View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarlyCommons@Penn

- %
cnn - y University of Pennsylvania

Libraries ,_
I UraveRsITY of PENNSYLVANIA Scholarlycommons
Technical Reports (CIS) Department of Computer & Information Science
July 2008

Analysis of AADL Models Using Real-Time Calculus With
Applications to Wireless Architectures

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Alexander Chernoguzov
Honeywell Inc.

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Oleg Sokolsky and Alexander Chernoguzov, "Analysis of AADL Models Using Real-Time Calculus With
Applications to Wireless Architectures”, . July 2008.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-08-25.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/887
For more information, please contact repository@pobox.upenn.edu.

https://core.ac.uk/display/76387746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/887
mailto:repository@pobox.upenn.edu

Analysis of AADL Models Using Real-Time Calculus With Applications to Wireless
Architectures

Abstract

Architecture Analysis and Design Language (AADL) captures both platform and software architectures of
embedded systems in a component oriented fashion. Properties embedded in an AADL model enable
several high-level analysis techniques. In this work, we explore how to perform analysis of end-to-end
timing characteristics of an AADL model using Real-Time Calculus (RTC). We identify properties of AADL
models that are necessary to enable such analysis and develop an algorithm to transform an AADL model
into an RTC model.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-08-25.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/887

https://repository.upenn.edu/cis_reports/887

Analysis of AADL Models Using Real-Time
Calculus with Applications to Wireless
Architectures*

Oleg Sokolsky

University of Pennsylvania

Alexander Chernoguzov
Honeywell

Abstract

Architecture Analysis and Design Language (AADL) captures both
platform and software architectures of embedded systems in a component-
oriented fashion. Properties embedded in an AADL model enable sev-
eral high-level analysis techniques. In this work, we explore how to per-
form analysis of end-to-end timing characteristics of an AADL model
using Real-Time Calculus (RTC). We identify properties of AADL
models that are necessary to enable such analysis and develop an al-
gorithm to transform an AADL model into an RTC model.

1 Introduction

Architecture Analysis and Design Language (AADL) [2, 6] is a modeling
framework for embedded systems. It captures both platform and software
architectures of an embedded system in a component-oriented fashion.

Because systems are specified at a high level, without much behavioral
detail, AADL models can be developed relatively early in the development
cycle and used for the evaluation of design alternatives. Therefore, there is
a great need for analysis techniques that can be applied to AADL models
in order to establish global properties of the models, such as schedulability,
reliability, latency of data flows through the system, etc.

Many such analysis techniques are available, and analysis models can be
extracted from AADL models. For example, fault tree models [3] can be

*Research is supported in part by a grant from Honeywell Inc.

extracted from AADL models equipped with error modeling information.
Rate monotonic analysis can be applied to AADL models with periodic
tasks in a straightforward ways, and in [7] we presented an approach for the
schedulability analysis of more complicated AADL models.

Real-Time Calculus in another high-level analysis technique that allows
to compute quantitative estimates of end-to-end timing of stream-processing
hard real-time systems. In this work, we show that it is possible to extract a
Real-Time Calculus model from an AADL model and perform the analysis
of relatively large models.

2 Background

2.1 AADL Overview

Components. The main modeling notion of AADL is a component. Com-
ponents can represent a software application or an execution platform. A
component can have a set of externally accessible features and an internal
implementation that can be changed transparently to the rest of the model
as long as the features of the component do not change. Implementation
of a component can include interconnected subcomponents. The features
of a component include data and event ports and port groups, subroutine
call entries, required and provided resources. Data ports represent sampled
communication and are unbuffered. Event and event data ports represent
message passing. Each input event or event data port has a FIFO buffer
associated with it. Interacting components can have their features linked by
event, data, and access connections. In addition, application components
can be bound to execution platform components to yield a complete system
model. Properties, specific to a component type, can be assigned values that
describe the system design and can be used to analyze the model. We will
discuss properties relevant to the RTC transformation in Section 3. Com-
ponent types are illustrated in Figure 1. Different component types are
shown as different shapes, according to the standard. Solid lines represent
connections, while double lines represent bindings.

Execution platform components include processors, buses, memory blocks,
and devices. Properties of these components describe the execution plat-
form. Processors are abstractions of hardware and the operating system.
Properties of processors specify, for example, processing speed and the
scheduling policy. Buses can represent physical interconnections or protocol
layers. Their properties identify throughput and latency of data transfers,
data formats, etc.

p_in

p_out2

] procl m proc2 ﬁ

Figure 1: Simple AADL model

Application components include threads and systems. Threads are units
of execution. Each thread has an associated semantic automaton that de-
scribes thread states and conditions on transitions between thread states.
A thread can be halted, inactive, or active. An active thread can be wait-
ing for a dispatch, computing, or blocked on resource access; etc. A thread
can also be recovering from a fault or in the state of non-recoverable error.
Properties of the thread specify computation requirements and deadlines in
active states of the thread, dispatch policy, etc. Threads are classified into
periodic, aperiodic, sporadic, and background threads. They differ in their
dispatch policies and their response to external events. A system component
is a unit of composition. It can contain application components along with
platform components, and specifies bindings between them. Systems can be
hierarchically organized.

Figure 1 shows a simple AADL model that we will use throughout the
paper to illustrate features of the language, the transformation into RTC,
and RTC analysis. The system component contains two processors con-
nected by a bus, and two software subsystems. Each of the subsystems is
bound to a separate processor. Subsystem s! contains one periodic and one
aperiodic thread and subsystem s2 contains two aperiodic threads. The sys-
tem has one input event data port and one output event data port. Threads
communicate via event data ports. Note how features of a component —
in this case, in and out event data ports — are mapped by connections to
features of its subcomponents.

Connections. AADL connections can connect ports of two components
within the same system, or of a system and one of its subcomponents. A
sequence of connections, connected by ports at their end points, forms a
semantic connection. Each semantic connection has an ultimate source and
ultimate destination. Ultimate sources and destinations can be thread or
device components. Starting from an ultimate source, a semantic connec-
tion follows connections up the component containment hierarchy via the
outgoing ports of enclosing components, includes one “sibling” connection
between two components, and then follows connection down the component
hierarchy until it reaches the ultimate destination. Ome of the semantic
connections in Figure 1 is between threads ¢17 in the system sf and t21 in
the system s2. This connection contains three syntactic connections and is
bound to the bus component. When a sporadic or aperiodic thread is the
ultimate source of an event connection, it is dispatched by the arrival of an
event via that connection. By contrast, periodic threads are dispatched by
a timer and use only data parts of events in the queues of their event ports.

Similarly, semantic access connections describe resources required by a

thread that is the ultimate source of an access connection. A resource that
serves as the ultimate destination of an access connection is typically a data
component. Properties of access connections specify concurrency control
protocols for shared resources.
Modes. AADL can represent multi-modal systems, in which active compo-
nents and connections between them can change during an execution. Mode
changes occur in response to events, which can be raised by the environment
of the system or internally by one of the system components. For example,
a failure in one of the components can cause a switch to a recovery mode, in
which the failed component is inactive and its connections are re-routed to
other components. The AADL standard prescribes the rules for activation
and deactivation of components during a mode switch. The multimodal
nature of AADL models, along with the rich semantics for connections be-
tween components makes it difficult to apply standard schedulability analy-
sis algorithms that tend to target restricted task models and communication
patterns.

In this work, we do not consider multimodal systems. Analysis de-
scribed here can be applied to each global system mode separately. The
OSATE toolset supports this way of analysis by offering a separate single-
mode AADL model for each global mode of a multimodal AADL model.
Direct support of multiple modes may be achieved by extending RT'C model
with event sequence automata considered in [9]. Event sequence automata
will represent changes to the AADL model during a mode switch. This

approach is left for future work, however.

Language annexes. The mechanism of annexes allows users to extend
the core language with additional features. For example, an error modeling
annex defines additional properties that describe reliability of the system
components and a state machine that specifies error states of the system.
The use of this annex enables reliability analysis of an AADL model. A be-
havioral annex allows us to extend thread components with a state machine
that specifies computation performed by a thread in more detail. Such a
behavioral description refines the default behavior of a thread and enables
more precise analysis of the timing behavior of the system.

2.2 Real-Time Calculus

RTC [8, 1] is a formalism that is based on the network calculus [5]. Our pre-
sentation of RTC closely follows that of [9], which give a much more detailed
exposition of the approach. RTC is used for system-level performance anal-
ysis of stream-processing systems with hard real-time constraints. Modular
performance analysis based on RTC [11] represents the embedded system
as a collection of abstract processing components, which process incoming
events and require a certain amount of resource in order to perform this
processing. Such a component can represent either computation or com-
munication in the system. When representing computation, an abstract
component can represent, for example, a real-time task. The task is dis-
patched for execution when an event arrives and requires some amount of
time - typically represented as best-case and worst-case execution times -
in order to complete the execution. When representing communication, in-
coming events are messages to be transmitted, and the resource required
for processing is the communication link on which the transmission occurs,
described by the transmission time. In either case, it is assumed that in-
coming events are queued as they arrive. Once processing of an event is
finished, a new event is generated and sent to other components. This event
represents result of the task computation or delivery of the message on the
communication link. Availability of resources to perform the processing is
affected by other components sharing the resource.

An abstract component, then, has two types of inputs and outputs: event
streams and resource supplies. Characteristics of an event stream are repre-
sented as a function e : R™ — N x N, where R™ is the set of non-negative re-
als and N is the set of non-negative integers. The function e(A) gives upper
and lower bounds on the number of events in any interval of time of duration
A. Similarly, resource supply is represented as a function 7 : BT — RTxRT,

a b C
)) Tin) l/ Tin
\L Tin €in, €out, €in, €out,
M oere 2 e d) =
€in GPC €out
— —
e = [b, w] EDF
€ing Couty, €iny, Couty,
\L — GPC ——— — (ek,dk) ———
Tout

l/ Tout l/ Tout

Figure 2: Abstract processing components

giving a lower and an upper bounds on the amount of resource available to
the component in any interval of duration A. We refer to functions e and r
as event arrival and resource curves, respectively. Note that each function
contains both the lower and upper bound curves. When we need to refer
to one of the two bounds or an event arrival or resource curve, we add the
superscript to indicate this: e! or r! for lower bound curves and e¥, r* for
upper bound curves.

A commonly used way to specify event streams that are input to the
whole system is the (p, j,d) model. (p, j, d)-curves are roughly periodic but
at the same time are subject to significant bursts in the short term. Here, p
is the period of the stream; j is jitter, which characterizes burstiness of the
stream, and d is minimal separation between two consecutive events. For a
(p, j,d)-curve e, we have

- |2

p

e"(8) = mm({ﬁﬂ m>

Each abstract component transforms input event arrival and resource
curves into respective output curves. A simple example of a component is the
generalized processing component (GPC), shown in Figure 2,a. The com-
ponent represents, for example, a single preemptible task scheduled under a
fixed-priority scheduler. The task is characterized by the execution time e, a
tuple of real numbers representing best-case and worst case execution times.
Resources that are unused by a task are available to lower-priority tasks,
therefore the output resource curve of a GPC becomes the input resource

curve of the component representing the task at the next lower priority level.
If all tasks scheduled on the same processor by a fixed priority scheduler have
distinct priorities, components representing them can be chained together
via their resource curves in the order of decreasing priorities, as shown in
Figure 2,b. In more complicated cases, a component represents multiple
tasks. For example, if earliest deadline first (EDF) scheduling is used, all
tasks have to be analyzed together, represented by a component that has
one input and one output resource curves, but multiple pairs of input and
output event arrival curves corresponding to different tasks, as illustrated in
Figure 2,c. In addition to the execution time, each task specifies a deadline.
A similar component is defined for FIFO scheduling - for example, covering
the case of fixed-priority threads with equal priorities. The deadline is not
specified in this case.

There are several auxiliary components that operate on streams. We use
three kinds of auxiliary component in our modeling. The first kind, which
we visually denote in diagrams as @, lets you merge two streams. Given
two event arrival curve functions e; and ey, e1 @ ea(t) = e1(t) + ea(t), and
similarly for resource curves. The second auxiliary operator allows us to
split streams into multiple substreams. Given a event arrival curve function
e, we use an operator @, defined as @pe(t) = [p-e(t)]. Finally, RTC
includes a greedy shaper component (GSC). A GSC component ensures that
its output event stream is bounded from above by a curve e given to it as a
parameter. It achieves this by delaying events in the incoming stream. Thus,
a GCS component allows us to limit the amount of traffic at the expense of
increasing processing delay and buffer requirements. GSC components will
be useful for modeling sporadic threads as we discuss below.

Real-time calculus allows us to calculate two important performance
measures for a component. One is the maximum delay dp,q;, an upper
bound on the latency of processing an event. The other is the maximum
buffer space b4z, an upper bound on the size of a buffer necessary to avoid
losing incoming events. In the case of the GPC, these values are computed
as follows [5]:

dmaz < sup{inf{T >0:e"(\) < rl()\T)}}
A>0

bmam < Sup{eu(A)_rl()‘)}
A>0

Tool support for the RTC analysis. Modeling and analysis described
above are supported by the RTC toolbox for Matlab [10], implemented by

Lothar Thiele and his collaborators at the Swiss Federal Institute of Tech-
nology (ETH) in Ziirich. The toolbox provides Matlab functions to create
event arrival and service curves, such as rtcpjd for a PJD arrival curve, as
well as functions that implement abstract components, such as rtcgpc for
the GPC component. The toolbox is freely available and can be downloaded
from the project web site, along with extensive tutorial for its use.

3 Translating AADL to RTC

3.1 Properties Used in the Translation

The AADL model should contain enough information to extract parameters
necessary to populate the RT'C model. These parameters, primarily, describe
duration of individual processing or communication steps as well as input
event arrival and resource curves.

Processor components. FEvery processor that has thread components
bound to it should have the Scheduling Protocol property set. Supported
scheduling protocols are RMS (rate-monotonic scheduling), EDF (earliest
deadline first), and FPS (fixed priority scheduling with explicitly assigned
priorities).

Thread components. FEvery thread component should specify the prop-
erty Dispatch Protocol. Allowed values of this property are periodic,
aperiodic, and sporadic. If the dispatch protocol is periodic of sporadic,
the property Period needs to be specified. Thread execution time needs
to be specified using the property Compute Execution Time. The property
specifies an interval, [b,w], b < w, where b is the best-case execution time
and w is the worst-case execution time.

If the thread is bound to a processor with the FPS scheduling policy,
the thread should have the Priority property specified. If the thread is
bound to a processor with the RMS scheduling policy, the thread should
be periodic or sporadic. In this case, threads mapped to the processor
have priorities implicitly assigned according to the RMS policy; that is,
inversely proportional to the period of the thread. If the tread is bound to
a processor with the EDF scheduling policy, it should have the Deadline
property specified. If the thread is periodic or sporadic, the deadline is, by
default, equal to the value given by the Period property. A thread cannot
have the Priority property specified in this case.

Bus components. The time to transmit a message across a bus depends
on the bandwidth and propagation delay of the bus, given by the Bandwidth
and Propagation Delay properties. In addition, the size of the message
needs to be obtained from the data type of the connection that is bound to
the bus. The data type in AADL is specified by the data component type,
which offers the property Source Data_Size.

Ports. Input event and event data ports of the system are the points where
flows of messages enter the system. Their properties are used to construct
event arrival curves in the RT'C model. We use two properties of a data port
to capture parameters of the arrival curve. Property Input_Rate specifies
a range [s, p| of time values. We interpret p as the long-term period of the
stream and s as the minimum separation between two events in the stream.
If the jitter in the stream needs to be specified, the property Input_Jitter
is used. By default, the value of jitter is 0.

If a thread has multiple outgoing ports event, by default an event is pro-
duced on every output port at the end of every invocation of the thread. This
can lead to an overly pessimistic message traffic. More precise information
can be specified using Output_Rate property. In its simplest form, the prop-
erty can specify the number between 0 and 1, representing the probability of
an event on the port being produced after a thread invocation, assuming a
uniform distribution of events. More complex probability distributions can
be specified; however, we do not consider them in this work.

Standard vs. non-standard properties. The currently published ver-
sion 1 of the AADL standard [6] includes a number of component proper-
ties and also provides means for defining new properties that can support
used-defined modeling and analysis techniques. Most properties mentioned
above belong to the standard property set. Exceptions are the properties
Input_Rate, Output_Rate, Output_Jitter, Priority, and Bandwidth. All
of these properties will be included into the standard property set in the
upcoming version 2 of the standard. In the meantime, to be able to use
these properties for RT'C-based analysis in the context of AADL version
1, we defined a new property set RT'C that includes the above-mentioned
properties. The property set also extends the set of allowed values for the
Scheduling Protocol property to include FPS.

3.2 Abstract Component Graph Construction

The first stage in the construction of the RT'C model is to extract a graph of
dependencies between threads and network messages in the AADL model.
We then collapse some of the nodes in the graph together to form abstract
components.

The graph of dependencies, which we denote D, has its set of nodes
partitions into the following sets of nodes: 1) computation nodes n¢ 2)
message nodes n,,; 3) event source nodes n¢; and 4) resource nodes n”. The
set n¢ contains the node ny for every thread ¢ in the AADL model. The
set n™ contains the node n]* for every semantic connection ¢ in the AADL
model that is bound to a bus. The set n" contains the node n,, (respectively,
ny) for each processor p or bus b component in the AADL model. Finally,
the set n® contains the node ng, for each input event or event data port pt at
the top level of the AADL model and one node ny for each periodic thread
t, which represents invocation of the ¢ by the system timer.

Further, D has the set of directed edges, partitioned into event and
resource edges. Event edges represent the flows of events through the system,
according to the following rules:

e For each periodic thread ¢, there is an edge nf —. ng;

e For each semantic connection ¢ with the ultimate source ¢ and ultimate
destination ¢/, there is an edge ny —. ng is ¢ is not bound to a bus
and two edges ny —. n;* and n_* —. ng, otherwise;

e Finally, for each port pt and each thread ¢ that can be reached from pt
by traversing a chain of entry connections, there is an edge ny, — nj .

Resource edges are added to represent resource supply. Let ¢1,%2,...,
be a sequence of threads mapped to a processor p, such that the order of the
sequence is consistent with the decreasing order of priorities of the threads.
That is, if ¢ < j, the priority of ¢; is no less than the priority of ¢;. If p has the
EDF scheduling policy, any order is acceptable. Then, D contains resource
edges n, —y ng, ny —y ng,, Ng, —r, ..., —p ng, . For a bus component
and connections bound to it, a chain of resource nodes is constructed in a
similar way.

Once D is constructed, we transform it into a graph of abstract compo-
nents by adding several auxiliary nodes as described below and by merging
the nodes that have to be processed together. Three kinds of auxiliary nodes
are introduced:

10

e C m C e
11 ny1 USP) U in
y Yy Yy
(& m C
= N2 U3 U .

Figure 3: Graph of dependencies between threads and messages

e if anode n has multiple incoming event edges, all of them are redirected
to a new merge node n; and a new edge ny —. n is added;

e if a thread ¢ has an output port with the output rate less than one,
a scaling node is added to the respective outgoing edges of the thread
node;

e a shaper node is added to the incoming event edge of a node corre-
sponding to a sporadic thread. We discuss this in more detail below.

Let nf,, n§i+ L ,nfiﬂ_ be the nodes corresponding to threads bound to

the same bus, which have equal priorities (for EDF, i =1, j = k—1). All
of these nodes are merged into a new node and any edge incident to any of
these nodes is now incident to the new node. Once the nodes are merged,
ones that correspond to EDF policies are turned into the EDF abstract
components; fixed-priority nodes with equal priorities are turned into FIFO
abstract components; finally, those that were not merged appear as GPC
components.

Example. Consider again the example in Figure 1. Assume that proci
is using the FPS policy and proc2 is using EDF. Further, let ¢171 have a
higher priority than t712, and that messages from sI have higher priority
than messages from s2. Finally, assume that the output rate for port p_out1
is 0.8 and for port p_out2 it is 0.2. The graph D for this example is shown
in Figure 3. Next, we add auxiliary nodes to the dependency graph. Both
messages from the network and externally arriving events cause the dispatch
of the thread t21, therefore the arrival curves of the two streams are added

11

e C m M C e
11 n1y n12 w o1 inl
I I I
| | |
| | |
y y y

= nis nai QT ny =
o

Figure 4: Auxiliary merge and scale nodes in the dependency graph

T T T
’ nm‘ocl ‘ ’ nlgus ‘ ’ npﬁoc? ‘
v v	
e C m M L e	
11 n1y n12 T	Min
y	
T T	
	¢
l | N9
y y

= nis ng [=O= =0=

Figure 5: Graph of abstract components

12

together. Also, the output event stream of thread t22 is scaled differently
according to the Output_Rate properties of its output ports. The resulting
graph is shown in Figure 4. Finally, since threads on the processor proc2
are scheduled according to EDF, they need to be put together into the same
abstract component. Note that the event edge from t21 to t22 becomes a
self-loop, which would require us to iterate the analysis in order to compute
the fixed point. The graph of abstract components is shown in Figure 5.

Sporadic threads. Sporadic threads have the Period property that spec-
ified the minimum separation between incoming events that cause the dis-
patch of the tread. The AADL standard specifies that if events arrive more
often, they are queued until minimum separation is achieved. This is exactly
the behavior that GSC components offer. If the value of the thread’s period
is p, we create a PJD curve (p,0,0)" — that is, the worst-case curve for a
perfectly periodic arrival of events. This curve is used as the parameter of
the GSC component. By placing this GSC component in before the GPC
component representing the thread, we achieve the additional buffering that
differentiates sporadic from aperiodic threads.

4 Case Study

In order to evaluate the proposed transformation and scalability of the anal-
ysis, we conducted a case study of a wireless sensor network architecture
based on the application level ISA100 proposal [4].

4.1 Overview

The case study represents a collection of sensor nodes connected by a mul-
tihop backbone to a gateway, which is in turn connected to a wired network
that includes operator nodes, alarm handlers, history loggers, etc. The ar-
chitecture of the system is informally represented in Figurefig:overview. We
do not model the wireless network explicitly; however, it affects the wire-
less subsystem in two ways. On the one hand, the wired network provides
a load to the wireless subsystem, which comes in the form of a stream of
operator requests. These requests are passed by the gateway to the wireless
subsystem. On the other hand, other kinds of load are assumed to directly
affect only the gateway. These loads can have widely varying characteristics,
from firmware downloads, which are infrequent transmissions of large size
on the one end of the spectrum; to frequent bursts of short requests that

13

wired
network

operator
station

gateway
)
history

log
- J

wireless

network

gateway
upgrade

center

Figure 6: System architecture for the case study

are handled by the gateway - for example, ARP broadcast messages - on the
other end of the spectrum. We refer to the latter kind of load on the wired
network as network noise. Although these additional loads from the wired
network are handled by the gateway, they can affect the wireless subsystem
when it comes to handling flows of messages from sensor nodes. Messages
from sensor nodes need to be transmitted across the wired network. If the
wired network is busy, these messages need to be stored in the gateway, de-
laying their processing and increasing the buffer space requirements in the
gateway.

Data communication with sensor nodes. Sensor nodes support three
modes of communication. First, sensor data are periodically published us-
ing the TDMA mechanism. Second, sensor nodes can transmit their status
information (referred to as parameter values) in response to requests from
operators. This communication proceeds in the “client-server” mode using
a CSMA protocol, which does not guarantee the absence of collisions. Fi-
nally, sensor nodes can spontaneously report alarms that indicate abnormal
conditions. Alarm handling is described in detail below. Alarm messages
compete with client-server messages for access to the medium.

In order to minimize the number client-server messages traversing the
wireless network, the gateway uses a cache. When a request for a particular
parameter value arrives, it is checked against the cache and, if found, the
value is returned immediately. Otherwise, the request is forwarded to a
sensor node across the wireless network. The received response is stored in

14

the cache and then returned to the operator node that issued the request.

Alarm handling. The gateway receives alarm messages from sensor nodes
and forwards them to alarm handlers across the wired network. In order to
cope with bursts of alarms, incoming alarm messages are stored in a FIFO
queue. Each alarm message is acknowledged upon being queued to the node
that raised the alarm. The stream of alarm acknowledgement messages adds
to the CSMA traffic on the wireless network. If the alarm queue becomes
full, further incoming alarms are dropped without being acknowledged. The
alarming sensor node, in that case, eventually times out and retransmits the
alarm.

4.2 Architecture Modeling in AADL

Figure 7 shows the overall architecture of the system with one gateway and
one sensor node. We model the TDMA and CSMA parts of the wireless
medium as two separate networks. Note that we do not model the nodes
on the wired network that serve the sources and destinations of message
flows through the system. Instead, we model an open system, where sources
and sinks of message streams are represented as input and output ports.
This modeling device allows us to represent parameters of input streams as
properties of the ports and easily vary them in the architecture evaluation.
The port labeled fault is another modeling device that allows us to represent
spontaneous raising of alarms by sensor nodes and capture parameters of
event streams.

Figure 8 represents the architecture of a gateway. The assumption was
that every kind of incoming message is handled by a separate thread. Ports
on the left-hand side of the diagram represent communication on the wired
network, while ports on the right-hand side represent wireless communica-
tion.

The top portion of Figure 8 represents the alarm stream. The logger
thread receives alarm messages from the wireless network, puts them into
the alarm queue, and sends acknowledgements back. The handler thread
takes alarm messages from the queue and transmits them across the wired
network. Note that the alarm queue is not represented explicitly. Instead,
we utilize the queue supplied to us by the AADL semantics. Each in event
and in event data port of an AADL thread is equipped with a fixed-size
FIFO queue. A queueing policy property specifies the behavior in case of
the queue overflow. The Drop_Newest perfectly matches the behavior of the
alarm queue described above.

15

System Instance Diagram : WSN Honeywell v4:WirelessAutomation.Generic / unnamed

displayData
=y

gatews sensor
4 -
publish kd publish
K displayData
alarmout alarm k4 alarm
>
] alarmout
. alarmack B alarmack
displayReqg
B> displayRe
L2 BRXRES parReguest P parReq
firmwareDL
¥ B firmwareDL ParUpdate 4 4 parUpdate o
fault <] <
wired mTDMA mCSMA mCsMA mTDMA
£ £ £ A A
wired
< o—s
mediumCSMA
mediumwired
—
mediumTDMA
¢ A
\ v
Figure 7: AADL architecture of the case study
Process Instance Diagram : WSN Honeywell v4 :GatewaySoftware.lmpl f unnamed
zarmout ST =1 [+ | h &l
——d i
; alarmout E ; alarm@_ <
alarmg @————————# alarmg alarmAck|
alarmAck 2
S
dispserver
displayReq gl pserver. ... : parRequest
D—? request fwd ..__ B>
displayData cacheacc @_
< i response : e dmaRecv.
_: : publish
Y ‘ cache H publish é g
t > cacheacc
.
parUpdate
|
firmwareDL
B ¥ firmwareDL

Figure 8: AADL architecture of the gateway

16

The middle portion of Figure 8 represents the parameter request stream.
The dispserver threads accepts operator requests from the wired network,
consults the cache and either returns the parameter value or forwards the
request through the wireless network. The csupdate thread receives the re-
sponse messages from the wireless network, updates the cache, and transmits
the updated value to the operator. Note that the sensor values periodically
published by sensor nodes are also stored in the cache and served to opera-
tors by the mechanism described above.

Finally, the bottom part of the diagram shows the additional load im-
posed on the gateway by the wired network in the form of firmware updates
and network noise as described above. It is represented by the diget thread
that serves as the sink for the flow of these messages.

All software on the gateway execute on the same processor under fixed-
priority scheduling. The dlget thread is given the highest priority to max-
imize the effect of extraneous loads onto the core of the system. The pe-
riodic publish thread has the next highest priority, followed by the alarm
logger thread, alarm delivery thread, dispserver thread, and, finally, csup-
date thread. This priority assignment lets the client-server communication
suffer the most interference from other aspects of the system. Priority as-
signments can be easily changes at the AADL level and analysis can be
repeated to stress other parts of the system such as alarm handling.

Figure 9 shows the architecture of the sensor node. It contains a periodic
thread that publishes sensor data, a fault detection thread that transmits
alarms, a thread to service parameter requests, and a thread that collects
alarm acknowledgements. Here, we also assume that the processor uses
fixed-priority scheduling, with the periodic publish thread having the highest
priority, followed by the alarm handling thread, client-server thread, and
acknowledgement thread, in that order.

4.3 RTC model for the case study

Figure 10 shows the RTC model of the architecture described above, with
one gateway and one sensor node. Note that the client-server messages on
the wireless network are processed together in one abstract component. All
other resources are assumed to use fixed priorities. The event source node
a_pub represents the periodic publishing of sensor readings, while the other
three event source nodes correspond to the three input ports of the AADL
system in Figure 7.

Figure 11 shows the evolution of the RTC model as more sensor nodes
are added. The part of the RTC model that describes the wired network

17

Process Instance Diagram : WSN Honeywell vd::SensorSoftware Impl

publish e acquire ... :

QH DUE“Sh

Fault
%> fault
alarm i

é‘?a alarmout

................................. H

parReq A S e S A e T R B ;

>—_> reguest

parUpdate :

Q—‘Q response

alarmaAck

B> response

Figure 9: AADL architecture of the sensor node

Figure 10: RTC model of the architecture with one sensor node

18

\ TDMA | leaf | | leaf | | leaf |

F
]

.
.

a_pub

L

a_alm

=as &
LH

B=—y

Figure 11: RTC model of the architecture with three sensor nodes

is unchanged compared to Figure 10 and is not shown to avoid cluttering
the figure. Event streams from the sensor nodes are merged together before
entering the gateway, and event streams from the gateway to the nodes are
split and proportionally scaled as they enter the sensor nodes. Each sensor
node publishes its readings using a separate TDMA slot, without interference
from other nodes. In the RTC model, every TDMA slot is represented as
a separate resource. CSMA communication happens in the interval that
remains after all TDMA slots have been allocated. This interval is assumed
to be contiguous (that is, TDMA slots are allocated next to each other
within the service interval. Note that, as more sensor nodes are added,
the CSMA interval becomes smaller, affecting performance of client-server
communication.

One can notice that the RT'C model does not capture the following as-
pect of the sensor node behavior. If an alarm is not acknowledged by the
gateway, the sensor node is supposed to retransmit the alarm. In the initial
version of the model, we tried to represent this aspect directly: the acknowl-
edgement traffic was split in some proportion, and that one part travelled
as a client server message though the network. The other part was merged,
with the retransmission delay, with the alarm traffic from the sensor node.
It turns out that this model, which seems more faithful to the real system,
has two drawbacks. First, it is not clear, in which proportion should the
acknowledgement traffic be split. It becomes another parameter to be pro-

19

vided by the user, who does not have any principled basis to supply this
parameter value. More seriously, the RT'C model with such feedback turned
out to be hard to analyze: the fixed point computation did not converge in a
reasonable number of steps, and the processing time of a step increased dra-
matically with each next iteration. To avoid this problem, the final version
of the model followed a different approach. We assumed that every alarm
is acknowledged, so no retransmissions were necessary. We then calculated
the buffer requirements for the alarm queue. Once the system satisfies the
buffer requirements, no alarms are dropped and the assumption is satisfied.

4.4 Analysis results

During the analysis, we considered several configurations of the model. The
configurations differed in the parameters of the highest-priority load im-
posed on the system by the wired network. This turned out to be the most
significant factor to affect the running time of the analysis of a single model
instance (that is, with the number of nodes fixed). Three configurations
were explored. Two configurations describe the “firmware download” kind
of wired network load. One had a period of 0.5 hours with very high bursts
(jitter equal to 2 hours), and a minimum separation of 1 minute. The other
configuration has a reduced jitter parameter value equal to 15 minutes with
the other parameters unchanged. The third configuration was the “network
noise” load with 1.8 second period, 0.6 seconds minimum separation, and
7.2 seconds jitter.

All experiments described below were performed using Matlab version
R2007b and the RTC toolbox Version 1.1 beta 1.03. The platform used was
a ThinkPad T61 laptop with a 2.0 GHz dual-core processor and 1GB of
main memory, running Ubuntu linux.

End-to-end delay calculations. The first set of results describes end-
to-end delays for different event streams in the system. As an example,
Figure 12 shows end-to-end delay of the alarm stream, measure from the
moment an fault is detected by a sensor node to the moment the alarm
is delivered to the destination, an alarm handler node on the wired net-
work. For relatively low network utilization, up to eight sensor nodes, the
calculated delay is growing linearly with the number of nodes. However, as
Figure 12,b demonstrates, once the network capacity is exceeded, the delay
grows up dramatically.

20

Wi

2 10400
10200
10000
4800
9600
5400
9200
5000

end-to-end delay, alaim flo

—+— network noise —=— firmeare divnload, Icrwjitter|

—,

. |

-

N

noies

30000
70000
G0000
50000
40000
30000
20000
10000

end-to-end delay, alamm flow

—— nietwark noise

A 10 15 20
nodes

Figure 12: End-to-end delay of the alarm stream

a0

|—4—netw:-rk nase —s—firmware dovnload, Inwjit'terl

a0

70

50
40

30

alarm delivery huffer

10

5 10 15 20
nodes

Figure 13: Required alarm queue size

21

—a4— netwark noise B firrmware download, [ow jitter
firrrmare download, high jitter

18000

-

-y
o
=
=
[}

n

14000
12000
10000

8000
5000 =

4000
2000 — | ‘_____(/
0 - T T :
1] 5 10 15 20
nodes

analysis time (seconds]

Figure 14: Total running time of experiments

|+ netwark noise —=— firmware download, low jiter total time |

s000
Tooo
6000
a000
4000
3000 o

2000
1000 et

e
0 a 10 15 20
noies

analysis time (sec)

Figure 15: Running time per iteration

Alarm queue. Figure 13 shows the buffer requirements for the alarm
queue as a function of the number of nodes. In this case, also, we can
see that buffer requirements initially increase linearly with the number of
sensor nodes and then, upon reaching a threshold suffer a sharp increase
that indicates that the network capacity needs to be enhanced.

Scalability. Figure 14 gives the total running times of the experiments as
reported by the RTC toolbox. Clearly, the running time is superlinear with
respect to the number of nodes. Note that not only the total running time
of each experiment increases with the range of timing constants in different
configurations, but also the rate of increase (slope of the curve) depends on

22

the range as well. Note, however, that larger numbers of nodes required
more fixed point iterations to complete the analysis: from four iterations
for up to four nodes to six iterations for sixteen nodes. To account for
the increased number of iterations, we also calculated analysis time per one
iteration, which is shown in Figure 15. For comparison, the total time for the
network noise configuration is also shown in Figure 15. Time per iteration
can be seen to grow much slower than the total time.

The obvious conclusion from the data is that RTC-based analysis is sen-
sitive to the range of time constants. In all cases, the smallest time constant
was on the range of 1 ms. The bursty firmware download configuration was
by far the most time-consuming configuration to analyze. It had the jitter
parameter value as the largest time constant in the model, and reducing just
this value in the second firmware download configuration improved analysis
time dramatically. Further reducing timing parameters of that event stream
in the network noise configuration improved analysis time further.

5 Conclusions and Future Work

We consider analysis of timing and performance properties of systems ex-
pressed in the architecture description language AADL. We presented an
algorithm to extract from such an architectural model an analytical model
based on Real-Time Calculus, and discussed properties that can be deter-
mined using this model. We applied this analysis technique to a case study
based on a wireless sensor network architecture. The case study included
modeling of a typical architecture and analysis of several variants of the
model different number of network nodes and workload parameters and com-
parative analysis of these configurations.

The case study identified two areas, where this modeling and analysis
approach requires improvement before it can be applied to real industrial-
scale systems. One deficiency is scalability. Current tools allow analysis
of relatively small-scale systems. On the one hand, existing tools can be
substantially improved with more efficient implementation and new data
structures for event curve representation. On the other hand, research is
needed into improved algorithms that would reduce the dependency of run-
ning time on the range of timing constants. On the other hand, the proposed
technique can suffer from excessive conservatism in analysis results. Preci-
sion can be improved by incorporating existing techniques for considering
workload variability and event correlations, for example, based on event
sequence automata.

23

References

1]

S. Chakraborty, S. Kiinzli, and L. Thiele. A general framework for
analysing system properties in platform-based embedded system de-
signs. In IEEFE Design Automation and Test in Furope (DATE), Mar.
2003.

P. Feiler, B. Lewis, and S. Vestal. The SAE AADL standard: A basis
for model-based architecture-driven embedded systems engineering. In
Workshop on Model-Driven Embedded Systems, May 2003.

D. Hassl. Advanced concepts in fault tree analysis. In Proceedings of
System Safety Symposium, June 1965.

ISA100 Wireless Working Group. Draft standard ISA100.11a. Internal
working draft, May 2008.

J. Y. Le Boudec and P. Thiran. Network Calculus - A Theory of De-
terministic Queuing Systems for the Internet, volume 2050 of Lecture
Notes in Computer Science. Springer, 2001.

SAE International. Architecture Analysis and Design Language
(AADL), AS 5506, Nov. 2004.

O. Sokolsky, I. Lee, and D. Clarke. Schedulability analysis of AADL
models. In Workshop on Parallel and Distributed Real-Time Systems,
Apr. 2006.

L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In IEFEE International Symposium
on Circuits and Systems (ISCAS), volume 4, pages 101-104, 2000.

E. Wandeler. Modular Performance Analysis and Interface-Based De-
sign for Embedded Real-Time Systems. PhD thesis, Swiss Federal Insi-
tute of Technology, 2006.

E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System archi-
tecture evaluation using modular performance analysis: a case study.
Software Tools for Technology Transfer, 8(6):649-667, Nov. 2006.

24

	Analysis of AADL Models Using Real-Time Calculus With Applications to Wireless Architectures
	Recommended Citation

	Analysis of AADL Models Using Real-Time Calculus With Applications to Wireless Architectures
	Abstract
	Comments

	tmp.1216931778.pdf.SyiOB

