
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 2008

Recovery From Node Failure in Distributed Query Processing Recovery From Node Failure in Distributed Query Processing

Nicholas E. Taylor
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Nicholas E. Taylor, "Recovery From Node Failure in Distributed Query Processing", . November 2008.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-08-38

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/899
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/899
mailto:repository@pobox.upenn.edu

Recovery From Node Failure in Distributed Query Processing Recovery From Node Failure in Distributed Query Processing

Abstract Abstract
While distributed query processing has many advantages, the use of many independent, physically
widespread computers almost universally leads to reliability issues. Several techniques have been
developed to provide redundancy and the ability to recover from node failure during query processing. In
this survey, we examine three techniques--upstream backup, active standby, and passive standby--that
have been used in both distributed stream data processing and the distributed processing of static data.
We also compare several recent systems that use these techniques, and explore which recovery
techniques work well under various conditions.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-08-38

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/899

https://repository.upenn.edu/cis_reports/899

Recovery fromNode Failure in
Distributed÷uery Processing

NĽķļŃŀĵň E. TĵŏŀŃŇ

NŃŋĹŁĶĹŇ ǉǊ, Ǌǈǈǐ

Abstract

øhile distributed query processing has many advantages, the use of many independent,
physically widespread computers almost universally leads to reliability issues. Several tech-
niques have been developed to provide redundancy and the ability to recover from node failure
during query processing. In this survey, we examine three techniquesãuƣstreƎm ƏƎcƝuƣ, Ǝctƛve
stƎnƓƏƧ, and ƣƎssƛve stƎnƓƏƧãthat have been used in both distributed stream data processing
and the distributed processing of static data. We also compare several recent systems that use
these techniques, and explore which recovery techniques work well under various conditions.

ǉ

Contents
ǉ Introduction ǌ

Ǌ UpstreamBackup ǎ
Ǌ.ǉ Use in ŃĻňĵ-ĸŅń . ǎ

ǋ Active Standby Ǒ
ǋ.ǉ Use in Borealis . Ǒ
ǋ.Ǌ Use in Flux and TelegraphCQ . ǉǋ
ǋ.ǋ Comparison of Borealis and Flux . ǉǍ

ǌ Passive Standby ǉǍ
ǌ.ǉ BackupManagement . ǉǎ
ǌ.Ǌ SGuard: Improving Checkpointing Performance ǉǏ

Ǎ Comparison and Conclusions Ǌǈ

ǎ References ǊǊ

Ǌ

List of Figures
ǉ Stream processor overview . ǌ
Ǌ Architecture of the ŃĻňĵ-ĸŅń system . ǎ
ǋ ŃĻňĵ-ĸŅń Checkpoint Marker . Ǐ
ǌ Exchange operator in ŃĻňĵ-ĸŅń system . Ǐ
Ǎ Plans for a simple ǋ-way join query in ŃĻňĵ-ĸŅń ǐ
ǎ Diagrams for a sample query in Borealis . ǉǈ
Ǐ Borealis’ use of tentative tuples . ǉǉ
ǐ Borealis’ ĸńķ State Machine . ǉǉ
Ǒ ĸńķ reconciliation in a chain of nodes . ǉǊ
ǉǈ ĉe Flux Abstract Kernel Protocol . ǉǌ
ǉǉ Flux-style redundancy for an entire dataĚow . ǉǌ
ǉǊ Redundant partitioned parallelism in Flux . ǉǍ
ǉǋ Borealis HA State CheckpointingModel . ǉǎ
ǉǌ Experimental results for HA checkpointing in Borealis ǉǐ
ǉǍ SGuard Query Diagram . ǉǑ
ǉǎ Latencies of SGuard checkpointing techniques . ǉǑ
ǉǏ Comparison of simulated recovery techniques . Ǌǈ

ǋ

Input data
streams

Output to
applications

Continuous & ad hoc
queries

Operator boxes Historical
Storage

Figure ǉ: Aurora stream processor overview fromCarney et al. (ǊǈǈǊ).

ǉ Introduction
ĉeėeld of distributed databases dates back almost as far as the entire database ėeld. As described in
Lindsay (ǉǑǐǏ), work on R* dates back to ǉǑǏǑ, and Rothnie et al. (ǉǑǐǈ)marks the ėrst published
results on ňĸĸ-ǉ. Reliability as it relates to distributed transaction processing is well-studied, and is
described in such textbooks as Özsu and Valduriez (ǉǑǑǑ, chap. ǉǊ) and Bobak (ǉǑǑǎ, chap. ǉǉ).
However, such techniques donot addresswhat happenswhen a failure occurs during a query instead
of an update. If the distributed data is replicated, the system can simply restart the query using a new
set of nodes; however, thismay be inefficient if the query is nearly complete as all incremental results
are lost. Furthermore, if the system is executing continuous queries over streaming data (Balakrish-
nan et al., Ǌǈǈǌ; Abadi et al., ǊǈǈǍ; Chandrasekaran et al., Ǌǈǈǋ), it may not be possible to restart
the query and restore the operator state that was on the failed node. Both of these problems have
motivated recent work on failure recovery. ĉese approaches build on existing techniques based
on replication, as described in, for example, Helal et al. (ǉǑǑǎ, chap. ǋ), but with database-speciėc
optimizations to improve performance.

In this survey, we compare approaches used in a number of distributed database systems. ĉe
systemsweexamine are quite diverse. Some support streamingdata, some support static data. Some
support ƣƎrtƛtƛƢneƒ ƣƎrƎƵeơƛsm through some implementation of the Exchange operator (Graefe,
ǉǑǑǈ), and others do not. ĉis spreads data for a single logical operator across many physical nodes
based through some deterministic spliĨing algorithm, typically using range- or hash-based parti-
tioning. All support pipelined parallelism, where different operators are located on different nodes.

In thedatabase community, streƎmƣrƢcessƛnƖgenerally refers toqueryprocessingoverunbounded
streamsof input tuples. ĉese tuples pass throughoperators similar to those in a traditional database
system. Some operators are identical, while others are modiėed to beĨer suit the streaming data
paradigm. Joins, for example, are typically conducted within a window (speciėed either in time
or number of tuples) to avoid buffering an entire data stream. Aggregation operators periodically
emit results or return incremental results, and also typically havewindowed semantics to avoid large
amounts of buffering. Figure ǉ shows a diagram of Aurora (Carney et al., ǊǈǈǊ; Balakrishnan et al.,
Ǌǈǈǌ), an early stream processing system. More recent systems generally have a similar design, but

ǌ

allow the processing to take place in a distributed fashion. Stream processing has a variety of uses;
examples from the literature (Balazinska et al., Ǌǈǈǐ) include sensormonitoring, network intrusion
detection, stock ticker processing, and many others.

Hwang et al. (ǊǈǈǍ) deėnes three kinds of recovery modes for stream processing. Żrecƛse re-
cƢverƧ produces the exact same output aěer a failure as it would have had there been no failure,
though clearly the results may necessarily be delayed (though not reordered) due to the extra pro-
cessing needed to recover from the failure. ŲƎƣ recƢverƧmay skip some results before producing the
remainder of the results that would have been produced without the failure. ŽƢƵƏƎcƝ recƢverƧ is
somewhat more complex, and its precise effects depend on the query plan chosen; in contrast, gap
and precise recovery are only deėned in terms of the logical deėnition of the query. Rollback recov-
ery returns the system to a state before the failure and then resumes execution. While Hwang et al.
(ǊǈǈǍ) examines recovery techniques in the context of rollback recovery, all of the other systemswe
study enforce additional guarantees to ensure that these same techniques produce precise recovery.
It might also seem logical to deėne a recovery mode that allows tuple reordering. However, given
that some stream operators (the windowed join and the windowed aggregate) are deėned in terms
of tuple windows, such a relaxation at an intermediate operator could change the actual results at a
later operator, and not merely their order.

Furthermore, Hwang et al. (ǊǈǈǍ) introduces three general approaches to recovery in stream
processing. ĉe techniques used in the systemswe examine all fall into one of these three categories.
Perhaps the simplest approach is uƣstreƎm ƏƎcƝuƣ. Upstream nodes act serve as backups for down-
stream nodes by retaining a copy of their output until it has been processed by their downstream
neighbor and sent on to another node. In this way, there are multiple copies of each tuple avail-
able, providing redundancy. We examine this technique in a distributed query processing engine
in Section Ǌ. ĉe remaining two approaches are closely related to previous work on process pairs
(Gray, ǉǑǐǍ; BartleĨ, ǉǑǐǉ). Ŭctƛve stƎnƓƏƧ creates two (or more) copies of each operator exists,
and they all process the same data in the same order (as in so-called ƟƢcƝsteƣ process pairs). Failover
from one copy to another is relatively seamless; the system must merely ensure that the operator
downstream form the replaced node doesn’t process any data more than once and doesn’t miss any
data. We discuss this in the context of several stream processing engines in Section ǋ. ĉis ėnal
approach, ƣƎssƛve stƎnƓƏƧ, replicates each operator onto two (or mode) distinct nodes. ĉe primary
node actually performs the computation. Periodically, it sends a checkpoint of its operator state to
the secondary node or nodes. If the primary node fails, the secondary node can take over using the
checkpoint, as in cƙecƝƣƢƛntƛnƖ process pairs. Any tuples processed by the primary node but not yet
checkpointed will also need to be reprocessed; this entails a small amount of buffering at upstream
operators. Wediscuss the use of this approach in a stream-processing system in Section ǌ. Following
a discussion of these systems, we will conclude with a comparison of these approaches in Section Ǎ,
based on both simulation results from Hwang et al. (ǊǈǈǍ) and experimental results from Hwang
et al. (ǊǈǈǏ).

Ǎ

���� �� ��

Parser
Logical
Optimiser

Single−node Optimiser

Physical
Optimiser

Metadata

Partitioner Scheduler

Multi−node Optimiser

Query Evaluator

OQL query

	�
� �� � �� � ��
 �

� � � � � �
� �� � � �

� � � �
�� � � � �� � � � � �
� � � �

� � � � �� � �
� �� � � � � � � �

�
 � � � � � � � �
�

� � � � � � � 	 � �	 	 �� �
� � � �� �

� ��� ��

� � � ������ ��
� � � � � �
 �� ���

� � � � �
� � �
 � � � � �

� � ���
� � � � �

� � � � � � �
� ��� � � � �

�� � � � �
�

� �	 � � �

Figure Ǌ: Architecture of the ŃĻňĵ-ĸŅń system

Ǌ UpstreamBackup
As described above, upstream backup stores redundant copies of in-Ěight data at processing nodes
as they pass through the operator tree. In this way, each node acts as the backup for data that is
currently being processed at nodes downstream from it. If one of them fails, the state stored at
upstreamnodes canbeused to recreate operator state and to ensure that no tuples are lost. Some sort
of coordination is used to ensure that only a few copies of each tuple are stored in the system, and
then none are stored aěer they are no longer needed. Clearly upstream backup leads to increased
memory use, as intermediate results are buffered to provide fault tolerance, but in the absence of
node failure no computational effort, except for coordination to remove intermediate results that
are no longer needed. However, recovery time can be expected to be high, as large amounts of data
may need to be sent across the network during the recovery process.

Ǌ.ǉ Use in ŃĻňĵ-ĸŅń
Smith et al. (Ǌǈǈǈ, ǊǈǈǊ) describe a distributed query processing engine (ŃĻňĵ-ĸŅń) that operates
over the Open Grid Services Architecture (ŃĻňĵ), a distributed computing architecture based on
Web services.¹ Speciėcs of ŃĻňĵ-ĸŅń are not germane to a discussion of resilience to node failure,
except to say that it supports both partitioned and pipelined parallelism, and has a standard two-
phase query optimizer that transforms ŃŅŀ queries into parallelized execution plans. Figure Ǌ gives
a brief overview of the system architecture.

An extension toŃĻňĵ-ĸŅń, described in Smith andWatson (ǊǈǈǍ), adds a fault-tolerancemech-
anism based on upstream backup. Tuples Ěow through the system in an ordered stream, and inter-
spersed with them are checkpoint markers, as shown in Figure ǋ. Each exchange operator (shown
in Figure ǌ) introduces checkpoints into the tuple stream, and forwards checkpoint operators from
other nodes along. It buffers the data it sends into its recovery log, grouped by sequence numbers
from the checkpoint markers it adds. When a node receives a checkpoint marker from another
node, it decrements the hop count h. If h has gone to zero, it then sends an acknowledgment for that

¹For more information on ŃĻňĵ, see http://www.ggf.org/documents/GFD.80.pdf.

ǎ

http://www.ggf.org/documents/GFD.80.pdf

viv2v1 vnhSID route

Figure ǋ: ŃĻňĵ-ĸŅń Checkpoint Marker. ID denotes the node that created the marker, S is a node-
speciėc sequence identiėer, h is the number of hops remaining before the checkpoint is returned,
and v1 . . . vn give the route that the checkpoint marker has taken through the query graph.

Collated acks
from downstream

inputq

exchangeq

obuffer

ibuffer

inputq

machine 2
downstream

machine 1
upstream

for this link

recoverylog

Tuples
from input
operator

Acks to be
collated and
sent upstream

Tuples
returned
via next()

exchange
exchange

handler
endpoint

endpoint
handler

Figure ǌ: Exchange operator in ŃĻňĵ-ĸŅń system. Dashed lines indicate thread boundaries.

checkpoint upstream (using the vector v from the checkpoint marker); otherwise it puts the mod-
iėed checkpoint marker back into the tuple stream. ĉe acknowledgment is forwarded upstream
until it reaches the node ID that produced it; ID can then clear the entry for S in its recovery log. In
this way, the initial value of h determines how many replicas of each data point are retained in the
system.

As described, this techniquesworkswell for one-input operators. However, two-input operators
(e.g. join, union) are common in real query processing systems. For join, the authors propose to
ensure that the smaller input is the leě input to the join. ĉat input is fully processed into a hash
table before any input from the right side is processed. ĉen, right checkpoints are processed as
they come in, and leě checkpoints are not returned until the right input has ėnished. In this way,
the recent part of the right input and all of the leě input remains buffered upstream. Clearly this
does not work well if both inputs are large, or if it is not known Ǝ ƣrƛƢrƛ which one will be larger.
Similarly, aggregate operators (not discussed at all) will need to buffer all of their input.

Recovery in this system is relatively straightforward. A central coordinator determines which
nodes have failed, based on data from all participating nodes. It assigns new nodes to take over for
failed ones, and installs the query plan on them. When a new node joins the system, it receives the
contents of its downstream nodes recovery log (i.e. the data that had been sent to the new node but
not yet processed by the rest of the system). ĉis brings the replacement node back the the state that
the failed nodehad shortly before it failed. Since operators and sequence numbers are deterministic,
duplicate elimination simply consists of discarding partial blocks (i.e. the tuples that came aěer the
last checkpoint marker) and skipping blocks that have already been processed.

Ǐ

table_scan(d1) table_scan(d2)

hash_join

hash_join

table_scan(d3)

output

(a) Query Plan

P4

P2

P0 P1

P3

P5

(b) Distributed Query Plan

M1 M2 M3

M0

(c) ĺŉ_ŁĽł Query Plan

M1

M4

M0

M3M2

(d) ĺŉ_ŁĹĸ Query Plan

M2M1 M3

M4

M0

M5

(e) ĺŉ_ŁĵŎ Query Plan

Figure Ǎ: Plans for a simple ǋ-way join query in ŃĻňĵ-ĸŅń

ǐ

An interesting aspect of this work is the discussion of varying the query plan to improve re-
silience to failure. Figure Ǎ shows an example query plan and various ways it can be divvied up
among different nodes. Resilient plans ĺŉ_ŁĽł, ĺŉ_ŁĹĸ and ĺŉ_ŁĵŎ are shown in Figures Ǎ(c),
Ǎ(d), and Ǎ(e) respectively. In general, the authors argue that increasing the number of nodes im-
proves resiliency by increasing the amount of buffered state available for recovery; for example, if
the top join fails, in ĺŉ_ŁĵŎ it can recover its leě input from the state buffered at other nodes, elim-
inating the need to recompute the lower join. It should be noted, however, that such an argument
depends on the relative costs of data transmission over the network, query execution, and recovery
time. While the authors acknowledge that query optimization for reliability needs to be done in a
cost-based way, that is deferred to future work and is not studied.

ĉe experimental results show, not surprisingly, that the presented recovery technique is faster
that simply restarting the query over a new set of nodes; for replicated, static data this is always an
alternative recovery technique. However, the scenario for the main experiment also demonstrates
one major shortcoming of this work. ĉe experiment assumes a network where one node expe-
riences a hardware failure, is rebooted, and then can rejoin the network to complete processing.
However, this entails a long delay while waiting for the failed node to return. Obviously this could
be prevented by the use of a ƙƢt sƣƎre but they do not consider this scenario. Another node could
take over for the failed node while maintaining its current tasks as well, but this node would likely
become overloaded and be a performance boĨleneck. SpliĨing the work of the failed node over
the remaining nodes is not possible due to system design (the correspondence between checkpoint
numbers and tuples would change, for example), which is a major limitation. Other systems, such
as Flux (discussed in Section ǋ.Ǌ) address this through virtualization, where each physical node ex-
ecutes a number of virtual nodes independently; such an approach would work here as well. ĉe
virtual nodes from a failed physical node can be redistributed evenly over all of the remaining nodes
while maintaining the identical execution properties needed for failure recovery. ĉe authors do
not address such a technique, though if results from Flux are generalizable it would work quite well.

ǋ Active Standby
Active standby, as mentioned in Section ǉ, maintains multiple copies of each logical processing
node. ĉe primary copy performs the computation that creates the system output in the absence
of failure. ĉe secondary copy (or copies, though typically only one is used) shadows the primary
copy by performing exactly the same computation on exactly the same inputs. It is therefore ready
to take over almost immediately to replace a failed primary node. However, this approach reduces
the amount of processing power available to the system by performing signiėcant redundant com-
putation, even in the absence of any node failure.

ǋ.ǉ Use in Borealis
ĉe Borealis system, introduced in Abadi et al. (ǊǈǈǍ), is a “second-generation” stream processing
engine that adds a number of features to the earlier Aurora system(Carney et al., ǊǈǈǊ; Balakrishnan
et al., Ǌǈǈǌ), including revisions to previous results, and query modiėcation at run-time. For the

Ǒ





 

 

















 

 

(a) Distributed

 

 

   

 

 















 



 


 



 

   

ff

(b) Distributed and Replicated

Figure ǎ: Diagrams for a sample query in Borealis

purposes of this discussion, however, the salient feature is the addition of distributed execution.
Streams in one query can originate at different nodes, pass throughmany other sites for processing,
and produce results which are sent to yet other sites. Borealis supports pipelined but not partitioned
parallelism,meaning that, in the absence of redundancy to provide fault-tolerance, exactly one node
will execute each physical operator

Balazinska et al. (Ǌǈǈǐ) details theůeơƎƧ, ŻrƢcess, Ǝnƒ ŮƢrrect (ĸńķ) technique used to provide
fault-tolerance in Borealis. ĉe approach replicates each operator so that there are at least two (and
possibly more) copies of each operator performing the same computation. Figure ǎ(a) shows a
sample query in the Borealis system, and Figure ǎ(b) shows a replicated instantiation of the same
query. A novel aspect of this approach is that each query must specify the mƎxƛmum ƛncrementƎƟ
ƣrƢcessƛnƖ ơƎtencƧ it can endure; that is to say, the maximum amount of time that the system can try
to recover from a failure before some aĨempt must be made to produce results, even if they may
later prove to be incorrect. To this end, Borealis distinguished between normal tuples, deemed to
be stƎƏơe, and tentƎtƛve tuples. Such tuples are created when an operator is receiving tentative tuples
from another operator, or when one of its inputs has failed but it is still receiving input from another

ǉǈ

S1 S2 T3 T4 T5 ...U2 S4S3

Corrections and new tuples

Undo tuples T3 through T5

time

Stable tuples Tentative tuples

ff

ff

ff

ff
ff

ff

ff ff

ff

Figure Ǐ: Borealis’ use of tentative tuples

ff

ff
α α

ff

STABLE UP_FAILURE

STABILIZATION

Tentative tuples
or missing heartbeats

Up
st

re
am

fa
ilu

re
 h

ea
le

d

(A
no

th
er

) u
ps

tr
ea

m

fa
ilu

re
 in

 p
ro

gr
es

s

Reconciled;

stable output

tuples produced

ff

Figure ǐ: Borealis’ ĸńķ State Machine

operator. When an operator recovers from failure, it undoes the tentative tuples before it sends
along corrected versions and begins to process new tuples. ĉis process is shown in Figure Ǐ. ĉe
rationale is that, in many applications, seeing incomplete data is beĨer than seeing no data at all, as
would happen if the system simply blocked until recovery was complete.

ĉe ĸńķ technique depends on replicas of an operator producing the same output based on
the same input. Since in-order communication is provided by the underlying network layer, this
is straightforwards for single-input operators. To accommodate multiple-input operators like join
and union, where differing processing speeds or network latencies between nodes may cause in-
puts to arrive with different interleavings at different replicas, all tuples are tagged with a timestamp
when they are produced. Each stream is periodically punctuated by a ƏƢunƑƎrƧ tuƣơewhich indicates
that all subsequent tuples will have timestamps strictly greater than that of the boundary tuple. A
SUnion operator is responsible for serializing the input to each multiple-input operator in a deter-
ministic way based the timestamps and releasing a batch of tuples when all input streams have sent
a boundary tuple for a particular timeframe.

Figure ǐ shows the states that operators transition between during and while recovering from
a failure. All operators start out in the ňŉĵĶŀĹ state. If they encounter an upstream failure, they
transition into theŊń_ĺĵĽŀŊŇĹ state. In this state, as soon a ňŉĵĶŀĹ replica of the upstreamneighbor
is located, the node switches to the ňŉĵĶĽŀĽŐĵŉĽŃł state, whichwediscussmomentarily. Until then,
if the upstream node has failed, it searches for a replica of it in Ŋń_ĺĵĽŀŊŇĹ state, and switches to

ǉǉ

 





 








 
 
 

 


 


 


 


 


 


    
     

ff

ff

Figure Ǒ: ĸńķ reconciliation in a chain of nodes

that, if one is found. While waiting for a stable replica to appear, it continues to produce tentative
tuples based on the data it is receiving. If its upstream neighbor starts to produce corrections (i.e.
an undo followed by stable tuples), it also enters ňŉĵĶĽŀĽŐĵŉĽŃł to begin propagating the effects of
those corrections downstream.

When an operator enters ňŉĵĶĽŀĽŐĵŉĽŃł, it needs to purge the effects of all tentative tuples
from its state and process all of the stable tuples that it has missed before it can begin to process
new incoming data. ĉis can be accomplished in a number of ways, but the authors have found that
checkpointing, wherein the operator takes a checkpoint of its state upon receiving the ėrst tenta-
tive tuple, performs best in most cases. ĉe checkpoint is then restored before processing of stable
data resumes. Before processing the new data, the operator also sends an undo tuple (if needed) to
cancel out the downstream effects of its tentative output. ĉe node then sends the last stable tuple
it received to the new upstream replica, which begins replaying its output at that point; this entails
unbounded logging at all nodes, which is a limitation that we will see addressed in other systems.
Processing can then resume, and the node will reenter the ňŉĵĶŀĹ state when it has caught up with
the upstream node; alternatively, an additional failure will send it back to Ŋń_ĺĵĽŀŊŇĹ.

ĉere is a complication to this, related to themaximum latency requirement. As outlined above,
the recovery technique will suspend output while restoring the operator state. If the checkpoint
restoration and replayed data processing is going to take a long time, it may cause an unacceptable
delay before the downstream node receives current data. ĉe authors solve this by having a replica
of the operator in the Ŋń_ĺĵĽŀŊŇĹ state send data on to the node downstream from the node that
is recovering (if there is another node already in a ňŉĵĶŀĹ state, the stabilizing node should have
no downstream node at all, since all operators will aĨempt to use a stable replica if one is available);
this allows the stabilization to take placewithout causing the downstreamnode to stop sending data.
ĉe downstream node processes the corrections from the stabilizing node and the tentative tuples
from the Ŋń_ĺĵĽŀŊŇĹ node in parallel, producing new tentative tuples while correcting its input
stream from the stabilizing replica.

ĉe authors also present an optimization to this technique. ĉe intuition is the following: if a
stable replica will be available soon, it is more efficient to delay for a short time computation and
then resume using the stable replica, rather than produce tentative tuples whichwill be immediately
undone. To this end, the system can choose to delay tuples for up to the maximum incremental
latency in aĨempt to reduce the number of tentative tuples.

ĉe authors also conduct a series of experiments in which they take the union of multiple data
sources and pass the results through varying numbers of nodes while controlling the length of a

ǉǊ

temporary failure at one of the sources. ĉe results of these experiments show that, for a single pro-
cessing node, delaying works well; however, for more complex networks of nodes delaying is only
helpful for short failures. ĉis is because the way reconciliation works in a chain of nodes, as shown
in Figure Ǒ. Because a node enters the ňŉĵĶĽŀĽŐĵŉĽŃł state as soon as a small timeframe becomes
stable (i.e. has been corrected and boundary tuple has been received), all of the nodes that are cho-
sen to stabilize (instead of continuing to produce tentative tuples) do so almost simultaneously.
ĉis allows reconciliation to occur in a pipelined fashion, meaning that as the number of nodes in
the system increases, stabilization time only increases slightly. Since the number of tentative tuples
is therefore proportional to the sum of the failure time and the stabilization time less the delay at
the ėnal node, as the failure time increases, the relative beneėt of delaying decreases. As delaying
increases latency regardless, it therefore become a poorer chose for large delays. A more thorough
discussion of this can be found in the paper. ĉe authors conclude that a brief initial delay, followed
by immediate processing aěerward, is the best strategy to balance the number of tentative tuples
and overall system latency.

ǋ.Ǌ Use in Flux and TelegraphCQ
TelegraphCQ(Chandrasekaran et al., Ǌǈǈǋ) is another recent distributed streamprocessing engine.
ĉe implementation details of TelegraphCQ are not relevant to this survey, except to note that, un-
like Borealis, TelegraphCQ supports partitioned parallelism. Flux, as described in Shah (Ǌǈǈǌ), is
the Exchange operator for the TelegraphCQ system. As it implements all inter-node communica-
tion in the system, it is able to provide fault-tolerance and load-balancing capabilities for the system.
Shah (Ǌǈǈǌ) describes three variants of the Flux operator. Flux-HA provides fault tolerance, Flux-
LB provides load balancing, and the regular Flux operator provides both. While Flux-HA is simpler
than the full Flux operator, the laĨer offers beĨer Ěexibility and performance. In this survey, we ėrst
present Flux-HA, and then describe full Flux.

All of the replication is Flux assumes one primary and one secondary copy of each operator (or
each partition of each operator); this is unlike Borealis, which supported an arbitrary number of
replicas. In Flux, as in Borealis, each copy of an operator operates in lock-step with with its coun-
terpart, producing exactly the same output based on exactly the same input. Each tuple is assigned
a unique seƥuence numƏer, as it enters the system. As tuples pass through the system, one-to-one
transformations leave the sequence number unchanged. One-to-many and many-to-one operators
must ensure that they produce tuples with sequence numbers in ascending order. When multiple
tuple streams are combined (i.e. by a union or join), the system always processes them in ascending
order (by blocking until the next tuple can be read from each input). ĉis ensures deterministic
evaluation even when streams are interleaved differently, as in Borealis.

ĉe core of Flux is itsŬƏstrƎct ŶerneƟ ŻrƢtƢcƢƟ, shown in Figure ǉǈ. ĉe primary and secondary
copies operate on the same data but out of sync with each other. As tuples are produced by the pri-
mary copy of an operator, they are sent to their consumer. ĉe consumer then sends an acknowledg-
ment (the tuples’ sequence numbers) to the copy. ĉe copy, meanwhile, stores produced tuples in
its buffer. As it receives acknowledgments from the consumer, it discards the corresponding tuples
from its buffer (or, if the tuple has not yet been produced by the copy, records that it doesn’t need to
save that tuple). If the consumer remembers the sequence numbers of the tuples it has received, it

ǉǋ

data

ack

Int. Prod

Int. Prod

Copy

Buffer

Int. Cons
 Consumer

Operator

Producer

Operator

Copy

Producer

Operator

ff ff

ff

ff

Figure ǉǈ: ĉe Flux Abstract Kernel Protocol

data

ack

S-Prod
P

S-Prod
S

S-Cons
P

S-Cons
S

Ingress
 Egress

Primary

Secondary

D

e
s
t
i
n
a
t
i
o
n

S

o
u
r
c
e

Figure ǉǉ: Flux-style redundancy for an entire dataĚow

can then construct a loss-free and duplicate-free version of the tuple stream if either the primary or
the secondary input fails. Figure ǉǉ shows how this would work for a simple streaming query where
the data is received from a source at one node and processed by two other nodes, and the result is
then sent to a third now.

Figure ǉǊ shows how Flux Abstract Kernel Protocol works in a partitioned-parallel dataĚow. In
such a dataĚow, the FH-Prod and FH-Cons operators function as the Exchange operator to move
data between partitions. To provide redundancy, there are two copies of each partition; in fact,
there are two copies of the entire dataĚow, connected only at the data source and at the destination
of the query results. Each node belongs to either the primary dataĚow or the secondary dataĚow.
Unlike in the simple streaming example above, the datamaybe sent over thenetworkmultiple times.
ĉerefore both the primary and the secondary copies of each partition send data to other partitions,
and receive acknowledgments from the counterparts of the partitions they senddata to. As long as at
most one replica of each partition fails, the system can recover themissing state and produce correct
results.

ĉe exact details of the recovery process are not interesting for the purposes of a general discus-
sion of recovery techniques. ĉey are similar in spirit to Borealis, though simpler since there is no
desire to produce tentative tuples while recovery is going on; only stable tuples are ever produced.
ĉe author also describes how to create a new primary or secondary partition of an operator to re-
place a failedone. At ahigh level, this is doneby taking a snapshotof the surviving copyand installing
it on a new node; the copy can then continue in place of the failed node, though care must be taken

ǉǌ

FH-Cons
P
FH-Prod
P

Buffer

FH-Prod
S

Buffer

FH-Cons
P

Producer
P

Producer
S

Consumer
P

Consumer
S

Partition

data

ack

ff

Figure ǉǊ: Redundant partitioned parallelism in Flux. ĉe arrows show the paths a particular tuple
would take through the primary and secondary dataĚows. In general, tuples from one partition in
the produced could end up at ƎnƧ partition of the consumer.

to avoid duplicate or dropped tuples, perhaps using data from the output buffers in surviving nodes.
As described, this approach (termed Flux-HA in the paper) only works at the granularity of

entire nodes. ĉis is not ideal, since a spare node may not be available to replace a failed node, and
“doubling up” logical nodes on a physical node may well create a performance boĨleneck. In the
actual implementation, Flux combines the fault-tolerance techniques described above with load-
balancing techniques tomake the systemmoreĚexible. Eachphysical nodehosts a numberof virtual
nodes, over which the parallel operators are partitioned. In the load-balancing work, the virtual
nodes aremoved between physical nodes to improve performance. In the combined Flux, the failed
virtual nodes can be distributed over the remaining physical nodes, and then load-balanced to give
beĨer performance.

ǋ.ǋ Comparison of Borealis and Flux
ĉere are several salient differences between the fault-tolerance mechanisms of Borealis and Flux.
ĉe largest difference, and the source of much of the added complexity of the Borealis technique,
is that Borealis aĨempts to produce tentative results in the event of a network partition or other
temporary failure; Flux will switch to the backup, if available, but otherwise will simply block. ĉe
simpliėed redundancy system does, however, allow Flux to perform automatic buffer management
to clear logs when the information in them is no longer needed; Borealis, at least as described in the
paper, holds all logged information indeėnitely. Additionally, Borealis does not support partitioned-
parallel query plans; this limits the ability of the system both to perform load balancing as part of
recovery (since an operator may be placed only at one node, instead of split between many).

ǌ Passive Standby
Like active standby, passive standby has a primary node and one or more secondary nodes for each
operator. Unlike active standby, only the primary node performs the main computation. Periodi-

ǉǍ

Figure ǉǋ: ĉe High Availability state checkpointing model added to Borealis by Hwang et al.
(ǊǈǈǏ)

cally, during processing, the primary node takes a checkpoint of its state, which it disseminates to
the secondary nodes. With this state, and the buffering of any uncheckpointed tuples (similar to
upstream backup) at upstream nodes, a secondary node can take over for a failed primary node and
produce identical results. ĉe simulation results in Hwang et al. (ǊǈǈǍ) for checkpointing, which
we will discuss in more detail in Section Ǎ, were not favorable. However, more recent work has de-
veloped sophisticated techniques to improve passive standby performance andmake it a reasonable
recovery option, one that combines the low recovery time of active standby with the low overhead
of upstream backup. In this section, we detail two complimentary approaches to improving perfor-
mance in the Borealis distributed stream processing engine using passive standby and checkpoints.

ǌ.ǉ BackupManagement
Hwang et al. (ǊǈǈǏ) discusses techniques to improve performance in Borealis. ĉe operators at
each node are grouped into HA (ųƛƖƙ ŬvƎƛơƎƏƛơƛtƧ) units, which are the level at which replication is
done. EachHA unit consists of the operators, the operators’ input queue, and the operators’ output
queues. ĉis is shown in Figure ǉǋ, whereHAUnit u₁ contains a ėlter operator σ, a map operatorµ,
and an aggregator (sum), the input toσ, and the output ofµ and sum. EachHAunit is checkpointed
onto a backup server when the server that hosts the HA unit has some idle time; in Figure ǉǋ, u₁ is
checkpointed from S₁ to S₂. ĉe checkpoint includes all state inside the HA unit, including input
and output queues, expressed as a delta from the last checkpoint. Additionally, tuples stay in the
output queue of a HA unit until their effects in the node they have been sent to are checkpointed.
ĉis guarantees that a single node failure can never cause data loss.

ĉe work provides adaptive techniques for assigning backups to nodes, and for determining
whenHAunits shouldbe split andmerged. It alsopresents twoalgorithms, rƢunƒ-rƢƏƛn andmƛn-mƎx,
that determine when to take checkpoints and when a node that hosts a checkpoint should merge a
delta checkpoint it has received into its copy of the HA unit’s state. It is worth repeating that such

ǉǎ

actions only take place when a node is idle; the authors assume that overall system capacity exceed
the requirements of the query workload and therefore there checkpoints can happen relatively fre-
quently during processing. A detailed discussion of these techniques is well beyond the purview
of this document. BrieĚy, however, round-robin simply cycles between available tasks. Min-max
aĨempts to minimize the recovery time for the HA unit that currently has the maximum recovery
time; this could entail either taking a new checkpoint or processing previous delta checkpoint data
into the replicated operator state.

Figure ǉǌ summarizes the experimental results for HA checkpointing. ĉe wƙƢơe cƙecƝƣƢƛntƛnƖ
referenced by the graphs simply copies the entire state of a node onto a new server. Figure ǉǌ(a)
shows that theirmin-max scheduling algorithm gives good performance over the duration of the ex-
periment, unlike the other approaches, and Figure ǉǌ(b) shows that it does not increase processing
latency much beyond the baseline of no redundancy.

ǌ.Ǌ SGuard: Improving Checkpointing Performance
Kwan et al. (Ǌǈǈǐ) presents several complimentary techniques to improve checkpointing perfor-
mance in Borealis, which the authors collectively term žŲuƎrƒ. ĉemodel they assume is similar to
that used in by Hwang et al. (ǊǈǈǍ) and described in Section ǌ.ǉ. An overview of a query in their
system in shown in Figure ǉǍ; it shows HA units, as before, this time each bracketed by a pair of
HAInput andHAOutput operators.

While the overall technique used, passive standby, is similar to the approach taken in previous
work, the way the checkpoints are created and stored is vary different. SGuard stores the check-
point in a distributed, replicatedėle system(DFS), such as theGoogleFile System(Ghemawat et al.,
Ǌǈǈǋ) or theHadoopDistributedFile System.² Such systems are designed to store and retrieve large
volumes of data quickly, and are well suited to append-heavy workloads, like storing checkpoints.
ĉe authors develop a new scheduler for a DFS to support their system, but the topic is not relevant
to the discussion at hand. ĉe use of a DFS does, however, allow reuse of well-designed and opti-
mized external components in place of custom code, and increases the Ěexibility of the system by
allowing arbitrary numbers of replicas ofHAunit checkpoints simply by changing aDFS parameter.

A second optimization is the way operator checkpoints are created. ĉe HA work described
in Section ǌ.ǉ used custom serializers and deserializers to store and restore operator state. SGuard
instead uses aŸemƢrƧ ŸƎnƎƖement ŸƛƓƑơewƎre (ŁŁŁ) to checkpoint operator state directly. All
operators store all of there state in theŁŁŁ,which consists of rawblocks (pages) ofmemory. Utility
methods provide structured access to the raw pages, which is what the operators use to access their
internal state. ŁŁŁ provides two key advantages. First, since data is already serialized, creating a
checkpoint entails only writing the ŁŁŁ pages directly to disk. Second, processing can continue
during checkpoint creation through the use of copy-on-write pages; these are implemented within
the application level, and do not make use of operating system VM features.

ĉeauthors donot compare their checkpoint storage techniqueswith those presented in theHA
work, so we cannot verify the performance beneėts of using a DFS to store the checkpoints; how-

²For more information on ļĸĺň, see http://hadoop.apache.org/core/docs/current/hdfs_
design.pdf.

ǉǏ

http://hadoop.apache.org/core/docs/current/hdfs_design.pdf
http://hadoop.apache.org/core/docs/current/hdfs_design.pdf

0 50 100 150
0

1

2

3

4

5

6

7

8

time (sec)

re
co

ve
ry

 ti
m

e
(s

ec
)

active standby
whole checkpointing (passive standby)
round robin
min max

(a) Recovery Time

0 50 100 150
0

0.5

1

1.5

2

2.5

3

time (sec)

la
te

nc
y

(s
ec

)

no HA / active standby
whole checkpointing (passive standby)
mim max/ round robin

(b) Processing Latency

Figure ǉǌ: Experimental results for HA checkpointing in Borealis from Hwang et al. (ǊǈǈǏ). In-
put to the aggregate operators increases from zero tuples/second initially to Ǌǈǈǈ tuples/second at
time ǉǍǈ seconds. Active standby cannot cope with the increased load beyond approximately ǉǈǈǈ
tuples/second.

ǉǐ

S1

O16 O20

SPE Node N1

SPE Node N3

SPE Node N2

OperatorInput
queue

Output
queue

O1 Ox

Ox

O14

O15

O19O17 O18

Ox

O2

O3 O7

O4

O8

O11

O9 O10

O12 O13

O5

O6

Legend

HAInput HAOutput

Std SPE operatorS2

S3

C2

Data source

C1

ClientHA Unit

ff

Figure ǉǍ: AnSGuardquerydiagram. OperatorsO₁, O₂, O₈, O₁₁, O₁₄, O₁₅ andO₁₈ areHAInput operators;
the remaining shaded boxes are HAOutput operators.

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16

E
n

d
 t

o
 e

n
d

 l
a

te
n

c
y
(m

s
)

Time(s)

SPE MMM Synchronous
Serialization

Asynchronous
Serialization

VM Foreground
Snapshot

VM Background
Snapshot

ff

ff

Figure ǉǎ: Query processing latencies for different SGuard checkpointing techniques. ňńĹ does not
checkpointing at all. Synchronous and asynchronous serialization both suspend processing while
the checkpoint is serialized; the former write the checkpoint to disk before processing continues,
the laĨer does not wait. ŋŁ foreground and background snapshots use a commercial virtual ma-
chine to serialize the entire process state while the processing is executing or while is it suspended,
respectively.

ǉǑ

0 25 50 75 100
0

20

40

60

80

100

Bandwidth Overhead for High Availability (%)

R
ec

ov
er

y
T

im
e

(m
s)

Passive Standby
Active Standby (rollback)
Active Standby (precise)
Upstream Backup (rollback)
Upstream Backup (precise)

(a) Effects of varying communication interval from
ǊǍ ms to Ǌǈǈ ms

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

Bandwidth Overhead for High Availability (%)

R
ec

ov
er

y
T

im
e

(m
s)

Passive Standby
Active Standby (rollback)
Active Standby (precise)
Upstream Backup (rollback)
Upstream Backup (precise)

(b) Effects of varying number of operators from ǉ
to Ǎ

FigureǉǏ: Comparisonof simulated recovery techniques fromHwanget al. (ǊǈǈǍ). Arrows indicate
change in parameter value.

ever, the Ěexibility and implementation beneėts are clearly substantial. Figure ǉǎ shows the effect
on query processing latency of the various checkpointing methods during a checkpoint operation.
ĉe ŁŁŁ technique clearly outperforms the others by a signiėcant amount.

Ǎ Comparison andConclusions
In this survey, we have examined techniques to improve reliability in distributed query processing.
For distributed query processing over replicated, static data, recovery techniques are an optimiza-
tion; if queries are relatively short or if node failures are infrequent, it is always possible to simply
restart the query with a stable set of nodes. Section Ǌ.ǉ detailed the implementation of such a query
processor, and described how it used upstream backup as a recovery technique to reuse incremental
results and avoid redundant recomputation. ĉiswas shown to increase performance in their experi-
ments. However, the experimental analysiswas not terribly thorough, and certainly one can imagine
cases (say, early on in a query’s execution), when it is more efficient to simply restart a query. Given
the lack of experimental results for other recovery methods in this context, it’s hard to come to any
general conclusions about recovery techniques for static data. Furthermore, some of the techniques
for stream processing depended on idle time between tuples to perform fault-tolerance operations;
it’s not clear how thesewouldwork in a static data processing system, where the nodesmay beCPU-
bound.

In distributed stream processing engines, however, recovery techniques are needed to give cor-
rect, complete results in the event of a node failure. Data streams are typically read-once, and since
operators may be stateful restarting a query (or failed operators) and continuing aěer a failure may
never give the same results that would have been reported without failure. In stream engines, then,
the decision is not whether to use one of the three recovery techniques we described, but which

Ǌǈ

one to use. A good starting point of any such discussion is the simulation results fromHwang et al.
(ǊǈǈǍ), which are shown in Figure ǉǏ. ĉose results show that upstream backup has by far the
least bandwidth overhead, but the highest recovery time; making it perhaps a good choice if failures
are rare and the increased latency can be accommodated in the unlikely event of a failure. Active
standby had the lowest recovery time, but used a signiėcant amount of bandwidth and computa-
tional resources to do so. ĉe results for passive standby were quite negative, giving it the worst
aspects of active standby and upstream backup.

However, the more recent work in actual systems (as opposed to a simulation), detailed in Sec-
tions ǌ.ǉ and ǌ.Ǌ has shown that, with a clever implementation, passive standby (i.e. checkpointing)
can be a compelling technique that generally outperforms active standby. A combination of the
techniques from those two lines of work might give an even larger advantage over active standby;
however, it is not immediately obvious how well the two ideas would work together (though the
ŁŁŁ of Kwan et al. (Ǌǈǈǐ) should be immediately applicable to the HA techniques of Hwang et al.
(ǊǈǈǏ). ĉese newer results lead to a revised conclusion, that favors active standby only when ex-
tremely low latency is required, even in the presence of failure; active standbymay also require extra
nodes, since half of the system resources are devoted to redundant computation. If failures are rare,
and high latency can be tolerated while recovering from a failure, upstream backup is a good choice,
since it has low impact on systemperformance or bandwidth use. If failures aremore common, then
passive standby gives a good compromise between bandwidth use, system capacity, and recovery
time.

Reliability in distributed databases is a rich area, and one that has been studied in many con-
texts over the past thirty or so years. Recovery from failure during query processing has been an ac-
tive area of research over the past decade, and while the papers surveyed here have made signiėcant
progress in improving the fault-tolerance of distributed streamprocessors and distributed databases
in general, much work remains to be done. A more thorough experimental evaluation of the differ-
ent recovery techniques in the same system would help to understand which techniques are best
applied when, though the results so far can at least guide system developers in the right direction
based on their general needs. Nevertheless, the fact that such systems are in active use outside the
research community shows the power and versatility of the approaches developed so far, and should
encourage those who continue to work in the area.

Ǌǉ

ǎ References
Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cherniack, Jeong-
Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul,
YingXing, andStanleyB.Zdonik.ĉedesignof theBorealis streamprocessing engine. InŮŴůŽ,
pages ǊǏǏ–ǊǐǑ, ǊǈǈǍ.

Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur Çetintemel, Mitch Cherniack,
Christian Convey, Eduardo F. Galvez, Jon Salz, Michael Stonebraker, Nesime Tatbul, Richard
TibbeĨs, and Stanley B. Zdonik. Retrospective on Aurora. Ɓŷůŭ ŵƢurnƎƟ, ǉǋ(ǌ):ǋǏǈ–ǋǐǋ,
Ǌǈǈǌ.

Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stonebraker. Fault-
tolerance in the Borealis distributed stream processing system. ŬŮŸſrƎnsƎČƛƢns Ƣn ůƎtƎƏƎse
žƧstems, ǋǋ(ǉ), Ǌǈǈǐ.

Joel F. BartleĨ. ANonStop kernel. InŬŮŸžƧmƣƢsƛum ƢnźƣerƎtƛnƖ žƧstemsŻrƛncƛƣơes, pages ǊǊ–ǉǑ,
ǉǑǐǉ.

Angelo R. Bobak. ůƛstrƛƏuteƑ ƎnƒŸuƟtƛ-ůƎtƎƏƎse žƧstems. Artech house, Boston, ǉǑǑǎ.

Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg Seid-
man, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. Monitoring streams - a new
class of data management applications. InƁŷůŭ, pages ǊǉǍ–ǊǊǎ. Morgan Kaufmann, ǊǈǈǊ.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Heller-
stein,WeiHong, Sailesh Krishnamurthy, SamuelMadden, Vijayshankar Raman, Frederick Reiss,
and Mehul A. Shah. TelegraphCQ: Continuous dataĚow processing for an uncertain world. In
ŮŴůŽ, Ǌǈǈǋ.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. ĉe Google ėle system. In Michael L.
ScoĨ and Larry L. Peterson, editors, ŬŮŸ žƧmƣƢsƛum Ƣn źƣerƎtƛnƖ žƧstems Żrƛncƛƣơes, pages
ǊǑ–ǌǋ. ACM, Ǌǈǈǋ. ISBN ǉ-Ǎǐǉǉǋ-ǏǍǏ-Ǎ.

Goetz Graefe. Encapsulation of parallelism in the volcano query processing system. In Hector
Garcia-Molina and H. V. Jagadish, editors, žŴŲŸźů ŮƢnƕerence, pages ǉǈǊ–ǉǉǉ. ACM Press,
ǉǑǑǈ.

Jim Gray. Why do computers stop and what can be done about it. Technial Report ǐǍ-Ǐ, Tandem
Computers, Cupertino, CA, ǉǑǐǍ.

Abdelsalam A. Helal, Abdelsalal A. Heddaya, and Bharat B. Bhargava. ŽeƣơƛcƎtƛƢn ſecƙnƛƥues ƛn
ůƛstrƛƏuteƑ žƧstems. Kulwer Academic Publishers, Boston, ǉǑǑǎ.

Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin, Ugur Çetintemel, Michael Stonebraker,
and Stanley B. Zdonik. High-availability algorithms for distributed stream processing. In ŴŮůŰ,
pages ǏǏǑ–ǏǑǈ. IEEE Computer Society, ǊǈǈǍ. ISBN ǈ-ǏǎǑǍ-ǊǊǐǍ-ǐ.

ǊǊ

Jeong-Hyon Hwang, Ying Xing, Ugur Çetintemel, and Stanley B. Zdonik. A cooperative, self-
conėguring high-availability solution for stream processing. In ŴŮůŰ, pages ǉǏǎ–ǉǐǍ. IEEE,
ǊǈǈǏ.

YongChul Kwan, Magdalena Balazinska, and Albert Greenberg. Fault-tolerant stream processing
using a distributed, replicated ėle system. InƁŷůŭ, pages ǍǏǌ–ǍǐǍ. ACM, Ǌǈǈǐ.

Bruce G. Lindsay. A retrospective of R*: A distributed database management system. ŻrƢceeƑƛnƖs
Ƣƕ tƙe ŴŰŰŰ, ǏǍ(Ǎ):ǎǎǐ–ǎǏǋ, ǉǑǐǏ.

M. Tamer Özsu and Patrick Valduriez. Żrƛncƛƣơes Ƣƕ ůƛstrƛƏuteƑ ůƎtƎƏƎse žƧstems. Prentice Hall,
Upper Saddle River, New Jersey, second edition edition, ǉǑǑǑ.

James B. Rothnie, Jr., Philip A. Bernstein, Stephen Fox, Nathan Goodman, Michael Hammer, T. A.
Landers, Christopher L. Reeve, DavidW. Shipman, and EugeneWong. Introduction to a system
for distributed databases (SDD-ǉ). ŬŮŸſrƎnsƎČƛƢns ƢnůƎtƎƏƎse žƧstems, Ǎ(ǉ):ǉ–ǉǏ, ǉǑǐǈ.

Mehul A. Shah. űƟux: ŬŸecƙƎnƛsm ƕƢrŭuƛƠƑƛnƖŽƢƏust, žcƎơƎƏơeůƎtƎƭƢws. PhD thesis, University
of California, Berkeley, Ǌǈǈǌ.

Jim Smith and Paul Watson. Fault-tolerance in distributed query processing. In ŴnternƎtƛƢnƎƟ
ůƎtƎƏƎse ŰnƖƛneerƛnƖ ƎnƒŬƣƤơƛcƎtƛƢns žƧmƣƢsƛum, pages ǋǊǑ–ǋǋǐ. IEEEComputer Society, ǊǈǈǍ.
ISBN ǈ-ǏǎǑǍ-Ǌǌǈǌ-ǌ.

Jim Smith, Paul Watson, Sandra de F. Mendes Sampaio, and NormanW. Paton. Polar: An architec-
ture for a parallel ODMG compliant object database. In ŮƢnƕerence Ƣn ŴnƕƢrmƎtƛƢn ƎnƒŶnƢwơeƑƖe
ŸƎnƎƖement, pages ǋǍǊ–ǋǍǑ. ACM, Ǌǈǈǈ.

Jim Smith, Anastasios Gounaris, Paul Watson, Norman W. Paton, Alvaro A. A. Fernandes, and Ri-
zos Sakellariou. Distributed query processing on the grid. In Manish Parashar, editor, ŲŽŴů,
volume ǊǍǋǎ of ŷeČure ŹƢtes ƛn ŮƢmƣuter žcƛence, pages ǊǏǑ–ǊǑǈ. Springer, ǊǈǈǊ. ISBN ǋ-Ǎǌǈ-
ǈǈǉǋǋ-ǎ.

Acknowledgments
ĉe author would like to thank the authors of the papers reviewed in this survey, both for making
the effort to write thorough, thoughtful, and understandable discussions of their work, and for the
ėgures, diagrams, and graphs which have been poached from their publications for reproduction
here. He would also like to thank you, the reader, for persevering all the way to the end.

Ǌǋ

	Recovery From Node Failure in Distributed Query Processing
	Recommended Citation

	Recovery From Node Failure in Distributed Query Processing
	Abstract
	Comments

	Introduction
	Upstream Backup
	Use in ogsa-dqp

	Active Standby
	Use in Borealis
	Use in Flux and TelegraphCQ
	Comparison of Borealis and Flux

	Passive Standby
	Backup Management
	SGuard: Improving Checkpointing Performance

	Comparison and Conclusions
	References

