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Abstract 

This proposal discusses the use of the intentions of the actor in performing means- 
end reasoning. In doing so, it will show that preconditions and applicability conditions 
in existing systems are ill-defined and intrinsically encode situational information that 
prevents intentions from playing a role in the planning process. While the former 
problem can be fixed, the latter cannot. Therefore, I argue that preconditions should 
be eliminated from action representation. In their place, I suggest explicit represen- 
tation of intention, situated reasoning about the results of action, and robust failure 
mechanisms. I then describe a system, the Intentional Planning System (ItPlanS), 
which embodies these ideas, compare ItPlanS to other systems, and propose future 
directions for this work. 
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Chapter 1 

Introduction 

Consider the simple blocks-world situation shown in Figure 1.1 . 

Figure 1.1: A simple blocks-world situation 

In most planning systems, if the system is instructed to pick up block "A", it will 
first move block "B" to  the table. If, on the other hand, a human agent is instructed 
to  pick up block "A", there are three possibilities. First, the agent may, like the 
planner, move block "B" to  the table, then grasp and lift block "A". Second, the 
agent may, by grasping block "A", lift botli block "A" and block "B", achieving the 
desired goal. Third, the agent may grasp block "A" and, by pulling laterally and 
upward, pull block "A" from under block "B". Notice that, only in the first case does 
the agent actually remove block "B" before engaging in the desired task. 

This behavior is very suggestive. Many planning systems have a precondition on 
the action "pickup" that the object to be lifted must be clear, and yet, in two of the 
obvious solutions to this directive, this precondition is not met. The question then 
is, why should the action "pickup" have a precondition that the block to be lifted be 
clear? In this paper I will argue that it shouldn't. I will argue that,  in fact, precondi- 
tions as a whole should be eliminated in favor of explicit representation of intentions, 
situated reasoning about the effect of actions, and robust failure mechanisms. 

The strength of two of these mechanisms can be seen in the previous situation. For 



example, let us assume that the agent's intentions are explicitly encoded. Situated 
reasoning is sufficient for the agent to determine which methods of lifting the blocks 
are acceptable and which are not. If the agent has no intentional commitments about 
the fate of block "B", it will not be constrained to "clear" block "A" before lifting. 
In this case, the agent might select between any of the methods of picking up the 
block. If, however, the agent has as one of its intentions that it not break objects, 
then pulling block "A" from under block "B" is not an admissible solution, since 
block "B" might fall and break. Of course, the solution of lifting both blocks is still 
viable, provided the agent takes care to prevent the block on top from sliding off. 
Finally, if the agent is very concerned about the fragility of block "B", there is only 
one solution that is admissible. 

The view being proposed here, namely the use of intentions as a filter on tlie 
selection of various solutions to a problem is not new. As Bratman argues [4] 

My prior intentions and plans, then, pose problems for deliberation, thereby 
establishing standards of relevance for options considered in deliberation. 
And they constrain solutions to these problems, providing a filter of ad- 
missibility for options. 

It is only by considering the network of those actions that we intend and those 
that we do not intend that we are able to arrive at correct decisions about methods of 
achieving our goals and the conditions that should hold before acting. It is through 
this use of intentions that people are capable of making decisions about actions with 
the "correct" results in variety of situations presented by the world every day. 

Thesis Statement 

Specifically this proposal argues for two points: 

1.)  Preconditions have been used in  existing systems to encode situation.-dependent 
information about actions. Thus, preconditions limit the eflective application of in- 
tentions to the means-ends reasoning involved in the planning process. In order for a 
planner to give intentions their correct role in the planning process, preconditions, as 
previously conceived, must be eliminated from action representatioizs. 

2.) By explicitly representing positive and negative intentions and using situated 
intentional reasoning and robust failure mechanisms, preconditions can be replaced 
without reintroducing the problems associated with them. 

To establish these claims, this paper will consider various definitions for precondi- 
tions and show the problems associated with each of them. To validate these claims, 
this paper will present a planner based on these arguments called the Intentional 
Planning System (ItPlanS), and outline how the system functions. 



1.2 Outline of Proposal 

Chapter 2 will present a general definition for preconditions. After pointing out 
inadequacies in other definitions, I will show how even this general definition of pre- 
conditions has a fundamental flaw. Chapter 3 of this paper will be devoted to defining 
the terms necessary for the my proposed solution to this problem. Chapter 4 will then 
discuss how intentions, situated reasoning and robust failure mechanisms can be used 
to overcome the problems that preconditions pose. 

Chapter 5 will describe the Intentional Planning System (ItPlanS) as a function- 
ing instantiation of the ideas outlined in Chapter 4, including a discussion of the 
data structures used and an outline of the system algorithm. Chapter 6 will discuss 
the similarities and differences between ItPlanS and other existing systems. Finally, 
conclusions and directions for proposed future work will be covered in Chapter 7. 



Chapter 2 

Preconditions and Their Problems 

The thesis of this work is that preconditions limit the effective application of intentions 
to the planning process. In this chapter I will discuss a definition for preconditions 
and argue for its coverage. I will then discuss how other system's definitions are 
subsumed by this definition, and finally, explain how even this general formulation of 
preconditions interferes with the planning process. 

2.1 Definition 

The definition of preconditions I will use was first put forward by Pollack [23]. She 
defines preconditions in terms of Goldman's generation relation. In the following 
section, I will define the generation relation, present Pollack's arguments about the 
definition of preconditions, and show how her definition subsumes other definitions 
and uses. 

2.1.1 Defining Terms: Goldman and Pollack 

In his work, Goldman [14] defined a relation called the generation relation. This 
relationship holds between two actions when the occurrence of one constitutes an 
occurrence of the other. For example, the action "John moved his queen to king- 
knight-seven" generates "John checkmated his opponent" [14, page 401. The followi~lg 
is Goldman's original definition for genera.tion. 

Act-token a level-generates act-token P if and only if 

1. a and ,B are distinct act-tokens of the same agent tha,t are not on the 
same level; 

2. neither a nor ,B is subsequent to the other; neither a nor ,B is a 
temporal part of the other; and a and ,B are not co-temporal; 



3. there is a set of conditions C such that 

(a) the conjunction of a and C entails p, but neither a nor C alone 
entails p; 

(b) if the agent had not done a, then he would not have done ,B 
(c) if C had not obtained, then even though G did a, he would not 

have done p .  [14, page 431 

While Goldman describes multiple types of generation, these distinctions will not 
be relevant here. Therefore, in the following discussion, I will use the term generation 
rather than level-generation or any of their more specific types of generation. 

Pollack formalized Goldman's definition using predicates defined by Allen [3]. To 
represent the fact that a given predicate holds at a given time she uses the H O L D S  
predicate, and to represent that an action occurs, the OCCURS predicate. Thus 
Pollack formalizes Goldman's definition of generation as the CGEN relation with 
the following definition: 

CGEN((r ,  p, C) - 
'V'GVtl[[HOLDS(C, t i )  A OCCURS(a ,  G, t l ) ]  -+ OCCURS(P,  G, t l )]  r\ 
3G 3t2[OCCURS(a ,  G, t2)  A l O C C U R S ( P ,  G, t2)]  A 

3G%[HOLDS(C, t3) A l O C C U R S ( P ,  G, t3)] [23, page 511 

where a and ,O are actions, G is an agent, C represents the generation conditions, and 
tl  and t2  are times. 

Pollack then defines a predicate EXEC, in terms of Goldman's basic actions and 
standard conditions for actions. (A complete definition for this predicate can be found 
in 1231.) It is sufficient to  know that the E X E C  relation defines those conditions in 
which an agent is physically able to perform some action. Thus, EXEC(a, G',t) is 
true if and only if there are no external forces which would prevent agent G' from 
performing action a at time t .  

Using these definitions, Pollack defines the relationship between preconditions and 
actions. Consider a generic action represented by a header ( P ) ,  a body (a); and a 
precondition formula C .  Pollack defines C as a set of preconditions on performing P by 
doing a if and only if they allow cr to generate ,# and they guarantee the executability 
of a. Thus, the precondition relation is defined in the following way. 

P R E C O N D ( C ,  P, a) - C G E N ( a ,  P, C) A [HOLDS(C, t )  -+ 'dG EXEC(cr ,  G, t ) ]  

That is, preconditions are those conditions that allow the execution of the action 
a to generate an occurrence of p and are also sufficient to guarantee that there is no 
physical impediment to the execution of a. For the rest of this paper, I will refer to 



conditions that allow an action to generate another action as generation conditions 
and those conditions that guarantee that an action is executable, as executability 
conditions. 

As Pollack argues, it is not possible to use either clause alone for a definition. If the 
conditions C were only the generation conditions then they would not guarantee the 
executability of cu and hence would not guarantee the generation of P. Conversely, if 
the conditions merely guaranteed the executability of a there would be no guarantee 
that the performance of a would generate P. Thus, according to Pollack, neither of 
these conditions alone are enough. Only the conjunction will suffice. 

2.1.2 Existing System Definitions of Preconditions 

As Pollack observes, "much of the existing planning literature has been vague about 
the intended interpretation of action operators, and has used them at  different times to 
mean different things." [23, page 741 Therefore, in the following section I will consider 
some of the existing system definitions, show how they are inadequate, and then show 
how preconditions taken from these same systems fit within Pollack's definition. 

STRIPS style 

Preconditions are "...the conditions under which the operator[action] is applicable." [ l o ,  
page 1921. This sentence, or one very much like it ,  appears as the definition for precon- 
ditions in many planning systems [ lo ,  20, 25, 331. Using this definition, preconditions 
define those states from which the given action can be taken. That is to say, unless 
the preconditions are met the action cannot even be attempted. As Lifschitz [20] 
formalizes this definition, an action/operator is only defined for those states in which 
the preconditions are true. This definition is obviously inadeqmte. 

As Hanks points out, this definition "... confuses the notion of an action being 
meaningful or conceivable with the notion of an action's achieving its intended ef- 
fect." [16, page 1591 Looking at the example of picking up blocks, not only can the 
action of picking up a block be attempted in cases where the preconditions are not 
satisfied, but they can also be successfully executed in these cases. 

While this definition for preconditions is obvious lacking, it is interesting to notice 
that STRIPS preconditions fall under the definition given by Pollack. For example, 
consider the following operator from [22, page 2811 

preconditions: ontable(x) , clear (x), handempty 

delete list: ontable(x), clear(>;), handempty 

add list: holding(x) 



All three of the preconditions given for this operator are clearly conditions under 
which a pickup would be generated by the unspecified series of subactions that make 
up the body of this action. 

ABSTRIPS 

ABSTRIPS is an interesting system in terms of its preconditions. While the defi- 
nition for preconditions follows STRIPS and the actual preconditions again fall into 
the categories Pollack describes, ABSTRIPS is one of the few systems to encode ex- 
ecutability conditions. Consider the following set of preconditions for an action to 
push an object (bx) to another object (by). 

TYPE(by,object) ,PUSHABLE(bx), 

NEXTTO(ROBOT,bx), 3 rx [INROOM(bx,rx) A 

INROOM(by,rx) A INROOM(ROBOT,rx)] [25, page 1251 

In this case, the precondition PTJSHABLE(bx) is a.n executa.bility condition. This 
is in sharp contrast with the majority of systems which assume that the agent is 
universally able to perform its actions. For example, [15, 21, 31, 331 don't encode the 
conditions under which the action is executable but rather only those conditions that 
generate the action. 

Applicability Conditions 

In his work on NONLIN [30], Tate has defined what he refers to as usewhen conditions. 
These conditions correspond to what Georgeff has referred to as triggering conditions 
or what have been referred to by Schoppers as applicability conditions. Tate defines 
them by saying "Conditions may be stated which must hold before this expert[a,ction] 
can be called into use at  all." [30, page 2931. This definition differs little from the 
one specified in STRIPS; however, if the operational semantics of the condition is 
examined, differences between these conditions and standard STRIPS preconditions 
can be seen. 

In NONLIN, the agent does not attempt to make usewhen conditions true before 
using the action. If the conditions are not true, then the action is considered in- 
appropriate or not applicable. For example, a usewhen condition on the action of 
unplugging an object, would be that the object be plugged in to begin with. 

I believe that an action's applicability to a situation is determined by its possible 
results. If its execution may satisfy the agent's intentions or goals, then it is appli- 
cable. If it does not satisfy the agent's current intention, then it is not applicable. 
For this reason, these conditions will be ignored in the following work. Interestingly 
however, these conditions are still subsumed by Pollack's definition within the exe- 
cutability conditions. For example, the PUSH ABLE condition from the last example 
might be considered to be an applicability condition. 



2.2 The Problem with Preconditions 

Even Pollack's definition for preconditions has a problem. Her definition assumes 
that the agent's goal is the successful performance of the action given in the header. 
However, if as suggested in the previous section, an action is considered relevant if 
its effects achieve the agent's goals, this assumption is unwarranted. 

For example, consider the following hypothetical action. 

Header: unstack(X,Y) 

Preconditions: P 

Body: moveto(>[) , grasp(X) , lift (X) , moveto(table), release()() 

Effects: on(X,table), handempty, clear(Y) 

Assume that the precondition is some set of conditions that falls within Pollack's 
definition. One of the effects of this action is that X is no longer on Y, but this is 
not the action's only effect. Another effect is that Y is clear, and this effect can be 
achieved even if "unstack" is not completed successfully. 

Thus, if an agent were using an unstack action in order to clea,r some object, 
the given preconditions would be misleading, since they are based on the assumption 
that the complete unstack operation needs to be performed successfully. If we assuille 
that Y is cleared after the lift action, then the find two subactions of the unstack 
operation can succeed or fail. Their success or failure makes no difference for the 
agent's goal, and therefore, the preconditions that have to do with these last two 
actions can be eliminated. This simple example demonstrates that the preconditions 
of any action are dependent on the goal the action is being used to satisfy, which may 
and or may not be specified by the header. Thus, a usage-independent determination 
of preconditions is impossible. 

One might question why an agent would choose to use an unstack action to clear 
a block, especially since the agent must be able to accomplish the relevant series 
of subactions. There are a number of reasons for such a choice. First and most 
obviously, this action might be the only single action the planner has at its disposal 
that accomplishes the task. Second, the planner might not be aware that a sequence 
of actions would have the desired effect. For example, in this case the planner lnight 
not be aware that simply grasping the object and lifting would achieve its goals. 

Finally, and perhaps most relevant to this thesis, an agent might be using an 
action to accomplish more than one intention. For example, suppose an agent has 
three goals: clearing a block, having the robot's hand at table level, and having 
the robot's hand empty. While a successful unstack action will accomplish all three 
of these tasks, it is not necessary that ea.ch of the unstack actions subactions be 
successful in order to achieve all of these goals: the block might slip out of the robot's 
hand and break. However, since this is unrelated to the system's goals, preconditions 
that would prevent it would not need to be enforced before ta.king the action. 



In summary, the preconditions of an action depend crucially on the environment in 
which the action is undertaken and the goals it is invoked to achieve. There is no way 
in which this context sensitivity can be eliminated. Therefore, a principled treatment 
of intentions in means-ends reasoning in planning, requires that preconditions be 
eliminated from action representation and replaced by situated intentional reasoning 
to derive those conditions that are significant. 



Chapter 3 

Defining Intent ions 

I have proposed that preconditions should be replaced by "explicit representation of 
intentions and situated intentional reasoning." In this chapter I will define what I 
mean by intention. This definition is not intended to be a complete, for~nal definition, 
but rather it will ground the term for discussion so that an operational semantics 
can be designed. For more formal treatments of these issues the reader is referred 
to  [4, 6, 7, 231. I will follow Bratman [4] in defining intentions as a separate and 
identifiable mental state. This can be contrasted with the belief/desire model of 
intentions [8, 171, in which intentions are not atomic, but are composed out of beliefs 
and desires. 

Unlike Bratman, who uniformly uses the term "intention" to denote any colnnlit- 
ment toward an action (positive or negative), I have found it helpful to define threc 
possible intentional states: positive, negative, and unintended. These distinctions 
should be seen as classifying intentions on the basis of how they control behavior 
rather than separating different kinds of intentions. A brief mention of how these 
intentions control behavior will be made here, and a more thorough treatment can be 
found in Chapters 4 and 5 .  

Positive Intent ions 

The definition of positive intentions is captured in the the cornmon use of the word 
u .  intend" in sentences such as, "I intend to go to the store." or "I intend to eat lunch." 
A positive in ten t ion  is a commitment by an agent to perform an action at a specific 
time. Thus, if an agent intends to perform some action, then assulning that it still 
has that intention when the time for action arrives, it will perform that act. 

There is some confusion concerning agents intending st,at,es or intending "situa,- 
tions." As mentioned above, intentions are attitudes taken toward actions; therefore, 
it is impossible for an agent to directly intend a sta,te. However, it is possible for an 
agent to intend to act in a way that will bring about a state. Thus, the .agent intends 



to  perform an unspecified action that will cause the desired state. Notice however, 
the agent's commitment is still to the action, not the state. 

This kind of goal-directed intention does not imply that there exists an action tha,t 
will cause the goal to be true or that the agent would intend such an action if it does 
exist. For example, an agent can intend to "become rich." According to our definition 
of intending a state this would translate into the agent intending to perform some 
action that will cause the agent to be rich. However, there may not exist any action 
with this result. An agent can, therefore, intend to achieve a state that it has no way 
of achieving. This problem is not new; see [6] for further discussion. 

Negative Intent ions 

In contrast to positive intentions, negative intentions describe those actions an agent is 
committed to NOT executing. Thus, negative intentions allow the agent to specifically 
eliminate certain actions from deliberation. However, it is not intuitively obvious what 
the agent is committed to when its only commitment is to NOT act in a specified 
manner. In fact, negative intentions tell us nothing about what the agent WILL do; 
instead they enumerate those actions that the agent is committed to not performing. 

As with positive intentions, the commitment an agent makes when forming a neg- 
ative intention is to an action. Therefore, it is impossible for an agent to directly 
negatively intend a state. However, as with positive intentions, it is possible for an 
agent to negatively intend any action it believes will causes a particular state. 

Thus, in negatively intending a state, the agent intends to not perform any action 
it believes will cause the state. This gives negative intentions considerable power. For 
example, a typical negative intention might be BROKEN(obj1) where objl is a 
variable. Having this as a negative intention would prevent an agent from performing 
any action it believes would result in any object (that can be bound to objl)  being 
broken. 

Notice that again the negatively intending a state does not commit to the existence 
of an action that achieves the goal. Therefore, as with positive intentions, negative 
intentions do not commit to the existence of such an action, but merely prevent the 
agent from taking it if it exists. 

Preventive Action 

The given definition of negative intention must be distinguished from another stronger 
possible definition. Negatively intending a state could be defined as requiring tha,t 
the agent intends that the world not be in the specified state at the given time. The 
principal difference between the two is in the strength of the commitment made by 
the agent. In the original definition, the agent is committed to not performing an 
action that will cause the state, while the second commits the agent to not allowing 



ANY AGENT (animate or inanimate) to cause the state. 

In short, the second definition licenses preventive action on the part of the agent, 
while the first does not. Since this work assumes that the agent in question is never 
the only agent of change in the world, agents will engage in action to prevent inter- 
ference by inanimate forces. However, the issues raised by having an agent engage 
in behaviors designed to prevent interference by intelligent agents is well beyond the 
scope of this work. Therefore, in this work the first definition has been adopted. 

Unintended Act ions 

For the purposes of this work, all actions or classes of actions that are not specifically 
positively or negatively intended are said to be unintended. As we will see, an action 
may start out being unintended; however, if the action is added to  a plan, the agent 
positively intends that action until the action is removed from the plan. 



Chapter 4 

Solutions to the Problems of 
Preconditions 

Chapter 2 described the problem associated with the use of preconditions in action 
representation. However, since preconditions do perform important functions, it is 
not sufficient to simply eliminate them; their function must be replaced. In this 
chapter, I will show how the use of explicit representation of intentions, situated 
reasoning, and robust failure mechanisms can replace preconditions without encoding 
situation-specific information. 

4.1 Explicit Represent at ion of Intentions 

Almost all planning systems use an explicit representation of the system's goals. As 
a result, these systems are already representing some of their positive state-based 
intentions. This explicit representation of intentions must be extended to include 
positive intentions about actions and negative intentions as well. 

While the benefits of extending the explicit representation of positive intentions to 
include intentions toward specific actions are obvious, the benefits of explicit repre- 
sentation of negative intentions are unclear. I will show that negative intentions are 
required for an agent to determine if an action has been successful. 

It is my position that there should be no pre-defined goad tha.t an action is designed 
to achieve. Unlike [ll] and [33], an agent should be able to use an action to achieve 
any state that results from its execution. Thus, the success of an a.ction must now be a 
function of an agent's positive and negative intentions. As a result, an a,gent's negative 
intentions must be explicitly represented. By examining its positive intentions, an 
agent can determine if an action has achieved its intended effect, and by examining 
its negative intentions, the agent can check for undesired effects. Notice that if the 
desired and undesired effects of an action are defined relative to the intentions of the 
agent, they are situation-dependent. Since an action may be called upon to achieve 



very different intentions in different situations, this is exactly the desired result. 

Finally, since positive and negative intentions serve to define the desired and un- 
desired effects of an action, they will also be of primary importance in performing 
the situated reasoning necessary for the selection of actions. Thus, they are necessary 
not only to determine the success or failure of an action, but also to  determine which 
actions should be taken. 

4.2 Situated Reasoning 

An argument has been put forward in Chapter 2 for the use of situated reasoning. I 
will use this term to denote reasoning about the effects of performing an action in 
a given world state. This kind of reasoning is integral to the process of determining 
appropriate actions. This section will discuss different kinds of reasoning about the 
effects of action, show why this reasoning requires being situated in a world state, 
and demonstrate how it may be used to select actions. 

As we have seen, agents must consider their intentions in order to make decisions 
about the desirability of a given action in a given situation. However, this is not the 
only situational piece of information needed for reasoning about the effects of actions. 
Often an agent's own memory will be an important factor in a-dopting intentions to 
act. Frequently the only evidence an agent has of performing an action is its memory. 
For example, it is unlikely that there will be any physical evidence of jumping into the 
air. Therefore, the only way in which the agent could be aware that it had satisfied 
an intention of this kind would be to consult its memory. 

Accurate reasoning about the results of action also requires the reasoner to perform 
physical simulation of the action. Since the reasoning must remain as close to the 
actual world as possible, the agent must consider, not an idealized model, but rather 
a specific, accurate model of the actual objects. Since maintaining a model of the 
entire world with the requisite detail would be impossible, this reasoning cannot be 
performed on a complete model. When models of the world a.re required for the 
reasoning, they must be small and tailored to the action and situation in question. 

This kind of detailed reasoning about the results of actions can be used for two 
purposes in a planning system. First, action reasoning can be done to prevent violat- 
ing negative intentions; before the agent carries out an action, it can reason to ensure 
that the action will not violate one of its negative intentions. In short, an agent can 
use its positive intentions to select a possible action and then reason about the results 
of the action, given the current world state, to verify that the positive intentions of 
the agent are achieved and that none of the negative intentions are violated. 

Second, an agent can use small tailored models of the world to reason about achiev- 
ing multiple intentions. Any pair of intentions may interact in several ways. Rational 
agents should be able to  identify and utilize positive interactions between the methods 
of achieving their intentions. For example, an agent should, when possible, choose 



methods of achieving current intentions that accomplish parts of future intentions. 
An agent must also be able to realize and deal with conflicts between negative and 
positive intentions. For example, if an agent has only one way of achieving a given 
intention and that method violates one of the agent's negative intentions, a rational 
agent needs to recognize this conflict and attempt to avoid it. Conflicts can also 
occur between two positive intentions, as for example, in the well known Sussinan 
anomaly [29]. 

While these conflicts might be foreseen outside of the situated environment, it may 
be too costly to consider all of the possible interactions that might occur at  run-time. 
Many of these conflicts will not, in fact, come into being. A given intention may be 
satisfied by other agents, or the agent may be forced to drop one of its intentions. 
Thus, for many of the same reasons that it is unrealistic to  create complete plans 
before engaging the actual world, it is undesirable to plan for all of the possible con- 
flicts between intentions outside of the situation in which they occur. It is preferable 
to spend only those resources necessary to resolve the intera.ctions that arise in the 
course of action with situated reasoning. 

Robust Failure Mechanisms 

Before discussing failure mechanisms, I must define what it means for an action to 
fail in this context. Since the goal of any action is to achieve a specific intention, a 
failed action is defined as an action that, when actually performed, does not achieve 
its intended goal. It does not matter if the action was performed correctly but failed 
to have the intended effect or if the action was performed incorrectly; both cases 
are action failures. Thus, action failure can only be detected after the action has 
been performed. Notice that an action has not failed if it achieves its intention and 
violates a negative intention. This situation is undesirable but not considered an 
action failure. 

Now a brief word must be said about why failure mechanisms should be considered 
as an important part of a replacement for preconditions. Since I have taken the po- 
sition that actions do not have pre-defined goals and preconditions must be removed 
from action representations, the definition of an action no longer prevents its use at 
inappropriate times. An agent can now attempt any action at  any time. Unfortu- 
nately, most actions will not achieve their desired goals in every possible world, and 
many actions will have nonobvious reasons for failure. It would be unreasonable to 
expect that a situated reasoner would be able to foresee all of these conditions before 
the action is taken. In fact, in the system I describe in Chapter 5 ,  after the agent 
has committed to performing an action, no attempt is made to derive possible causes 
of failure, before the action is undertaken. Only when the action fails to achieve the 
intended effect are causes of failure searched for. Therefore, more than other plan- 
ning formulations, a system based on these principles will have to confront the issue 
of action failure. 



Given the likelihood of an action's failure, there are two possible courses of action 
an agent might take. First, the agent might determine that the plan it was using 
was incorrect. In such a case, the agent would re-plan how to achieve the goal it was 
pursuing. Second, rather than re-planning, the agent might eliminate the condition 
that caused the action to fail. The difference is quite simple; in the case of re-planning, 
the planner abandons its previous plan in favor of a new method. In action repair, 
on the other hand, the planner takes on a new goal, namely eliminating conditions 
that prevent the successful performance of the action. 

Re-planning is a special case of the general planning problem. Once the agent has 
determined that an action is not achieving its intended effect, it can reconsider its 
method of achieving the goal. Since situated reasoning must involve the agent's 
memory, the agent will be aware that the first method failed to have the desired 
result and can choose another method. 

The more significant issue in re-planning is to determine when it is more profitable 
for the agent to discard the existing plan and start again. There are a number of 
relevant factors: the amount of planning already accomplished, the desirability of 
side effects of the original plan, and the number of completed actions in the plan. In 
the end, the question is complex and largely subjective; I will not attempt to answer 
it here. 

4.3.2 Action Repair 

In action repair, unlike re-planning, the method for achieving the goal is not altered, 
but rather, the agent acts to alter the world state so that the condition preventing the 
successful execution of the action is removed. Then the action is retried. A typical 
example of such a condition would be a potato in the tail pipe of a car preventing 
the car from starting.' In general the agent would simply attempt to start the car. 
However, when turning the key fails, the agent does not have another plan to start 
the car. Therefore, it must find the problem with the existing plan and eliminate it 
(in this case the potato). 

A general, robust, information-independent strategy for the process of identifying 
conditions of this type is desirable. Unfortunately, the only general strategy for this 
problem is to appeal to someone who knows more about the failure than you do. 
Notice however, that people do not spend all da.y asking other people to solve t,heir 
problems for them. In fact, for the vast majority of the action failures, once a person 
realizes the action is failing, they correct the problem causing the failure and resume 

'While the example is the same as that used by McCarthy in his work on circumscription, this 
treatment has nothing to do with circumscription. 



the action. In fact, they may correct several "errors" before eliminating the actual 
cause of the problem. 

Despite the varied and often difficult domains in which problems occur, people are 
able to solve them, because they have, as Hammond [15] points out, information about 
the causes of previous failures. By remembering these causes and their solutions, an 
agent will know more the next time a similar failure occurs. Simply put, if an agent 
is familiar with the common problems in starting a car (and their solutions), and if a 
car doesn't start, then the agent may be able to solve the problem. 

This provides a domain-independent, robust action repair mechanism. However, 
this mechanism is not knowledge-independent. In fact, it is not only knowledge- 
dependent but knowledge-intensive. The agent must know those conditions that are 
likely to cause an action to fail, and how to correct them. Only if the agent has both 
of these pieces of information, will it be able to recover from the failure of an action. 

There is an obvious question to be asked. If the agent has this list of possible 
causes of failure, why not check this list before the action is taken? There are a 
number of reasons. First, these are conditions are possible causes of failure, not 
definite causes. This means that, even if the condition is true, the action may still 
succeed. For example, the car may start and the potato may be blown out of the 
tail pipe. Second, the list of possible causes of failure may be quite long (possibly 
infinite). If an agent were to check all of the possible reasons for a car not to start, 
the agent might never manage to start the car. Therefore, while an agent must have 
this information, it only need consult it after the action has failed. 

Both re-planning and action repair a.re required for any planning system that 
attempts to operate in real domains. In Chapter 6, more contrast will be drawn 
between re-planning and action repair, and some perspective will also be given on 
other solutions to these problems. All of these methods will be used in the system 
that will be described in the next chapter. 



Chapter 5 

ItPlanS 

The Intentional Planning System (ItPlanS) embodies the ideas put forth in the pre- 
vious chapters. It uses no preconditions in its action representations. Due to this 
absence, ItPlanS cannot use traditional backchaining methods. Therefore, it is de- 
signed as a hierarchical planner, and in many ways resembles other hierarchical plan- 
ners [ll, 13, 21, 251. 

ItPlanS starts by creating an intentional structure to represent the agent's commit- 
ments to act. It is through the expansion of these intentions that planning takes place 
and more intentional commitments are made by the agent. However, this expansion 
only takes place to the degree required for the agent to begin to act. This chapter 
will explain the functioning of the system by describing various system specific data 
structures, followed by a detailed description of the system's algorithm. Chapter 6 
will then compare the system with other existing planners. 

As a side note, ItPlanS has been used in two different domains: a blocks-world 
in which the agent has two effectors and a human task domain in the AnimNL 
project [32] at  the University of Pennsylvania. Since the blocks world is a, simple 
domain to understand, most of the exa,mples used in this chapter are taken from tlmt 
domain. 

5.1 Intention Data Structures 

Before beginning a detailed discussion of the planner's algorithm, it is necessary to 
describe the data structures used to implement various parts of the theory. ItPlanS 
has two kinds of intentions, positive and negative, and since they are used in different 
ways, they are represented in separate data structures. 



5.1.1 Negative Intentions 

Negative intentions are represented as a list of actions and goals, which represent the 
actions the agent is committed to not performing and the states it is committed to 
avoid. Since the commitment to negative intentions is not order-dependent, a list is 
a sufficient data structure for them. In processing, the system will merely need to 
know if any of the negative intentions might be violated by performing an action. 

5.1.2 Positive Intent ions 

In contrast to the simple data structure of the negative intentions, the data structure 
required for positive intentions is quite complex. The system's representation begins 
with the assumption that the intentions given it are completely temporally ordered. 
The order is assumed to be significant and fixed. Note the system will not deal with 
non-specific meta-intentions. For example, the system can not handle an intention to 
"be careful." 

Within the intention list, each intention is represented by a five-tuple that contains: 
the intention itself, a unique identifier, an indicator of the type of intention it is 
(maintained or achievement), a number representing the expansion of the action being 
used to satisfy the intention (actions can have multiple possible expansions), and the 
actual action being used to satisfy the intention. Each action is made up of three 
parts: an action, a unique identifier, and a possibly empty list of sub-intentions. 
Obviously this structure is highly recursive. Example 1 represents an intention to 
achieve on(a,b), by performing a stack operation: 

Ex. 1 intend(on(a,b), 3, maint, 1, action(stack(a,b), 4,  [intend(...), intend(...)...])) 

The roles of the first and second arguments in this structure are obvious. The 
third argument reflects the fact that ItPlanS distinguishes between two "types" of 
positive intentions: maintained (maint) and achievement (ach). When ItPlanS wa.s 
first constructed, all intentions were of the achievement variety. However, there are 
often conditions that,  once achieved, should hold throughout the performance of the 
rest of an action, for example, holding an object while carrying it to another location. 
If when traveling, the agent loses control of the object, the agent should stop and 
regain control before continuing. Maintained intentions were included in the system 
to account for these sorts of conditions. To the degree that preconditions are also 
sometimes used for this function, maintained intentions serve to replace them. 

Maintained and achievement intentions differ principally in how they are treated 
after they are accomplished. An achievement intention, once satisfied, is removed 
from the agent's intention structure. For example, suppose an agent an intention to 
jump over a small creek. This would be considered an achievement intention. Once 
the agent has jumped the creek, the intention has been achieved and the agent no 
longer considers it. It can safely be removed from the agent's intention structure. 



Figure 5.1: Simple intention decomposition of get 

Figure 5.2: Decomposition of get control intention 

On the other hand, once a maintained intention has been achieved, all of its subin- 
tentions are removed from the structure, but the intention itself is retained in the 
intention structure until its parent intention has been achieved. For example, sup- 
pose an agent has the intention to get an object and return to its original location. 

ItPlanS would break the "get" intention down into three subintentions as shown in 
Figure 5.1: going to the object, getting control of the object, and returning to the 
starting position. Let us assume that the first intention of going to the object is an 
achievement intention and that the get-control intention is a maintained intention. 

Once the agent is at the object, the intention of going to it will be removed from the 
the structure. Figure 5.2 shows the intention structure while the agent is achieving the 
get-control intention, and Figure 5.3 shows the agent's intention structure while the 
agent is returning. Notice that in Figure 5.3, while the expansion of the get-control 
intention has been removed, the intention itself is still in the structure. The agent 
still has the intention to have control of the object. This allows the agent to monitor 
the status of this intention, and if something happens to violate it, take action to 
re-achieve it. 



w alk(home) 
Figure 5.3: Intention structure when returning 

5.2 Action Representation 

Since ItPlanS is a hierarchical planner, it has two distinct types of action in its 
ontology: primitive and complex. Primitive actions are actions in the traditional 
sense. They have a physical realization; they perform some tangible operation on the 
world. They can be thought of as the system's "basic actions" [14, 231. Complex 
actions, on the other hand, perform the hierarchical decomposition of the system's 
intentions. The following sections will define each of these types of action and explain 
how the system uses them. 

5.2.1 Primitive Actions 

As noted, primitive actions are the simplest operations the system is capable of per- 
forming on the world. In the case of the blocks-world domain, I have assumed that 
a two-handed robot has six of these: RIGHTGRASP, LEFTGRASP, RIGHTRE- 
LEASE, LEFTRELEASE, RIGHTGOTO, and LEFTGOTO. The selection of these 
actions and this number is arbitrary. 

The grasp and release actions contract and release the specified effector, and thus 
they have no arguments. The goto actions, on the other hand, move the agent's 
effectors about the blocks-world, and require an argument to specify the desired 
location of the end effector at  the end of the movement. For example, the action 
LEFTGOTO(FRONT(a)) moves the left effector to the area in front of the block 
labeled "a." (See Section 5.2.3 for a description of the function FRONT.) 

Each primitive action is defined by three sets of data: possible results, result rules 
and relevant relations. A complete definition the LEFTGRASP action is shown in 
Figure 5.4. Possible results are a set of likely outcomes of performing the action and 
provide a declarative statement about what the system believes might result from a 

given action. For example, a possible result of a LEFTGRASP is INLEFTHAND(X) 



possible-result (leftgrasp, [lef tgrasp, inlefthand(-)] ) . 

result-rule(leftgrasp, [inlefthand(-)], [I, [I). 
result-rule(leftgrasp, [lefthandempty, leftat(front (X)) , leftnear(X)I , 

[inlefthand(X)] , [lefthandempty] ) . 
result-rule (leftgrasp, [I , [I , [I ) . 

relevant-relat ions(1ef tgrasp, blocks-world, [on] ) 

possible-result(rightrelease, [righthandempty, rightrelease]). 

Figure 5.4: ItPlanS definition for LEFTGRASP 

for some object X. Notice that, the possible results of an action may not occur every 
time the action does. For example, INLEFTHAND(X) is true after a LEFTGRASP 
action if, and only if, LEFTAT(FRONT(X)) and LEFTNEAR(X) were true in the 
world before the action was performed. 

Result rules describe the effects the system believes the a,ction will have in given 
situations. As noted in Chapter 4, part of the situated reasoning used to decide on 
actions is simulating the performance of the action in the current world. Result rules 
provide the information needed to perform this simulation. Each of these rules is a 
conditional effect list with three parts. The first part, the condition, is a list of predi- 
cates which, must be true in the world for the rule to be a,pplica,ble in simulating the 
action. The second part is a list of predicates that should be asserted to the sirnula,- 
tion of the world model by the action, and the third is a list of predicates that should 
be removed from the world model as a result of the action. In the previous example, 
ItPlanS has a rule that states if LEFTAT(FRONT(X)) and LEFTNEAR(X) are true 
in the world model and a LEFTGRASP is simulated, then INLEFTHAND(X) will 
be true in the model. Likewise, ItPlanS has a rule which states if INLEFTHAND(X) 
is true and a LEFTGOTO(FRONT(Y)) is performed, then block "X" is no longer 
where it was. 

Since result rules define what the system believes about the results of actions 
in the world, they may be in error. Result rules are not required to be physically 
accurate or that they be limited to those results listed in an action's possible result 
list. The only requirement is that they be complete and correct enough for the agent 
to achieve its ends. Optimally, for any action the union of the add list,s of the result 
rules should subsume the possible results for the action, but this is not required. The 
distinction between the possible results and the result rules is maintained for exactly 
this possibility. If the possible results list of an action names a result not listed in 
one of the result rules, this tells us that the system believes some predicate can result 
from an action without knowing the conditions for its production. 



possible-result(get(X), [inrighthand(X), inlefthand(X), get(X)I). 
intenti~n-mappin~(~et (X) , [leftat (front (X)) , maint , leftnear(X) ,maint , 

lef tgrasp, ach] , [inlefthand(X) , get (X) 1 , I) . 
causes-f ailure(get (,) , 1, [inlefthand(-)] ) . 

intention-mapping(get (X) , [rightat (front (X)) , maint , rightnear (X) , maint , 
rightgrasp, ach] , [inrighthand(X) , get (X)] , 2) . 

causes-f ailure (get (-) , 2, [inrighthand(-)] ) . 

Figure 5.5: ItPlanS definition for GET 

Since result rules look very much like STRIPS operators, I will explain how they are 
different. Result rules only give ItPlanS information about the results of performing 
an action in the world. Thus, all of the result rules could be replaced by a single 
'Lblack box" that predicts the next state of the world given an action and the current 
world. Result rules only allow the agent to reason about the results of taking an 
action in a given world state. They do not prohibit the use of an action or constrain 
the times or world states that an action can be taken in. Thus, the conditions in 
result rules are not preconditions for the actions, and the result rules themselves are 
not STRIPS operators. 

Finally, ItPlanS associates with each primitive a,ction a set of relevant rclation..~ 
used in the process of simulating the effects of actions in the world. These relations 
tell ItPlanS which objects in the world must be included in an appropriate world 
model for simulating the action. In Figure 5.4 the relevance relations for the leftgrasp 
specify that,  in the blocks-world, the "on" relation is releva.nt when constructing 
models for simulating leftgrasp actions. The use of these relevance relations will be 
covered in more detail in Section 5.3.2. 

The objective of primitive actions is to provide a small set of actions from which 
larger behaviors can be built. The choice of actions as primitive is domain dependent, 
as some primitives may be helpful in one domain but not in another. It is assumed 
that,  as an agent becomes more expert at a specific type of problem, they will learn 
new primitive actions to simplify the problem. Remember, primitive actions a,re the 
only actions that actually effect the state of the world; complex actions are realized 
as a series of primitive actions. 

5.2.2 Complex Actions 

As with primitive actions, ItPlanS definitions of complex actions have three parts: 
possible results, intention mappings, and causes failure conditions. A complete action 
definition for the complex action GET can be seen in Figure 5 . 5 .  The possible results 
lists of complex actions have all of the same problems and limitations as their primitive 
action counterparts. As with primitive actions they are only required to be a complete 



list of what the agent believes to be the common results of taking the complex action. 

As mentioned before, ItPlanS views the results of a complex action as the sum 
of the results of the primitive actions chosen to satisfy its subintentions. Since the 
actions taken and the world context varies from occurrence to occurrence, there is 
no way to  have complete beliefs about the results of complex actions. Thus, while 
complex actions have possible result lists, they do not have result rules. 

Complex actions can be viewed as relations from a single intention to an ordered 
set of intentions. Rather than performing a physical action, complex actions map 
from an intention to a set of subintentions that need to be achieved, in order, for 
the original intention to be achieved. This relation between an intention and its 
subintentions is defined as the intention mapping relation. In ItPlanS, this mapping 
is not required to be one to one; therefore, there can be many expansions of any given 
complex action. 

For example, in Figure 5.5, the action GET(X) can map to the list of intentions 
[LEFTAT(FRONT(X)),maint, LEFTNEAR(X) ,maint, LEFTGRASP,ach]. Remem- 
ber each of these is an intention, not an action. The first two are intentions to 
act to achieve states, as discussed in Chapter 3. Also notice tha.t each intention is 
paired with an intention types (maint or ach). If this set of intentions is achieved, 
in order, a stack action will result. However, GET(X) can also be expanded as 
[RIGHTAT(FRONT(X)),maint, RIGHTNEAR(X),maint, RIGHTGRASP,ach]. No- 
tice that,  the stack action's definition does not specify how to achieve any of these 
subintentions; any way to achieve them will be equally valid. 

There is a problem in allowing multiple decompositions for a given complex action. 
Different decompositions may have different possible results. Therefore, the intention 
mapping relation maps a complex action to an intentional decomposition and a more 
specific set of possible results. For example, GET(X) is used to achieve intentions such 
as INLEFTHAND and INRIGHTHAND. However, each of the decompositions only 
achieves one of these possible states. Therefore, it is important that the intention 
mapping return the more specific expected results so that ItPlanS can choose the 
correct expansion. It would be irrational of the agent to attempt to satisfy the 
intention of having a block in its right hand by picking up the block with its left 
hand. 

The third piece of information used to define a complex action is a set of possible 
failure conditions. These are defined in the system as causes failure conditions. For 
each decomposition of each complex action, there is a set of possible causes of failure 
that is only examined if action has failed. Causes failure conditions are part of 
the information ItPlanS needs to perform action repairs as discussed in Chapter 4. 
Section 5.3.4 will discuss action repair in ItPlanS and the use of these conditions in 
more detail. 

At this point, I will repeat that none of the actions has any form of preconditions. 
Any action can be undertaken a.t any time and at any condition of the world. Of 
course, it will often be the case that, the action will not have the expected outcome or 



will fail if taken randomly; however, this does not preclude the agent from attempting 
to performing the action. 

5.2.3 Specifying Locations 

In order to  provide a uniform treatment of block stacking to arbitrary heights in the 
blocks-world, it is necessary to represent space. To this end, I have defined a number 
of functions from objects in the world to  areas of space around them. This treatment 
is not intended to be complete or rigorous, nor is it a substantive part of this work. 
It is a tool to solve some of the problems of designating locations in the blocks-world 
domain and nothing more. 

The functions I defined are suggested by the English prepositions LEFT, RIGHT, 
FRONT, BACK, OVER, UNDER. These functions map from the argument/object to 
the spatial area described. For example, the action RIGHTGOTO(LEFT(b)) would 
move the right end effector to some arbitrary location to the left of block "b." 

System Algorithm 

ItPlanS's basic system algorithm is designed to find the next action to be executed. 
In this respect, it is very similar to NASL [21]. However, since ItPlanS is planning 
in the agent's space of intentions, the algorithm is a two-step process. First, 1tPla.nS 
finds its next unsatisfied intention. Then it decides on an appropriate action, by 
expanding the intention until a primitive action is found that can be executed. The 
following pseudo-code may help the reader get an overview of the system algorithm. 

WHILE NOT (DONE) 
TRAVERSE(pos-intentions, next); sets NEXT to the next unsatisfied 

; positive intention. 
EXPAND(pos-intentions, next, act ion) ; expands NEXT until it can be 

; satisfied by a primitive ACTION 
S I M U L A T E ( ~ C ~ ~ O ~ ,  conflict) ; simulate action, noting conflicts 
IF NOT(conf1ict); no conflict with the negative intentions 

THEN EXECUTE(action); 
ELSE RESOLVE(conf1ict); 

END WHILE 

Note that conflict resolution will lead to further intention expansion. Thus, each time 
the body of the WHILE loop executes, an action is produced. The following sections 
will discuss the algorithm in detail and explain how the system deals with failure. 



rightgrasp 

Figure 5.6: Intention structure before traversal a.nd pruning 

5.3.1 Intention Traversal 

The structure used for representing the agent's intentions can be thought of as a forest 
of intention trees. Therefore the process of finding the first unsatisfied intention is a 
left to  right, pre-order traversal of these intention trees. This traversal process also 
includes pruning satisfied intentions from the structure. This might best be seen in 
an example. Consider Figure 5.6. The agent's highest level intentions are the top 
three intentions shown: ON(a,b), ON(c,d), and ON(e,f). 

Notice that,  ON(a,b) and INRIGHTHAND(c) are already true in the world. As the 
agent begins to  traverse its intentions from left to right, it first checks the world to see 
if ON(a,b) is true in the world. Since it is both true and a maintained intention, and its 
children have been pruned off, no action is taken and the search continues to  the next 
intention. The agent now considers the intention ON(c,d). By checking the world, 
the agent realizes that it is not true. Since an expansion of this intention exists in 
the structure, the traversal process descends into this expansioi~ and begins the same 
left to right traversal of its children. Checking the intention INRIGHTHAND(c), the 
agent verifies that this is true in the world. Since INRIGHTHAND(c) is a maintained 
intention and has been achieved, it will be left in t.he structure, but its deconlpositio~i 
will be deleted. This results in an intention structure shown in Figure 5.7. 



Figure 5.7: Intention structure after traversal and pruning 

Having pruned the children of INRIGHTHAND(c), the agent next examines the 
intention RIGHTHANDOVER(d) and notices that this intention is not satisfied in 
the current world. Since this intention has no expansion in the structure, the traversal 
process ends giving RIGHTHANDOVER(d) to the intention expansion process.1 

Notice that in looking for the first unsatisfied intention at  each level of decompo- 
sition, ItPlanS is constantly reacting to the actual state of the world and to what it 
remembers performing, so that if an accident has occurred and the last action per- 
formed did not have the consequences the agent expected or if an earlier maintained 
intention has been invalidated, the agent can correct it immediately. 

5.3.2 Intention Expansion 

Having found the next positive intention to be satisfied by the agent, the algorithm 
enters the expansion phase. First, the algorithm searches the possible result lists of 
the primitive actions for an action that will satisfy the given intention. 

Primitive Actions 

If a primitive action will satisfy its intention, the system creates a minimal model of 
the world in which to simulate the action. This process uses the agent's result I-ules 
and knowledge of relevant relations in the following manner; first, the result rule, thai 
will be applied in the simulation is selected. The objects listed in the condition of 
the rule are designated as "core" objects in the model, and the transitive closure of 

'The complexity of the traversal portion of the algorithm is reassuringly small. The forest of 
intention trees can be made into is a single tree by creating an unsatisfiable root intenti011 and 
making the system's intentions children of this root. The traversal algorithm's complexity is then 
only O(lclogk n), where k is the branching factor of the expansions and n is the number of nodes in 
a complete expansion of all of the intention trees. 



the relevant relations over these core objects is taken to derive the salient objects for 
the model. 

For example, suppose while planning in a blocks-world, the agent wanted to move 
a block that was the base of a four block tower. The selected result rule would place 
in the set of core objects the block to be moved and the block on top of it. However, 
this would leave out the two other blocks in the tower. Since the "on" relation is 
contained in the relevance relations for the move action, the other two blocks would 
be placed in the model for this action. 

Having created the model, the result rule is then applied. By adding and deleting 
propositions as appropriate, a small model of part of the world after the action is 
taken is produced. If the resulting world model does not violate of any of the negative 
intentions of the agent, the action is considered acceptable and is carried out. Notice 
that,  since the result rules are not required to be complete, this simulation may not 
produce all of the results that taking the action in the real world will produce, but 
this is to be expected. Human agents often do not foresee all of the results of their 
actions. Also, notice that a new model is created from the actual world state for each 
action. Therefore, there is no model maintenance cost for the planner, and there is 
no difficulty in keeping the model consistent with the actual state of the world. 

Complex Actioils 

If no primitive action can be found that will satisfy the next intention, ItPlanS con- 
siders complex actions. Searching the possible result lists of each action, It PlanS 
attempts to find a complex action that will satisfy its intention. If there are multiple 
complex actions that will suffice (or even multiple expansions of a single action) It- 
PlanS must decide among them. There are a number of factors to consider: ease of 
action, number of already achieved subintentions, the amount of reasoning required, 
and agent preferences. Thus, in general, the question of determining which expansion 
to use for a given intention is not easily answered. To make these decisions, ItPlanS 
has at  its disposal, its immediate sensor data, its current positive intention structure, 
its negative intentions, all of its knowledge about actions, and the complete history of 
its actions to this point. Thus, it could use very complex selection methods requiring 
some, or all, of these resources. 

However, the goal of this work is to give intentions their proper role in planning. 
Therefore, I have only implemented a few of the possible decision procedures that 
could be used to select an action expansion. Specifically, I have implemented some 
of the decision procedures that focus on the use of the intentional structure and the 
agent's knowledge of actions. Currently, ItPlanS first checks to see if there is an 
expansion for the action for which some of the intentions are already satisfied. If 
possible, this expansion is chosen since it will require less work to achieve. 

The system also considers the possibility that a given expansion for the current 
intention may have an unintended effect that achieves part of a decomposition of 



the next intention. For example, suppose a block-crushing action is added to the 
blocks-world agent's repertoire, and this action can only be done with the right hand. 
Further suppose that the agent is left-handed, preferring to pick blocks up with its 
left hand. Now, if the agent has the intention to pick up a block, it will perform 
that task with its left hand. If the agent has the intention of crushing a block, it 
will pick the block up in its right hand and crush it. Now suppose, the agent has 
two separate intentions, first to get a block and then to crush that block. The agent 
should, knowing that it will crush the block, choose to satisfy the get intention with 
its right hand rather than its left. This will simplify the total set. This is exactly 
what ItPlanS does. 

The system finally considers the possible overlap of the achievement of this in- 
tention with the next intention to be achieved. That is to say, the system looks act 
the next intention to be achieved and decides if there is a possible expansion of this 
next intention such that the expansion of the current action and the expansion of the 
next action both include the same subintention. Pollack [24] has referred to this kind 
of overlapping of intentional achievement as overloading intentions. The difference 
between this case and the previous case can be seen in the following way. I11 the pre- 
vious case, the achievement of the first expansion has as an unintended effect, namely 
the achievement of one of the intentions of the second. In intention overloading, the 
expansions actually share a common intention; that is, the same intention occurs in 
both expansions. 

In either case, ItPlanS not only chooses the complex action and expansion for the 
current action, but since the benefits to the system only result if a commitment is 
made to the breakdown of the next intention as well, it expands that intention as 
well. In this process, it makes a commitment to behaving in a certain way in the 
future. Thus, these kinds of choices develop the agent's future intentions. 

If none of these optimizations are possible, the system must find an action and an 
expansion that merely satisfies the single intention in question and commit to this 
action/expansion pair. Having decided on an action, an expansion for that action, 
and possibly the next action as well, the actions and expansions are added to the 
positive intention structure. The system then traverses the expansion to retrieve the 
next intention to  be achieved and expands this new intention. This process continues 
until a single primitive action is decided on. This primitive action is carried out; the 
system returns to the top most level of the intention structure and begins the search 
for the next action. 

5.3.3 Conflict Resolution 

There are a number of outstanding issues left out of this algorithm. Foremost is, wha,t 
does the system do if there is no primitive action that does not violate one of the 
system's negative intentions? ItPlanS has a recovery mechanism for these situations 
which relies heavily on the accuracy of the action's result rules. What has happened 



in these cases is all of the examined actions have been determined to cause problems. 
The system needs to  decide on the action it would "like" to take and then remove 
the causes of the problematic result of the action. 

For example, suppose block "b" is stacked on block "a" and further suppose the 
agent is grasping block "a" in its right hand, but has not yet moved it. Let us also 
assume that the agent has an intention to move block "a" to  a new position, and has 
a negative intention against breaking things. The only action the agent has available 
that will reposition block "a" is the action RIGHTGOTO. Finally, let us suppose the 
agent knows that if i t  performs a RIGHTGOTO action, block "b" will fall off a,nd 
break. At this point, the agent is stuck. The only action to achieve its desired ends 
will violate a negative intention. Specifically, moving block "a" will cause a state 
where block "b" is broken, violating the agent's negative intention about breaking 
things. 

Obviously, in this case, what the agent should do is determine the cause of the 
conflict (the presence of block "b" on block "a") and eliminate it (unstack block 'i13" 
from block "a"). This is exactly the process ItPlanS follows. If there is more tha.n 
one possible action that can achieve the given intention, ItPlanS must first decide on 
which primitive action it will attempt to remove impediments to. 

Having decided on an action, ItPlanS looks up the result rule that was applied 
in the simulation to produce the conflict. Its goal in this process is to prevent this 
result rule from being applied to the model of the world. This result rule was chosen 
because all of the predicates in the rule's condition were true in the world. If one 
of the predicates in the condition of the result rule were false, the rule would not be 
used to simulate the action and the conflict would not arise. 

Let us return to  our example to  see how this works. The result rule that would be 
applied for this use of RIGHTGOTO would be something of the form [[INRIGHT- 
HAND(X), ON(Y,X)], [ON(Y,table), BROI<EN(Y)], [ON(Y,X), ON(X,Z)]] ', where 
the first element is the condition, the second is the add list, the third is the delete 
list, "X,Y ,Z" are all variables, and "table" is a constant. In order for this rule to 
be applied, i t  must be the case in the world that INRIGHTHAND(X) and ON(Y,)o 
are both true. In our specific example, INRIGHTHAND(a) and ON(b,a) are true 
so the rule is applicable. In order to keep this rule from being a.pplied to  the sim- 
ulation, one of the elements of the conditional must be violated. That is, either 
INRIGHTHAND(X) or ON(Y,X) must be made false in the world. 

At this point, ItPlanS chooses one of these conditions to invalidate, inverts the 
condition and achieves this inverted proposition as a positive intention. This will 
remove one of the conditions from the world ma.king the rule invalid. Having done this, 
the original goto action can now be carried out without the undesired consequeilce of 

BROKEN(b). Of course, this method requires the a.gent's knowledge base to contain 
information about how to invert actions. In our exa.mple, the agent must know that 

21n ItPlanS the variable Z is a.llowed to remain unbound, so that it may unify with any object) 
that X might be on. This allows the system to delete all statements that X is on some object. 



at  least one way to undo ON(b,a) is to achieve ON(b,table). 

ItPlanS must also decide on which condition to invalidate. It would be unfortunate 
if the system chose to invert one of the intentions it just achieved when there was 
another possibility. As a partial solution to this problem, the system maintains a list 
of those intentions that are "above and to the left" of the current one. That is to say, 
the system keeps a list of all the intentions it has tested in the traversal and expansion 
process which have been determined to be satisfied. It will obviously be preferable 
to invalidate an intention that is not on this list, since they are necessary for the 
achievement of the system's intentions and have been achieved already. Therefore, 
ItPlanS makes every effort to "protect" these intentions. 

If it is impossible to find an intention that is not on the list of protected intelltioils 
then one from that list must be selected and inverted. This is the worst possible case 
as this intention must be marked as special to  prevent the system from thrashing and 
undoing the work already done. This method allows for the temporary violation of 
maintained intentions. 

Notice that ItPlanS utilizes the kinds of situa.ted rea.soning discussed in Section 4.2. 
The system does forward reasoning about the effects of primitive actions in specific 
situations. As just described, it also performs situated reasoning in order to eliminate 
conflicts. The next section will describe a set of limited reasoning processes that the 
program uses in correcting action failures. However, one of the primary concerns of 
the system has been the computational cost of reasoning. Therefore, the system, as 
it stands now, does the minimal amount of reasoning that it must in order to solve its 
problems. This leads the system to find less than optimal solutions for many kinds 
of problems. For example, right now ItPlanS will attempt to pick up objects even if 
its hands are full. Of course, once ItPlanS realizes the action will be impossible, it 
empties its hands and performs the action. 

This inefficiency is not a result of incorrectness in the algorithm but of a failure 
to anticipate future problems. This of course can be solved by more reasoning. It is 
possible for ItPlanS to anticipate its inability to pick up the object by considering 
the contents of its hands and the object to be picked up. In fact, ItPlanS can use the 
same planning algorithm on a model of the world to make these predictions about 
action and plan interactions in the future. However, ItPlanS at this point does not 
perform this kind of advanced forward reasoning to preempt future conflicts. It only 
considers conflicts when they present themselves. 

5.3.4 Action Failure and Recovery 

As pointed out above, it is possible for actions to fail; primitive actions may not satisfy 
the intention they were invoked to achieve, or satisfying all of the subintentions in 
a complex action decomposition may not satisfy the original intention. With this in 
mind, ItPlanS has failure recovery mechanisms that follow the action repair paradigm 
outlined in Section 4.3.2 rather than re-planning. This is an issue of simplicity rather 



than a theoretically validated choice. 

Primitive Actions 

Unfortunately, the reasons that primitive actions fail, more often than not, have to 
do with the limits on performance of the agent's end effectors. For example, if an 
agent picks something up, it may slide out of the agent's hand, not because the agent 
picked the object up incorrectly, but rather, because the object was slippery. Another 
example is fast moving objects; if an agent tries to pick one up, the action may fail, 
simply because the object was moving too fast. 

The only real remedy for this problem is to attempt the action again. If the agent 
tries to  move to  a specified location and doesn't get there because its treads have 
slipped, the agent must try again. This is exactly what ItPlanS does. Of course after 
a few attempts the agent should give up and attempt another method, but for now 
ItPlanS just continues to try the same action. 

Complex Actions 

Complex actions can fail for a number of reasons, some of which are obvious: for 
example, it is hard to pick up an irregularly shaped object if you already have some- 
thing in your hands. Some reasons are less than obvious, such as McCarthy's potato 
in the tail pipe preventing a car from starting. 

As said in Chapter 4, what all of these problems have in common is that unless 
the agent is aware that some condition may be a problem, there is nothing it can 
do about it. There is no general purpose recovery mechanism that is independent of 
having information about the possible causes of problems. ItPlanS follows this line of 
reasoning. As mentioned, each expansion of each complex action has a list of possible 
causes of failure, which if they hold in the world, may prevent the complex action 
from achieving some or all of its effects. 

ItPlanS identifies complex action failure by checking to see if an intention's children 
have all been satisfied. If they have and the original intention is still unsatisfied, then 
the action has failed. The system then consults the list of possible causes of failure 
for this action and expansion. If a condition is found that is true in the world, this 
condition is undone. Afterward the complex action is attempted again, hopefully 
achieving the intention. 



Chapter 6 

Comparisons to Existing Systems 

Another way to understand ItPlanS is in terms of how it differs from other planning 
systems. This will also help the reader clarify the issues that ItPlanS addresses and 
serve to establish where it would fit in a taxonomy of planning systems. To these 
ends, the following section is organized around existing systems and how ItPlanS 
differs from each. 

6.1 Foundat ions 

Much has been written about the failures of the early work in planning. However, 
since these systems are well known and well understood, it is instructive to  cornPamre 
new systems to them. Specifically, since these early systems confronted many of the 
most challenging problems in the field, any new solutions to these problems should 
be compared to them in order to better understand the new proposal. Therefore, this 
chapter will begin by considering two of the earliest planning systems. 

STRIPS and PLANEX 

I assume that the reader is familiar with the basic functioning of the STRIPS planner. 
From Chapters 2 and 5 many of the differences between ItPlanS and STRIPS should 
already be obvious: the lack of intentions in STRIPS, STRIPS's use of preconditions, 
STRIPS's use of a complete world model, and the hierarchical nature of ItPlanS. 

Because STRIPS was the first system to confront the issue of plan execution, it is 
important to contrast the ability of STRIPS to accommodate changes in the world 
with ItPlanS ability to perform this task. In STRIPS, the functions of plan formation 
and plan execution are performed by two separate programs, STR.IPS and PLANEX. 
In their later work on these systems, Fikes and Nilsson [9] introduced "triangle-tables" 
as a representation for plans that would allow the executor flexibility in executing 
plans. 



Triangle-tables augmented STRIPS plans to include a table of all of the intermedi- 
ate states of the world that result during a successful execution of the plan. Using this 
table, the plan executor could then recover from some failures and utilize unforeseen 
changes in the world state. By starting at the final state of the plan and traveling 
backwards through the derived plan states, the executor searched until a intermediate 
plan state was found that corresponded to the current world. Having found a state 
in the plan, the executor then knew which action to take. 

The intermediate states generated in this process were also used by the executor 
to derive LLmacro" operators for subsequences of the actions in the plan. This was 
performed by selecting a goal and regressing through an existing plan, saving all of the 
steps required for generating the selected goal. This process also eliminated unneeded 
plan steps. This creation of macro operators allowed the plan executor to reuse parts 
of plans in new situations. Thus, the plan executor for STRIPS had two forms of 
flexibility in dealing with the world. First, it could repeat any specific subsequence 
of actions in a plan, if the plan had failed. Second, it could reuse subsequences of 
existing plans to achieve similar goals in the future. 

The division of labor into separate planning and an execution monitoring programs 
in the STRIPS system stands in contrast to the integrated planning and immediate 
execution methodology of ItPlanS. As we have seen, ItPlanS calculates the next action 
to be taken, possibly making commit~nents about the future, and then executes this 
single action. There is a whole family of planners that integrate planning and action in 
this way [ll, 13, 211, to avoid the problems associated with separating planning from 
action, and enable the systems to be more responsive. Since the system can begin to 
act before a complete plan has been derived, the its response time is decreased. While 
this leaves the system open to deriving less than optimal plans, this is an acceptable 
loss for increased responsiveness. 

Stepping beyond the problem of separating planning and a.ction, there are limi- 
tations associated with the use of triangle tables in terms of reactivity and deriving 
macro operators. First, triangle-tables only provide limited improvement in the sys- 
tem's ability to cope with failure. The intermediate states derived in the triangle- 
tables are the intermediate states in a successful execution of the plan. Thus, this 
method will not be successful if a failed action causes some cha.nge in the world that 
is not a normal stage in the plan. 

The derivation of macro operations in STRIPS also has a problem. The algorithm 
for creating a macro operator calls for collecting all of the actions that are part of the 
"proof" of the action. However, given that this "proof" was used in the context of 
another goal, it may in fact be an inefficient way to achieve the goal in a new context. 
For example, suppose that the series of three actions [a,  P, y] derive two conditions, 
A and B. Now, also suppose that action w also achieves A but does not achieve B. If 
in another context, we again wish to derive A, the system macro for this goal could 
be [a, p, y] rather than w.  This would be inefficient, and even inappropria-te if the 
agent explicitly did not want B to hold. In this case, the only recourse is to leave the 



plan executor and plan from first principles to  achieve the goal of A. This limits the 
applicability of these macros to domains with relatively independent goals. 

The method used by ItPlanS solves all of these problems. ItPlanS gains responsive- 
ness by integrating planning and action, and does not fall prey to STRIPS'S problems 
in recovering from failure because the planner replans for the achievement of this goal 
as it would for any other system goal using the world state, memory, and situated 
reasoning. Thus, ItPlanS avoids both of the errors found in triangle tables; since 
it uses the actual state of the world in re-planning, ItPlanS is not limited to only 
considering the intermediate states of the correct plan but can react to the actual 
state of the world and the changes caused by the failure. Moreover, since planning is 
always done from the world state in the context of the current intentions, ItPlanS is 
not limited to  using macros developed for other sets of goals, but can rather, tailor 
its work specifically to the setting encountered. 

NOAH 

Sacerdoti's [26] systems, NOAH and ABSTRIPS were the first hierarchical planners. 
In ABSTRIPS, the hierarchical nature of the planning was accomplished through the 
priority of achieving various preconditions. This stands in contrast to his later work 
on NOAH which has explicit action expansion similar to the process used in ItPlanS. 

NOAH suffers from many of the same problems as STRIPS. For example, NOAH 
uses preconditions to encode situation-dependent information. NOAH, like STRIPS, 
also assumes that the world is predictable and that actions have "defined" results. 
That is, every action has a fixed and finite set of possible reasons for its use. 

However, NOAH does possess an interesting ability that ItPlanS lacks: NOAH is 
a nonlinear planner. Thus, the ordering for the a,chievement of the system's goals is 
determined by interactions between the goals, and ordering commitments are only 
made when required by some constraint in the pla,n. In ItPlanS, I have chosen not 
to consider the issue of nonlinear planning. I believe the ordering of goals based 
on their interactions is an issue of learning the interactions that are common in a 
given situation and how to select action expansions with the correct ordering for the 
situation. In ItPlanS, intentions are ordered, and this ordering is assumed to be rel- 
evant. This means that the two sequences of intentions, [goto(store), buy(food)] and 
[buy(food),goto(store)] can produce very different behaviors. In general intentions 
to act in the future are fixed in this manner. Thus, it is not possible to arbitrarily 
reorder them in order to perform plan optimization. 

6.2 Reactive Systems 

In response to  the need for agents to interact in environments with significant time 
constraints, a number of researchers have proposed theories of agent-environment 



interaction that have been called reactive or reaction systems. These systems stress 
the need for an agent to  be able to respond to the world as rapidly as possible. 

Pengi, Sonja, and Rex 

Agre, Chapman, Kaelbling, and others [I, 2, 5, 191 have argued that the most impor- 
tant ability an agent can have is the ability to respond rapidly to  its environment. 
To this end, they are willing sacrifice actual planning. Essentially they encode the 
desired responses of the agent as a function from sensor inputs to effector outputs. 

The results of this are straightforward. First, none of these systems actually engage 
in activities that could be called planning. While they do engage in planned activities, 
all of the planning has been done by the system designer before construction. This 
approach also makes certain commitments to the nature of the agents. Since these 
agents are doing nothing more than calculating a fixed function, they conform to wha,t 
might be called a behaviorist school of agent action, in which an action is nothing 
more than a response to the stimulus provided by the world. 

Of course, these systems can produce arbitrarily complex behavior and do so at 
high speeds. However, the fact that a given Turing computable function can be en- 
coded in hardware is well known, and since any plaaning algorithm could be expanded 
into hardware, in this way, systems can be designed which have the same behavior 
as any planning system. However, this does not contribute in a meaningful way to 
understanding how agents actually plan. In their favor, these systems are the only 
ones, discussed here, that do not have explicit preconditions in them; however, this 
is hardly surprising considering their nature. 

Universal  Plans 

Marcel Schoppers [27], has suggested another way of achieving fast reaction times in 
agents. Briefly, his proposal is to consider off-line all of the possible world sta,tes and 
to construct plans that lead to the goal from each of these different states. The agent 
then uses the actual world state to index into these universal plans to determine the 
action which will carry the agent toward its goal. This allows the agent to constantly 
select the correct action to move toward its goal, no matter what might happen in 
the actual world. 

Unfortunately, this method, while achieving the goals of fast reaction time, winds 
up having some of the problems of both the STRIPS approach and the reactive 
work mentioned before. Since creating the universal plans happens off-line, these 
plans suffer from some of the problems of disassociating planning from action. For 
example, universal plans are limited by the accuracy of the world model used to 
perform the planning. If the model employed during this phase is not complete with 
respect to all possible states of the world, the generated plans will not be universal. 
Since the "off-line" planning process must traverse all of the possible world states 



and must include an entry for these states, this process is unrealistic for any but 
the simplest domains and tasks. Schoppers, in his thesis, admits that "sufficiently 
large domains are simply not solvable by the current plan synthesis machinery." [27, 
page 1151 Finally, once a universal plan is built it has all of the rigidity and domain 
dependency that the reactive systems have. In some sense, these universal plans are 
the functions Agre and Kaelbling build their systems to calculate. 

Schoppers, however, is the only planner that I will examine that makes a distinction 
between actions and effects. This difference is embodied in ItPlanS in result rules. 
The use of result rules to determine the effects of an action in a given world state is 
similar to reasoning done by Schoppers's universal plans. 

6.3 Integrated Planning and Action 

We can see from these last two systems, the attempt to increase system reactivity at 
the cost of planning can pay off, but only at the cost of generality. The next section 
examines a series of planning systems where the functions of planning and acting a.re 
interleaved, as in ItPlanS; therefore, I will attempt to emphasize the ways in which 
ItPlanS is an improvement over these systems. 

N ASL 

NASL [21] was the first planner to interleave planning and execution. The most 
striking similarities between ItPlanS and NASL are the hierarchical nature of the 
planning process and the fact that complete plans are not devised before execution 
begins. 

ItPlanS goes beyond NASL to solve two of the limitations McDermott lists a,t the 
end of his paper. The first limitation is that NASL lacks any concept of "success 
conditions" for actions. In ItPlanS, the success conditions of actions are derived 
from the explicit representation of intentions. The success or failure of an action is 
determined solely by the achievement of the intention that invoked the action. 

McDermott also lists as one of NASL's limitations, that it has no theory of error 
correction. As we have seen, ItPlanS does have such a theory. While this theory 
is knowledge dependent, it carries It PlanS much further than N ASL. Moreover, 
NASL, unlike It PlanS, is incapable of making commitments about future a.ction. 
This limitation makes it more likely that the planner will find sub-optimal plans and 
make unrecoverable errors. 

The RAP system [ll], was specifically built to examine decision making without 
considering future states. Therefore, it would be unfair to attack it by pointing out 



the benefits that intentions yield in looking forward to help make local decisions. 

The RAP system architecture is similar to the ItPlanS architecture in many of 
the same ways as NASL. The RAP system is given an initial set of RAPs(reactive 
action packages) placed in a queue. A RAP can be thought of as "... an autonomous 
process that pursues a planning goal until that goal has been achieved." [ll] When 
a RAP reaches the head of the queue, the world model is examined to determine if 
the RAP'S goal has been achieved. If it has, the RAP is removed from the queue, 
and the next RAP is considered. If the goal is not true in the world model, then the 
RAP is examined further. If the RAP is a LLprimitive command", it is sent off for 
execution. If not, then it is hierarchically expanded into subRAPs which are placed 
on the queue. 

Beside the issues of local decision making and a lack of future commitments, It- 
Plans improves over the RAP system in at  least three significant ways. First, the 
RAP system attempts to maintain a complete world model. Firby admits that it 
is possible "for the world model to become inconsistent with the state of the real 
world." [ll, page 2051. Even thought the system knows that this inconsistency is 
possible it ignores this possibility and assumes that the world model is always cor- 
rect. Thus, if the world model of the RAP system is in error, then an action may be 
issued that is inappropriate. 

Firby discusses a case where the agent's incomplete knowledge causes the world 
model to be in error, a case of an agent attempting to lift a rock that is too heavy. 
Firby's solution depends on the assumption that the information the agent needs is 
not immediately available in the world. If rock were clearly affixed to the ground, 
then the action of lifting the rock should not be attempted. However, since this 
information might not be in the RAP system's world model, the action would still 
be attempted. Thus, there are cases where information in the environment should 
prevent the performance of actions, but since Firby's agents are planning from their 
world model they will fail in these situations. 

ItPlanS avoids this problem by constantly appealing to its direct sensor input, 
rather than a, model. This also allows it to avoid ma.intaining a, complete world model 
that is accurate enough to capture all of its knowledge about the effects of actions 
and still have the information necessary to simulate actions. 

Second, the RAP system is unable to cope with interactions among its RAPs; if 
an interaction between RAPs is discovered, the RAP whose goal has been interfered 
with is terminated and returns failure. ItPlanS, not only is capable of dealing with 
these kinds of interactions, but the use of intentions gives a principled account of how 
long to allow the violation of a subgoal. 

Finally, ItPlanS makes a distinction between maintained intentions and achieve- 
ment intentions that the RAP system does not make. This distinction means that 
when the ItPlanS algorithm terminates, all of its positive intentions of have been 
achieved, and all of its maintained state intentions hold in the world. RAPs on the 
other hand can be fooled by goal interactions. If a top level RAP succeeds and is 



removed from the process queue, then a subsequent RAP may undo the system's 
previous effort. This cannot happen in ItPlanS. 

PRS 

Of all of the systems examined here, the system most similar to ItPlanS is the PRS 
by Georgeff and Lansky and Ingrand [12, 131. ItPlanS and PRS are so similar that 
rather than a discussion of the PRS algorithm, this subsection will focus on some 
more substantive theoretical similarities and differences between the two. 

As with the most of the systems discussed, PRS employs preconditions in its action 
representation. I have already noted the limits this places on the use of intentions. 
PRS, unlike the other systems, does represent the intentions of the agent. However, 
there are significant problems with PRS's treatment of them. To begin with, while 
PRS does have an explicit representation of positive intentions and it can perform 
situated reasoning using them, it ignores negative intentions. Thus, PRS is forced to 
encode them within the preconditions and expansions of actions. 

There is a second problem with the use of intentions in PRS. In ItPlanS, the 
expansion of an intention can exert an effect on those intentions that follow it. As 
we have seen, the agent can make a commitment to a method of expanding a future 
action on the basis of an interaction between the current intention and a future one. 
PRS does not have this ability. In PR.S, intentions are only the methods or plans for 
achieving a goal, and are only used to prevent PRS from constantly re-planning new 
methods of achieving goals. This interpretation ignores the role intentions can play 
in constraining possible methods of satisfying the agent's gods. 

PRS does have an ability that ItPlanS lacks. Like NONLIN, PRS is able to change 
the order of evaluation of its intentions. In ItPlanS, the task of ordering intentions is 
considered a problem beyond the planner. 

Other Systems 

Finally, there are two systems that should be mentioned that do not seem to easily 
fall into one of the categories discussed so far. In an effort to be complete they have 
been included in their own section. 

Vere and Bickmore 

Vere and Bickmore [31] describe a "complete integrated agent" called Homer, a mo- 
bile, autonomous submersible that performs activities in a simula,ted area of ocean 
in and around a harbor. Homer displays unusual traits, tha,t include maintaining 
positive and negative intentions. 



Homer can be instructed to perform an action at a later date. This instruction will 
be translated into the goal of performing the action at the specified time. When the 
correct time arrives, Homer will dutifully perform the action. In the same way, Homer 
can be instructed not to perform an action on a given day, and on the given day he 
will not perform any action that would require his violating this directive. These 
examples would seem to indicate that Homer possesses the functional equivalent of 
positive and negative intentions. 

Unfortunately, this process is performed by the use of temporal constraints on the 
planning process, rather than explicit intentions. That is to say, Homer's "intentional" 
behavior is achieved without explicit intentions. Thus, Homer will be unable to use 
his intentions in more powerful ways, for example jointly satisfying multiple goals 
without being specifically instructed to do so. I have included this system because 
of it displays the appearance of having both positive and negative intentions. To the 
best of my knowledge, it is the only system other than ItPlanS that appears to have 
both types of intentions. 

Chef 

The final system that will be examined here is the case-based planning method of 
Kristian Hammond [15]. The method he has proposed is radically different than other 
systems. In brief, he suggests that planning, is a. memory task rather than a cognitive 
one. That is, when confronted with a planning problem, an agent retrieves from its 
memory a complete plan for a similar task based on key features of the problein. 
The agent then attempts to anticipate possible problems in applying this plan to the 
current situation. If the agent anticipates a problem, a solution is found and the 
changes are made to the plan before execution. The plan is then executed and the 
results observed. 

If the plan fails on execution, the plan will be "fixed" and stored in the agent's 
knowledge base under an index of the goals it satisfies and the failures it avoids. It is 
important to remember that the agent is storing complete plans for activities in its 
knowledge base, and then when confronted with a need to plan it retrieves from its 
memory the whole of this "closest" plan. 

This algorithm has at  least two significant problems. First, it forces the agent 
to commit to a whole of plan at the level of primitive actions in a single step. As 
Hammond writes, 

The first component of a case-based planner's memory of plans is the plans 
themselves. These plans are represented as a fully ordered set of steps at 
the level of the planner's primitive actions. [15, page 721 

This means, when one of these plans is pulled from the memory the agent retrieves 
and commits to the whole plan at one time. For example, if an agent wanted to 



go to Europe and the closest experience it had was a bus trip to New York. This 
bus plan would be retrieved and the agent would have immediate access to all of its 
memories about walking through the bus station as well as all of the primitive actions 
associated with that plan to  get to New York. This is unrealistic. 

Second, Hammond's algorithm must specify what it means for an existing plan to 
be the "closest" match. Hammond acknowledges that the question of what defines 
the best match depend of the goals and the initial world state, but does not go fur- 
ther. Obviously this information must be tempered by other situational information. 
For example, the systems other intentions, both positive and negative, and available 
resources (including time). 

With this criticism aside, Hammond's work does have a kernel of truth. Memory 
obviously plays an important role in providing possible plan expansions for a. given 
intention. This kind of indexing of possible expansions based on previous information 
has not been used in ItPlanS precisely because it opens the questions of determining 
similarity and closeness discussed above. However, memory and some kind of closeness 
measure must eventually play a role in filtering out inappropriate plan expansions in 
a system like ItPlanS. 



Chapter 7 

Conclusions 

Chapters 2 of this paper presented the problem that preconditions pose for intentions 
and their role in means-end reasoning in planning. Chapter 4 then went on to propose 
a solution to this problem, by replacing preconditions with explicit representations 
of intentions, situated reasoning and robust failure mechanisms. In Chapter 5 ,  I 
described the ItPlanS system as a functioning example of these ideas. Thus, I have 
defined the problem and proposed a solution. However, I have not yet proved the 
validity of this solution method. Thus, I propose to focus primarily on quantifying 
the scope and abilities of a system like ItPlanS. This chapter will detail some specific 
proposals for further work. 

7.1 Waiting as an Intentional Activity 

In examining work on planning continuous processes, I realized that (with a few 
notable exceptions [31, 331) waiting, as an action, has been left out of most discussions 
of planning. I believe that an agent's intentions provide the information needed to 
determine when it is appropriate for the agent to wait, and how long to  wait for. 
Thus, I have begun to look at  waiting as an intentional action, starting with one of 
the traditional problems in this area: attempting to fill a container with a fluid from 
a tap. The agent must position the container under the tap, turn the tap on, wait for 
the container to fill, and then turn the tap off. The planner must make the crucial 
decision not to act for some period of time. 

Many planners do not consider waiting to be a planned a,ctivity. Therefore, they 
must solve the waiting problem with ad-hoc solutions. I am proposing that an agent's 
intentions allow it to know when it is appropriate to wait. This work takes the position 
that any state of the world may be brought about by waiting. Since there are other 
agents in the world, rather than remaining the same, the world will usually change 
during any period of inaction. In fact, almost anything may happen if the agent 



waits long enough.' Obviously this is not true of volitional actions, but any sta,te 
may come into being if the agent waits long enough for another agent to bring it 
about. In ItPlanS, this would be captured by the having a primitive action wait with 
a possible result condition that matches against any state intention. 

The agent can therefore consider the wait action for achieving every goal. In other 
systems, this might lead to the agent waiting for everyone else to accomplish its goa.ls 
for it. However, in ItPlanS, the action must successfully pass through a simulation 
step before the agent commits to executing it. To prevent our agent from complete 
inaction, only those conditions under which an agent should reasonably believe that 
a change will occur in the world will be included as result rules. Thus, only in the 
cases where the simulation of the action satisfies the agent's intention will the a,gent 
actually wait. 

For example, if the agent were attempting to fill a bucket with water, the agent 
would have the following result rule resultrule(wait, [under(tap, bucket), pos- 
itive-flow(tap)], [full(bucket)], [I). As before, the first element is the action, the 
second the condition, and the third and fourth a.re the add and delete lists for the 
rule. Thus, the agent believes that waiting, while a bucket is under a tap and the tap 
flowing, will result in a full bucket. Therefore, if the agent desires the bucket to be 
full and these conditions hold, the agent will wait. 

I have done some preliminary work towards a principled, intention-based treatment 
of waiting. However, this theory has yet to be tested and experimentally verified. 
Therefore, I propose to incorporate this intentional treatment of waiting into ItPlanS. 

Formalizing ItPlanS Performance 

To date, ItPlanS has only been used in two domains; both of them have been simpli- 
fied for the system's use, a simple blocks-world, described earlier, and the AnimNL 
project [32]. Unfortunately, while these simple domains can be looked on a proof of 
concept, they are not complex enough to allow me to answer certain obvious questions 
about the abilities of the system. For example: 

How well can ItPlanS avoid conflicts with its negative intentions using only a 
one step look-ahead? 

How well does the system recover when its negative intentions are compromised? 

How successful are the failure recovery mechanisms? 

Are there other obvious local intentional optimizations that will allow even 
better performance than those I have considered? 

'As the saying goes "All things come to  those that wait." 



To answer these questions, I propose to move the ItPlanS system to a more complex 
domain. One possibility is to add more detail and actions to  the two-handed blocks- 
world I have been using. These actions could include an operation to paint blocks 
that would involve waiting for the paint to dry and block shape-changing operations 
similar to  the "crush7' action described in Chapter 5. As with the crush action, 
these operations would have to be performed by a specific hand. I further propose to 
include more complex stacking structures to the system, like arches or pyra,mids, and 
to include in the model a random possibility for actions to fail. 

I believe that with these additions I will be able to completely test the abilities 
of ItPlanS and answer the outstanding questions. Since the robot will still have 
two hands, almost all of the agent's possible intentions will have multiple ways of 
achieving them. Thus, this new model will provide more than enough complexity 
for the analysis of negative intention conflict. The inclusion of the random failure of 
actions will allow me to completely test the action failure mechanisms I have placed in 
the system, while the "painting" action has been included in order to test the theory 
I have put forward about waiting. 

7.3 Formalizing ItPlanS Algorithm 

Once the system has been moved to a more complex environment. I hope to be able to 
quantify exactly how often there are negative intention conflicts and what properties 
of the environment make these conflicts likely. I would also like to be able to describe 
the classes of problems that are hard for ItPlanS to solve, so tha,t, domains where 
the ItPlanS can be used most effectively can be identified. Finally, I will attempt to 
provide a more formal specification of the system's algorithm. To this end, I have 
looked briefly at  a very different problem that has the same underlying structure as 
ItPlanS algorithm, natural language generation by nlildly context sensitive grammars. 

Mild Context Sensitivity 

Surprisingly, there are a number of similarities between the process ItPlanS carries 
out and the problem of natural language generation using mildly context sensitive 
grammars like Tree-Adjoining Grammars(TAGs) [l8] and Combinatorial Categorial 
Grammars(CCGs) 1281. This similarity between planning and natural language gen- 
eration is not an obvious one; therefore, I will try to explain the connection. 

Borrowing terms from formal language theory, we can call a planner which only 
looks at  its goal when making planning decision a context free planner, while a planner 
that looks arbitrarily far into the future and the past could be called context sensitive. 
However, ItPlanS does not have either of these properties; the system falls somewhere 
between context free and context sensitive. That is, when ItPlanS expands a complex 
action, among other things, it examines the next positive intention in its structure 



to inform its decision, but this is a bounded, one-step look ahead. Thus, ItPlanS 
considers more than its single goal but less than the whole of the possible plan. 

Mildly context sensitive languages, like TAGS and CCGs, display a similar bounded 
sensitivity to  the situation. I believe there are more parallels between the areas 
of planning and natural language generation using these grammatical formalisms. 
Since the theory underlying CCGs and TAGS is more formal and rigorous then the 
theory underlying ItPlanS, I hope these parallels will help in providing a more formal 
description for ItPlanS1s operation and abilities. 

7.4 Conclusions 

In closing, I would like to briefly summarize the claims of this paper and state my 
proposals for future work. In this proposal I have argued that preconditions are always 
defined relative to an assumed set of goals. Therefore, they limit the application of 
intentions to the process of means-end reasoning required by the planning process and 
must be removed from action representation. I have further argued that,  the roles 
preconditions have performed can be filled by the use of explicit representation of 
positive and negative intentions, situated reasoning, and robust failure mechanisms. 
I have presented the Intentional Planning System (ItPlanS) as functioning example 
of these ideas, and compared it to a number of existing planning systems. 

I have gone on to propose to answer a number of questions about the abilities of the 
Intentional Planning System, specifically, the effectiveness of the one step look-ahead 
to avoid negative intentions and the effectiveness of the failure recovery algorithms. To 
this end I am proposing create a more complex environment for the ItPlanS system to 
interact with. The two-handed blocks-world that is described in this paper would be 
enhanced with new actions that require waiting for their completion, as well as actions 
with fixed resource requirements, and the possibility of primitive a,ction fa.ilure. 
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