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Abstract
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Linear Time Logic Control of Discrete-Time
Linear Systems

Paulo Tabuada, Member, IEEE, and George J. Pappas, Senior Member, IEEE

Abstract—The control of complex systems poses new challenges
that fall beyond the traditional methods of control theory. One
of these challenges is given by the need to control, coordinate
and synchronize the operation of several interacting submodules
within a system. The desired objectives are no longer captured by
usual control specifications such as stabilization or output regula-
tion. Instead, we consider specifications given by linear temporal
logic (LTL) formulas. We show that existence of controllers for
discrete-time controllable linear systems and LTL specifications
can be decided and that such controllers can be effectively com-
puted. The closed-loop system is of hybrid nature, combining the
original continuous dynamics with the automatically synthesized
switching logic required to enforce the specification.

Index Terms—Automatic synthesis, discrete-time, linear control
systems, hybrid systems, linear time logic.

I. INTRODUCTION

A. Motivation

I N RECENT years, there has been an increasing interest in
extending the application domain of systems and control

theory from monolithic continuous plants to complex systems
consisting of several concurrently interacting submodules. Ex-
amples range from multimodal software control systems in the
aerospace [1], [2] and automotive industry [4], [5] to advanced
robotic systems [6], [8]. This change in perspective is accompa-
nied by a shift in control objectives. One is no longer interested
in the stabilization or output regulation of individual continuous
plants, but rather wishes to regulate the global system behavior
through the local control of each individual submodule or com-
ponent. Typical specifications for this class of control problems
include coordination and synchronization of individual mod-
ules, sequencing of tasks, reconfigurability and adaptability of
components, etc. In order to address this emerging class of con-
trol problems we need to formally specify the desired system
behavior:
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How can we formally and succinctly specify the desired be-
havior of concurrently interacting systems?

The specification mechanism should also lead to controller
design methods. These controllers will enforce a hybrid be-
havior on the controlled system since system evolution is in-
fluenced both by the continuous dynamics and by the discrete
interaction (communication) between submodules. While many
ad-hoc approaches have been reported in the literature for the
design of such hybrid systems, any formal guarantee of opera-
tion can only be obtained through formal verification which is
noticeably a hard problem [9]. This suggests that one should aim
at design methods that satisfy the specification by construction:

How can we design (hybrid) controllers ensuring satisfaction
of specifications by construction, thereby avoiding or substan-
tially reducing the need for formal verification?

Another dimension of this problem, that should not be ne-
glected, is its computational aspect. As the number of modules
increases, the possibilities of interaction between modules also
increase thus rendering analysis of global behavior an extremely
difficult task. This intrinsic complexity of concurrently inter-
acting systems can only be addressed by computational syn-
thesis methods, reducing error-prone human analysis or syn-
thesis to the strictly necessary minimum. Only fully automated
methods have the potential to scale and successfully address
control problems for systems consisting of large numbers of in-
teracting components:

How can we render the design of controllers completely au-
tomated, from specification to implementation?

Motivated by the previously described problems, we present
in this paper an approach for the control of linear systems with
objectives expressed in linear temporal logic (LTL). There are
two main reasons to describe control objectives in temporal
logic. Firstly, temporal logic provides a formal specification
mechanism allowing one to quantitatively define the desired
behavior of a systems by prescribing the interaction between
submodules. Secondly, temporal logic makes it possible to suc-
cinctly express complex objectives due to its similarity to nat-
ural language. In particular, temporal logic is well suited to ex-
press the novel class of specifications required by the control of
concurrently interacting systems. These two reasons also justify
the successful use of temporal logic as a specification language
in the concurrency and computer aided verification communities
[10], [12]. In the next section, we show through simple exam-
ples how control specifications can be easily expressed in LTL.

The approach presented in this paper is also an important con-
tribution towards the synthesis of correct by design systems.
Temporal logic enables the use of powerful automata theoretic
techniques lying at the heart of computational algorithms for

0018-9286/$20.00 © 2006 IEEE
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control design. Transferring control design from the continuous
to the finite world of automata (or transition systems) is in fact
one of the major contributions of this paper. This transfer is also
accompanied by the relevant refinement techniques allowing the
transformation of finite automata models of the closed-loop dy-
namics into hybrid models where software controllers super-
vise continuous plants. In addition to presenting a fully auto-
mated design method, the resulting closed-loop systems satisfy
the LTL specifications by construction, therefore resulting in
correct designs for which no further validation or verification
is necessary.

B. Problem Formulation

Temporal logic allows one to succinctly describe many inter-
esting temporal properties of systems. LTL formulas are built
from predicates through the usual propositional connectives

and two temporal operators: and . Informally,
is read as “next” and a LTL formula is satisfied when

formula is satisfied at the next time instant. The operator
is read as “until” and formula is satisfied when formula

is satisfied until formula is satisfied. From the “until”
operator, two commonly used operators can be defined: and

. The first is read as “always,” requiring that holds for all
future time in order for to be satisfied. The operator is
read as “eventually” and requires to hold at some time
in the future. This set of operators permits the construction of
formulas expressing many interesting control specifications
which we now illustrate by simple examples.

Periodic synchronization: Consider two mobile robots per-
forming a collaborative task. Each robot is sensing different in-
formation that should be shared with the other robot at least
every three units of time. We consider robots described by dis-
crete-time linear control systems

Vector models the position of robot 1 while vector
models the position of robot 2. We model the exchange

of information between the robots by the requirement that inter
robot distance is reduced to less than for communication
to occur. This distance constraint is captured by the predicate

communicate

for some metric . The desired inter robot communication spec-
ification can now be modeled in LTL as

communicate

where is an abbreviation for “eventually within 3 units of
time” and is defined by . Satisfaction
of formula requires that at each time step
holds, that is, communication will always occur within the next
3 time units.

Path planning and obstacle avoidance: Consider now a
robot navigating in an environment cluttered with obstacles.
Let be a predicate modeling the location of obstacle
and let Goal be a predicate modeling the destination location.
Requiring the robot to reach the destination while avoiding the
obstacles can be captured by Goal .

Fault tolerance and recovery: Fault tolerance and recovery
can also be specified in LTL. Let be an LTL formula spec-
ifying the normal operation of the system, a LTL formula
describing the occurrence of a fault and an LTL formula
prescribing the desired fault recovery procedure. The formula

states that the system should al-
ways operate correctly or it should operate correctly until

holds. If this last formula is true, then the fault de-
scribed by occurs at some time and is followed by the fault
recovery procedure, defined by , at time .

The previous examples represent only a small fraction of the
interesting properties that can be specified through the use of
LTL. The goal of this paper, synthesizing controllers enforcing
LTL specifications, can thus be described as follows.

Problem: Let be a discrete-time linear control system and
a LTL formula describing the desired behavior for . Design

a controller for such that the closed-loop system satisfies .
The solution to the aforementioned problem will require an

interesting combination of computer science and control theo-
retic concepts and methods briefly described in the next section.

C. Approach and Main Contributions

The synthesis of controllers enforcing LTL specifications re-
lies on the possibility of extracting finite models from contin-
uous control systems. These finite abstractions will be equiva-
lent (in a precise sense to be defined) to the continuous models
therefore enabling the solution of control problems posed for
continuous linear systems through discrete algorithmic tech-
niques. Resulting discrete models for the closed-loop system are
then refined, resulting in controllers for the original continuous
system whose hybrid closed-loop behavior will satisfy the de-
sired specification. The overall approach is pictured in Fig. 1
and organized as follows.

In Section II, we present one of the paper’s main contribution.
We show that any discrete-time controllable linear system ad-
mits finite abstractions (bisimulations) with respect to a certain
class of observation functions defined by the system dynamics.
The existence of such finite abstractions is one of the essential
factors enabling the development of algorithms for system anal-
ysis and design. In this paper, we will use finite abstractions of
linear control systems to algorithmically synthesize controllers
for LTL specifications. This will be done by constructing a finite
supervisor for the discrete abstraction enforcing the LTL spec-
ification. Since supervisory synthesis is based on operational
models such as finite state machines, Büchi automata or Petri
nets, in Section IV we introduce LTL and discuss the conver-
sion of LTL formulas into Büchi automata. Supervisory syn-
thesis is the subject of Section V where it is recalled that exis-
tence of finite supervisors enforcing infinite languages defined
by Büchi automata can be decided and that such supervisors can
be effectively computed. In Section V we refine the closed-loop
behavior obtained by composing the finite abstraction with the
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Fig. 1. Intermediate steps in controller design.

discrete supervisor obtaining a hybrid closed-loop behavior en-
forcing the specification. The other main contribution of the
paper is the possibility to synthesize this hybrid controller in a
completely automated way. This result is formulated and proved
also in Section V. We conclude the paper at Section VI with a
discussion of the presented results.

The proposed methodology makes extensive use of both con-
trol and computer science concepts, notions and results. Since
many of these notions may be unfamiliar to some readers we
have decided to focus on the main aspects of the approach,
thereby leaving for a later opportunity a more careful discus-
sion of the algorithmic complexity issues as well as the many
existing techniques to reduce complexity. We are also not ex-
plicitly addressing the centralized/decentralized nature of the re-
sulting controllers, which although important, is a very difficult
problem as many important decentralization questions are un-
decidable [13]. For the same reasons, we have decided to omit
large examples and illustrate the introduced notions and algo-
rithms with small, yet pedagogical examples.

D. Related Literature

The analysis and synthesis of systems based on temporal
logic specifications is by now current practice in the con-
currency and computer aided verification communities [10],
[12]. Although this approach was initially devised for purely
discrete systems, the seminal work of Alur and Dill on timed
automata [14] showed that certain classes of hybrid systems
could also be addressed. Subsequent extensions lead to results
for multi-rate automata [15] and rectangular hybrid automata
[16], [17] which lies on the decidability boundary [9]. These
results were based on the construction of finite abstractions on
which algorithms with guaranteed termination can be used for
analysis and synthesis. Different classes of dynamics for which
finite abstractions exist were introduced in [18] by combining
tools from logic and linear dynamical systems. See also [19] for
a survey of these methods. Nonlinear dynamics were consid-
ered in [20] where bisimulations based on foliations transverse
to the nonlinear flow were introduced. In [21], invariants are

also exploited for a supervisory control approach to the con-
trol of hybrid systems. A different kind of dynamics, simple
planar differential inclusions, was considered in [22] where
it was shown that qualitative analysis of system trajectories
is decidable by making use of unique topological properties
of the plane. Different approaches based on approximation
techniques to obtain finite abstractions include the work in [23]
for verification and [24] for synthesis of supervisor controllers.
Recently, a different abstraction technique based on quantifier
elimination was introduced in [25]. This methodology allows
one to obtain a sequence of finer finite abstractions that are
sufficient to verify reachability related questions.

From the different mentioned approaches, only the work de-
scribed in [20] address the problem of constructing (exact) finite
abstractions of control systems. For linear systems, controlla-
bility can be exploited to compute the foliations required by the
method in [20] leading to finite abstractions of the vector field
obtained by fixing the control inputs. Although at the technical
level we do not make use of foliations, our construction can be
seen as providing a way of integrating in the same finite object
the different abstractions of [20] obtained for different control
inputs. However, our construction considers discrete-time sys-
tems, while the results in [20] were developed for continuous
time.

The construction of finite abstractions is also related to the
study of reachability of quantized systems [26], [28]. For quan-
tized systems, the original continuous dynamics is unchanged,
but the set of available inputs is restricted to a finite set. This
approach also provides an abstraction of the original control
system, that can be regarded as a subsystem of the original one.
Our approach differs from quantization based reachability in
that we do not restrict the set of available inputs. Nevertheless,
both approaches emphasize the advantages of having finite rep-
resentations. Other related work includes the study of stabiliza-
tion of linear systems with quantized observations [29], [30].

Synthesis of controllers from temporal logic specifications
had already been advocated in [31] where the authors postu-
late a discrete abstraction for the walking mechanism to be con-
trolled. In [32], temporal logic is used to motivate the devel-
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opment of the synthesis procedures as well as to prove sev-
eral facts regarding the proposed algorithms. Different auto-
mated synthesis procedures is reported in [33], where it shown
that synthesis of reachability specifications for hybrid systems
with linear dynamics on convex polytopes can be performed
by simply working with the polytopes vertices. Closer to our
approach is the work reported in [34], where it is shown that
under certain controllability assumptions the controlled invari-
ance problem for linear systems is decidable. Although our de-
cidability results are also based on a controllability assumption,
the problems being addressed are fundamentally different. We
refine a given partition of the state space until a bisimulation is
obtained while in [34] a set is refined until controlled invariance
is achieved. The goal of the refinement algorithms is therefore
distinct, although termination is ensured in both cases by con-
trollability.

Other related work, based on supervisory control of discrete
event systems [35]–[37], includes synthesis for specifi-
cations [38] and real-time logic [39]. However, synthesis from
temporal logic specifications in the computer science commu-
nity can be traced back to [40], [41]. More recent work includes
controller synthesis for branching time specifications [42], de-
centralized control [43], [44], control of synchronous systems
[45], [46] and synthesis for several different problems in timed
automata including game theoretic approaches [47], scheduling
[48], optimal control [49], [50] and synthesis from external
specifications [51]. Although many of these works provide
valuable inspiration, the proposed synthesis methodologies are
only applicable to purely discrete systems or systems modeled
by timed automata.

II. FINITE QUOTIENTS OF CONTROLLABLE LINEAR SYSTEMS

In this section, we show that finite abstractions of control-
lable linear systems exist and are effectively computable. These
results will make a fundamental use of several computer science
notions that we now review.

A. Transition Systems and Bisimulations

Given a function and a set , we will use the
notation to denote the subset of defined by
while denotes the set for some

. A partition of the set is a collection of sets
satisfying and for

. Each partition induces a projection map
sending each to the unique set con-
taining . Conversely, every surjective map defines
a partition of defined by the collection of sets .
An equivalence relation on a set induces a par-
tition defined by iff . The
elements of the partition are the equivalence classes of .
Conversely, given a partition on we can define an equiva-
lence relation having the elements of as equiv-
alence classes. For this reason we will interchangeably work
with partitions or equivalence relations according to what will
be more useful. We say that partition refines or that it is a
refinement of partition when for every there exists a

such that . Given a refinement of a partition
we can define a projection map taking every

to the unique element such that
.

We recall some formal language notions. Given a set we
denote by the set of all finite strings obtained by concate-
nating elements in . An element of is, therefore, given by

with for . By we denote
the set of all infinite strings obtained by concatenating elements
in . An element of is an infinite string with

. Given a string belonging to or we de-
note by the th element of . The length of a string
is denoted by . A subset of is called a language while a
subset of is called an -language.

We also review the notion of transition systems that will be
extensively used as an abstract model for control and computa-
tion.

Definition 2.1: A transition system with observations is a
tuple where

• is a (possibly infinite) set of states;
• is a set of initial states;
• is a transition relation;
• is a (possibly infinite) set of observations;
• is a map assigning to each an observa-

tion .
A string is a run of if

for or for . A run of is
initialized when .

The introduced notion of transition system differs from other
notions encountered in the literature in that observations are
not associated with transitions but rather with states. These two
models can easily be seen equivalent given the well known
equivalence between Moore and Mealy machines [25]. The
presented model is, however, more natural since observations
of control systems depend on the states and this structure is
inherited by the several transition systems used in this paper to
capture the dynamics of control systems.

We say that is finite when are finite, and infinite other-
wise. We will usually denote by a pair belonging
to . As we will only consider transition systems with ob-
servations, we shall refer to them simply as transition systems.
Since the observation map extends to a unique map
of strings defined by

we will abuse notation and use the same symbol for both the
observation map as well as for its induced string map. Given a
state , we denote by the set of states in that can
reach in one step, that is

We extend Pre to sets in the usual way
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Discrete-time linear control systems can be naturally embedded
in the class of transition systems. Given a discrete-time linear
control system

there is an associated transition system

with defined by iff there exists a
such that . To complete the definition of

we must also provide an observation set and observation
map . The nature of the observation space and map depend on
the problem being solved and are left unspecified for now. The
described embedding is control abstract since the input value re-
quired to perform transition is not explicitly captured
by the transition system. However, this information can be re-
covered from the pair by solving for the
input . Since transition systems capture both control systems
and software systems, we can synthesize controllers consisting
of continuous and discrete (components) within the same frame-
work.

Transition systems define different types of languages.
Definition 2.2: Let be a transition

system. The language generated by , denoted by , is de-
fined as:

for some finite initialized run of

The -language generated by is similarly defined:

for some infinite initialized run of

The structural notion of bisimulation relates properties of dif-
ferent transition systems.

Definition 2.3: Let with
be transition systems and a relation. Relation
is said to be a bisimulation relation between and if the
following hold for any :

• ;
• implies and implies ;
• implies the existence of satisfying

and ;
• implies the existence of satisfying

and .
We shall use the notation to denote the existence of

a bisimulation relation between and . Bisimilar transition
systems share many properties including generated languages.

Proposition 2.4 (Adapted from [53]): Let and be tran-
sition systems and assume that . Then, the following
equalities hold:

In addition to preserve language equivalence, bisimulations
also preserve properties expressible in several temporal logics
such as LTL, CTL, CTL or -calculus [54].

In this paper, we will construct finite bisimulations which are
of a special form.

Definition 2.5: The quotient of a transition system
with respect to an equiva-

lence relation is the transition system
defined by

• is an equivalence class of ;
• ;
• in if there exists and such

that in ;
• for some .
Note that is well defined since implies

. Furthermore, if is a bisimulation relation
between and it follows that the graph of the projection

, defined by ,
is a bisimulation relation between and . is, therefore,
called a bisimilar quotient of with respect to .

B. Finite Bisimulations of Controllable Linear Systems

In this section, we show how finite bisimulations of control-
lable linear systems can be obtained. We make the following
assumptions.

A.I) Control system is controllable.
A.II) The columns of matrix are linearly independent.
Assumption A.II) results in no loss of generality since we

can always remove linearly dependent columns from matrix
without destroying essential properties of . Assumption A.I) is
essential for the existence of finite bisimulations. It has several
important consequences, the first of which being the following
decomposition of the state–space.

Proposition 2.6 [55], [56]: Let be a discrete-time linear
control system satisfying Assumptions A.I) and A.II). Then,
there exists a sequence of positive integers ,
called controllability indexes of , such that:

equals

and is linearly dependent of the vectors
.

Using the controllability indices we can introduce the sub-
space of defined by

(1)
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Subspace naturally induces an observation map for de-
fined as the natural projection from the state–space to the
quotient space

(2)

Observation map takes a vector into its equivalence
class in which we can identify with a point .
Observation map uniquely determines transition system
associated with . We now state this fact for later use.

Definition 2.7: Let be a discrete-time linear control system
satisfying Assumptions A.I) and A.II). Transition system
associated with is defined by
with iff there exists satisfying
and defined by (2).

This choice of observation map is crucial in proving the first
major contribution of this paper.

Theorem 2.8: Let be a discrete-time linear control system
satisfying Assumptions A.I) and A.II). For any finite partition

of the observation space of there exists a finite refinement
of the state space partition such that the quotients

of and
with respect to and denoted by and , re-

spectively, are finite bisimilar quotients.
In order to prove Theorem 2.8, we state and prove a prepara-

tory result ensuring that existence of finite bisimulations is not
destroyed by changes of coordinates or invertible feedback.

Proposition 2.9: Let be a discrete-time linear control
system satisfying Assumptions A.I) and A.II), and let be the
discrete-time linear control system obtained from through
an invertible linear change of coordinates and an
invertible linear feedback . For any finite
partition of the observation space of , there exists a finite
refinement of the state space partition making the
quotient of with respect to a finite bisimilar quotient iff
there exists a finite refinement of the state–space partition

making the quotient of with respect to a
finite bisimilar quotient.

Proof: Assume that exists and let be the finite parti-
tion of the state space of (note that is a par-
tition since is an invertible matrix). It is clear that re-
fines . To show that is a bisimulation relation
between and consider and assume that

in . By definition of and invertibility of ,
there exists such that
and in with . It then follows from
the fact that is a bisimulation relation between and
that in with . Let be the input trig-
gering the transition . Then, input triggers a
transition in and
since and . This proves
condition (3) in Definition 2.3 and condition (4) is proved using
the same argument. Condition (2) is trivially satisfied since the
set of initial states is and is invertible while condition (1)
follows from the equality .

We now return to the proof of Theorem 2.8.
Proof (of Theorem 2.8): In view of Proposition 2.9 we

can assume, without loss of generality, that is in Brunovsky

normal form since any controllable linear system can be trans-
formed into this form by a change of coordinates and an in-
vertible feedback [55], [56]. Recall that the Brunovsky normal
form of a controllable linear system with controllability indexes

is given by

...
...

(3)

...
...

(4)

A simple computation shows that for a control system in
Brunovsky normal form is of the form

(5)

where is the projection map
and is an arbitrary linear

isomorphism. We will now introduce some notation to simplify
the proof. We will use
to denote and to emphasize that

is obtained from by applying the
sequence of inputs . We will
also denote by the largest controllability index.

We now note that it follows from (5) that input will
not affect when .
In other words, implies

(6)

To illustrate this remark, consider a control system defined by
and with observation map

. Since the controllability index corresponding to
input is 2 we see that for

This remark will be used several times in the proof.
Consider now the equivalence relation recur-

sively defined as follows:

We claim that is an auto-bisimulation relation. Since
condition (1) in Definition 2.3 follows from the chosen obser-
vation function for and and condition (2) follows from
the equality , in order to prove the claim we only need
to show that for any
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1) if , then there exists
satisfying and

;
2) if , then there exists

satisfying and
.

We will show only (1) since the same argument is valid for (2).
We will prove (1) by showing that implies

since (1) would then follow from the defini-
tion of .

Consider then and let
. It follows from and the definition

of , the existence of satisfying
. Making use of (6) for we

see that if we modify to by changing the components
of such that we will still have

since is based on the
equalities

for . Thus, we define as

if

if

At this point we have and
we consider . It follows
from and the definition
of , the existence of
satisfying

. Making use of (6) for we see that if we modify
to by changing the components

of such that we will still have
since

is based on the equalities

for . We thus define as

if
if

If we keep on modifying to according to the previously de-
scribed process, we will obtain

Consider now a transition from
to and let

be an arbitrary element of . It then follows the existence of
a transition from to

and, furthermore

in virtue of the way we defined for . We thus
conclude from (5) that

which, in turn, implies and concludes the
proof of the claim.

To conclude the proof of the theorem we must show that
has a finite number of equivalence classes. However,

this follows at once from the observation that represents
bisimilarity restricted to steps and defined with respect to
a finite observation space.

The possibility of synthesizing controllers enforcing LTL
specifications hinges on Theorem 2.8 as it guarantees that
the behavior of admits a finite representation in the form
of a bisimilar quotient. This bisimulation is based on a finite
partition of the observation space of used to describe the
control objectives through a LTL formula. We thus see that
the observation space and map of , naturally defined by the
system dynamics under Assumption II, are essential ingredients
of Theorem 2.8.

Since existence of finite bisimulations has been established,
the following well known bisimulation algorithm can be used
to compute the coarsest possible bisimulation [57], [58] pro-
vided that every set operation is effectively computable, that is,
provided that there exists an algorithm for a Touring machine
implementing the desired set operations. The bisimulation al-
gorithm starts with a transition system and the initial parti-
tion of and terminates with the coarsest partition

such that is a bisimilar quotient of .
Algorithm 2.10: (Bisimulation Algorithm)

As we are considering linear control systems it is natural
to consider partitions of the observation space defined by
semi-linear sets. To ensure computability we restrict all the co-
efficients to live in .

Definition 2.11: The class of semi-linear subsets of con-
sists of finite unions, intersections and complements of the fol-
lowing elementary sets:

Computability of the finite bisimulation is now a consequence
of effective computability of intersections, unions and comple-
ments of semi-linear sets and the fact that Pre of a semi-linear
set can be computed by quantifier elimination [59], resulting in
a semi-linear set. We thus have the following corollary to The-
orem 2.8.
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Fig. 2. Identical vehicles following the same lane.

Corollary 2.12: Let be a discrete-time linear control
system satisfying Assumptions A.I) and A.II) and defined by
matrices and with rational entries. For any finite parti-
tion of the observation space of defined by semi-linear
sets, the quotients of and

with respect to partition ,
whose existence is asserted by Theorem 2.8, are finite bisimilar
quotients which are effectively computable.

Example 2.13: We now illustrate Theorem 2.8 on a variation
of the periodic synchronization example discussed in the intro-
duction. Consider two identical vehicles moving on the same
lane as shown in Fig. 2.

For our purposes it will be sufficient to consider the transla-
tional dynamics along the lane. Each vehicle is modeled as a
discrete-time double integrator

where and represents the translational position of
car . Since we will only be interested in controlling the spacing
between the vehicles, we introduce new variables:

leading to the following model:

(7)

governing intervehicle spacing measured by . Observation
map satisfies and if we model by
the row matrix we obtain

To make the discussion concrete we take leading to
and note that other choices for would equality work.

The requirement that vehicles should come together (in order to
communicate) at least every 3 s can be modeled by

(8)

Note that predicates and represent regions on the obser-
vation space . The formula
is satisfied when the distance between vehicles is smaller than
1 and ensures that such distance constraint is
satisfied every 3 time steps.

If we denote by the set defined by and by its
complement, that is

we can use the bisimulation algorithm with the initial partition
. Following Algorithm 2.10, we compute:

Since and we split
into the sets and defined by

At this point the refined partition is given by
. Choosing now and from we compute

Again, we verify that and
which leads to the splitting of into and defined

by
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Fig. 3. Finite bisimilar quotient T on the left and T on the right.

This splitting leads to the new partition
which already defines a bisimula-

tion since

This finite bisimulation has four discrete states and is graphi-
cally represented in Fig. 3 where initial states are grey colored
and observations are represented outside the circles denoting the
states.

Example 2.14: Consider now a linear control system de-
scribed by the following matrices:

It is not difficult to see that controllability holds and the control-
lability indices are given by and . Vector space
is, therefore, spanned by the first column of . Adopting the fol-
lowing matrix representation for the observation map

:

it follows that equality leads to and
. One possible choice for map satisfying

these equations is

Starting with the following observation space partition:

we obtain a finite bisimulation with eight states defined by
where

The sets associated with each discrete state were computed
using Algorithm 2.10 and are given by

To illustrate the computation of these sets, we con-
sider . Starting from partition
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we obtain the state space partition
. If we de-

note by the set , we have

III. LTL FORMULAS AND BÜCHI AUTOMATA

LTL logic is a very powerful specification mechanism since it
allows one to express complex requirements through simple for-
mulas. Even though the use of temporal logic is now widely used
for verification of software systems [10], [11], we argue that
temporal logic is equally relevant to synthesis problems. In this
section, we define LTL syntax and semantics, provide simple
examples to illustrate the definitions, and discuss the translation
of LTL formulas into Büchi automata.

A. LTL Syntax and Semantics

We start with a finite set of predicates from which more
complex formulas can be built. Even though can be an arbi-
trary finite set we shall keep in mind the particular case where
is the observation space of . LTL formulas are then obtained
through the following recursive definition:

• true, false and are LTL formulas for all ;
• if and are LTL formulas, then and are

LTL formulas;
• if and are LTL formulas, then and are

LTL formulas.
As usual, disjunction and implication are de-
fined as the abbreviations of and , respec-
tively. The operator is read as “next,” with the meaning that
the formula it precedes will be true in the next time step. The
second operator is read as “until” and the formula
specifies that must hold until holds. From the oper-
ator, we can define other commonly used operators:

(9)

(10)

Formula is read as “always ” and requires to be true
for all future time, while formula reads “eventually ” and
states that will become true at some point in the future. A
unique interpretation of LTL formulas is obtained by defining
LTL semantics. LTL formulas are interpreted over sequences of
predicate values . Although LTL formulas are usually
interpreted over sequences of sets of predicate values, in this
paper we identify with a finite partition of the observation
space and thus for each only one predicate is satisfied.
We say that string satisfies formula at time , denoted by

, if formula holds at time along trajectory . The

satisfaction relation is defined as follows: For any , LTL
formulas , and :

• iff ;
• iff ;
• iff and ;
• iff ;
• iff such that for all

and .
Finally, we say that a sequence satisfies formula iff

.
Example 3.1: As a first example consider the formula for

. This formula defines an invariance property by requiring
to hold for all . Such specification is useful, for example,

in one wants to restrict the activity of a certain control system
to a set of operating conditions defined by the predicate . The
semantics of can be obtained from the semantics of using
the definition of given in (10) or given directly as
iff for all . It then follows that the unique string

satisfying is

When each predicate is an element of a finite partition
of the observation space of , requirement specifies that
trajectories of should start in the set defined by and stay in
that set forever.

Example 3.2: Consider now the formula . According
to the previously introduced semantics, every string satisfying
this formula is of the form:

...

where we have used the symbol to denote an occurrence of any
predicate in . The first string satisfies by satisfying ,
after which formula no longer imposes any constraint
on the string. The remaining strings satisfy by initially
satisfying until they satisfy at some later time. Once
is satisfied, any predicate in is allowed to occur in the string
since is already true. Operator is very useful to capture
temporal ordering of control requirements. One can specify, for
example, that the temperature and humidity in a building should
stay within certain bounds (as specified by predicates on the
observation space) until the end of working hours, or that an
aircraft should stay at a certain altitude until the descent phase
is initiated, etc.

Example 3.3: More complex (and useful) formulas usually
involve nesting of temporal operators. One such example is ob-
tained by combining the operator with the formula
resulting in the formula . Intuitively this formula re-
quires to hold for all time, or that holds until at some later
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time holds for all future time. A string satisfying is
necessarily of the form

...

Formula can be used to model convergence towards
the operating conditions described by through a particular
subset of the state–space described by .

Different combinations of and result in formulas with
different meaning. For example, any string satisfying the for-
mula must satisfy at every time step, which
implies that at every time step either holds or holds until

holds at some future time. Examples of strings satisfying
are given as follows:

Example 3.4: We now return to Example 2.13. The only pred-
icate appearing in formula (8), is an element of the observation
space of . According to LTL semantics and the abbreviation

, some of the infinite strings
satisfying (8) are given by

The reader should verify for himself that in every of the above
strings, every length 4 sub-string contains . This shows that
the previous strings satisfy the specification formula since

requires that at every time step holds, meaning that
should hold at or that it should hold at or . This
simple example also shows how tedious and error prone it is to
list all the possible strings satisfying the very simple formula
(8).

When a LTL formula is interpreted over observed sequences
in each predicate corresponds to a subset of and the
specification defines how trajectories of interact with these
sets. This is a convenient and formal way of expressing con-
trol requirements for discrete-time linear systems. If every string
in satisfies formula we simply say that satisfies

which is denoted by . We shall use a similar nota-
tion for even though predicates in do not correspond to
sets in . We shall use the notation when for every

. In general it is not the case that
and a controller needs to be constructed to ensure

satisfaction of by the closed-loop system. Such a controller is
built from and a Büchi automaton describing the specifica-
tion. It is therefore necessary to translate the LTL specification
formula into a Büchi automaton.

B. Büchi Automata

The strings satisfying a given LTL formula can also be com-
pactly described in terms of a finite operational model. Such
model is slightly more complex than a transition system since
LTL formulas specify both the finite and infinite behavior of
strings. Consider for example the formula for

. This formula requires to hold at some time in the fu-
ture. Given a string , we cannot decide if by
looking at a finite prefix of since can always appear at a
later point in time. This shows that we need to equip transition
systems with an additional mechanism describing the behavior
of strings “at infinity.” These new transition systems are called
Büchi automata.

Definition 3.5: A Büchi automaton is a tuple
, where is a finite transition system

and is a set of final states. A string is a run of
if for and there exist

infinitely many such that .
Since every Büchi automaton carries an underlying tran-

sition system structure , it also defines generated languages
and -languages. In addition, final states allows one to intro-
duce the notion of accepted language.

Definition 3.6: Let be a Büchi
automaton. The language accepted by , denoted by , is
defined as

for some initialized run of

Büchi automata accept languages which are more gen-
eral than the languages generated by transition systems.
Since given a transition system we can always con-
struct a Büchi automaton with , leading to

, we can regard transition
systems as a subclass of Büchi automata. The relevance of
Büchi automata comes from the fact that for any LTL formula

it is possible to construct a Büchi automaton accepting
every string satisfying formula . This fact was first shown by
Büchi [60] in the context of decidability of first and second
order monadic theories of one successor. Although decidability
of the translation between LTL formulas and Büchi automata
was settled by Büchi’s work, the complexity of such transla-
tions has been improved through the years by different authors.
The resulting automata are, in the worst case, exponential in
the length of the translated formula. However, current practice
in computer aided verification shows that such worst case
complexity is seldom achieved. Since this translation is well
documented in the literature we point the interested reader to
the survey [61] and to the algorithms described in [62] and [63]
for more details. We now return to the periodic synchronization
example converting the specification formula into a Büchi
automaton.
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Fig. 4. Transition system T corresponding to specification formula '.

Example 3.7: Recall the specification formula discussed in
Example 2.13 that we repeat here for convenience

Specification formula can be translated into the transition
system represented in Fig. 4 where has been abbrevi-
ated by , and by . In this case, the final states of
Büchi automaton are all of its states and thus we can equiv-
alently represent by its underlying transition system.

Note that starting from any state of state will be neces-
sarily reached in at most 3 steps. Since the observation associ-
ated with is this implies that at any time step, will hold
no later than 3 time steps implying that any string generated by

satisfies .
We shall not discuss further Büchi automata as we will not

have the oportunity of using them in this paper. However, they
are essential for the construction of a discrete controller or su-
pervisor for enforcing as discussed in the next section.

IV. SUPERVISORY SYNTHESIS

The existence of finite bisimulations for linear systems, dis-
cussed in Section II, enables the design of controllers enforcing
LTL specifications at the purely discrete level. Such control
problems on infinite behaviors have been studied in the discrete
event systems community [35], [37] and, in this section, we re-
view the results and concepts required for our purposes. We start
by introducing a notion of parallel composition between tran-
sition systems modeling interaction between components. This
interaction can be understood as a form of control where a su-
pervisor is designed to modify (restrict) the behavior of another
(transition) system by interconnection.

Definition 4.1: Let and
be two transition systems with the same

observation space . The parallel composition of and
(with observation synchronization) is denoted by

where
• ;
• ;
• for iff

and ;
• .
The presented definition of parallel composition is not the

usual synchronous product used in the supervisory control liter-
ature since we have defined transition systems with observations

on the states rather than on the transitions. Nevertheless, the lan-
guage of transition system can still be expressed in
terms of the languages of and .

Proposition 4.2: Let and be transition systems with the
same observation space . The following equalities are always
satisfied:

The previous proposition shows that a controller can re-
strict the behavior of through language intersection in order
to eliminate strings which do not satisfy the spec-
ification formula . Furthermore, as asserted in the next result,
a controller for can be obtained by working with the finite
transition system .

proposition 4.3: Let be a controllable linear system, let
be a LTL formula with predicates denoting sets in a finite

partition of the observation space of and let be the finite
refinement of state–space partition whose existence is
asserted by Theorem 2.8. There exists a controller satisfying

iff there exists a controller satisfying
.

Proof: It follows at once from the properties of bisim-
ulation, see for example [53], that for any transition system

implies . The re-
sult now follows from Proposition 2.4.

At this point the reader may be wondering why the previous
result is concerned with the existence of a controller for
and not for . Since a controller modifies the behavior of
the system to be controlled by parallel composition with obser-
vation synchronization, working with is preferable as the
observation space of offers more detailed information re-
garding the dynamics of than the observation space of .

Recalling that for any LTL formula we can always con-
struct a Büchi automaton recognizing every string satisfying

and recalling that from we can construct a Büchi au-
tomaton satisfying , the problem of
constructing a controller enforcing can be conceptually re-
duced to the following steps.

1) Construct from and .
2) Construct from .
3) Construct from .
4) Construct from .
5) Construct a Büchi automaton controller satisfying

.
The first four steps have already been described in this paper and
the fifth step has been extensively studied in the discrete-event
systems literature [36], [64]–[66]. For the purposes of this paper
we will simply assume the existence of defined in (5). Note
that if no such exists, then Proposition 4.3 asserts that no
controller for (and consequently for ) exists. Further-
more, we will also assume that can be modeled by a tran-
sition system, that is, there exists a transition system sat-
isfying . As dis-
cussed in [36], a finite supervisor that is implementable (in soft-
ware, hardware or software and hardware) necessarily has finite
memory and therefore can only restrict the infinite behavior of
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Fig. 5. Parallel composition of T with two different controllers for the problem described in Example 2.13.

based on finite length observations. Therefore, for any im-
plementable Büchi automaton controller enforcing there
exists a finite transition system satisfying

. We refer the reader
to [36], [64]–[66] for more details on the existence and compu-
tation of and return to Example 2.13.

Example 4.4: Fig. 5 shows two different controllers enforcing
LTL formula (8) on the transition system displayed in Fig. 3.
We can see that both controllers enforce LTL formula (8) on
since on the first case the language of the parallel composition
consists of strings of the form , while in the second
case it consists of strings in which occurrence of (if any) is
immediately followed by an occurrence of .

V. REFINING THE CLOSED-LOOP

In the previous section, we outlined how a finite controller
for enforcing a desired LTL specification can be ob-

tained. In this section, we will see that we can also extract from
the continuous inputs required to enforce the specification

on . The explicit modeling of the control inputs available to
will result in a hybrid closed-loop behavior. This motivates

the introduction of discrete-time linear hybrid systems and their
corresponding transition systems.

Definition 5.1: A discrete-time linear hybrid system
consists of the following elements.

• The state–space where is a finite set of
states and for each .

• A set of initial states .
• The continuous dynamics where for each

defines a dis-
crete-time linear control system

with inputs restricted to the set
.

• The discrete dynamics which assigns
to each discrete and continuous state the
discrete successor states .

Similarly to the purely continuous case, hybrid systems can
also be embedded into the class of transition systems. Assuming
the continuous dynamics to be controllable we can define tran-
sition system

associated with a discrete-time linear hybrid system
by

iff and . The
observation set and map are defined by and

where and are the observation set and
map associated with the control systems defined by
for each . The importance of embedding linear hybrid
systems into the class of transition systems resides in the possi-
bility of formally defining a notion of correct implementation.

Definition 5.2: Let be a controllable linear system, let
be a LTL formula with predicates denoting sets in a finite par-
tition of the observation space of and let be a con-
troller enforcing on the finite bisimilar quotient , that is,

. Linear hybrid system is said to be a cor-
rect implementation of the closed-loop behavior if

.
A hybrid implementation

of a desired closed-loop behavior can be immedi-
ately obtained from by
defining

(11)

(12)

(13)
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Fig. 6. Hybrid implementation of the closed-loop behavior enforced by the second supervisor represented in Fig. 5.

(14)

(15)

(16)

The construction of represents the last step required for the
solution of Problem 1.1 as we now summarize in the following
result.

Theorem 5.3: Let be a controllable linear system satisfying
Assumptions A.I) and A.II) and defined by matrices and
with rational entries. For any LTL formula with predicates
denoting semi-linear sets on the observation space of , it is
decidable to determine the existence of a controller satisfying

. Furthermore, when such a controller exists it
admits the hybrid implementation defined by (11) through (16)
which is effectively computable.

Proof: By Corollary 2.12, we can effectively compute .
Since we can also effectively compute from , it follows
from standard results in supervisory control [36], [64]–[66] that
it is decidable to determine the existence of a controller for

and also that is effectively computable. The result now
follows from the fact that steps (11) through (16) are effectively
computable since the sets denoted by are semi-linear.

It is important to emphasize that the resulting hybrid con-
troller implicitly defined by can be obtained in a totally auto-
mated fashion. The closed-loop system is still a control system
in the sense that at every state different future evolutions are pos-
sible under the action of different input values. This is natural
since the closed-loop model can now be further controlled to sat-
isfy additional objectives or optimized to extremize certain per-
formance criteria. Another important characteristic of the pre-
sented method is the automatic synthesis of both the switching
logic (implemented by software) and the continuous aspects of
control. In fact, a software implementation of the controller im-
plicitly defined by can be automatically generated from by
translating each discrete state of into code reading the state

from sensors, computing based on and and sending
to the actuators. This fact is especially important since verifica-
tion of hybrid systems is currently limited to systems with very
simple continuous dynamics such as timed automata. The pro-
posed approach thus results in systems that satisfy the specifi-
cation by design while enlarging the class of system that can be
shown to operate correctly.

Example 5.4: We now illustrate the construction of the hybrid
implementation of the closed-loop systems displayed in Fig. 5.
We focus on the construction of which is the only nontrivial

Fig. 7. Hybrid implementation of the closed-loop behavior enforced by the first
supervisor represented in Fig. 5.

element in the definition of . The first closed-loop system in
Fig. 5 consists of a single discrete state and the corresponding
set is defined by

The resulting hybrid implementation is represented in Fig. 7.
The second supervisor has three discrete states for which we

need to compute the input set . For discrete state , we have

while for states and the set is given by:

The resulting hybrid implementation is represented in Fig. 6.

VI. DISCUSSION

This paper presented an approach for the fully automated syn-
thesis of controllers enforcing LTL specifications for linear sys-
tems. The resulting controllers are of hybrid nature combining
the continuous dynamics of the original control system with
the switching logic required to implement the desired specifi-
cation. We can thus see these hybrid models as abstract descrip-
tions of the embedded software required for its implementation.
Since the resulting closed-loop system is guaranteed to satisfy
the specification by construction, the presented synthesis tech-
nique enlarges the class of embedded systems for which formal
guarantees of operation can be given.
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The proposed approach can be further improved in terms of
complexity. Compositional design techniques where different
controllers are designed for different aspects of the specification
and later combined into a controller for the overall specification
allow one to overcome the complexity of translating LTL for-
mulas into Büchi automata. Similarly, design with coarser finite
abstractions of than sidesteps the complexity involved
in the construction of . The authors are currently investi-
gating these issues as well as synthesis for other temporal logics
such as CTL and -calculus.
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