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1 Introduction to ir-calculus 

A model of computation chooses to focus on certain phenomena that seem to be pervasive of 
computing and treats them to be the essence of computing. For example the A-calculus models 
computation as a function that takes in arguments and yields results. A calculus for concurrent 
computation, on the other hand, treats computation as a communicating system in which 
comn~unicating agents have the ability to interact and influence the behavior of one another. 
While such a model of computation cannot be forced into the function-argument paradigm of 
computation without loss of naturalness, a function-argument interaction behavior of agents 
would be a special case of interaction between agents in a model of concurrent computation. 

n-calculus is a calculus for modeling dynamically changing configurations of a network of 
communicating agents. The key notion that underlies n-calculus' attempt to  model concurrency 
is naming of entities. Naming provides an identity to  an entity that allows it t o  concurrently 
coexist in an environment with other entities. n-calculus is unique in that it treats names of 
channels that the agents communicate on, as primitives instead of names of agents. Another 
distinctive feature of n-calculus is that it does not allow agents to be transmitted along commu- 
nication channels, instead attempts to  demonstrate that passing names of channels as contents 
of communication is in itself sufficiently general. 

The objective of this paper is t o  study the suitability of n-calculus as a unifying framework 
to  model the operational semantics of three differing paradigms of programming : functional, 
logic and imperative paradigms. In doing so, the attempt is to  demonstrate that n-calculus 
models a primitive that is pervasive in the three paradigms and to illustrate that the three forms 
of sequential computing are special instances of concurrent computing. We shall provide an 
introduction to n-calculus based on [Milner 19911 and examine the usefulness of its primitives 
in modeling some of the programming concepts. Later we study the translation of represen- 
tative languages of each of the three programniing paradigms into T-calculus respecting their 
operational semantics as closely as possible. 

1.1 Syntax of n-calculus  

The primitive elements of n-calculus are structureless entities called Names, infinitely many 
and denoted by x, y ,  z . . . E i\l. A name refers to a communication link or channel. The name 
z represents the input end of a channel x and the co-name represents its output end. In the 
syntax that follows, agent identifiers A, B, . . . range over K ,  and P, Q, . . . range over process 
expressions. 

A process is an entity that derives its denotation from its interaction with other processes. 



A process interacts with the other processes by receiving and transmitting names of channels. 
Processes can be characterized as follows based on their interaction behavior. 

1. A process Q that performs no interaction is called inaction and is represented by 0. 

2. 5y .P  represents a process Q that outputs the name y on channel x and behaves like P .  
The co-name x, may be regarded as the output port of the process Q. Since the name y 
is free in Q, the output action is called a free output action. 

3. x(y).P is a process Q that receives a name x ,  on its input port x and behaves like P{z/y) 
(y for z in P). Such an action is called an input action. Though the action performed by 
Q appears to  be similar to A-application it differs from it in that y may be bound only to  
names and not to arbitrary terms. 

4. r.P represents a process Q that performs an internal action T and then behaves like 
P .  This action is called silent action since it does not involve other processes in the 
environment. 

A summand process P + Q, represents a process that can behave as either P or Q, but it 
cannot commit t o  either of the alternatives until one of it occurs. This construct introduces 
one kind of non-determinism into process behavior. 

The par (I) construct introduces a second kind of non-determinism into process behavior. 
The form P ( Q (read as P par Q), serves to model concurrent execution of two processes P 
and Q. P and Q may act independently but can also communicate with each other to  perform 
a silent action. For example, if 

P = 3y.P' and Q = x(z).Qt 

then the composition process P I Q could either output on channel x, or could input from 
channel x. It can also interact internally (intra-act), performing a silent action with the residue 
process as P' I Q1{y/z}. 

The form, (vx)P (read as "new x") is a unique construct introduced by n-calculus. It 
restricts the name x to  the process P thus making x private to  P. Alternately, it declares a 
new name in P that is different from all external names. As a result the port x, that may 
appear in P becomes inaccessible to  the environment. Thus, (vx)x(y).O cannot communicate 
with any other process. 

A match [x = y]P is a process that behaves like P if x and y are identical otherwise like 0. 
For example, 

P = 3y.P' and Q = x(u).[u = w]Qt 

then (vx ) (P  I Q)  communicates internally on channel x and results in [y = w]Q'. Since the 
match fails, this is identical to 0. Hence the final residue is (vx)Pt. 

Agents are parameterized processes. An agent, A, is uniquely defined by a defining equation 
of the form 



where the names XI , .  . . , x, are distinct and are the only names that may occur free in P. 
Then A(y1,. . . , y,) behaves like P{yl/xl,. . . , yn/xn} or P{; / } Substitution { j  / }, 
may require a change of bound variable names in P so as to  avoid any of the y; from becoming 
bound in P. Defining equations provide recursion, since P may contain any agent, even A itself. 
Also, we note that processes are zero-ary agents. 

1.2 Rules for Actions 

A process P ,  performs an action a and evolves into Q. This transition is denoted as 

Based on the prefix of P, we have seen that a E {T, Ty, ~ ( y ) } .  A fourth action, called bound 
output action is possible when a process outputs a private variable on its output port. Such 
an action results in widening of scope of the private variable beyond the process it prefixes. 
For example, a bound output action results when a process such as ( v y ) ~ y . P  communicates on 
channel x. 

The silent action and free output actions are collectively termed free actions while input 
actions and bound output actions are called bound actions. The free and bound outputs are 
collectively called output actions. The x in x(y).P or 3y.P is called the subject and y is called 
the object. 

Free names of P, fv (P ) ,  are all the names that are not bound either by restriction or input 
prefix. The set of names of P, v(P),  is a union of its free and bound variables. 

We define a transition relation to  be the smallest relation that satisfies the rules of action 
given below. 
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1.3 Notation 

We shall adopt the following notational convenience in the discussion to  follow. We shall denote 

communications that need to  carry no parameters such as x().P as x .P  and hc.P as Z.P. 

communications that need to carry more than one parameter by 
x ( Y I , . . . , Y ~ )  a n d T ~ l , . . . , ~ n  

multiple match patterns such as X ( Y ) . ( [ ~  = zl]Pl + - .  + [y = zn]Pn) as 

2 : [zl => PI; . .; zn => P,] 

Also, for a n-ary agent A defined as 

we regard A(yl,. . . , yk) I; 5 n to  be an agent of arity n - k which is defined as agent A 

def 
An agent defining equation A(yl, . . . , y, ) = P ,  can represent recursion since P may 

contain any agent identifier, even A itself. We shall define, using recursion on agents a special 
process expression, called replication, represented as ! P ,  by the equation, 

In effect, ! P  = P I P I . . ., indefinite copies of P in composition. 
In fact, provided the number of recursive agents is finite, we can encode them by replications 

[Milner 19911. In the discussion to  follow we shall freely use replication as a variant of recursive 
agents. 

1.4 Examples 

1.4.1 Addition in n-calculus 

Consider modeling an agent that represents a natural number in church numeral representation. 
An agent that represents a natural number n, ~ ( s ,  z )  communicates n times on a channel called 
the successor channel s and once on the zero channel z before becoming inactive. Thus 



The behavior of the above process is illustrated in Figure 1 and 2. An addition process 
takes two natural numbers represented using the channels sl, zl and sz, z2 and returns their 
sum as a natural number represented using channels s, x. The channels have been paired for 
notational convenience. 

def ~dd(s~,z~,s~,z~,s,x) = ( ~ ~ . ~ . ~ d d ( s ~ , z ~ , s z , z z , s , z )  + zi.Co~~(sa,zz,s,z)) 

- n -  - m- 
n (sl, zl) = s l  . 21 .0  m-(sZ,z2) = s2 . z 2  0 

Add(sl,zl,sZ,zZ,s,z) 

n times 

V 

Figure 1: Operand 1 communicates on successor channel 

Figure 2: Operand 1 communicates on zero channel 

The Add process signals on the successor channel corresponding to  the output s while the 
first operand signals on its successor channel sl. Once the operand signals on its zero channel, 
the Add agent copies the second operand on to the output channel pair s, z. This is illustrated 



in Figure 3 and 4. The Copy agent replicates the signal pattern on channels x  and y  on to  
channels u and v. It is defined as follows. 

def 
C o p y ( x , y , u , v )  = ( x . ~ . C o p y ( x , y , u , v ) f  y-5.0) 

Thus the process m + n ( s ,  x)  is represented by 

(V S1  Z1 S 2  z ~ ) ( ~ L ( s I ,  Z I )  I m(s2,  ~ 2 )  I Add(s17 ~ 1 ,  ~ 2 ,  s 7  z)) 

Figure 3: Operand 2 communicates on successor channel 

Figure 4: Operand 2 communicates on zero channel 

1.4.2 Simulating Higher order n-calculus 

n-calculus as defined here does not allow processes to be contents of communications. In 
this sense, it is first order in nature. However in an attempt towards modeling mobility of 



processes it is conceivable to  define a higher order n-calculus [Milner 19911 in which processes 
are transmitted and received over channels as if they were data. The following example shows 
that the first order T-calculus is rich enough to simulate the effect of having processes as data, 
by using only names as data. 

Consider extending the first order T-calculus to have agents transmit and receive processes. 
In the following example names in uppercase represent processes or process variables. Let 

dzf P ( x )  - 3R.P' and Q ( x )  5 x ( X ) . ( X  I Q') 

After one interaction, P ( x )  I Q ( x )  reduces to P' 1 R I Q'. 

We can simulate the same effect in first order n-calculus by locating the "floating" agent at  
a new name z ,  and passing the address z to Q instead. 

P ( X )  d" (vz)(?Fz.(P' I z.R)) and O ( x )  d" x(y).(?j.O I Q') 

P ( X )  1 o ( x )  ( v z ) ( ~ z . ( P '  I 2.R)) I x(y)(v.O I Q') 
5 ( u z ) ( ( P r  I z .R)  I (3.0 I Q'))  
5 P'I R I Q '  

as in the previous case. 
It is noteworthy that higher order T-calculus provides a greater clarity of expression which 

is obscured in its simulation in first order n-calculus. 

1.5 Equivalence of Processes 

Some of the agents defined by the syntax above, are equivalent. Some of them may be identified 
simply based on their syntactic structure, while others are equivalent based on their interaction 
behavior. 

1.5.1 Structural Congruence 

Definition Structural congruence = is defined as the smallest congruence relation such that 
the following laws hold. 

1. Agents are identified if they only differ in the names of their bound variables. 

5. If x  g! f v ( P )  then ( v x ) ( P  I Q )  = P I ( v x ) Q  

def 6. If A(x1 , .  . .,x,) = P  then A(y1,.  . . ,y,) - P { y l / x l , .  . ., y,/x,) 

Structural congruence helps to  factor out congruence induced by physical structure of agents 
from that induced by their interaction behavior. It also helps to bring the communicants to be 
neighbors as suggested in [Berry and Boudol 19901. 



1.5.2 Simulation and Congruence 

Two sequential programs are behaviorally equivalent if their input-output relationship is the 
same. But for concurrent programs the intermediate states that occur as the computation 
progresses are also important, since the intermediate states may be exploited by the environment 
to produce a different overall behavior. In the following example both programs P and Q replace 
the value of the variable x with 5. However when run in parallel with the program R each would 
produce different results. 

The behavior of a program is characterized by observing how it would communicate with 
an observer (such as program R in the above example). Two programs would be deemed to be 
congruent if they display identical behavior with every observer. This method of characterizing 
equivalence is called as observational congruence. Observational equivalence was introduced in 
[Ross 19851 and it captures behavioral equivalence between concurrent programs. Two obser- 
vationally congruent programs may be used interchangeably in a system, without affecting the 
observational behavior of the system. 

Definition Simulation is a binary relation R over agents such that if P 82 Q then 

1. If P 5 P' and a is a free action, then for some Q', Q 3 Q' and P'RQ'. 

2. If P x2) P and y $L v(P) U v(Q), then for some Q', Q x2) Q' and for all 

w P'{w/Y) % Q'{w/Y) 
- - 

3. If P x2) P' and y v(P) U v(Q), then for some Q', Q x2) Q' and P' RQ'. 

a 8 is a bisimulation if R and its inverse are simulations. We shall denote the bisimulation 
relation by z. 

a Equivalence of two processes A is the largest bisimulation. Thus two processes are equiv- 
alent if and only if they are related by some bisimulation. 

The primary intuition behind simulation is that every transition of P can be simulated by 
a transition of Q such that the residue P' and Q' remain in the simulation. This is reflected in 
the first clause of the definition for simulation. 

Secondly, to  simulate an input action, it is not sufficient to require that the residues continue 
to be in the simulation. A process x(y).P may receive any arbitrary name w and evolve into 
process Pf{w/y}. To simulate such an action, it not only requires that the same action be 
performed, but also requires that the residues be in the simulation for all input values w. 
This intuition is captured by the second clause of the definition. The final clause is used for 
simulation of agents that perform a bound output action. 

The following example demonstrates that bisimulation is not preserved under substitution 
of names. 



def - 
F(x ,Y)  = X l Y  

def - 
G(x, y) = x.y + y.z 

F(x ,  y)&G(x, Y) but F(x,  x) Ft.G(x, 2). 

Observe that F(x,  y) and G(x, y) have the same set of actions and hence are equivalent. 
However under the substitution a = {xlx, s l y ) ,  F(x,  x) can perform a silent action that G(x, x) 
cannot perform. Hence they are not equivalent. 

Definition Congruence Two processes P and Q are congruent, P N Q, if Par; Qa, for a l l  
substitutions a. 

2 Use of n-calculus primitives to model programming con- 
cepts 

In this section we shall take a closer look at the distinctive features of n-calculus with a view 
of determining their usefulness for representing programming concepts. 

Some of the distinctive features of T-calculus are 

a Names are treated as primitive entities. 

a Channels are named instead of processes. 

a Contents of channels are names and not processes. 

a Restriction construct, (Y)  

2.1 Expressing Client-Server Model of Computation 

In a client-server model of computation, a server process provides a service upon request to a 
client process. The client names a service and passes the required parameters t o  the server. The 
server commences execution of the named service with the parameters provided by the client, 
while the client waits for results from the server. On completion of the service, the server 
transmits the results to the client, which resumes its execution. Such a model of computation 
can be expressed naturally in T-calculus. 

The following example illustrates the client-server model of computation. 

In the system S ,  the client P establishes a private con~munication channel u with the server 
Q which provides services determined by R (whose definition is not shown). The client then 
passes the parameters on the private channel to  the server, which uses it as the input parameter 
for the service requested. Notice that the name of the private channel between the client and 



the server is passed on to  R. This channel name is used to transmit the results of the service 
back to the client. 

The example above is oversimplified, to illustrate, the idea without the minor details. A 
detailed illustration is provided in the translation of a client-server communication construct in 
the discussion of [Walker 19901 in the next section. 

2.2 Naming of channels 

The decision to name channels instead of processes, enhances the richness of expression of 
n-calculus to express the client-server model of computing. This feature allows a service to 
be associated with a channel name which can be used to model transparent access to server 
processes, in situations where more than one server process provides a service. Also, a process, 
by using different channels of interaction can bear different roles to different clients. This would 
not be possible to model if processes were to be named instead of channels. We conjecture that 
naming channels, would also help to overcome issues of unique naming of processes, a major 
issue in the distributed computing comniunity. However a study of this is beyond the scope of 
the present discussion. 

2.3 Restricting Scope of Names 

Yet another uniqueness of n-calculus is the v construct. The names restricted by the v construct, 
are private to the process it prefixes. This can be used to model private resources of a process. 
Consider, the following processes 

def Sl = (vx)((Z.P l!x.Q) 1 z.R) 
d ~ f  S2 - ((vx)(z .P (!x.Q)) I Z.R 

In process S1, the resource Q may be accessed by both P and R. However in S2, the resource 
Q is located on a private channel of P, which makes it a private resource, available only to P. 
R cannot access it. Selective access to Q may be provided, if Sz is modified to S3 as follows 

Now, S may obtain access to the private channel of P on which Q is located through the name 
u. Communications on u would interact with the private resource of P. 

In the above examples, let P, R and S be finite processes, that eventually terminate. Q, 
persists to exist because of replication. However, Q becomes inaccessible to all other processes 
because of the restriction. In the discussion to come, deadlocked processes are modeled in this 
manner. 

n-calculus makes a unique decision by disallowing processes to be contents of communica- 
tion. This restriction has a pleasant benefit. Passing processes over channels would provide 
unrestricted access to all resources that are private to a process. Passing names instead of 
processes helps to make selective resources of a process available for public usage. This serves 
as an excellent means to model restricted access to resources. 



2.4 Modeling Control Strategies 

Various control strategies can be modeled using n-calculus primitives. [Walker 19901 uses n- 
calculus to  model sequential and iterative control strategy of an imperative language while 
[Ross 19901 uses it to  model the left-to-right-depth-first strategy of Prolog. n-calculus coni- 
munication viewed as synchronization signals is used for this purpose. A simple sequencing of 
processes is illustrated by the following example. 

dzf P before Q - ( v x ) ( P ( x )  I x.Q) x @ v ( P )  

The execution of P and Q is sequenced such that Q waits until P completes execution. Upon 
completion of P a local synchronization signal is transmitted which triggers the execution of 
Q. Notice that the synchronization signal is passed as a parameter to  P. 

With the use of the sequencer the familiar iterative statement while E do S is modeled 
as follows. We assume the expression E to return constants TRUE or FALSE on evaluation. 
[ El0 v is the process that represents the expression E. The value of the expression is returned 
on the channel v. The values TRUE and FALSE are represented by two special channel names 
T R U E  and F A L S E .  

d ~ f  W - (uv ) ( [  El0 v I v : [TRUE => [ S]' before W ;  F A L S E  => 01) 

The process works as follows. Upon evaluation of E, the process [ El0 v outputs a T R U E  
or F A L S E  on the channel v. If the value is T R U E  then the process [ S]' representing the 
statement S is executed before reexecuting W. If the output of [ El0 v is F A L S E  then the 
iteration terminates. 

2.5 Representing Complex Data Objects 

Complex data objects such as lists can be represented in n-calculus. We use the constructors 
Cons and Nil to  represent a list. For example the list [1,2] is represented as 

Cons(1, Cons(2, N i l ) )  

A list 1 is represented in n-calculus as an agent [ 11' ( x ) ,  where x serves as its access channel. 
We will assume two special channel names NIL and C O N S  which will be treated as special 
values. The processes representing the Cons cell and Nil are as follows. 

[ Nil]' ( r )  dCf Z N I L  

[ C o n ~ ( v , l ) ] ~  (z) dcf ( v y ) ( ~ C o n s , v , y l [ l ] ~  ( y ) )  

Observe that the data value v is ephemeral in that it disappears after an access. It needs 
to  be copied back after every access just as a memory refresh operation at  the address of the 
variable copies its value back to its location. Persistence of data values can be modeled by 
copying the data back to its location. Thus a persistent list is represented as follows. 

[ Nil]' ( x )  de' Z N I L  I [ Nil]' x 

[ Cons(v,  1)1° ( r )  dcf (uy)(%Coas, v ,  y 1 [ I]' y I [ Cons(v,  l)]' ( 2 ) )  



The features discussed in this section orient n-calculus more towards ob ject-oriented paradigm 
of computing, in which objects are named and pointers are used to  provide access to  one an- 
other. Data values are also represented as processes and instead of passing complex data 
objects as values, accesses to the processes representing them are passed as values. Thus T- 

calculus serves as an attempt to provide a canonical encapsulation of object-oriented paradigm 
of computing just as A-calculus provides for functional paradigm. It also helps to  formalize 
the operational semantics of such languages (which hither to fore have been treated mostly 
informally [Milner 19911). 

3 Translations of Programming Languages into T-calculus 

Sequential programming languages can be broadly characterized into one of the following 
paradigms. 

a Object-Oriented programming languages 

a Logic programming languages 

Functional programming languages 

Object-oriented programming languages are characterized by the presence of objects that 
interact by sending messages to each other. Notions of inheritance and data encapsulatioiz are 
central to  this paradigm. A variable in such languages is associated with a memory location 
whose value can be updated by the assignment operation. Conlputation proceeds in a sequential 
manner by retrieving and updating the values of program variables. The order of evaluation of 
statements and expressions crucially affects the results computed in such languages. 

A program of a logic programming language consists of rules and facts. These languages 
are declarative in the sense that the rules and facts are specified by the programmer, and the 
language specifies the control mechanism to search the rule set. Computation is characterized 
by the solutions to  queries about the rule set. Solutions to  queries change depending on the 
search control strategy used. Unification is used to answer queries. Variables are used as place 
holders for values during the process of unification. They are set to  a value when unification 
succeeds and are refreshed when unification fails. They are not associated with a fixed location 
as in imperative languages. Prolog is a representative of such a programming paradigm. 

Functional programming is characterized as programming that uses function application 
as the only control structure. Binding of variables to  terms (values or expressions) is used 
to  associate a name to  a value unlike the assignment statement of object-oriented languages. 
Variables can be bound only once but can be read from many times. 

In what follows we present translations into T-calculus of three languages, La ,  Prolog and 
A-calculus that represent the three paradigms of programming. The translations can be used for 
purposes, among others, to reason about properties of programs [Ross 19901 and to  demonstrate 
the richness of n-calculus [Milner 19891. 

3.1 An Object-Oriented Language 

The paper [Walker 19901 provides a translation of two object-oriented languages L1 and L2 into 
T-calculus. A computation in these languages consists of a network of objects interacting with 



each other. The network topology dynamically changes as computation proceeds. The ability 
of n-calculus to  model changing communicating network topology, is effectively used for this 
purpose. Also, a variable is modeled as a memory location using T-calculus. 

We shall examine the syntax and capabilities of the language L2 in the next section and 
follow it with a discussion of its translation into T-calculus. We will not discuss the language 
L1 owing to space constraints. 

3.1.1 Introduction to language L2 

A program of L2 consists of a sequence of class declarations. Instances of the classes are called 
objects. The computational behavior of a system of objects governs the computational behavior 
of a program with a distinguished root object initiating the computation. An object consists 
of local variable declarations, a number of procedures or methods and a number of statements. 
Interactions among objects is for the purpose of method invocation and is done by means of 
rendezvous mechanism. Communication structure may evolve through the communications of 
references to new objects that can be created during computation. 

Syntax of Lz 

Let X ,  Y, Z be program variables. We shall limit our discussion to certain forms of expres- 
sions and statements only. For a complete repertoire the reader is referred to [Walker 19901. 
The syntax for a few expressions is as follows. 

E ..- ..- X 

I k  ( k  : nat E N )  
I El + E2 
I El!M(E2)  

Each well-formed expression is one of nut or reftype. The syntax for some statements is as 
follows. 

Objects that are instances of a class C are created by the new, construct. Reference to  the 
object returned by new, is assigned to a variable of type ref. A class declaration is of the form 

Cdec ::= Class C i s  Vdec,  Mdec in S 

where Mdec represents a method declaration. 
A method declaration is of the form 

Mdec ::= method Ml(X1, Yl )  i s  S1 . . . M,(X,, Y,) i s  S, 

with Mi distinct from one another. The Xis serve as the input parameter and the Y,s serve as 
output variables in which the result of the evaluation of Sis are stored. 



The value returned by the expression E = E1!M(E2)  is the value returned by the object 
referred by El after the invocation of the method M with parameter E2. The method M is 
invoked if the object referred by El executes the answer statement. The answer(M1, . . . , M k )  
statement invokes the method Mi for some i, with the parameter supplied by a client. A 
client is an object that is seeking to evaluate the expression E1!M;(E2) with El a reference to  
the server, an object containing the answer statement. The execution of the client is blocked 
until the server returns a value. This construct helps to model the client-server mechanism of 
function invocation elegantly. 

3.1.2 Translation of L2 into n-calculus 

The translation function [ I 0  maps the constructs of L2 to agents in T-calculus. We shall discuss 
only the salient points of the translation in [Walker 19901, in this report. 

Translation of variables 

A variable X is viewed as a memory location. Modeling the behavior of the memory location 
effectively serves as a translation of a variable declaration. The memory location contains the 
name of a link to an agent that represents the value of the variable. Each memory location for 
a variable X is associated with two constants rx and w x  that serve the purpose of its read 
and write channels. Thus the translation of the declaration of a variable of non-reference type 
is 

def [ var X : tI0 = Locx 

Assignment to  a variable is done by storing the link to the agent that represents the new 
data value in the memory location, Loex, that represents the variable. Upon declaration of a 
variable all reads from it will result in the blocking of the reading process until an assignment 
stores a link name z in the location. Once an assignment is made, the variable is represented 
as a register Regx(y)  with y being the link to the agent representing the value of the variable. 

Two other constants REF and N I L  are used in the translation of a ref variable X. They 
signify respectively the state of X containing and not containing a reference to an object. An 
uninitialized reference variable contains a N I L .  A read operation on an initialized reference 
variable communicates the flag R E F  and the name of the link to an agent that represents the 
value of the variable. Similarly a write operation is completed in two interactions. The following 
is the translation for reference variable declaration which is similar to that of a non-reference 
variable but for the two-step read and write operations. 

'As discussed in [Milner and Walker 19891 constants can be replaced by special channel names 



def [ war X : re f ]"  = Locx 

dsf Locx - = N I L  $ w x [ N I L  => Locx; R E F  => wx(y) .Regx(y)]  

def - 
R e g x ( ~ )  = rx R E F . c y . R e g x ( y )  + wx [ N I L  => Locx; R E F  => wx(z ) .Regx(z ) ]  

Translat ion of Class construct  

Every class C is associated with a n-calculus constant c  which is the name of the link on 
which requests for creation of objects are accepted. Interaction on this channel results in the 
creation of a new link name and a copy of the body of the class. The new link name is private 
to  the new object and serves as its channel for communication. The translation of a class 
declaration is 

d$ [class C is  Vdec i n  SI0 ( c )  - z(w).![ Vdec in 5'1' (w) 

dzf [ Vdec  i n  SI0 ( w )  - v r x , ,  wx, ([  VdecIo I [ SI0 ( w ) ) ( V X i  E Vdec)  

The replication operator in the above translation allows for creation of an indefinite number 
of objects that are instances of a class. Also new constants r x ,  and wx, are created for each 
variable X ;  local to  a class every time an object is created by the new, expression. 

Translat ion of Expressions 

An expression is translated as an agent that communicates the value of the expression along 
a channel (value channel), as shown below. However such agents yield a value only once. They 
are ephemeral and cease to  exist once the expression they represent is evaluated. We shall 
discuss two cases of expression translation for illustrative purposes. 

[ kIo ( v )  %f ( F O N E ) ~ . B Z E R O  

dzf [ + I 0  ( v l ,  v2,  v )  - v1 : [ Z E R O  => [+I0 ' ( ~ 2 ,  v )  ; O N E  => 3 O N E . [  +lo ( v l ,  ~ 2 ,  v ) ]  

def [ + I 0  ' ( v 2 , v )  = v2 : [ Z E R O  = > F Z E R O ;  O N E  =>TONE.[+] '  ' ( v ~ , v ) ]  

where O N E  and Z E R O  are constants. 
A natural number b,  is represented by a process that communicates the unary represen- 

tation of the number on its value channel. The flag Z E R O  indicates the termination of the 
unary representation. Addition of two expression is a parallel composition of the translated 
operands along with a process that implements the addition operation. The two operands are 
evaluated with new and private links as their value channels. The private links are provided as 
parameters to  the addition process. The addition process adds the numbers represented by the 
private channels and returns the unary representation of the result on the value channel of the 



expression. 
Evaluation of an expression results in creation of a process that represents the value of 

the expression. Indefinite number of private instances of the agent representing the value of 
the evaluated expression may be obtained via a public channel that provides access to  the 
process. Hence an assignment statement [ X := El0 , with X a variable of non-reference type, 
is translated to  store the public channel to  the process representing the value of E, in the 
memory location that represents X as illustrated in figure 5. 

- 
[var x : t] [El@) = ! v(w).[kl(w) 

Figure 5: A value k stored in a variable x 

The evaluation of a variable X ,  as a result of the translation for assignment, proceeds by 

1. Accessing the link to  the process representing the value. This is stored in the location 
that represents X ,  shown in figure 6. 

2. Obtaining the link to a private instance of the process representing the value of X,  shown 
in figure 7. 

3. Interacting with the private instance to  receive the value it represents, shown in figure 8. 

- 
[var x : t] [El(v) = ! v(w)*[kl(w) 

Figure 6: Accessing the link to  the process representing a value 

The assignment statement for the creation of an object using the new, expression is trans- 
lated as follows. 



[var x : t] [E](v) = ! qw).[k](w) 

Figure 7: Obtaining the link to a private instance of the process 

- [var x : t] [El(v) = ! v(w).[kl(w) 
- - - - - - - - - - -  ,.A 

Figure 8: Interacting with the private instance to  receive the value 

def [ X := newc]' ( w )  = c(z).W,REF.W,z.Done 

c refers to  the T-calculus constant that is associated with every class. z would be the private 
link to  the new object and is stored in R e g x .  Done is used to  indicate the completion of the 
process. 

Translat ion of Communicat ion Cons t ruc ts  

Translation of the method construct along with the communication constructs are as follows. 



At The Client End  

[ El !M(E2)I0 (v) 
dzf 
- (v3)((v1)([ Ell0 ( ~ 1 )  1 vl(u)[u = REF]v,(w).Done) 

before 

( (~2 ) ( [  E2I0 (02) 1 Eval(v2, ~ 3 ) )  
before 

(u)~u.~m.~v~.u(v~).v~(v~~) .Copy(vll, v))) 

At The Server End 

dzf [ answer(Ml, ..., M,)]" (w) - w(u).u : [ m; => u(v).m;(z). 
Zw.Zv.z(vl).-ii.vl.Done]{i = 1, k )  

[ method M(X,  Y) i s  SI0 dzf 
- ~ ( z ) ! M ( z )  

M ( z >  dzf - (N)(Locx 1 Lacy I z ( w ) . z ( x ) . ~ x . ( [  $1' (w) 
before ry  (v1).2v1)) 

The start of a con~munication begins with the client evaluating the expression El!M(E2). 
The expression El is evaluated to  a link w to the server (object referred to, if it exists). Then the 
expression E2 is evaluated and a private link v3 is used as a channel to the process representing 
the value of E2. At this point the client remains suspended until the server executes an answer 
statement. Then a private link u is communicated to the server via the channel w. Along the 
private channel u, the reference to the method requested for execution m is then communicated. 
If the server offers the method requested (m;), for public usage, then tlze link to the argument 
for the method, vs is received along u . The server then requests from the agent representing the 
declaration of that method for a private copy of the agent representing the body of the method. 
The private channel z is used by the server to communicate with the private copy of the body 
of the method m;. Along z the server communicates w, the reference to the current object 
and v, the name of the link to the parameter. The agent representing the body of the metliod 
stores the input parameter in local Regx and proceeds with the execution of the statement S .  
On completion of S ,  the name stored in local Regy is returned to the server as the link to the 
process representing the output value of the method. The server in turn returns this name to 
the E1!M(E2) along the private link u, and then indicates completion. Finally a link to the 
private copy of the output value is obtained and the value is copied using the Copy agent. 

The translation of the con~munication construct makes several assumptions. 

1. Only one client may interact with a server. If several clients are waiting to be serviced, 
one of them is picked nondeterministically and served. 

2. The method requested by the client must be offered by the server. If it is not then the 
server fails to proceed and both the server and client are deadlocked. 

3. At the time a server executes an answer statement, at least one client needs to be waiting 
for service. If there are no clients in the system, the server is blocked. 



The rest of the constructions are translated in an obvious manner and will not be discussed 
here. 

3.1.3 Remarks 

[Walker 19901 serves to  demonstrate the expressive power of n-calculus by encoding two lan- 
guages that have communication constructs. However the paper does not however justify the 
choice of the two languages as being representative of the object-oriented paradigm. It fails to  
demonstrate how the language constructs capture concepts such as encapsulation and inheri- 
tance that are central to the object oriented paradigm. 

Also, the translation of expressions of type nut, involve an infinite set of recursive processes. 
This could be avoided by using the n-calculus with abstractions and concretions. We made 
an attempt to transform the translation using this version of n-calculus. However due to 
the delicate relationships embedded in the translation, such a transformation would require a 
complete overhaul of the current translation. 

[Walker 19901 makes a point that by providing the n-calculus semantics it has avoided the 
use of sophisticated mathematical machinery required to establish the well-definedness of the 
semantics. However it does not include any proof of correctness of the translation nor examines 
its properties. The paper may be regarded as one of several possible variations of translating 
the languages L1 and L2 into n-calculus. 

3.2 T-calculus semantics for Prolog programs 

[Ross 19901 provides a process model interpretation of logic program computation that can be 
modeled using a process algebra. CCS has been chosen to  be the process algebra to  model such 
an interpretation. We shall present the same translation in n-calculus. Modeling logic programs 
as a system of processes has several advantages. Properties of logic programs may be proved 
using properties of processes that represent them. [Ross 19901 uses the notion of bisimilarity of 
processes t o  prove termination properties, to  validate partial evaluation and source-to-source 
transformation of logic programs. 

AND,/OR trees define the declarative semantics of logic programs. They represent logical 
dependencies in conlputation and inference. The AND node requires that all its children (goals) 
be solved while the OR node requires that one of its children (clause) be solved. Operational 
semantics of logic programs may be provided by viewing the AND and OR nodes of an AND/OR 
tree as processes. Prolog uses a depth-first-left-right search strategy in solving for a clause. The 
clauses are searched in the textual order as they appear in the program. The control strategy 
is further affected by the use of control operators such as cut. The AND and OR agents of 
the AND/OR tree that represents a Prolog program determine the manner in which the tree 
is explored, in effect modeling a control strategy. Such an approach has been adopted by 
[Conery and Kibler 19851 for providing operational semantics for concurrent logic languages 
where the nodes have been treated as concurrent agents. [Ross 19901 uses sequential AND and 
OR agents instead. 



3.2.1 Translation 

Two special events, succ(6) and done representing successful and unsuccessful termination 
signals, control the execution of a program. 6 in succ(0) represents a substitution of the form 
X; t t; returned by an unification agent upon successful termination. An empty substitution 
is represented as E .  

A finite computation may be viewed as a series of succ actions followed by a done action. 
A failure computation is represented by termination without any success actions. Thus a succ 
action is the primary means for observing computation and every terminating computation 
eventually results in a done action. 

We shall discuss the translation provided in [Ross 19901 using T-calculus. The following is 
a translation of each construct of Prolog in n-calculus. 

A construct of Prolog is represented as an agent in T-calculus. The agent is parameterized 
by two channels, s and d that represent the two special events succ and done. Output on s 
channel indicates a succ action while that on d channel indicates a done action. 

1. Some definitions 

Done(s,  d )  dC' 2 
T r a e ( s ,  d )  de' 3 ( ~ ) . 2  

2. Predicates (OR agents) 
def 

[ P I ,  P2, . . . PnI0 ( s ,  d )  = P ( s ,  d )  = (P19P27. . . YPn)(.S, d )  

3. Clauses ( A N D  agents) 
def 

[ Pi : - G I , .  . .GnI0 ( s , d )  = Pi(s, d )  - ([ G1I0 b . . . b [ G,I0 ) ( s ,  d )  

4. Program Queries 

[ : - G I , .  . .G,I0 ( s , d )  = ([ GI]' b . . . b [ G,I0 ) ( s , d )  

5 .  Sequencing operator 

( P i Q ) ( s ,  d )  !Zf ( v d l ) ( P ( s ,  dr)  I dr.Q(s, d ) )  

6. Goal backtracking operator 

( P  b Q ) ( s ,  d )  ef (vs l  d' loc) ( P ( s r ,  dl) / NextGoal(sl, dl, loc, s ,  d )  ]!loc(sl ,  d l ) .Q(s l ,  d l ) )  

NestGoal(s f ,  d', loc, s ,  d )  5' st.(R(loc) NextGoal(sr, dl, loc)) (s ,  d )  + dr.Done(s, d )  

d ~ f  - R(loc, s ,  d )  - Eoc s ,  d.0 

7. Single goal calls 

G ( s ,  d )  : G is  a defined predicate 
[ G o  s ,  d )  { s.Done(s, d )  + Done(s, d )  : G is  a builtin atom 

Done(s, d )  : G not defined 

8. Builtin Unification Agent 



The order for searching clauses is modeled by the OR agent that sequentially invokes the 
clauses in the order they appear in the text of the program. The special operator f uses a 
private channel t o  ensure the sequential order of execution of successive clauses. 

Each clause is represented by an AND agent. It repeatedly resolves the goals in the clause 
body in a left-right order. A special operator b is used to  model the backtracking behavior 
of goals. In (P b Q)(s, d) the goal P is invoked with private channels st and d' to represent 
its termination nature. After the first solution of P, indicated by a signal on sf, the goal Q is 
invoked. The invocation of Q is by the trigger mechanism that was used to  simulate a higher 
order process in the example on page 9. New instances of the goal Q are created for each 
solution of goal P and are passed the channels s and d as parameters using the R(loc, s ,d)  
process. The sequence operator ensures that the next solution of P is processed once all tlze 
solutions of Q have been processed. This continues until P terminates. It is to  be observed 
that after the first solution of P ,  both P and Q continue execution in parallel. 

The unification agent is not modeled in [Ross 19901. The paper assumes a builtin unifier 
agent that returns the substitution if unification of the terms succeeds. The builtin unification 

N N 

agent returns 8, the most general unifier of tl and t2 on successful unification. If not it 
performs the termination action. 

A Prolog program and its n-calculus translation is provided in figure 9. 

dzf 
a(2) : - a ( 2 ) .  u [ a2(X)lo (s,d) - ( ( X  = 2) b a(2))(s, d) 

Figure 9: A logic program and its a-calculus translation 

Having obtained the a-calculus representation of a Prolog program, the operational seman- 
tics of n-calculus may be used to  reason about the execution of the program. Since the purpose 
of the translation is to  observe the computational behavioral properties of Prolog programs, 
the behavior of the control operators f and b can be provided at a higher level using bisimi- 
larities. This entails providing bisimilar agents that represent all possible states of sequencing 
and backtracking mechanism. A new operator b is introduced to  represent an intermediate 
state of (P b Q)(s, d) . This intermediate state corresponds to  the situation when P produces a 
signal on s channel and the computation of Q is t o  commence using the substitution 19 resulting 
from P. 

dzf (P b Q)(s, d) - (vs' df)(P(s', d') 1 sf.(Q; NextGoal)(s, d)) 

Bisimilarities that may be used as rewrite rules are as follows. 



Seq : (Done ;  P ) ( s , d )  M P ( s , d )  

Back - 1 : ((3(6).P) b Q ) ( s ,  d )  M ( P  b QO)(s, d )  

Back - 2 : (Done b Q)( s ,  d )  Done(s, d )  

Back - 3 : ( P  b ( ~ ( 6 ) . Q ) ) ( s ,  d )  (s(B).(P b Q ) ) ( s ,  d )  

Back - 4 : ( P b  Done)(s,d) = (P D Q ) ( s , d )  

Resolution rule is a bisimilarity used to  model a single resolution step by applying the 
substitution obtained on unification of the head of a clause and a goal, to  the body of that 
clause. 

Resol: 
?., N 

Done(s, d )  : t and t ;  do not u n i f y  for any P; 

N N 

3(6).Done(s, d )  : 8 = mgu( t , t;  ) and 

pi(: )(s, d )  = P ( s  d )  d"' ( z  =; ) ( s ,  d )  

I N N 

(QO)(s, d )  : 6 = mgu( t , t;  ) and 

Pi(; ) ( s )  d )  !Ef ( ( G  =; ) b Q ) ( s ,  d )  

Translation of Cut 

The cut control operator affects Prolog's search strategy. When a cut is invoked the following 
events occur 

1. the choice points of the goals found prior to the cut in the clause are discarded, 

2. the clauses following the clause with the cut are not searched. 

These events are modeled in T-calculus by suspending agents. Agents are forced to  deadlock. 
We define the operators that model cut as follows. 

( A  B ) ( s ,  d )  
def - (US' dt)(A(s' ,  d') I st .B(s ,  d )  1 done'. Done(s, d ) ) )  

( A  Fc B)(saee,  done, e )  (VS' dt)(A(s' ,  d') I s f .  B(s ,  d )  I dt.Done(s, e ) )  

- 
The two operators b, and D are used to  model the first cut in the clause and the 

subsequent cuts respectively. It is evident that the first cut prunes the clause space while the 



subsequent cuts do not prune the clause search space. In the definition of A 77 B the first 
solution from A is used to  invoke B. Subsequent solutions of A are ignored. This differs from 
the b where all solutions of A are retrieved. The operator 37, terminates with either a signal 
done or c depending on whether the cut was invoked or not. The sequencing of a clause with 
a clause that has a cut is represented by the 7 operator. In P Q the operator invokes Q 
only when the signal from P is c which means that the cut in P was not activated. Owing to  
this signaling mechanism, the agent that represents a clause with a cut, needs three channels to 
communicate, while the agent that represents a clause with no cut will need only two channels. 
The following bisimilarities apply to  the operators that model cut. The bisimilarities describe 
the operational effects of cut which prunes goal and clause search. 

Cut - 1 : ((z(.(B).A F, B) C)(s, d) z (BB)(s, d) 

Cut - 2 :  d done.^ 77, 3) C)(s, d) z C(s, d) 

Appendix 4 illustrates the use of bismilarities between the Prolog program representation in 
n-calculus, for validating source-to-source transformation and proving termination of programs. 

3.2.2 Remarks 

[Ross 19901 presents the operational semantics of Prolog using CCS, the essence of which has 
been preserved and presented in n-calculus framework here. Prolog's search control strategy, 
with and without cut, is modeled by the synchronization mechanism provided by n-calculus. 
The behavior of a Prolog program is studied using its semantic representation which in this case 
are processes of T-calculus. Properties of programs can be proved using the notion of bisimi- 
larity of processes. Equivalence between programs is established by demonstrating bisimilarity 
between their process representations. 

[Ross 19901 assumes the presence of a unification agent and uses its behavior implicitly in 
proving properties of programs. The representation of the substitution returned by the unifier 
agent and the bookkeeping regarding binding of variables have not been worked out. In fact, 
the translation presented in [Ross 19901, may be regarded as a translation of a propositional 
logic language, since the translation of variables is not dealt with at all. 

The translation provided in [Ross 19901 requires an indexed set of processes, NextGoal;, 
indexed by pairs of goals, to simulate the backtracking of goals. Our translation to  n-calculus 
avoids this by making NextGoal simulate a higher order process. 

3.3 Functions as Processes 

The paper [Milner 19891 exhibits accurate encodings of two variants of A-calculus in first order 
T-calculus. It may seem surprising at  first sight to  note that A-calculus, in which variables can 
be bound to  terms, can be simulated by first order n-calculus in which variables can only be 
bound to  names. However upon reflection it is not so surprising since all implementations of 
functional languages on conventional machines work by passing values and addresses between 
registers, instead of passing complex entities such as functions. Hence there must be some way 
of encoding A-calculus using n-calculus. [Milner 19891 demonstrates a translation that preserves 
the notion of reduction in A-calculus. A reduction step of a A-calculus term is simulated by 
atmost a short sequence of reductions in n-calculus. 



The paper [Milner 19891 also attempts to define a precongruence relation on the translations 
of A-terms that are related by a precongruence relation called applicative simulation. 

3.3.1 Lazy A-calculus 

Syntax 

Let x,  y, . . . range over an infinite set of variables X. Let L, M ,  N . . . range over the set of 
terms C of A-calculus, which are defined as follows. 

The last two terms are called abstraction and application respectively. The familiar reduction 
relation takes the form 

where { N I X )  represents substitution of the term N for x. 

Versions of the reduction relation differ by the context in which they admit /?-reduction. 
Lazy A-calculus admits @-reduction only at the extreme left of a term. This is called lazy 
reduction. Thus the term N is substituted as is, in the term M. 

The lazy reduction relation -+ over C is the smallest relation which satisfies /?-reduction 
along with the following rule for application. 

APPL : M i  M' 
M N  i M'N 

Notice that given a term M ,  there is exactly one and only one term it can reduce to. Thus the 
lazy reduction relation + is determinate. We represent the reflexive transitive closure of i by 
* 
i. 

We proceed to  encode the terms of lazy A-calculus into ?r-calculus. A-calculus seems to  be 
a basic calculus and one would expect the encoding to be simple if not obvious. However, the 
only term rewriting rule, P-reduction, uses a complex operation of substitution as a primitive. 
An encoding of A-calculus, then needs to model substitution in T-calculus. 

The approach adopted to  simulate substitution in [Milner 19891 is to  encode the environment 
model of term evaluation in T-calculus. In an environment model of term evaluation, terms are 
evaluated in an environment which binds variables to terms. In the term M{N/x}, the effect of 
substitution is achieved by evaluating the term M in an environment that binds the variable x 
to  the term N. [Milner 19891 formalizes the environment model of term evalutation to  achieve 
the encoding. 

Translation of lazy A-calculus 

A term M of the A-calculus is encoded as an agent [ MIo u. The name u is the link (access 
channel) along which [ MI0 receives its arguments. 

If M is used as an argument to  a function in a term and is bound to  a variable x, then each 
occurrence of x in the scope of the binding would result in a computation of M. Hence each 



time M is called it must be told by the caller, where it can receive its arguments from. Thus 
an environment entry that binds variable x to a term M is translated as 

def [x := M] = !x(w).[ MI0 w 

w is the link along which the processing representing the term M receives its arguments. The 
caller of M provides this name along the link x, which is the bound variable in the environment. 
The agent M is called whenever the variable x appearing ill a term N is evaluated. The 
replication operator in the translation is needed since the variable x may appear more than 
once in a term N and each evaluation of x would result in a call to  M .  

The translations of terms are as follows. 

def [ Ax.MI0 u - u(x, w).[ MI0 w 

[ x1° 21 
d ~ f  - - x U 

dzf [ MN]" u - (vv)([ MI0 v 1 T(x),u.[x := N]) (x not free in N )  

A lambda abstraction (Xx.M) is represented by an agent that receives on u, the name of the 
actual parameter for x and a name w, the link along which M will receive its arguments. Note 
the use of the abstracted variable x of A-calculus as a channel name in n-calculus. During 
communication, x would be bound to the input value on channel u. As a result, all occurrences 
of x in M would be substituted by the name that x would be bound to, simply by the operational 
semantics of T-calculus. 

The translation of a variable x is an agent that transmits its access channel u, on x. Now, 
u serves as the access channel to [ N]" , the agent to which x is bound to, in the environment. 
Thus [ N]" is located at the site of evaluation of x. For example, assume that x is bound to 
N in the current environment. Then evaluation of x is represented as follows. 

(vu)([ XI" u I [x := N]) Tu I !x(w).[ N]" w 
+ (vu)([ N]" u I!x(w).[ N]" w) 

In the translation for function application, M and its actual arguments are at the two ends 
of a private communication link, v. The agent [ N]" will not be activated until [ MI0 v reduces 
to  an abstraction [ Ay.M1]" v and is ready for its arguments on v. The double prefix of [ N]" is 
the essence of lazy evaluation. The actual argument N is evaluated as many times as y appears 
in M'. The replication in the environment entry serves to  provide as many copies of N as there 
are occurrences of y in M. After all the occurrences are evaluated, the environment entry for 
the private variable x, serves no purpose and the corresponding process would be deadlocked, 
since there would be no process to interact with it. This represents the garbage collection of 
an environment entry. 

3.3.2 Supplement ing  t h e  reduct ion relation 

[Milner 19891 verifies the correctness of this translation by proving a theorem to the effect that 
the translation presented faithfully preserves the convergent and divergent properties of terms 
of A-calculus. A reduction of a A-calculus term is simulated by atmost a sequence of reductions 
by its n-calculus representation. 



The reduction relation + used in the above example describes only the intra-action in a 
T-tern?. However a n-term not only performs intra-actions but can potentially interact with 
other T-terms of an environment. In case of lazy A-calculus, interaction of a term with the 
environment cannot occur until the term reduces to an abstraction. There is a well-defined 
ordering of reductions and interactions for terms of lazy A-calculus. But in T-calculus, owing to  
concurrency, intra-action and interaction can intermingle and this could change the behavior 
of a n-term in a context. 

A translation of A-terms must then concern itself with faithfully simulating the behavior of 
the term in a context. To be precise, the translation must preserve the distinguishability of 
A-terms under observation. Abramsky defined a preorder 5 called application simulation that 
relates two terms based on their convergence behavior. 

Definition M converges to  M', written as M  MI, if M  M' ,4 ; also, M  J, if M  converges 
to  some M'. 

Let .Lo be the set of closed terms. It can easily be seen that if M  E .Lo and M  J, MI then 
MI is an abstraction. 

N N 

Definition Let L, M E L o ,  then L 2 M  if for all sequences of closed terms N ,  if L N converges . 
N 

implies M  N converges. 

Furthermore if L, M E L have free variables ; we define L 5 M  if L{& / z }  5 M{& / ;} 
for &E L. 

< Also N is a precongruence, since M 5 N,  iff for every closed context C[-1; a term with a 
single hole; if C [ M ]  J, implies C [ N ]  J,. 

The paper [Milner 19891 attempts to define a precongruence relation _C between the trans- 
lations of two A-terms that preserves applicative simulation relation 5 of the two terms. It 
succeeds in defining a precongruence over T-terms that preserves the following bi-implication 
only in the forward direction. 

In the call-by-value version of A-calculus, a reduction in a closed term occurs only when the 
argument is an abstraction. The terms C are as before, but it is convenient to  define terms that 
can serve as values as 

Corresponding to lazy reduction relation of lazy A-calculus, we have call-by-value reduction 
relation which is defined as follows. 

Definition The call-by-value reduction relation +, is the smallest relation that obeys the 
following rules. 



APPL : M-+,Mt 
MN--+,MrN 

APPR : N-+,N' 
MN-+,MNt 

The two application rules allow reductions to  take place at any location in a term, save that 
the argument in an application must be a value for it to qualify as a redex. 

Translation 

We proceed to  provide a translation of the call-by-value A-calculus into T-calculus. A A-term 
M is thought of as an agent [ MI0 p .  However the channel p plays a dual role. 

1. As before, it is used as a channel for the agent to  receive argument values. 

2. In addition to  that, it is also used to signal that the term M has reduced to  a value. 

The signaling mechanism is required since M may occur as an argument of an applica- 
tion term and reduction is admitted only when M is a value. This constraint implies that 
abstracted variables of call-by-value A-calculus are bound only t o  values. Hence the entries in 
the environment contain only values and their translations are 

The environment entries do not differ significantly from those of the lazy A-calculus, except for 
the unfolding of the translation for the environment variable. The translations for the terms 
are as follows. 

def - 
[ VI0 P = P(Y) . [Y  := VI 

A term that can be a value translates to an agent that announces its valuehood and provides 
access t o  a newly created environment entry that binds the value to  a new variable y.  This is 
distinct from the lazy A-calculus case, in which an environment entry is created only when an 
abstracted variable is to be bound to  a term. 

Application of terms is translated as follows. 

1. Two new links are used to  serve as access channels to  processes representing M and N 
which execute concurrently. Let y and z be the environment variables bound to  the values 
of M and N .  Further, let the value of M be Ax.Mt. 



2. The ap agent receives the name y on q, and along y transmits a new link name v, that 
would contain the channel names z (channel that provides access to  the result of evaluating 
N )  and p (the location at which the result of the application is required). 

It is evident that in general +, is not determinate, since a term may reduce to  two different 
terms depending on which redex is reduced. However it is well known that if a term M 
reduces to  M' and M" then there exists a term N to which MI and M" both reduce. Thus 
if M J N then N is unique and so all reduction sequences terminate. [Milner 19891 proves 
that the translation provided for call-by-value X-calculus faithfully preserves the convergent 
and divergent properties of terms. Also an attempt is made to define a precongruence that is 

< < equivalent to  N,, a precongruence similar to N 

3.3.4 Remarks 

[Milner 19891 serves to demonstrate that the function-argument form of computing is a special 
case of concurrent computing. It translates two versions of X-calculus into n-calculus faithfully 
preserving the notion of reduction. A reduction of X-calculus has been proved to  correspond to  a 
short sequence of reductions in n-calculus. Substitution of terms for variables in an application 
is simulated using the environment model of evaluation. The translation is so compact that it 
verges on incomprehensibility. The paper does little in terms of explanation of the translation 
to  clarify the translation. 

We shall compare the representation of a variable of X-calculus with that of an object- 
oriented language, La. 

1. A variable of X-calculus is represented by a channel in n-calculus, while that of L2 is 
represented by a process that represents a menlory location for the variable. 

2. A value (term) to  a variable in X-calculus is assigned on creation of an environment entry. 
It represents a process that has an effect of textual substitution of the value (term) of the 
variable at the location of evaluation of the variable. 

A value to  a variable of L2 is assigned by storing the access channel of the process that 
represents its value in the location for the variable. Evaluation of a variable would proceed 
to  first access the access channel of the process that represents the value of the variable, 
obtain a private copy of the process, and copy value it represents to  the location of 
evaluation of the variable. 

3. Repeated assignments to a variable of L2 may be done by updating the contents of the 
location that represents the variable to store the name of the access channel to  the process 
that represents the new value. This operation does not have a counterpart in X-calculus. 

4 Conclusions 

In this paper we have presented translations into r-calculus of languages that represent three 
differing paradigms of computing: object-oriented, logic and functional paradigm. The similar- 
ities of the translations are as follows. 

1. Data values and expressions are represented as processes with access channels. 



2. Data flow is modeled by passing the access channel of the process that represents the 
data, as a value. 

3. Control flow is modeled using synchronization signals. 

The ability t o  model control flow independently of the data flow, in n-calculus makes it a 
unifying framework for the three differing programming paradigms. 

n-calculus may be used to model the major components of a conventional computer. In fact 
the translation given in [Walker 19901 treats memory to  be a process. The control unit can be 
simulated by synchronization signals a primitive that is provided implicitly in n-calculus. The 
arithmetic and logic unit can modeled as a set of processes that model the basic operations of 
the unit.An example of an addition process was discussed earlier in this paper. In the light of 
the above discussion, it does not seem surprising that T-calculus serves as a unifying framework 
for the three languages. Although the unification of the languages takes place almost a t  the 
machine level, the operational semantics of the languages is still compositional in nature. 

n-calculus with its ability to  model the client-server computation shows promise to  be a 
calculus that provides a canonical encapsulation of the object paradigm in the same way as 
the A-calculus does for the function paradigm. However, it is still unclear how notions of 
encapsulation and inheritance may be modeled in n-calculus. 

The notions of bisimilarity of processes can be used to verify correctness of transformations 
on systems. Similar to the illustration provided in [Ross 19901 to  verify correctness of transfor- 
mation of Prolog programs, a different application could be to  niodel hardware circuitry using 
synchronization mechanisms of T-calculus. The correctness of optimization transformations on 
circuits could be verified by requiring that the transformations be bisimilarity preserving. 
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Appendix A 

Bisimilarities of representations of Prolog progranis can be used to  prove properties of program 
such as program termination, validating source-to-source transformation. 

Program Termination 

The n-calculus semantics can been used to  reason about the termination properties of pro- 
grams. As mentioned earlier finite computations eventually terminate with a done action, while 
non-terminating productive computations generate an infinite stream of succ actions. The loop- 
ing computations or livelocks are bisimilar to the n-calculus agent 1 that denotes looping 
[Ross 19901. The termination properties of the operators can be derived based on the termina- 
tion properties of its operands. For example, the following bisimilarities can be derived using 
the expansion theorem, a sketch of the proof of which may be found in [Ross 19901. 

I ; P  % I 
I D B  = I 
A b I  I 

Termination properties of programs can be proved by showing a terminating sequence of 
term rewriting based on the bisimilarities. For recursive predicate structures well-founded 
ordering of successive rewrites needs to be established. Consider the program in figure 9. The 
behavior of the program for the call a(2) is looked at. 

[ a(2)1° % ([ al(2)10 7 [ a2(2)I0 )(s, d) : by definition. 
= (Done 7 [ a2(2)lo )(s, d) : by resolution rule. 
% ([ a2(2)I0 )(s, d) : by Seq bisimilarity. 
FZ (a(2))(s, d) : by construction. 
= I : divergence 

Program Transformation 

The process semantics also helps to  validate source-source transformations. A standard 
technique in compiler optimization for imperative languages is loop unfolding. This transforms 
source programs with loops to ones without loops so that the transformed program executes 
faster than the original source program. In logic programming source programs are transformed 
by unfolding that replaces a goal in a clause by a prospective resolvent. Process semantics can be 
used to  verify the validity of program transformations. A transformation of a program A to A' 
is valid if A bisimilar to A'. It has been shown by means of an example that a transformation 
that replaces a clause with a resolvent that has a cut in it, introduces discrepancy in the 
behavioral properties of the transformed program. However introduction of cut that does not 
affect the pruning of the search space is shown to be valid by demonstrating a bisimilarity 
between determinate programs before and after the introduction of cut. Determinate programs 
have a t  most one solution and are bisimilar to  ( ~ . d  + 1) 

Partial Evaluation 

21%f ( v z ) ( ! Z  1 1x1 



Partial evaluation is a process of evaluating a goal at compile time with some of its arguments 
instantiated and deriving a new residual logic program which, when executed with the remaining 
input of the original program, produces the same output as the original program except that 
it runs more efficiently. The completeness of the partial evaluation is affected by the control 
strategy used by the partial evaluator. There are three stages which may use various control 
strategies. 

1. Source Program control : the control used to  execute the original source program. 

2. Partial evaluation control: the control used by the partial evaluator on the source program. 

3. Residual Program control : the control used to  execute the residual program. 

To preserve the computational conlpleteness of the partial evaluation, it is required that 
the partial evaluator produce a residual program that preserves the observed behavior of the 
original program. This condition can be represented in n-calculus by requiring that the residual 
program R be bisimilar to  the original program P. This condition can be maintained if only 
bisimilarity preserving transformations are applied during the process of partial evaluation. For 
example given the semantics of P to be for a left-to-right control strategy, the evaluator may 
not apply a right-to-left control strategy in arriving at the residual program, since the right-to- 
left control strategy does not preserve bisimilarity with respect to the semantics of the source 
program. 

Given a program P and a query Q ,  their semantic representations are operated on by rewrite 
rules that preserve bisimilarities for a given control strategy. Hehner's predicative programming 
principle [Hehner 19841 proposes that program code and its semantic meaning are substitutive 
within semantic expressions. Using Hehner's predicative programming principle, the applica- 
tions of bisimilarities to  the program's semantic representation represent corresponding equiv- 
alence preserving transformations of the source program. Eventually a T-calculus expression 
E results from the rewrites. This expression is then normalized into a set of agent definitions 
and calls that are bisimilar to  E which in turn are translated into equivalent Prolog code. This 
may require creation of new agents. 
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