View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarlyCommons@Penn

- %
cnn - y University of Pennsylvania

Libraries ,_
 UNIVERSITY 0f PENNSYLVANIA Scholarlycommons
Technical Reports (CIS) Department of Computer & Information Science
January 2003

Reasoning About the Updatability of XML Views Over Relational
Databases

Vanessa P. Braganholo
Universidade Federal do Rio Grande do Sul

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Carlos A. Heuser
Universidade Federal do Rio Grande do Sul

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser, "Reasoning About the Updatability of
XML Views Over Relational Databases", . January 2003.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-03-13.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/29
For more information, please contact repository@pobox.upenn.edu.

https://core.ac.uk/display/76387756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/29
mailto:repository@pobox.upenn.edu

Reasoning About the Updatability of XML Views Over Relational Databases

Abstract

XML has become an important medium for data exchange, and is also used as an interfaceto —i.e. a
view of — a relational database. While previous work has considered XML views for the purpose of
querying relational databases (e.g. Silkroute), in this paper we consider the problem of updating a
relational database through an XML view. Using the nested relational algebra as the formalism for an XML
view of a relational database, we study the problem of when such views are updatable. Our results rely on
the observation that in many XML views of relational databases, the nest operator occurs last and the
unnest operator does not occur at all. Since in this case the nest operator is invertible, we can consider
this important class of XML views as if they were flat relational views.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-03-13.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/29

https://repository.upenn.edu/cis_reports/29

Reasoning about the updatability of XML views over relational
databases

Vanessa P. Braganhdlg Susan B. Davidson, Carlos A. Heusey

() Universidade Federal do Rio Grande do Sul - UFRGS (2 University of Pennsylvania
Instituto de Informéatica Department of Computer and Information Science
{vanessa, heuser}@inf.ufrgs.br {susan}@cis.upenn.edu
Abstract

XML has become an important medium for data exchange, and is also used as an interface to — i.e. a
view of — a relational database. While previous work has considered XML views for the purpose of querying
relational databases (e.g. Silkroute), in this paper we consider the problem of updating a relational database
through an XML view. Using the nested relational algebra as the formalism for an XML view of a relational
database, we study the problem of when such views are updatable. Our results rely on the observation that in
many XML views of relational databases, the nest operator occurs last and the unnest operator does not occur
at all. Since in this case the nest operator is invertible, we can consider this important class of XML views as
if they were flat relational views.

1 Introduction

XML is frequently used for publishing as well as exchanging relational data. Due to the highly unintuitive
representation of data in the relational model, it is also increasingly being used as a mechanism through which
to query and update legacy relational databases. For example, interfaces for gene expression data frequently
represent the data to be annotated as an XML view of a relational database (e.g. AGAVE and GAME [1]).

One reason for this use of XML is that it naturally captures many-one relationships between data through the
nesting of elements. In contrast, in the relational model nested data becomes fragmented over many relations,
with many-one relationships captured in key and foreign key constraints. Thus one of the advantages of XML
for conceptualizing information is its connection to nested relations.

As a simple example, consider the nested table of figure 2(a), which represents information about confer-
ences and their location by year. This same information when represented in the relational model would be split
over two tables (see figure 1). The nested table of figure 2(a) can also be understood as the XML instance in
figure 3.

While other work has considered the problem of querying relational databases through XML views (e.g.
Silkroute [13]), in this paper we focus on the problem of updating a relational database through an XML view.
More precisely, we wish to be able to translate an update on an XML view to a set of updates on the underlying
relations without introducing additional updates to the XML view.

To simplify the problem yet capitalize on the use of XML to capture nested relations, we consider XML
views as defined by the nested relational algebra [27, 17]. The nested relational algebra contains the classical
relational algebra operators,(w, U, x, <1, —) as well as thenest(r) andunnest(u) operators. There are
several reasons for considering this algebra: First, there is a straightforward mapping between nested relations
and XML views in this language [2, 8]. Second, it represents the core of languages such as XQuery when
order and aggregate operators are ignored. Third, certain subclasses of expressions in this algebra have good
properties regarding updatability. In this paper we will define such a subclass, drawing on classical relational
view updatability results [10, 18]. Surprisingly, except for work on normal forms for nested relations [22, 24, 16]

Conferences

IdConf ConfName

DExA [Conference on Database and Exper Systemns Applications
FODE [Symposium on Frinciples of Database Systems

WILDB [Conference onery Large Data Bases

"‘ ConfLocation Constraints:
IdConf | Year Location
DEXA 2001 |Munich, Germany On table Conferences
PODE | Z001|Santa Barbara, Calfornia CONSTRAIMT PK1 primary key (dConf)

FODS | Z00Z|Madison, YWisconsin On table GonfLacation

VLDB | 2002]Hong Kong, China CONSTRAINT PK2 primary key (1dCond, Yean
YLDB | 2003[Berlin, Gemany CONSTRAINT ConfLoc fareion key (1dCanf)
references Conferences

v
Papers TTTT T ——
IdPaper Title IdConf | Year ontable Papers
1[¥web Survey WLOH 20021 COMSTRAIMT PR3 primary key (JdPaper)

7|Guatving the vieb |DERA 7o07| CONSTRAINT PaperLoc foreign key (JdGonf, Year)
3|Databases and IR [VLDE | 2002 references Conflocation

Figure 1: Sample database

YearLocation

ldConf ConfName Yoar Itocation

Details
D15 Year Location Title

rons Symposium on Prindples of Database 7007| Ganta Darbara, Calfarmia DEXA | 2001 |Munich, Germany |Guerying the Web|

Systerns 7002 Madisan, Wiscansin VLOB 2002[Hong Kong, Ch?na Databases and IR
7002 Hong Kong, Ching 2002(Hong Kong, China [Web Survey

Conference on Datahase and Expert
DEXA Systemns Applications

2001 Munich, Germany

YLDB | Conference on Very Large Data Bases T003|Benin, Gernany

(a))

Figure 2: (a) View 1 (b) View 2

which focuses on removing ambiguity in nested relations, we could find no work related to updates through
nested relations.

Using the results of this paper, we will show that the view of figure 2(a) is updatable for all insertions,
deletions and modifications. That is, there is a unique, side effect free translation from any update on this view
to the underlying relations of figure 1. The view is produced by the following query:

VIEw 1

VYearLocatioa:(Year, Location (7T(IdConf, ConfName, Year, Locatipn
(Conferences< ConfLocation))

This query is an example of a class which we eadll-nested project-select-joigueries. Views of this class
are always updatable.

By relaxing restrictions on nesting and the form of the relational algebra expression, we can obtain a more
general class of queries of form .. vR, where R is any relational algebra expression. We will call this class
nest-last relational queriesAn example of this class of views is as follows, and the corresponding nested
relation is shown in figure 2(b).

VIEW 2

VDetaiIs:(Year,Location,Titlea(W(IdConf,Year, Location, Title

(U(ConfLocation.IdConf=Papers.IdConf AND ConflLocation.Year=Papers,Year
(ConfLocationx Papers))

Although views defined by queries in this class are not in general updatable, we can determine whether or
not a given update can be allowed using results from [10]. For example, in the above view we can always delete
tuples but the same is not true for insertions or modifications. That is, we would not be able to insert the tuple

Conferences
1

Conference Conference
2

carLocations YearLocations

Confld Confld,

5

“DEXA” “Conference on
Database and
Expert Systems
Applications”

“VLDB” “Conference
YearLocation on Principles YA arLocation™~_YearLocation on Very

6 of Database Large Data
Systems” Bases”

“2001” “Munich,” “2001” “Santa 2002 “Madison, “2002” “Hong 20037 “Berlin,
Germany Barbara, Wisconsin™ Kong, Germany”
California” China”

Figure 3: View 1 in XML

<"NEW",2003,"LocName","Title"> on this view because we do not have the primary key of the Papers
relation.

However, for XML views defined by general nested relational algebra (NRA) queries little can be said about
updatability. Some general NRA queries can be rewritten to nest-last relational form using the rewrite techniques
of [27]. However, there are others that cannot be rewritten and these remain an open problem. We will therefore
focus in this paper on views produced by nest-last relational queries, and well-nested project-select-join queries.
We further assume that the underlying relational database is well designed and is in BCNF.

The rest of this paper is organized as follows. In section 2 we define what it means for a view to be updatable,
and summarize results from the relational case. Section 3 formalizes the notion of an update to an XML view,
and discusses results on updates to views defined by nest-last relational queries as well as the special case of
well-nested project-select-join queries. Section 4 concludes and presents future directions.

2 Updating relational views

A large amount of work has been done on updates through relational views [15, 14, 23], and several different
techniques have been proposed. We summarize them below:

1.

View as an abstract data type: In this approach [25, 28], the DBA defines the view together with the
updates it supports. The effect of updates on the base relations is explicitly defined.

. Automatic translations for view updates: In [18], Keller defines five criteria that the translations should

respect in order to be correct. Dayal and Bernstein [10] propose a translation mechanism that uses view
graphs to decide if a given update translation is correct. The view graphs are constructed based on the
syntax of the view definition and on the functional dependencies of base relations. A more recent work is
presented in [21], but it does not consider views involving selections.

. View complement: Bancilhon and Spyratos [4] introduce the notion of view complement to solve the

update problem. In this approach, an update translation is considered correct if the complement of the
view remains unchanged. Finding a view complement may be NP-complete even for very simple view
definitions [7].

. Views as conditional tables: A more recent technique consists in transforming a view update problem into

a Constraint Satisfaction problem [26]. In this approach, views are represented as conditional tables. Each
solution to the constraint satisfaction problem corresponds to a possible translation of the view update.

. Object-based views: An extension of [20] to deal with object-based views is proposed in [5]. In this

work, Barsalou propose algorithms for propagating updates in a hierarchical structure of objects. An
implementation of object-based views is discussed in the Penguin Project [19].

Vv V'
DEF, I I DEFV
DB— . .DB

Figure 4:U exactly performs.. View V is defined over databadeB using the definition functio® £ Fy

In this paper, we follow the second approach and attempt to find an automatic translation for XML view
updates. In particular, given an update against an XML iewve wish to find a set of updates against the
base relations defininyy that does not cause additional side effects in the view. For example, if we were to
modify the ConfName of the DEXA conference in the table of figure 2(a) to "NewConf", we would expect the
ConfName of PODS or VLDB to remain the same. That is, a translation of this modification to the following
SQL update would be incorrect:

UPDATE Conferences SET ConfName="NewConf"

However, in this case there is a side effect free translation of the view update as follows:

UPDATE Conferences SET ConfName="NewConf"
WHERE Confld="DEXA"

DEFINITION 2.1 A translationU of an updateu over a viewV is exactwhen the diagram of figure 4 com-
mutes [18].

Having presented the meaningexXacttranslations, we can now define the notion of view updatability.

DEFINITION 2.2 A view is updatable with respect to a type of update operation (namely insertion, deletion or
modification) if there is an exact translatigrior every update: of this type that can be applied over the view,
whenever is syntactically correct and does not violate the semantic consistency of the underlying database.

This definition establishes two important points. First, view updatability depends on both the structure of
the view and on the kind of update operation that is being applied on the view. As an example, a view can be
updatable regarding insertions, but not modifications or deletions. Second, update operations must not cause
side effects [18, 10].

We now investigate in more details the Dayal and Bernstein’s approach, which we use to prove the updata-
bility of a certain class of XML views in section 3.3.

2.1 The view dependency graph approach

Dayal and Bernstein [9, 10, 11] use view graphs to prove the updatability of a certain view. They defined two
graphs. The first one captures the structure of the view and the second one captures the functional dependencies
of the underlying relational database.

Aview V(Z), with Z = {D, ..., D, } is defined as (notation adapted from [14]):

CREATE VIEWV(Dy, ... Dp)
AS SELECT iy Aijy, oy tin. Ay,
FROMR; t1, ... Rm tm

WHERE <qual>

where<qual> contains only clauses of the form.A = ¢" or "t.A = u.B" (t andu may be the same).
We say that the attributd;, generateghe view attributeDy,, for eachk in [1,n]. We call Rels{’) the set
{Ry, ..., R}, which is the set of relations over whidhis defined.

The structure of the view definition is captured by defining a labelled directed @réph, called View
Trace Graph constructed as follows:

Ri‘Bz O

RB, = opy

|
Ri.Bk O /

Figure 5: FD-nod¢f corresponding to the Fp: By, ..., B, —g, A

1. For every attributed of each relation nam&; occurring in the FROM clause, there is a node in the graph
labelled "R;.A";

For every view attributeD; there is a node labelled. D;;
For each view attribut®;, there are arcs{. Dy, R;, . A;;,) and R;, . A;,,, V.Dy), it A;,, generated;;
For every clauset{.A = t;.B) in <qual> there are arcsK;.A, R;.B) and R;.B, R;.A);

For every clauset{.A = ¢) in <qual> introduce a node labelled(called a constant node) and ares (
R;.A)and R;.A, ¢).

o~ 0N

If G(V) has a path from node D to nodg. A, then we sayR;. A is traceablefrom V', and D is aV-trace
for R;.A.

The View Dependency Grapl#'(V)) is obtained by enriching: (V") with the information provided by the
functional dependencies in the database.

1. For every FDf: Bi,...,Br —g, A, add the FD-nodg and the arcs of Figure 5. I and B are
singletons, then for convenience we denote thefFB — 5, A by asingle arcR;.B, R;.A).

2. If R;.Ais traceable from a constant nodehen for every attributés of every relationR; in the FROM
clause, draw arcK;.B, R;.A).

Having defined view graphs, it is necessary to define paths on view graphs.
Let A, B, By, B, ..., B, be nodes andl, Y andZ be sets of nodes if'(V'). A pathin F'(V) is defined
as follows:

e There is a path from every node to itself;
e Ifthereis an arcB, A), then there is a path from to A;

e Let f be an FD-node representing Bi,...,Br, —gr, A. If there is a path front” to every B;,
1 < j <k, then there is a path frofvi to A (see Figure 6).

If there is a path from a subset Bfto A, then there is a path froi to A.
If there is a path fronY” to every node irZ, then there is a path froixi to Z.
If there is a path fronY” to Z, and a path fron¥ to W, then there is a path frofyi to /.

The notationY” —y Z says that there is a path (V') fromY to Z.
In the following sections we analyze each type of update operation (delete, insert and modification) over a
view, and give the translation procedure to each one of them based on the view graph an paths.

2.1.1 Deletions
Let V be a view. Asimple deletioron V' is a deletionu(Y") of the form:

DELETE
FROM Vv
WHEREv.D1 =c¢1 AND ... AND v.Dy =ci

OR.A

1

CIO Bz
C Q%@’
2 ‘ Q—>
\
O—»
7£<}» /
B
C O g

Figure 6: A path from¥” ={C1,...,C,}to A through FD-nod¢f

whereY is the set of the view column®; specified in the condition on the WHERE clause.
The translation procedure for deletions is:

Step 1 Choose one relation nanf& occurring in the FROM clause 6f.
Step 2 The translation of the deletion will be

DELETE
FROMR;
WHERER;.K; IN
(SELECT ¢;.K;
FROMR; ti, ..., Rm tm
WHERE <qual>
AND SOURCH(;) = c¢1 AND ... AND SOURCE(Dg) = cx)

where K; is the primary key ofi;, andSOURCED;) denotes the expressidi,. A;_ if A; generates
D;.

Dayal proves that this procedure always exactly translatgs to the underlying relational database iff
X; —v Y, whereR;(X;) is the relation scheme chosen in Step 1.

2.1.2 Insertions

In Dayal’s approach, insertions can have a particular behavior when dealing with NULL values in view tuples.
Dayal’s translation mechanism works in a way that, if there is a tupfethe view that has NULL values in
some of its attributes, and the insert operation is trying to insert a tdphat is the same asg but has some
non-null values in some of the attributes thatas NULLs (that isp’ is more defined than), then removey
and inserty’. This procedure is called "reduce".

Let« be an insertion of a tuple on a viewV'.

INSERT INTO V (D1, ..., D)
VALUES (c1, ..., cn)

This insertion is translated as follows.

Step 1 For each relatior; € Rels(/) (recall that Rels() is the set of relations over which vieW is defined),
define a tuplé; to be inserted ik; as.

INSERT INTO R; (Ai,...,A)
(Findvalue(A;), ..., FindValue(Ag))

Where the proceduréindValue(A) is as follows:

function FindValue(A)

begin
if A has a V-trace v.D AND v[D] <> NULL
then return(v[D])

else if (Exists an FD L — A in R; AND
Exists ¢’ in R; AND
t;'[L] = #[L] AND

t;'[A] <> NULL)
then return t;'[A]
else if Exists R;.B, such as there is a path from R;.B to R;.A in G(V)
then return(¢;[B])
else return NULL;
end;

Assuming that; specifies non-NULL values for the V-traces of the primary keys of dach Rels(/), and
that the insertion of; does not violate any FD iR;, this procedure will produce exact translationsdaf the
following conditions are satisfied:

1. the primary key of eacli®;, € Rels(V') must be traceable from V; and

2. The definition ofl” can be expressed as a sequence of definitions of digws. , V., where eacl;(Z;)
is defined over two base relatioR% X), S(Y"), such that

(@) X —v, Z; and
(b) Y —y, Z; or R andS are equijoined o, B respectively and?[A] C S[B]andB — Y in S and
EXISTS(S.B, S.Y).

2.1.3 Modifications

Letu be a replacement on a view. Let W be the set of view attributes specified for replacement ihet Y’
be the set of attributes specified in the qualificatiom.of

UPDATE V
SET Wi =T
WHEREY; = v;

Let TLRels() be the set of relation®; which has some attribute with a V-traéee .
The translation procedure is as follows:

Step 1 For each relatiork; € TLRels@), do.

UPDATE Ri
SET SOURCE(Wi) = ri
WHERER;.K; IN
(SELECT ¢,.K;
FROMR;: ti, ..., Rm tm
WHERE <qual>
AND SOURCE(Yi) = vi)

wherek; is the primary key of?;, andSOURCED);) denotes the expressid,. A;, if A;, generated;.
Dayal [10] proves that this procedure will always exactly translate the replacenifént

1. For all R;(X;) € TLRels(u), there is a patlX; — Y’; and

1EXISTS(S.B, S.Y) is a constraint which states that for every tupl@ S, if s[B] is non-NULL, then every component &fY] is
non-NULL.

2. forall D € W, if Dis a V-trace of somé;. A that appears in a join clause in the view qualification, then
there is a pattX; — Z, whereZ is the set of attributes in the vieW.

Also. u must not set to NULL a V-trace of any primary key attribute of any relation n&neccurring in
the FROM clause o¥'.

Having presented Dayal and Bernstein’s approach for exactly translating relational view updates to database
updates we now investigate the specific problem of updating relational databases through XML views. Our
solution uses the results of Dayal and Bernstein presented in this section.

3 Updating XML views

Our model of XML updates is very simple, and allows the insertion of a subtree at a given node, the deletion of
the subtree rooted at a given node, or the modification of a node.

DEFINITION 3.1 An update operation. over an XML viewV is a tuple <u,ref,A>, whereuw is the type of
operation (insert, delete, modify)ef is the address of a node in the XML tree; aids the XML tree to be
inserted, or (in case of a modification) an atomic value. Deletions do not need to spetifgiace all the
nodes underef will be deleted.

The referenceef can be obtained by an addressing scheme such as DOM. In our examples, we use the node
numbering shown in figure 3.

Since we are considering XML views of relational databases, not all XML updates will be valid since the
schema of the XML view is fixed by the view definition. Therefore, updates mesgiectthe schema and be
nesting compliant

ExamMPLE 3.1 Suppose we wish to insert a new conference location for the DEXA conference in the XML
view of figure 3. In this case, we would have:

u = insertion
ref=5,
A = {<YearlLocation>
<Year>2002</Year>
<Location>Aix en Provence, France</Location>
</YearLocation>}.

Note that the insertion respects the schema of figure 2(a).
On the other hand, the following insertion does not respect the schema.

ExampPLE 3.2 Suppose we wish to add the fact that Adam Clark was General Chair of DEXA in 2001.

u = insertion
ref =6,

A = {<GeneralChair>Adam Clark</GeneralChair>}.
As an example of a nesting violation, consider the following.

ExamMPLE 3.3 Suppose we insert information about DEXA 2003 at the root as follows:

u = insertion
ref =1,

A = {<Conference>
<Confld>DEXA</Confld>
<ConfName>Conference on Database and Expert Systems Applications</ConfName>
<YearlLocations>
<YearlLocation>
<Year>2003</Year>
<Location>Prague, Czech Republic</Location>
</YearLocation>
</YearLocations>
</Conference>}.

This violates nesting since the resulting view has two tuples that represent DEXA. If this update were
translated to a relational update and the view reconstructed, the resulting view would be different since it would
have only one tuple representing the DEXA conference.

Deletions and modification are somewhat simpler, and are allowed as long as they do not violate the se-
mantics (e.g. key, foreign key and non-null constraints) of the underlying database or the schema of the nested
relational view.

ExAMPLE 3.4 Delete the subtree that has information about the location of VLDB 2002.

u = deletion
ref =23,
A={}.

ExampLE 3.5 Modify the name of the conference VLDB.

u = modification
ref =21,
A ={"New VLDB name"}.

In this exampleref points to a text node. Modifications are allowed only on leaves of the XML tree (text
nodes).

3.1 Nest-last XML views

We now consider a class of XML views for which exact updates can be automatically translated.

DEFINITION 3.2 A nest-last view is a view defined by a nested relational algebra expression (NRA) with the
form

VB =(X1)VBn=(Xn) (T(A1, 45,.... A1) (O (<quai>) (R1 © R2 © ... © Rp,)))

wherev stands for thenestoperator; © is one of the binary operators of the classical relational algebra
(union, intersection, difference, cartesian product, or equi-joid);, Ao, ..., Ay are attributes of relations
Ry, Ra, ..., Ry; <qual>is set of qualifications over the attributesBf, Ro, ..., Rn;and X; C {Ay,..., Ax},
i=1,2,...,n.

For shorthand, we represent a nest-last view as v R, whereR is any relational algebra expression.

We claim that this class of views can be treated by considering only the exprégséo that the nesting
introducessetsof tuples to be inserted, deleted or modified in the underlying relational instance. Examples of
this translation will be given in section 3.2.

CLAIM 3.1 Letv...vR be a nest-last view and an update over this view. Letu) be the translation of;
into an update oveR. If R is updatable wrt(u), thenv ... vR is updatable wrt tau.

Proof: The proof is based on the fact that the negtdperator is invertible [17, 27]. That is, after a nest
operation, it is always possible to obtain the original relation by applying an unnespération. Since in this

type of view the nest operation is always the last operation to be applied, we can apply a reverse sequence of
unnest operators to obtain the (flat) relational expression. [

As an example, by unnesting on YearLocation in view 1, we would obtain a flat relational expression:
7T(IdConf, ConfName, Year, Locatipﬁconferencesﬂ COHfLOC&tiOT)

Claim 3.1 reduces the problem of investigating updatability of XML views to the problem of updates through
relational views. Consequently, it is possible to use all the work in relational views for XML views of this class.

3.2 Translating XML updates into relational view updates

For nest-last views, we can translate XML updates into updates to the corresponding relational (flat) view. This
section briefly introduces our technique based on examples.

Insertions. We unnest the subtree specifiedirand create one relational tuple for each corresponding unnested
tuple to be inserted into the relational view. If there is any missing information, we fill it in with information
collected from the leaves under the elements along the pathrébta the root of the XML tree. In the case of
example 3.1, the insertion would be translated to an insertion in the relational component of view 1 (V1) as:

INSERT INTO VIEW V1 (IdConf,ConfName,Year,Location)
VALUES ("DEXA", "Conference on Database and Expert Systems Applications",
2002, "Aix en Provence,France")

As another example, suppose we insert a new conference with no information about YearLocations. This
would be translated as:

INSERT INTO VIEW V1 (ldConf,ConfName,Year,Location)
VALUES ("NEW", "New Conference", NULL, NULL)

Insertions may also be translated teetof insertions in the relational view. As an example, consider the
insertion of the following subtree atf = 1.

A = {<Conference>
<ldConf>ER</IdConf>
<ConfName>Conference on Conceptual Modeling</ConfName>
<YearlLocations>
<YearlLocation>
<Year>2002</Year>
<Location>Tampere, Finland</Location>
</YearLocation>
<YearLocation>
<Year>2003</Year>
<Location>Chicago, lllinois</Location>
</YearLocation>
</YearLocations>
</Conference>}

This would be translated to
INSERT INTO VIEW V1 (ldConf,ConfName,Year,Location)
VALUES ("ER", "Conference on Conceptual Modeling",
2002, "Tampere, Finland")
INSERT INTO VIEW V1 (IdConf,ConfName,Year,Location)

VALUES ("ER", "Conference on Conceptual Modeling",
2003, "Chicago, lllinois")

10

P, R,.A, R.A

m“tml

207 e By,

Figure 7: View graph

Deletions. Deletions are translated in a similar way. To build the DELETE SQL statement, we use the subtree
of information rooted atef as well as information collected along the path fr@hto the way to the document
root. Each value found in this path becomes a condition in the WHERE clause of the deletion.

In the case of example 3.4, we would translate it using the information of the node being deleted as well as
its parent (in this case, the VLDB conference). The translation would be:

DELETE FROM VIEW V1 WHERE Year=2002 AND
Location= "Hong Kong, China" AND IdConf= "VLDB" AND
ConfName= "Conference on Very Large Data Bases"

A deletion can also affect more than one tuple in the relational view. An example would be the attempt to
delete nodeef = 9. This would be translated to:

DELETE FROM VIEW V1 WHERE IdConf= "PODS" AND
ConfName= "Symposium on Principles of Database Systems"

Modifications. Modifications are treated in the same way as deletions. That is, we use information about the
node and its ancestors to build the WHERE clause. In the case of example 3.5, the translation is:

UPDATE VIEW V1

WHERE IdConf= "VLDB" AND

ConfName= "Conference on Very Large Data Bases"
SET ConfName= "New VLDB name"

We have shown how to translate updates over an XML view to updates over the corresponding relational
view. The techniques of [18, 10] can then be used to translate these updates to the underlying relational database.

3.3 Nest-last Project-Select-Join Views

We now investigate a special subset of nest-last views that are well behaved with respect to updates.

DEFINITION 3.3 A nest-last project-select-join viefPSJ) is a nest-last view with the following restrictions:
the relational expression is a project-select-join; the keys of the base relations are not projected out; and joins
are made only through foreign keys.

LEMMA 3.1 NPSJ views are always updatable for insertions.

Proof: Claim 3.1 shows how to reduce an XML view to a relational view. Based on this result, we are now able

to use the technique of Dayal and Bernstein [10] to prove that there is always an exact translation for insertions
and deletions for NPSJ views. Since the nest can be ignored, we start by defining a general PSJ view that is the
join of relationsRy, Ro, . . ., R,,, where the the keys &};, R», ..., R,, are preserved in the view and joins are

done over foreign keys.

11

Let a project, select, join view?SJ(Z) be defined as:

T(Py,Py,...,Pm,A1,Az,...,AR)

(U(<qual>)
(Ri ™ Rox... < Ryp))

wherePy, Py, ..., P, are the primary keys oRy, R, ..., R, respectively,Z = {Py, P, ..., Pp, A1, Ao,
..., A} are attributes of the relatior3;, R», . . ., R,,,; and ual> is set of qualifications over the attributes
of Rl,RQ, C ,Rm.

We then draw a view graph for this view, as illustrated in figure 7. Nodes in this graph represent attributes.
The upper nodes represent attributes of the base relations, and the lower ones represent view attributes. Primary
keys are represented &s and foreign keys aBs. As seen in section 2.1, the proofs for insertions are based on
finding paths in this directed graph.

Dayal and Bernstein [11] claim that insertions are always exactly translatable if we can express the view def-
inition as a sequence of views definitions, each one defined over only two relations. Let’s review the conditions
that must be satisfied in order to exist an exact translation for a given insertion

1. The primary key of eac®; € {R1, Rs, ..., R,,} must be traceable frof?S.J; and

2. The definition of PSJ can be expressed as a sequence of definitions of Vigws . , Vi, where each
Vi(Z,;) is defined over two base relatiof§ X), S(Y'), such that

(@ X —v, Z;and
(b) Y —y, Z; or RandS are equijoined o, B respectively and?[A] C S[B] andB — Y in S and
EXISTS(S.B,S.Y).

CONDITION 1: Holds from the definition of?SJ.
CONDITION 2: Also holds from the definition oPSJ. SincePSJ is defined as projections and selections
over (Ry <1 Ry < ... X1 Ry,), itis possible to defindSJ asV;, with 1 < ¢ < (m — 1), whereV; is

T(Pi,Pig1, Ay Aig ey Ady s A x4 1) A1) g 50 Ai41),)

(U(<quali>)
(Ri > R;iy1))

where P;, P, are the primary keys oR;, R, 11, respectively;Z; = {P;, Pi11,Ai,, Aiys - Aips A(z‘+1)1’
Alit1), - A(i+1)l} is the set of all attributes of the relatioRs, R;. 1 that appears iiY (the set of attributes of
PST) AP, Aiys Ay -, Ai } C© Ri(Xa) {Pis1,Agin) 0 AGirn), - - A, € Rig1(Xiy) ;and qual;>

is set of qualifications over the attributes Bf, R, that appears ingal>. In the same way aBSJ, V; is
joined on the foreign keys a®; andR;,,. So, one attribute ok, ; is the attribute that implements this foreign
key constraint. Let's say this attribute i, ;.

CONDITION 2A: This condition requires us to check the view dependency graph for Viewhich is
shown on figure 8 (additionally, view; is shown on the doted box of figure 7). By analyzing the view
dependency graph, it is easy to see that condition 2a is satiskedsy, Z; holds for V; when we make
R(X) = Ri+1(Xi41). Thus, X, 11 —v, Z;. As an additional example, consider the two relations inside the
dotted box in figure 7. There is a path from the attribute®gfo all attributes in the view that originated from
R, or Rs.

CONDITION 28B: Condition 2b is an OR of two sub-conditions. The first sub-condition is not true. Since
we madeR(X) = R;+1(X;+1) in the proof of condition 2a, we now have to makéY') = R;(X;), and
X; —v, Z,; obviously does not hold (as we can see by analyzing the view graph of Figure 8. Consequently, the
only way for condition 2b to be truth is that the second sub-condition holds. We will prove that this is indeed
the case.

The second sub-condition is an AND of 3 clauses. Let's analyze each one of them:

12

R.A, R.A; RA, . RA, R([+1)‘P([+1) R([+l)‘A(i+l)] R(HI}‘A(HI)Z R([+1)-A(z+1;1 R(m;- (i+1)

A

(i+1)n

V.P, V.A, V.A, V.A, v.P v.A VA v.A

i k it (i) [l (2] iit+1)2 (i3]

Figure 8: View Dependency graph ©f

e R andS are equijoined o, B respectively and?[A] C S[B]:
R;11 and R; are equijoined through attributd® 1.B;, 1 and R;.P; by definition of ;. The condition
R;+1[Bi+1] C R;[P;] trivially holds from the definition of foreign keyR;.1.B;+1 is a foreign key that
references;.P)).

e B—YinS§:
As we are usings = R;, we have to prove tha®?;, — X;. This holds from the fact tha®; is the primary
key of R; by definition.

e EXISTS(S.B,S.Y):
This is only required so tha®, — X is not true only for the trivial case where all the valueskipare
NULL. In fact, this is not the casdé?; — X; holds by the definition of primary keys.

As all the three clauses are true, we can conclude that the second sub-condition of condition 2b is true,
which makes the hole condition true as well. Thi*sJ satisfies all the conditions for the existence of exact
translations for insertions and deletion, as we wanted to show. (]

For modifications and deletions, even in the relational case there may fail to be an exact translation for
certain types of updates over a PSJ view. This type of update attempts to change (or delete) some but not all
occurrences of data that is repeated in the view, and thus causes side effects. As an example, consider the
unnested version of the view 1. This view has the values of IdConf and ConfName repeated in several tuples.
An attempt to modify a conference name could be stated as

UPDATE VIEW V1
SET ConfName= "New Name" WHERE IdConf= "VLDB"

This is exact, since it modifies all occurrences of VLDB tuples. However, consider this same example with
a slight modification.

UPDATE VIEW V1 SET ConfName= "New Name"
WHERE IdConf= "VLDB" AND Year=2002

As one can easily see, there is no way to translate this request without causing side effects, because a tuple
that does not satisfy the qualification of this modification request would also be affected (more specifically, the
tuple with IdConf="VLDB" and Year=2003). The same problem happens for deletions.

Fortunately, proper application of the nest operator can be used to avoid this type of ambiguity. For example,
for the view shown in figure 3 this kind of bad modification (or deletion) request cannot happen. Recall the
translation of the modification update example 3.5, which translates the modification to update all VLDB tuples.

However, if we had nested this view in a different way, the same update would fail to be exact. As an
example, consider the same view, now nestedIdZénf, ConfNamginstead of {Year,Locatioh The same
IdConf and ConfName appear several times in the view, as in the relational case. Thus, not all modifications
and deletions over this view would be exactly translatable.

The updatability of NPSJ views with respect to modifications and deletions depends on the way in which
we traverse the foreign key constraints when nesting. In view 1, we traverse the foreign key constraint from

13

ton. That is, for each Conference tuple there are many ConfLocation tuples, so we nest ConfLocation tuples
(then’s) under their corresponding Conference tuple (tls¢. In the second example (where we nested over
{IdConf, ConfNamjg, we nested thd’s under then’s, causing thd's to appear several times in the resulting
view.

To define when a NPSJ view is well-nested, we reason about the foreign keys of the underlying relations. Re-
call that the syntax of a foreign key constrainbn tableR; is given byCr, FOREIGN KEY (FK1,...,FK,)
REFERENCESR, (K3, ..., K,). When the attribute name&(, ..., K,,) are the same ag'(K, ..., FK,),
they can be ommited, as in the example of figure 1.

DEFINITION 3.4 Let Cg, be a foreign key constraint, anid(R;) be the set of attributes d®; that appear
in the view. Anambiguity eliminating neswith respect toCr, is a nest of the formvx_py, whereD =
{V(R,)} — U;FK;.

The idea behind this definition is that by omitting the foreign key&ofind the keys of?; in the nest, we
collect their values together thus eliminating ambiguity. That is, each value appears just once in the view.

The view of example 1 has an ambiguity eliminating nest sikRgeConfLocation R,= Conferences
FK={IdConf}, V(R:)={IdConf, Year, Locatiohand we are nesting OVekear ocations-(Year,Locatiop-

DEFINITION 3.5 A NPSJ view that involves more than two base relationgeis nestedf

1. It has one ambiguity eliminating nest for each foreign key constraint that was used to join the base
relations; and

2. The nests are executed in the opposite order of the joins.

An example of well-nested NPSJ is view 1. Another example is given by the following NRA expression:

Vpapers=(IdPaper,Title (VearLocations- (Year,Location

(W(IdConf, ConfName, Year, Location, IdPaper, Tjtle
(Conferencex (ConfLocatior= Papers)))

This expression differs from previous examples because it contains two nested relations in the same nesting
level. The resulting view has the following structurégd@onf, ConfName{ YearLocation} { Paper3), were
YearLocationsandPapersare nested relations. This example shows that NPSJ views are capable of expressing
complex structures.

LEMMA 3.2 Well nested NPSJ views are always updatable with respect to modifications and deletions.
Proof: We divide the proof in two steps, one for deletions and one for modifications.

Modifications. In order to simplify the proof, we consider a view defined over two base relation®;say Rs.

The graph of this view corresponds to the dotted box of figure 7. Using the technique of [10], there must be
a path from the attributes of the relation whose attributes are being modified to all view attributes that were
specified in the WHERE clause. In the case of well-nested NPSJ views, this is directly related to how we
specify the update against the relational view. In orderHgrand R, to be well-nestedR,; must be nested
underR;. If we want to modify an attribute fron&,, the WHERE clause will have only attributes generated
from R,. Obviously, there is a path from the attributesin to the view attributes generated froRy. If we

want to modify attributes froni?,, the WHERE clause will have attributes generated both fimand R,.

Since it is possible to use the arrd¥y. P, - R>. B to reach all the view attributes, the condition is satisfied. The
proof can be easily generalized to views defined over more than two base relations.

Deletions. Deletions have a WHERE clause that specifies conditions that view tuples must satisfy in order to
be deleted. The condition for exact translation for deletions says that there must be a path in the view graph

14

from the relationR; chosen to translate this deletion to all attributes specified in the WHERE clause. We call
this set of attribute¥”. So,X; — Y must hold, whereX; is the set of attributes of the relatidty. Our proof
supposes that all attributes of the view were specified in the WHERE clause, since this is the "worst case". More
specifically, we mak& = Z. Itis easy to see that one can always choose the last relation joined to translate the
deletion to the database because there is always a path from the attributes on this relation to all view attributes
(seeR,, in figure 7) due to the edges introduced by join conditions. L]

4 Conclusions

We have investigated the problem of how to translate updates on XML views over relational databases to updates
on the underlying relations. In particular, we showed how updates to a nest-last view can be translated to updates
on the corresponding relational view. Techniques from the relational model can then be used to determine if the
nest-last XML view is updatable for a given update.

For the special class of NPSJ views, we showed that it is always possible to find exact translations for
insertions. When these views are well-nested it is also possible to find exact translations for deletions and
modifications. Thus, well-nested NPSJ views are updatable for all valid updates.

Well-nested NPSJ views are a very significant class of XML views. If we store an XML view of this class
in a relational database exploiting the keys and semantic constraints of the document, we would be able to
reconstruct the XML view using only joins over foreign keys [6]. That is, the relational instance represents a
natural storage scheme for the XML view when constraints are taken into account.

Since our focus was on XML views of legacy relational databases rather than XML views of XML docu-
ments, it was reasonable to make some simplifications. First, the schema of the view was fixed which meant
that limited forms of insertions and deletions were allowed. Second, it was sufficient to consider the nested
relational algebra as the basis of view expressions rather than something like the XQuery algebra.

The XQuery algebra [12] expresses all the operators of NRA, as well as aggregation, quantification, sorting
and iteration. It also has operators to deal with XML specific features - ordering, comments, processing instruc-
tions. Itis clear that since aggregation loses information, views involving aggregation will not be updatable [20].
Furthermore, operators involving ordering are not relevant when the underlying representation is relational.

We claim that NRA is general enough to be able to represent the same type of structures as object-based
views [5]. In particular, object-based views include only relations that are related by integrity constraints, and
can therefore be expressed as nest-last views. The main difference between object-based views and our approach
based on NRA is related to side effects. Object views can be formed by creating relationships (pointers) between
simple objects and may therefore avoid repeating information. For example, a view can be defined as a set of
objects representing papers, where each paper is connected to an object that represents the conference in which
the paper was published. Information about conferences is not repeated, as it would be in the corresponding
NRA view. Thus, changing the name of a conference would affect a single object, which is referenced by several
papers, and would be side effect free. Note that by consid&birendIDREF in XML and using “normalized”

XML views [3] we can achieve the same result.
In future work we plan to explore general XML views.
Acknowledgments.We would like to thank Capes for supporting this research (BEX 1123/02-5).

References

[1] Xml for molecular biology as compiled by paul gordon. http://www.visualgenomics.ca/gordonp/xml.

[2] ABITEBOUL, S.,AND BIDOIT, N. Non first normal form relations to represent hierarchically organized
data. INnPODS(1984), pp. 191-200.

[3] ARENAS, M., AND LIBKIN, L. A normal form for XML documents. IrProceedings of PODS 2002
(Madison, Wisconsin, Jun 2002).

15

[4] BANCILHON, F.,AND SPYRATOS, N. Update semantics of relational viewSCM TODS 64 (Dec 1981).

[5] BARSALOU, T., SAMBELA, N., KELLER, A. M., AND WIEDERHOLD, G. Updating relational databases
through object-based views. 8iGMOD(Denver, CO, 1991), pp. 248-257.

[6] CHEN, Y., DAVIDSON, S. B.,AND ZHENG, Y. 3XNF: Redundancy eliminating XML storage in relations.
In VLDB (Berlin, Germany, 2003).

[7] CosmADAKIS, S. S.,AND PAPADIMITRIOU, C. H. Updates of relational viewslournal of the Associa-
tion for Computing Machinery 34 (Oct 1984), 742-760.

[8] DA SILvA, A. S., HLHA, |. M. E., LAENDER, A. H. F., AND EMBLEY, D. W. Using nested tables for
representing and querying semistructured dat®roteedings of ERTampere, Finland, 2002).

[9] DAYAL, U., AND BERNSTEIN, P. A. On the updatability of relational views. roceedings of VLDB
(West Berlin, Germany, Sep 1978), pp. 368-377.

[10] DAYAL, U., AND BERNSTEIN, P. A. On the correct translation of update operations on relational views.
ACM TODS 73 (Sep 1982), 381-416.

[11] DAYAL, U., AND BERNSTEIN, P. A. On the updatability of network views - extending relational view
theory to the network modelnformation Systems, 2 (1982), 29-46.

[12] FANKHAUSER, P., FERNANDEZ, M., MALHOTRA, A., RYS, M., SIMEON, J.,AND WADLER, P. The
xml query algebra. W3C Working Draft, Feb 2001. www.w3.0rg/TR/2001/WD-query-algebra-20010215.

[13] FERNANDEZ, M., TAN, W.-C.,AND Suclu, D. Silkroute: Trading between relations and xmI.Nmeth
Internation World Wide Web Conferen(2000).

[14] FUuRTADO, A. L., AND CASANOVA, M. A. Updating relational views. IQuery Processing in Database
SystemsW. Kim, D. S. Reiner, and D. S. Batory, Eds. Springer, Berlin, Heidelberg, 1985, pp. 127-142.

[15] FURTADO, A. L., SEVCIK, K. C., AND SANTOS, C. S.D. Permitting updates through views of data
basesInformation Systems, 4 (Oct 1979), 269-283.

[16] HuLIN, G. On restructuring nested relations in partitioned normal form.16th VLDB Conference
(Brisbane, Australia, 1990), pp. 626—636.

[17] JAESCHKE, G.,AND SCHEK, H.-J. Remarks on the algebra of non first normal form relation®@DS
(Los Angeles, CA, March 1982), pp. 124-138.

[18] KELLER, A. M. Algorithms for translating view updates to database updates for views involving selec-
tions, projections, and joins. Broceedings of POD&ortland, Oregon, Mar. 1985), ACM, pp. 154-163.

[19] KELLER, A. M., AND WIEDERHOLD, G. Penguin: Objects for programs, relations for persistence. In
Succeeding with Object Databasés B. Chaudhri and R. Zicari, Eds. John Wiley & Sons, 2001.

[20] KELLER, M. The role of semantics in translating view updatés=E Computer 191 (1986), 63—73.

[21] LANGERAK, R. View updates in relational databases with an independent scha@kl TODS 151
(1990), 40-66.

[22] MAKINOUCHI, A. A consideration on normal form of not-necessarily-normalized relation in the relational
data model. IrProceedings of VLDBTokio, Japan, 1977), pp. 447—-453.

[23] MEDEIROS C.,AND TOMPA, F. Undestanding the implications of view update policies13th Interna-
tional Conference on Very Large Databa$&885), pp. 316—-323.

16

[24] Mok, W. Y., NG, Y.-K., AND EMBLEY, D. W. A normal form for precisely characterizing redundancy
in nested relationsACM TODS 211 (Mar 1996), 77-106.

[25] RoweE, L. A., AND SHOENS, K. A. Data abstraction, views and updates in rigel. Phoceedings of
SIGMOD(Boston, Massachusetts, 1979), pp. 71-81.

[26] SHuU, H. Using constraint satisfaction for view update translationPtac. of European Conference on
Artificial Intelligence (ECAIYBrighton, UK, 1998).

[27] THomAS, S. J.,AND FISCHER, P. C. Nested relational structureéidvances in Computing Research 3
(1986), 269-307.

[28] TUCHERMAN, L., FURTADO, A. L., AND CASANOVA, M. A. A pragmatic approach to structured
database design. Proceedings of VLDBFlorence, Italy, Oct 1983), pp. 219-231.

17

	Reasoning About the Updatability of XML Views Over Relational Databases
	Recommended Citation

	Reasoning About the Updatability of XML Views Over Relational Databases
	Abstract
	Comments

	tmp.1112642085.pdf._uUK0

