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Recovery fromNode Failure in
Distributed uery Processing

N E. T

N ,

Abstract

hile distributed query processing has many advantages, the use of many independent,
physically widespread computers almost universally leads to reliability issues. Several tech-
niques have been developed to provide redundancy and the ability to recover from node failure
during query processing. In this survey, we examine three techniques u stre m c u , ct ve
st n , and ss ve st n that have been used in both distributed stream data processing
and the distributed processing of static data. We also compare several recent systems that use
these techniques, and explore which recovery techniques work well under various conditions.
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Figure : Aurora stream processor overview fromCarney et al. ( ).

Introduction
e eld of distributed databases dates back almost as far as the entire database eld. As described in

Lindsay ( ), work on R* dates back to , and Rothnie et al. ( ) marks the rst published
results on - . Reliability as it relates to distributed transaction processing is well-studied, and is
described in such textbooks as Özsu and Valduriez ( , chap. ) and Bobak ( , chap. ).
However, such techniques donot addresswhat happenswhen a failure occurs during a query instead
of an update. If the distributed data is replicated, the system can simply restart the query using a new
set of nodes; however, thismay be inefficient if the query is nearly complete as all incremental results
are lost. Furthermore, if the system is executing continuous queries over streaming data (Balakrish-
nan et al., ; Abadi et al., ; Chandrasekaran et al., ), it may not be possible to restart
the query and restore the operator state that was on the failed node. Both of these problems have
motivated recent work on failure recovery. ese approaches build on existing techniques based
on replication, as described in, for example, Helal et al. ( , chap. ), but with database-speci c
optimizations to improve performance.

In this survey, we compare approaches used in a number of distributed database systems. e
systemsweexamine are quite diverse. Some support streamingdata, some support static data. Some
support rt t ne r e sm through some implementation of the Exchange operator (Graefe,

), and others do not. is spreads data for a single logical operator across many physical nodes
based through some deterministic spli ing algorithm, typically using range- or hash-based parti-
tioning. All support pipelined parallelism, where different operators are located on different nodes.

In thedatabase community, stre m r cess n generally refers toqueryprocessingoverunbounded
streamsof input tuples. ese tuples pass throughoperators similar to those in a traditional database
system. Some operators are identical, while others are modi ed to be er suit the streaming data
paradigm. Joins, for example, are typically conducted within a window (speci ed either in time
or number of tuples) to avoid buffering an entire data stream. Aggregation operators periodically
emit results or return incremental results, and also typically havewindowed semantics to avoid large
amounts of buffering. Figure shows a diagram of Aurora (Carney et al., ; Balakrishnan et al.,

), an early stream processing system. More recent systems generally have a similar design, but



allow the processing to take place in a distributed fashion. Stream processing has a variety of uses;
examples from the literature (Balazinska et al., ) include sensormonitoring, network intrusion
detection, stock ticker processing, and many others.

Hwang et al. ( ) de nes three kinds of recovery modes for stream processing. rec se re-
c ver produces the exact same output a er a failure as it would have had there been no failure,
though clearly the results may necessarily be delayed (though not reordered) due to the extra pro-
cessing needed to recover from the failure. rec ver may skip some results before producing the
remainder of the results that would have been produced without the failure. c rec ver is
somewhat more complex, and its precise effects depend on the query plan chosen; in contrast, gap
and precise recovery are only de ned in terms of the logical de nition of the query. Rollback recov-
ery returns the system to a state before the failure and then resumes execution. While Hwang et al.
( ) examines recovery techniques in the context of rollback recovery, all of the other systemswe
study enforce additional guarantees to ensure that these same techniques produce precise recovery.
It might also seem logical to de ne a recovery mode that allows tuple reordering. However, given
that some stream operators (the windowed join and the windowed aggregate) are de ned in terms
of tuple windows, such a relaxation at an intermediate operator could change the actual results at a
later operator, and not merely their order.

Furthermore, Hwang et al. ( ) introduces three general approaches to recovery in stream
processing. e techniques used in the systemswe examine all fall into one of these three categories.
Perhaps the simplest approach is u stre m c u . Upstream nodes act serve as backups for down-
stream nodes by retaining a copy of their output until it has been processed by their downstream
neighbor and sent on to another node. In this way, there are multiple copies of each tuple avail-
able, providing redundancy. We examine this technique in a distributed query processing engine
in Section . e remaining two approaches are closely related to previous work on process pairs
(Gray, ; Bartle , ). ct ve st n creates two (or more) copies of each operator exists,
and they all process the same data in the same order (as in so-called c ste process pairs). Failover
from one copy to another is relatively seamless; the system must merely ensure that the operator
downstream form the replaced node doesn’t process any data more than once and doesn’t miss any
data. We discuss this in the context of several stream processing engines in Section . is nal
approach, ss ve st n , replicates each operator onto two (or mode) distinct nodes. e primary
node actually performs the computation. Periodically, it sends a checkpoint of its operator state to
the secondary node or nodes. If the primary node fails, the secondary node can take over using the
checkpoint, as in c ec nt n process pairs. Any tuples processed by the primary node but not yet
checkpointed will also need to be reprocessed; this entails a small amount of buffering at upstream
operators. Wediscuss the use of this approach in a stream-processing system in Section . Following
a discussion of these systems, we will conclude with a comparison of these approaches in Section ,
based on both simulation results from Hwang et al. ( ) and experimental results from Hwang
et al. ( ).
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Figure : Architecture of the - system

UpstreamBackup
As described above, upstream backup stores redundant copies of in- ight data at processing nodes
as they pass through the operator tree. In this way, each node acts as the backup for data that is
currently being processed at nodes downstream from it. If one of them fails, the state stored at
upstreamnodes canbeused to recreate operator state and to ensure that no tuples are lost. Some sort
of coordination is used to ensure that only a few copies of each tuple are stored in the system, and
then none are stored a er they are no longer needed. Clearly upstream backup leads to increased
memory use, as intermediate results are buffered to provide fault tolerance, but in the absence of
node failure no computational effort, except for coordination to remove intermediate results that
are no longer needed. However, recovery time can be expected to be high, as large amounts of data
may need to be sent across the network during the recovery process.

. Use in -
Smith et al. ( , ) describe a distributed query processing engine ( - ) that operates
over the Open Grid Services Architecture ( ), a distributed computing architecture based on
Web services.¹ Speci cs of - are not germane to a discussion of resilience to node failure,
except to say that it supports both partitioned and pipelined parallelism, and has a standard two-
phase query optimizer that transforms queries into parallelized execution plans. Figure gives
a brief overview of the system architecture.

An extension to - , described in Smith andWatson ( ), adds a fault-tolerancemech-
anism based on upstream backup. Tuples ow through the system in an ordered stream, and inter-
spersed with them are checkpoint markers, as shown in Figure . Each exchange operator (shown
in Figure ) introduces checkpoints into the tuple stream, and forwards checkpoint operators from
other nodes along. It buffers the data it sends into its recovery log, grouped by sequence numbers
from the checkpoint markers it adds. When a node receives a checkpoint marker from another
node, it decrements the hop count h. If h has gone to zero, it then sends an acknowledgment for that

¹For more information on , see http://www.ggf.org/documents/GFD.80.pdf.

http://www.ggf.org/documents/GFD.80.pdf
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Figure : - Checkpoint Marker. ID denotes the node that created the marker, S is a node-
speci c sequence identi er, h is the number of hops remaining before the checkpoint is returned,
and v1 . . . vn give the route that the checkpoint marker has taken through the query graph.
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Figure : Exchange operator in - system. Dashed lines indicate thread boundaries.

checkpoint upstream (using the vector v from the checkpoint marker); otherwise it puts the mod-
i ed checkpoint marker back into the tuple stream. e acknowledgment is forwarded upstream
until it reaches the node ID that produced it; ID can then clear the entry for S in its recovery log. In
this way, the initial value of h determines how many replicas of each data point are retained in the
system.

As described, this techniquesworkswell for one-input operators. However, two-input operators
(e.g. join, union) are common in real query processing systems. For join, the authors propose to
ensure that the smaller input is the le input to the join. at input is fully processed into a hash
table before any input from the right side is processed. en, right checkpoints are processed as
they come in, and le checkpoints are not returned until the right input has nished. In this way,
the recent part of the right input and all of the le input remains buffered upstream. Clearly this
does not work well if both inputs are large, or if it is not known r r which one will be larger.
Similarly, aggregate operators (not discussed at all) will need to buffer all of their input.

Recovery in this system is relatively straightforward. A central coordinator determines which
nodes have failed, based on data from all participating nodes. It assigns new nodes to take over for
failed ones, and installs the query plan on them. When a new node joins the system, it receives the
contents of its downstream nodes recovery log (i.e. the data that had been sent to the new node but
not yet processed by the rest of the system). is brings the replacement node back the the state that
the failed nodehad shortly before it failed. Since operators and sequence numbers are deterministic,
duplicate elimination simply consists of discarding partial blocks (i.e. the tuples that came a er the
last checkpoint marker) and skipping blocks that have already been processed.
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Figure : Plans for a simple -way join query in -



An interesting aspect of this work is the discussion of varying the query plan to improve re-
silience to failure. Figure shows an example query plan and various ways it can be divvied up
among different nodes. Resilient plans _ , _ and _ are shown in Figures (c),
(d), and (e) respectively. In general, the authors argue that increasing the number of nodes im-
proves resiliency by increasing the amount of buffered state available for recovery; for example, if
the top join fails, in _ it can recover its le input from the state buffered at other nodes, elim-
inating the need to recompute the lower join. It should be noted, however, that such an argument
depends on the relative costs of data transmission over the network, query execution, and recovery
time. While the authors acknowledge that query optimization for reliability needs to be done in a
cost-based way, that is deferred to future work and is not studied.

e experimental results show, not surprisingly, that the presented recovery technique is faster
that simply restarting the query over a new set of nodes; for replicated, static data this is always an
alternative recovery technique. However, the scenario for the main experiment also demonstrates
one major shortcoming of this work. e experiment assumes a network where one node expe-
riences a hardware failure, is rebooted, and then can rejoin the network to complete processing.
However, this entails a long delay while waiting for the failed node to return. Obviously this could
be prevented by the use of a t s re but they do not consider this scenario. Another node could
take over for the failed node while maintaining its current tasks as well, but this node would likely
become overloaded and be a performance bo leneck. Spli ing the work of the failed node over
the remaining nodes is not possible due to system design (the correspondence between checkpoint
numbers and tuples would change, for example), which is a major limitation. Other systems, such
as Flux (discussed in Section . ) address this through virtualization, where each physical node ex-
ecutes a number of virtual nodes independently; such an approach would work here as well. e
virtual nodes from a failed physical node can be redistributed evenly over all of the remaining nodes
while maintaining the identical execution properties needed for failure recovery. e authors do
not address such a technique, though if results from Flux are generalizable it would work quite well.

Active Standby
Active standby, as mentioned in Section , maintains multiple copies of each logical processing
node. e primary copy performs the computation that creates the system output in the absence
of failure. e secondary copy (or copies, though typically only one is used) shadows the primary
copy by performing exactly the same computation on exactly the same inputs. It is therefore ready
to take over almost immediately to replace a failed primary node. However, this approach reduces
the amount of processing power available to the system by performing signi cant redundant com-
putation, even in the absence of any node failure.

. Use in Borealis
e Borealis system, introduced in Abadi et al. ( ), is a “second-generation” stream processing

engine that adds a number of features to the earlier Aurora system(Carney et al., ; Balakrishnan
et al., ), including revisions to previous results, and query modi cation at run-time. For the
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Figure : Diagrams for a sample query in Borealis

purposes of this discussion, however, the salient feature is the addition of distributed execution.
Streams in one query can originate at different nodes, pass throughmany other sites for processing,
and produce results which are sent to yet other sites. Borealis supports pipelined but not partitioned
parallelism,meaning that, in the absence of redundancy to provide fault-tolerance, exactly one node
will execute each physical operator

Balazinska et al. ( ) details the e , r cess, n rrect ( ) technique used to provide
fault-tolerance in Borealis. e approach replicates each operator so that there are at least two (and
possibly more) copies of each operator performing the same computation. Figure (a) shows a
sample query in the Borealis system, and Figure (b) shows a replicated instantiation of the same
query. A novel aspect of this approach is that each query must specify the m x mum ncrement
r cess n tenc it can endure; that is to say, the maximum amount of time that the system can try
to recover from a failure before some a empt must be made to produce results, even if they may
later prove to be incorrect. To this end, Borealis distinguished between normal tuples, deemed to
be st e, and tent t ve tuples. Such tuples are created when an operator is receiving tentative tuples
from another operator, or when one of its inputs has failed but it is still receiving input from another
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operator. When an operator recovers from failure, it undoes the tentative tuples before it sends
along corrected versions and begins to process new tuples. is process is shown in Figure . e
rationale is that, in many applications, seeing incomplete data is be er than seeing no data at all, as
would happen if the system simply blocked until recovery was complete.

e technique depends on replicas of an operator producing the same output based on
the same input. Since in-order communication is provided by the underlying network layer, this
is straightforwards for single-input operators. To accommodate multiple-input operators like join
and union, where differing processing speeds or network latencies between nodes may cause in-
puts to arrive with different interleavings at different replicas, all tuples are tagged with a timestamp
when they are produced. Each stream is periodically punctuated by a un r tu ewhich indicates
that all subsequent tuples will have timestamps strictly greater than that of the boundary tuple. A
SUnion operator is responsible for serializing the input to each multiple-input operator in a deter-
ministic way based the timestamps and releasing a batch of tuples when all input streams have sent
a boundary tuple for a particular timeframe.

Figure shows the states that operators transition between during and while recovering from
a failure. All operators start out in the state. If they encounter an upstream failure, they
transition into the _ state. In this state, as soon a replica of the upstreamneighbor
is located, the node switches to the state, whichwediscussmomentarily. Until then,
if the upstream node has failed, it searches for a replica of it in _ state, and switches to
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Figure : reconciliation in a chain of nodes

that, if one is found. While waiting for a stable replica to appear, it continues to produce tentative
tuples based on the data it is receiving. If its upstream neighbor starts to produce corrections (i.e.
an undo followed by stable tuples), it also enters to begin propagating the effects of
those corrections downstream.

When an operator enters , it needs to purge the effects of all tentative tuples
from its state and process all of the stable tuples that it has missed before it can begin to process
new incoming data. is can be accomplished in a number of ways, but the authors have found that
checkpointing, wherein the operator takes a checkpoint of its state upon receiving the rst tenta-
tive tuple, performs best in most cases. e checkpoint is then restored before processing of stable
data resumes. Before processing the new data, the operator also sends an undo tuple (if needed) to
cancel out the downstream effects of its tentative output. e node then sends the last stable tuple
it received to the new upstream replica, which begins replaying its output at that point; this entails
unbounded logging at all nodes, which is a limitation that we will see addressed in other systems.
Processing can then resume, and the node will reenter the state when it has caught up with
the upstream node; alternatively, an additional failure will send it back to _ .

ere is a complication to this, related to themaximum latency requirement. As outlined above,
the recovery technique will suspend output while restoring the operator state. If the checkpoint
restoration and replayed data processing is going to take a long time, it may cause an unacceptable
delay before the downstream node receives current data. e authors solve this by having a replica
of the operator in the _ state send data on to the node downstream from the node that
is recovering (if there is another node already in a state, the stabilizing node should have
no downstream node at all, since all operators will a empt to use a stable replica if one is available);
this allows the stabilization to take placewithout causing the downstreamnode to stop sending data.

e downstream node processes the corrections from the stabilizing node and the tentative tuples
from the _ node in parallel, producing new tentative tuples while correcting its input
stream from the stabilizing replica.

e authors also present an optimization to this technique. e intuition is the following: if a
stable replica will be available soon, it is more efficient to delay for a short time computation and
then resume using the stable replica, rather than produce tentative tuples whichwill be immediately
undone. To this end, the system can choose to delay tuples for up to the maximum incremental
latency in a empt to reduce the number of tentative tuples.

e authors also conduct a series of experiments in which they take the union of multiple data
sources and pass the results through varying numbers of nodes while controlling the length of a



temporary failure at one of the sources. e results of these experiments show that, for a single pro-
cessing node, delaying works well; however, for more complex networks of nodes delaying is only
helpful for short failures. is is because the way reconciliation works in a chain of nodes, as shown
in Figure . Because a node enters the state as soon as a small timeframe becomes
stable (i.e. has been corrected and boundary tuple has been received), all of the nodes that are cho-
sen to stabilize (instead of continuing to produce tentative tuples) do so almost simultaneously.

is allows reconciliation to occur in a pipelined fashion, meaning that as the number of nodes in
the system increases, stabilization time only increases slightly. Since the number of tentative tuples
is therefore proportional to the sum of the failure time and the stabilization time less the delay at
the nal node, as the failure time increases, the relative bene t of delaying decreases. As delaying
increases latency regardless, it therefore become a poorer chose for large delays. A more thorough
discussion of this can be found in the paper. e authors conclude that a brief initial delay, followed
by immediate processing a erward, is the best strategy to balance the number of tentative tuples
and overall system latency.

. Use in Flux and TelegraphCQ
TelegraphCQ(Chandrasekaran et al., ) is another recent distributed streamprocessing engine.

e implementation details of TelegraphCQ are not relevant to this survey, except to note that, un-
like Borealis, TelegraphCQ supports partitioned parallelism. Flux, as described in Shah ( ), is
the Exchange operator for the TelegraphCQ system. As it implements all inter-node communica-
tion in the system, it is able to provide fault-tolerance and load-balancing capabilities for the system.
Shah ( ) describes three variants of the Flux operator. Flux-HA provides fault tolerance, Flux-
LB provides load balancing, and the regular Flux operator provides both. While Flux-HA is simpler
than the full Flux operator, the la er offers be er exibility and performance. In this survey, we rst
present Flux-HA, and then describe full Flux.

All of the replication is Flux assumes one primary and one secondary copy of each operator (or
each partition of each operator); this is unlike Borealis, which supported an arbitrary number of
replicas. In Flux, as in Borealis, each copy of an operator operates in lock-step with with its coun-
terpart, producing exactly the same output based on exactly the same input. Each tuple is assigned
a unique se uence num er, as it enters the system. As tuples pass through the system, one-to-one
transformations leave the sequence number unchanged. One-to-many and many-to-one operators
must ensure that they produce tuples with sequence numbers in ascending order. When multiple
tuple streams are combined (i.e. by a union or join), the system always processes them in ascending
order (by blocking until the next tuple can be read from each input). is ensures deterministic
evaluation even when streams are interleaved differently, as in Borealis.

e core of Flux is its str ct erne r t c , shown in Figure . e primary and secondary
copies operate on the same data but out of sync with each other. As tuples are produced by the pri-
mary copy of an operator, they are sent to their consumer. e consumer then sends an acknowledg-
ment (the tuples’ sequence numbers) to the copy. e copy, meanwhile, stores produced tuples in
its buffer. As it receives acknowledgments from the consumer, it discards the corresponding tuples
from its buffer (or, if the tuple has not yet been produced by the copy, records that it doesn’t need to
save that tuple). If the consumer remembers the sequence numbers of the tuples it has received, it
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can then construct a loss-free and duplicate-free version of the tuple stream if either the primary or
the secondary input fails. Figure shows how this would work for a simple streaming query where
the data is received from a source at one node and processed by two other nodes, and the result is
then sent to a third now.

Figure shows how Flux Abstract Kernel Protocol works in a partitioned-parallel data ow. In
such a data ow, the FH-Prod and FH-Cons operators function as the Exchange operator to move
data between partitions. To provide redundancy, there are two copies of each partition; in fact,
there are two copies of the entire data ow, connected only at the data source and at the destination
of the query results. Each node belongs to either the primary data ow or the secondary data ow.
Unlike in the simple streaming example above, the datamaybe sent over thenetworkmultiple times.

erefore both the primary and the secondary copies of each partition send data to other partitions,
and receive acknowledgments from the counterparts of the partitions they senddata to. As long as at
most one replica of each partition fails, the system can recover themissing state and produce correct
results.

e exact details of the recovery process are not interesting for the purposes of a general discus-
sion of recovery techniques. ey are similar in spirit to Borealis, though simpler since there is no
desire to produce tentative tuples while recovery is going on; only stable tuples are ever produced.

e author also describes how to create a new primary or secondary partition of an operator to re-
place a failedone. At ahigh level, this is doneby taking a snapshotof the surviving copyand installing
it on a new node; the copy can then continue in place of the failed node, though care must be taken
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to avoid duplicate or dropped tuples, perhaps using data from the output buffers in surviving nodes.
As described, this approach (termed Flux-HA in the paper) only works at the granularity of

entire nodes. is is not ideal, since a spare node may not be available to replace a failed node, and
“doubling up” logical nodes on a physical node may well create a performance bo leneck. In the
actual implementation, Flux combines the fault-tolerance techniques described above with load-
balancing techniques tomake the systemmore exible. Eachphysical nodehosts a numberof virtual
nodes, over which the parallel operators are partitioned. In the load-balancing work, the virtual
nodes aremoved between physical nodes to improve performance. In the combined Flux, the failed
virtual nodes can be distributed over the remaining physical nodes, and then load-balanced to give
be er performance.

. Comparison of Borealis and Flux
ere are several salient differences between the fault-tolerance mechanisms of Borealis and Flux.
e largest difference, and the source of much of the added complexity of the Borealis technique,

is that Borealis a empts to produce tentative results in the event of a network partition or other
temporary failure; Flux will switch to the backup, if available, but otherwise will simply block. e
simpli ed redundancy system does, however, allow Flux to perform automatic buffer management
to clear logs when the information in them is no longer needed; Borealis, at least as described in the
paper, holds all logged information inde nitely. Additionally, Borealis does not support partitioned-
parallel query plans; this limits the ability of the system both to perform load balancing as part of
recovery (since an operator may be placed only at one node, instead of split between many).

Passive Standby
Like active standby, passive standby has a primary node and one or more secondary nodes for each
operator. Unlike active standby, only the primary node performs the main computation. Periodi-



Figure : e High Availability state checkpointing model added to Borealis by Hwang et al.
( )

cally, during processing, the primary node takes a checkpoint of its state, which it disseminates to
the secondary nodes. With this state, and the buffering of any uncheckpointed tuples (similar to
upstream backup) at upstream nodes, a secondary node can take over for a failed primary node and
produce identical results. e simulation results in Hwang et al. ( ) for checkpointing, which
we will discuss in more detail in Section , were not favorable. However, more recent work has de-
veloped sophisticated techniques to improve passive standby performance andmake it a reasonable
recovery option, one that combines the low recovery time of active standby with the low overhead
of upstream backup. In this section, we detail two complimentary approaches to improving perfor-
mance in the Borealis distributed stream processing engine using passive standby and checkpoints.

. BackupManagement
Hwang et al. ( ) discusses techniques to improve performance in Borealis. e operators at
each node are grouped into HA ( v t ) units, which are the level at which replication is
done. EachHA unit consists of the operators, the operators’ input queue, and the operators’ output
queues. is is shown in Figure , whereHAUnit u₁ contains a lter operator σ, a map operatorµ,
and an aggregator (sum), the input toσ, and the output ofµ and sum. EachHAunit is checkpointed
onto a backup server when the server that hosts the HA unit has some idle time; in Figure , u₁ is
checkpointed from S₁ to S₂. e checkpoint includes all state inside the HA unit, including input
and output queues, expressed as a delta from the last checkpoint. Additionally, tuples stay in the
output queue of a HA unit until their effects in the node they have been sent to are checkpointed.

is guarantees that a single node failure can never cause data loss.
e work provides adaptive techniques for assigning backups to nodes, and for determining

whenHAunits shouldbe split andmerged. It alsopresents twoalgorithms, r un -r n andm n-m x,
that determine when to take checkpoints and when a node that hosts a checkpoint should merge a
delta checkpoint it has received into its copy of the HA unit’s state. It is worth repeating that such



actions only take place when a node is idle; the authors assume that overall system capacity exceed
the requirements of the query workload and therefore there checkpoints can happen relatively fre-
quently during processing. A detailed discussion of these techniques is well beyond the purview
of this document. Brie y, however, round-robin simply cycles between available tasks. Min-max
a empts to minimize the recovery time for the HA unit that currently has the maximum recovery
time; this could entail either taking a new checkpoint or processing previous delta checkpoint data
into the replicated operator state.

Figure summarizes the experimental results for HA checkpointing. e w e c ec nt n
referenced by the graphs simply copies the entire state of a node onto a new server. Figure (a)
shows that theirmin-max scheduling algorithm gives good performance over the duration of the ex-
periment, unlike the other approaches, and Figure (b) shows that it does not increase processing
latency much beyond the baseline of no redundancy.

. SGuard: Improving Checkpointing Performance
Kwan et al. ( ) presents several complimentary techniques to improve checkpointing perfor-
mance in Borealis, which the authors collectively term u r . e model they assume is similar to
that used in by Hwang et al. ( ) and described in Section . . An overview of a query in their
system in shown in Figure ; it shows HA units, as before, this time each bracketed by a pair of
HAInput andHAOutput operators.

While the overall technique used, passive standby, is similar to the approach taken in previous
work, the way the checkpoints are created and stored is vary different. SGuard stores the check-
point in a distributed, replicated le system(DFS), such as theGoogleFile System(Ghemawat et al.,

) or theHadoopDistributedFile System.² Such systems are designed to store and retrieve large
volumes of data quickly, and are well suited to append-heavy workloads, like storing checkpoints.

e authors develop a new scheduler for a DFS to support their system, but the topic is not relevant
to the discussion at hand. e use of a DFS does, however, allow reuse of well-designed and opti-
mized external components in place of custom code, and increases the exibility of the system by
allowing arbitrary numbers of replicas ofHAunit checkpoints simply by changing aDFS parameter.

A second optimization is the way operator checkpoints are created. e HA work described
in Section . used custom serializers and deserializers to store and restore operator state. SGuard
instead uses a em r n ement ew re ( ) to checkpoint operator state directly. All
operators store all of there state in the , which consists of rawblocks (pages) ofmemory. Utility
methods provide structured access to the raw pages, which is what the operators use to access their
internal state. provides two key advantages. First, since data is already serialized, creating a
checkpoint entails only writing the pages directly to disk. Second, processing can continue
during checkpoint creation through the use of copy-on-write pages; these are implemented within
the application level, and do not make use of operating system VM features.

e authors donot compare their checkpoint storage techniqueswith those presented in theHA
work, so we cannot verify the performance bene ts of using a DFS to store the checkpoints; how-

²For more information on , see http://hadoop.apache.org/core/docs/current/hdfs_
design.pdf.

http://hadoop.apache.org/core/docs/current/hdfs_design.pdf
http://hadoop.apache.org/core/docs/current/hdfs_design.pdf
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(b) Processing Latency

Figure : Experimental results for HA checkpointing in Borealis from Hwang et al. ( ). In-
put to the aggregate operators increases from zero tuples/second initially to tuples/second at
time seconds. Active standby cannot cope with the increased load beyond approximately
tuples/second.
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Figure : Query processing latencies for different SGuard checkpointing techniques. does not
checkpointing at all. Synchronous and asynchronous serialization both suspend processing while
the checkpoint is serialized; the former write the checkpoint to disk before processing continues,
the la er does not wait. foreground and background snapshots use a commercial virtual ma-
chine to serialize the entire process state while the processing is executing or while is it suspended,
respectively.
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(a) Effects of varying communication interval from
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(b) Effects of varying number of operators from
to

Figure : Comparisonof simulated recovery techniques fromHwanget al. ( ). Arrows indicate
change in parameter value.

ever, the exibility and implementation bene ts are clearly substantial. Figure shows the effect
on query processing latency of the various checkpointing methods during a checkpoint operation.

e technique clearly outperforms the others by a signi cant amount.

Comparison andConclusions
In this survey, we have examined techniques to improve reliability in distributed query processing.
For distributed query processing over replicated, static data, recovery techniques are an optimiza-
tion; if queries are relatively short or if node failures are infrequent, it is always possible to simply
restart the query with a stable set of nodes. Section . detailed the implementation of such a query
processor, and described how it used upstream backup as a recovery technique to reuse incremental
results and avoid redundant recomputation. iswas shown to increase performance in their experi-
ments. However, the experimental analysiswas not terribly thorough, and certainly one can imagine
cases (say, early on in a query’s execution), when it is more efficient to simply restart a query. Given
the lack of experimental results for other recovery methods in this context, it’s hard to come to any
general conclusions about recovery techniques for static data. Furthermore, some of the techniques
for stream processing depended on idle time between tuples to perform fault-tolerance operations;
it’s not clear how thesewouldwork in a static data processing system, where the nodesmay beCPU-
bound.

In distributed stream processing engines, however, recovery techniques are needed to give cor-
rect, complete results in the event of a node failure. Data streams are typically read-once, and since
operators may be stateful restarting a query (or failed operators) and continuing a er a failure may
never give the same results that would have been reported without failure. In stream engines, then,
the decision is not whether to use one of the three recovery techniques we described, but which



one to use. A good starting point of any such discussion is the simulation results fromHwang et al.
( ), which are shown in Figure . ose results show that upstream backup has by far the
least bandwidth overhead, but the highest recovery time; making it perhaps a good choice if failures
are rare and the increased latency can be accommodated in the unlikely event of a failure. Active
standby had the lowest recovery time, but used a signi cant amount of bandwidth and computa-
tional resources to do so. e results for passive standby were quite negative, giving it the worst
aspects of active standby and upstream backup.

However, the more recent work in actual systems (as opposed to a simulation), detailed in Sec-
tions . and . has shown that, with a clever implementation, passive standby (i.e. checkpointing)
can be a compelling technique that generally outperforms active standby. A combination of the
techniques from those two lines of work might give an even larger advantage over active standby;
however, it is not immediately obvious how well the two ideas would work together (though the

of Kwan et al. ( ) should be immediately applicable to the HA techniques of Hwang et al.
( ). ese newer results lead to a revised conclusion, that favors active standby only when ex-
tremely low latency is required, even in the presence of failure; active standbymay also require extra
nodes, since half of the system resources are devoted to redundant computation. If failures are rare,
and high latency can be tolerated while recovering from a failure, upstream backup is a good choice,
since it has low impact on systemperformance or bandwidth use. If failures aremore common, then
passive standby gives a good compromise between bandwidth use, system capacity, and recovery
time.

Reliability in distributed databases is a rich area, and one that has been studied in many con-
texts over the past thirty or so years. Recovery from failure during query processing has been an ac-
tive area of research over the past decade, and while the papers surveyed here have made signi cant
progress in improving the fault-tolerance of distributed streamprocessors and distributed databases
in general, much work remains to be done. A more thorough experimental evaluation of the differ-
ent recovery techniques in the same system would help to understand which techniques are best
applied when, though the results so far can at least guide system developers in the right direction
based on their general needs. Nevertheless, the fact that such systems are in active use outside the
research community shows the power and versatility of the approaches developed so far, and should
encourage those who continue to work in the area.
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