
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

September 1993

Pi-Calculus: A Unifying Framework for Programming Paradigms Pi-Calculus: A Unifying Framework for Programming Paradigms

Srinivas Bangalore
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Srinivas Bangalore, "Pi-Calculus: A Unifying Framework for Programming Paradigms", . September 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-81.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/603
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/603
mailto:repository@pobox.upenn.edu

Pi-Calculus: A Unifying Framework for Programming Paradigms Pi-Calculus: A Unifying Framework for Programming Paradigms

Abstract Abstract
π-calculus is a calculus for modeling dynamically changing configurations of a network of
communicating agents. This paper studies the suitability of π-calculus as a unifying framework to model
the operational semantics of the three paradigms of programming: functional, logic and imperative
paradigms. In doing so, the attempt is to demonstrate that π-calculus models a primitive that is pervasive
in the three paradigms and to illustrate that the three forms of sequential computing are special instances
of concurrent computing.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-81.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/603

https://repository.upenn.edu/cis_reports/603

T-calculus: A Unifying Framework for
Programming Paradigms

MS-CIS-93-81
LINC LAB 256

Srinivas Bangalore

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

September 1993

a-calculus : A Unifying Framework for Programming Paradigms *

Srinivas Bangalore
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

September 8, 1993

Abs t r ac t

T-calculus is a calculus for modeling dynamically changing configurations of a network
of communicating agents. This paper studies the suitability of T-calculus as a unifying
framework to model the operational semantics of the three paradigms of programming :
functional, logic and imperative paradigms. In doing so, the attempt is to demonstrate that
n-calculus models a primitive that is pervasive in the three paradigms and to illustrate that
the three forms of sequential computing are special instances of concurrent computing.

'This work is submitted as partial fulfillment of the requirements of the WPEII. (Doctoral Written Preliminary
Examination)

1 Introduction to ir-calculus

A model of computation chooses to focus on certain phenomena that seem to be pervasive of
computing and treats them to be the essence of computing. For example the A-calculus models
computation as a function that takes in arguments and yields results. A calculus for concurrent
computation, on the other hand, treats computation as a communicating system in which
comn~unicating agents have the ability to interact and influence the behavior of one another.
While such a model of computation cannot be forced into the function-argument paradigm of
computation without loss of naturalness, a function-argument interaction behavior of agents
would be a special case of interaction between agents in a model of concurrent computation.

n-calculus is a calculus for modeling dynamically changing configurations of a network of
communicating agents. The key notion that underlies n-calculus' attempt to model concurrency
is naming of entities. Naming provides an identity to an entity that allows it t o concurrently
coexist in an environment with other entities. n-calculus is unique in that it treats names of
channels that the agents communicate on, as primitives instead of names of agents. Another
distinctive feature of n-calculus is that it does not allow agents to be transmitted along commu-
nication channels, instead attempts to demonstrate that passing names of channels as contents
of communication is in itself sufficiently general.

The objective of this paper is t o study the suitability of n-calculus as a unifying framework
to model the operational semantics of three differing paradigms of programming : functional,
logic and imperative paradigms. In doing so, the attempt is to demonstrate that n-calculus
models a primitive that is pervasive in the three paradigms and to illustrate that the three forms
of sequential computing are special instances of concurrent computing. We shall provide an
introduction to n-calculus based on [Milner 19911 and examine the usefulness of its primitives
in modeling some of the programming concepts. Later we study the translation of represen-
tative languages of each of the three programniing paradigms into T-calculus respecting their
operational semantics as closely as possible.

1.1 Syntax of n-calculus

The primitive elements of n-calculus are structureless entities called Names, infinitely many
and denoted by x, y , z . . . E i\l. A name refers to a communication link or channel. The name
z represents the input end of a channel x and the co-name represents its output end. In the
syntax that follows, agent identifiers A, B, . . . range over K , and P, Q, . . . range over process
expressions.

A process is an entity that derives its denotation from its interaction with other processes.

A process interacts with the other processes by receiving and transmitting names of channels.
Processes can be characterized as follows based on their interaction behavior.

1. A process Q that performs no interaction is called inaction and is represented by 0.

2. 5y .P represents a process Q that outputs the name y on channel x and behaves like P .
The co-name x, may be regarded as the output port of the process Q. Since the name y
is free in Q, the output action is called a free output action.

3. x(y).P is a process Q that receives a name x , on its input port x and behaves like P{z/y)
(y for z in P). Such an action is called an input action. Though the action performed by
Q appears to be similar to A-application it differs from it in that y may be bound only to
names and not to arbitrary terms.

4. r.P represents a process Q that performs an internal action T and then behaves like
P . This action is called silent action since it does not involve other processes in the
environment.

A summand process P + Q, represents a process that can behave as either P or Q, but it
cannot commit t o either of the alternatives until one of it occurs. This construct introduces
one kind of non-determinism into process behavior.

The par (I) construct introduces a second kind of non-determinism into process behavior.
The form P (Q (read as P par Q), serves to model concurrent execution of two processes P
and Q. P and Q may act independently but can also communicate with each other to perform
a silent action. For example, if

P = 3y.P' and Q = x(z).Qt

then the composition process P I Q could either output on channel x, or could input from
channel x. It can also interact internally (intra-act), performing a silent action with the residue
process as P' I Q1{y/z}.

The form, (vx)P (read as "new x") is a unique construct introduced by n-calculus. It
restricts the name x to the process P thus making x private to P. Alternately, it declares a
new name in P that is different from all external names. As a result the port x, that may
appear in P becomes inaccessible to the environment. Thus, (vx)x(y).O cannot communicate
with any other process.

A match [x = y]P is a process that behaves like P if x and y are identical otherwise like 0.
For example,

P = 3y.P' and Q = x(u).[u = w]Qt

then (vx) (P I Q) communicates internally on channel x and results in [y = w]Q'. Since the
match fails, this is identical to 0. Hence the final residue is (vx)Pt.

Agents are parameterized processes. An agent, A, is uniquely defined by a defining equation
of the form

where the names XI , . . . , x, are distinct and are the only names that may occur free in P.
Then A(y1,. . . , y,) behaves like P{yl/xl,. . . , yn/xn} or P{; / } Substitution { j / },
may require a change of bound variable names in P so as to avoid any of the y; from becoming
bound in P. Defining equations provide recursion, since P may contain any agent, even A itself.
Also, we note that processes are zero-ary agents.

1.2 Rules for Actions

A process P , performs an action a and evolves into Q. This transition is denoted as

Based on the prefix of P, we have seen that a E {T, Ty, ~ (y) } . A fourth action, called bound
output action is possible when a process outputs a private variable on its output port. Such
an action results in widening of scope of the private variable beyond the process it prefixes.
For example, a bound output action results when a process such as (v y) ~ y . P communicates on
channel x.

The silent action and free output actions are collectively termed free actions while input
actions and bound output actions are called bound actions. The free and bound outputs are
collectively called output actions. The x in x(y).P or 3y.P is called the subject and y is called
the object.

Free names of P, fv (P) , are all the names that are not bound either by restriction or input
prefix. The set of names of P, v(P), is a union of its free and bound variables.

We define a transition relation to be the smallest relation that satisfies the rules of action
given below.

T - action

r . P Z P
output - action :

-
Ty.P Y P

input - action :

X(W).P x2) P{y /w) y g jv ((vw)P)

m a t c h P S Pr

[x = x]P % PI

ide : ~ { i 1 :) s Pr

A(;) 4 Pr A(;) Sf P

-
C o m : p 3 p~ Q "3) Ql

P I Q 5 Pr I Q'{ylzI

C lose . PF2) PI Q X ~) Q I

P I Q 5 (vy>(Pr I Q r)

R e s P Z P'

(.YIP 3 (vY)Pr Y e
-

Open P Z pJ
-

(Y) P xk' Pr{m/y) y # r and w 9 f v ((vy)Pr)

1.3 Notation

We shall adopt the following notational convenience in the discussion to follow. We shall denote

communications that need to carry no parameters such as x().P as x .P and hc.P as Z.P.

communications that need to carry more than one parameter by
x (Y I , . . . , Y ~) a n d T ~ l , . . . , ~ n

multiple match patterns such as X (Y) . ([~ = zl]Pl + - . + [y = zn]Pn) as

2 : [zl => PI; . .; zn => P,]

Also, for a n-ary agent A defined as

we regard A(yl,. . . , yk) I; 5 n to be an agent of arity n - k which is defined as agent A

def
An agent defining equation A(yl, . . . , y,) = P , can represent recursion since P may

contain any agent identifier, even A itself. We shall define, using recursion on agents a special
process expression, called replication, represented as ! P , by the equation,

In effect, ! P = P I P I . . ., indefinite copies of P in composition.
In fact, provided the number of recursive agents is finite, we can encode them by replications

[Milner 19911. In the discussion to follow we shall freely use replication as a variant of recursive
agents.

1.4 Examples

1.4.1 Addition in n-calculus

Consider modeling an agent that represents a natural number in church numeral representation.
An agent that represents a natural number n, ~ (s , z) communicates n times on a channel called
the successor channel s and once on the zero channel z before becoming inactive. Thus

The behavior of the above process is illustrated in Figure 1 and 2. An addition process
takes two natural numbers represented using the channels sl, zl and sz, z2 and returns their
sum as a natural number represented using channels s, x. The channels have been paired for
notational convenience.

def ~dd(s~,z~,s~,z~,s,x) = (~ ~ . ~ . ~ d d (s ~ , z ~ , s z , z z , s , z) + zi.Co~~(sa,zz,s,z))

- n - - m-
n (sl, zl) = s l . 21 .0 m-(sZ,z2) = s2 . z 2 0

Add(sl,zl,sZ,zZ,s,z)

n times

V

Figure 1: Operand 1 communicates on successor channel

Figure 2: Operand 1 communicates on zero channel

The Add process signals on the successor channel corresponding to the output s while the
first operand signals on its successor channel sl. Once the operand signals on its zero channel,
the Add agent copies the second operand on to the output channel pair s, z. This is illustrated

in Figure 3 and 4. The Copy agent replicates the signal pattern on channels x and y on to
channels u and v. It is defined as follows.

def
C o p y (x , y , u , v) = (x . ~ . C o p y (x , y , u , v) f y-5.0)

Thus the process m + n (s , x) is represented by

(V S1 Z1 S 2 z ~) (~ L (s I , Z I) I m(s2, ~ 2) I Add(s17 ~ 1 , ~ 2 , s 7 z))

Figure 3: Operand 2 communicates on successor channel

Figure 4: Operand 2 communicates on zero channel

1.4.2 Simulating Higher order n-calculus

n-calculus as defined here does not allow processes to be contents of communications. In
this sense, it is first order in nature. However in an attempt towards modeling mobility of

processes it is conceivable to define a higher order n-calculus [Milner 19911 in which processes
are transmitted and received over channels as if they were data. The following example shows
that the first order T-calculus is rich enough to simulate the effect of having processes as data,
by using only names as data.

Consider extending the first order T-calculus to have agents transmit and receive processes.
In the following example names in uppercase represent processes or process variables. Let

dzf P (x) - 3R.P' and Q (x) 5 x (X) . (X I Q')

After one interaction, P (x) I Q (x) reduces to P' 1 R I Q'.

We can simulate the same effect in first order n-calculus by locating the "floating" agent at
a new name z , and passing the address z to Q instead.

P (X) d" (vz)(?Fz.(P' I z.R)) and O (x) d" x(y).(?j.O I Q')

P (X) 1 o (x) (v z) (~ z . (P ' I 2.R)) I x(y)(v.O I Q')
5 (u z) ((P r I z .R) I (3.0 I Q'))
5 P'I R I Q '

as in the previous case.
It is noteworthy that higher order T-calculus provides a greater clarity of expression which

is obscured in its simulation in first order n-calculus.

1.5 Equivalence of Processes

Some of the agents defined by the syntax above, are equivalent. Some of them may be identified
simply based on their syntactic structure, while others are equivalent based on their interaction
behavior.

1.5.1 Structural Congruence

Definition Structural congruence = is defined as the smallest congruence relation such that
the following laws hold.

1. Agents are identified if they only differ in the names of their bound variables.

5. If x g! f v (P) then (v x) (P I Q) = P I (v x) Q

def 6. If A(x1 , . . .,x,) = P then A(y1,. . . ,y,) - P { y l / x l , . . ., y,/x,)

Structural congruence helps to factor out congruence induced by physical structure of agents
from that induced by their interaction behavior. It also helps to bring the communicants to be
neighbors as suggested in [Berry and Boudol 19901.

1.5.2 Simulation and Congruence

Two sequential programs are behaviorally equivalent if their input-output relationship is the
same. But for concurrent programs the intermediate states that occur as the computation
progresses are also important, since the intermediate states may be exploited by the environment
to produce a different overall behavior. In the following example both programs P and Q replace
the value of the variable x with 5. However when run in parallel with the program R each would
produce different results.

The behavior of a program is characterized by observing how it would communicate with
an observer (such as program R in the above example). Two programs would be deemed to be
congruent if they display identical behavior with every observer. This method of characterizing
equivalence is called as observational congruence. Observational equivalence was introduced in
[Ross 19851 and it captures behavioral equivalence between concurrent programs. Two obser-
vationally congruent programs may be used interchangeably in a system, without affecting the
observational behavior of the system.

Definition Simulation is a binary relation R over agents such that if P 82 Q then

1. If P 5 P' and a is a free action, then for some Q', Q 3 Q' and P'RQ'.

2. If P x2) P and y $L v(P) U v(Q), then for some Q', Q x2) Q' and for all

w P'{w/Y) % Q'{w/Y)
- -

3. If P x2) P' and y v(P) U v(Q), then for some Q', Q x2) Q' and P' RQ'.

a 8 is a bisimulation if R and its inverse are simulations. We shall denote the bisimulation
relation by z.

a Equivalence of two processes A is the largest bisimulation. Thus two processes are equiv-
alent if and only if they are related by some bisimulation.

The primary intuition behind simulation is that every transition of P can be simulated by
a transition of Q such that the residue P' and Q' remain in the simulation. This is reflected in
the first clause of the definition for simulation.

Secondly, to simulate an input action, it is not sufficient to require that the residues continue
to be in the simulation. A process x(y).P may receive any arbitrary name w and evolve into
process Pf{w/y}. To simulate such an action, it not only requires that the same action be
performed, but also requires that the residues be in the simulation for all input values w.
This intuition is captured by the second clause of the definition. The final clause is used for
simulation of agents that perform a bound output action.

The following example demonstrates that bisimulation is not preserved under substitution
of names.

def -
F(x ,Y) = X l Y

def -
G(x, y) = x.y + y.z

F(x , y)&G(x, Y) but F(x, x) Ft.G(x, 2).

Observe that F(x, y) and G(x, y) have the same set of actions and hence are equivalent.
However under the substitution a = {xlx, s l y) , F(x, x) can perform a silent action that G(x, x)
cannot perform. Hence they are not equivalent.

Definition Congruence Two processes P and Q are congruent, P N Q, if Par; Qa, for a l l
substitutions a.

2 Use of n-calculus primitives to model programming con-
cepts

In this section we shall take a closer look at the distinctive features of n-calculus with a view
of determining their usefulness for representing programming concepts.

Some of the distinctive features of T-calculus are

a Names are treated as primitive entities.

a Channels are named instead of processes.

a Contents of channels are names and not processes.

a Restriction construct, (Y)

2.1 Expressing Client-Server Model of Computation

In a client-server model of computation, a server process provides a service upon request to a
client process. The client names a service and passes the required parameters t o the server. The
server commences execution of the named service with the parameters provided by the client,
while the client waits for results from the server. On completion of the service, the server
transmits the results to the client, which resumes its execution. Such a model of computation
can be expressed naturally in T-calculus.

The following example illustrates the client-server model of computation.

In the system S , the client P establishes a private con~munication channel u with the server
Q which provides services determined by R (whose definition is not shown). The client then
passes the parameters on the private channel to the server, which uses it as the input parameter
for the service requested. Notice that the name of the private channel between the client and

the server is passed on to R. This channel name is used to transmit the results of the service
back to the client.

The example above is oversimplified, to illustrate, the idea without the minor details. A
detailed illustration is provided in the translation of a client-server communication construct in
the discussion of [Walker 19901 in the next section.

2.2 Naming of channels

The decision to name channels instead of processes, enhances the richness of expression of
n-calculus to express the client-server model of computing. This feature allows a service to
be associated with a channel name which can be used to model transparent access to server
processes, in situations where more than one server process provides a service. Also, a process,
by using different channels of interaction can bear different roles to different clients. This would
not be possible to model if processes were to be named instead of channels. We conjecture that
naming channels, would also help to overcome issues of unique naming of processes, a major
issue in the distributed computing comniunity. However a study of this is beyond the scope of
the present discussion.

2.3 Restricting Scope of Names

Yet another uniqueness of n-calculus is the v construct. The names restricted by the v construct,
are private to the process it prefixes. This can be used to model private resources of a process.
Consider, the following processes

def Sl = (vx)((Z.P l!x.Q) 1 z.R)
d ~ f S2 - ((vx)(z .P (!x.Q)) I Z.R

In process S1, the resource Q may be accessed by both P and R. However in S2, the resource
Q is located on a private channel of P, which makes it a private resource, available only to P.
R cannot access it. Selective access to Q may be provided, if Sz is modified to S3 as follows

Now, S may obtain access to the private channel of P on which Q is located through the name
u. Communications on u would interact with the private resource of P.

In the above examples, let P, R and S be finite processes, that eventually terminate. Q,
persists to exist because of replication. However, Q becomes inaccessible to all other processes
because of the restriction. In the discussion to come, deadlocked processes are modeled in this
manner.

n-calculus makes a unique decision by disallowing processes to be contents of communica-
tion. This restriction has a pleasant benefit. Passing processes over channels would provide
unrestricted access to all resources that are private to a process. Passing names instead of
processes helps to make selective resources of a process available for public usage. This serves
as an excellent means to model restricted access to resources.

2.4 Modeling Control Strategies

Various control strategies can be modeled using n-calculus primitives. [Walker 19901 uses n-
calculus to model sequential and iterative control strategy of an imperative language while
[Ross 19901 uses it to model the left-to-right-depth-first strategy of Prolog. n-calculus coni-
munication viewed as synchronization signals is used for this purpose. A simple sequencing of
processes is illustrated by the following example.

dzf P before Q - (v x) (P (x) I x.Q) x @ v (P)

The execution of P and Q is sequenced such that Q waits until P completes execution. Upon
completion of P a local synchronization signal is transmitted which triggers the execution of
Q. Notice that the synchronization signal is passed as a parameter to P.

With the use of the sequencer the familiar iterative statement while E do S is modeled
as follows. We assume the expression E to return constants TRUE or FALSE on evaluation.
[El0 v is the process that represents the expression E. The value of the expression is returned
on the channel v. The values TRUE and FALSE are represented by two special channel names
T R U E and F A L S E .

d ~ f W - (uv) ([El0 v I v : [TRUE => [S]' before W ; F A L S E => 01)

The process works as follows. Upon evaluation of E, the process [El0 v outputs a T R U E
or F A L S E on the channel v. If the value is T R U E then the process [S]' representing the
statement S is executed before reexecuting W. If the output of [El0 v is F A L S E then the
iteration terminates.

2.5 Representing Complex Data Objects

Complex data objects such as lists can be represented in n-calculus. We use the constructors
Cons and Nil to represent a list. For example the list [1,2] is represented as

Cons(1, Cons(2, N i l))

A list 1 is represented in n-calculus as an agent [11' (x) , where x serves as its access channel.
We will assume two special channel names NIL and C O N S which will be treated as special
values. The processes representing the Cons cell and Nil are as follows.

[Nil]' (r) dCf Z N I L

[C o n ~ (v , l)] ~ (z) dcf (v y) (~ C o n s , v , y l [l] ~ (y))

Observe that the data value v is ephemeral in that it disappears after an access. It needs
to be copied back after every access just as a memory refresh operation at the address of the
variable copies its value back to its location. Persistence of data values can be modeled by
copying the data back to its location. Thus a persistent list is represented as follows.

[Nil]' (x) de' Z N I L I [Nil]' x

[Cons(v, 1)1° (r) dcf (uy)(%Coas, v , y 1 [I]' y I [Cons(v, l)]' (2))

The features discussed in this section orient n-calculus more towards ob ject-oriented paradigm
of computing, in which objects are named and pointers are used to provide access to one an-
other. Data values are also represented as processes and instead of passing complex data
objects as values, accesses to the processes representing them are passed as values. Thus T-

calculus serves as an attempt to provide a canonical encapsulation of object-oriented paradigm
of computing just as A-calculus provides for functional paradigm. It also helps to formalize
the operational semantics of such languages (which hither to fore have been treated mostly
informally [Milner 19911).

3 Translations of Programming Languages into T-calculus

Sequential programming languages can be broadly characterized into one of the following
paradigms.

a Object-Oriented programming languages

a Logic programming languages

Functional programming languages

Object-oriented programming languages are characterized by the presence of objects that
interact by sending messages to each other. Notions of inheritance and data encapsulatioiz are
central to this paradigm. A variable in such languages is associated with a memory location
whose value can be updated by the assignment operation. Conlputation proceeds in a sequential
manner by retrieving and updating the values of program variables. The order of evaluation of
statements and expressions crucially affects the results computed in such languages.

A program of a logic programming language consists of rules and facts. These languages
are declarative in the sense that the rules and facts are specified by the programmer, and the
language specifies the control mechanism to search the rule set. Computation is characterized
by the solutions to queries about the rule set. Solutions to queries change depending on the
search control strategy used. Unification is used to answer queries. Variables are used as place
holders for values during the process of unification. They are set to a value when unification
succeeds and are refreshed when unification fails. They are not associated with a fixed location
as in imperative languages. Prolog is a representative of such a programming paradigm.

Functional programming is characterized as programming that uses function application
as the only control structure. Binding of variables to terms (values or expressions) is used
to associate a name to a value unlike the assignment statement of object-oriented languages.
Variables can be bound only once but can be read from many times.

In what follows we present translations into T-calculus of three languages, La , Prolog and
A-calculus that represent the three paradigms of programming. The translations can be used for
purposes, among others, to reason about properties of programs [Ross 19901 and to demonstrate
the richness of n-calculus [Milner 19891.

3.1 An Object-Oriented Language

The paper [Walker 19901 provides a translation of two object-oriented languages L1 and L2 into
T-calculus. A computation in these languages consists of a network of objects interacting with

each other. The network topology dynamically changes as computation proceeds. The ability
of n-calculus to model changing communicating network topology, is effectively used for this
purpose. Also, a variable is modeled as a memory location using T-calculus.

We shall examine the syntax and capabilities of the language L2 in the next section and
follow it with a discussion of its translation into T-calculus. We will not discuss the language
L1 owing to space constraints.

3.1.1 Introduction to language L2

A program of L2 consists of a sequence of class declarations. Instances of the classes are called
objects. The computational behavior of a system of objects governs the computational behavior
of a program with a distinguished root object initiating the computation. An object consists
of local variable declarations, a number of procedures or methods and a number of statements.
Interactions among objects is for the purpose of method invocation and is done by means of
rendezvous mechanism. Communication structure may evolve through the communications of
references to new objects that can be created during computation.

Syntax of Lz

Let X , Y, Z be program variables. We shall limit our discussion to certain forms of expres-
sions and statements only. For a complete repertoire the reader is referred to [Walker 19901.
The syntax for a few expressions is as follows.

E ..- ..- X

I k (k : nat E N)
I El + E2
I El!M(E2)

Each well-formed expression is one of nut or reftype. The syntax for some statements is as
follows.

Objects that are instances of a class C are created by the new, construct. Reference to the
object returned by new, is assigned to a variable of type ref. A class declaration is of the form

Cdec ::= Class C i s Vdec, Mdec in S

where Mdec represents a method declaration.
A method declaration is of the form

Mdec ::= method Ml(X1, Yl) i s S1 . . . M,(X,, Y,) i s S,

with Mi distinct from one another. The Xis serve as the input parameter and the Y,s serve as
output variables in which the result of the evaluation of Sis are stored.

The value returned by the expression E = E1!M(E2) is the value returned by the object
referred by El after the invocation of the method M with parameter E2. The method M is
invoked if the object referred by El executes the answer statement. The answer(M1, . . . , M k)
statement invokes the method Mi for some i, with the parameter supplied by a client. A
client is an object that is seeking to evaluate the expression E1!M;(E2) with El a reference to
the server, an object containing the answer statement. The execution of the client is blocked
until the server returns a value. This construct helps to model the client-server mechanism of
function invocation elegantly.

3.1.2 Translation of L2 into n-calculus

The translation function [I 0 maps the constructs of L2 to agents in T-calculus. We shall discuss
only the salient points of the translation in [Walker 19901, in this report.

Translation of variables

A variable X is viewed as a memory location. Modeling the behavior of the memory location
effectively serves as a translation of a variable declaration. The memory location contains the
name of a link to an agent that represents the value of the variable. Each memory location for
a variable X is associated with two constants rx and w x that serve the purpose of its read
and write channels. Thus the translation of the declaration of a variable of non-reference type
is

def [var X : tI0 = Locx

Assignment to a variable is done by storing the link to the agent that represents the new
data value in the memory location, Loex, that represents the variable. Upon declaration of a
variable all reads from it will result in the blocking of the reading process until an assignment
stores a link name z in the location. Once an assignment is made, the variable is represented
as a register Regx(y) with y being the link to the agent representing the value of the variable.

Two other constants REF and N I L are used in the translation of a ref variable X. They
signify respectively the state of X containing and not containing a reference to an object. An
uninitialized reference variable contains a N I L . A read operation on an initialized reference
variable communicates the flag R E F and the name of the link to an agent that represents the
value of the variable. Similarly a write operation is completed in two interactions. The following
is the translation for reference variable declaration which is similar to that of a non-reference
variable but for the two-step read and write operations.

'As discussed in [Milner and Walker 19891 constants can be replaced by special channel names

def [war X : re f]" = Locx

dsf Locx - = N I L $ w x [N I L => Locx; R E F => wx(y) .Regx(y)]

def -
R e g x (~) = rx R E F . c y . R e g x (y) + wx [N I L => Locx; R E F => wx(z) .Regx(z)]

Translat ion of Class construct

Every class C is associated with a n-calculus constant c which is the name of the link on
which requests for creation of objects are accepted. Interaction on this channel results in the
creation of a new link name and a copy of the body of the class. The new link name is private
to the new object and serves as its channel for communication. The translation of a class
declaration is

d$ [class C is Vdec i n SI0 (c) - z(w).![Vdec in 5'1' (w)

dzf [Vdec i n SI0 (w) - v r x , , wx, ([VdecIo I [SI0 (w)) (V X i E Vdec)

The replication operator in the above translation allows for creation of an indefinite number
of objects that are instances of a class. Also new constants r x , and wx, are created for each
variable X ; local to a class every time an object is created by the new, expression.

Translat ion of Expressions

An expression is translated as an agent that communicates the value of the expression along
a channel (value channel), as shown below. However such agents yield a value only once. They
are ephemeral and cease to exist once the expression they represent is evaluated. We shall
discuss two cases of expression translation for illustrative purposes.

[kIo (v) %f (F O N E) ~ . B Z E R O

dzf [+ I 0 (v l , v2, v) - v1 : [Z E R O => [+I0 ' (~ 2 , v) ; O N E => 3 O N E . [+lo (v l , ~ 2 , v)]

def [+ I 0 ' (v 2 , v) = v2 : [Z E R O = > F Z E R O ; O N E =>TONE.[+] ' ' (v ~ , v)]

where O N E and Z E R O are constants.
A natural number b, is represented by a process that communicates the unary represen-

tation of the number on its value channel. The flag Z E R O indicates the termination of the
unary representation. Addition of two expression is a parallel composition of the translated
operands along with a process that implements the addition operation. The two operands are
evaluated with new and private links as their value channels. The private links are provided as
parameters to the addition process. The addition process adds the numbers represented by the
private channels and returns the unary representation of the result on the value channel of the

expression.
Evaluation of an expression results in creation of a process that represents the value of

the expression. Indefinite number of private instances of the agent representing the value of
the evaluated expression may be obtained via a public channel that provides access to the
process. Hence an assignment statement [X := El0 , with X a variable of non-reference type,
is translated to store the public channel to the process representing the value of E, in the
memory location that represents X as illustrated in figure 5.

-
[var x : t] [El@) = ! v(w).[kl(w)

Figure 5: A value k stored in a variable x

The evaluation of a variable X , as a result of the translation for assignment, proceeds by

1. Accessing the link to the process representing the value. This is stored in the location
that represents X , shown in figure 6.

2. Obtaining the link to a private instance of the process representing the value of X, shown
in figure 7.

3. Interacting with the private instance to receive the value it represents, shown in figure 8.

-
[var x : t] [El(v) = ! v(w)*[kl(w)

Figure 6: Accessing the link to the process representing a value

The assignment statement for the creation of an object using the new, expression is trans-
lated as follows.

[var x : t] [E](v) = ! qw).[k](w)

Figure 7: Obtaining the link to a private instance of the process

- [var x : t] [El(v) = ! v(w).[kl(w)
- - - - - - - - - - - ,.A

Figure 8: Interacting with the private instance to receive the value

def [X := newc]' (w) = c(z).W,REF.W,z.Done

c refers to the T-calculus constant that is associated with every class. z would be the private
link to the new object and is stored in R e g x . Done is used to indicate the completion of the
process.

Translat ion of Communicat ion Cons t ruc ts

Translation of the method construct along with the communication constructs are as follows.

At The Client End

[El !M(E2)I0 (v)
dzf
- (v3)((v1)([Ell0 (~ 1) 1 vl(u)[u = REF]v,(w).Done)

before

((~2) ([E2I0 (02) 1 Eval(v2, ~ 3))
before

(u)~u.~m.~v~.u(v~).v~(v~~) .Copy(vll, v)))

At The Server End

dzf [answer(Ml, ..., M,)]" (w) - w(u).u : [m; => u(v).m;(z).
Zw.Zv.z(vl).-ii.vl.Done]{i = 1, k)

[method M(X, Y) i s SI0 dzf
- ~ (z) ! M (z)

M (z > dzf - (N)(Locx 1 Lacy I z (w) . z (x) . ~ x . ([$1' (w)
before ry (v1).2v1))

The start of a con~munication begins with the client evaluating the expression El!M(E2).
The expression El is evaluated to a link w to the server (object referred to, if it exists). Then the
expression E2 is evaluated and a private link v3 is used as a channel to the process representing
the value of E2. At this point the client remains suspended until the server executes an answer
statement. Then a private link u is communicated to the server via the channel w. Along the
private channel u, the reference to the method requested for execution m is then communicated.
If the server offers the method requested (m;), for public usage, then tlze link to the argument
for the method, vs is received along u . The server then requests from the agent representing the
declaration of that method for a private copy of the agent representing the body of the method.
The private channel z is used by the server to communicate with the private copy of the body
of the method m;. Along z the server communicates w, the reference to the current object
and v, the name of the link to the parameter. The agent representing the body of the metliod
stores the input parameter in local Regx and proceeds with the execution of the statement S .
On completion of S , the name stored in local Regy is returned to the server as the link to the
process representing the output value of the method. The server in turn returns this name to
the E1!M(E2) along the private link u, and then indicates completion. Finally a link to the
private copy of the output value is obtained and the value is copied using the Copy agent.

The translation of the con~munication construct makes several assumptions.

1. Only one client may interact with a server. If several clients are waiting to be serviced,
one of them is picked nondeterministically and served.

2. The method requested by the client must be offered by the server. If it is not then the
server fails to proceed and both the server and client are deadlocked.

3. At the time a server executes an answer statement, at least one client needs to be waiting
for service. If there are no clients in the system, the server is blocked.

The rest of the constructions are translated in an obvious manner and will not be discussed
here.

3.1.3 Remarks

[Walker 19901 serves to demonstrate the expressive power of n-calculus by encoding two lan-
guages that have communication constructs. However the paper does not however justify the
choice of the two languages as being representative of the object-oriented paradigm. It fails to
demonstrate how the language constructs capture concepts such as encapsulation and inheri-
tance that are central to the object oriented paradigm.

Also, the translation of expressions of type nut, involve an infinite set of recursive processes.
This could be avoided by using the n-calculus with abstractions and concretions. We made
an attempt to transform the translation using this version of n-calculus. However due to
the delicate relationships embedded in the translation, such a transformation would require a
complete overhaul of the current translation.

[Walker 19901 makes a point that by providing the n-calculus semantics it has avoided the
use of sophisticated mathematical machinery required to establish the well-definedness of the
semantics. However it does not include any proof of correctness of the translation nor examines
its properties. The paper may be regarded as one of several possible variations of translating
the languages L1 and L2 into n-calculus.

3.2 T-calculus semantics for Prolog programs

[Ross 19901 provides a process model interpretation of logic program computation that can be
modeled using a process algebra. CCS has been chosen to be the process algebra to model such
an interpretation. We shall present the same translation in n-calculus. Modeling logic programs
as a system of processes has several advantages. Properties of logic programs may be proved
using properties of processes that represent them. [Ross 19901 uses the notion of bisimilarity of
processes t o prove termination properties, to validate partial evaluation and source-to-source
transformation of logic programs.

AND,/OR trees define the declarative semantics of logic programs. They represent logical
dependencies in conlputation and inference. The AND node requires that all its children (goals)
be solved while the OR node requires that one of its children (clause) be solved. Operational
semantics of logic programs may be provided by viewing the AND and OR nodes of an AND/OR
tree as processes. Prolog uses a depth-first-left-right search strategy in solving for a clause. The
clauses are searched in the textual order as they appear in the program. The control strategy
is further affected by the use of control operators such as cut. The AND and OR agents of
the AND/OR tree that represents a Prolog program determine the manner in which the tree
is explored, in effect modeling a control strategy. Such an approach has been adopted by
[Conery and Kibler 19851 for providing operational semantics for concurrent logic languages
where the nodes have been treated as concurrent agents. [Ross 19901 uses sequential AND and
OR agents instead.

3.2.1 Translation

Two special events, succ(6) and done representing successful and unsuccessful termination
signals, control the execution of a program. 6 in succ(0) represents a substitution of the form
X; t t; returned by an unification agent upon successful termination. An empty substitution
is represented as E .

A finite computation may be viewed as a series of succ actions followed by a done action.
A failure computation is represented by termination without any success actions. Thus a succ
action is the primary means for observing computation and every terminating computation
eventually results in a done action.

We shall discuss the translation provided in [Ross 19901 using T-calculus. The following is
a translation of each construct of Prolog in n-calculus.

A construct of Prolog is represented as an agent in T-calculus. The agent is parameterized
by two channels, s and d that represent the two special events succ and done. Output on s
channel indicates a succ action while that on d channel indicates a done action.

1. Some definitions

Done(s, d) dC' 2
T r a e (s , d) de' 3 (~) . 2

2. Predicates (OR agents)
def

[P I , P2, . . . PnI0 (s , d) = P (s , d) = (P19P27. . . YPn)(.S, d)

3. Clauses (A N D agents)
def

[Pi : - G I , . . .GnI0 (s , d) = Pi(s, d) - ([G1I0 b . . . b [G,I0) (s , d)

4. Program Queries

[: - G I , . . .G,I0 (s , d) = ([GI]' b . . . b [G,I0) (s , d)

5 . Sequencing operator

(P i Q) (s , d) !Zf (v d l) (P (s , dr) I dr.Q(s, d))

6. Goal backtracking operator

(P b Q) (s , d) ef (vs l d' loc) (P (s r , dl) / NextGoal(sl, dl, loc, s , d)]!loc(sl , d l) .Q(s l , d l))

NestGoal(s f , d', loc, s , d) 5' st.(R(loc) NextGoal(sr, dl, loc)) (s , d) + dr.Done(s, d)

d ~ f - R(loc, s , d) - Eoc s , d.0

7. Single goal calls

G (s , d) : G is a defined predicate
[G o s , d) { s.Done(s, d) + Done(s, d) : G is a builtin atom

Done(s, d) : G not defined

8. Builtin Unification Agent

The order for searching clauses is modeled by the OR agent that sequentially invokes the
clauses in the order they appear in the text of the program. The special operator f uses a
private channel t o ensure the sequential order of execution of successive clauses.

Each clause is represented by an AND agent. It repeatedly resolves the goals in the clause
body in a left-right order. A special operator b is used to model the backtracking behavior
of goals. In (P b Q)(s, d) the goal P is invoked with private channels st and d' to represent
its termination nature. After the first solution of P, indicated by a signal on sf, the goal Q is
invoked. The invocation of Q is by the trigger mechanism that was used to simulate a higher
order process in the example on page 9. New instances of the goal Q are created for each
solution of goal P and are passed the channels s and d as parameters using the R(loc, s ,d)
process. The sequence operator ensures that the next solution of P is processed once all tlze
solutions of Q have been processed. This continues until P terminates. It is to be observed
that after the first solution of P , both P and Q continue execution in parallel.

The unification agent is not modeled in [Ross 19901. The paper assumes a builtin unifier
agent that returns the substitution if unification of the terms succeeds. The builtin unification

N N

agent returns 8, the most general unifier of tl and t2 on successful unification. If not it
performs the termination action.

A Prolog program and its n-calculus translation is provided in figure 9.

dzf
a(2) : - a (2) . u [a2(X)lo (s,d) - ((X = 2) b a(2))(s, d)

Figure 9: A logic program and its a-calculus translation

Having obtained the a-calculus representation of a Prolog program, the operational seman-
tics of n-calculus may be used to reason about the execution of the program. Since the purpose
of the translation is to observe the computational behavioral properties of Prolog programs,
the behavior of the control operators f and b can be provided at a higher level using bisimi-
larities. This entails providing bisimilar agents that represent all possible states of sequencing
and backtracking mechanism. A new operator b is introduced to represent an intermediate
state of (P b Q)(s, d) . This intermediate state corresponds to the situation when P produces a
signal on s channel and the computation of Q is t o commence using the substitution 19 resulting
from P.

dzf (P b Q)(s, d) - (vs' df)(P(s', d') 1 sf.(Q; NextGoal)(s, d))

Bisimilarities that may be used as rewrite rules are as follows.

Seq : (Done ; P) (s , d) M P (s , d)

Back - 1 : ((3(6).P) b Q) (s , d) M (P b QO)(s, d)

Back - 2 : (Done b Q)(s , d) Done(s, d)

Back - 3 : (P b (~ (6) . Q)) (s , d) (s(B).(P b Q)) (s , d)

Back - 4 : (P b Done)(s,d) = (P D Q) (s , d)

Resolution rule is a bisimilarity used to model a single resolution step by applying the
substitution obtained on unification of the head of a clause and a goal, to the body of that
clause.

Resol:
?., N

Done(s, d) : t and t ; do not u n i f y for any P;

N N

3(6).Done(s, d) : 8 = mgu(t , t;) and

pi(:)(s, d) = P (s d) d"' (z =;) (s , d)

I N N

(QO)(s, d) : 6 = mgu(t , t;) and

Pi(;) (s) d) !Ef ((G =;) b Q) (s , d)

Translation of Cut

The cut control operator affects Prolog's search strategy. When a cut is invoked the following
events occur

1. the choice points of the goals found prior to the cut in the clause are discarded,

2. the clauses following the clause with the cut are not searched.

These events are modeled in T-calculus by suspending agents. Agents are forced to deadlock.
We define the operators that model cut as follows.

(A B) (s , d)
def - (US' dt)(A(s' , d') I st .B(s , d) 1 done'. Done(s, d)))

(A Fc B)(saee, done, e) (VS' dt)(A(s' , d') I s f . B(s , d) I dt.Done(s, e))

-
The two operators b, and D are used to model the first cut in the clause and the

subsequent cuts respectively. It is evident that the first cut prunes the clause space while the

subsequent cuts do not prune the clause search space. In the definition of A 77 B the first
solution from A is used to invoke B. Subsequent solutions of A are ignored. This differs from
the b where all solutions of A are retrieved. The operator 37, terminates with either a signal
done or c depending on whether the cut was invoked or not. The sequencing of a clause with
a clause that has a cut is represented by the 7 operator. In P Q the operator invokes Q
only when the signal from P is c which means that the cut in P was not activated. Owing to
this signaling mechanism, the agent that represents a clause with a cut, needs three channels to
communicate, while the agent that represents a clause with no cut will need only two channels.
The following bisimilarities apply to the operators that model cut. The bisimilarities describe
the operational effects of cut which prunes goal and clause search.

Cut - 1 : ((z(.(B).A F, B) C)(s, d) z (BB)(s, d)

Cut - 2 : d done.^ 77, 3) C)(s, d) z C(s, d)

Appendix 4 illustrates the use of bismilarities between the Prolog program representation in
n-calculus, for validating source-to-source transformation and proving termination of programs.

3.2.2 Remarks

[Ross 19901 presents the operational semantics of Prolog using CCS, the essence of which has
been preserved and presented in n-calculus framework here. Prolog's search control strategy,
with and without cut, is modeled by the synchronization mechanism provided by n-calculus.
The behavior of a Prolog program is studied using its semantic representation which in this case
are processes of T-calculus. Properties of programs can be proved using the notion of bisimi-
larity of processes. Equivalence between programs is established by demonstrating bisimilarity
between their process representations.

[Ross 19901 assumes the presence of a unification agent and uses its behavior implicitly in
proving properties of programs. The representation of the substitution returned by the unifier
agent and the bookkeeping regarding binding of variables have not been worked out. In fact,
the translation presented in [Ross 19901, may be regarded as a translation of a propositional
logic language, since the translation of variables is not dealt with at all.

The translation provided in [Ross 19901 requires an indexed set of processes, NextGoal;,
indexed by pairs of goals, to simulate the backtracking of goals. Our translation to n-calculus
avoids this by making NextGoal simulate a higher order process.

3.3 Functions as Processes

The paper [Milner 19891 exhibits accurate encodings of two variants of A-calculus in first order
T-calculus. It may seem surprising at first sight to note that A-calculus, in which variables can
be bound to terms, can be simulated by first order n-calculus in which variables can only be
bound to names. However upon reflection it is not so surprising since all implementations of
functional languages on conventional machines work by passing values and addresses between
registers, instead of passing complex entities such as functions. Hence there must be some way
of encoding A-calculus using n-calculus. [Milner 19891 demonstrates a translation that preserves
the notion of reduction in A-calculus. A reduction step of a A-calculus term is simulated by
atmost a short sequence of reductions in n-calculus.

The paper [Milner 19891 also attempts to define a precongruence relation on the translations
of A-terms that are related by a precongruence relation called applicative simulation.

3.3.1 Lazy A-calculus

Syntax

Let x, y, . . . range over an infinite set of variables X. Let L, M , N . . . range over the set of
terms C of A-calculus, which are defined as follows.

The last two terms are called abstraction and application respectively. The familiar reduction
relation takes the form

where { N I X) represents substitution of the term N for x.

Versions of the reduction relation differ by the context in which they admit /?-reduction.
Lazy A-calculus admits @-reduction only at the extreme left of a term. This is called lazy
reduction. Thus the term N is substituted as is, in the term M.

The lazy reduction relation -+ over C is the smallest relation which satisfies /?-reduction
along with the following rule for application.

APPL : M i M'
M N i M'N

Notice that given a term M , there is exactly one and only one term it can reduce to. Thus the
lazy reduction relation + is determinate. We represent the reflexive transitive closure of i by
*
i.

We proceed to encode the terms of lazy A-calculus into ?r-calculus. A-calculus seems to be
a basic calculus and one would expect the encoding to be simple if not obvious. However, the
only term rewriting rule, P-reduction, uses a complex operation of substitution as a primitive.
An encoding of A-calculus, then needs to model substitution in T-calculus.

The approach adopted to simulate substitution in [Milner 19891 is to encode the environment
model of term evaluation in T-calculus. In an environment model of term evaluation, terms are
evaluated in an environment which binds variables to terms. In the term M{N/x}, the effect of
substitution is achieved by evaluating the term M in an environment that binds the variable x
to the term N. [Milner 19891 formalizes the environment model of term evalutation to achieve
the encoding.

Translation of lazy A-calculus

A term M of the A-calculus is encoded as an agent [MIo u. The name u is the link (access
channel) along which [MI0 receives its arguments.

If M is used as an argument to a function in a term and is bound to a variable x, then each
occurrence of x in the scope of the binding would result in a computation of M. Hence each

time M is called it must be told by the caller, where it can receive its arguments from. Thus
an environment entry that binds variable x to a term M is translated as

def [x := M] = !x(w).[MI0 w

w is the link along which the processing representing the term M receives its arguments. The
caller of M provides this name along the link x, which is the bound variable in the environment.
The agent M is called whenever the variable x appearing ill a term N is evaluated. The
replication operator in the translation is needed since the variable x may appear more than
once in a term N and each evaluation of x would result in a call to M .

The translations of terms are as follows.

def [Ax.MI0 u - u(x, w).[MI0 w

[x1° 21
d ~ f - - x U

dzf [MN]" u - (vv)([MI0 v 1 T(x),u.[x := N]) (x not free in N)

A lambda abstraction (Xx.M) is represented by an agent that receives on u, the name of the
actual parameter for x and a name w, the link along which M will receive its arguments. Note
the use of the abstracted variable x of A-calculus as a channel name in n-calculus. During
communication, x would be bound to the input value on channel u. As a result, all occurrences
of x in M would be substituted by the name that x would be bound to, simply by the operational
semantics of T-calculus.

The translation of a variable x is an agent that transmits its access channel u, on x. Now,
u serves as the access channel to [N]" , the agent to which x is bound to, in the environment.
Thus [N]" is located at the site of evaluation of x. For example, assume that x is bound to
N in the current environment. Then evaluation of x is represented as follows.

(vu)([XI" u I [x := N]) Tu I !x(w).[N]" w
+ (vu)([N]" u I!x(w).[N]" w)

In the translation for function application, M and its actual arguments are at the two ends
of a private communication link, v. The agent [N]" will not be activated until [MI0 v reduces
to an abstraction [Ay.M1]" v and is ready for its arguments on v. The double prefix of [N]" is
the essence of lazy evaluation. The actual argument N is evaluated as many times as y appears
in M'. The replication in the environment entry serves to provide as many copies of N as there
are occurrences of y in M. After all the occurrences are evaluated, the environment entry for
the private variable x, serves no purpose and the corresponding process would be deadlocked,
since there would be no process to interact with it. This represents the garbage collection of
an environment entry.

3.3.2 Supplement ing t h e reduct ion relation

[Milner 19891 verifies the correctness of this translation by proving a theorem to the effect that
the translation presented faithfully preserves the convergent and divergent properties of terms
of A-calculus. A reduction of a A-calculus term is simulated by atmost a sequence of reductions
by its n-calculus representation.

The reduction relation + used in the above example describes only the intra-action in a
T-tern?. However a n-term not only performs intra-actions but can potentially interact with
other T-terms of an environment. In case of lazy A-calculus, interaction of a term with the
environment cannot occur until the term reduces to an abstraction. There is a well-defined
ordering of reductions and interactions for terms of lazy A-calculus. But in T-calculus, owing to
concurrency, intra-action and interaction can intermingle and this could change the behavior
of a n-term in a context.

A translation of A-terms must then concern itself with faithfully simulating the behavior of
the term in a context. To be precise, the translation must preserve the distinguishability of
A-terms under observation. Abramsky defined a preorder 5 called application simulation that
relates two terms based on their convergence behavior.

Definition M converges to M', written as M MI, if M M' ,4 ; also, M J, if M converges
to some M'.

Let .Lo be the set of closed terms. It can easily be seen that if M E .Lo and M J, MI then
MI is an abstraction.

N N

Definition Let L, M E L o , then L 2 M if for all sequences of closed terms N , if L N converges .
N

implies M N converges.

Furthermore if L, M E L have free variables ; we define L 5 M if L{& / z } 5 M{& / ;}
for &E L.

< Also N is a precongruence, since M 5 N, iff for every closed context C[-1; a term with a
single hole; if C [M] J, implies C [N] J,.

The paper [Milner 19891 attempts to define a precongruence relation _C between the trans-
lations of two A-terms that preserves applicative simulation relation 5 of the two terms. It
succeeds in defining a precongruence over T-terms that preserves the following bi-implication
only in the forward direction.

In the call-by-value version of A-calculus, a reduction in a closed term occurs only when the
argument is an abstraction. The terms C are as before, but it is convenient to define terms that
can serve as values as

Corresponding to lazy reduction relation of lazy A-calculus, we have call-by-value reduction
relation which is defined as follows.

Definition The call-by-value reduction relation +, is the smallest relation that obeys the
following rules.

APPL : M-+,Mt
MN--+,MrN

APPR : N-+,N'
MN-+,MNt

The two application rules allow reductions to take place at any location in a term, save that
the argument in an application must be a value for it to qualify as a redex.

Translation

We proceed to provide a translation of the call-by-value A-calculus into T-calculus. A A-term
M is thought of as an agent [MI0 p . However the channel p plays a dual role.

1. As before, it is used as a channel for the agent to receive argument values.

2. In addition to that, it is also used to signal that the term M has reduced to a value.

The signaling mechanism is required since M may occur as an argument of an applica-
tion term and reduction is admitted only when M is a value. This constraint implies that
abstracted variables of call-by-value A-calculus are bound only t o values. Hence the entries in
the environment contain only values and their translations are

The environment entries do not differ significantly from those of the lazy A-calculus, except for
the unfolding of the translation for the environment variable. The translations for the terms
are as follows.

def -
[VI0 P = P(Y) . [Y := VI

A term that can be a value translates to an agent that announces its valuehood and provides
access t o a newly created environment entry that binds the value to a new variable y. This is
distinct from the lazy A-calculus case, in which an environment entry is created only when an
abstracted variable is to be bound to a term.

Application of terms is translated as follows.

1. Two new links are used to serve as access channels to processes representing M and N
which execute concurrently. Let y and z be the environment variables bound to the values
of M and N . Further, let the value of M be Ax.Mt.

2. The ap agent receives the name y on q, and along y transmits a new link name v, that
would contain the channel names z (channel that provides access to the result of evaluating
N) and p (the location at which the result of the application is required).

It is evident that in general +, is not determinate, since a term may reduce to two different
terms depending on which redex is reduced. However it is well known that if a term M
reduces to M' and M" then there exists a term N to which MI and M" both reduce. Thus
if M J N then N is unique and so all reduction sequences terminate. [Milner 19891 proves
that the translation provided for call-by-value X-calculus faithfully preserves the convergent
and divergent properties of terms. Also an attempt is made to define a precongruence that is

< < equivalent to N,, a precongruence similar to N

3.3.4 Remarks

[Milner 19891 serves to demonstrate that the function-argument form of computing is a special
case of concurrent computing. It translates two versions of X-calculus into n-calculus faithfully
preserving the notion of reduction. A reduction of X-calculus has been proved to correspond to a
short sequence of reductions in n-calculus. Substitution of terms for variables in an application
is simulated using the environment model of evaluation. The translation is so compact that it
verges on incomprehensibility. The paper does little in terms of explanation of the translation
to clarify the translation.

We shall compare the representation of a variable of X-calculus with that of an object-
oriented language, La.

1. A variable of X-calculus is represented by a channel in n-calculus, while that of L2 is
represented by a process that represents a menlory location for the variable.

2. A value (term) to a variable in X-calculus is assigned on creation of an environment entry.
It represents a process that has an effect of textual substitution of the value (term) of the
variable at the location of evaluation of the variable.

A value to a variable of L2 is assigned by storing the access channel of the process that
represents its value in the location for the variable. Evaluation of a variable would proceed
to first access the access channel of the process that represents the value of the variable,
obtain a private copy of the process, and copy value it represents to the location of
evaluation of the variable.

3. Repeated assignments to a variable of L2 may be done by updating the contents of the
location that represents the variable to store the name of the access channel to the process
that represents the new value. This operation does not have a counterpart in X-calculus.

4 Conclusions

In this paper we have presented translations into r-calculus of languages that represent three
differing paradigms of computing: object-oriented, logic and functional paradigm. The similar-
ities of the translations are as follows.

1. Data values and expressions are represented as processes with access channels.

2. Data flow is modeled by passing the access channel of the process that represents the
data, as a value.

3. Control flow is modeled using synchronization signals.

The ability t o model control flow independently of the data flow, in n-calculus makes it a
unifying framework for the three differing programming paradigms.

n-calculus may be used to model the major components of a conventional computer. In fact
the translation given in [Walker 19901 treats memory to be a process. The control unit can be
simulated by synchronization signals a primitive that is provided implicitly in n-calculus. The
arithmetic and logic unit can modeled as a set of processes that model the basic operations of
the unit.An example of an addition process was discussed earlier in this paper. In the light of
the above discussion, it does not seem surprising that T-calculus serves as a unifying framework
for the three languages. Although the unification of the languages takes place almost a t the
machine level, the operational semantics of the languages is still compositional in nature.

n-calculus with its ability to model the client-server computation shows promise to be a
calculus that provides a canonical encapsulation of the object paradigm in the same way as
the A-calculus does for the function paradigm. However, it is still unclear how notions of
encapsulation and inheritance may be modeled in n-calculus.

The notions of bisimilarity of processes can be used to verify correctness of transformations
on systems. Similar to the illustration provided in [Ross 19901 to verify correctness of transfor-
mation of Prolog programs, a different application could be to niodel hardware circuitry using
synchronization mechanisms of T-calculus. The correctness of optimization transformations on
circuits could be verified by requiring that the transformations be bisimilarity preserving.

References

[Berry and Boudol 19901 G Berry and G. Boudol. The chemical abstract machine. In Proceed-
ings 17th Annual Symposium on Principles of Programming Languages. 1990.

[Conery and Kibler 19851 J.S. Conery and D.F. Kibler. And parallelism and nondeterminism
in logic programs. In New Generation Computing. 1985.

[Hehner 19841 E.C.R Hehner. Predicative programming part i. In Communications of the
ACM, 27(2). February 1984.

[Milner and Walker 19891 J. Milner, R. Parrow and D. Walker. A calculus of mobile processes,
part i. Research Report ECS-LFCS-89 85, University of Edinburgh, 1989.

[Milner 19891 R. Milner. Functions as processes. Research Report 1154, INRIA, France, 1989.

[Milner 19911 R. Milner. The polyadic n-calculus: a tutorial. Research Report, University of
Edinburgh, October,l991.

[Ross 19851 B. J. Ross. On observing nondeterminism and concurrency. In Lecture Notes i n
Computer Science 85. Springer - Verlag, University of Edinburgh, 1985.

[Ross 19901 B. J. Ross. A semantic approach to prolog program analysis. In Proceedings of UK
ALP 1991, Edinburgh. Springer - Verlag, 1990.

[Walker 19901 D. Walker. T-calculus semantics of object oriented programming languages. Re-
search Report ECS-LFCS-90 122, University of Edinburgh, 1990.

Appendix A

Bisimilarities of representations of Prolog progranis can be used to prove properties of program
such as program termination, validating source-to-source transformation.

Program Termination

The n-calculus semantics can been used to reason about the termination properties of pro-
grams. As mentioned earlier finite computations eventually terminate with a done action, while
non-terminating productive computations generate an infinite stream of succ actions. The loop-
ing computations or livelocks are bisimilar to the n-calculus agent 1 that denotes looping
[Ross 19901. The termination properties of the operators can be derived based on the termina-
tion properties of its operands. For example, the following bisimilarities can be derived using
the expansion theorem, a sketch of the proof of which may be found in [Ross 19901.

I ; P % I
I D B = I
A b I I

Termination properties of programs can be proved by showing a terminating sequence of
term rewriting based on the bisimilarities. For recursive predicate structures well-founded
ordering of successive rewrites needs to be established. Consider the program in figure 9. The
behavior of the program for the call a(2) is looked at.

[a(2)1° % ([al(2)10 7 [a2(2)I0)(s, d) : by definition.
= (Done 7 [a2(2)lo)(s, d) : by resolution rule.
% ([a2(2)I0)(s, d) : by Seq bisimilarity.
FZ (a(2))(s, d) : by construction.
= I : divergence

Program Transformation

The process semantics also helps to validate source-source transformations. A standard
technique in compiler optimization for imperative languages is loop unfolding. This transforms
source programs with loops to ones without loops so that the transformed program executes
faster than the original source program. In logic programming source programs are transformed
by unfolding that replaces a goal in a clause by a prospective resolvent. Process semantics can be
used to verify the validity of program transformations. A transformation of a program A to A'
is valid if A bisimilar to A'. It has been shown by means of an example that a transformation
that replaces a clause with a resolvent that has a cut in it, introduces discrepancy in the
behavioral properties of the transformed program. However introduction of cut that does not
affect the pruning of the search space is shown to be valid by demonstrating a bisimilarity
between determinate programs before and after the introduction of cut. Determinate programs
have a t most one solution and are bisimilar to (~ . d + 1)

Partial Evaluation

21%f (v z) (! Z 1 1x1

Partial evaluation is a process of evaluating a goal at compile time with some of its arguments
instantiated and deriving a new residual logic program which, when executed with the remaining
input of the original program, produces the same output as the original program except that
it runs more efficiently. The completeness of the partial evaluation is affected by the control
strategy used by the partial evaluator. There are three stages which may use various control
strategies.

1. Source Program control : the control used to execute the original source program.

2. Partial evaluation control: the control used by the partial evaluator on the source program.

3. Residual Program control : the control used to execute the residual program.

To preserve the computational conlpleteness of the partial evaluation, it is required that
the partial evaluator produce a residual program that preserves the observed behavior of the
original program. This condition can be represented in n-calculus by requiring that the residual
program R be bisimilar to the original program P. This condition can be maintained if only
bisimilarity preserving transformations are applied during the process of partial evaluation. For
example given the semantics of P to be for a left-to-right control strategy, the evaluator may
not apply a right-to-left control strategy in arriving at the residual program, since the right-to-
left control strategy does not preserve bisimilarity with respect to the semantics of the source
program.

Given a program P and a query Q , their semantic representations are operated on by rewrite
rules that preserve bisimilarities for a given control strategy. Hehner's predicative programming
principle [Hehner 19841 proposes that program code and its semantic meaning are substitutive
within semantic expressions. Using Hehner's predicative programming principle, the applica-
tions of bisimilarities to the program's semantic representation represent corresponding equiv-
alence preserving transformations of the source program. Eventually a T-calculus expression
E results from the rewrites. This expression is then normalized into a set of agent definitions
and calls that are bisimilar to E which in turn are translated into equivalent Prolog code. This
may require creation of new agents.

	Pi-Calculus: A Unifying Framework for Programming Paradigms
	Recommended Citation

	Pi-Calculus: A Unifying Framework for Programming Paradigms
	Abstract
	Comments

	tmp.1190211020.pdf.jtUcZ

