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Automatic Configuration Recognition Methods in Modular Robots

Michael Park Sachin Chitta Alex Teichman Mark Yim
GRASP Laboratory, University of Pennsylvania, USA

E-mail: {parkmich,sachinc,ateich,yim}@grasp.upenn.edu

Abstract— Recognizing useful modular robot configurations
composed of hundreds of modules is a significant challenge.
Matching a new modular robot configuration to a library of
known configurations is essential in identifying and applying
control schemes. We present three different algorithms to address
the problem of (a) matching and (b) mapping new robot configu-
rations onto a library of known configurations. The first method
solves the problem using graph isomorphisms and can identify
configurations that share the same underlying graph structure,
but have different port connections amongst the modules. The
second approach compares graph spectra of configuration matri-
ces to find a permutation matrix that maps a given configuration
to a known one. The third algorithm exploits the unique structure
of the problem for the particular robots used in our research to
achieve impressive gains in performance and speed over existing
techniques, especially for larger configurations. With these three
algorithms, this paper presents novel solutions to the problem
of configuration recognition and sheds light on theoretical and
practical issues for long-term advances in this important area of
modular robotics. Results and examples are provided to compare
the performance of the three algorithms and discuss their relative
advantages.

Index Terms— Modular robots, configuration recognition,
graph isomorphism

I. INTRODUCTION

A modular robotic system composed of reconfigurable units
has been an active area of research for the past two decades.
Various groups have created an array of different models
with diverse control schemes (master/slave, entirely local,
genetic algorithms) (Fukuda 1990, Murata 1998, Kotay 1998,
Chirikjian 1994, Rus 1999, Murata 2000, Yim 2000, Castano
2000, Fitch 2000,Ünsal 2000, Jorgensen 2004, Shen 2006).
These systems are made with a number of repeated units that
can be rearranged to form different configurations, each of
which can be used for different applications. For example, a
snake-like configuration may be good at going through small
holes, while a monkey-like configuration may be better at
climbing. As the number of modules increases, the number
of possible configurations rapidly increases.

Automatic configuration recognition is the process by which
a modular system can determine its own configuration without
having it explicitly programmed. This has a variety of uses
including:

• Function follows form can be implemented with prepro-
grammed behaviors that can be called up based on the
configuration. For example, if modules are assembled into
the shape of a dog, the system is controlled to behave like
a dog, if in the configuration of a snake, then behave like
a snake etc.

• Rapid manual repair for broken labeled modules, au-
tomatic configuration detection allows any module to

replace any other without reprogramming. The important
characteristic is the module’s connectivity relationship to
other modules (e.g. location in a graph) and not an ID
number.

• Self-repair with many repeated modules can include the
reconfiguration of a system to move broken modules
to non-critical locations in the configuration. Identifying
isomorphic configurations can be one step.

In all three cases listed above, it would be more interesting
to not only find the isomorphic configurations, but find the
functionally similar configurations. For example, a 4-limbed
configuration with 10 modules in each limb is similar to
a 4-limbed configuration with 9 modules. Finding the set
of all functionally similar configurations is difficult as an
understanding and breakdown of the function of possible tasks
would be required as well as reasoning about failure modes.
It is easier (but not easy) to find the set of all kinematically
similar, or isomorphic configurations which would be a step
towards finding functionally similar configurations. This is the
main focus of this paper.

This work presents a comparison of three methods of
matching a new configuration to a set of known configurations
and mapping their physical labeled modules to their logical
position in a control scheme. The three methods are:

1) an automorphism grouping method using nauty,
2) a spectral decomposition approach,
3) a heuristic graph search called 3DLL.

An analysis of these approaches is given with insights into un-
derstanding the physical relationships between the scalability
and execution times of the different approaches.

Chen and Burdick (Chen 1996) published related work on
enumeration of non-isomorphic configurations and identifying
kinematically similar structures in this set. The work presented
here is a departure from enumeration and instead focuses
on algorithmic approaches to configuration recognition and
mapping to configurations in a known database. A positive
match and mapping provides the network structure needed for
isomorphic control.

Castano and Will introduce the matching of a physical
arrangement of modules to a known configuration as configu-
ration discovery Castano 2001 on CONRO. While they address
hardware and software processes for building a representation
of the configuration, they do not address the matching prob-
lem, instead referencing the graph automorphism and nauty
as a possible approach. CONRO uses unlabeled modules,
so mapping of labels is not required. Indeed, the unlabeled
system is a subset of the problem in this paper. Arbitrary
labeling can be applied to two unlabeled configurations and



checked to see if they match. In addition, we present complete
implementation details for three different algorithms each of
which has its own relative advantages.

We include a new algorithm that exploits the special
structure of our problem and is able to achieve impressive
improvements in speed and performance for certain cases. The
implementation of these algorithms and analysis of the results
achieved with them provides new insights into the problem
and the feasiblity of employing the different techniques we
present here.

This use of the special structure is also used by Butler et al.’s
goal recognition algorithm (Butler 2002). However, their work
is designed for distributed systems and solves the matching
problem, whereas the methods presented here are centralized
systems (exploiting global knowledge) and solves both the
matching and mapping problems. In fact, mapping solutions
may not be necessary in a distributed system. Distributed
versions of the methods presented here are possible, but that
is left for future work.

A. Automatic configuration detection

A configuration of a modular self-reconfigurable robot is
defined as the arrangement (connectivity) of modules into
a single connected component. There are many ways of
representing this connectivity, but it is typically done with a
graph where the nodes of the graph are the modules and the
edges represent the connection between modules.

In a homogenous system, all modules are identical having
a number of connection ports c with each pair of ports
having w multiple ways (e.g., orientations) of connecting. The
number of different ways that n modules can connect into one
connected component is very large approaching (cw)n since
each module added to a configuration can be added to any of
c(n−1) connection ports in w different orientations. However,
many of these configurations are morphologically identical
(isomorphic). In addition, many modules have symmetries
such that attaching a module results in functionally identical
morphologies though the control may need to be modified
(e.g., mirrored modules might need control to have an opposite
sense).

Automatic configuration recognition has two functions, 1)
identifying a configuration (for example checking to see if
the configuration is isomorphic to one in a library of con-
figurations) 2) mapping the labeled modules in the physical
configuration with the logical arrangement of the known
configurations to which it is isomorphic. We call the first
part configuration matching and the second part configuration
mapping.

B. Graph representation of modular robots

Graphs are concise representations for modular robots and
readily allow application of techniques from graph theory. A
few principal tools derived from ideas in graph theory are
employed in our methods of configuration recognition and
mapping. In this section, we introduce notation and definitions
related to work in later sections.

A modular robot configuration is often represented as a
graph G = (V,E). The vertices (V = (v0, v1, . . . , vn))
of the graph represent the modules while the edges (E =
(e1, e2, . . . , ec)) of the graph represent the connections be-
tween the modules. Here n is the number of modules in
the robot while c is the number of connections between the
modules. The labels for the vertices are the unique node IDs
corresponding to each module. Further, a mapping fE : E →
E is used to assign a particular edge type to each edge. The
edge type represents the type of connection between the two
modules (which is based on the ports that are connected to
each other). The graph representation can be converted to
a matrix representation using a adjacency matrix (M ). The
adjacency matrix for a graph with n vertices and c edges
is a n × n matrix with Mij = 1 implying that vertex vi is
adjacent to vertex vj and 0 otherwise. A special version of the
adjacency matrix called the port-adjacency matrix is defined
as a n × n matrix A where Aij represents the port number
on module i that module j connects to. Instead of 1 as in an
adjacency matrix the element holds an integer from 0 to c.

A graph G1 is isomorphic to another graph G2 if the
adjacency matrices for the graphs are related by a set of row
and column permutations. If γ12 is the isomorphism between
the two graphs, then Mγ12(G1) = G2. A graph may also
be isomorphic to itself, i.e. there exists an isomorphism γ
such that Mγ(G1) = M(G1). The set of graph automor-
phisms is especially important to test against when trying to
identify module configurations. The problem of modular robot
configuration recognition and mapping can now be formally
defined as follows: Given a set of robot configurations G =
G1, G2, . . . , Gn and a new modular robot configuration Gnew,
identify a robot configuration Gi ∈ G that is isomorphic to
Gnew.

C. Organization

The paper is organized as follows. In Section II, we intro-
duce a modular robotic system which serves as a good example
system for connectivity analysis. Sections III, IV and V discuss
the three implemented solutions with Section III serving to
introduce the problem in more detail. These implementations
were compared by testing on different sets of configurations
including a set of randomly generated configurations. These
tests and results are shown in each section and discussed
in Section VI. Some experimental results of an embedded
application are also shown in this section. Finally, Section VII
talks about the implications of these results and describes
future work.

II. CKBOT

While many of the current incarnations of modular robots
are intended for self-reconfiguration, the work here applies to
both self-reconfigured and human reconfigured modules. In
both cases, the connection mechanisms, whether autonomous
or manual, define the possible set of configurations.

A connector physically attaches two modules together and
often connects power and/or communications as well. The
connectors may be gendered (male and female) or they may



Fig. 1. Surveyer Dog 17 modules in a 4-legged configuration

be hermaphroditic (containing both male and female compo-
nents). Gendered connectors connect only to the opposite gen-
der whereas hermaphroditic connectors can be homogeneous,
all connectors are the same and can connect to each other. For
this paper we will consider only homogeneous hermaphroditic
connectors.

A. CKbot Hardware

CKbot (Connector Kinetic roBot) is a new modular recon-
figurable robot that is used as the experimental platform in this
work. The kinematics and connector strategy is typical for
many chain style reconfigurable modular robots (Yim 2000,
Castano 2000, Murata 2000). Figure 1 shows 17 modules in
the configuration of a dog. Each module in the system consists
of:

1) A laser cut plastic (ABS) body with a hobby servo
actuator to control one rotational degree of freedom.

2) A controller (PIC18F2680) and associated hardware
for implementing a Controller Area Network (CAN)
communications protocol.

3) Four connector faces that pass the communications bus
and power bus with an option of attaching at 90o

rotations. If power and communications are ignored, the
faces have rotational symmetry order 4.

Two modules are attached together by using screws (4 pairs
of holes are available, 4 threaded, 4 non-threaded). An elec-
trical header is included in between the modules to facilitate
the communications and electrical power bus. With this header
the connection is homogeneous and hermaphroditic. Power can
be supplied either from an external power supply or on-board
Li-poly batteries that plug into the power/data ports on the
module.

The module can be considered as a cube with connectors on
top, bottom, left and right faces as in Figure 2. The top, left
and right faces are rigidly mounted together, the bottom face
is actuated to rotate up to 90o to form the front or rear face
of a perfect cube. Functionally the module has one symmetry
where the module is rotated 180o so left and right sides are
swapped, though the actuator would need to be controlled
in an opposite sense to be equivalent. The top and bottom
connectors almost have the same symmetry, however the left
and right faces are rigidly attached to the top, so a 180o

rotation swapping top and bottom results in a kinematic change
(though not positional) in the left and right faces.

The system has a global communications bus allowing
each module to talk to and discover which other modules

Fig. 2. One CKbot module with a schematic representation. The arrow
indicates the rotational axis, the numbers are the port identification numbers
assigned to each port

Fig. 3. Two IR transmitter and receiver pairs are on each side except the
bottom port which has one pair.

are available. However, this bus does not indicate neighbor
connectivity. Local communication allows each module to talk
to its neighbors which inherently indicates the connectivity
(presense or absence) of its neighbors. CKbot uses an infrared
emitter/detector-based local communications mechanism.

Figure 2 shows a CKbot module with four connection
ports and the 2D schematic representation of a module. Each
port except the bottom port has two infra-red (IR) transmit-
ter/receiver pairs. Figure 3 show the layout of the seven IR
pairs. Note that when two faces are attached together, the
transmitter LED (TX) faces directly on to the receiver pho-
todiode (RX) on the opposing face and vice versa. Currently,
40 CKbot modules have been constructed and a variety of
tasks have been demonstrated including moving like a snake,
rolling like a tread, digging in sand and walking like a slinky
toy. Section VI-A also describes a demo combining multiple
gaits.

B. Low Level Software

The software used in CKbot builds upon the Robotics Bus
(Gomez-Ibanez 2004). The Robotics Bus was designed to be
adaptable to a variety of applications based on the Controller
Area Network (CAN) bus communication protocol. One fea-
ture of the Robotics Bus architecture is a broadcast heartbeat
signal of each module about once every second. This signal
contains a unique identifier allowing other modules on the bus
to periodically identify the other modules present on the bus.
Note that this necessitates the assignment of a unique node



ID number to each module. The Robotics Bus also promotes
browseability, i.e., the ability of a central controller to query
and identify the important attributes of a module. This includes
the number and type of modules, important parameters like
gain and scaling factors that can be set externally, the module’s
current state and sensor data associated with the module. For
CKbot, the important information available on the bus includes
the joint angle sensor for the module.

The unique node ID on CKbot means that the modules are
labeled. Modular systems may either be labeled or unlabeled
(Caastano 2000). For many control schemes, module labels
and configurations are coupled in a manner critical to the
control. E.g. the methods rely on mapping of physical modules
to logical configuration dependent locations. In one such
method individual modules perform prescripted motions in
a gait control table (Yim 2001). These control methods are
applied only to specific configurations or configurations that
can be extended in a regular pattern (e.g., making a snake
longer, or increasing the number of legs in a centipede.)
In most of these cases, the configuration of the robot and
the position of each module in the robot is specified either
manually, or determined using a set of rules for a small class
of configurations.

Each CKbot module functions as an independent entity.
Distributed control is possible with CKbot, though for this
paper centralized control will be the focus as it is easier to
implement and explain.

When power is applied to a CKbot system, the central
controller logs heartbeats and additional information including
positional feedback values and neighbor information of each
module. The central controller can use this information to
output a desired gait. Since the robots are sometimes hand
assembled, the same configuration can be formed by putting
together disparate sets of modules. The central controller
must then recognize the manually assembled configuration and
output the correct set of gait values to different individual
modules. The heartbeat allows a central controller to recognize
the addition of new modules or the removal (or failure) of
modules in the robot while running.

C. Neighbor Discovery Subroutine

Neighbor discovery is the process where each module
detects the presence or absence of neighboring modules and
a representation of the connectivity of the whole system is
generated. This was the central contribution in (Castano 2001).
On CKbot, detection is done by the seven IR ports on each
connection as shown in Figure 3.

There are 11 possible ways that the top, left, or right ports
can be attached to another module and 7 possible ways for the
bottom port. Each module has 7 IR pairs to determine each of
these possibilities but one asynchronous serial communication
device (on the PIC, a USART). The USART is multiplexed to
each IR port.

The neighbor detection procedure can be distributed in (Cas-
tano 2001) or centralized. For CKbot a centralized controller
is used. The controller designates each module (as discovered
from heartbeats), one at a time as a transmitter and the others

Fig. 4. A database of known configurations.

as receivers. The transmitter cycles through its 7 IR ports,
waiting for a certain time on each port and transmitting its
node ID on that port. The receivers cycle through checking
their 7 ports at a rate 8 times faster than the transmitter.
Any contact with the transmitter is logged in a neighbor
table along with the node ID specified by the transmitter.
Each module stores information about its own neighbors. A
complete neighbor map can be constructed by the central
controller by querying this information from the individual
modules.

In this section we looked at some of the conventions and
implementation details necessary to formulate the problem
of configuration recognition and mapping. In the next three
section, we will present the three algorithms used to solve
this problem.

III. IDENTIFYING GRAPH ISOMORPHISMS

Traditional techniques from graph theory form the basis
of the first approach to solving the configuration recognition
problem. The process involves two steps, computing the graph
isomorphism that relates the two configurations and then
mapping the two configurations onto each other. The first
problem is tackled by comparing a canonical representation
for the underlying graph structure (the graph nodes without
port information, i. e. the adjacency matrix, not the port
adjaceny matrix) of the configurations. This pares the matching
problem down to considering a fraction of configurations in
the library. The second problem is tackled by comparing the
complete automorphism group for the new configuration with
the canonical representations in the library.

A. Example

Consider the set of known configurations in Figure 4. All
the configurations have 7 modules and include a snake-like
(SL), a four-limb (FL) and a three-limb configuration (TL).



Fig. 5. A new configuration.

The goal is to match the new configuration NL in Figure 5 to
one of the configurations in the database.

The adjacency matrices for the set of known configurations
and the new configuration are generated by labeling the
vertices in increasing order of node IDs. Vertex v0 corresponds
to the lowest node ID while vertex v6 corresponds to the
highest node ID. The adjacency matrices for the set of known
configurations in the database are given by:

MSL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

MFL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

MTL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The adjacency matrix for the new configuration is given by:

MNL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 1 0 0 0 0 1
1 0 1 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The graph isomorphism problem is approached using a
software program called nauty (McKay 1981). nauty (no
automorphisims, yes?), authored by Brendan McKay (and
available electronically from http://cs.anu.edu.au/

˜bdm/nauty/), is a software program that determines a set

of generators and size of the automorphism group of a graph.
The input to nauty is the adjacency matrix corresponding to a
particular robot configuration. nauty returns the automorphism
group corresponding to the graph and a canonical representa-
tion for the input graph. Two graphs are isomorphic if they
have the same canonical representation.

The canonical representations that are used here also rep-
resent only the connectivity of the underlying graphs corre-
sponding to the different configuration, but do not contain
any information about the port connections themselves. As
we shall see later in this section, the port connection are
essential in determining actual matches. However, the initial
step of comparing canonical forms allows the search space
for determining complete matches to be significantly narrowed
down.

The first step, as mentioned earlier, is to find the canonical
representations of known configurations. Let SLc denote the
canonical representation of a configuration SL.

The canonical representations for these configurations are
computed using nauty and the mappings from the canonical
representations to the configurations in the database are given
below.

gSL :
(
0 1 2 3 4 5 6

) → (
0 6 3 4 2 1 5

)

gFL :
(
0 1 2 3 4 5 6

) → (
0 1 4 5 6 3 2

)

gTL :
(
0 1 2 3 4 5 6

) → (
1 3 5 0 4 6 2

)
The gait for the reference configuration is also

mapped to the gait for the canonical configuration.
Given (φ0(t), . . . , φi(t), . . . , φn(t)) as the gait for the
reference configuration SL, the gait for the canonical
configuration of SL is given by (θ0(t), . . . , θi(t), . . . , θn(t)) =
(φgSL(0), . . . , φgSL(i), . . . , φgSL(n)).

On examining the canonical configurations, FL and NL have
the same canonical representation given by:

MFLc
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 1 1
1 0 0 1 1 0 0
0 1 1 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is easy to see that the new configuration is a four-limb
configuration. In addition to the canonical representation, a
mapping g from the vertices of the canonical configuration FLc

to the vertices (and thus node IDs) of NL is also calculated by
the algorithm. Thus, this part of the solution gives two results:
(a) a match between NL and FLc and (b) a mapping from the
nodes of NL and FLc. However, note from Figure 5 that the
connections between nodes 0, 3 and 4 in configuration NL
are different from the connections between nodes 4, 5 and 6
in configuration FLc. This necessiates an additional test for
complete matching where the symmetries of the individual
modules are taken into account, using the port-adjacency
matrix.



Fig. 6. Examining the automorphism group and the port-adjacency matrix.

B. Automorphisms and the port-adjacency matrix

In the previous section, the isomorphism of the underlying
graph structures was used to reduce the size of the search space
to be considered for the matching problem. However, there are
two additional issues in completely matching the new configu-
ration to the reduced database of configurations. Consider, for
example, the set of configurations in Figure 6. Here, ELc and
FLc are two canonical representations for configurations in the
database while JL is a new configuration we are looking to
identify. The graphs for all three configurations have the same
canonical representation, yet only one pair match.

Looking at the figures it is clear that JL and FLc are different
configurations. The difference lies in the nature of the attach-
ment between modules 3 and 5. Although this information is
unavailable from just the adjacency matrices corresponding to
these two configurations, it is available in the port-adjacency
matrices corresponding to these two configurations:

AFLc
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 7 0
0 0 0 0 0 0 7
0 0 0 0 0 0 1
0 0 0 0 0 4 0
0 0 0 0 0 1 5
1 0 0 7 6 0 0
0 1 7 0 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

AJL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 7 0
0 0 0 0 0 0 7
0 0 0 0 0 0 1
0 0 0 0 0 5 0
0 0 0 0 0 1 5
1 0 0 7 6 0 0
0 1 7 0 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is easy to see that the two configurations differ in row 4.

Now consider ELc and JL. They have the same canon-
ical representations, but different port-adjacency matrices.
However, with the left/right symmetries, they represent the
same configuration. This can be seen on examining the
automorphism group for JL. An automorphism denotes the
isomorphism of the graph to itself and in this case ELc and
JL belong to the automorphism group for the underlying
graph structure. Thus, during comparison, two configurations
must be compared against each other and against the whole
automorphism group for one of the configurations.

The last property we must consider in comparing the two
configurations is the symmetry of the modules themselves.
Again, this can be seen by comparing ELc and JL. Modules
5 and 3 in JL map to modules 6 and 2 in ELc. However,
on matching the two configurations and aligning them with
respect to each other, all the modules of JL are rotated 180o

such that the left and right ports are swapped. Thus, in addition
to comparing the port adjacency matrices, we must also take
into account symmetries in the module itself. This is easily
done by listing all the symmetries explicitly and comparing
against them when carrying out the port adjacency matrix
comparison.

C. Final mapping

Using the techniques detailed in the previous sections,
we can now find the mapping from configuration FLc to
configuration NL in our original example.

g :
(
0 1 2 3 4 5 6

) → (
6 5 2 1 0 3 4

)
Vertex v in the canonical configuration FLc maps to g(v) in
the new configuration NL.

To find the correct mapping for the gait to the new
configuration, align the two configurations using the graph
isomorphism defined earlier and compute the direction of
the joint axis of each module with respect to the joint axis
of the module corresponding to vertex v0 in the canonical
configuration. Now, compare the direction of the joint axis for
the vertex vi (with respect to v0) in the reference (database)
configuration to the direction of the joint axis for the vertex
vk = g(vi) (with respect to g(v0)) in the new configuration.
The direction can either be parallel or anti-parallel. If the
directions are parallel then θi in the gait maps to θk in the
new configuration. However, if the directions are anti-parallel
then θi in the gait maps to −θk in the new configuration. The
desired goal of mapping the gait for the reference configu-
ration

(
θ1(t) . . . θn(t)

)
onto the joint angles for the new

configuration has been achieved.
Applying this procedure to NL, given the gait

(θ0(t), . . . , θi(t), . . . , θ6(t)) for the canonical configuration
FLc, the gait for NL is found to be by (φ0(t), . . . , φ6(t)) =
(−θ4(t),−θ3(t), θ2(t), θ5(t), θ6(t), θ1(t), θ0(t)).

D. General algorithm

The above procedure is presented as a general algorithm in
Algorithm 1.



Algorithm 1 nauty based robot configuration matching algo-
rithm

Given a database of configurations S, find the corresponding
canonical representation of the database Sc.
For new configuration E, compare the canonical represen-
tation of E (denoted by Ec) with all the elements of Sc.
Store any matches in Mc.
if Mc �= φ then

Construct ΦMc
- the set of assembly port matrices for

all elements of Mc under the action of the respective
automorphism group.
Compare ΦEc

to ΦMc
to find a match, Fc ∈ Sc, for E.

if Match found then
Generate the map for the robot from F to Fc.
Align Fc and E and map orientation changes for Fc

to E.

For our example problem from Figure 5, given a gait control
table (Yim 2001) for the canonical form of configuration FL,

⎡
⎢⎢⎢⎢⎣

−45 −45 60 60 0 15 15
−30 −30 45 45 0 30 30
−15 −15 30 30 0 45 45
0 0 15 15 0 60 60
15 15 0 0 0 45 45

⎤
⎥⎥⎥⎥⎦

the mapping found earlier can be used to write a similar gait
table for the new configuration NL:

⎡
⎢⎢⎢⎢⎣

0 −60 60 15 15 −45 −45
0 −45 45 30 30 −30 −30
0 −30 30 45 45 −15 −15
0 −15 15 60 60 0 0
0 0 0 45 45 15 15

⎤
⎥⎥⎥⎥⎦

E. Implementation

The algorithm was implemented using MATLAB and an
interface to nauty. The database of reference configurations
was generated using a combination of known configurations
and randomly generated configurations. Configurations with
upto 200 modules were considered. The input to the algorithm
is the port-adjacency matrix for a new configuration and the
output is the port-adjacency matrix for a matching configura-
tion from the database of known configurations. This is used
to determine a mapping from the new configuration to the
matching configuration in the database and thus the mapping
for any gaits generated for that configuration.

In addition to matching random configurations, tests were
also performed with specific configurations, specifically robot
configurations that have been constructed and used in our
research. Such robot configurations have been constructed with
a maximum of 10 modules, however virtual configurations of
the same form were created for testing for the higher number
of modules. The configurations created included a snake-like
serial line configuration, a centipede configuration, a loop
configuration and a plane configuration.
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Fig. 7. Mean search times for nauty based algorithm vs. number of modules
in robot configuration.
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Fig. 8. Standard deviation of search times for nauty based algorithm vs.
number of modules in robot configuration.

F. Results

From the results in Figure 7, Figure 8 and Figure 9, it
is clear that while the matching time increases with number
of modules, there is considerable variation in matching times
even for configurations with the same number of modules. The
matching time is a function of the size of the automorphism
group for the particular configuration to be matched. This can
be clearly seen in Figure 10. Here, the matching times for
configurations with 100 modules in each are plotted against
the size of the automorphism group for that particular config-
uration. It is obvious that the relationship between matching
time and size of automorphism group is almost linear.

The size of the automorphism group is a reflection of the
symmetries in the underlying graph structure of the robot. If
the number of symmtries in the structure of the robot is high,
the size of the automorphism group will be higher and the
algorithm needs to check through more permutations of the
graph to perform the matching. Thus, the algorithm will be
slower for configurations that are very symmetric and fastest
for asymmetric configurations where the only member of the
automorphism group is the current configuration itself.

The results also bring out another advantage of using this
particular method for lower number of modules (< 100).
The canonical forms for the graphs are pre-computed and
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Fig. 9. Mapping times for specific configurations for nauty based algorithm
vs. number of modules in configuration.
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Fig. 10. Matching time vs. size of automorphism group for nauty based
algorithm.

stored beforehand. This ability to preprocess the library greatly
reduces the time required for matching since the canonical
forms have to be computed only for the new configuration
to be matched. The matching then only involves a matrix
comparison followed by a permute and match operation for
the isomorphic graphs. However, the method scales badly with
increase in the number of modules in the configurations. In
fact, it was often difficult to obtain meaningful data with
configurations of more than 200 modules. Since most hardware
implementations so far have been less than 100 modules, this
approach will still be useful for the near term.

The other advantage of this method is its ability to detect
configurations whose port-adjacency matrices may not match
although they are isomorphic. Thus, it can detect kinematically
equivalent configurations where the port numbers correspond-
ing to connection between a pair of modules in the two
configurations may not be the same. This is advantageous even
in situations where the robots are put together simply manually
since it spares the designer the tedious task of specifying the
correct orientations for each module and modifying the gaits
accordingly.

Fig. 11. Example of cospectral graphs with the same characteristic polynomial:
−1 + 4λ + 7λ2 − 4λ3 − 7λ4 + 6λ6.

IV. SPECTRAL DECOMPOSITION

The next approach we consider applies basic concepts from
spectral graph theory as a means for determining configuration
isomorphism and label mapping. A known method for check-
ing for isomorphism between two graphs is through adjacency
matrix spectral decomposition (Chung 1997). That is, if two
graphs G1 and G2 are isomorphic, then the eigenvalues of the
corresponding port adjacency matrices A1 and A2 are equal.
The inverse, however, is not always true: adjacency matrices
with identical arrays of eigenvalues are not necessarily iso-
morphic. To deal with this issue, permutations of eigenvector
elements are employed as a confirmation of isomorphism and
as a basis for finding the permutation mapping of module IDs.

The other methods considered in this paper use heuristics to
search for matches between two graphs. This approach differs
in its use of well-established ideas in spectral graph theory and
its applicability to generate approximate methods (Zavlanos
2006) where the other techniques may fail.

Cospectral graphs such as the pair shown in Figure 11
(Hogben 2005) are rare and interesting cases that may arise in
modular robotic configurations. The characteristic polynomial
for these graphs are the same despite non-isomorphism. In
these scenarios, although the eigenvalues are the same, the
structures are not isomorphic since no relabeling of nodes
maps one configuration to the other. A comparison of the
eigenvectors for these graphs is required to find that permuta-
tion doesn’t exist and confirm non-isomorphism.

A. Linear Algebra of Adjacency and Permutation Matrices

Given two port-adjacency matrices A1 and A2 with the same
graph spectrum, we wish to find the permutation matrix P that
reorders the rows and columns of A1 so that they are identical
to those of A2:

A2 = PA1P
−1. (1)

Note that P swaps the rows and P−1 swaps the columns
of A1 so that gaits for A1 can be mapped onto corresponding
gaits for A2. The permutation matrix is composed of only one
1 across any row and column with the remaining entries as
0’s. This gives the property that all permutation matrices are
orthogonal, satisfying PT = P−1. The identity matrix is a
permutation matrix that maps a configuration onto itself.

If A1 and A2 are decomposed into their Jordan canonical
forms

A1 = Q1ΛQ−1
1

A2 = Q2ΛQ−1
2



where Λ is the diagonal eigenvalue matrix (note that they are
same for both since A1 and A2 correspond to isomorphic
graphs since the rows and columns are just interchanged) and
Q1 and Q2 are the associated eigenvector matrices. This gives

Q2ΛQ−1
2 = PQ1ΛQ−1

1 P−1

= (PQ1)Λ(PQ1)−1

which reduces to

Q2 = PQ1. (2)

This shows that the permutation matrix also relates eigen-
vector elements of adjacency matrices of isomorphic config-
urations. Therefore, by matching appropriate matrix elements
in Q2 to corresponding elements in Q1, we can determine the
permutation matrix that satisfies Equation 1. In the following
section, we illustrate this procedure with an example.

B. Example of Finding the Permutation Matrix Between Iso-
morphic Configurations

Consider configuration FL from Figure 4. Recall that the
port-adjacency matrix corresponding to this configuration is
given by:

AFLc
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 7 0
0 0 0 0 0 0 7
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 4 6
1 0 0 7 6 0 0
0 1 7 0 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now, consider another configuration with a port-adjacency
matrix:

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0
0 0 0 0 0 7 0
0 0 0 1 7 0 4
0 0 7 0 0 0 0
0 0 1 0 0 0 0
7 1 0 0 0 0 6
0 0 6 0 0 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

First, we note that AFLc
and A2 have the same characteristic

polynomial:

Det(AFLc
− λI) = Det(A2 − λI) = λ7 − 76λ5 + 868λ3.

This property suggests that these configurations are likely
candidates for being isomorphic. To confirm this suggestion
(and rule out that these structures are cospectral), we proceed
further to find a permutation matrix that satisfies the property
in Equation 2. We first compute the eigenvector matrices with
columns ordered according to the roots of the characteristic
polynomial (eigenvalue graph spectrum):

λ =
[
7.87 3.74 −3.74 −7.87 0 0 0

]

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.47 −0.72 0.72 −0.47 −0.97 0.32 −0.58
−0.31 0.48 −0.48 −0.31 −0.18 −0.93 0.12
−0.04 0.06 −0.69 −0.04 −0.02 0.11 −0.35
−0.06 −0.10 0.10 −0.06 0.06 −0.07 −0.42
−0.53 0 0 −0.53 0.09 0.02 0.58
−0.52 −0.38 0.38 0.52 0 0 0
−0.34 −0.25 0.25 0.34 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.06 −0.10 0.10 −0.06 0.06 −0.07 −0.42
−0.47 0.72 −0.72 0.47 −0.91 −0.83 0.83
−0.34 −0.25 −0.25 −0.34 0 0 0
−0.31 −0.48 0.48 0.31 0.38 0.41 + 0.11i 0.41 + 0.11i
−0.04 −0.06 0.06 0.04 −0.01 −0.19 + 0.04i −0.19 + 0.04i
−0.52 0.38 0.38 −0.52 0 0 0
−0.53 0 0 0.53 −0.078 0.23 − 0.10i 0.23 − 0.10i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Note that the columns of Q1 and Q2 (the eigenvectors of
AFLc

and A2) are both ordered so that they correspond to the
same eigenvalue elements. The columns have been normalized
so that the sum of the squares down any column equals one.
Also, note that the absolute value of each eigenvalue element
is of interest, since eigenvectors, as a whole, can be scaled
by a minus sign (vector pointing in the opposite direction)
with the eigenvalues and similiarity properties of the matrix
unchanged. To create the permutation matrix, note that Q2ij

(the element in the ith row and the jth column of Q2) can be
written as:

Q2ij = Pi1Q11j + Pi2Q12j + · · · + Pi7Q17j .

The property that P has a single 1 across any column or row
(with all other elements zero) allows us to build P simply by
comparing the permutation of elements down corresponding
columns in Q1 and Q2.

For instance, we see that |Q111| = |Q221| = 0.47. Conse-
quently, P21 = 1 with all other elements in the rank and file of
P21 equal to zero. Next, observe that |Q121| = |Q241| = 0.31.
This gives us P42 = 1 with all other elements in the rank
and file of P42 equal to 0. Similarly, |Q131| = |Q251| = 0.04
giving P53 = 1 with all other elements in the rank and file
of P53 equal to 0. Continuing down the first columns of
Q1 and Q2, we can construct the following P that confirms
isomorphism and gives the desired module labels:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The mapping is given by:

π1→2 =
(

1 2 3 4 5 6 7
2 4 5 1 7 6 3

)

Generally, for a column k, when |Q1jk| = |Q2ik|, Pij = 1
with all other elements across row i and down column j zero.
The relabeled graph is shown in Figure 12.

C. Graph Symmetry and Configuration Mapping

It is evident that the choice of eigenvector for comparison
is important. In the above example, if we had chosen any
of the eigenvectors associated with the degenerate eigenvalue
(zero), we would not have been able to build the permutation



Fig. 12. Relabeling of AFLc .

Fig. 13. Example of symmetric configuration with two permutation matrices
that relabel modules in the same way.

matrix. This redundancy in eigenvalues can be attributed to an
algebraic regularity in the graph structure (Spielman 1996).

Structural symmetry creates interesting scenarios for this
method to find the graph isomorphism mapping. Consider the
following configurations in Figure 13.

The two rows of labels give the adjacency matrices

A1 =

⎡
⎢⎢⎣

0 7 0 0
7 0 1 0
0 1 0 7
0 0 7 0

⎤
⎥⎥⎦

A2 =

⎡
⎢⎢⎣

0 1 0 7
1 0 7 0
0 7 0 0
7 0 0 0

⎤
⎥⎥⎦

with the following eigensystem:

λ =
[−7.52 −6.52 6.52 7.52

]

Q1 =

⎡
⎢⎢⎣
−0.48 0.52 −0.52 0.48
0.52 −0.48 −0.48 0.52
−0.52 −0.48 0.48 0.52
0.48 0.52 0.52 0.48

⎤
⎥⎥⎦

Q2 =

⎡
⎢⎢⎣

0.52 −0.48 0.48 −0.52
−0.52 −0.48 −0.48 −0.52
0.48 0.52 −0.52 −0.48
−0.48 0.52 0.52 −0.48

⎤
⎥⎥⎦

Following the same approach as above, we end up with the
following permutation matrix:

P ∗ =

⎡
⎢⎢⎣

0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1

⎤
⎥⎥⎦

The multiple 1’s across the rows and columns occur because
of the redundant elements in the eigenvectors. The reason

this occurs is because two distinct permutation matrices both
satisfy Equation 1, namely:

A2 =

⎡
⎢⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

0 7 0 0
7 0 1 0
0 1 0 7
0 0 7 0

⎤
⎥⎦

⎡
⎢⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎦

=

⎡
⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎦

⎡
⎢⎣

0 7 0 0
7 0 1 0
0 1 0 7
0 0 7 0

⎤
⎥⎦

⎡
⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎦

where P ∗ is the union of P1 and P2 given by:

P1 =

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦

P2 =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦

The reason two permutations occur for this configuration
(and any isomorphic labeling of this graph), is because both
matrices are in the graph’s symmetry group. Also called
automorphic group (as discussed earlier in Section III), we
see that the symmetry is a 180o rotation about the center of
mass of the system. For the purpose of spectral decomposition
approach, the algorithm tries valid combinations of P ∗ type
unions (only one 1 in all rows and columns) until Equation 1
is satisfied. Therefore, this algorithm is slightly faster for
asymmetric systems, as seen in the Figure 16 which shows
that the time to map random structures is, on average, less
than the time of the more ordered structures (tree, snake, plane,
centipede). The general algorithm is presented in Algorithm 2.
Note that m is the size of the block redundancy in P ∗; the
snake example above has two blocks of two.

Algorithm 2 Configuration matching using spectral decompo-
sition.

for i = 1 to library max do
if Det(Agiven − λI) = Det(Ai − λI), then

Compute Qgiven and sort (in increasing order of cor-
responding eigenvalue) to match format of Qi.
for j = 1 to n do

Compare the elements of columns j in Qgiven with
Qi.
Record w as the column that produces a P with the
minimum number of redundant ones.
if Any P satisfies Ai = PAgivenP−1, then

RETURN P .
else

Construct P ∗ using column w.
for j = 1 to m do

if Any P ∗(j) satisfies Ai = P ∗(j)AgivenP ∗−1(j),
then

RETURN P = P ∗(j).



D. Complexity of the Spectral Decomposition Method

Once a characteristic polynomial match is found, the com-
plexity of determining P or P ∗ (the first if-statement in
Algorithm 2) is O(n2) since the most computationally ex-
pensive loop in this step is the double loop of matching
values in eigenvectors corresponding to the same eigenvector.
For completely random and asymmetric structures (e.g., an
arm-like robot, a head-to-tail snake, any linear or tree-like
structure that is intended for forward and turning motion only),
this determines P , and is consequently the expected running
time to find the permutation mapping between isomorphic
configurations.

For structures with at least one line of symmetry, the main
if-block determines a P ∗ that has a P embedded within it.
Such structures, such as a dog with a head and tail, a head-
to-head-tail-to-tail snake (Figure 13), a bipedal walking robot,
etc., delve into the primary else-statement of Algorithm 2 to
find the correct P amongst the m! choices in P ∗. For the
one-line-of-symmetry structures, m = 2, and it is evident that
the complexity to find P in these cases is O(2n). In general,
the complexity to find P is O(m!n). In most cases, m is
small or at most a moderate fraction of n. In the extreme case
of each module having complete symmetry with respect to
another module (imagine a torus composed of CKBot modules,
with each module having exactly four neighbors), m = n and
algorithm reduces to the naı̈ve case of trying all possible labels
for each module. But this case is pathological; m is usually
a fraction of n. For example, a centipede structure with 4
identical 4-module segments, m = 5 (left/right symmetry plus
4 segment interchangable symmetries) and n = 20.

It is certainly possible to divide the computation of reducing
P ∗ to P amongst parallel processors. We are currently ex-
ploring a hierarchical architecture where one central processor
supervises many others.

E. Results for Spectral Decomposition Method

Figure 14 shows the time to find a match using comparisons
between graph spectra in a library of 200 random configu-
rations (for each data point), for up to 1000 modules. The
Matlab function eigs(A) was used to find the largest eigen-
values of the sparse matrices. In comparison with Figure 16,
we see that the time to find the module mapping is more
time-consuming. This figure compares the times to find the
permutation matrix between two isomorphic configurations
for up to 50 modules. Snake, centipede, plane, tree and
random structures were tested. The random configuration times
also include a negligible matching time to find the correct
structure in a library of other random structures. Even so, the
cumulative time to find the mapping is slightly less than the
other structures. This can be attributed to the fact that there
are less symmetries (on average) in random structures and this
reduces the number redundant permutation elements that the
algorithm must choose from in the method described above.
For comparison, the brute-force n! time is included for up to
12 modules. The data point itself is off the scale of the graph.

Some limiting considerations in this approach include nu-
merical stability and structural symmetry of configurations. In
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Fig. 14. Search times for the spectral based algorithm vs. number of modules
in a random robot configuration.

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Number of Modules

T
im

e 
(s

ec
)

Random
Snake
Centipede
Plane
Tree

Fig. 15. Standard deviation of search times for spectral based algorithm vs.
number of modules in robot configuration.

particular, the number of elements of each eigenvector equals
the number of modules. For large matrices, these normalized
eigenvectors are composed of small numbers that have accu-
mulated rounding errors, attributed to the LU-decomposition
approach (Matlab’s LAPACK matrix algebra package). There
are various methods that one can implement to deal with this
issue (i.e., large normalizing factors, matrix balancing) but
for numbers larger than 103, the problem becomes difficult
to handle. Additionally, the time to compute eigenvectors
becomes prohibitively large at that scale.

V. 3DLL APPROACH

The approach presented in Section III attempts to use the
underlying graph structure of a modular robot to match new
configurations to the database. However, it is evident that
there is more information in our problem that could be used
to further reduce the search space. In particular, the port-
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Fig. 16. Mapping times for specific configurations vs. number of modules in
configuration.

adjacency matrix stores additional information that can be
easily incorporated into a heuristic approach.

Just as in Section III, where unique canonical forms of the
automorphic group configurations in the library are precom-
puted, this method precomputes and stores a representation
that exploits the physical nature of the modular robot config-
urations to generate nearly unique forms of the automorphic
groups.

In this method, robots are represented by a 3-dimensional
linked list of module objects (thus the name 3DLL), each
of which contains a position and orientation in 3-space with
respect to an expansion origin module. The implementation
presented here uses cubic modules to match the hardware, but
could be extended to include non-cubic modules. Each con-
figuration can have multiple representations based on which
expansion origin module is chosen. Expansion origins are
distinguished from comparison origins, which are a subset of
the potential expansion origins used as starting points when
comparing configurations module-by-module. Two represen-
tations of the same configuration starting from two different
expansion origins are related by a constant translation and
rotation relating the two origins in a global reference frame.

To compare two configurations, several heuristic measures
are evaluated first. If these fail to distinguish the two config-
urations, the algorithm proceeds by comparing the positions,
orientations, and connection presences of each module in the
configurations, starting from each comparison origin.

A. Library Creation

The first step in this approach is to create a representation of
any new configuration. To do this, an expansion origin module
must be selected. The selection process trims the number of
possible expansion origin modules by allowing only modules
with the degree that has the lowest multiplicity and then by
giving priority to modules with the lowest combination of port
values (i. e. an origin with connections on ports 1 and 3 takes
priority over over an origin with connections on ports 2 and 4).

If more than one expansion origin remains after this process,
a module is randomly chosen from this set and designated as
the expansion origin. The goal here is to restrict the number
of possible origin modules as much as possible to limit the
amount of time that must be spent comparing configurations.

The next step assigns the origin a default position and
orientation and stores it in a 3-dimensional linked list. New
modules are added in a depth-first fashion by choosing the
unplaced module connected to the lowest port number of the
most recently-placed module. At each step, the position and
orientation of the next module is determined from the neighbor
data, position, and orientation of the current module. A global
list of modules that have been added is maintained to prevent
loops from running indefinitely and to end the expansion when
all the modules have been added. This expansion process is
deterministic: it will always generate a representation which
stores the modules in the same order when the choice of origin
module is constant.

During the expansion process, several metrics are calculated
for later use in comparing configurations. These include the
center of mass of the system, degree multiplicity, and a port
count (the total number of connections on each port). The final
step determines the comparison origins of the configuration,
which include only those expansion origin modules with the
minimum distance to the center of mass. This minimum
distance is stored for use as another heuristic check.

B. Matching and Mapping

Two identical configurations (i.e. configurations having the
same geometrical shape, but not necessarily same module IDs)
with the same choice of expansion origin module will have 3-
dimensional linked lists of modules with the same positions,
orientations, and connection presences. Therefore, comparing
two representations is just a matter of stepping through the
linked lists representing them and checking that these attributes
match for each module in the list. The two representations are
not the same if any two corresponding modules of the linked
list do not match at any point. Note that this comparison has
to be carried out in turn for each possible choice of origin
module for one of the configurations until a match has been
found or the set of origin modules is exhausted. Finding a
match also finds the mapping between the two configurations
since this is a simple assignment of node IDs stored in the
linked lists for the two configurations.

To compare configurations, first several fast heuristics are
evaluated in order of speed. These include graph invariants
like the number of modules in a configuration and multiplicity
of degrees of the configuration. Note that because of the
special nature of our robots, the maximum degree is 4. If
two configurations pass this first set of heuristic comparisons,
then the linked list based representations of the two robots
are compared starting from the comparison origin modules.
The process of comparison of two configurations is formally
presented in Algorithm 3.

C. Example

We illustrate this method further using the example consid-
ered earlier in Section III using configuration FL from Figure 4



Algorithm 3 3DLL configuration matching algorithm for a
new configuration G1 and a library representation G2

Match = 0
if numModules(G1) != numModules(G2) then

RETURN
R1 = buildRepresentation(G1)
R2 is loaded from memory.
if portCount(R1) != portCount(R2) then

RETURN
if degreeMultiplicity(R1) != degreeMultiplicity(R2)
then

RETURN
nco1 = numComparisonOrigins(R1)
nco2 = numComparisonOrigins(R2)
if nco1 != nco2 then

RETURN
if distToCenter(nco1) - distToCenter(nco2) > ε then

RETURN
Match = 1
for i = 1 to nco1 do

Starting with comparison origin i, step through the mod-
ules one by one and record the module ID mapping.
if module positions, orientations, or connection presences
do not match at any point then

Match = 0
CONTINUE

else
BREAK

RETURN

with different module IDs. Module 4 is the only module with
degree 4 and is thus chosen as the expansion origin. The next
module for addition to the linked list is 5, since it is attached
to port 2 of the origin. Now, module 5 is expanded to obtain,
in turn, modules 0 and 3. At each step, the relative position
and orientation of each module with respect to the previous
module is determined by the ports that attach the two modules
together. The expansion process terminates when modules 6, 1
and 2 have been added, in turn, to the linked list representing
the configuration. This procedure is shown in Figure 17.

The end result is the 3D linked list representation of the
robot configuration. This object includes the positions and
orientations of the modules as well as information used in the
heuristics such as the center of mass, number of comparison
origins, degree multiplicity (i.e., the number of connections
on port i throughout the robot), and distance of comparison
origins to center of mass. These robot statistics are trivial to
compute while the 3D linked list is built, and are then available
for fast comparison between two representations. If any of
the statistics between two representations do not match, then
the two configurations are not the same (see Algorithm 3).
Storage space required for representation objects is linear in
the number of modules.

D. Results

Tests were carried out for this approach using exactly
the same procedure as the one used for the previous two

Fig. 17. Building a linked list based representation for a modular robot.
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Fig. 18. Mean search times for 3DLL vs. number of modules in robot
configuration.

approaches in Section III and Section IV. Results are presented
here for both sets of tests, i.e. the test for configurations with
different numbers of modules against a database of known
configurations (Figure 18 and Figure 19) and the mapping
test for specific robot configurations where they are mapped
onto the same configuration with a different set of node IDs
(Figure 20).

Note that, for all five different configuration types, the
scaling is nearly linear and the maximum amount of time is
roughly four seconds. The time to search a library of 200
configurations and generate a mapping is nearly the same as
the amount of time to just generate the mapping. While the
standard deviation of the library test times is that of the times
to find the 10th, 20th, ..., 200th configuration in the library, it
is still similar to the mapping test standard deviations.

The mapping times for this algorithm are in general O(n×
nco) where nco is the number of comparison origins. However,
as can be seen from Figure 20, mapping times are in practice
nearly O(n). Because of the constraint that origins must have
the lowest multiplicity of degree, the number of origins is
constant for the snakes, planes, and centipedes, and therefore
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Fig. 19. Standard deviation of search times for 3DLL vs. number of modules
in robot configuration.
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Fig. 20. Mapping times for specific configurations using 3DLL vs. number of
modules in configuration.

the results scale linearly with the number of modules in the
configuration. Similarly, because of the constraint that all
comparison origins must have the minimum distance to the
center of mass, the loops have only two possible comparison
origins. The trees, while having anywhere from 1 to 63
modules with lowest multiplicity of degree, have only one
possible comparison origin and therefore it too scales as O(n).

In practice, the heuristics filter out the majority of the con-
figurations in the library, and step-by-step module comparison
occurs primarily for identical configurations, i.e., the heuristics
reduce the search space in the library to exactly one. Further,
the number of potential comparison origins (those that must
have the minimum distance to the center of mass) is nearly
always one or two. These observations explain the relatively
low standard deviation and the linearity of the library test
results - the index of the matching configuration in the library
is relatively unimportant because the majority of the time

spent is building the representation of the new configuration
and stepping through the modules of the new and matching
configuration.

This method is able to recognize configurations in an
amount of time reasonable even for configurations that are
currently physically unrealizable because of the number of
modules required. Further, it does so in a scalable way thanks
to the extra information inherent in the port-adjacency matrix.
Finally, because robot representations are stored in a form
analogous to the actual robot, this method allows the inclusion
of other robot features, such as different module types. They
are simply added on as another check in the module-by-
module comparisons in Algorithm 3.

VI. DISCUSSION

The configuration matching and mapping problem can be
presented as a task involving four steps:

1) Match the underlying graph, independent of ports.
2) Match the ports.
3) Choose an origin with which to start the mapping

process.
4) Generate a module ID mapping between the matched

configurations.
In the nauty-based method Step 3 is not needed as the
canonical form includes the same origin for both the new
and matched configuration. The first and last step are fast and
linear in the number of modules. However Step 2 (match-
ing ports) depends on the number of configurations in the
automorphism group of the underlying structure which can
sometimes be very large. As a library becomes larger, the
size of the automorphism group can be exponential in the
number of modules in a configuration worst case. As can be
seen comparing Figure 7 with Figure 18 and Figure 14, the
nauty-based method runs faster for lower numbers of modules
(<= 50 modules). Some of this speed may be due to the
implementation since the core nauty routines are compiled C
rather than interpreted matlab code for the other two tests.

In the 3DLL method steps 1, 2 and 4 occur at the same
time. Just as symmetries can cause the automorphic group to
become large for the nauty-based methods, symmetries in con-
figurations can cause ambiguities in finding an origin to start
the matching process. However, in practice the center of mass
heuristic works very well in reducing the candidate origins to
one or two making this method very scalable. It should be
noted that this method cannot recognize functionally identical
configurations - that is, configurations with different module
orientations but identical orientations of the axis of rotation
for each module. This is because the port count heuristic is
not invariant under functionally similar configurations. In the
future this could be replaced with a different heuristic - e.g., a
count of the number of modules in each functional orientation
rather than a count of the port connections.

While both the nauty-based method and the spectral de-
composition method are very general and easily applied to
any self-reconfiguring system, the 3DLL method is specific to
CKBot and cube oriented modules.

In the spectral decomposition method steps 1 and 2 happen
concurrently and quickly. For the 3rd and 4th steps symmetries



in the configuration can lead to redundant eigenvector elements
which require explicit disambiguation. This process can take
a very long time.

Both the nauty-based and 3DLL approaches essentially
precompute an approximate canonical form for the elements in
the library. nauty computes a canonical form with out the port
information, while the 3DLL method generates a representa-
tion that is very likely to be unique exploiting the physical
properties of configurations. This precomputation saves com-
putation time with a nominal cost in memory, about half a
megabyte for a 1000-module robot in the 3DLL representation
and roughly the same for the nauty based method when stored
as a sparse array. The spectral decomposition method does no
precomputation, working directly with adjacency matrices and
was thus easy to implement on embedded controllers.

A. Hardware demonstration

As a preliminary test, isomorphic gait control using graph
spectra has been implemented on CKbot configurations con-
taining up to 7 modules. A centralized controller containing
42 configurations with corresponding gaits ran a configuration
detection scheme using communication architecture described
in Section II.

The centralized controller compares the graph spectra of
port-adjacency matrices to see if a given structure is in the
configuration library. The method incorporated to find the
eigenvalues is based on the QR algorithm. If a match in
the library is found, up to n! permutations of node labeling
schemes are tried until the exact mapping between structures
is found. While the issue of label mapping was done by
brute force, using graph spectra to find configuration matches
reduced time noticably over earlier schemes that did not use
this information (this is to be expected since comparing an
array of eignevalues saves time, on average, compared with
trying n! permutations for all libary configurations until an
exact match is found). Prohibitively slow speeds for structures
containing 8 or more modules is a motivating factor for the
work presented here. Configuration dependent gaits include
those for snake, slinky, walking, rolling, lurching, and turning
motions.

While the simplicity of graph spectra method allowed it
to be implemented on the small embedded PIC controllers,
converting the nauty and 3DLL based methods to run on small
memory (e. g. 32K) embedded systems is future work.

VII. CONCLUSION

A comparison of the results for the three methods re-
veals the relative advantages and disadvantages of the three
approaches. The spectral decomposition represents the most
mathematically elegant of the three techniques but suffers
from numerical issues. In addition, calculating the spectra,
especially for larger number of modules is a computationally
expensive process. However, this technique works very well
in the recognition problem, i.e., it can be used to quickly
identify the configuration in the database. The majority of
the computational time takes place to find the isomorphism
mapping.

The traditional graph isomorphism comparison method ben-
efits from the ability to create a canonical configuration which
pares the size of the search space for further matching. In
addition, since it initially compares the underlying graph struc-
ture, it can match robot configurations whose port-adjacency
matrices may differ by symmetric rotations of the individual
modules.

The 3DLL method using linked lists uses the extra infor-
mation inherent in the port-adjacency matrix but suffers from
the need to run through every configuration in the library at
runtime.

The ideal choice of configuration recognition algorithm
depends on the specific problem being solved. Where func-
tionally identical configurations must be recognized, either
the nauty-based approach or a modified 3DLL algorithm
is best. Exact configuration recognition is fastest and most
scalable using 3DLL. Spectral decomposition may be suitable
for finding an approximate match to a new configuration.
In the future, we plan to examine extensions to these three
approaches and how best to combine the algorithms to achieve
higher recognition speeds. Further, we plan to modify these
approaches to recognize heterogeneous modular robots and
functionally identical configurations.
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