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VIDEO-RATE VISUAL SERVOING FOR ROBOTS 

Peter I. Corke 
Richard P. Paul 

1. Abstract 

This paper presents some preliminary experimental results in robotic visual servoing, utilizing a 
newly available hardware region-growing and moment-generation unit. A Unix-based worksta- 
tion in conjunction with special purpose video processing hardware has been used to visually 
close the robot position loop at video field rate, 60Hz. 

The architecture and capabilities of the system are discussed. Performance of the closed-loop 
position control is investigated analytically and via step response tests, and experimental results 
are presented. Initial results are for 2 dimensional servoing, but extensions to 3 dimensional 
positioning are covered along with methods for monocular distance determination. 

Finally some limitations of the approach and areas for further work are covered. 

2. Introduction 

This paper presents some preliminary experimental results in robotic visual servoing, utilizing an 
of-the-shelf hardware region-growing and moment-generation unit. This unit can process a 
binary scene, containing many regions, at video data rates and yields fundamental geometric 
parameters about each region. Such a device opens up many applications that were not previ- 
ously possible due to the computational complexity involved. 

The authors' aim was to develop a system capable of: 
at least frame rate (30Hz) analysis of video data 
functioning with a non-trivial scene 
determining object position as well as distance 
following a moving or stationary target 
functioning with a moving camera 

A priori knowledge of the target object's shape and dimensions is assumed. A non-trivial scene 
is one with a complex background (not a black backdrop) and in which illumination levels may 
change. In this paper a distinction is made between tracking, and visual servoing. Much of the 
tracking literature assumes slow motion, or stop-start motion. Visual servoing however treats 
the camera-processing subsystem as a sensor with its own inherent dynamics, which the closed- 
loop position control must take into account. 

There are many approaches to segmenting a complex scene so as to locate a possibly moving 
object. A general discussion of motion detection schemes is presented in[l]. Perhaps the sim- 
plest approach is image differencing[2] in which the difference between consecutive frames 
eliminates all detail from the scene except the edges of moving objects. This approach will fail 
if the velocity of the object is too low to differentiate motion energy from sensor noise, or if the 
camera is moving, and some hybrid strategy is needed to initially locate a static object. 
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A more sophisticated approach is optical flow analysis[3] which yields a dense velocity vector 
field from spatio-temporal changes in pixel intensities. This analysis is computationally expen- 
sive, particularly the smoothing operation[4] and requires special processing hardware to imple- 
ment in real time. Other problems include interpretation of the velocity field for general camera 
motion with rotations[5] and sensitivity to camera noise[6]. The derived velocity field must still 
be segmented to separate background from foreground. A related technique is based on feature 
matching, where features are generally comer points[7,8], edges[9] or regions. The change in 
position of various feature points between scenes can be used to estimate the velocity of those 
points. However features such as comers or lines are a sparse representation of the scene, and it 
is difficult to relate those features to the objects of interest in the environment without complex 
world models. 

Sanderson[lO] discusses visual servoing of robots and proposes a control scheme based on 
features extracted from the scene such as face areas of polyhedra, but gives no detail of the 
vision processing required to obtain those features. Kabuka describes two segmentationless 
approaches. One[ll] uses an adaptive control based on parameters derived from the entire scene, 
while[l2] is based on Fourier phase difference between consecutive frames. 

Image segmentation is only the first step towards object tracking, the next problem is to identify 
the position of the regions within the scene, and must be done whether the input image 
represents intensity, velocity or range data. One approach to object location is to use a pyramid 
decomposition[l3] so as to reduce the complexity of the search problem. Others have used 
moment generation hardware to compute the centroid of an object within the scene at video data 
rates[l4,15,16]. 

This paper discusses a region feature approach; a harware unit performs segmentation of the 
intensity image to identify region features. The regions are then further investigated in software 
to identify the target, and tracking commands are then generated from its position. This 
approach is very general and works regardless of the state of motion of camera and target. The 
task of segmenting a complex scene in real-time is not trivial, but is nevertheless the basis of this 
work. 

There is relatively little literature on visual servo implementations for robot position control. 
Many papers present only simulation results. Approaches to date could be classified as either 
stop-start (not dealt with here) or continuous. Hill and Park[l7] describe a closed-loop position 
controller for a Unimate robot. They use binary image processing for speed, but also propose 
the use of structured lighting to reduce computational burden and to provide depth determina- 
tion. Coulon and Nougaret[l8] describe a digital video processing system for determining the 
location of one object within a processing window, and use this information for closed loop posi- 
tion control of an XY mechanism. They report a settling time of around 0.2s to a step demand. 
Kabuka[ll] describes a two axis camera platform and image processor controlled using an 
IBM-PC/XT, and reports a minimum time of 30s to center on an object. Makhlin[l9] discusses 
aspects of accuracy, tracking speed, and stability for a Unimate based visual servo system. 

A number of related areas also require real-time visual object tracking. Gilbert[20] discusses 
automatic object tracking cameras used for rocket tracking. Andersson[21] describes a ping- 
pong playing robot that uses a real-time vision system to estimate ball trajectory for a subsequent 
paddle positioning planning algorithm. While the system described is not a closed-loop position 
controller many of the principles and problems are the same. 



3. The experimental setup 

The experimental setup is shown schematically in Figure 1. It comprises three major subsys- 
tems; robot control, image processing, and coordination. 

3.1. Robot control 

The robot control subsystem runs on a MicroVAX I1 connected to a Unimate Puma 560 robot 
and controller. Software on the MicroVAX can directly command robot joint angles using the 
RCI interface of RCCL[22]. The MicroVAX in this application is programmed to be a cartesian 
rate server; that is, it accepts cartesian velocity commands (in the tool reference frame) over an 
Ethernet using Unix datagram facilities. The server program consists of two asynchronous 
processes, one that accepts cartesian rate command packets from the network, and another that 
communicates robot joint angle measurements and commands with the Unirnate controller via 
the RCI software interface. The robot servo interval is currently 14 or 28ms[22]. The 
manipulator's inverse Jacobian is computed every sample period using the method of Paul and 
Zhang[23]. The desired robot joint angles are simply calculated by 

Figure 1. Experimental setup. 



where ahClienl is the cartesian rate from the motion client. The control algorithm makes no use 
of the observed joint angle ehS since the robot is currently moving in free space, and it is the job 
of the Unimate servo subsystem to achieve desired joint angles. 

Cartesian rate data is transferred in Sun's external data representation, XDR, using UDP proto- 
col. XDR is needed since the client process, running on a Sun-3, has a different data byte orien- 
tation and floating point representation to the MicroVAX. Benchmark tests indicate that writing 
a command packet on the client takes 1100p of elapsed time (kernel plus context switch time) 
using UDP, versus 2 5 0 0 ~  using TCP/IP. Although UDP is an inherently unreliable protocol, 
and does not guarantee sequential delivery of packets, in the simple laboratory network environ- 
ment these presented no problems. The server will accept datagrams from a number of different 
clients such as the visual tracker or a graphical teachpendant emulator. 

3.2. Image processing 

3.2.1. Segmentation 

Robust segmentation of a scene remains one of the great problems of machine vision. Haral- 
ick[24] provides a survey of techniques applicable to static images. Unfortunately many of the 
algorithms proposed for segmenation are iterative and thus not suitable for real-time applica- 
tions. This being the case most real-time implementations use contrived situations with dark 
backgrounds and simply threshold the video data. Much work has been done on automated 
approaches to threshold selection[25,26]. 

Many suggest that incorporating edge information into the segmentation process increases 
robustness. Although 2D histograms of edge and intensity information have been used to extract 
targets from noisy FLIR~ imagery in real time[27,28,29], many approaches still use simple 
thresholding. 

An adaptive approach to segmentation is currently being investigated, using the capability of this 
hardware region-grower to perform many trial segmentations per second. One of the principle 
problems is how to rate the success of a segmentation so that an automatic system may modify 
or adapt its parameters[30]. 

3.2.2. Architecture for preprocessing 

A functional representation of the image processing subsystem is shown in Figure 2, and is 
based on Datacube pipeline processing modules. As mentioned above, one design aim was that 
the system be able to function robustly with respect to different scenes, non-black background 
and changing lightlevels. The architecure described has attempted to meet these requirements 
within the constraints of modules available. 

The Datacube family of video processing modules are VMEbus boards that perform various 
operations on digital video data. The inter-module video data paths are patch cables installed by 
the user. The boards are controlled by a host computer via the VME bus. The video data paths 
run at lOMpixels/s and are known as MAX BUS^. Horizontal and vertical timing is established 
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Figure 2. Image processing architecture. 
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where Gx and Gy are respectively the horizontal and vertical Sobel convolution kernels. A 
lookup table is used to compute the gradient magnitude, from which a gradient threshold, Tedge, 
is subtracted 

ledge = 4- - Tedge 

All arithmetic is performed in 8 bits 2's complement. The original video stream is delayed to 
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synchronize it with the thresholded edge image, is offset by an intensity threshold Timage, and 
mapped through a lookup table which binarizes the pixels on the basis of both intensity and gra- 
dient magnitude. This provides some advantage in cases where regions of different intensity, but 
on the same side of the intensity threshold, separated, by distinct intensity gradients need to be 
resolved as separate regions. 

Binary median filtering on a 3x3 neighbourhood is used to eliminate single pixel noise regions 
which may overwhelm the region-growing unit. 

The Featuremax board is used to histogram edge and scene intensities periodically. The histo- 
gram data it computes is used by the host to select the thresholds Tedge and T-ge. 

For frame-rate processing the interlaced video data must be deinterlaced using double-buffered 
framestores in the Framestore module. Although only frame rate processing is discussed[31], an 
alternative approach which has been sucessfully tested is to process the interlaced data as two 
consecutive frames of half vertical resolution. The field processing approach has the advantage 
of eliminating the one frame time delay involved in deinterlacing, at the expense of twice as 
many regions to process per second. 

The APA-512[31] is a hardware unit designed to accelerate the computation of area parameters 
of objects in a scene. It was conceived and prototyped by the CSIRO Division of Manufacturing 
Technology, Melbourne, Australia, in 1982-4, and is now manufactured by Vision Systems Ltd. 
of Adelaide, Australia. The first author was a member of the design team. 

The unit has some similarities to other hardware implementations of binary image processing 
systems[15,32,16]. Andersson's unit[l4] computes moments of grey-scale data so as to 
improve accuracy when dealing with a quickly moving object. However it has no capability to 
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detect and generate moments for multiple regions, and multiple regions will, if present, be 
merged into one moment set. 

The APA binarizes incoming video data and performs a single pass connectivity (simple-linkage 
region growing) analysis. The connectivity unit commands a bank of 8 ALUs which update the 
region parameters (referred to as seeds) stored in seed memory. The ALUs are implemented by 
custom gate arrays. The seed memory is dual ported to the host VMEbus so that seed parame- 
ters of completed regions may be read. 

The APA performs very effective data reduction, reducing a lOMpixeVs stream of grey-scale 
video data via a MAXBUS interface, to a stream of tokens representing objects in the scene. 
The host processor screens the tokens according to their parameters, and thus finds the objects of 
interest. 

For each region the following parameters are computed: 
Xi, number of pixels (zeroth moment) 
Zx , Xy (first moments) 
Zx2, Xy2, Zxy (second moments) 
minimum and maximum x and y values for the region 
perimeter length 
a perimeter point 
region color (0 or 1) 
window edge contact 

From these fundamental parameters, a number of commonly used area parameters such as 

area 
centroid location 
circularity 
major and minor equivalent ellipse axis lengths 
object orientation (angle between major axis and horizontal) 

may be calculated by the host processor. The perimeter point is the coordinate of one pixel on 
the region's perimeter, and is used for those subsequent operations that require traversal of the 
perimeter. The edge contact flag, when set, indicates that the region touches the edge of the pro- 
cessing window and may be .partially out of .the image, .in .this case the parameters would not 
represent the complete object. 

Perimeter is computed by a sophisticated scheme that examines a 3x3 window around each per- 
imeter point and produces an appropriate perimeter length contribution depending upon the 
slope of the perimeter at that point. Experiments reveal a perimeter error of less than 2% with 
this scheme. 

The APA-512 computes these parameters for each of up to 256 current regions within the scene. 
Processing of the data is done in raster scan fashion, and as the end of a region is detected the 
region label is placed in a queue and the host is notified by an interrupt or a pollable status flag. 
The host may read the region parameters and then return the region label to the APA for reuse 
later in the frame, thus allowing processing of more than 256 objects within one frame. This 
feature is essential for processing non-trivial scenes which can contain several hundred regions 
of which only a few are of interest. Maximum processing time is one video frame time. 

An additional feature of .the APA is its ability to return region hierarchy information. When a 
region is complete the APA may be polled to recover the labels of already completed regions 
which were topologically contained within that region. This makes it possible to count the 



number of holes within an object, and compute the area of enclosed holes or internal perimeter. 

3.3. Coordination 

The visual servoing is coordinated by a Sun-31260 workstation running Sun's version of Unix, 
SunOS. Much of the processing involves sending commands to the various hardware image pro- 
cessing modules and this must be synchronzed with the video vertical blanking interval, which is 
only 1.2ms wide for RS-170 format video data. To achieve this reliably special device drivers 
are used, since a Unix process cannot guarantee the necessary response time. One driver was 
provided for the Datacube boards, and another was written for the APA. 

The main compuational burden is involved in post-processing regions detected by the APA. 
Small regions due to noise are screened out quickly and the region labels are returned to the 
APA. Larger regions are then screened according to object feature descriptions, which contain 
specifications for color (0 or I), and permissible ranges for size, and shape. If a matching object 
is found then the manipulator's velocity in the 2D plane is set as a function of the displacement 
of the object's centroid from the center of the image. 

4. Dynamic performance 

As mentioned above, due to the high image processing rates attainable with this architecture, 
dynamic effects within the closed-loop system become significant. 

A block diagram of the control loop is shown in Figure 4, and where y is the robot position and 
u is the target position. The error e = y -u is computed in pixel space. The open-loop transfer 
function of the frame rate system is 

where the pole at z = 1 is due to the integrating effect of the cartesian rate server. 

Experiments reveal that delay is the dominant dynamic effect in this system, as has been found 
by others[l7,19,10]. The frame rate tracker exhibits 4 frames times of delay, whilst the field 
rate version exhibits 3 field times of delay. This can be accounted for by raster scan latencies, 
processing time, deinterlacing for the frame rate version, inter processor communictions and 

robot motion time. The vision processing transfer function is modelled as V (z ) = Kobs 
.T, where 

I vision compensator server robot I 

Figure 4. Control system diagram (frame rate tracker). 



Kobs is the observation gain in mm/pixel and is related to the calibration gains discussed below. 
We will ignore mechanical and servo dynamics of the robot and model it as a single sample time 

4 

delay, R (z) = '. Thus the open-loop transfer function for the frame rate tracker is 
z 

This system is of type 1, and will thus exhibit steady state error for a constant velocity target. 
The simple compensator, 

introduces another pole at z = 1 to produce a type 2 system, while the zero is used to postion the 
closed-loop poles. 

The achievable closed-loop bandwidth of a discrete system is typically less than one fifth of the 
sample rate, or approximately 30radIs in this case. 

4.1. Step response tests 

The step response of the system was measured by a test rig with two spatially separated LEDs, 
only one of which was illuminated at a time. A manual switch controlled the LEDs and joint tra- 
jectory logging code in the robot server was activated by a change in the LEDs as sensed via an 
AID converter channel. 

Figure 5. Measured closed-loop step response. 



The compensator zero was located at z = 0.95, and a loop gain of 0.12 was chosen. This yields 
dominant closed loop poles at z = 0.915+0.0619j, which yields a time to first peak of 1.3s with 
1.5% overshoot. Figure 5 is the measured response of joint 2 of the robot, to a step applied at 
time 0. It can be seen that the measured response shows considerable overshoot, 36%, which is 
due to the action of the zero in the compensator. 

The simple classical compensator is very sensitive to gain and compensator zero position, and 
performance is very far short of the potential bandwidth. Further work with state-feedback con- 
trol and predictive state estimators is planned. 

4.2. Control behaviour 

The controller described works well in practice, and has the advantage of being computationally 
inexpensive. The visual tracking process does not produce cartesian rate commands at a con- 
stant interval, occasionally skipping video frames when Unix schedules other processes to run. 
In practice this causes very little problem since the robot carries on at its previous velocity until 
another command is received. This strategy could also be used to follow a target moving, with 
low acceleration, that becomes temporarily obscured or merged with the background. 

5. Depth determination 

A camera calibration is required to relate real world dimensions to those sensed by the camera in 
pixel space. Due to the aspect ratio of standard TV screens an image of a circle will appear as a 
vertically elongated ellipse in pixel space, thus two calibration constants Kx and Ky are deter- 
mined. These are defined such that at a distance u one pixel represents a rectangle of width 
Kx u and height Ky u . 
Many techniques for depth determination exist[33], and could perhaps be categorized as static, 
using cues such as lighting or texture, and triangulation based where multiple views from mov- 
ing cameras or stereo camera pairs are interpreted. The technique outlined here is a simple static 
technique based on a priori knowledge of the target object's area. 

The area of a pixel is 

If the object of known area A, is determined by the APA.to have h! pixels then an estimate of 
the objects distance is 

This simple technique works well in experiments, although factors such as focus and threshold 
may be expected to introduce errors. Further work using a continuous sequence of views from a 
moving camera has been commenced. 

6. Further work and discussion 

The initial objective relating to non-trivial scenes has been only partially met. The system works 
well on a scene containing many regions but good constrast between target and background is 
still required. 

Motion blur effect in the camera has not been a problem due to the slow moving objects 
currently used. Experiments have shown that interlaced frames are substantially distorted due to 
the delay between exposure times of the component fields, but this problem is eliminated when 



working at field rate. Motion blur effects have been investigated in detail by Anderson[21] 

The development and execution of the visual tracker has been carried out under Unix on a 
workstation computer. Unix is an excellent environment for software development, and on a 
graphics workstation becomes a very powerful tool indeed. Unix is much maligned for its poor 
real-time performance, but in reality does an acceptable job. The particular machine used here 
with a 25MHz processor and 8Mbyte of memory, and with -a single user did not page or swap 
processes. The only processes competing for the processor were the application and the periodic 
update daemon. Unix allows for rapid prototyping of software, and by placing the most 
response critical code in device drivers an acceptable level of performance was obtained for 
experimental purposes. 

This work, and others such as[21] show that video standards and conventional cameras are now 
a limiting factor in high performance video sensing applications. Video technology is currently 
tied to the needs of the television industry where conflicting requirements such as small 
bandwidth and flicker have to lead to such devices as interlaced scanning. However when the 
end user is a machine vision system the requirements are very different. Fortunately, a new gen- 
eration of cameras with both high resolution and high speed non-interlaced data formats are 
becoming available. 

Areas for further work include: 

(1) Determining the trajectory of target objects so that some attempt to follow them through 
occlusion or background clutter can be made. 

(2) Investigation of more sophisticated control algorithms to improve the position response 
time of the closed-loop system. 

(3) Investigate adaptive segmentation based on feedback of segmentation results from the APA 
so as to modify edge and scene thresholds. 

7. Conclusion 

This paper has described a high performance image processing system capable of providing 
robot positioning commands at rates of up to 60Hz, and demonstrated closed-loop position con- 
trol. The image processing subsection is comprised entirely of off-the-shelf components, not- 
ably-a hardware region growing and moment generation unit. 

The region oriented approach used here enables the system to identify the target object whether 
or not there is relative motion between object and camera. 
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