedings of VLDB(Tokio, Japan, 1977), pp. 447–453.

[23] MEDEIROS, C., AND TOMPA, F. Undestanding the implications of view update policies. In13th Interna-
tional Conference on Very Large Databases(1985), pp. 316–323.

16

[24] MOK, W. Y., NG, Y.-K., AND EMBLEY, D. W. A normal form for precisely characterizing redundancy
in nested relations.ACM TODS 21, 1 (Mar 1996), 77–106.

[25] ROWE, L. A., AND SHOENS, K. A. Data abstraction, views and updates in rigel. InProceedings of
SIGMOD(Boston, Massachusetts, 1979), pp. 71–81.

[26] SHU, H. Using constraint satisfaction for view update translation. InProc. of European Conference on
Artificial Intelligence (ECAI)(Brighton, UK, 1998).

[27] THOMAS, S. J.,AND FISCHER, P. C. Nested relational structures.Advances in Computing Research 3
(1986), 269–307.

[28] TUCHERMAN, L., FURTADO, A. L., AND CASANOVA , M. A. A pragmatic approach to structured
database design. InProceedings of VLDB(Florence, Italy, Oct 1983), pp. 219–231.

17

	Reasoning About the Updatability of XML Views Over Relational Databases
	Recommended Citation

	Reasoning About the Updatability of XML Views Over Relational Databases
	Abstract
	Comments

	tmp.1112642085.pdf._uUK0

